1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * auxtrace.c: AUX area trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <sys/types.h> 9 #include <sys/mman.h> 10 #include <stdbool.h> 11 #include <string.h> 12 #include <limits.h> 13 #include <errno.h> 14 15 #include <linux/kernel.h> 16 #include <linux/perf_event.h> 17 #include <linux/types.h> 18 #include <linux/bitops.h> 19 #include <linux/log2.h> 20 #include <linux/string.h> 21 #include <linux/time64.h> 22 23 #include <sys/param.h> 24 #include <stdlib.h> 25 #include <stdio.h> 26 #include <linux/list.h> 27 #include <linux/zalloc.h> 28 29 #include "config.h" 30 #include "evlist.h" 31 #include "dso.h" 32 #include "map.h" 33 #include "pmu.h" 34 #include "evsel.h" 35 #include "evsel_config.h" 36 #include "symbol.h" 37 #include "util/perf_api_probe.h" 38 #include "util/synthetic-events.h" 39 #include "thread_map.h" 40 #include "asm/bug.h" 41 #include "auxtrace.h" 42 43 #include <linux/hash.h> 44 45 #include "event.h" 46 #include "record.h" 47 #include "session.h" 48 #include "debug.h" 49 #include <subcmd/parse-options.h> 50 51 #include "cs-etm.h" 52 #include "intel-pt.h" 53 #include "intel-bts.h" 54 #include "arm-spe.h" 55 #include "hisi-ptt.h" 56 #include "s390-cpumsf.h" 57 #include "util/mmap.h" 58 59 #include <linux/ctype.h> 60 #include "symbol/kallsyms.h" 61 #include <internal/lib.h> 62 #include "util/sample.h" 63 64 /* 65 * Make a group from 'leader' to 'last', requiring that the events were not 66 * already grouped to a different leader. 67 */ 68 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last) 69 { 70 struct evsel *evsel; 71 bool grp; 72 73 if (!evsel__is_group_leader(leader)) 74 return -EINVAL; 75 76 grp = false; 77 evlist__for_each_entry(evlist, evsel) { 78 if (grp) { 79 if (!(evsel__leader(evsel) == leader || 80 (evsel__leader(evsel) == evsel && 81 evsel->core.nr_members <= 1))) 82 return -EINVAL; 83 } else if (evsel == leader) { 84 grp = true; 85 } 86 if (evsel == last) 87 break; 88 } 89 90 grp = false; 91 evlist__for_each_entry(evlist, evsel) { 92 if (grp) { 93 if (!evsel__has_leader(evsel, leader)) { 94 evsel__set_leader(evsel, leader); 95 if (leader->core.nr_members < 1) 96 leader->core.nr_members = 1; 97 leader->core.nr_members += 1; 98 } 99 } else if (evsel == leader) { 100 grp = true; 101 } 102 if (evsel == last) 103 break; 104 } 105 106 return 0; 107 } 108 109 static bool auxtrace__dont_decode(struct perf_session *session) 110 { 111 return !session->itrace_synth_opts || 112 session->itrace_synth_opts->dont_decode; 113 } 114 115 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 116 struct auxtrace_mmap_params *mp, 117 void *userpg, int fd) 118 { 119 struct perf_event_mmap_page *pc = userpg; 120 121 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 122 123 mm->userpg = userpg; 124 mm->mask = mp->mask; 125 mm->len = mp->len; 126 mm->prev = 0; 127 mm->idx = mp->idx; 128 mm->tid = mp->tid; 129 mm->cpu = mp->cpu.cpu; 130 131 if (!mp->len || !mp->mmap_needed) { 132 mm->base = NULL; 133 return 0; 134 } 135 136 pc->aux_offset = mp->offset; 137 pc->aux_size = mp->len; 138 139 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 140 if (mm->base == MAP_FAILED) { 141 pr_debug2("failed to mmap AUX area\n"); 142 mm->base = NULL; 143 return -1; 144 } 145 146 return 0; 147 } 148 149 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 150 { 151 if (mm->base) { 152 munmap(mm->base, mm->len); 153 mm->base = NULL; 154 } 155 } 156 157 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 158 off_t auxtrace_offset, 159 unsigned int auxtrace_pages, 160 bool auxtrace_overwrite) 161 { 162 if (auxtrace_pages) { 163 mp->offset = auxtrace_offset; 164 mp->len = auxtrace_pages * (size_t)page_size; 165 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 166 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 167 pr_debug2("AUX area mmap length %zu\n", mp->len); 168 } else { 169 mp->len = 0; 170 } 171 } 172 173 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 174 struct evlist *evlist, 175 struct evsel *evsel, int idx) 176 { 177 bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus); 178 179 mp->mmap_needed = evsel->needs_auxtrace_mmap; 180 181 if (!mp->mmap_needed) 182 return; 183 184 mp->idx = idx; 185 186 if (per_cpu) { 187 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 188 if (evlist->core.threads) 189 mp->tid = perf_thread_map__pid(evlist->core.threads, 0); 190 else 191 mp->tid = -1; 192 } else { 193 mp->cpu.cpu = -1; 194 mp->tid = perf_thread_map__pid(evlist->core.threads, idx); 195 } 196 } 197 198 #define AUXTRACE_INIT_NR_QUEUES 32 199 200 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 201 { 202 struct auxtrace_queue *queue_array; 203 unsigned int max_nr_queues, i; 204 205 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 206 if (nr_queues > max_nr_queues) 207 return NULL; 208 209 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 210 if (!queue_array) 211 return NULL; 212 213 for (i = 0; i < nr_queues; i++) { 214 INIT_LIST_HEAD(&queue_array[i].head); 215 queue_array[i].priv = NULL; 216 } 217 218 return queue_array; 219 } 220 221 int auxtrace_queues__init(struct auxtrace_queues *queues) 222 { 223 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES; 224 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 225 if (!queues->queue_array) 226 return -ENOMEM; 227 return 0; 228 } 229 230 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 231 unsigned int new_nr_queues) 232 { 233 unsigned int nr_queues = queues->nr_queues; 234 struct auxtrace_queue *queue_array; 235 unsigned int i; 236 237 if (!nr_queues) 238 nr_queues = AUXTRACE_INIT_NR_QUEUES; 239 240 while (nr_queues && nr_queues < new_nr_queues) 241 nr_queues <<= 1; 242 243 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 244 return -EINVAL; 245 246 queue_array = auxtrace_alloc_queue_array(nr_queues); 247 if (!queue_array) 248 return -ENOMEM; 249 250 for (i = 0; i < queues->nr_queues; i++) { 251 list_splice_tail(&queues->queue_array[i].head, 252 &queue_array[i].head); 253 queue_array[i].tid = queues->queue_array[i].tid; 254 queue_array[i].cpu = queues->queue_array[i].cpu; 255 queue_array[i].set = queues->queue_array[i].set; 256 queue_array[i].priv = queues->queue_array[i].priv; 257 } 258 259 queues->nr_queues = nr_queues; 260 queues->queue_array = queue_array; 261 262 return 0; 263 } 264 265 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 266 { 267 int fd = perf_data__fd(session->data); 268 void *p; 269 ssize_t ret; 270 271 if (size > SSIZE_MAX) 272 return NULL; 273 274 p = malloc(size); 275 if (!p) 276 return NULL; 277 278 ret = readn(fd, p, size); 279 if (ret != (ssize_t)size) { 280 free(p); 281 return NULL; 282 } 283 284 return p; 285 } 286 287 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 288 unsigned int idx, 289 struct auxtrace_buffer *buffer) 290 { 291 struct auxtrace_queue *queue; 292 int err; 293 294 if (idx >= queues->nr_queues) { 295 err = auxtrace_queues__grow(queues, idx + 1); 296 if (err) 297 return err; 298 } 299 300 queue = &queues->queue_array[idx]; 301 302 if (!queue->set) { 303 queue->set = true; 304 queue->tid = buffer->tid; 305 queue->cpu = buffer->cpu.cpu; 306 } 307 308 buffer->buffer_nr = queues->next_buffer_nr++; 309 310 list_add_tail(&buffer->list, &queue->head); 311 312 queues->new_data = true; 313 queues->populated = true; 314 315 return 0; 316 } 317 318 /* Limit buffers to 32MiB on 32-bit */ 319 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 320 321 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 322 unsigned int idx, 323 struct auxtrace_buffer *buffer) 324 { 325 u64 sz = buffer->size; 326 bool consecutive = false; 327 struct auxtrace_buffer *b; 328 int err; 329 330 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 331 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 332 if (!b) 333 return -ENOMEM; 334 b->size = BUFFER_LIMIT_FOR_32_BIT; 335 b->consecutive = consecutive; 336 err = auxtrace_queues__queue_buffer(queues, idx, b); 337 if (err) { 338 auxtrace_buffer__free(b); 339 return err; 340 } 341 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 342 sz -= BUFFER_LIMIT_FOR_32_BIT; 343 consecutive = true; 344 } 345 346 buffer->size = sz; 347 buffer->consecutive = consecutive; 348 349 return 0; 350 } 351 352 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu) 353 { 354 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 355 356 return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap); 357 } 358 359 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 360 struct perf_session *session, 361 unsigned int idx, 362 struct auxtrace_buffer *buffer, 363 struct auxtrace_buffer **buffer_ptr) 364 { 365 int err = -ENOMEM; 366 367 if (filter_cpu(session, buffer->cpu)) 368 return 0; 369 370 buffer = memdup(buffer, sizeof(*buffer)); 371 if (!buffer) 372 return -ENOMEM; 373 374 if (session->one_mmap) { 375 buffer->data = buffer->data_offset - session->one_mmap_offset + 376 session->one_mmap_addr; 377 } else if (perf_data__is_pipe(session->data)) { 378 buffer->data = auxtrace_copy_data(buffer->size, session); 379 if (!buffer->data) 380 goto out_free; 381 buffer->data_needs_freeing = true; 382 } else if (BITS_PER_LONG == 32 && 383 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 384 err = auxtrace_queues__split_buffer(queues, idx, buffer); 385 if (err) 386 goto out_free; 387 } 388 389 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 390 if (err) 391 goto out_free; 392 393 /* FIXME: Doesn't work for split buffer */ 394 if (buffer_ptr) 395 *buffer_ptr = buffer; 396 397 return 0; 398 399 out_free: 400 auxtrace_buffer__free(buffer); 401 return err; 402 } 403 404 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 405 struct perf_session *session, 406 union perf_event *event, off_t data_offset, 407 struct auxtrace_buffer **buffer_ptr) 408 { 409 struct auxtrace_buffer buffer = { 410 .pid = -1, 411 .tid = event->auxtrace.tid, 412 .cpu = { event->auxtrace.cpu }, 413 .data_offset = data_offset, 414 .offset = event->auxtrace.offset, 415 .reference = event->auxtrace.reference, 416 .size = event->auxtrace.size, 417 }; 418 unsigned int idx = event->auxtrace.idx; 419 420 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 421 buffer_ptr); 422 } 423 424 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 425 struct perf_session *session, 426 off_t file_offset, size_t sz) 427 { 428 union perf_event *event; 429 int err; 430 char buf[PERF_SAMPLE_MAX_SIZE]; 431 432 err = perf_session__peek_event(session, file_offset, buf, 433 PERF_SAMPLE_MAX_SIZE, &event, NULL); 434 if (err) 435 return err; 436 437 if (event->header.type == PERF_RECORD_AUXTRACE) { 438 if (event->header.size < sizeof(struct perf_record_auxtrace) || 439 event->header.size != sz) { 440 err = -EINVAL; 441 goto out; 442 } 443 file_offset += event->header.size; 444 err = auxtrace_queues__add_event(queues, session, event, 445 file_offset, NULL); 446 } 447 out: 448 return err; 449 } 450 451 void auxtrace_queues__free(struct auxtrace_queues *queues) 452 { 453 unsigned int i; 454 455 for (i = 0; i < queues->nr_queues; i++) { 456 while (!list_empty(&queues->queue_array[i].head)) { 457 struct auxtrace_buffer *buffer; 458 459 buffer = list_entry(queues->queue_array[i].head.next, 460 struct auxtrace_buffer, list); 461 list_del_init(&buffer->list); 462 auxtrace_buffer__free(buffer); 463 } 464 } 465 466 zfree(&queues->queue_array); 467 queues->nr_queues = 0; 468 } 469 470 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 471 unsigned int pos, unsigned int queue_nr, 472 u64 ordinal) 473 { 474 unsigned int parent; 475 476 while (pos) { 477 parent = (pos - 1) >> 1; 478 if (heap_array[parent].ordinal <= ordinal) 479 break; 480 heap_array[pos] = heap_array[parent]; 481 pos = parent; 482 } 483 heap_array[pos].queue_nr = queue_nr; 484 heap_array[pos].ordinal = ordinal; 485 } 486 487 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 488 u64 ordinal) 489 { 490 struct auxtrace_heap_item *heap_array; 491 492 if (queue_nr >= heap->heap_sz) { 493 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 494 495 while (heap_sz <= queue_nr) 496 heap_sz <<= 1; 497 heap_array = realloc(heap->heap_array, 498 heap_sz * sizeof(struct auxtrace_heap_item)); 499 if (!heap_array) 500 return -ENOMEM; 501 heap->heap_array = heap_array; 502 heap->heap_sz = heap_sz; 503 } 504 505 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 506 507 return 0; 508 } 509 510 void auxtrace_heap__free(struct auxtrace_heap *heap) 511 { 512 zfree(&heap->heap_array); 513 heap->heap_cnt = 0; 514 heap->heap_sz = 0; 515 } 516 517 void auxtrace_heap__pop(struct auxtrace_heap *heap) 518 { 519 unsigned int pos, last, heap_cnt = heap->heap_cnt; 520 struct auxtrace_heap_item *heap_array; 521 522 if (!heap_cnt) 523 return; 524 525 heap->heap_cnt -= 1; 526 527 heap_array = heap->heap_array; 528 529 pos = 0; 530 while (1) { 531 unsigned int left, right; 532 533 left = (pos << 1) + 1; 534 if (left >= heap_cnt) 535 break; 536 right = left + 1; 537 if (right >= heap_cnt) { 538 heap_array[pos] = heap_array[left]; 539 return; 540 } 541 if (heap_array[left].ordinal < heap_array[right].ordinal) { 542 heap_array[pos] = heap_array[left]; 543 pos = left; 544 } else { 545 heap_array[pos] = heap_array[right]; 546 pos = right; 547 } 548 } 549 550 last = heap_cnt - 1; 551 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 552 heap_array[last].ordinal); 553 } 554 555 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 556 struct evlist *evlist) 557 { 558 if (itr) 559 return itr->info_priv_size(itr, evlist); 560 return 0; 561 } 562 563 static int auxtrace_not_supported(void) 564 { 565 pr_err("AUX area tracing is not supported on this architecture\n"); 566 return -EINVAL; 567 } 568 569 int auxtrace_record__info_fill(struct auxtrace_record *itr, 570 struct perf_session *session, 571 struct perf_record_auxtrace_info *auxtrace_info, 572 size_t priv_size) 573 { 574 if (itr) 575 return itr->info_fill(itr, session, auxtrace_info, priv_size); 576 return auxtrace_not_supported(); 577 } 578 579 void auxtrace_record__free(struct auxtrace_record *itr) 580 { 581 if (itr) 582 itr->free(itr); 583 } 584 585 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 586 { 587 if (itr && itr->snapshot_start) 588 return itr->snapshot_start(itr); 589 return 0; 590 } 591 592 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit) 593 { 594 if (!on_exit && itr && itr->snapshot_finish) 595 return itr->snapshot_finish(itr); 596 return 0; 597 } 598 599 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 600 struct auxtrace_mmap *mm, 601 unsigned char *data, u64 *head, u64 *old) 602 { 603 if (itr && itr->find_snapshot) 604 return itr->find_snapshot(itr, idx, mm, data, head, old); 605 return 0; 606 } 607 608 int auxtrace_record__options(struct auxtrace_record *itr, 609 struct evlist *evlist, 610 struct record_opts *opts) 611 { 612 if (itr) { 613 itr->evlist = evlist; 614 return itr->recording_options(itr, evlist, opts); 615 } 616 return 0; 617 } 618 619 u64 auxtrace_record__reference(struct auxtrace_record *itr) 620 { 621 if (itr) 622 return itr->reference(itr); 623 return 0; 624 } 625 626 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 627 struct record_opts *opts, const char *str) 628 { 629 if (!str) 630 return 0; 631 632 /* PMU-agnostic options */ 633 switch (*str) { 634 case 'e': 635 opts->auxtrace_snapshot_on_exit = true; 636 str++; 637 break; 638 default: 639 break; 640 } 641 642 if (itr && itr->parse_snapshot_options) 643 return itr->parse_snapshot_options(itr, opts, str); 644 645 pr_err("No AUX area tracing to snapshot\n"); 646 return -EINVAL; 647 } 648 649 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx) 650 { 651 bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus); 652 653 if (per_cpu_mmaps) { 654 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 655 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu); 656 657 if (cpu_map_idx == -1) 658 return -EINVAL; 659 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx); 660 } 661 662 return perf_evsel__enable_thread(&evsel->core, idx); 663 } 664 665 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx) 666 { 667 struct evsel *evsel; 668 669 if (!itr->evlist || !itr->pmu) 670 return -EINVAL; 671 672 evlist__for_each_entry(itr->evlist, evsel) { 673 if (evsel->core.attr.type == itr->pmu->type) { 674 if (evsel->disabled) 675 return 0; 676 return evlist__enable_event_idx(itr->evlist, evsel, idx); 677 } 678 } 679 return -EINVAL; 680 } 681 682 /* 683 * Event record size is 16-bit which results in a maximum size of about 64KiB. 684 * Allow about 4KiB for the rest of the sample record, to give a maximum 685 * AUX area sample size of 60KiB. 686 */ 687 #define MAX_AUX_SAMPLE_SIZE (60 * 1024) 688 689 /* Arbitrary default size if no other default provided */ 690 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024) 691 692 static int auxtrace_validate_aux_sample_size(struct evlist *evlist, 693 struct record_opts *opts) 694 { 695 struct evsel *evsel; 696 bool has_aux_leader = false; 697 u32 sz; 698 699 evlist__for_each_entry(evlist, evsel) { 700 sz = evsel->core.attr.aux_sample_size; 701 if (evsel__is_group_leader(evsel)) { 702 has_aux_leader = evsel__is_aux_event(evsel); 703 if (sz) { 704 if (has_aux_leader) 705 pr_err("Cannot add AUX area sampling to an AUX area event\n"); 706 else 707 pr_err("Cannot add AUX area sampling to a group leader\n"); 708 return -EINVAL; 709 } 710 } 711 if (sz > MAX_AUX_SAMPLE_SIZE) { 712 pr_err("AUX area sample size %u too big, max. %d\n", 713 sz, MAX_AUX_SAMPLE_SIZE); 714 return -EINVAL; 715 } 716 if (sz) { 717 if (!has_aux_leader) { 718 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n"); 719 return -EINVAL; 720 } 721 evsel__set_sample_bit(evsel, AUX); 722 opts->auxtrace_sample_mode = true; 723 } else { 724 evsel__reset_sample_bit(evsel, AUX); 725 } 726 } 727 728 if (!opts->auxtrace_sample_mode) { 729 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n"); 730 return -EINVAL; 731 } 732 733 if (!perf_can_aux_sample()) { 734 pr_err("AUX area sampling is not supported by kernel\n"); 735 return -EINVAL; 736 } 737 738 return 0; 739 } 740 741 int auxtrace_parse_sample_options(struct auxtrace_record *itr, 742 struct evlist *evlist, 743 struct record_opts *opts, const char *str) 744 { 745 struct evsel_config_term *term; 746 struct evsel *aux_evsel; 747 bool has_aux_sample_size = false; 748 bool has_aux_leader = false; 749 struct evsel *evsel; 750 char *endptr; 751 unsigned long sz; 752 753 if (!str) 754 goto no_opt; 755 756 if (!itr) { 757 pr_err("No AUX area event to sample\n"); 758 return -EINVAL; 759 } 760 761 sz = strtoul(str, &endptr, 0); 762 if (*endptr || sz > UINT_MAX) { 763 pr_err("Bad AUX area sampling option: '%s'\n", str); 764 return -EINVAL; 765 } 766 767 if (!sz) 768 sz = itr->default_aux_sample_size; 769 770 if (!sz) 771 sz = DEFAULT_AUX_SAMPLE_SIZE; 772 773 /* Set aux_sample_size based on --aux-sample option */ 774 evlist__for_each_entry(evlist, evsel) { 775 if (evsel__is_group_leader(evsel)) { 776 has_aux_leader = evsel__is_aux_event(evsel); 777 } else if (has_aux_leader) { 778 evsel->core.attr.aux_sample_size = sz; 779 } 780 } 781 no_opt: 782 aux_evsel = NULL; 783 /* Override with aux_sample_size from config term */ 784 evlist__for_each_entry(evlist, evsel) { 785 if (evsel__is_aux_event(evsel)) 786 aux_evsel = evsel; 787 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE); 788 if (term) { 789 has_aux_sample_size = true; 790 evsel->core.attr.aux_sample_size = term->val.aux_sample_size; 791 /* If possible, group with the AUX event */ 792 if (aux_evsel && evsel->core.attr.aux_sample_size) 793 evlist__regroup(evlist, aux_evsel, evsel); 794 } 795 } 796 797 if (!str && !has_aux_sample_size) 798 return 0; 799 800 if (!itr) { 801 pr_err("No AUX area event to sample\n"); 802 return -EINVAL; 803 } 804 805 return auxtrace_validate_aux_sample_size(evlist, opts); 806 } 807 808 void auxtrace_regroup_aux_output(struct evlist *evlist) 809 { 810 struct evsel *evsel, *aux_evsel = NULL; 811 struct evsel_config_term *term; 812 813 evlist__for_each_entry(evlist, evsel) { 814 if (evsel__is_aux_event(evsel)) 815 aux_evsel = evsel; 816 term = evsel__get_config_term(evsel, AUX_OUTPUT); 817 /* If possible, group with the AUX event */ 818 if (term && aux_evsel) 819 evlist__regroup(evlist, aux_evsel, evsel); 820 } 821 } 822 823 struct auxtrace_record *__weak 824 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err) 825 { 826 *err = 0; 827 return NULL; 828 } 829 830 static int auxtrace_index__alloc(struct list_head *head) 831 { 832 struct auxtrace_index *auxtrace_index; 833 834 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 835 if (!auxtrace_index) 836 return -ENOMEM; 837 838 auxtrace_index->nr = 0; 839 INIT_LIST_HEAD(&auxtrace_index->list); 840 841 list_add_tail(&auxtrace_index->list, head); 842 843 return 0; 844 } 845 846 void auxtrace_index__free(struct list_head *head) 847 { 848 struct auxtrace_index *auxtrace_index, *n; 849 850 list_for_each_entry_safe(auxtrace_index, n, head, list) { 851 list_del_init(&auxtrace_index->list); 852 free(auxtrace_index); 853 } 854 } 855 856 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 857 { 858 struct auxtrace_index *auxtrace_index; 859 int err; 860 861 if (list_empty(head)) { 862 err = auxtrace_index__alloc(head); 863 if (err) 864 return NULL; 865 } 866 867 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 868 869 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 870 err = auxtrace_index__alloc(head); 871 if (err) 872 return NULL; 873 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 874 list); 875 } 876 877 return auxtrace_index; 878 } 879 880 int auxtrace_index__auxtrace_event(struct list_head *head, 881 union perf_event *event, off_t file_offset) 882 { 883 struct auxtrace_index *auxtrace_index; 884 size_t nr; 885 886 auxtrace_index = auxtrace_index__last(head); 887 if (!auxtrace_index) 888 return -ENOMEM; 889 890 nr = auxtrace_index->nr; 891 auxtrace_index->entries[nr].file_offset = file_offset; 892 auxtrace_index->entries[nr].sz = event->header.size; 893 auxtrace_index->nr += 1; 894 895 return 0; 896 } 897 898 static int auxtrace_index__do_write(int fd, 899 struct auxtrace_index *auxtrace_index) 900 { 901 struct auxtrace_index_entry ent; 902 size_t i; 903 904 for (i = 0; i < auxtrace_index->nr; i++) { 905 ent.file_offset = auxtrace_index->entries[i].file_offset; 906 ent.sz = auxtrace_index->entries[i].sz; 907 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 908 return -errno; 909 } 910 return 0; 911 } 912 913 int auxtrace_index__write(int fd, struct list_head *head) 914 { 915 struct auxtrace_index *auxtrace_index; 916 u64 total = 0; 917 int err; 918 919 list_for_each_entry(auxtrace_index, head, list) 920 total += auxtrace_index->nr; 921 922 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 923 return -errno; 924 925 list_for_each_entry(auxtrace_index, head, list) { 926 err = auxtrace_index__do_write(fd, auxtrace_index); 927 if (err) 928 return err; 929 } 930 931 return 0; 932 } 933 934 static int auxtrace_index__process_entry(int fd, struct list_head *head, 935 bool needs_swap) 936 { 937 struct auxtrace_index *auxtrace_index; 938 struct auxtrace_index_entry ent; 939 size_t nr; 940 941 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 942 return -1; 943 944 auxtrace_index = auxtrace_index__last(head); 945 if (!auxtrace_index) 946 return -1; 947 948 nr = auxtrace_index->nr; 949 if (needs_swap) { 950 auxtrace_index->entries[nr].file_offset = 951 bswap_64(ent.file_offset); 952 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 953 } else { 954 auxtrace_index->entries[nr].file_offset = ent.file_offset; 955 auxtrace_index->entries[nr].sz = ent.sz; 956 } 957 958 auxtrace_index->nr = nr + 1; 959 960 return 0; 961 } 962 963 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 964 bool needs_swap) 965 { 966 struct list_head *head = &session->auxtrace_index; 967 u64 nr; 968 969 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 970 return -1; 971 972 if (needs_swap) 973 nr = bswap_64(nr); 974 975 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 976 return -1; 977 978 while (nr--) { 979 int err; 980 981 err = auxtrace_index__process_entry(fd, head, needs_swap); 982 if (err) 983 return -1; 984 } 985 986 return 0; 987 } 988 989 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 990 struct perf_session *session, 991 struct auxtrace_index_entry *ent) 992 { 993 return auxtrace_queues__add_indexed_event(queues, session, 994 ent->file_offset, ent->sz); 995 } 996 997 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 998 struct perf_session *session) 999 { 1000 struct auxtrace_index *auxtrace_index; 1001 struct auxtrace_index_entry *ent; 1002 size_t i; 1003 int err; 1004 1005 if (auxtrace__dont_decode(session)) 1006 return 0; 1007 1008 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 1009 for (i = 0; i < auxtrace_index->nr; i++) { 1010 ent = &auxtrace_index->entries[i]; 1011 err = auxtrace_queues__process_index_entry(queues, 1012 session, 1013 ent); 1014 if (err) 1015 return err; 1016 } 1017 } 1018 return 0; 1019 } 1020 1021 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 1022 struct auxtrace_buffer *buffer) 1023 { 1024 if (buffer) { 1025 if (list_is_last(&buffer->list, &queue->head)) 1026 return NULL; 1027 return list_entry(buffer->list.next, struct auxtrace_buffer, 1028 list); 1029 } else { 1030 if (list_empty(&queue->head)) 1031 return NULL; 1032 return list_entry(queue->head.next, struct auxtrace_buffer, 1033 list); 1034 } 1035 } 1036 1037 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues, 1038 struct perf_sample *sample, 1039 struct perf_session *session) 1040 { 1041 struct perf_sample_id *sid; 1042 unsigned int idx; 1043 u64 id; 1044 1045 id = sample->id; 1046 if (!id) 1047 return NULL; 1048 1049 sid = evlist__id2sid(session->evlist, id); 1050 if (!sid) 1051 return NULL; 1052 1053 idx = sid->idx; 1054 1055 if (idx >= queues->nr_queues) 1056 return NULL; 1057 1058 return &queues->queue_array[idx]; 1059 } 1060 1061 int auxtrace_queues__add_sample(struct auxtrace_queues *queues, 1062 struct perf_session *session, 1063 struct perf_sample *sample, u64 data_offset, 1064 u64 reference) 1065 { 1066 struct auxtrace_buffer buffer = { 1067 .pid = -1, 1068 .data_offset = data_offset, 1069 .reference = reference, 1070 .size = sample->aux_sample.size, 1071 }; 1072 struct perf_sample_id *sid; 1073 u64 id = sample->id; 1074 unsigned int idx; 1075 1076 if (!id) 1077 return -EINVAL; 1078 1079 sid = evlist__id2sid(session->evlist, id); 1080 if (!sid) 1081 return -ENOENT; 1082 1083 idx = sid->idx; 1084 buffer.tid = sid->tid; 1085 buffer.cpu = sid->cpu; 1086 1087 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL); 1088 } 1089 1090 struct queue_data { 1091 bool samples; 1092 bool events; 1093 }; 1094 1095 static int auxtrace_queue_data_cb(struct perf_session *session, 1096 union perf_event *event, u64 offset, 1097 void *data) 1098 { 1099 struct queue_data *qd = data; 1100 struct perf_sample sample; 1101 int err; 1102 1103 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) { 1104 if (event->header.size < sizeof(struct perf_record_auxtrace)) 1105 return -EINVAL; 1106 offset += event->header.size; 1107 return session->auxtrace->queue_data(session, NULL, event, 1108 offset); 1109 } 1110 1111 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE) 1112 return 0; 1113 1114 err = evlist__parse_sample(session->evlist, event, &sample); 1115 if (err) 1116 return err; 1117 1118 if (!sample.aux_sample.size) 1119 return 0; 1120 1121 offset += sample.aux_sample.data - (void *)event; 1122 1123 return session->auxtrace->queue_data(session, &sample, NULL, offset); 1124 } 1125 1126 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events) 1127 { 1128 struct queue_data qd = { 1129 .samples = samples, 1130 .events = events, 1131 }; 1132 1133 if (auxtrace__dont_decode(session)) 1134 return 0; 1135 1136 if (perf_data__is_pipe(session->data)) 1137 return 0; 1138 1139 if (!session->auxtrace || !session->auxtrace->queue_data) 1140 return -EINVAL; 1141 1142 return perf_session__peek_events(session, session->header.data_offset, 1143 session->header.data_size, 1144 auxtrace_queue_data_cb, &qd); 1145 } 1146 1147 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw) 1148 { 1149 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ; 1150 size_t adj = buffer->data_offset & (page_size - 1); 1151 size_t size = buffer->size + adj; 1152 off_t file_offset = buffer->data_offset - adj; 1153 void *addr; 1154 1155 if (buffer->data) 1156 return buffer->data; 1157 1158 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset); 1159 if (addr == MAP_FAILED) 1160 return NULL; 1161 1162 buffer->mmap_addr = addr; 1163 buffer->mmap_size = size; 1164 1165 buffer->data = addr + adj; 1166 1167 return buffer->data; 1168 } 1169 1170 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 1171 { 1172 if (!buffer->data || !buffer->mmap_addr) 1173 return; 1174 munmap(buffer->mmap_addr, buffer->mmap_size); 1175 buffer->mmap_addr = NULL; 1176 buffer->mmap_size = 0; 1177 buffer->data = NULL; 1178 buffer->use_data = NULL; 1179 } 1180 1181 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 1182 { 1183 auxtrace_buffer__put_data(buffer); 1184 if (buffer->data_needs_freeing) { 1185 buffer->data_needs_freeing = false; 1186 zfree(&buffer->data); 1187 buffer->use_data = NULL; 1188 buffer->size = 0; 1189 } 1190 } 1191 1192 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 1193 { 1194 auxtrace_buffer__drop_data(buffer); 1195 free(buffer); 1196 } 1197 1198 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1199 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1200 const char *msg, u64 timestamp, 1201 pid_t machine_pid, int vcpu) 1202 { 1203 size_t size; 1204 1205 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error)); 1206 1207 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 1208 auxtrace_error->type = type; 1209 auxtrace_error->code = code; 1210 auxtrace_error->cpu = cpu; 1211 auxtrace_error->pid = pid; 1212 auxtrace_error->tid = tid; 1213 auxtrace_error->fmt = 1; 1214 auxtrace_error->ip = ip; 1215 auxtrace_error->time = timestamp; 1216 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 1217 if (machine_pid) { 1218 auxtrace_error->fmt = 2; 1219 auxtrace_error->machine_pid = machine_pid; 1220 auxtrace_error->vcpu = vcpu; 1221 size = sizeof(*auxtrace_error); 1222 } else { 1223 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 1224 strlen(auxtrace_error->msg) + 1; 1225 } 1226 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 1227 } 1228 1229 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1230 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1231 const char *msg, u64 timestamp) 1232 { 1233 auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid, 1234 ip, msg, timestamp, 0, -1); 1235 } 1236 1237 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 1238 struct perf_tool *tool, 1239 struct perf_session *session, 1240 perf_event__handler_t process) 1241 { 1242 union perf_event *ev; 1243 size_t priv_size; 1244 int err; 1245 1246 pr_debug2("Synthesizing auxtrace information\n"); 1247 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 1248 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size); 1249 if (!ev) 1250 return -ENOMEM; 1251 1252 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 1253 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) + 1254 priv_size; 1255 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 1256 priv_size); 1257 if (err) 1258 goto out_free; 1259 1260 err = process(tool, ev, NULL, NULL); 1261 out_free: 1262 free(ev); 1263 return err; 1264 } 1265 1266 static void unleader_evsel(struct evlist *evlist, struct evsel *leader) 1267 { 1268 struct evsel *new_leader = NULL; 1269 struct evsel *evsel; 1270 1271 /* Find new leader for the group */ 1272 evlist__for_each_entry(evlist, evsel) { 1273 if (!evsel__has_leader(evsel, leader) || evsel == leader) 1274 continue; 1275 if (!new_leader) 1276 new_leader = evsel; 1277 evsel__set_leader(evsel, new_leader); 1278 } 1279 1280 /* Update group information */ 1281 if (new_leader) { 1282 zfree(&new_leader->group_name); 1283 new_leader->group_name = leader->group_name; 1284 leader->group_name = NULL; 1285 1286 new_leader->core.nr_members = leader->core.nr_members - 1; 1287 leader->core.nr_members = 1; 1288 } 1289 } 1290 1291 static void unleader_auxtrace(struct perf_session *session) 1292 { 1293 struct evsel *evsel; 1294 1295 evlist__for_each_entry(session->evlist, evsel) { 1296 if (auxtrace__evsel_is_auxtrace(session, evsel) && 1297 evsel__is_group_leader(evsel)) { 1298 unleader_evsel(session->evlist, evsel); 1299 } 1300 } 1301 } 1302 1303 int perf_event__process_auxtrace_info(struct perf_session *session, 1304 union perf_event *event) 1305 { 1306 enum auxtrace_type type = event->auxtrace_info.type; 1307 int err; 1308 1309 if (dump_trace) 1310 fprintf(stdout, " type: %u\n", type); 1311 1312 switch (type) { 1313 case PERF_AUXTRACE_INTEL_PT: 1314 err = intel_pt_process_auxtrace_info(event, session); 1315 break; 1316 case PERF_AUXTRACE_INTEL_BTS: 1317 err = intel_bts_process_auxtrace_info(event, session); 1318 break; 1319 case PERF_AUXTRACE_ARM_SPE: 1320 err = arm_spe_process_auxtrace_info(event, session); 1321 break; 1322 case PERF_AUXTRACE_CS_ETM: 1323 err = cs_etm__process_auxtrace_info(event, session); 1324 break; 1325 case PERF_AUXTRACE_S390_CPUMSF: 1326 err = s390_cpumsf_process_auxtrace_info(event, session); 1327 break; 1328 case PERF_AUXTRACE_HISI_PTT: 1329 err = hisi_ptt_process_auxtrace_info(event, session); 1330 break; 1331 case PERF_AUXTRACE_UNKNOWN: 1332 default: 1333 return -EINVAL; 1334 } 1335 1336 if (err) 1337 return err; 1338 1339 unleader_auxtrace(session); 1340 1341 return 0; 1342 } 1343 1344 s64 perf_event__process_auxtrace(struct perf_session *session, 1345 union perf_event *event) 1346 { 1347 s64 err; 1348 1349 if (dump_trace) 1350 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n", 1351 event->auxtrace.size, event->auxtrace.offset, 1352 event->auxtrace.reference, event->auxtrace.idx, 1353 event->auxtrace.tid, event->auxtrace.cpu); 1354 1355 if (auxtrace__dont_decode(session)) 1356 return event->auxtrace.size; 1357 1358 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 1359 return -EINVAL; 1360 1361 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 1362 if (err < 0) 1363 return err; 1364 1365 return event->auxtrace.size; 1366 } 1367 1368 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 1369 #define PERF_ITRACE_DEFAULT_PERIOD 100000 1370 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 1371 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 1372 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 1373 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 1374 1375 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, 1376 bool no_sample) 1377 { 1378 synth_opts->branches = true; 1379 synth_opts->transactions = true; 1380 synth_opts->ptwrites = true; 1381 synth_opts->pwr_events = true; 1382 synth_opts->other_events = true; 1383 synth_opts->intr_events = true; 1384 synth_opts->errors = true; 1385 synth_opts->flc = true; 1386 synth_opts->llc = true; 1387 synth_opts->tlb = true; 1388 synth_opts->mem = true; 1389 synth_opts->remote_access = true; 1390 1391 if (no_sample) { 1392 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; 1393 synth_opts->period = 1; 1394 synth_opts->calls = true; 1395 } else { 1396 synth_opts->instructions = true; 1397 synth_opts->cycles = true; 1398 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1399 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1400 } 1401 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1402 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1403 synth_opts->initial_skip = 0; 1404 } 1405 1406 static int get_flag(const char **ptr, unsigned int *flags) 1407 { 1408 while (1) { 1409 char c = **ptr; 1410 1411 if (c >= 'a' && c <= 'z') { 1412 *flags |= 1 << (c - 'a'); 1413 ++*ptr; 1414 return 0; 1415 } else if (c == ' ') { 1416 ++*ptr; 1417 continue; 1418 } else { 1419 return -1; 1420 } 1421 } 1422 } 1423 1424 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags) 1425 { 1426 while (1) { 1427 switch (**ptr) { 1428 case '+': 1429 ++*ptr; 1430 if (get_flag(ptr, plus_flags)) 1431 return -1; 1432 break; 1433 case '-': 1434 ++*ptr; 1435 if (get_flag(ptr, minus_flags)) 1436 return -1; 1437 break; 1438 case ' ': 1439 ++*ptr; 1440 break; 1441 default: 1442 return 0; 1443 } 1444 } 1445 } 1446 1447 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384 1448 1449 static unsigned int itrace_log_on_error_size(void) 1450 { 1451 unsigned int sz = 0; 1452 1453 perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz); 1454 return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ; 1455 } 1456 1457 /* 1458 * Please check tools/perf/Documentation/perf-script.txt for information 1459 * about the options parsed here, which is introduced after this cset, 1460 * when support in 'perf script' for these options is introduced. 1461 */ 1462 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts, 1463 const char *str, int unset) 1464 { 1465 const char *p; 1466 char *endptr; 1467 bool period_type_set = false; 1468 bool period_set = false; 1469 bool iy = false; 1470 1471 synth_opts->set = true; 1472 1473 if (unset) { 1474 synth_opts->dont_decode = true; 1475 return 0; 1476 } 1477 1478 if (!str) { 1479 itrace_synth_opts__set_default(synth_opts, 1480 synth_opts->default_no_sample); 1481 return 0; 1482 } 1483 1484 for (p = str; *p;) { 1485 switch (*p++) { 1486 case 'i': 1487 case 'y': 1488 iy = true; 1489 if (p[-1] == 'y') 1490 synth_opts->cycles = true; 1491 else 1492 synth_opts->instructions = true; 1493 while (*p == ' ' || *p == ',') 1494 p += 1; 1495 if (isdigit(*p)) { 1496 synth_opts->period = strtoull(p, &endptr, 10); 1497 period_set = true; 1498 p = endptr; 1499 while (*p == ' ' || *p == ',') 1500 p += 1; 1501 switch (*p++) { 1502 case 'i': 1503 synth_opts->period_type = 1504 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1505 period_type_set = true; 1506 break; 1507 case 't': 1508 synth_opts->period_type = 1509 PERF_ITRACE_PERIOD_TICKS; 1510 period_type_set = true; 1511 break; 1512 case 'm': 1513 synth_opts->period *= 1000; 1514 /* Fall through */ 1515 case 'u': 1516 synth_opts->period *= 1000; 1517 /* Fall through */ 1518 case 'n': 1519 if (*p++ != 's') 1520 goto out_err; 1521 synth_opts->period_type = 1522 PERF_ITRACE_PERIOD_NANOSECS; 1523 period_type_set = true; 1524 break; 1525 case '\0': 1526 goto out; 1527 default: 1528 goto out_err; 1529 } 1530 } 1531 break; 1532 case 'b': 1533 synth_opts->branches = true; 1534 break; 1535 case 'x': 1536 synth_opts->transactions = true; 1537 break; 1538 case 'w': 1539 synth_opts->ptwrites = true; 1540 break; 1541 case 'p': 1542 synth_opts->pwr_events = true; 1543 break; 1544 case 'o': 1545 synth_opts->other_events = true; 1546 break; 1547 case 'I': 1548 synth_opts->intr_events = true; 1549 break; 1550 case 'e': 1551 synth_opts->errors = true; 1552 if (get_flags(&p, &synth_opts->error_plus_flags, 1553 &synth_opts->error_minus_flags)) 1554 goto out_err; 1555 break; 1556 case 'd': 1557 synth_opts->log = true; 1558 if (get_flags(&p, &synth_opts->log_plus_flags, 1559 &synth_opts->log_minus_flags)) 1560 goto out_err; 1561 if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR) 1562 synth_opts->log_on_error_size = itrace_log_on_error_size(); 1563 break; 1564 case 'c': 1565 synth_opts->branches = true; 1566 synth_opts->calls = true; 1567 break; 1568 case 'r': 1569 synth_opts->branches = true; 1570 synth_opts->returns = true; 1571 break; 1572 case 'G': 1573 case 'g': 1574 if (p[-1] == 'G') 1575 synth_opts->add_callchain = true; 1576 else 1577 synth_opts->callchain = true; 1578 synth_opts->callchain_sz = 1579 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1580 while (*p == ' ' || *p == ',') 1581 p += 1; 1582 if (isdigit(*p)) { 1583 unsigned int val; 1584 1585 val = strtoul(p, &endptr, 10); 1586 p = endptr; 1587 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1588 goto out_err; 1589 synth_opts->callchain_sz = val; 1590 } 1591 break; 1592 case 'L': 1593 case 'l': 1594 if (p[-1] == 'L') 1595 synth_opts->add_last_branch = true; 1596 else 1597 synth_opts->last_branch = true; 1598 synth_opts->last_branch_sz = 1599 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1600 while (*p == ' ' || *p == ',') 1601 p += 1; 1602 if (isdigit(*p)) { 1603 unsigned int val; 1604 1605 val = strtoul(p, &endptr, 10); 1606 p = endptr; 1607 if (!val || 1608 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1609 goto out_err; 1610 synth_opts->last_branch_sz = val; 1611 } 1612 break; 1613 case 's': 1614 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1615 if (p == endptr) 1616 goto out_err; 1617 p = endptr; 1618 break; 1619 case 'f': 1620 synth_opts->flc = true; 1621 break; 1622 case 'm': 1623 synth_opts->llc = true; 1624 break; 1625 case 't': 1626 synth_opts->tlb = true; 1627 break; 1628 case 'a': 1629 synth_opts->remote_access = true; 1630 break; 1631 case 'M': 1632 synth_opts->mem = true; 1633 break; 1634 case 'q': 1635 synth_opts->quick += 1; 1636 break; 1637 case 'A': 1638 synth_opts->approx_ipc = true; 1639 break; 1640 case 'Z': 1641 synth_opts->timeless_decoding = true; 1642 break; 1643 case 'T': 1644 synth_opts->use_timestamp = true; 1645 break; 1646 case ' ': 1647 case ',': 1648 break; 1649 default: 1650 goto out_err; 1651 } 1652 } 1653 out: 1654 if (iy) { 1655 if (!period_type_set) 1656 synth_opts->period_type = 1657 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1658 if (!period_set) 1659 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1660 } 1661 1662 return 0; 1663 1664 out_err: 1665 pr_err("Bad Instruction Tracing options '%s'\n", str); 1666 return -EINVAL; 1667 } 1668 1669 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset) 1670 { 1671 return itrace_do_parse_synth_opts(opt->value, str, unset); 1672 } 1673 1674 static const char * const auxtrace_error_type_name[] = { 1675 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1676 }; 1677 1678 static const char *auxtrace_error_name(int type) 1679 { 1680 const char *error_type_name = NULL; 1681 1682 if (type < PERF_AUXTRACE_ERROR_MAX) 1683 error_type_name = auxtrace_error_type_name[type]; 1684 if (!error_type_name) 1685 error_type_name = "unknown AUX"; 1686 return error_type_name; 1687 } 1688 1689 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1690 { 1691 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1692 unsigned long long nsecs = e->time; 1693 const char *msg = e->msg; 1694 int ret; 1695 1696 ret = fprintf(fp, " %s error type %u", 1697 auxtrace_error_name(e->type), e->type); 1698 1699 if (e->fmt && nsecs) { 1700 unsigned long secs = nsecs / NSEC_PER_SEC; 1701 1702 nsecs -= secs * NSEC_PER_SEC; 1703 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); 1704 } else { 1705 ret += fprintf(fp, " time 0"); 1706 } 1707 1708 if (!e->fmt) 1709 msg = (const char *)&e->time; 1710 1711 if (e->fmt >= 2 && e->machine_pid) 1712 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu); 1713 1714 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n", 1715 e->cpu, e->pid, e->tid, e->ip, e->code, msg); 1716 return ret; 1717 } 1718 1719 void perf_session__auxtrace_error_inc(struct perf_session *session, 1720 union perf_event *event) 1721 { 1722 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1723 1724 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1725 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1726 } 1727 1728 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1729 { 1730 int i; 1731 1732 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1733 if (!stats->nr_auxtrace_errors[i]) 1734 continue; 1735 ui__warning("%u %s errors\n", 1736 stats->nr_auxtrace_errors[i], 1737 auxtrace_error_name(i)); 1738 } 1739 } 1740 1741 int perf_event__process_auxtrace_error(struct perf_session *session, 1742 union perf_event *event) 1743 { 1744 if (auxtrace__dont_decode(session)) 1745 return 0; 1746 1747 perf_event__fprintf_auxtrace_error(event, stdout); 1748 return 0; 1749 } 1750 1751 /* 1752 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode, 1753 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to 1754 * the issues caused by the below sequence on multiple CPUs: when perf tool 1755 * accesses either the load operation or the store operation for 64-bit value, 1756 * on some architectures the operation is divided into two instructions, one 1757 * is for accessing the low 32-bit value and another is for the high 32-bit; 1758 * thus these two user operations can give the kernel chances to access the 1759 * 64-bit value, and thus leads to the unexpected load values. 1760 * 1761 * kernel (64-bit) user (32-bit) 1762 * 1763 * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo 1764 * STORE $aux_data | ,---> 1765 * FLUSH $aux_data | | LOAD ->aux_head_hi 1766 * STORE ->aux_head --|-------` smp_rmb() 1767 * } | LOAD $data 1768 * | smp_mb() 1769 * | STORE ->aux_tail_lo 1770 * `-----------> 1771 * STORE ->aux_tail_hi 1772 * 1773 * For this reason, it's impossible for the perf tool to work correctly when 1774 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we 1775 * can not simply limit the AUX ring buffer to less than 4GB, the reason is 1776 * the pointers can be increased monotonically, whatever the buffer size it is, 1777 * at the end the head and tail can be bigger than 4GB and carry out to the 1778 * high 32-bit. 1779 * 1780 * To mitigate the issues and improve the user experience, we can allow the 1781 * perf tool working in certain conditions and bail out with error if detect 1782 * any overflow cannot be handled. 1783 * 1784 * For reading the AUX head, it reads out the values for three times, and 1785 * compares the high 4 bytes of the values between the first time and the last 1786 * time, if there has no change for high 4 bytes injected by the kernel during 1787 * the user reading sequence, it's safe for use the second value. 1788 * 1789 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high 1790 * 32 bits, it means there have two store operations in user space and it cannot 1791 * promise the atomicity for 64-bit write, so return '-1' in this case to tell 1792 * the caller an overflow error has happened. 1793 */ 1794 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm) 1795 { 1796 struct perf_event_mmap_page *pc = mm->userpg; 1797 u64 first, second, last; 1798 u64 mask = (u64)(UINT32_MAX) << 32; 1799 1800 do { 1801 first = READ_ONCE(pc->aux_head); 1802 /* Ensure all reads are done after we read the head */ 1803 smp_rmb(); 1804 second = READ_ONCE(pc->aux_head); 1805 /* Ensure all reads are done after we read the head */ 1806 smp_rmb(); 1807 last = READ_ONCE(pc->aux_head); 1808 } while ((first & mask) != (last & mask)); 1809 1810 return second; 1811 } 1812 1813 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail) 1814 { 1815 struct perf_event_mmap_page *pc = mm->userpg; 1816 u64 mask = (u64)(UINT32_MAX) << 32; 1817 1818 if (tail & mask) 1819 return -1; 1820 1821 /* Ensure all reads are done before we write the tail out */ 1822 smp_mb(); 1823 WRITE_ONCE(pc->aux_tail, tail); 1824 return 0; 1825 } 1826 1827 static int __auxtrace_mmap__read(struct mmap *map, 1828 struct auxtrace_record *itr, 1829 struct perf_tool *tool, process_auxtrace_t fn, 1830 bool snapshot, size_t snapshot_size) 1831 { 1832 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1833 u64 head, old = mm->prev, offset, ref; 1834 unsigned char *data = mm->base; 1835 size_t size, head_off, old_off, len1, len2, padding; 1836 union perf_event ev; 1837 void *data1, *data2; 1838 int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL)); 1839 1840 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit); 1841 1842 if (snapshot && 1843 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old)) 1844 return -1; 1845 1846 if (old == head) 1847 return 0; 1848 1849 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1850 mm->idx, old, head, head - old); 1851 1852 if (mm->mask) { 1853 head_off = head & mm->mask; 1854 old_off = old & mm->mask; 1855 } else { 1856 head_off = head % mm->len; 1857 old_off = old % mm->len; 1858 } 1859 1860 if (head_off > old_off) 1861 size = head_off - old_off; 1862 else 1863 size = mm->len - (old_off - head_off); 1864 1865 if (snapshot && size > snapshot_size) 1866 size = snapshot_size; 1867 1868 ref = auxtrace_record__reference(itr); 1869 1870 if (head > old || size <= head || mm->mask) { 1871 offset = head - size; 1872 } else { 1873 /* 1874 * When the buffer size is not a power of 2, 'head' wraps at the 1875 * highest multiple of the buffer size, so we have to subtract 1876 * the remainder here. 1877 */ 1878 u64 rem = (0ULL - mm->len) % mm->len; 1879 1880 offset = head - size - rem; 1881 } 1882 1883 if (size > head_off) { 1884 len1 = size - head_off; 1885 data1 = &data[mm->len - len1]; 1886 len2 = head_off; 1887 data2 = &data[0]; 1888 } else { 1889 len1 = size; 1890 data1 = &data[head_off - len1]; 1891 len2 = 0; 1892 data2 = NULL; 1893 } 1894 1895 if (itr->alignment) { 1896 unsigned int unwanted = len1 % itr->alignment; 1897 1898 len1 -= unwanted; 1899 size -= unwanted; 1900 } 1901 1902 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1903 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); 1904 if (padding) 1905 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; 1906 1907 memset(&ev, 0, sizeof(ev)); 1908 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1909 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1910 ev.auxtrace.size = size + padding; 1911 ev.auxtrace.offset = offset; 1912 ev.auxtrace.reference = ref; 1913 ev.auxtrace.idx = mm->idx; 1914 ev.auxtrace.tid = mm->tid; 1915 ev.auxtrace.cpu = mm->cpu; 1916 1917 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1918 return -1; 1919 1920 mm->prev = head; 1921 1922 if (!snapshot) { 1923 int err; 1924 1925 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit); 1926 if (err < 0) 1927 return err; 1928 1929 if (itr->read_finish) { 1930 err = itr->read_finish(itr, mm->idx); 1931 if (err < 0) 1932 return err; 1933 } 1934 } 1935 1936 return 1; 1937 } 1938 1939 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, 1940 struct perf_tool *tool, process_auxtrace_t fn) 1941 { 1942 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0); 1943 } 1944 1945 int auxtrace_mmap__read_snapshot(struct mmap *map, 1946 struct auxtrace_record *itr, 1947 struct perf_tool *tool, process_auxtrace_t fn, 1948 size_t snapshot_size) 1949 { 1950 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size); 1951 } 1952 1953 /** 1954 * struct auxtrace_cache - hash table to implement a cache 1955 * @hashtable: the hashtable 1956 * @sz: hashtable size (number of hlists) 1957 * @entry_size: size of an entry 1958 * @limit: limit the number of entries to this maximum, when reached the cache 1959 * is dropped and caching begins again with an empty cache 1960 * @cnt: current number of entries 1961 * @bits: hashtable size (@sz = 2^@bits) 1962 */ 1963 struct auxtrace_cache { 1964 struct hlist_head *hashtable; 1965 size_t sz; 1966 size_t entry_size; 1967 size_t limit; 1968 size_t cnt; 1969 unsigned int bits; 1970 }; 1971 1972 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 1973 unsigned int limit_percent) 1974 { 1975 struct auxtrace_cache *c; 1976 struct hlist_head *ht; 1977 size_t sz, i; 1978 1979 c = zalloc(sizeof(struct auxtrace_cache)); 1980 if (!c) 1981 return NULL; 1982 1983 sz = 1UL << bits; 1984 1985 ht = calloc(sz, sizeof(struct hlist_head)); 1986 if (!ht) 1987 goto out_free; 1988 1989 for (i = 0; i < sz; i++) 1990 INIT_HLIST_HEAD(&ht[i]); 1991 1992 c->hashtable = ht; 1993 c->sz = sz; 1994 c->entry_size = entry_size; 1995 c->limit = (c->sz * limit_percent) / 100; 1996 c->bits = bits; 1997 1998 return c; 1999 2000 out_free: 2001 free(c); 2002 return NULL; 2003 } 2004 2005 static void auxtrace_cache__drop(struct auxtrace_cache *c) 2006 { 2007 struct auxtrace_cache_entry *entry; 2008 struct hlist_node *tmp; 2009 size_t i; 2010 2011 if (!c) 2012 return; 2013 2014 for (i = 0; i < c->sz; i++) { 2015 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 2016 hlist_del(&entry->hash); 2017 auxtrace_cache__free_entry(c, entry); 2018 } 2019 } 2020 2021 c->cnt = 0; 2022 } 2023 2024 void auxtrace_cache__free(struct auxtrace_cache *c) 2025 { 2026 if (!c) 2027 return; 2028 2029 auxtrace_cache__drop(c); 2030 zfree(&c->hashtable); 2031 free(c); 2032 } 2033 2034 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 2035 { 2036 return malloc(c->entry_size); 2037 } 2038 2039 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 2040 void *entry) 2041 { 2042 free(entry); 2043 } 2044 2045 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 2046 struct auxtrace_cache_entry *entry) 2047 { 2048 if (c->limit && ++c->cnt > c->limit) 2049 auxtrace_cache__drop(c); 2050 2051 entry->key = key; 2052 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 2053 2054 return 0; 2055 } 2056 2057 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c, 2058 u32 key) 2059 { 2060 struct auxtrace_cache_entry *entry; 2061 struct hlist_head *hlist; 2062 struct hlist_node *n; 2063 2064 if (!c) 2065 return NULL; 2066 2067 hlist = &c->hashtable[hash_32(key, c->bits)]; 2068 hlist_for_each_entry_safe(entry, n, hlist, hash) { 2069 if (entry->key == key) { 2070 hlist_del(&entry->hash); 2071 return entry; 2072 } 2073 } 2074 2075 return NULL; 2076 } 2077 2078 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key) 2079 { 2080 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key); 2081 2082 auxtrace_cache__free_entry(c, entry); 2083 } 2084 2085 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 2086 { 2087 struct auxtrace_cache_entry *entry; 2088 struct hlist_head *hlist; 2089 2090 if (!c) 2091 return NULL; 2092 2093 hlist = &c->hashtable[hash_32(key, c->bits)]; 2094 hlist_for_each_entry(entry, hlist, hash) { 2095 if (entry->key == key) 2096 return entry; 2097 } 2098 2099 return NULL; 2100 } 2101 2102 static void addr_filter__free_str(struct addr_filter *filt) 2103 { 2104 zfree(&filt->str); 2105 filt->action = NULL; 2106 filt->sym_from = NULL; 2107 filt->sym_to = NULL; 2108 filt->filename = NULL; 2109 } 2110 2111 static struct addr_filter *addr_filter__new(void) 2112 { 2113 struct addr_filter *filt = zalloc(sizeof(*filt)); 2114 2115 if (filt) 2116 INIT_LIST_HEAD(&filt->list); 2117 2118 return filt; 2119 } 2120 2121 static void addr_filter__free(struct addr_filter *filt) 2122 { 2123 if (filt) 2124 addr_filter__free_str(filt); 2125 free(filt); 2126 } 2127 2128 static void addr_filters__add(struct addr_filters *filts, 2129 struct addr_filter *filt) 2130 { 2131 list_add_tail(&filt->list, &filts->head); 2132 filts->cnt += 1; 2133 } 2134 2135 static void addr_filters__del(struct addr_filters *filts, 2136 struct addr_filter *filt) 2137 { 2138 list_del_init(&filt->list); 2139 filts->cnt -= 1; 2140 } 2141 2142 void addr_filters__init(struct addr_filters *filts) 2143 { 2144 INIT_LIST_HEAD(&filts->head); 2145 filts->cnt = 0; 2146 } 2147 2148 void addr_filters__exit(struct addr_filters *filts) 2149 { 2150 struct addr_filter *filt, *n; 2151 2152 list_for_each_entry_safe(filt, n, &filts->head, list) { 2153 addr_filters__del(filts, filt); 2154 addr_filter__free(filt); 2155 } 2156 } 2157 2158 static int parse_num_or_str(char **inp, u64 *num, const char **str, 2159 const char *str_delim) 2160 { 2161 *inp += strspn(*inp, " "); 2162 2163 if (isdigit(**inp)) { 2164 char *endptr; 2165 2166 if (!num) 2167 return -EINVAL; 2168 errno = 0; 2169 *num = strtoull(*inp, &endptr, 0); 2170 if (errno) 2171 return -errno; 2172 if (endptr == *inp) 2173 return -EINVAL; 2174 *inp = endptr; 2175 } else { 2176 size_t n; 2177 2178 if (!str) 2179 return -EINVAL; 2180 *inp += strspn(*inp, " "); 2181 *str = *inp; 2182 n = strcspn(*inp, str_delim); 2183 if (!n) 2184 return -EINVAL; 2185 *inp += n; 2186 if (**inp) { 2187 **inp = '\0'; 2188 *inp += 1; 2189 } 2190 } 2191 return 0; 2192 } 2193 2194 static int parse_action(struct addr_filter *filt) 2195 { 2196 if (!strcmp(filt->action, "filter")) { 2197 filt->start = true; 2198 filt->range = true; 2199 } else if (!strcmp(filt->action, "start")) { 2200 filt->start = true; 2201 } else if (!strcmp(filt->action, "stop")) { 2202 filt->start = false; 2203 } else if (!strcmp(filt->action, "tracestop")) { 2204 filt->start = false; 2205 filt->range = true; 2206 filt->action += 5; /* Change 'tracestop' to 'stop' */ 2207 } else { 2208 return -EINVAL; 2209 } 2210 return 0; 2211 } 2212 2213 static int parse_sym_idx(char **inp, int *idx) 2214 { 2215 *idx = -1; 2216 2217 *inp += strspn(*inp, " "); 2218 2219 if (**inp != '#') 2220 return 0; 2221 2222 *inp += 1; 2223 2224 if (**inp == 'g' || **inp == 'G') { 2225 *inp += 1; 2226 *idx = 0; 2227 } else { 2228 unsigned long num; 2229 char *endptr; 2230 2231 errno = 0; 2232 num = strtoul(*inp, &endptr, 0); 2233 if (errno) 2234 return -errno; 2235 if (endptr == *inp || num > INT_MAX) 2236 return -EINVAL; 2237 *inp = endptr; 2238 *idx = num; 2239 } 2240 2241 return 0; 2242 } 2243 2244 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 2245 { 2246 int err = parse_num_or_str(inp, num, str, " "); 2247 2248 if (!err && *str) 2249 err = parse_sym_idx(inp, idx); 2250 2251 return err; 2252 } 2253 2254 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 2255 { 2256 char *fstr; 2257 int err; 2258 2259 filt->str = fstr = strdup(*filter_inp); 2260 if (!fstr) 2261 return -ENOMEM; 2262 2263 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 2264 if (err) 2265 goto out_err; 2266 2267 err = parse_action(filt); 2268 if (err) 2269 goto out_err; 2270 2271 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 2272 &filt->sym_from_idx); 2273 if (err) 2274 goto out_err; 2275 2276 fstr += strspn(fstr, " "); 2277 2278 if (*fstr == '/') { 2279 fstr += 1; 2280 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 2281 &filt->sym_to_idx); 2282 if (err) 2283 goto out_err; 2284 filt->range = true; 2285 } 2286 2287 fstr += strspn(fstr, " "); 2288 2289 if (*fstr == '@') { 2290 fstr += 1; 2291 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 2292 if (err) 2293 goto out_err; 2294 } 2295 2296 fstr += strspn(fstr, " ,"); 2297 2298 *filter_inp += fstr - filt->str; 2299 2300 return 0; 2301 2302 out_err: 2303 addr_filter__free_str(filt); 2304 2305 return err; 2306 } 2307 2308 int addr_filters__parse_bare_filter(struct addr_filters *filts, 2309 const char *filter) 2310 { 2311 struct addr_filter *filt; 2312 const char *fstr = filter; 2313 int err; 2314 2315 while (*fstr) { 2316 filt = addr_filter__new(); 2317 err = parse_one_filter(filt, &fstr); 2318 if (err) { 2319 addr_filter__free(filt); 2320 addr_filters__exit(filts); 2321 return err; 2322 } 2323 addr_filters__add(filts, filt); 2324 } 2325 2326 return 0; 2327 } 2328 2329 struct sym_args { 2330 const char *name; 2331 u64 start; 2332 u64 size; 2333 int idx; 2334 int cnt; 2335 bool started; 2336 bool global; 2337 bool selected; 2338 bool duplicate; 2339 bool near; 2340 }; 2341 2342 static bool kern_sym_name_match(const char *kname, const char *name) 2343 { 2344 size_t n = strlen(name); 2345 2346 return !strcmp(kname, name) || 2347 (!strncmp(kname, name, n) && kname[n] == '\t'); 2348 } 2349 2350 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 2351 { 2352 /* A function with the same name, and global or the n'th found or any */ 2353 return kallsyms__is_function(type) && 2354 kern_sym_name_match(name, args->name) && 2355 ((args->global && isupper(type)) || 2356 (args->selected && ++(args->cnt) == args->idx) || 2357 (!args->global && !args->selected)); 2358 } 2359 2360 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2361 { 2362 struct sym_args *args = arg; 2363 2364 if (args->started) { 2365 if (!args->size) 2366 args->size = start - args->start; 2367 if (args->selected) { 2368 if (args->size) 2369 return 1; 2370 } else if (kern_sym_match(args, name, type)) { 2371 args->duplicate = true; 2372 return 1; 2373 } 2374 } else if (kern_sym_match(args, name, type)) { 2375 args->started = true; 2376 args->start = start; 2377 } 2378 2379 return 0; 2380 } 2381 2382 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2383 { 2384 struct sym_args *args = arg; 2385 2386 if (kern_sym_match(args, name, type)) { 2387 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2388 ++args->cnt, start, type, name); 2389 args->near = true; 2390 } else if (args->near) { 2391 args->near = false; 2392 pr_err("\t\twhich is near\t\t%s\n", name); 2393 } 2394 2395 return 0; 2396 } 2397 2398 static int sym_not_found_error(const char *sym_name, int idx) 2399 { 2400 if (idx > 0) { 2401 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 2402 idx, sym_name); 2403 } else if (!idx) { 2404 pr_err("Global symbol '%s' not found.\n", sym_name); 2405 } else { 2406 pr_err("Symbol '%s' not found.\n", sym_name); 2407 } 2408 pr_err("Note that symbols must be functions.\n"); 2409 2410 return -EINVAL; 2411 } 2412 2413 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 2414 { 2415 struct sym_args args = { 2416 .name = sym_name, 2417 .idx = idx, 2418 .global = !idx, 2419 .selected = idx > 0, 2420 }; 2421 int err; 2422 2423 *start = 0; 2424 *size = 0; 2425 2426 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 2427 if (err < 0) { 2428 pr_err("Failed to parse /proc/kallsyms\n"); 2429 return err; 2430 } 2431 2432 if (args.duplicate) { 2433 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 2434 args.cnt = 0; 2435 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 2436 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2437 sym_name); 2438 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2439 return -EINVAL; 2440 } 2441 2442 if (!args.started) { 2443 pr_err("Kernel symbol lookup: "); 2444 return sym_not_found_error(sym_name, idx); 2445 } 2446 2447 *start = args.start; 2448 *size = args.size; 2449 2450 return 0; 2451 } 2452 2453 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 2454 char type, u64 start) 2455 { 2456 struct sym_args *args = arg; 2457 u64 size; 2458 2459 if (!kallsyms__is_function(type)) 2460 return 0; 2461 2462 if (!args->started) { 2463 args->started = true; 2464 args->start = start; 2465 } 2466 /* Don't know exactly where the kernel ends, so we add a page */ 2467 size = round_up(start, page_size) + page_size - args->start; 2468 if (size > args->size) 2469 args->size = size; 2470 2471 return 0; 2472 } 2473 2474 static int addr_filter__entire_kernel(struct addr_filter *filt) 2475 { 2476 struct sym_args args = { .started = false }; 2477 int err; 2478 2479 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 2480 if (err < 0 || !args.started) { 2481 pr_err("Failed to parse /proc/kallsyms\n"); 2482 return err; 2483 } 2484 2485 filt->addr = args.start; 2486 filt->size = args.size; 2487 2488 return 0; 2489 } 2490 2491 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 2492 { 2493 if (start + size >= filt->addr) 2494 return 0; 2495 2496 if (filt->sym_from) { 2497 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 2498 filt->sym_to, start, filt->sym_from, filt->addr); 2499 } else { 2500 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 2501 filt->sym_to, start, filt->addr); 2502 } 2503 2504 return -EINVAL; 2505 } 2506 2507 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 2508 { 2509 bool no_size = false; 2510 u64 start, size; 2511 int err; 2512 2513 if (symbol_conf.kptr_restrict) { 2514 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 2515 return -EINVAL; 2516 } 2517 2518 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 2519 return addr_filter__entire_kernel(filt); 2520 2521 if (filt->sym_from) { 2522 err = find_kern_sym(filt->sym_from, &start, &size, 2523 filt->sym_from_idx); 2524 if (err) 2525 return err; 2526 filt->addr = start; 2527 if (filt->range && !filt->size && !filt->sym_to) { 2528 filt->size = size; 2529 no_size = !size; 2530 } 2531 } 2532 2533 if (filt->sym_to) { 2534 err = find_kern_sym(filt->sym_to, &start, &size, 2535 filt->sym_to_idx); 2536 if (err) 2537 return err; 2538 2539 err = check_end_after_start(filt, start, size); 2540 if (err) 2541 return err; 2542 filt->size = start + size - filt->addr; 2543 no_size = !size; 2544 } 2545 2546 /* The very last symbol in kallsyms does not imply a particular size */ 2547 if (no_size) { 2548 pr_err("Cannot determine size of symbol '%s'\n", 2549 filt->sym_to ? filt->sym_to : filt->sym_from); 2550 return -EINVAL; 2551 } 2552 2553 return 0; 2554 } 2555 2556 static struct dso *load_dso(const char *name) 2557 { 2558 struct map *map; 2559 struct dso *dso; 2560 2561 map = dso__new_map(name); 2562 if (!map) 2563 return NULL; 2564 2565 if (map__load(map) < 0) 2566 pr_err("File '%s' not found or has no symbols.\n", name); 2567 2568 dso = dso__get(map__dso(map)); 2569 2570 map__put(map); 2571 2572 return dso; 2573 } 2574 2575 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 2576 int idx) 2577 { 2578 /* Same name, and global or the n'th found or any */ 2579 return !arch__compare_symbol_names(name, sym->name) && 2580 ((!idx && sym->binding == STB_GLOBAL) || 2581 (idx > 0 && ++*cnt == idx) || 2582 idx < 0); 2583 } 2584 2585 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 2586 { 2587 struct symbol *sym; 2588 bool near = false; 2589 int cnt = 0; 2590 2591 pr_err("Multiple symbols with name '%s'\n", sym_name); 2592 2593 sym = dso__first_symbol(dso); 2594 while (sym) { 2595 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 2596 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2597 ++cnt, sym->start, 2598 sym->binding == STB_GLOBAL ? 'g' : 2599 sym->binding == STB_LOCAL ? 'l' : 'w', 2600 sym->name); 2601 near = true; 2602 } else if (near) { 2603 near = false; 2604 pr_err("\t\twhich is near\t\t%s\n", sym->name); 2605 } 2606 sym = dso__next_symbol(sym); 2607 } 2608 2609 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2610 sym_name); 2611 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2612 } 2613 2614 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 2615 u64 *size, int idx) 2616 { 2617 struct symbol *sym; 2618 int cnt = 0; 2619 2620 *start = 0; 2621 *size = 0; 2622 2623 sym = dso__first_symbol(dso); 2624 while (sym) { 2625 if (*start) { 2626 if (!*size) 2627 *size = sym->start - *start; 2628 if (idx > 0) { 2629 if (*size) 2630 return 0; 2631 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2632 print_duplicate_syms(dso, sym_name); 2633 return -EINVAL; 2634 } 2635 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2636 *start = sym->start; 2637 *size = sym->end - sym->start; 2638 } 2639 sym = dso__next_symbol(sym); 2640 } 2641 2642 if (!*start) 2643 return sym_not_found_error(sym_name, idx); 2644 2645 return 0; 2646 } 2647 2648 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 2649 { 2650 if (dso__data_file_size(dso, NULL)) { 2651 pr_err("Failed to determine filter for %s\nCannot determine file size.\n", 2652 filt->filename); 2653 return -EINVAL; 2654 } 2655 2656 filt->addr = 0; 2657 filt->size = dso->data.file_size; 2658 2659 return 0; 2660 } 2661 2662 static int addr_filter__resolve_syms(struct addr_filter *filt) 2663 { 2664 u64 start, size; 2665 struct dso *dso; 2666 int err = 0; 2667 2668 if (!filt->sym_from && !filt->sym_to) 2669 return 0; 2670 2671 if (!filt->filename) 2672 return addr_filter__resolve_kernel_syms(filt); 2673 2674 dso = load_dso(filt->filename); 2675 if (!dso) { 2676 pr_err("Failed to load symbols from: %s\n", filt->filename); 2677 return -EINVAL; 2678 } 2679 2680 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2681 err = addr_filter__entire_dso(filt, dso); 2682 goto put_dso; 2683 } 2684 2685 if (filt->sym_from) { 2686 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2687 filt->sym_from_idx); 2688 if (err) 2689 goto put_dso; 2690 filt->addr = start; 2691 if (filt->range && !filt->size && !filt->sym_to) 2692 filt->size = size; 2693 } 2694 2695 if (filt->sym_to) { 2696 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2697 filt->sym_to_idx); 2698 if (err) 2699 goto put_dso; 2700 2701 err = check_end_after_start(filt, start, size); 2702 if (err) 2703 return err; 2704 2705 filt->size = start + size - filt->addr; 2706 } 2707 2708 put_dso: 2709 dso__put(dso); 2710 2711 return err; 2712 } 2713 2714 static char *addr_filter__to_str(struct addr_filter *filt) 2715 { 2716 char filename_buf[PATH_MAX]; 2717 const char *at = ""; 2718 const char *fn = ""; 2719 char *filter; 2720 int err; 2721 2722 if (filt->filename) { 2723 at = "@"; 2724 fn = realpath(filt->filename, filename_buf); 2725 if (!fn) 2726 return NULL; 2727 } 2728 2729 if (filt->range) { 2730 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2731 filt->action, filt->addr, filt->size, at, fn); 2732 } else { 2733 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2734 filt->action, filt->addr, at, fn); 2735 } 2736 2737 return err < 0 ? NULL : filter; 2738 } 2739 2740 static int parse_addr_filter(struct evsel *evsel, const char *filter, 2741 int max_nr) 2742 { 2743 struct addr_filters filts; 2744 struct addr_filter *filt; 2745 int err; 2746 2747 addr_filters__init(&filts); 2748 2749 err = addr_filters__parse_bare_filter(&filts, filter); 2750 if (err) 2751 goto out_exit; 2752 2753 if (filts.cnt > max_nr) { 2754 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2755 filts.cnt, max_nr); 2756 err = -EINVAL; 2757 goto out_exit; 2758 } 2759 2760 list_for_each_entry(filt, &filts.head, list) { 2761 char *new_filter; 2762 2763 err = addr_filter__resolve_syms(filt); 2764 if (err) 2765 goto out_exit; 2766 2767 new_filter = addr_filter__to_str(filt); 2768 if (!new_filter) { 2769 err = -ENOMEM; 2770 goto out_exit; 2771 } 2772 2773 if (evsel__append_addr_filter(evsel, new_filter)) { 2774 err = -ENOMEM; 2775 goto out_exit; 2776 } 2777 } 2778 2779 out_exit: 2780 addr_filters__exit(&filts); 2781 2782 if (err) { 2783 pr_err("Failed to parse address filter: '%s'\n", filter); 2784 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2785 pr_err("Where multiple filters are separated by space or comma.\n"); 2786 } 2787 2788 return err; 2789 } 2790 2791 static int evsel__nr_addr_filter(struct evsel *evsel) 2792 { 2793 struct perf_pmu *pmu = evsel__find_pmu(evsel); 2794 int nr_addr_filters = 0; 2795 2796 if (!pmu) 2797 return 0; 2798 2799 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2800 2801 return nr_addr_filters; 2802 } 2803 2804 int auxtrace_parse_filters(struct evlist *evlist) 2805 { 2806 struct evsel *evsel; 2807 char *filter; 2808 int err, max_nr; 2809 2810 evlist__for_each_entry(evlist, evsel) { 2811 filter = evsel->filter; 2812 max_nr = evsel__nr_addr_filter(evsel); 2813 if (!filter || !max_nr) 2814 continue; 2815 evsel->filter = NULL; 2816 err = parse_addr_filter(evsel, filter, max_nr); 2817 free(filter); 2818 if (err) 2819 return err; 2820 pr_debug("Address filter: %s\n", evsel->filter); 2821 } 2822 2823 return 0; 2824 } 2825 2826 int auxtrace__process_event(struct perf_session *session, union perf_event *event, 2827 struct perf_sample *sample, struct perf_tool *tool) 2828 { 2829 if (!session->auxtrace) 2830 return 0; 2831 2832 return session->auxtrace->process_event(session, event, sample, tool); 2833 } 2834 2835 void auxtrace__dump_auxtrace_sample(struct perf_session *session, 2836 struct perf_sample *sample) 2837 { 2838 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample || 2839 auxtrace__dont_decode(session)) 2840 return; 2841 2842 session->auxtrace->dump_auxtrace_sample(session, sample); 2843 } 2844 2845 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool) 2846 { 2847 if (!session->auxtrace) 2848 return 0; 2849 2850 return session->auxtrace->flush_events(session, tool); 2851 } 2852 2853 void auxtrace__free_events(struct perf_session *session) 2854 { 2855 if (!session->auxtrace) 2856 return; 2857 2858 return session->auxtrace->free_events(session); 2859 } 2860 2861 void auxtrace__free(struct perf_session *session) 2862 { 2863 if (!session->auxtrace) 2864 return; 2865 2866 return session->auxtrace->free(session); 2867 } 2868 2869 bool auxtrace__evsel_is_auxtrace(struct perf_session *session, 2870 struct evsel *evsel) 2871 { 2872 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace) 2873 return false; 2874 2875 return session->auxtrace->evsel_is_auxtrace(session, evsel); 2876 } 2877