1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * auxtrace.c: AUX area trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <sys/types.h> 9 #include <sys/mman.h> 10 #include <stdbool.h> 11 #include <string.h> 12 #include <limits.h> 13 #include <errno.h> 14 15 #include <linux/kernel.h> 16 #include <linux/perf_event.h> 17 #include <linux/types.h> 18 #include <linux/bitops.h> 19 #include <linux/log2.h> 20 #include <linux/string.h> 21 #include <linux/time64.h> 22 23 #include <sys/param.h> 24 #include <stdlib.h> 25 #include <stdio.h> 26 #include <linux/list.h> 27 #include <linux/zalloc.h> 28 29 #include "config.h" 30 #include "evlist.h" 31 #include "dso.h" 32 #include "map.h" 33 #include "pmu.h" 34 #include "evsel.h" 35 #include "evsel_config.h" 36 #include "symbol.h" 37 #include "util/perf_api_probe.h" 38 #include "util/synthetic-events.h" 39 #include "thread_map.h" 40 #include "asm/bug.h" 41 #include "auxtrace.h" 42 43 #include <linux/hash.h> 44 45 #include "event.h" 46 #include "record.h" 47 #include "session.h" 48 #include "debug.h" 49 #include <subcmd/parse-options.h> 50 51 #include "cs-etm.h" 52 #include "intel-pt.h" 53 #include "intel-bts.h" 54 #include "arm-spe.h" 55 #include "hisi-ptt.h" 56 #include "s390-cpumsf.h" 57 #include "util/mmap.h" 58 #include "powerpc-vpadtl.h" 59 60 #include <linux/ctype.h> 61 #include "symbol/kallsyms.h" 62 #include <internal/lib.h> 63 #include "util/sample.h" 64 65 /* 66 * Make a group from 'leader' to 'last', requiring that the events were not 67 * already grouped to a different leader. 68 */ 69 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last) 70 { 71 struct evsel *evsel; 72 bool grp; 73 74 if (!evsel__is_group_leader(leader)) 75 return -EINVAL; 76 77 grp = false; 78 evlist__for_each_entry(evlist, evsel) { 79 if (grp) { 80 if (!(evsel__leader(evsel) == leader || 81 (evsel__leader(evsel) == evsel && 82 evsel->core.nr_members <= 1))) 83 return -EINVAL; 84 } else if (evsel == leader) { 85 grp = true; 86 } 87 if (evsel == last) 88 break; 89 } 90 91 grp = false; 92 evlist__for_each_entry(evlist, evsel) { 93 if (grp) { 94 if (!evsel__has_leader(evsel, leader)) { 95 evsel__set_leader(evsel, leader); 96 if (leader->core.nr_members < 1) 97 leader->core.nr_members = 1; 98 leader->core.nr_members += 1; 99 } 100 } else if (evsel == leader) { 101 grp = true; 102 } 103 if (evsel == last) 104 break; 105 } 106 107 return 0; 108 } 109 110 static bool auxtrace__dont_decode(struct perf_session *session) 111 { 112 return !session->itrace_synth_opts || 113 session->itrace_synth_opts->dont_decode; 114 } 115 116 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 117 struct auxtrace_mmap_params *mp, 118 void *userpg, int fd) 119 { 120 struct perf_event_mmap_page *pc = userpg; 121 122 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 123 124 mm->userpg = userpg; 125 mm->mask = mp->mask; 126 mm->len = mp->len; 127 mm->prev = 0; 128 mm->idx = mp->idx; 129 mm->tid = mp->tid; 130 mm->cpu = mp->cpu.cpu; 131 132 if (!mp->len || !mp->mmap_needed) { 133 mm->base = NULL; 134 return 0; 135 } 136 137 pc->aux_offset = mp->offset; 138 pc->aux_size = mp->len; 139 140 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 141 if (mm->base == MAP_FAILED) { 142 pr_debug2("failed to mmap AUX area\n"); 143 mm->base = NULL; 144 return -1; 145 } 146 147 return 0; 148 } 149 150 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 151 { 152 if (mm->base) { 153 munmap(mm->base, mm->len); 154 mm->base = NULL; 155 } 156 } 157 158 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 159 off_t auxtrace_offset, 160 unsigned int auxtrace_pages, 161 bool auxtrace_overwrite) 162 { 163 if (auxtrace_pages) { 164 mp->offset = auxtrace_offset; 165 mp->len = auxtrace_pages * (size_t)page_size; 166 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 167 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 168 pr_debug2("AUX area mmap length %zu\n", mp->len); 169 } else { 170 mp->len = 0; 171 } 172 } 173 174 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 175 struct evlist *evlist, 176 struct evsel *evsel, int idx) 177 { 178 bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus); 179 180 mp->mmap_needed = evsel->needs_auxtrace_mmap; 181 182 if (!mp->mmap_needed) 183 return; 184 185 mp->idx = idx; 186 187 if (per_cpu) { 188 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 189 mp->tid = perf_thread_map__pid(evlist->core.threads, 0); 190 } else { 191 mp->cpu.cpu = -1; 192 mp->tid = perf_thread_map__pid(evlist->core.threads, idx); 193 } 194 } 195 196 #define AUXTRACE_INIT_NR_QUEUES 32 197 198 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 199 { 200 struct auxtrace_queue *queue_array; 201 unsigned int max_nr_queues, i; 202 203 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 204 if (nr_queues > max_nr_queues) 205 return NULL; 206 207 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 208 if (!queue_array) 209 return NULL; 210 211 for (i = 0; i < nr_queues; i++) { 212 INIT_LIST_HEAD(&queue_array[i].head); 213 queue_array[i].priv = NULL; 214 } 215 216 return queue_array; 217 } 218 219 int auxtrace_queues__init_nr(struct auxtrace_queues *queues, int nr_queues) 220 { 221 queues->nr_queues = nr_queues; 222 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 223 if (!queues->queue_array) 224 return -ENOMEM; 225 return 0; 226 } 227 228 int auxtrace_queues__init(struct auxtrace_queues *queues) 229 { 230 return auxtrace_queues__init_nr(queues, AUXTRACE_INIT_NR_QUEUES); 231 } 232 233 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 234 unsigned int new_nr_queues) 235 { 236 unsigned int nr_queues = queues->nr_queues; 237 struct auxtrace_queue *queue_array; 238 unsigned int i; 239 240 if (!nr_queues) 241 nr_queues = AUXTRACE_INIT_NR_QUEUES; 242 243 while (nr_queues && nr_queues < new_nr_queues) 244 nr_queues <<= 1; 245 246 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 247 return -EINVAL; 248 249 queue_array = auxtrace_alloc_queue_array(nr_queues); 250 if (!queue_array) 251 return -ENOMEM; 252 253 for (i = 0; i < queues->nr_queues; i++) { 254 list_splice_tail(&queues->queue_array[i].head, 255 &queue_array[i].head); 256 queue_array[i].tid = queues->queue_array[i].tid; 257 queue_array[i].cpu = queues->queue_array[i].cpu; 258 queue_array[i].set = queues->queue_array[i].set; 259 queue_array[i].priv = queues->queue_array[i].priv; 260 } 261 262 queues->nr_queues = nr_queues; 263 queues->queue_array = queue_array; 264 265 return 0; 266 } 267 268 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 269 { 270 int fd = perf_data__fd(session->data); 271 void *p; 272 ssize_t ret; 273 274 if (size > SSIZE_MAX) 275 return NULL; 276 277 p = malloc(size); 278 if (!p) 279 return NULL; 280 281 ret = readn(fd, p, size); 282 if (ret != (ssize_t)size) { 283 free(p); 284 return NULL; 285 } 286 287 return p; 288 } 289 290 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 291 unsigned int idx, 292 struct auxtrace_buffer *buffer) 293 { 294 struct auxtrace_queue *queue; 295 int err; 296 297 if (idx >= queues->nr_queues) { 298 err = auxtrace_queues__grow(queues, idx + 1); 299 if (err) 300 return err; 301 } 302 303 queue = &queues->queue_array[idx]; 304 305 if (!queue->set) { 306 queue->set = true; 307 queue->tid = buffer->tid; 308 queue->cpu = buffer->cpu.cpu; 309 } 310 311 buffer->buffer_nr = queues->next_buffer_nr++; 312 313 list_add_tail(&buffer->list, &queue->head); 314 315 queues->new_data = true; 316 queues->populated = true; 317 318 return 0; 319 } 320 321 /* Limit buffers to 32MiB on 32-bit */ 322 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 323 324 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 325 unsigned int idx, 326 struct auxtrace_buffer *buffer) 327 { 328 u64 sz = buffer->size; 329 bool consecutive = false; 330 struct auxtrace_buffer *b; 331 int err; 332 333 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 334 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 335 if (!b) 336 return -ENOMEM; 337 b->size = BUFFER_LIMIT_FOR_32_BIT; 338 b->consecutive = consecutive; 339 err = auxtrace_queues__queue_buffer(queues, idx, b); 340 if (err) { 341 auxtrace_buffer__free(b); 342 return err; 343 } 344 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 345 sz -= BUFFER_LIMIT_FOR_32_BIT; 346 consecutive = true; 347 } 348 349 buffer->size = sz; 350 buffer->consecutive = consecutive; 351 352 return 0; 353 } 354 355 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu) 356 { 357 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 358 359 return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap); 360 } 361 362 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 363 struct perf_session *session, 364 unsigned int idx, 365 struct auxtrace_buffer *buffer, 366 struct auxtrace_buffer **buffer_ptr) 367 { 368 int err = -ENOMEM; 369 370 if (filter_cpu(session, buffer->cpu)) 371 return 0; 372 373 buffer = memdup(buffer, sizeof(*buffer)); 374 if (!buffer) 375 return -ENOMEM; 376 377 if (session->one_mmap) { 378 buffer->data = buffer->data_offset - session->one_mmap_offset + 379 session->one_mmap_addr; 380 } else if (perf_data__is_pipe(session->data)) { 381 buffer->data = auxtrace_copy_data(buffer->size, session); 382 if (!buffer->data) 383 goto out_free; 384 buffer->data_needs_freeing = true; 385 } else if (BITS_PER_LONG == 32 && 386 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 387 err = auxtrace_queues__split_buffer(queues, idx, buffer); 388 if (err) 389 goto out_free; 390 } 391 392 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 393 if (err) 394 goto out_free; 395 396 /* FIXME: Doesn't work for split buffer */ 397 if (buffer_ptr) 398 *buffer_ptr = buffer; 399 400 return 0; 401 402 out_free: 403 auxtrace_buffer__free(buffer); 404 return err; 405 } 406 407 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 408 struct perf_session *session, 409 union perf_event *event, off_t data_offset, 410 struct auxtrace_buffer **buffer_ptr) 411 { 412 struct auxtrace_buffer buffer = { 413 .pid = -1, 414 .tid = event->auxtrace.tid, 415 .cpu = { event->auxtrace.cpu }, 416 .data_offset = data_offset, 417 .offset = event->auxtrace.offset, 418 .reference = event->auxtrace.reference, 419 .size = event->auxtrace.size, 420 }; 421 unsigned int idx = event->auxtrace.idx; 422 423 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 424 buffer_ptr); 425 } 426 427 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 428 struct perf_session *session, 429 off_t file_offset, size_t sz) 430 { 431 union perf_event *event; 432 int err; 433 char buf[PERF_SAMPLE_MAX_SIZE]; 434 435 err = perf_session__peek_event(session, file_offset, buf, 436 PERF_SAMPLE_MAX_SIZE, &event, NULL); 437 if (err) 438 return err; 439 440 if (event->header.type == PERF_RECORD_AUXTRACE) { 441 if (event->header.size < sizeof(struct perf_record_auxtrace) || 442 event->header.size != sz) { 443 err = -EINVAL; 444 goto out; 445 } 446 file_offset += event->header.size; 447 err = auxtrace_queues__add_event(queues, session, event, 448 file_offset, NULL); 449 } 450 out: 451 return err; 452 } 453 454 void auxtrace_queues__free(struct auxtrace_queues *queues) 455 { 456 unsigned int i; 457 458 for (i = 0; i < queues->nr_queues; i++) { 459 while (!list_empty(&queues->queue_array[i].head)) { 460 struct auxtrace_buffer *buffer; 461 462 buffer = list_entry(queues->queue_array[i].head.next, 463 struct auxtrace_buffer, list); 464 list_del_init(&buffer->list); 465 auxtrace_buffer__free(buffer); 466 } 467 } 468 469 zfree(&queues->queue_array); 470 queues->nr_queues = 0; 471 } 472 473 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 474 unsigned int pos, unsigned int queue_nr, 475 u64 ordinal) 476 { 477 unsigned int parent; 478 479 while (pos) { 480 parent = (pos - 1) >> 1; 481 if (heap_array[parent].ordinal <= ordinal) 482 break; 483 heap_array[pos] = heap_array[parent]; 484 pos = parent; 485 } 486 heap_array[pos].queue_nr = queue_nr; 487 heap_array[pos].ordinal = ordinal; 488 } 489 490 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 491 u64 ordinal) 492 { 493 struct auxtrace_heap_item *heap_array; 494 495 if (queue_nr >= heap->heap_sz) { 496 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 497 498 while (heap_sz <= queue_nr) 499 heap_sz <<= 1; 500 heap_array = realloc(heap->heap_array, 501 heap_sz * sizeof(struct auxtrace_heap_item)); 502 if (!heap_array) 503 return -ENOMEM; 504 heap->heap_array = heap_array; 505 heap->heap_sz = heap_sz; 506 } 507 508 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 509 510 return 0; 511 } 512 513 void auxtrace_heap__free(struct auxtrace_heap *heap) 514 { 515 zfree(&heap->heap_array); 516 heap->heap_cnt = 0; 517 heap->heap_sz = 0; 518 } 519 520 void auxtrace_heap__pop(struct auxtrace_heap *heap) 521 { 522 unsigned int pos, last, heap_cnt = heap->heap_cnt; 523 struct auxtrace_heap_item *heap_array; 524 525 if (!heap_cnt) 526 return; 527 528 heap->heap_cnt -= 1; 529 530 heap_array = heap->heap_array; 531 532 pos = 0; 533 while (1) { 534 unsigned int left, right; 535 536 left = (pos << 1) + 1; 537 if (left >= heap_cnt) 538 break; 539 right = left + 1; 540 if (right >= heap_cnt) { 541 heap_array[pos] = heap_array[left]; 542 return; 543 } 544 if (heap_array[left].ordinal < heap_array[right].ordinal) { 545 heap_array[pos] = heap_array[left]; 546 pos = left; 547 } else { 548 heap_array[pos] = heap_array[right]; 549 pos = right; 550 } 551 } 552 553 last = heap_cnt - 1; 554 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 555 heap_array[last].ordinal); 556 } 557 558 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 559 struct evlist *evlist) 560 { 561 if (itr) 562 return itr->info_priv_size(itr, evlist); 563 return 0; 564 } 565 566 static int auxtrace_not_supported(void) 567 { 568 pr_err("AUX area tracing is not supported on this architecture\n"); 569 return -EINVAL; 570 } 571 572 int auxtrace_record__info_fill(struct auxtrace_record *itr, 573 struct perf_session *session, 574 struct perf_record_auxtrace_info *auxtrace_info, 575 size_t priv_size) 576 { 577 if (itr) 578 return itr->info_fill(itr, session, auxtrace_info, priv_size); 579 return auxtrace_not_supported(); 580 } 581 582 void auxtrace_record__free(struct auxtrace_record *itr) 583 { 584 if (itr) 585 itr->free(itr); 586 } 587 588 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 589 { 590 if (itr && itr->snapshot_start) 591 return itr->snapshot_start(itr); 592 return 0; 593 } 594 595 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit) 596 { 597 if (!on_exit && itr && itr->snapshot_finish) 598 return itr->snapshot_finish(itr); 599 return 0; 600 } 601 602 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 603 struct auxtrace_mmap *mm, 604 unsigned char *data, u64 *head, u64 *old) 605 { 606 if (itr && itr->find_snapshot) 607 return itr->find_snapshot(itr, idx, mm, data, head, old); 608 return 0; 609 } 610 611 int auxtrace_record__options(struct auxtrace_record *itr, 612 struct evlist *evlist, 613 struct record_opts *opts) 614 { 615 if (itr) { 616 itr->evlist = evlist; 617 return itr->recording_options(itr, evlist, opts); 618 } 619 return 0; 620 } 621 622 u64 auxtrace_record__reference(struct auxtrace_record *itr) 623 { 624 if (itr) 625 return itr->reference(itr); 626 return 0; 627 } 628 629 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 630 struct record_opts *opts, const char *str) 631 { 632 if (!str) 633 return 0; 634 635 /* PMU-agnostic options */ 636 switch (*str) { 637 case 'e': 638 opts->auxtrace_snapshot_on_exit = true; 639 str++; 640 break; 641 default: 642 break; 643 } 644 645 if (itr && itr->parse_snapshot_options) 646 return itr->parse_snapshot_options(itr, opts, str); 647 648 pr_err("No AUX area tracing to snapshot\n"); 649 return -EINVAL; 650 } 651 652 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx) 653 { 654 bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus); 655 656 if (per_cpu_mmaps) { 657 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 658 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu); 659 660 if (cpu_map_idx == -1) 661 return -EINVAL; 662 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx); 663 } 664 665 return perf_evsel__enable_thread(&evsel->core, idx); 666 } 667 668 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx) 669 { 670 struct evsel *evsel; 671 672 if (!itr->evlist) 673 return -EINVAL; 674 675 evlist__for_each_entry(itr->evlist, evsel) { 676 if (evsel__is_aux_event(evsel)) { 677 if (evsel->disabled) 678 return 0; 679 return evlist__enable_event_idx(itr->evlist, evsel, idx); 680 } 681 } 682 return -EINVAL; 683 } 684 685 /* 686 * Event record size is 16-bit which results in a maximum size of about 64KiB. 687 * Allow about 4KiB for the rest of the sample record, to give a maximum 688 * AUX area sample size of 60KiB. 689 */ 690 #define MAX_AUX_SAMPLE_SIZE (60 * 1024) 691 692 /* Arbitrary default size if no other default provided */ 693 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024) 694 695 static int auxtrace_validate_aux_sample_size(struct evlist *evlist, 696 struct record_opts *opts) 697 { 698 struct evsel *evsel; 699 bool has_aux_leader = false; 700 u32 sz; 701 702 evlist__for_each_entry(evlist, evsel) { 703 sz = evsel->core.attr.aux_sample_size; 704 if (evsel__is_group_leader(evsel)) { 705 has_aux_leader = evsel__is_aux_event(evsel); 706 if (sz) { 707 if (has_aux_leader) 708 pr_err("Cannot add AUX area sampling to an AUX area event\n"); 709 else 710 pr_err("Cannot add AUX area sampling to a group leader\n"); 711 return -EINVAL; 712 } 713 } 714 if (sz > MAX_AUX_SAMPLE_SIZE) { 715 pr_err("AUX area sample size %u too big, max. %d\n", 716 sz, MAX_AUX_SAMPLE_SIZE); 717 return -EINVAL; 718 } 719 if (sz) { 720 if (!has_aux_leader) { 721 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n"); 722 return -EINVAL; 723 } 724 evsel__set_sample_bit(evsel, AUX); 725 opts->auxtrace_sample_mode = true; 726 } else { 727 evsel__reset_sample_bit(evsel, AUX); 728 } 729 } 730 731 if (!opts->auxtrace_sample_mode) { 732 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n"); 733 return -EINVAL; 734 } 735 736 if (!perf_can_aux_sample()) { 737 pr_err("AUX area sampling is not supported by kernel\n"); 738 return -EINVAL; 739 } 740 741 return 0; 742 } 743 744 int auxtrace_parse_sample_options(struct auxtrace_record *itr, 745 struct evlist *evlist, 746 struct record_opts *opts, const char *str) 747 { 748 struct evsel_config_term *term; 749 struct evsel *aux_evsel; 750 bool has_aux_sample_size = false; 751 bool has_aux_leader = false; 752 struct evsel *evsel; 753 char *endptr; 754 unsigned long sz; 755 756 if (!str) 757 goto no_opt; 758 759 if (!itr) { 760 pr_err("No AUX area event to sample\n"); 761 return -EINVAL; 762 } 763 764 sz = strtoul(str, &endptr, 0); 765 if (*endptr || sz > UINT_MAX) { 766 pr_err("Bad AUX area sampling option: '%s'\n", str); 767 return -EINVAL; 768 } 769 770 if (!sz) 771 sz = itr->default_aux_sample_size; 772 773 if (!sz) 774 sz = DEFAULT_AUX_SAMPLE_SIZE; 775 776 /* Set aux_sample_size based on --aux-sample option */ 777 evlist__for_each_entry(evlist, evsel) { 778 if (evsel__is_group_leader(evsel)) { 779 has_aux_leader = evsel__is_aux_event(evsel); 780 } else if (has_aux_leader) { 781 evsel->core.attr.aux_sample_size = sz; 782 } 783 } 784 no_opt: 785 aux_evsel = NULL; 786 /* Override with aux_sample_size from config term */ 787 evlist__for_each_entry(evlist, evsel) { 788 if (evsel__is_aux_event(evsel)) 789 aux_evsel = evsel; 790 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE); 791 if (term) { 792 has_aux_sample_size = true; 793 evsel->core.attr.aux_sample_size = term->val.aux_sample_size; 794 /* If possible, group with the AUX event */ 795 if (aux_evsel && evsel->core.attr.aux_sample_size) 796 evlist__regroup(evlist, aux_evsel, evsel); 797 } 798 } 799 800 if (!str && !has_aux_sample_size) 801 return 0; 802 803 if (!itr) { 804 pr_err("No AUX area event to sample\n"); 805 return -EINVAL; 806 } 807 808 return auxtrace_validate_aux_sample_size(evlist, opts); 809 } 810 811 static struct aux_action_opt { 812 const char *str; 813 u32 aux_action; 814 bool aux_event_opt; 815 } aux_action_opts[] = { 816 {"start-paused", BIT(0), true}, 817 {"pause", BIT(1), false}, 818 {"resume", BIT(2), false}, 819 {.str = NULL}, 820 }; 821 822 static const struct aux_action_opt *auxtrace_parse_aux_action_str(const char *str) 823 { 824 const struct aux_action_opt *opt; 825 826 if (!str) 827 return NULL; 828 829 for (opt = aux_action_opts; opt->str; opt++) 830 if (!strcmp(str, opt->str)) 831 return opt; 832 833 return NULL; 834 } 835 836 int auxtrace_parse_aux_action(struct evlist *evlist) 837 { 838 struct evsel_config_term *term; 839 struct evsel *aux_evsel = NULL; 840 struct evsel *evsel; 841 842 evlist__for_each_entry(evlist, evsel) { 843 bool is_aux_event = evsel__is_aux_event(evsel); 844 const struct aux_action_opt *opt; 845 846 if (is_aux_event) 847 aux_evsel = evsel; 848 term = evsel__get_config_term(evsel, AUX_ACTION); 849 if (!term) { 850 if (evsel__get_config_term(evsel, AUX_OUTPUT)) 851 goto regroup; 852 continue; 853 } 854 opt = auxtrace_parse_aux_action_str(term->val.str); 855 if (!opt) { 856 pr_err("Bad aux-action '%s'\n", term->val.str); 857 return -EINVAL; 858 } 859 if (opt->aux_event_opt && !is_aux_event) { 860 pr_err("aux-action '%s' can only be used with AUX area event\n", 861 term->val.str); 862 return -EINVAL; 863 } 864 if (!opt->aux_event_opt && is_aux_event) { 865 pr_err("aux-action '%s' cannot be used for AUX area event itself\n", 866 term->val.str); 867 return -EINVAL; 868 } 869 evsel->core.attr.aux_action = opt->aux_action; 870 regroup: 871 /* If possible, group with the AUX event */ 872 if (aux_evsel) 873 evlist__regroup(evlist, aux_evsel, evsel); 874 if (!evsel__is_aux_event(evsel__leader(evsel))) { 875 pr_err("Events with aux-action must have AUX area event group leader\n"); 876 return -EINVAL; 877 } 878 } 879 880 return 0; 881 } 882 883 struct auxtrace_record *__weak 884 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err) 885 { 886 *err = 0; 887 return NULL; 888 } 889 890 static int auxtrace_index__alloc(struct list_head *head) 891 { 892 struct auxtrace_index *auxtrace_index; 893 894 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 895 if (!auxtrace_index) 896 return -ENOMEM; 897 898 auxtrace_index->nr = 0; 899 INIT_LIST_HEAD(&auxtrace_index->list); 900 901 list_add_tail(&auxtrace_index->list, head); 902 903 return 0; 904 } 905 906 void auxtrace_index__free(struct list_head *head) 907 { 908 struct auxtrace_index *auxtrace_index, *n; 909 910 list_for_each_entry_safe(auxtrace_index, n, head, list) { 911 list_del_init(&auxtrace_index->list); 912 free(auxtrace_index); 913 } 914 } 915 916 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 917 { 918 struct auxtrace_index *auxtrace_index; 919 int err; 920 921 if (list_empty(head)) { 922 err = auxtrace_index__alloc(head); 923 if (err) 924 return NULL; 925 } 926 927 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 928 929 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 930 err = auxtrace_index__alloc(head); 931 if (err) 932 return NULL; 933 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 934 list); 935 } 936 937 return auxtrace_index; 938 } 939 940 int auxtrace_index__auxtrace_event(struct list_head *head, 941 union perf_event *event, off_t file_offset) 942 { 943 struct auxtrace_index *auxtrace_index; 944 size_t nr; 945 946 auxtrace_index = auxtrace_index__last(head); 947 if (!auxtrace_index) 948 return -ENOMEM; 949 950 nr = auxtrace_index->nr; 951 auxtrace_index->entries[nr].file_offset = file_offset; 952 auxtrace_index->entries[nr].sz = event->header.size; 953 auxtrace_index->nr += 1; 954 955 return 0; 956 } 957 958 static int auxtrace_index__do_write(int fd, 959 struct auxtrace_index *auxtrace_index) 960 { 961 struct auxtrace_index_entry ent; 962 size_t i; 963 964 for (i = 0; i < auxtrace_index->nr; i++) { 965 ent.file_offset = auxtrace_index->entries[i].file_offset; 966 ent.sz = auxtrace_index->entries[i].sz; 967 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 968 return -errno; 969 } 970 return 0; 971 } 972 973 int auxtrace_index__write(int fd, struct list_head *head) 974 { 975 struct auxtrace_index *auxtrace_index; 976 u64 total = 0; 977 int err; 978 979 list_for_each_entry(auxtrace_index, head, list) 980 total += auxtrace_index->nr; 981 982 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 983 return -errno; 984 985 list_for_each_entry(auxtrace_index, head, list) { 986 err = auxtrace_index__do_write(fd, auxtrace_index); 987 if (err) 988 return err; 989 } 990 991 return 0; 992 } 993 994 static int auxtrace_index__process_entry(int fd, struct list_head *head, 995 bool needs_swap) 996 { 997 struct auxtrace_index *auxtrace_index; 998 struct auxtrace_index_entry ent; 999 size_t nr; 1000 1001 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 1002 return -1; 1003 1004 auxtrace_index = auxtrace_index__last(head); 1005 if (!auxtrace_index) 1006 return -1; 1007 1008 nr = auxtrace_index->nr; 1009 if (needs_swap) { 1010 auxtrace_index->entries[nr].file_offset = 1011 bswap_64(ent.file_offset); 1012 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 1013 } else { 1014 auxtrace_index->entries[nr].file_offset = ent.file_offset; 1015 auxtrace_index->entries[nr].sz = ent.sz; 1016 } 1017 1018 auxtrace_index->nr = nr + 1; 1019 1020 return 0; 1021 } 1022 1023 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 1024 bool needs_swap) 1025 { 1026 struct list_head *head = &session->auxtrace_index; 1027 u64 nr; 1028 1029 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 1030 return -1; 1031 1032 if (needs_swap) 1033 nr = bswap_64(nr); 1034 1035 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 1036 return -1; 1037 1038 while (nr--) { 1039 int err; 1040 1041 err = auxtrace_index__process_entry(fd, head, needs_swap); 1042 if (err) 1043 return -1; 1044 } 1045 1046 return 0; 1047 } 1048 1049 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 1050 struct perf_session *session, 1051 struct auxtrace_index_entry *ent) 1052 { 1053 return auxtrace_queues__add_indexed_event(queues, session, 1054 ent->file_offset, ent->sz); 1055 } 1056 1057 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 1058 struct perf_session *session) 1059 { 1060 struct auxtrace_index *auxtrace_index; 1061 struct auxtrace_index_entry *ent; 1062 size_t i; 1063 int err; 1064 1065 if (auxtrace__dont_decode(session)) 1066 return 0; 1067 1068 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 1069 for (i = 0; i < auxtrace_index->nr; i++) { 1070 ent = &auxtrace_index->entries[i]; 1071 err = auxtrace_queues__process_index_entry(queues, 1072 session, 1073 ent); 1074 if (err) 1075 return err; 1076 } 1077 } 1078 return 0; 1079 } 1080 1081 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 1082 struct auxtrace_buffer *buffer) 1083 { 1084 if (buffer) { 1085 if (list_is_last(&buffer->list, &queue->head)) 1086 return NULL; 1087 return list_entry(buffer->list.next, struct auxtrace_buffer, 1088 list); 1089 } else { 1090 if (list_empty(&queue->head)) 1091 return NULL; 1092 return list_entry(queue->head.next, struct auxtrace_buffer, 1093 list); 1094 } 1095 } 1096 1097 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues, 1098 struct perf_sample *sample, 1099 struct perf_session *session) 1100 { 1101 struct perf_sample_id *sid; 1102 unsigned int idx; 1103 u64 id; 1104 1105 id = sample->id; 1106 if (!id) 1107 return NULL; 1108 1109 sid = evlist__id2sid(session->evlist, id); 1110 if (!sid) 1111 return NULL; 1112 1113 idx = sid->idx; 1114 1115 if (idx >= queues->nr_queues) 1116 return NULL; 1117 1118 return &queues->queue_array[idx]; 1119 } 1120 1121 int auxtrace_queues__add_sample(struct auxtrace_queues *queues, 1122 struct perf_session *session, 1123 struct perf_sample *sample, u64 data_offset, 1124 u64 reference) 1125 { 1126 struct auxtrace_buffer buffer = { 1127 .pid = -1, 1128 .data_offset = data_offset, 1129 .reference = reference, 1130 .size = sample->aux_sample.size, 1131 }; 1132 struct perf_sample_id *sid; 1133 u64 id = sample->id; 1134 unsigned int idx; 1135 1136 if (!id) 1137 return -EINVAL; 1138 1139 sid = evlist__id2sid(session->evlist, id); 1140 if (!sid) 1141 return -ENOENT; 1142 1143 idx = sid->idx; 1144 buffer.tid = sid->tid; 1145 buffer.cpu = sid->cpu; 1146 1147 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL); 1148 } 1149 1150 struct queue_data { 1151 bool samples; 1152 bool events; 1153 }; 1154 1155 static int auxtrace_queue_data_cb(struct perf_session *session, 1156 union perf_event *event, u64 offset, 1157 void *data) 1158 { 1159 struct queue_data *qd = data; 1160 struct perf_sample sample; 1161 int err; 1162 1163 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) { 1164 if (event->header.size < sizeof(struct perf_record_auxtrace)) 1165 return -EINVAL; 1166 offset += event->header.size; 1167 return session->auxtrace->queue_data(session, NULL, event, 1168 offset); 1169 } 1170 1171 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE) 1172 return 0; 1173 1174 perf_sample__init(&sample, /*all=*/false); 1175 err = evlist__parse_sample(session->evlist, event, &sample); 1176 if (err) 1177 goto out; 1178 1179 if (sample.aux_sample.size) { 1180 offset += sample.aux_sample.data - (void *)event; 1181 1182 err = session->auxtrace->queue_data(session, &sample, NULL, offset); 1183 } 1184 out: 1185 perf_sample__exit(&sample); 1186 return err; 1187 } 1188 1189 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events) 1190 { 1191 struct queue_data qd = { 1192 .samples = samples, 1193 .events = events, 1194 }; 1195 1196 if (auxtrace__dont_decode(session)) 1197 return 0; 1198 1199 if (perf_data__is_pipe(session->data)) 1200 return 0; 1201 1202 if (!session->auxtrace || !session->auxtrace->queue_data) 1203 return -EINVAL; 1204 1205 return perf_session__peek_events(session, session->header.data_offset, 1206 session->header.data_size, 1207 auxtrace_queue_data_cb, &qd); 1208 } 1209 1210 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw) 1211 { 1212 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ; 1213 size_t adj = buffer->data_offset & (page_size - 1); 1214 size_t size = buffer->size + adj; 1215 off_t file_offset = buffer->data_offset - adj; 1216 void *addr; 1217 1218 if (buffer->data) 1219 return buffer->data; 1220 1221 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset); 1222 if (addr == MAP_FAILED) 1223 return NULL; 1224 1225 buffer->mmap_addr = addr; 1226 buffer->mmap_size = size; 1227 1228 buffer->data = addr + adj; 1229 1230 return buffer->data; 1231 } 1232 1233 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 1234 { 1235 if (!buffer->data || !buffer->mmap_addr) 1236 return; 1237 munmap(buffer->mmap_addr, buffer->mmap_size); 1238 buffer->mmap_addr = NULL; 1239 buffer->mmap_size = 0; 1240 buffer->data = NULL; 1241 buffer->use_data = NULL; 1242 } 1243 1244 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 1245 { 1246 auxtrace_buffer__put_data(buffer); 1247 if (buffer->data_needs_freeing) { 1248 buffer->data_needs_freeing = false; 1249 zfree(&buffer->data); 1250 buffer->use_data = NULL; 1251 buffer->size = 0; 1252 } 1253 } 1254 1255 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 1256 { 1257 auxtrace_buffer__drop_data(buffer); 1258 free(buffer); 1259 } 1260 1261 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1262 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1263 const char *msg, u64 timestamp, 1264 pid_t machine_pid, int vcpu) 1265 { 1266 size_t size; 1267 1268 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error)); 1269 1270 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 1271 auxtrace_error->type = type; 1272 auxtrace_error->code = code; 1273 auxtrace_error->cpu = cpu; 1274 auxtrace_error->pid = pid; 1275 auxtrace_error->tid = tid; 1276 auxtrace_error->fmt = 1; 1277 auxtrace_error->ip = ip; 1278 auxtrace_error->time = timestamp; 1279 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 1280 if (machine_pid) { 1281 auxtrace_error->fmt = 2; 1282 auxtrace_error->machine_pid = machine_pid; 1283 auxtrace_error->vcpu = vcpu; 1284 size = sizeof(*auxtrace_error); 1285 } else { 1286 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 1287 strlen(auxtrace_error->msg) + 1; 1288 } 1289 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 1290 } 1291 1292 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1293 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1294 const char *msg, u64 timestamp) 1295 { 1296 auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid, 1297 ip, msg, timestamp, 0, -1); 1298 } 1299 1300 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 1301 const struct perf_tool *tool, 1302 struct perf_session *session, 1303 perf_event__handler_t process) 1304 { 1305 union perf_event *ev; 1306 size_t priv_size; 1307 int err; 1308 1309 pr_debug2("Synthesizing auxtrace information\n"); 1310 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 1311 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size); 1312 if (!ev) 1313 return -ENOMEM; 1314 1315 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 1316 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) + 1317 priv_size; 1318 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 1319 priv_size); 1320 if (err) 1321 goto out_free; 1322 1323 err = process(tool, ev, NULL, NULL); 1324 out_free: 1325 free(ev); 1326 return err; 1327 } 1328 1329 static void unleader_evsel(struct evlist *evlist, struct evsel *leader) 1330 { 1331 struct evsel *new_leader = NULL; 1332 struct evsel *evsel; 1333 1334 /* Find new leader for the group */ 1335 evlist__for_each_entry(evlist, evsel) { 1336 if (!evsel__has_leader(evsel, leader) || evsel == leader) 1337 continue; 1338 if (!new_leader) 1339 new_leader = evsel; 1340 evsel__set_leader(evsel, new_leader); 1341 } 1342 1343 /* Update group information */ 1344 if (new_leader) { 1345 zfree(&new_leader->group_name); 1346 new_leader->group_name = leader->group_name; 1347 leader->group_name = NULL; 1348 1349 new_leader->core.nr_members = leader->core.nr_members - 1; 1350 leader->core.nr_members = 1; 1351 } 1352 } 1353 1354 static void unleader_auxtrace(struct perf_session *session) 1355 { 1356 struct evsel *evsel; 1357 1358 evlist__for_each_entry(session->evlist, evsel) { 1359 if (auxtrace__evsel_is_auxtrace(session, evsel) && 1360 evsel__is_group_leader(evsel)) { 1361 unleader_evsel(session->evlist, evsel); 1362 } 1363 } 1364 } 1365 1366 int perf_event__process_auxtrace_info(struct perf_session *session, 1367 union perf_event *event) 1368 { 1369 enum auxtrace_type type = event->auxtrace_info.type; 1370 int err; 1371 1372 if (dump_trace) 1373 fprintf(stdout, " type: %u\n", type); 1374 1375 switch (type) { 1376 case PERF_AUXTRACE_INTEL_PT: 1377 err = intel_pt_process_auxtrace_info(event, session); 1378 break; 1379 case PERF_AUXTRACE_INTEL_BTS: 1380 err = intel_bts_process_auxtrace_info(event, session); 1381 break; 1382 case PERF_AUXTRACE_ARM_SPE: 1383 err = arm_spe_process_auxtrace_info(event, session); 1384 break; 1385 case PERF_AUXTRACE_CS_ETM: 1386 err = cs_etm__process_auxtrace_info(event, session); 1387 break; 1388 case PERF_AUXTRACE_S390_CPUMSF: 1389 err = s390_cpumsf_process_auxtrace_info(event, session); 1390 break; 1391 case PERF_AUXTRACE_HISI_PTT: 1392 err = hisi_ptt_process_auxtrace_info(event, session); 1393 break; 1394 case PERF_AUXTRACE_VPA_DTL: 1395 err = powerpc_vpadtl_process_auxtrace_info(event, session); 1396 break; 1397 case PERF_AUXTRACE_UNKNOWN: 1398 default: 1399 return -EINVAL; 1400 } 1401 1402 if (err) 1403 return err; 1404 1405 unleader_auxtrace(session); 1406 1407 return 0; 1408 } 1409 1410 s64 perf_event__process_auxtrace(struct perf_session *session, 1411 union perf_event *event) 1412 { 1413 s64 err; 1414 1415 if (dump_trace) 1416 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n", 1417 event->auxtrace.size, event->auxtrace.offset, 1418 event->auxtrace.reference, event->auxtrace.idx, 1419 event->auxtrace.tid, event->auxtrace.cpu); 1420 1421 if (auxtrace__dont_decode(session)) 1422 return event->auxtrace.size; 1423 1424 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 1425 return -EINVAL; 1426 1427 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 1428 if (err < 0) 1429 return err; 1430 1431 return event->auxtrace.size; 1432 } 1433 1434 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 1435 #define PERF_ITRACE_DEFAULT_PERIOD 100000 1436 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 1437 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 1438 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 1439 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 1440 1441 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, 1442 bool no_sample) 1443 { 1444 synth_opts->branches = true; 1445 synth_opts->transactions = true; 1446 synth_opts->ptwrites = true; 1447 synth_opts->pwr_events = true; 1448 synth_opts->other_events = true; 1449 synth_opts->intr_events = true; 1450 synth_opts->errors = true; 1451 synth_opts->flc = true; 1452 synth_opts->llc = true; 1453 synth_opts->tlb = true; 1454 synth_opts->mem = true; 1455 synth_opts->remote_access = true; 1456 1457 if (no_sample) { 1458 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; 1459 synth_opts->period = 1; 1460 synth_opts->calls = true; 1461 } else { 1462 synth_opts->instructions = true; 1463 synth_opts->cycles = true; 1464 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1465 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1466 } 1467 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1468 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1469 synth_opts->initial_skip = 0; 1470 } 1471 1472 static int get_flag(const char **ptr, unsigned int *flags) 1473 { 1474 while (1) { 1475 char c = **ptr; 1476 1477 if (c >= 'a' && c <= 'z') { 1478 *flags |= 1 << (c - 'a'); 1479 ++*ptr; 1480 return 0; 1481 } else if (c == ' ') { 1482 ++*ptr; 1483 continue; 1484 } else { 1485 return -1; 1486 } 1487 } 1488 } 1489 1490 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags) 1491 { 1492 while (1) { 1493 switch (**ptr) { 1494 case '+': 1495 ++*ptr; 1496 if (get_flag(ptr, plus_flags)) 1497 return -1; 1498 break; 1499 case '-': 1500 ++*ptr; 1501 if (get_flag(ptr, minus_flags)) 1502 return -1; 1503 break; 1504 case ' ': 1505 ++*ptr; 1506 break; 1507 default: 1508 return 0; 1509 } 1510 } 1511 } 1512 1513 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384 1514 1515 static unsigned int itrace_log_on_error_size(void) 1516 { 1517 unsigned int sz = 0; 1518 1519 perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz); 1520 return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ; 1521 } 1522 1523 /* 1524 * Please check tools/perf/Documentation/perf-script.txt for information 1525 * about the options parsed here, which is introduced after this cset, 1526 * when support in 'perf script' for these options is introduced. 1527 */ 1528 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts, 1529 const char *str, int unset) 1530 { 1531 const char *p; 1532 char *endptr; 1533 bool period_type_set = false; 1534 bool period_set = false; 1535 bool iy = false; 1536 1537 synth_opts->set = true; 1538 1539 if (unset) { 1540 synth_opts->dont_decode = true; 1541 return 0; 1542 } 1543 1544 if (!str) { 1545 itrace_synth_opts__set_default(synth_opts, 1546 synth_opts->default_no_sample); 1547 return 0; 1548 } 1549 1550 for (p = str; *p;) { 1551 switch (*p++) { 1552 case 'i': 1553 case 'y': 1554 iy = true; 1555 if (p[-1] == 'y') 1556 synth_opts->cycles = true; 1557 else 1558 synth_opts->instructions = true; 1559 while (*p == ' ' || *p == ',') 1560 p += 1; 1561 if (isdigit(*p)) { 1562 synth_opts->period = strtoull(p, &endptr, 10); 1563 period_set = true; 1564 p = endptr; 1565 while (*p == ' ' || *p == ',') 1566 p += 1; 1567 switch (*p++) { 1568 case 'i': 1569 synth_opts->period_type = 1570 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1571 period_type_set = true; 1572 break; 1573 case 't': 1574 synth_opts->period_type = 1575 PERF_ITRACE_PERIOD_TICKS; 1576 period_type_set = true; 1577 break; 1578 case 'm': 1579 synth_opts->period *= 1000; 1580 /* Fall through */ 1581 case 'u': 1582 synth_opts->period *= 1000; 1583 /* Fall through */ 1584 case 'n': 1585 if (*p++ != 's') 1586 goto out_err; 1587 synth_opts->period_type = 1588 PERF_ITRACE_PERIOD_NANOSECS; 1589 period_type_set = true; 1590 break; 1591 case '\0': 1592 goto out; 1593 default: 1594 goto out_err; 1595 } 1596 } 1597 break; 1598 case 'b': 1599 synth_opts->branches = true; 1600 break; 1601 case 'x': 1602 synth_opts->transactions = true; 1603 break; 1604 case 'w': 1605 synth_opts->ptwrites = true; 1606 break; 1607 case 'p': 1608 synth_opts->pwr_events = true; 1609 break; 1610 case 'o': 1611 synth_opts->other_events = true; 1612 break; 1613 case 'I': 1614 synth_opts->intr_events = true; 1615 break; 1616 case 'e': 1617 synth_opts->errors = true; 1618 if (get_flags(&p, &synth_opts->error_plus_flags, 1619 &synth_opts->error_minus_flags)) 1620 goto out_err; 1621 break; 1622 case 'd': 1623 synth_opts->log = true; 1624 if (get_flags(&p, &synth_opts->log_plus_flags, 1625 &synth_opts->log_minus_flags)) 1626 goto out_err; 1627 if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR) 1628 synth_opts->log_on_error_size = itrace_log_on_error_size(); 1629 break; 1630 case 'c': 1631 synth_opts->branches = true; 1632 synth_opts->calls = true; 1633 break; 1634 case 'r': 1635 synth_opts->branches = true; 1636 synth_opts->returns = true; 1637 break; 1638 case 'G': 1639 case 'g': 1640 if (p[-1] == 'G') 1641 synth_opts->add_callchain = true; 1642 else 1643 synth_opts->callchain = true; 1644 synth_opts->callchain_sz = 1645 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1646 while (*p == ' ' || *p == ',') 1647 p += 1; 1648 if (isdigit(*p)) { 1649 unsigned int val; 1650 1651 val = strtoul(p, &endptr, 10); 1652 p = endptr; 1653 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1654 goto out_err; 1655 synth_opts->callchain_sz = val; 1656 } 1657 break; 1658 case 'L': 1659 case 'l': 1660 if (p[-1] == 'L') 1661 synth_opts->add_last_branch = true; 1662 else 1663 synth_opts->last_branch = true; 1664 synth_opts->last_branch_sz = 1665 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1666 while (*p == ' ' || *p == ',') 1667 p += 1; 1668 if (isdigit(*p)) { 1669 unsigned int val; 1670 1671 val = strtoul(p, &endptr, 10); 1672 p = endptr; 1673 if (!val || 1674 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1675 goto out_err; 1676 synth_opts->last_branch_sz = val; 1677 } 1678 break; 1679 case 's': 1680 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1681 if (p == endptr) 1682 goto out_err; 1683 p = endptr; 1684 break; 1685 case 'f': 1686 synth_opts->flc = true; 1687 break; 1688 case 'm': 1689 synth_opts->llc = true; 1690 break; 1691 case 't': 1692 synth_opts->tlb = true; 1693 break; 1694 case 'a': 1695 synth_opts->remote_access = true; 1696 break; 1697 case 'M': 1698 synth_opts->mem = true; 1699 break; 1700 case 'q': 1701 synth_opts->quick += 1; 1702 break; 1703 case 'A': 1704 synth_opts->approx_ipc = true; 1705 break; 1706 case 'Z': 1707 synth_opts->timeless_decoding = true; 1708 break; 1709 case 'T': 1710 synth_opts->use_timestamp = true; 1711 break; 1712 case ' ': 1713 case ',': 1714 break; 1715 default: 1716 goto out_err; 1717 } 1718 } 1719 out: 1720 if (iy) { 1721 if (!period_type_set) 1722 synth_opts->period_type = 1723 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1724 if (!period_set) 1725 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1726 } 1727 1728 return 0; 1729 1730 out_err: 1731 pr_err("Bad Instruction Tracing options '%s'\n", str); 1732 return -EINVAL; 1733 } 1734 1735 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset) 1736 { 1737 return itrace_do_parse_synth_opts(opt->value, str, unset); 1738 } 1739 1740 static const char * const auxtrace_error_type_name[] = { 1741 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1742 }; 1743 1744 static const char *auxtrace_error_name(int type) 1745 { 1746 const char *error_type_name = NULL; 1747 1748 if (type < PERF_AUXTRACE_ERROR_MAX) 1749 error_type_name = auxtrace_error_type_name[type]; 1750 if (!error_type_name) 1751 error_type_name = "unknown AUX"; 1752 return error_type_name; 1753 } 1754 1755 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1756 { 1757 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1758 unsigned long long nsecs = e->time; 1759 const char *msg = e->msg; 1760 int ret; 1761 1762 ret = fprintf(fp, " %s error type %u", 1763 auxtrace_error_name(e->type), e->type); 1764 1765 if (e->fmt && nsecs) { 1766 unsigned long secs = nsecs / NSEC_PER_SEC; 1767 1768 nsecs -= secs * NSEC_PER_SEC; 1769 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); 1770 } else { 1771 ret += fprintf(fp, " time 0"); 1772 } 1773 1774 if (!e->fmt) 1775 msg = (const char *)&e->time; 1776 1777 if (e->fmt >= 2 && e->machine_pid) 1778 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu); 1779 1780 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n", 1781 e->cpu, e->pid, e->tid, e->ip, e->code, msg); 1782 return ret; 1783 } 1784 1785 void perf_session__auxtrace_error_inc(struct perf_session *session, 1786 union perf_event *event) 1787 { 1788 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1789 1790 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1791 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1792 } 1793 1794 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1795 { 1796 int i; 1797 1798 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1799 if (!stats->nr_auxtrace_errors[i]) 1800 continue; 1801 ui__warning("%u %s errors\n", 1802 stats->nr_auxtrace_errors[i], 1803 auxtrace_error_name(i)); 1804 } 1805 } 1806 1807 int perf_event__process_auxtrace_error(struct perf_session *session, 1808 union perf_event *event) 1809 { 1810 if (auxtrace__dont_decode(session)) 1811 return 0; 1812 1813 perf_event__fprintf_auxtrace_error(event, stdout); 1814 return 0; 1815 } 1816 1817 /* 1818 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode, 1819 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to 1820 * the issues caused by the below sequence on multiple CPUs: when perf tool 1821 * accesses either the load operation or the store operation for 64-bit value, 1822 * on some architectures the operation is divided into two instructions, one 1823 * is for accessing the low 32-bit value and another is for the high 32-bit; 1824 * thus these two user operations can give the kernel chances to access the 1825 * 64-bit value, and thus leads to the unexpected load values. 1826 * 1827 * kernel (64-bit) user (32-bit) 1828 * 1829 * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo 1830 * STORE $aux_data | ,---> 1831 * FLUSH $aux_data | | LOAD ->aux_head_hi 1832 * STORE ->aux_head --|-------` smp_rmb() 1833 * } | LOAD $data 1834 * | smp_mb() 1835 * | STORE ->aux_tail_lo 1836 * `-----------> 1837 * STORE ->aux_tail_hi 1838 * 1839 * For this reason, it's impossible for the perf tool to work correctly when 1840 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we 1841 * can not simply limit the AUX ring buffer to less than 4GB, the reason is 1842 * the pointers can be increased monotonically, whatever the buffer size it is, 1843 * at the end the head and tail can be bigger than 4GB and carry out to the 1844 * high 32-bit. 1845 * 1846 * To mitigate the issues and improve the user experience, we can allow the 1847 * perf tool working in certain conditions and bail out with error if detect 1848 * any overflow cannot be handled. 1849 * 1850 * For reading the AUX head, it reads out the values for three times, and 1851 * compares the high 4 bytes of the values between the first time and the last 1852 * time, if there has no change for high 4 bytes injected by the kernel during 1853 * the user reading sequence, it's safe for use the second value. 1854 * 1855 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high 1856 * 32 bits, it means there have two store operations in user space and it cannot 1857 * promise the atomicity for 64-bit write, so return '-1' in this case to tell 1858 * the caller an overflow error has happened. 1859 */ 1860 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm) 1861 { 1862 struct perf_event_mmap_page *pc = mm->userpg; 1863 u64 first, second, last; 1864 u64 mask = (u64)(UINT32_MAX) << 32; 1865 1866 do { 1867 first = READ_ONCE(pc->aux_head); 1868 /* Ensure all reads are done after we read the head */ 1869 smp_rmb(); 1870 second = READ_ONCE(pc->aux_head); 1871 /* Ensure all reads are done after we read the head */ 1872 smp_rmb(); 1873 last = READ_ONCE(pc->aux_head); 1874 } while ((first & mask) != (last & mask)); 1875 1876 return second; 1877 } 1878 1879 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail) 1880 { 1881 struct perf_event_mmap_page *pc = mm->userpg; 1882 u64 mask = (u64)(UINT32_MAX) << 32; 1883 1884 if (tail & mask) 1885 return -1; 1886 1887 /* Ensure all reads are done before we write the tail out */ 1888 smp_mb(); 1889 WRITE_ONCE(pc->aux_tail, tail); 1890 return 0; 1891 } 1892 1893 static int __auxtrace_mmap__read(struct mmap *map, 1894 struct auxtrace_record *itr, struct perf_env *env, 1895 const struct perf_tool *tool, process_auxtrace_t fn, 1896 bool snapshot, size_t snapshot_size) 1897 { 1898 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1899 u64 head, old = mm->prev, offset, ref; 1900 unsigned char *data = mm->base; 1901 size_t size, head_off, old_off, len1, len2, padding; 1902 union perf_event ev; 1903 void *data1, *data2; 1904 int kernel_is_64_bit = perf_env__kernel_is_64_bit(env); 1905 1906 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit); 1907 1908 if (snapshot && 1909 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old)) 1910 return -1; 1911 1912 if (old == head) 1913 return 0; 1914 1915 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1916 mm->idx, old, head, head - old); 1917 1918 if (mm->mask) { 1919 head_off = head & mm->mask; 1920 old_off = old & mm->mask; 1921 } else { 1922 head_off = head % mm->len; 1923 old_off = old % mm->len; 1924 } 1925 1926 if (head_off > old_off) 1927 size = head_off - old_off; 1928 else 1929 size = mm->len - (old_off - head_off); 1930 1931 if (snapshot && size > snapshot_size) 1932 size = snapshot_size; 1933 1934 ref = auxtrace_record__reference(itr); 1935 1936 if (head > old || size <= head || mm->mask) { 1937 offset = head - size; 1938 } else { 1939 /* 1940 * When the buffer size is not a power of 2, 'head' wraps at the 1941 * highest multiple of the buffer size, so we have to subtract 1942 * the remainder here. 1943 */ 1944 u64 rem = (0ULL - mm->len) % mm->len; 1945 1946 offset = head - size - rem; 1947 } 1948 1949 if (size > head_off) { 1950 len1 = size - head_off; 1951 data1 = &data[mm->len - len1]; 1952 len2 = head_off; 1953 data2 = &data[0]; 1954 } else { 1955 len1 = size; 1956 data1 = &data[head_off - len1]; 1957 len2 = 0; 1958 data2 = NULL; 1959 } 1960 1961 if (itr->alignment) { 1962 unsigned int unwanted = len1 % itr->alignment; 1963 1964 len1 -= unwanted; 1965 size -= unwanted; 1966 } 1967 1968 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1969 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); 1970 if (padding) 1971 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; 1972 1973 memset(&ev, 0, sizeof(ev)); 1974 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1975 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1976 ev.auxtrace.size = size + padding; 1977 ev.auxtrace.offset = offset; 1978 ev.auxtrace.reference = ref; 1979 ev.auxtrace.idx = mm->idx; 1980 ev.auxtrace.tid = mm->tid; 1981 ev.auxtrace.cpu = mm->cpu; 1982 1983 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1984 return -1; 1985 1986 mm->prev = head; 1987 1988 if (!snapshot) { 1989 int err; 1990 1991 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit); 1992 if (err < 0) 1993 return err; 1994 1995 if (itr->read_finish) { 1996 err = itr->read_finish(itr, mm->idx); 1997 if (err < 0) 1998 return err; 1999 } 2000 } 2001 2002 return 1; 2003 } 2004 2005 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, 2006 struct perf_env *env, const struct perf_tool *tool, 2007 process_auxtrace_t fn) 2008 { 2009 return __auxtrace_mmap__read(map, itr, env, tool, fn, false, 0); 2010 } 2011 2012 int auxtrace_mmap__read_snapshot(struct mmap *map, 2013 struct auxtrace_record *itr, struct perf_env *env, 2014 const struct perf_tool *tool, process_auxtrace_t fn, 2015 size_t snapshot_size) 2016 { 2017 return __auxtrace_mmap__read(map, itr, env, tool, fn, true, snapshot_size); 2018 } 2019 2020 /** 2021 * struct auxtrace_cache - hash table to implement a cache 2022 * @hashtable: the hashtable 2023 * @sz: hashtable size (number of hlists) 2024 * @entry_size: size of an entry 2025 * @limit: limit the number of entries to this maximum, when reached the cache 2026 * is dropped and caching begins again with an empty cache 2027 * @cnt: current number of entries 2028 * @bits: hashtable size (@sz = 2^@bits) 2029 */ 2030 struct auxtrace_cache { 2031 struct hlist_head *hashtable; 2032 size_t sz; 2033 size_t entry_size; 2034 size_t limit; 2035 size_t cnt; 2036 unsigned int bits; 2037 }; 2038 2039 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 2040 unsigned int limit_percent) 2041 { 2042 struct auxtrace_cache *c; 2043 struct hlist_head *ht; 2044 size_t sz, i; 2045 2046 c = zalloc(sizeof(struct auxtrace_cache)); 2047 if (!c) 2048 return NULL; 2049 2050 sz = 1UL << bits; 2051 2052 ht = calloc(sz, sizeof(struct hlist_head)); 2053 if (!ht) 2054 goto out_free; 2055 2056 for (i = 0; i < sz; i++) 2057 INIT_HLIST_HEAD(&ht[i]); 2058 2059 c->hashtable = ht; 2060 c->sz = sz; 2061 c->entry_size = entry_size; 2062 c->limit = (c->sz * limit_percent) / 100; 2063 c->bits = bits; 2064 2065 return c; 2066 2067 out_free: 2068 free(c); 2069 return NULL; 2070 } 2071 2072 static void auxtrace_cache__drop(struct auxtrace_cache *c) 2073 { 2074 struct auxtrace_cache_entry *entry; 2075 struct hlist_node *tmp; 2076 size_t i; 2077 2078 if (!c) 2079 return; 2080 2081 for (i = 0; i < c->sz; i++) { 2082 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 2083 hlist_del(&entry->hash); 2084 auxtrace_cache__free_entry(c, entry); 2085 } 2086 } 2087 2088 c->cnt = 0; 2089 } 2090 2091 void auxtrace_cache__free(struct auxtrace_cache *c) 2092 { 2093 if (!c) 2094 return; 2095 2096 auxtrace_cache__drop(c); 2097 zfree(&c->hashtable); 2098 free(c); 2099 } 2100 2101 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 2102 { 2103 return malloc(c->entry_size); 2104 } 2105 2106 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 2107 void *entry) 2108 { 2109 free(entry); 2110 } 2111 2112 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 2113 struct auxtrace_cache_entry *entry) 2114 { 2115 if (c->limit && ++c->cnt > c->limit) 2116 auxtrace_cache__drop(c); 2117 2118 entry->key = key; 2119 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 2120 2121 return 0; 2122 } 2123 2124 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c, 2125 u32 key) 2126 { 2127 struct auxtrace_cache_entry *entry; 2128 struct hlist_head *hlist; 2129 struct hlist_node *n; 2130 2131 if (!c) 2132 return NULL; 2133 2134 hlist = &c->hashtable[hash_32(key, c->bits)]; 2135 hlist_for_each_entry_safe(entry, n, hlist, hash) { 2136 if (entry->key == key) { 2137 hlist_del(&entry->hash); 2138 return entry; 2139 } 2140 } 2141 2142 return NULL; 2143 } 2144 2145 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key) 2146 { 2147 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key); 2148 2149 auxtrace_cache__free_entry(c, entry); 2150 } 2151 2152 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 2153 { 2154 struct auxtrace_cache_entry *entry; 2155 struct hlist_head *hlist; 2156 2157 if (!c) 2158 return NULL; 2159 2160 hlist = &c->hashtable[hash_32(key, c->bits)]; 2161 hlist_for_each_entry(entry, hlist, hash) { 2162 if (entry->key == key) 2163 return entry; 2164 } 2165 2166 return NULL; 2167 } 2168 2169 static void addr_filter__free_str(struct addr_filter *filt) 2170 { 2171 zfree(&filt->str); 2172 filt->action = NULL; 2173 filt->sym_from = NULL; 2174 filt->sym_to = NULL; 2175 filt->filename = NULL; 2176 } 2177 2178 static struct addr_filter *addr_filter__new(void) 2179 { 2180 struct addr_filter *filt = zalloc(sizeof(*filt)); 2181 2182 if (filt) 2183 INIT_LIST_HEAD(&filt->list); 2184 2185 return filt; 2186 } 2187 2188 static void addr_filter__free(struct addr_filter *filt) 2189 { 2190 if (filt) 2191 addr_filter__free_str(filt); 2192 free(filt); 2193 } 2194 2195 static void addr_filters__add(struct addr_filters *filts, 2196 struct addr_filter *filt) 2197 { 2198 list_add_tail(&filt->list, &filts->head); 2199 filts->cnt += 1; 2200 } 2201 2202 static void addr_filters__del(struct addr_filters *filts, 2203 struct addr_filter *filt) 2204 { 2205 list_del_init(&filt->list); 2206 filts->cnt -= 1; 2207 } 2208 2209 void addr_filters__init(struct addr_filters *filts) 2210 { 2211 INIT_LIST_HEAD(&filts->head); 2212 filts->cnt = 0; 2213 } 2214 2215 void addr_filters__exit(struct addr_filters *filts) 2216 { 2217 struct addr_filter *filt, *n; 2218 2219 list_for_each_entry_safe(filt, n, &filts->head, list) { 2220 addr_filters__del(filts, filt); 2221 addr_filter__free(filt); 2222 } 2223 } 2224 2225 static int parse_num_or_str(char **inp, u64 *num, const char **str, 2226 const char *str_delim) 2227 { 2228 *inp += strspn(*inp, " "); 2229 2230 if (isdigit(**inp)) { 2231 char *endptr; 2232 2233 if (!num) 2234 return -EINVAL; 2235 errno = 0; 2236 *num = strtoull(*inp, &endptr, 0); 2237 if (errno) 2238 return -errno; 2239 if (endptr == *inp) 2240 return -EINVAL; 2241 *inp = endptr; 2242 } else { 2243 size_t n; 2244 2245 if (!str) 2246 return -EINVAL; 2247 *inp += strspn(*inp, " "); 2248 *str = *inp; 2249 n = strcspn(*inp, str_delim); 2250 if (!n) 2251 return -EINVAL; 2252 *inp += n; 2253 if (**inp) { 2254 **inp = '\0'; 2255 *inp += 1; 2256 } 2257 } 2258 return 0; 2259 } 2260 2261 static int parse_action(struct addr_filter *filt) 2262 { 2263 if (!strcmp(filt->action, "filter")) { 2264 filt->start = true; 2265 filt->range = true; 2266 } else if (!strcmp(filt->action, "start")) { 2267 filt->start = true; 2268 } else if (!strcmp(filt->action, "stop")) { 2269 filt->start = false; 2270 } else if (!strcmp(filt->action, "tracestop")) { 2271 filt->start = false; 2272 filt->range = true; 2273 filt->action += 5; /* Change 'tracestop' to 'stop' */ 2274 } else { 2275 return -EINVAL; 2276 } 2277 return 0; 2278 } 2279 2280 static int parse_sym_idx(char **inp, int *idx) 2281 { 2282 *idx = -1; 2283 2284 *inp += strspn(*inp, " "); 2285 2286 if (**inp != '#') 2287 return 0; 2288 2289 *inp += 1; 2290 2291 if (**inp == 'g' || **inp == 'G') { 2292 *inp += 1; 2293 *idx = 0; 2294 } else { 2295 unsigned long num; 2296 char *endptr; 2297 2298 errno = 0; 2299 num = strtoul(*inp, &endptr, 0); 2300 if (errno) 2301 return -errno; 2302 if (endptr == *inp || num > INT_MAX) 2303 return -EINVAL; 2304 *inp = endptr; 2305 *idx = num; 2306 } 2307 2308 return 0; 2309 } 2310 2311 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 2312 { 2313 int err = parse_num_or_str(inp, num, str, " "); 2314 2315 if (!err && *str) 2316 err = parse_sym_idx(inp, idx); 2317 2318 return err; 2319 } 2320 2321 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 2322 { 2323 char *fstr; 2324 int err; 2325 2326 filt->str = fstr = strdup(*filter_inp); 2327 if (!fstr) 2328 return -ENOMEM; 2329 2330 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 2331 if (err) 2332 goto out_err; 2333 2334 err = parse_action(filt); 2335 if (err) 2336 goto out_err; 2337 2338 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 2339 &filt->sym_from_idx); 2340 if (err) 2341 goto out_err; 2342 2343 fstr += strspn(fstr, " "); 2344 2345 if (*fstr == '/') { 2346 fstr += 1; 2347 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 2348 &filt->sym_to_idx); 2349 if (err) 2350 goto out_err; 2351 filt->range = true; 2352 } 2353 2354 fstr += strspn(fstr, " "); 2355 2356 if (*fstr == '@') { 2357 fstr += 1; 2358 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 2359 if (err) 2360 goto out_err; 2361 } 2362 2363 fstr += strspn(fstr, " ,"); 2364 2365 *filter_inp += fstr - filt->str; 2366 2367 return 0; 2368 2369 out_err: 2370 addr_filter__free_str(filt); 2371 2372 return err; 2373 } 2374 2375 int addr_filters__parse_bare_filter(struct addr_filters *filts, 2376 const char *filter) 2377 { 2378 struct addr_filter *filt; 2379 const char *fstr = filter; 2380 int err; 2381 2382 while (*fstr) { 2383 filt = addr_filter__new(); 2384 err = parse_one_filter(filt, &fstr); 2385 if (err) { 2386 addr_filter__free(filt); 2387 addr_filters__exit(filts); 2388 return err; 2389 } 2390 addr_filters__add(filts, filt); 2391 } 2392 2393 return 0; 2394 } 2395 2396 struct sym_args { 2397 const char *name; 2398 u64 start; 2399 u64 size; 2400 int idx; 2401 int cnt; 2402 bool started; 2403 bool global; 2404 bool selected; 2405 bool duplicate; 2406 bool near; 2407 }; 2408 2409 static bool kern_sym_name_match(const char *kname, const char *name) 2410 { 2411 size_t n = strlen(name); 2412 2413 return !strcmp(kname, name) || 2414 (!strncmp(kname, name, n) && kname[n] == '\t'); 2415 } 2416 2417 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 2418 { 2419 /* A function with the same name, and global or the n'th found or any */ 2420 return kallsyms__is_function(type) && 2421 kern_sym_name_match(name, args->name) && 2422 ((args->global && isupper(type)) || 2423 (args->selected && ++(args->cnt) == args->idx) || 2424 (!args->global && !args->selected)); 2425 } 2426 2427 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2428 { 2429 struct sym_args *args = arg; 2430 2431 if (args->started) { 2432 if (!args->size) 2433 args->size = start - args->start; 2434 if (args->selected) { 2435 if (args->size) 2436 return 1; 2437 } else if (kern_sym_match(args, name, type)) { 2438 args->duplicate = true; 2439 return 1; 2440 } 2441 } else if (kern_sym_match(args, name, type)) { 2442 args->started = true; 2443 args->start = start; 2444 } 2445 2446 return 0; 2447 } 2448 2449 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2450 { 2451 struct sym_args *args = arg; 2452 2453 if (kern_sym_match(args, name, type)) { 2454 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2455 ++args->cnt, start, type, name); 2456 args->near = true; 2457 } else if (args->near) { 2458 args->near = false; 2459 pr_err("\t\twhich is near\t\t%s\n", name); 2460 } 2461 2462 return 0; 2463 } 2464 2465 static int sym_not_found_error(const char *sym_name, int idx) 2466 { 2467 if (idx > 0) { 2468 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 2469 idx, sym_name); 2470 } else if (!idx) { 2471 pr_err("Global symbol '%s' not found.\n", sym_name); 2472 } else { 2473 pr_err("Symbol '%s' not found.\n", sym_name); 2474 } 2475 pr_err("Note that symbols must be functions.\n"); 2476 2477 return -EINVAL; 2478 } 2479 2480 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 2481 { 2482 struct sym_args args = { 2483 .name = sym_name, 2484 .idx = idx, 2485 .global = !idx, 2486 .selected = idx > 0, 2487 }; 2488 int err; 2489 2490 *start = 0; 2491 *size = 0; 2492 2493 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 2494 if (err < 0) { 2495 pr_err("Failed to parse /proc/kallsyms\n"); 2496 return err; 2497 } 2498 2499 if (args.duplicate) { 2500 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 2501 args.cnt = 0; 2502 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 2503 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2504 sym_name); 2505 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2506 return -EINVAL; 2507 } 2508 2509 if (!args.started) { 2510 pr_err("Kernel symbol lookup: "); 2511 return sym_not_found_error(sym_name, idx); 2512 } 2513 2514 *start = args.start; 2515 *size = args.size; 2516 2517 return 0; 2518 } 2519 2520 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 2521 char type, u64 start) 2522 { 2523 struct sym_args *args = arg; 2524 u64 size; 2525 2526 if (!kallsyms__is_function(type)) 2527 return 0; 2528 2529 if (!args->started) { 2530 args->started = true; 2531 args->start = start; 2532 } 2533 /* Don't know exactly where the kernel ends, so we add a page */ 2534 size = round_up(start, page_size) + page_size - args->start; 2535 if (size > args->size) 2536 args->size = size; 2537 2538 return 0; 2539 } 2540 2541 static int addr_filter__entire_kernel(struct addr_filter *filt) 2542 { 2543 struct sym_args args = { .started = false }; 2544 int err; 2545 2546 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 2547 if (err < 0 || !args.started) { 2548 pr_err("Failed to parse /proc/kallsyms\n"); 2549 return err; 2550 } 2551 2552 filt->addr = args.start; 2553 filt->size = args.size; 2554 2555 return 0; 2556 } 2557 2558 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 2559 { 2560 if (start + size >= filt->addr) 2561 return 0; 2562 2563 if (filt->sym_from) { 2564 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 2565 filt->sym_to, start, filt->sym_from, filt->addr); 2566 } else { 2567 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 2568 filt->sym_to, start, filt->addr); 2569 } 2570 2571 return -EINVAL; 2572 } 2573 2574 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 2575 { 2576 bool no_size = false; 2577 u64 start, size; 2578 int err; 2579 2580 if (symbol_conf.kptr_restrict) { 2581 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 2582 return -EINVAL; 2583 } 2584 2585 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 2586 return addr_filter__entire_kernel(filt); 2587 2588 if (filt->sym_from) { 2589 err = find_kern_sym(filt->sym_from, &start, &size, 2590 filt->sym_from_idx); 2591 if (err) 2592 return err; 2593 filt->addr = start; 2594 if (filt->range && !filt->size && !filt->sym_to) { 2595 filt->size = size; 2596 no_size = !size; 2597 } 2598 } 2599 2600 if (filt->sym_to) { 2601 err = find_kern_sym(filt->sym_to, &start, &size, 2602 filt->sym_to_idx); 2603 if (err) 2604 return err; 2605 2606 err = check_end_after_start(filt, start, size); 2607 if (err) 2608 return err; 2609 filt->size = start + size - filt->addr; 2610 no_size = !size; 2611 } 2612 2613 /* The very last symbol in kallsyms does not imply a particular size */ 2614 if (no_size) { 2615 pr_err("Cannot determine size of symbol '%s'\n", 2616 filt->sym_to ? filt->sym_to : filt->sym_from); 2617 return -EINVAL; 2618 } 2619 2620 return 0; 2621 } 2622 2623 static struct dso *load_dso(const char *name) 2624 { 2625 struct map *map; 2626 struct dso *dso; 2627 2628 map = dso__new_map(name); 2629 if (!map) 2630 return NULL; 2631 2632 if (map__load(map) < 0) 2633 pr_err("File '%s' not found or has no symbols.\n", name); 2634 2635 dso = dso__get(map__dso(map)); 2636 2637 map__put(map); 2638 2639 return dso; 2640 } 2641 2642 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 2643 int idx) 2644 { 2645 /* Same name, and global or the n'th found or any */ 2646 return !arch__compare_symbol_names(name, sym->name) && 2647 ((!idx && sym->binding == STB_GLOBAL) || 2648 (idx > 0 && ++*cnt == idx) || 2649 idx < 0); 2650 } 2651 2652 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 2653 { 2654 struct symbol *sym; 2655 bool near = false; 2656 int cnt = 0; 2657 2658 pr_err("Multiple symbols with name '%s'\n", sym_name); 2659 2660 sym = dso__first_symbol(dso); 2661 while (sym) { 2662 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 2663 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2664 ++cnt, sym->start, 2665 sym->binding == STB_GLOBAL ? 'g' : 2666 sym->binding == STB_LOCAL ? 'l' : 'w', 2667 sym->name); 2668 near = true; 2669 } else if (near) { 2670 near = false; 2671 pr_err("\t\twhich is near\t\t%s\n", sym->name); 2672 } 2673 sym = dso__next_symbol(sym); 2674 } 2675 2676 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2677 sym_name); 2678 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2679 } 2680 2681 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 2682 u64 *size, int idx) 2683 { 2684 struct symbol *sym; 2685 int cnt = 0; 2686 2687 *start = 0; 2688 *size = 0; 2689 2690 sym = dso__first_symbol(dso); 2691 while (sym) { 2692 if (*start) { 2693 if (!*size) 2694 *size = sym->start - *start; 2695 if (idx > 0) { 2696 if (*size) 2697 return 0; 2698 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2699 print_duplicate_syms(dso, sym_name); 2700 return -EINVAL; 2701 } 2702 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2703 *start = sym->start; 2704 *size = sym->end - sym->start; 2705 } 2706 sym = dso__next_symbol(sym); 2707 } 2708 2709 if (!*start) 2710 return sym_not_found_error(sym_name, idx); 2711 2712 return 0; 2713 } 2714 2715 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 2716 { 2717 if (dso__data_file_size(dso, NULL)) { 2718 pr_err("Failed to determine filter for %s\nCannot determine file size.\n", 2719 filt->filename); 2720 return -EINVAL; 2721 } 2722 2723 filt->addr = 0; 2724 filt->size = dso__data(dso)->file_size; 2725 2726 return 0; 2727 } 2728 2729 static int addr_filter__resolve_syms(struct addr_filter *filt) 2730 { 2731 u64 start, size; 2732 struct dso *dso; 2733 int err = 0; 2734 2735 if (!filt->sym_from && !filt->sym_to) 2736 return 0; 2737 2738 if (!filt->filename) 2739 return addr_filter__resolve_kernel_syms(filt); 2740 2741 dso = load_dso(filt->filename); 2742 if (!dso) { 2743 pr_err("Failed to load symbols from: %s\n", filt->filename); 2744 return -EINVAL; 2745 } 2746 2747 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2748 err = addr_filter__entire_dso(filt, dso); 2749 goto put_dso; 2750 } 2751 2752 if (filt->sym_from) { 2753 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2754 filt->sym_from_idx); 2755 if (err) 2756 goto put_dso; 2757 filt->addr = start; 2758 if (filt->range && !filt->size && !filt->sym_to) 2759 filt->size = size; 2760 } 2761 2762 if (filt->sym_to) { 2763 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2764 filt->sym_to_idx); 2765 if (err) 2766 goto put_dso; 2767 2768 err = check_end_after_start(filt, start, size); 2769 if (err) 2770 return err; 2771 2772 filt->size = start + size - filt->addr; 2773 } 2774 2775 put_dso: 2776 dso__put(dso); 2777 2778 return err; 2779 } 2780 2781 static char *addr_filter__to_str(struct addr_filter *filt) 2782 { 2783 char filename_buf[PATH_MAX]; 2784 const char *at = ""; 2785 const char *fn = ""; 2786 char *filter; 2787 int err; 2788 2789 if (filt->filename) { 2790 at = "@"; 2791 fn = realpath(filt->filename, filename_buf); 2792 if (!fn) 2793 return NULL; 2794 } 2795 2796 if (filt->range) { 2797 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2798 filt->action, filt->addr, filt->size, at, fn); 2799 } else { 2800 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2801 filt->action, filt->addr, at, fn); 2802 } 2803 2804 return err < 0 ? NULL : filter; 2805 } 2806 2807 static int parse_addr_filter(struct evsel *evsel, const char *filter, 2808 int max_nr) 2809 { 2810 struct addr_filters filts; 2811 struct addr_filter *filt; 2812 int err; 2813 2814 addr_filters__init(&filts); 2815 2816 err = addr_filters__parse_bare_filter(&filts, filter); 2817 if (err) 2818 goto out_exit; 2819 2820 if (filts.cnt > max_nr) { 2821 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2822 filts.cnt, max_nr); 2823 err = -EINVAL; 2824 goto out_exit; 2825 } 2826 2827 list_for_each_entry(filt, &filts.head, list) { 2828 char *new_filter; 2829 2830 err = addr_filter__resolve_syms(filt); 2831 if (err) 2832 goto out_exit; 2833 2834 new_filter = addr_filter__to_str(filt); 2835 if (!new_filter) { 2836 err = -ENOMEM; 2837 goto out_exit; 2838 } 2839 2840 if (evsel__append_addr_filter(evsel, new_filter)) { 2841 err = -ENOMEM; 2842 goto out_exit; 2843 } 2844 } 2845 2846 out_exit: 2847 addr_filters__exit(&filts); 2848 2849 if (err) { 2850 pr_err("Failed to parse address filter: '%s'\n", filter); 2851 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2852 pr_err("Where multiple filters are separated by space or comma.\n"); 2853 } 2854 2855 return err; 2856 } 2857 2858 static int evsel__nr_addr_filter(struct evsel *evsel) 2859 { 2860 struct perf_pmu *pmu = evsel__find_pmu(evsel); 2861 int nr_addr_filters = 0; 2862 2863 if (!pmu) 2864 return 0; 2865 2866 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2867 2868 return nr_addr_filters; 2869 } 2870 2871 int auxtrace_parse_filters(struct evlist *evlist) 2872 { 2873 struct evsel *evsel; 2874 char *filter; 2875 int err, max_nr; 2876 2877 evlist__for_each_entry(evlist, evsel) { 2878 filter = evsel->filter; 2879 max_nr = evsel__nr_addr_filter(evsel); 2880 if (!filter || !max_nr) 2881 continue; 2882 evsel->filter = NULL; 2883 err = parse_addr_filter(evsel, filter, max_nr); 2884 free(filter); 2885 if (err) 2886 return err; 2887 pr_debug("Address filter: %s\n", evsel->filter); 2888 } 2889 2890 return 0; 2891 } 2892 2893 int auxtrace__process_event(struct perf_session *session, union perf_event *event, 2894 struct perf_sample *sample, const struct perf_tool *tool) 2895 { 2896 if (!session->auxtrace) 2897 return 0; 2898 2899 return session->auxtrace->process_event(session, event, sample, tool); 2900 } 2901 2902 void auxtrace__dump_auxtrace_sample(struct perf_session *session, 2903 struct perf_sample *sample) 2904 { 2905 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample || 2906 auxtrace__dont_decode(session)) 2907 return; 2908 2909 session->auxtrace->dump_auxtrace_sample(session, sample); 2910 } 2911 2912 int auxtrace__flush_events(struct perf_session *session, const struct perf_tool *tool) 2913 { 2914 if (!session->auxtrace) 2915 return 0; 2916 2917 return session->auxtrace->flush_events(session, tool); 2918 } 2919 2920 void auxtrace__free_events(struct perf_session *session) 2921 { 2922 if (!session->auxtrace) 2923 return; 2924 2925 return session->auxtrace->free_events(session); 2926 } 2927 2928 void auxtrace__free(struct perf_session *session) 2929 { 2930 if (!session->auxtrace) 2931 return; 2932 2933 return session->auxtrace->free(session); 2934 } 2935 2936 bool auxtrace__evsel_is_auxtrace(struct perf_session *session, 2937 struct evsel *evsel) 2938 { 2939 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace) 2940 return false; 2941 2942 return session->auxtrace->evsel_is_auxtrace(session, evsel); 2943 } 2944