xref: /linux/tools/perf/util/auxtrace.c (revision 55c8a987dd73a7ef9e53119f3329620768d4a655)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14 
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22 
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28 
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "evsel_config.h"
35 #include "symbol.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "thread_map.h"
39 #include "asm/bug.h"
40 #include "auxtrace.h"
41 
42 #include <linux/hash.h>
43 
44 #include "event.h"
45 #include "record.h"
46 #include "session.h"
47 #include "debug.h"
48 #include <subcmd/parse-options.h>
49 
50 #include "cs-etm.h"
51 #include "intel-pt.h"
52 #include "intel-bts.h"
53 #include "arm-spe.h"
54 #include "s390-cpumsf.h"
55 #include "util/mmap.h"
56 
57 #include <linux/ctype.h>
58 #include "symbol/kallsyms.h"
59 #include <internal/lib.h>
60 
61 /*
62  * Make a group from 'leader' to 'last', requiring that the events were not
63  * already grouped to a different leader.
64  */
65 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
66 {
67 	struct evsel *evsel;
68 	bool grp;
69 
70 	if (!evsel__is_group_leader(leader))
71 		return -EINVAL;
72 
73 	grp = false;
74 	evlist__for_each_entry(evlist, evsel) {
75 		if (grp) {
76 			if (!(evsel__leader(evsel) == leader ||
77 			     (evsel__leader(evsel) == evsel &&
78 			      evsel->core.nr_members <= 1)))
79 				return -EINVAL;
80 		} else if (evsel == leader) {
81 			grp = true;
82 		}
83 		if (evsel == last)
84 			break;
85 	}
86 
87 	grp = false;
88 	evlist__for_each_entry(evlist, evsel) {
89 		if (grp) {
90 			if (!evsel__has_leader(evsel, leader)) {
91 				evsel__set_leader(evsel, leader);
92 				if (leader->core.nr_members < 1)
93 					leader->core.nr_members = 1;
94 				leader->core.nr_members += 1;
95 			}
96 		} else if (evsel == leader) {
97 			grp = true;
98 		}
99 		if (evsel == last)
100 			break;
101 	}
102 
103 	return 0;
104 }
105 
106 static bool auxtrace__dont_decode(struct perf_session *session)
107 {
108 	return !session->itrace_synth_opts ||
109 	       session->itrace_synth_opts->dont_decode;
110 }
111 
112 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
113 			struct auxtrace_mmap_params *mp,
114 			void *userpg, int fd)
115 {
116 	struct perf_event_mmap_page *pc = userpg;
117 
118 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
119 
120 	mm->userpg = userpg;
121 	mm->mask = mp->mask;
122 	mm->len = mp->len;
123 	mm->prev = 0;
124 	mm->idx = mp->idx;
125 	mm->tid = mp->tid;
126 	mm->cpu = mp->cpu.cpu;
127 
128 	if (!mp->len || !mp->mmap_needed) {
129 		mm->base = NULL;
130 		return 0;
131 	}
132 
133 	pc->aux_offset = mp->offset;
134 	pc->aux_size = mp->len;
135 
136 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
137 	if (mm->base == MAP_FAILED) {
138 		pr_debug2("failed to mmap AUX area\n");
139 		mm->base = NULL;
140 		return -1;
141 	}
142 
143 	return 0;
144 }
145 
146 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
147 {
148 	if (mm->base) {
149 		munmap(mm->base, mm->len);
150 		mm->base = NULL;
151 	}
152 }
153 
154 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
155 				off_t auxtrace_offset,
156 				unsigned int auxtrace_pages,
157 				bool auxtrace_overwrite)
158 {
159 	if (auxtrace_pages) {
160 		mp->offset = auxtrace_offset;
161 		mp->len = auxtrace_pages * (size_t)page_size;
162 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
163 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
164 		pr_debug2("AUX area mmap length %zu\n", mp->len);
165 	} else {
166 		mp->len = 0;
167 	}
168 }
169 
170 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
171 				   struct evlist *evlist,
172 				   struct evsel *evsel, int idx)
173 {
174 	bool per_cpu = !perf_cpu_map__empty(evlist->core.user_requested_cpus);
175 
176 	mp->mmap_needed = evsel->needs_auxtrace_mmap;
177 
178 	if (!mp->mmap_needed)
179 		return;
180 
181 	mp->idx = idx;
182 
183 	if (per_cpu) {
184 		mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
185 		if (evlist->core.threads)
186 			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
187 		else
188 			mp->tid = -1;
189 	} else {
190 		mp->cpu.cpu = -1;
191 		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
192 	}
193 }
194 
195 #define AUXTRACE_INIT_NR_QUEUES	32
196 
197 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
198 {
199 	struct auxtrace_queue *queue_array;
200 	unsigned int max_nr_queues, i;
201 
202 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
203 	if (nr_queues > max_nr_queues)
204 		return NULL;
205 
206 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
207 	if (!queue_array)
208 		return NULL;
209 
210 	for (i = 0; i < nr_queues; i++) {
211 		INIT_LIST_HEAD(&queue_array[i].head);
212 		queue_array[i].priv = NULL;
213 	}
214 
215 	return queue_array;
216 }
217 
218 int auxtrace_queues__init(struct auxtrace_queues *queues)
219 {
220 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
221 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
222 	if (!queues->queue_array)
223 		return -ENOMEM;
224 	return 0;
225 }
226 
227 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
228 				 unsigned int new_nr_queues)
229 {
230 	unsigned int nr_queues = queues->nr_queues;
231 	struct auxtrace_queue *queue_array;
232 	unsigned int i;
233 
234 	if (!nr_queues)
235 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
236 
237 	while (nr_queues && nr_queues < new_nr_queues)
238 		nr_queues <<= 1;
239 
240 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
241 		return -EINVAL;
242 
243 	queue_array = auxtrace_alloc_queue_array(nr_queues);
244 	if (!queue_array)
245 		return -ENOMEM;
246 
247 	for (i = 0; i < queues->nr_queues; i++) {
248 		list_splice_tail(&queues->queue_array[i].head,
249 				 &queue_array[i].head);
250 		queue_array[i].tid = queues->queue_array[i].tid;
251 		queue_array[i].cpu = queues->queue_array[i].cpu;
252 		queue_array[i].set = queues->queue_array[i].set;
253 		queue_array[i].priv = queues->queue_array[i].priv;
254 	}
255 
256 	queues->nr_queues = nr_queues;
257 	queues->queue_array = queue_array;
258 
259 	return 0;
260 }
261 
262 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
263 {
264 	int fd = perf_data__fd(session->data);
265 	void *p;
266 	ssize_t ret;
267 
268 	if (size > SSIZE_MAX)
269 		return NULL;
270 
271 	p = malloc(size);
272 	if (!p)
273 		return NULL;
274 
275 	ret = readn(fd, p, size);
276 	if (ret != (ssize_t)size) {
277 		free(p);
278 		return NULL;
279 	}
280 
281 	return p;
282 }
283 
284 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
285 					 unsigned int idx,
286 					 struct auxtrace_buffer *buffer)
287 {
288 	struct auxtrace_queue *queue;
289 	int err;
290 
291 	if (idx >= queues->nr_queues) {
292 		err = auxtrace_queues__grow(queues, idx + 1);
293 		if (err)
294 			return err;
295 	}
296 
297 	queue = &queues->queue_array[idx];
298 
299 	if (!queue->set) {
300 		queue->set = true;
301 		queue->tid = buffer->tid;
302 		queue->cpu = buffer->cpu.cpu;
303 	}
304 
305 	buffer->buffer_nr = queues->next_buffer_nr++;
306 
307 	list_add_tail(&buffer->list, &queue->head);
308 
309 	queues->new_data = true;
310 	queues->populated = true;
311 
312 	return 0;
313 }
314 
315 /* Limit buffers to 32MiB on 32-bit */
316 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
317 
318 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
319 					 unsigned int idx,
320 					 struct auxtrace_buffer *buffer)
321 {
322 	u64 sz = buffer->size;
323 	bool consecutive = false;
324 	struct auxtrace_buffer *b;
325 	int err;
326 
327 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
328 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
329 		if (!b)
330 			return -ENOMEM;
331 		b->size = BUFFER_LIMIT_FOR_32_BIT;
332 		b->consecutive = consecutive;
333 		err = auxtrace_queues__queue_buffer(queues, idx, b);
334 		if (err) {
335 			auxtrace_buffer__free(b);
336 			return err;
337 		}
338 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
339 		sz -= BUFFER_LIMIT_FOR_32_BIT;
340 		consecutive = true;
341 	}
342 
343 	buffer->size = sz;
344 	buffer->consecutive = consecutive;
345 
346 	return 0;
347 }
348 
349 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
350 {
351 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
352 
353 	return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
354 }
355 
356 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
357 				       struct perf_session *session,
358 				       unsigned int idx,
359 				       struct auxtrace_buffer *buffer,
360 				       struct auxtrace_buffer **buffer_ptr)
361 {
362 	int err = -ENOMEM;
363 
364 	if (filter_cpu(session, buffer->cpu))
365 		return 0;
366 
367 	buffer = memdup(buffer, sizeof(*buffer));
368 	if (!buffer)
369 		return -ENOMEM;
370 
371 	if (session->one_mmap) {
372 		buffer->data = buffer->data_offset - session->one_mmap_offset +
373 			       session->one_mmap_addr;
374 	} else if (perf_data__is_pipe(session->data)) {
375 		buffer->data = auxtrace_copy_data(buffer->size, session);
376 		if (!buffer->data)
377 			goto out_free;
378 		buffer->data_needs_freeing = true;
379 	} else if (BITS_PER_LONG == 32 &&
380 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
381 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
382 		if (err)
383 			goto out_free;
384 	}
385 
386 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
387 	if (err)
388 		goto out_free;
389 
390 	/* FIXME: Doesn't work for split buffer */
391 	if (buffer_ptr)
392 		*buffer_ptr = buffer;
393 
394 	return 0;
395 
396 out_free:
397 	auxtrace_buffer__free(buffer);
398 	return err;
399 }
400 
401 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
402 			       struct perf_session *session,
403 			       union perf_event *event, off_t data_offset,
404 			       struct auxtrace_buffer **buffer_ptr)
405 {
406 	struct auxtrace_buffer buffer = {
407 		.pid = -1,
408 		.tid = event->auxtrace.tid,
409 		.cpu = { event->auxtrace.cpu },
410 		.data_offset = data_offset,
411 		.offset = event->auxtrace.offset,
412 		.reference = event->auxtrace.reference,
413 		.size = event->auxtrace.size,
414 	};
415 	unsigned int idx = event->auxtrace.idx;
416 
417 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
418 					   buffer_ptr);
419 }
420 
421 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
422 					      struct perf_session *session,
423 					      off_t file_offset, size_t sz)
424 {
425 	union perf_event *event;
426 	int err;
427 	char buf[PERF_SAMPLE_MAX_SIZE];
428 
429 	err = perf_session__peek_event(session, file_offset, buf,
430 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
431 	if (err)
432 		return err;
433 
434 	if (event->header.type == PERF_RECORD_AUXTRACE) {
435 		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
436 		    event->header.size != sz) {
437 			err = -EINVAL;
438 			goto out;
439 		}
440 		file_offset += event->header.size;
441 		err = auxtrace_queues__add_event(queues, session, event,
442 						 file_offset, NULL);
443 	}
444 out:
445 	return err;
446 }
447 
448 void auxtrace_queues__free(struct auxtrace_queues *queues)
449 {
450 	unsigned int i;
451 
452 	for (i = 0; i < queues->nr_queues; i++) {
453 		while (!list_empty(&queues->queue_array[i].head)) {
454 			struct auxtrace_buffer *buffer;
455 
456 			buffer = list_entry(queues->queue_array[i].head.next,
457 					    struct auxtrace_buffer, list);
458 			list_del_init(&buffer->list);
459 			auxtrace_buffer__free(buffer);
460 		}
461 	}
462 
463 	zfree(&queues->queue_array);
464 	queues->nr_queues = 0;
465 }
466 
467 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
468 			     unsigned int pos, unsigned int queue_nr,
469 			     u64 ordinal)
470 {
471 	unsigned int parent;
472 
473 	while (pos) {
474 		parent = (pos - 1) >> 1;
475 		if (heap_array[parent].ordinal <= ordinal)
476 			break;
477 		heap_array[pos] = heap_array[parent];
478 		pos = parent;
479 	}
480 	heap_array[pos].queue_nr = queue_nr;
481 	heap_array[pos].ordinal = ordinal;
482 }
483 
484 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
485 		       u64 ordinal)
486 {
487 	struct auxtrace_heap_item *heap_array;
488 
489 	if (queue_nr >= heap->heap_sz) {
490 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
491 
492 		while (heap_sz <= queue_nr)
493 			heap_sz <<= 1;
494 		heap_array = realloc(heap->heap_array,
495 				     heap_sz * sizeof(struct auxtrace_heap_item));
496 		if (!heap_array)
497 			return -ENOMEM;
498 		heap->heap_array = heap_array;
499 		heap->heap_sz = heap_sz;
500 	}
501 
502 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
503 
504 	return 0;
505 }
506 
507 void auxtrace_heap__free(struct auxtrace_heap *heap)
508 {
509 	zfree(&heap->heap_array);
510 	heap->heap_cnt = 0;
511 	heap->heap_sz = 0;
512 }
513 
514 void auxtrace_heap__pop(struct auxtrace_heap *heap)
515 {
516 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
517 	struct auxtrace_heap_item *heap_array;
518 
519 	if (!heap_cnt)
520 		return;
521 
522 	heap->heap_cnt -= 1;
523 
524 	heap_array = heap->heap_array;
525 
526 	pos = 0;
527 	while (1) {
528 		unsigned int left, right;
529 
530 		left = (pos << 1) + 1;
531 		if (left >= heap_cnt)
532 			break;
533 		right = left + 1;
534 		if (right >= heap_cnt) {
535 			heap_array[pos] = heap_array[left];
536 			return;
537 		}
538 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
539 			heap_array[pos] = heap_array[left];
540 			pos = left;
541 		} else {
542 			heap_array[pos] = heap_array[right];
543 			pos = right;
544 		}
545 	}
546 
547 	last = heap_cnt - 1;
548 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
549 			 heap_array[last].ordinal);
550 }
551 
552 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
553 				       struct evlist *evlist)
554 {
555 	if (itr)
556 		return itr->info_priv_size(itr, evlist);
557 	return 0;
558 }
559 
560 static int auxtrace_not_supported(void)
561 {
562 	pr_err("AUX area tracing is not supported on this architecture\n");
563 	return -EINVAL;
564 }
565 
566 int auxtrace_record__info_fill(struct auxtrace_record *itr,
567 			       struct perf_session *session,
568 			       struct perf_record_auxtrace_info *auxtrace_info,
569 			       size_t priv_size)
570 {
571 	if (itr)
572 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
573 	return auxtrace_not_supported();
574 }
575 
576 void auxtrace_record__free(struct auxtrace_record *itr)
577 {
578 	if (itr)
579 		itr->free(itr);
580 }
581 
582 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
583 {
584 	if (itr && itr->snapshot_start)
585 		return itr->snapshot_start(itr);
586 	return 0;
587 }
588 
589 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
590 {
591 	if (!on_exit && itr && itr->snapshot_finish)
592 		return itr->snapshot_finish(itr);
593 	return 0;
594 }
595 
596 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
597 				   struct auxtrace_mmap *mm,
598 				   unsigned char *data, u64 *head, u64 *old)
599 {
600 	if (itr && itr->find_snapshot)
601 		return itr->find_snapshot(itr, idx, mm, data, head, old);
602 	return 0;
603 }
604 
605 int auxtrace_record__options(struct auxtrace_record *itr,
606 			     struct evlist *evlist,
607 			     struct record_opts *opts)
608 {
609 	if (itr) {
610 		itr->evlist = evlist;
611 		return itr->recording_options(itr, evlist, opts);
612 	}
613 	return 0;
614 }
615 
616 u64 auxtrace_record__reference(struct auxtrace_record *itr)
617 {
618 	if (itr)
619 		return itr->reference(itr);
620 	return 0;
621 }
622 
623 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
624 				    struct record_opts *opts, const char *str)
625 {
626 	if (!str)
627 		return 0;
628 
629 	/* PMU-agnostic options */
630 	switch (*str) {
631 	case 'e':
632 		opts->auxtrace_snapshot_on_exit = true;
633 		str++;
634 		break;
635 	default:
636 		break;
637 	}
638 
639 	if (itr && itr->parse_snapshot_options)
640 		return itr->parse_snapshot_options(itr, opts, str);
641 
642 	pr_err("No AUX area tracing to snapshot\n");
643 	return -EINVAL;
644 }
645 
646 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
647 {
648 	bool per_cpu_mmaps = !perf_cpu_map__empty(evlist->core.user_requested_cpus);
649 
650 	if (per_cpu_mmaps) {
651 		struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
652 		int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
653 
654 		if (cpu_map_idx == -1)
655 			return -EINVAL;
656 		return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
657 	}
658 
659 	return perf_evsel__enable_thread(&evsel->core, idx);
660 }
661 
662 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
663 {
664 	struct evsel *evsel;
665 
666 	if (!itr->evlist || !itr->pmu)
667 		return -EINVAL;
668 
669 	evlist__for_each_entry(itr->evlist, evsel) {
670 		if (evsel->core.attr.type == itr->pmu->type) {
671 			if (evsel->disabled)
672 				return 0;
673 			return evlist__enable_event_idx(itr->evlist, evsel, idx);
674 		}
675 	}
676 	return -EINVAL;
677 }
678 
679 /*
680  * Event record size is 16-bit which results in a maximum size of about 64KiB.
681  * Allow about 4KiB for the rest of the sample record, to give a maximum
682  * AUX area sample size of 60KiB.
683  */
684 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
685 
686 /* Arbitrary default size if no other default provided */
687 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
688 
689 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
690 					     struct record_opts *opts)
691 {
692 	struct evsel *evsel;
693 	bool has_aux_leader = false;
694 	u32 sz;
695 
696 	evlist__for_each_entry(evlist, evsel) {
697 		sz = evsel->core.attr.aux_sample_size;
698 		if (evsel__is_group_leader(evsel)) {
699 			has_aux_leader = evsel__is_aux_event(evsel);
700 			if (sz) {
701 				if (has_aux_leader)
702 					pr_err("Cannot add AUX area sampling to an AUX area event\n");
703 				else
704 					pr_err("Cannot add AUX area sampling to a group leader\n");
705 				return -EINVAL;
706 			}
707 		}
708 		if (sz > MAX_AUX_SAMPLE_SIZE) {
709 			pr_err("AUX area sample size %u too big, max. %d\n",
710 			       sz, MAX_AUX_SAMPLE_SIZE);
711 			return -EINVAL;
712 		}
713 		if (sz) {
714 			if (!has_aux_leader) {
715 				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
716 				return -EINVAL;
717 			}
718 			evsel__set_sample_bit(evsel, AUX);
719 			opts->auxtrace_sample_mode = true;
720 		} else {
721 			evsel__reset_sample_bit(evsel, AUX);
722 		}
723 	}
724 
725 	if (!opts->auxtrace_sample_mode) {
726 		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
727 		return -EINVAL;
728 	}
729 
730 	if (!perf_can_aux_sample()) {
731 		pr_err("AUX area sampling is not supported by kernel\n");
732 		return -EINVAL;
733 	}
734 
735 	return 0;
736 }
737 
738 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
739 				  struct evlist *evlist,
740 				  struct record_opts *opts, const char *str)
741 {
742 	struct evsel_config_term *term;
743 	struct evsel *aux_evsel;
744 	bool has_aux_sample_size = false;
745 	bool has_aux_leader = false;
746 	struct evsel *evsel;
747 	char *endptr;
748 	unsigned long sz;
749 
750 	if (!str)
751 		goto no_opt;
752 
753 	if (!itr) {
754 		pr_err("No AUX area event to sample\n");
755 		return -EINVAL;
756 	}
757 
758 	sz = strtoul(str, &endptr, 0);
759 	if (*endptr || sz > UINT_MAX) {
760 		pr_err("Bad AUX area sampling option: '%s'\n", str);
761 		return -EINVAL;
762 	}
763 
764 	if (!sz)
765 		sz = itr->default_aux_sample_size;
766 
767 	if (!sz)
768 		sz = DEFAULT_AUX_SAMPLE_SIZE;
769 
770 	/* Set aux_sample_size based on --aux-sample option */
771 	evlist__for_each_entry(evlist, evsel) {
772 		if (evsel__is_group_leader(evsel)) {
773 			has_aux_leader = evsel__is_aux_event(evsel);
774 		} else if (has_aux_leader) {
775 			evsel->core.attr.aux_sample_size = sz;
776 		}
777 	}
778 no_opt:
779 	aux_evsel = NULL;
780 	/* Override with aux_sample_size from config term */
781 	evlist__for_each_entry(evlist, evsel) {
782 		if (evsel__is_aux_event(evsel))
783 			aux_evsel = evsel;
784 		term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
785 		if (term) {
786 			has_aux_sample_size = true;
787 			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
788 			/* If possible, group with the AUX event */
789 			if (aux_evsel && evsel->core.attr.aux_sample_size)
790 				evlist__regroup(evlist, aux_evsel, evsel);
791 		}
792 	}
793 
794 	if (!str && !has_aux_sample_size)
795 		return 0;
796 
797 	if (!itr) {
798 		pr_err("No AUX area event to sample\n");
799 		return -EINVAL;
800 	}
801 
802 	return auxtrace_validate_aux_sample_size(evlist, opts);
803 }
804 
805 void auxtrace_regroup_aux_output(struct evlist *evlist)
806 {
807 	struct evsel *evsel, *aux_evsel = NULL;
808 	struct evsel_config_term *term;
809 
810 	evlist__for_each_entry(evlist, evsel) {
811 		if (evsel__is_aux_event(evsel))
812 			aux_evsel = evsel;
813 		term = evsel__get_config_term(evsel, AUX_OUTPUT);
814 		/* If possible, group with the AUX event */
815 		if (term && aux_evsel)
816 			evlist__regroup(evlist, aux_evsel, evsel);
817 	}
818 }
819 
820 struct auxtrace_record *__weak
821 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
822 {
823 	*err = 0;
824 	return NULL;
825 }
826 
827 static int auxtrace_index__alloc(struct list_head *head)
828 {
829 	struct auxtrace_index *auxtrace_index;
830 
831 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
832 	if (!auxtrace_index)
833 		return -ENOMEM;
834 
835 	auxtrace_index->nr = 0;
836 	INIT_LIST_HEAD(&auxtrace_index->list);
837 
838 	list_add_tail(&auxtrace_index->list, head);
839 
840 	return 0;
841 }
842 
843 void auxtrace_index__free(struct list_head *head)
844 {
845 	struct auxtrace_index *auxtrace_index, *n;
846 
847 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
848 		list_del_init(&auxtrace_index->list);
849 		free(auxtrace_index);
850 	}
851 }
852 
853 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
854 {
855 	struct auxtrace_index *auxtrace_index;
856 	int err;
857 
858 	if (list_empty(head)) {
859 		err = auxtrace_index__alloc(head);
860 		if (err)
861 			return NULL;
862 	}
863 
864 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
865 
866 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
867 		err = auxtrace_index__alloc(head);
868 		if (err)
869 			return NULL;
870 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
871 					    list);
872 	}
873 
874 	return auxtrace_index;
875 }
876 
877 int auxtrace_index__auxtrace_event(struct list_head *head,
878 				   union perf_event *event, off_t file_offset)
879 {
880 	struct auxtrace_index *auxtrace_index;
881 	size_t nr;
882 
883 	auxtrace_index = auxtrace_index__last(head);
884 	if (!auxtrace_index)
885 		return -ENOMEM;
886 
887 	nr = auxtrace_index->nr;
888 	auxtrace_index->entries[nr].file_offset = file_offset;
889 	auxtrace_index->entries[nr].sz = event->header.size;
890 	auxtrace_index->nr += 1;
891 
892 	return 0;
893 }
894 
895 static int auxtrace_index__do_write(int fd,
896 				    struct auxtrace_index *auxtrace_index)
897 {
898 	struct auxtrace_index_entry ent;
899 	size_t i;
900 
901 	for (i = 0; i < auxtrace_index->nr; i++) {
902 		ent.file_offset = auxtrace_index->entries[i].file_offset;
903 		ent.sz = auxtrace_index->entries[i].sz;
904 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
905 			return -errno;
906 	}
907 	return 0;
908 }
909 
910 int auxtrace_index__write(int fd, struct list_head *head)
911 {
912 	struct auxtrace_index *auxtrace_index;
913 	u64 total = 0;
914 	int err;
915 
916 	list_for_each_entry(auxtrace_index, head, list)
917 		total += auxtrace_index->nr;
918 
919 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
920 		return -errno;
921 
922 	list_for_each_entry(auxtrace_index, head, list) {
923 		err = auxtrace_index__do_write(fd, auxtrace_index);
924 		if (err)
925 			return err;
926 	}
927 
928 	return 0;
929 }
930 
931 static int auxtrace_index__process_entry(int fd, struct list_head *head,
932 					 bool needs_swap)
933 {
934 	struct auxtrace_index *auxtrace_index;
935 	struct auxtrace_index_entry ent;
936 	size_t nr;
937 
938 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
939 		return -1;
940 
941 	auxtrace_index = auxtrace_index__last(head);
942 	if (!auxtrace_index)
943 		return -1;
944 
945 	nr = auxtrace_index->nr;
946 	if (needs_swap) {
947 		auxtrace_index->entries[nr].file_offset =
948 						bswap_64(ent.file_offset);
949 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
950 	} else {
951 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
952 		auxtrace_index->entries[nr].sz = ent.sz;
953 	}
954 
955 	auxtrace_index->nr = nr + 1;
956 
957 	return 0;
958 }
959 
960 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
961 			    bool needs_swap)
962 {
963 	struct list_head *head = &session->auxtrace_index;
964 	u64 nr;
965 
966 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
967 		return -1;
968 
969 	if (needs_swap)
970 		nr = bswap_64(nr);
971 
972 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
973 		return -1;
974 
975 	while (nr--) {
976 		int err;
977 
978 		err = auxtrace_index__process_entry(fd, head, needs_swap);
979 		if (err)
980 			return -1;
981 	}
982 
983 	return 0;
984 }
985 
986 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
987 						struct perf_session *session,
988 						struct auxtrace_index_entry *ent)
989 {
990 	return auxtrace_queues__add_indexed_event(queues, session,
991 						  ent->file_offset, ent->sz);
992 }
993 
994 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
995 				   struct perf_session *session)
996 {
997 	struct auxtrace_index *auxtrace_index;
998 	struct auxtrace_index_entry *ent;
999 	size_t i;
1000 	int err;
1001 
1002 	if (auxtrace__dont_decode(session))
1003 		return 0;
1004 
1005 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1006 		for (i = 0; i < auxtrace_index->nr; i++) {
1007 			ent = &auxtrace_index->entries[i];
1008 			err = auxtrace_queues__process_index_entry(queues,
1009 								   session,
1010 								   ent);
1011 			if (err)
1012 				return err;
1013 		}
1014 	}
1015 	return 0;
1016 }
1017 
1018 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1019 					      struct auxtrace_buffer *buffer)
1020 {
1021 	if (buffer) {
1022 		if (list_is_last(&buffer->list, &queue->head))
1023 			return NULL;
1024 		return list_entry(buffer->list.next, struct auxtrace_buffer,
1025 				  list);
1026 	} else {
1027 		if (list_empty(&queue->head))
1028 			return NULL;
1029 		return list_entry(queue->head.next, struct auxtrace_buffer,
1030 				  list);
1031 	}
1032 }
1033 
1034 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1035 						     struct perf_sample *sample,
1036 						     struct perf_session *session)
1037 {
1038 	struct perf_sample_id *sid;
1039 	unsigned int idx;
1040 	u64 id;
1041 
1042 	id = sample->id;
1043 	if (!id)
1044 		return NULL;
1045 
1046 	sid = evlist__id2sid(session->evlist, id);
1047 	if (!sid)
1048 		return NULL;
1049 
1050 	idx = sid->idx;
1051 
1052 	if (idx >= queues->nr_queues)
1053 		return NULL;
1054 
1055 	return &queues->queue_array[idx];
1056 }
1057 
1058 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1059 				struct perf_session *session,
1060 				struct perf_sample *sample, u64 data_offset,
1061 				u64 reference)
1062 {
1063 	struct auxtrace_buffer buffer = {
1064 		.pid = -1,
1065 		.data_offset = data_offset,
1066 		.reference = reference,
1067 		.size = sample->aux_sample.size,
1068 	};
1069 	struct perf_sample_id *sid;
1070 	u64 id = sample->id;
1071 	unsigned int idx;
1072 
1073 	if (!id)
1074 		return -EINVAL;
1075 
1076 	sid = evlist__id2sid(session->evlist, id);
1077 	if (!sid)
1078 		return -ENOENT;
1079 
1080 	idx = sid->idx;
1081 	buffer.tid = sid->tid;
1082 	buffer.cpu = sid->cpu;
1083 
1084 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1085 }
1086 
1087 struct queue_data {
1088 	bool samples;
1089 	bool events;
1090 };
1091 
1092 static int auxtrace_queue_data_cb(struct perf_session *session,
1093 				  union perf_event *event, u64 offset,
1094 				  void *data)
1095 {
1096 	struct queue_data *qd = data;
1097 	struct perf_sample sample;
1098 	int err;
1099 
1100 	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1101 		if (event->header.size < sizeof(struct perf_record_auxtrace))
1102 			return -EINVAL;
1103 		offset += event->header.size;
1104 		return session->auxtrace->queue_data(session, NULL, event,
1105 						     offset);
1106 	}
1107 
1108 	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1109 		return 0;
1110 
1111 	err = evlist__parse_sample(session->evlist, event, &sample);
1112 	if (err)
1113 		return err;
1114 
1115 	if (!sample.aux_sample.size)
1116 		return 0;
1117 
1118 	offset += sample.aux_sample.data - (void *)event;
1119 
1120 	return session->auxtrace->queue_data(session, &sample, NULL, offset);
1121 }
1122 
1123 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1124 {
1125 	struct queue_data qd = {
1126 		.samples = samples,
1127 		.events = events,
1128 	};
1129 
1130 	if (auxtrace__dont_decode(session))
1131 		return 0;
1132 
1133 	if (!session->auxtrace || !session->auxtrace->queue_data)
1134 		return -EINVAL;
1135 
1136 	return perf_session__peek_events(session, session->header.data_offset,
1137 					 session->header.data_size,
1138 					 auxtrace_queue_data_cb, &qd);
1139 }
1140 
1141 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1142 {
1143 	int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1144 	size_t adj = buffer->data_offset & (page_size - 1);
1145 	size_t size = buffer->size + adj;
1146 	off_t file_offset = buffer->data_offset - adj;
1147 	void *addr;
1148 
1149 	if (buffer->data)
1150 		return buffer->data;
1151 
1152 	addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1153 	if (addr == MAP_FAILED)
1154 		return NULL;
1155 
1156 	buffer->mmap_addr = addr;
1157 	buffer->mmap_size = size;
1158 
1159 	buffer->data = addr + adj;
1160 
1161 	return buffer->data;
1162 }
1163 
1164 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1165 {
1166 	if (!buffer->data || !buffer->mmap_addr)
1167 		return;
1168 	munmap(buffer->mmap_addr, buffer->mmap_size);
1169 	buffer->mmap_addr = NULL;
1170 	buffer->mmap_size = 0;
1171 	buffer->data = NULL;
1172 	buffer->use_data = NULL;
1173 }
1174 
1175 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1176 {
1177 	auxtrace_buffer__put_data(buffer);
1178 	if (buffer->data_needs_freeing) {
1179 		buffer->data_needs_freeing = false;
1180 		zfree(&buffer->data);
1181 		buffer->use_data = NULL;
1182 		buffer->size = 0;
1183 	}
1184 }
1185 
1186 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1187 {
1188 	auxtrace_buffer__drop_data(buffer);
1189 	free(buffer);
1190 }
1191 
1192 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1193 				int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1194 				const char *msg, u64 timestamp,
1195 				pid_t machine_pid, int vcpu)
1196 {
1197 	size_t size;
1198 
1199 	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1200 
1201 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1202 	auxtrace_error->type = type;
1203 	auxtrace_error->code = code;
1204 	auxtrace_error->cpu = cpu;
1205 	auxtrace_error->pid = pid;
1206 	auxtrace_error->tid = tid;
1207 	auxtrace_error->fmt = 1;
1208 	auxtrace_error->ip = ip;
1209 	auxtrace_error->time = timestamp;
1210 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1211 	if (machine_pid) {
1212 		auxtrace_error->fmt = 2;
1213 		auxtrace_error->machine_pid = machine_pid;
1214 		auxtrace_error->vcpu = vcpu;
1215 		size = sizeof(*auxtrace_error);
1216 	} else {
1217 		size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1218 		       strlen(auxtrace_error->msg) + 1;
1219 	}
1220 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1221 }
1222 
1223 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1224 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1225 			  const char *msg, u64 timestamp)
1226 {
1227 	auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1228 				   ip, msg, timestamp, 0, -1);
1229 }
1230 
1231 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1232 					 struct perf_tool *tool,
1233 					 struct perf_session *session,
1234 					 perf_event__handler_t process)
1235 {
1236 	union perf_event *ev;
1237 	size_t priv_size;
1238 	int err;
1239 
1240 	pr_debug2("Synthesizing auxtrace information\n");
1241 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1242 	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1243 	if (!ev)
1244 		return -ENOMEM;
1245 
1246 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1247 	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1248 					priv_size;
1249 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1250 					 priv_size);
1251 	if (err)
1252 		goto out_free;
1253 
1254 	err = process(tool, ev, NULL, NULL);
1255 out_free:
1256 	free(ev);
1257 	return err;
1258 }
1259 
1260 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1261 {
1262 	struct evsel *new_leader = NULL;
1263 	struct evsel *evsel;
1264 
1265 	/* Find new leader for the group */
1266 	evlist__for_each_entry(evlist, evsel) {
1267 		if (!evsel__has_leader(evsel, leader) || evsel == leader)
1268 			continue;
1269 		if (!new_leader)
1270 			new_leader = evsel;
1271 		evsel__set_leader(evsel, new_leader);
1272 	}
1273 
1274 	/* Update group information */
1275 	if (new_leader) {
1276 		zfree(&new_leader->group_name);
1277 		new_leader->group_name = leader->group_name;
1278 		leader->group_name = NULL;
1279 
1280 		new_leader->core.nr_members = leader->core.nr_members - 1;
1281 		leader->core.nr_members = 1;
1282 	}
1283 }
1284 
1285 static void unleader_auxtrace(struct perf_session *session)
1286 {
1287 	struct evsel *evsel;
1288 
1289 	evlist__for_each_entry(session->evlist, evsel) {
1290 		if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1291 		    evsel__is_group_leader(evsel)) {
1292 			unleader_evsel(session->evlist, evsel);
1293 		}
1294 	}
1295 }
1296 
1297 int perf_event__process_auxtrace_info(struct perf_session *session,
1298 				      union perf_event *event)
1299 {
1300 	enum auxtrace_type type = event->auxtrace_info.type;
1301 	int err;
1302 
1303 	if (dump_trace)
1304 		fprintf(stdout, " type: %u\n", type);
1305 
1306 	switch (type) {
1307 	case PERF_AUXTRACE_INTEL_PT:
1308 		err = intel_pt_process_auxtrace_info(event, session);
1309 		break;
1310 	case PERF_AUXTRACE_INTEL_BTS:
1311 		err = intel_bts_process_auxtrace_info(event, session);
1312 		break;
1313 	case PERF_AUXTRACE_ARM_SPE:
1314 		err = arm_spe_process_auxtrace_info(event, session);
1315 		break;
1316 	case PERF_AUXTRACE_CS_ETM:
1317 		err = cs_etm__process_auxtrace_info(event, session);
1318 		break;
1319 	case PERF_AUXTRACE_S390_CPUMSF:
1320 		err = s390_cpumsf_process_auxtrace_info(event, session);
1321 		break;
1322 	case PERF_AUXTRACE_UNKNOWN:
1323 	default:
1324 		return -EINVAL;
1325 	}
1326 
1327 	if (err)
1328 		return err;
1329 
1330 	unleader_auxtrace(session);
1331 
1332 	return 0;
1333 }
1334 
1335 s64 perf_event__process_auxtrace(struct perf_session *session,
1336 				 union perf_event *event)
1337 {
1338 	s64 err;
1339 
1340 	if (dump_trace)
1341 		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1342 			event->auxtrace.size, event->auxtrace.offset,
1343 			event->auxtrace.reference, event->auxtrace.idx,
1344 			event->auxtrace.tid, event->auxtrace.cpu);
1345 
1346 	if (auxtrace__dont_decode(session))
1347 		return event->auxtrace.size;
1348 
1349 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1350 		return -EINVAL;
1351 
1352 	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1353 	if (err < 0)
1354 		return err;
1355 
1356 	return event->auxtrace.size;
1357 }
1358 
1359 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1360 #define PERF_ITRACE_DEFAULT_PERIOD		100000
1361 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1362 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1363 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1364 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1365 
1366 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1367 				    bool no_sample)
1368 {
1369 	synth_opts->branches = true;
1370 	synth_opts->transactions = true;
1371 	synth_opts->ptwrites = true;
1372 	synth_opts->pwr_events = true;
1373 	synth_opts->other_events = true;
1374 	synth_opts->intr_events = true;
1375 	synth_opts->errors = true;
1376 	synth_opts->flc = true;
1377 	synth_opts->llc = true;
1378 	synth_opts->tlb = true;
1379 	synth_opts->mem = true;
1380 	synth_opts->remote_access = true;
1381 
1382 	if (no_sample) {
1383 		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1384 		synth_opts->period = 1;
1385 		synth_opts->calls = true;
1386 	} else {
1387 		synth_opts->instructions = true;
1388 		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1389 		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1390 	}
1391 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1392 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1393 	synth_opts->initial_skip = 0;
1394 }
1395 
1396 static int get_flag(const char **ptr, unsigned int *flags)
1397 {
1398 	while (1) {
1399 		char c = **ptr;
1400 
1401 		if (c >= 'a' && c <= 'z') {
1402 			*flags |= 1 << (c - 'a');
1403 			++*ptr;
1404 			return 0;
1405 		} else if (c == ' ') {
1406 			++*ptr;
1407 			continue;
1408 		} else {
1409 			return -1;
1410 		}
1411 	}
1412 }
1413 
1414 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1415 {
1416 	while (1) {
1417 		switch (**ptr) {
1418 		case '+':
1419 			++*ptr;
1420 			if (get_flag(ptr, plus_flags))
1421 				return -1;
1422 			break;
1423 		case '-':
1424 			++*ptr;
1425 			if (get_flag(ptr, minus_flags))
1426 				return -1;
1427 			break;
1428 		case ' ':
1429 			++*ptr;
1430 			break;
1431 		default:
1432 			return 0;
1433 		}
1434 	}
1435 }
1436 
1437 /*
1438  * Please check tools/perf/Documentation/perf-script.txt for information
1439  * about the options parsed here, which is introduced after this cset,
1440  * when support in 'perf script' for these options is introduced.
1441  */
1442 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1443 			       const char *str, int unset)
1444 {
1445 	const char *p;
1446 	char *endptr;
1447 	bool period_type_set = false;
1448 	bool period_set = false;
1449 
1450 	synth_opts->set = true;
1451 
1452 	if (unset) {
1453 		synth_opts->dont_decode = true;
1454 		return 0;
1455 	}
1456 
1457 	if (!str) {
1458 		itrace_synth_opts__set_default(synth_opts,
1459 					       synth_opts->default_no_sample);
1460 		return 0;
1461 	}
1462 
1463 	for (p = str; *p;) {
1464 		switch (*p++) {
1465 		case 'i':
1466 			synth_opts->instructions = true;
1467 			while (*p == ' ' || *p == ',')
1468 				p += 1;
1469 			if (isdigit(*p)) {
1470 				synth_opts->period = strtoull(p, &endptr, 10);
1471 				period_set = true;
1472 				p = endptr;
1473 				while (*p == ' ' || *p == ',')
1474 					p += 1;
1475 				switch (*p++) {
1476 				case 'i':
1477 					synth_opts->period_type =
1478 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1479 					period_type_set = true;
1480 					break;
1481 				case 't':
1482 					synth_opts->period_type =
1483 						PERF_ITRACE_PERIOD_TICKS;
1484 					period_type_set = true;
1485 					break;
1486 				case 'm':
1487 					synth_opts->period *= 1000;
1488 					/* Fall through */
1489 				case 'u':
1490 					synth_opts->period *= 1000;
1491 					/* Fall through */
1492 				case 'n':
1493 					if (*p++ != 's')
1494 						goto out_err;
1495 					synth_opts->period_type =
1496 						PERF_ITRACE_PERIOD_NANOSECS;
1497 					period_type_set = true;
1498 					break;
1499 				case '\0':
1500 					goto out;
1501 				default:
1502 					goto out_err;
1503 				}
1504 			}
1505 			break;
1506 		case 'b':
1507 			synth_opts->branches = true;
1508 			break;
1509 		case 'x':
1510 			synth_opts->transactions = true;
1511 			break;
1512 		case 'w':
1513 			synth_opts->ptwrites = true;
1514 			break;
1515 		case 'p':
1516 			synth_opts->pwr_events = true;
1517 			break;
1518 		case 'o':
1519 			synth_opts->other_events = true;
1520 			break;
1521 		case 'I':
1522 			synth_opts->intr_events = true;
1523 			break;
1524 		case 'e':
1525 			synth_opts->errors = true;
1526 			if (get_flags(&p, &synth_opts->error_plus_flags,
1527 				      &synth_opts->error_minus_flags))
1528 				goto out_err;
1529 			break;
1530 		case 'd':
1531 			synth_opts->log = true;
1532 			if (get_flags(&p, &synth_opts->log_plus_flags,
1533 				      &synth_opts->log_minus_flags))
1534 				goto out_err;
1535 			break;
1536 		case 'c':
1537 			synth_opts->branches = true;
1538 			synth_opts->calls = true;
1539 			break;
1540 		case 'r':
1541 			synth_opts->branches = true;
1542 			synth_opts->returns = true;
1543 			break;
1544 		case 'G':
1545 		case 'g':
1546 			if (p[-1] == 'G')
1547 				synth_opts->add_callchain = true;
1548 			else
1549 				synth_opts->callchain = true;
1550 			synth_opts->callchain_sz =
1551 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1552 			while (*p == ' ' || *p == ',')
1553 				p += 1;
1554 			if (isdigit(*p)) {
1555 				unsigned int val;
1556 
1557 				val = strtoul(p, &endptr, 10);
1558 				p = endptr;
1559 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1560 					goto out_err;
1561 				synth_opts->callchain_sz = val;
1562 			}
1563 			break;
1564 		case 'L':
1565 		case 'l':
1566 			if (p[-1] == 'L')
1567 				synth_opts->add_last_branch = true;
1568 			else
1569 				synth_opts->last_branch = true;
1570 			synth_opts->last_branch_sz =
1571 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1572 			while (*p == ' ' || *p == ',')
1573 				p += 1;
1574 			if (isdigit(*p)) {
1575 				unsigned int val;
1576 
1577 				val = strtoul(p, &endptr, 10);
1578 				p = endptr;
1579 				if (!val ||
1580 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1581 					goto out_err;
1582 				synth_opts->last_branch_sz = val;
1583 			}
1584 			break;
1585 		case 's':
1586 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1587 			if (p == endptr)
1588 				goto out_err;
1589 			p = endptr;
1590 			break;
1591 		case 'f':
1592 			synth_opts->flc = true;
1593 			break;
1594 		case 'm':
1595 			synth_opts->llc = true;
1596 			break;
1597 		case 't':
1598 			synth_opts->tlb = true;
1599 			break;
1600 		case 'a':
1601 			synth_opts->remote_access = true;
1602 			break;
1603 		case 'M':
1604 			synth_opts->mem = true;
1605 			break;
1606 		case 'q':
1607 			synth_opts->quick += 1;
1608 			break;
1609 		case 'A':
1610 			synth_opts->approx_ipc = true;
1611 			break;
1612 		case 'Z':
1613 			synth_opts->timeless_decoding = true;
1614 			break;
1615 		case ' ':
1616 		case ',':
1617 			break;
1618 		default:
1619 			goto out_err;
1620 		}
1621 	}
1622 out:
1623 	if (synth_opts->instructions) {
1624 		if (!period_type_set)
1625 			synth_opts->period_type =
1626 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1627 		if (!period_set)
1628 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1629 	}
1630 
1631 	return 0;
1632 
1633 out_err:
1634 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1635 	return -EINVAL;
1636 }
1637 
1638 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1639 {
1640 	return itrace_do_parse_synth_opts(opt->value, str, unset);
1641 }
1642 
1643 static const char * const auxtrace_error_type_name[] = {
1644 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1645 };
1646 
1647 static const char *auxtrace_error_name(int type)
1648 {
1649 	const char *error_type_name = NULL;
1650 
1651 	if (type < PERF_AUXTRACE_ERROR_MAX)
1652 		error_type_name = auxtrace_error_type_name[type];
1653 	if (!error_type_name)
1654 		error_type_name = "unknown AUX";
1655 	return error_type_name;
1656 }
1657 
1658 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1659 {
1660 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1661 	unsigned long long nsecs = e->time;
1662 	const char *msg = e->msg;
1663 	int ret;
1664 
1665 	ret = fprintf(fp, " %s error type %u",
1666 		      auxtrace_error_name(e->type), e->type);
1667 
1668 	if (e->fmt && nsecs) {
1669 		unsigned long secs = nsecs / NSEC_PER_SEC;
1670 
1671 		nsecs -= secs * NSEC_PER_SEC;
1672 		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1673 	} else {
1674 		ret += fprintf(fp, " time 0");
1675 	}
1676 
1677 	if (!e->fmt)
1678 		msg = (const char *)&e->time;
1679 
1680 	if (e->fmt >= 2 && e->machine_pid)
1681 		ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1682 
1683 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1684 		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1685 	return ret;
1686 }
1687 
1688 void perf_session__auxtrace_error_inc(struct perf_session *session,
1689 				      union perf_event *event)
1690 {
1691 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1692 
1693 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1694 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1695 }
1696 
1697 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1698 {
1699 	int i;
1700 
1701 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1702 		if (!stats->nr_auxtrace_errors[i])
1703 			continue;
1704 		ui__warning("%u %s errors\n",
1705 			    stats->nr_auxtrace_errors[i],
1706 			    auxtrace_error_name(i));
1707 	}
1708 }
1709 
1710 int perf_event__process_auxtrace_error(struct perf_session *session,
1711 				       union perf_event *event)
1712 {
1713 	if (auxtrace__dont_decode(session))
1714 		return 0;
1715 
1716 	perf_event__fprintf_auxtrace_error(event, stdout);
1717 	return 0;
1718 }
1719 
1720 /*
1721  * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1722  * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1723  * the issues caused by the below sequence on multiple CPUs: when perf tool
1724  * accesses either the load operation or the store operation for 64-bit value,
1725  * on some architectures the operation is divided into two instructions, one
1726  * is for accessing the low 32-bit value and another is for the high 32-bit;
1727  * thus these two user operations can give the kernel chances to access the
1728  * 64-bit value, and thus leads to the unexpected load values.
1729  *
1730  *   kernel (64-bit)                        user (32-bit)
1731  *
1732  *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1733  *       STORE $aux_data      |       ,--->
1734  *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1735  *       STORE ->aux_head   --|-------`     smp_rmb()
1736  *   }                        |             LOAD $data
1737  *                            |             smp_mb()
1738  *                            |             STORE ->aux_tail_lo
1739  *                            `----------->
1740  *                                          STORE ->aux_tail_hi
1741  *
1742  * For this reason, it's impossible for the perf tool to work correctly when
1743  * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1744  * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1745  * the pointers can be increased monotonically, whatever the buffer size it is,
1746  * at the end the head and tail can be bigger than 4GB and carry out to the
1747  * high 32-bit.
1748  *
1749  * To mitigate the issues and improve the user experience, we can allow the
1750  * perf tool working in certain conditions and bail out with error if detect
1751  * any overflow cannot be handled.
1752  *
1753  * For reading the AUX head, it reads out the values for three times, and
1754  * compares the high 4 bytes of the values between the first time and the last
1755  * time, if there has no change for high 4 bytes injected by the kernel during
1756  * the user reading sequence, it's safe for use the second value.
1757  *
1758  * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1759  * 32 bits, it means there have two store operations in user space and it cannot
1760  * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1761  * the caller an overflow error has happened.
1762  */
1763 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1764 {
1765 	struct perf_event_mmap_page *pc = mm->userpg;
1766 	u64 first, second, last;
1767 	u64 mask = (u64)(UINT32_MAX) << 32;
1768 
1769 	do {
1770 		first = READ_ONCE(pc->aux_head);
1771 		/* Ensure all reads are done after we read the head */
1772 		smp_rmb();
1773 		second = READ_ONCE(pc->aux_head);
1774 		/* Ensure all reads are done after we read the head */
1775 		smp_rmb();
1776 		last = READ_ONCE(pc->aux_head);
1777 	} while ((first & mask) != (last & mask));
1778 
1779 	return second;
1780 }
1781 
1782 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1783 {
1784 	struct perf_event_mmap_page *pc = mm->userpg;
1785 	u64 mask = (u64)(UINT32_MAX) << 32;
1786 
1787 	if (tail & mask)
1788 		return -1;
1789 
1790 	/* Ensure all reads are done before we write the tail out */
1791 	smp_mb();
1792 	WRITE_ONCE(pc->aux_tail, tail);
1793 	return 0;
1794 }
1795 
1796 static int __auxtrace_mmap__read(struct mmap *map,
1797 				 struct auxtrace_record *itr,
1798 				 struct perf_tool *tool, process_auxtrace_t fn,
1799 				 bool snapshot, size_t snapshot_size)
1800 {
1801 	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1802 	u64 head, old = mm->prev, offset, ref;
1803 	unsigned char *data = mm->base;
1804 	size_t size, head_off, old_off, len1, len2, padding;
1805 	union perf_event ev;
1806 	void *data1, *data2;
1807 	int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1808 
1809 	head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1810 
1811 	if (snapshot &&
1812 	    auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1813 		return -1;
1814 
1815 	if (old == head)
1816 		return 0;
1817 
1818 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1819 		  mm->idx, old, head, head - old);
1820 
1821 	if (mm->mask) {
1822 		head_off = head & mm->mask;
1823 		old_off = old & mm->mask;
1824 	} else {
1825 		head_off = head % mm->len;
1826 		old_off = old % mm->len;
1827 	}
1828 
1829 	if (head_off > old_off)
1830 		size = head_off - old_off;
1831 	else
1832 		size = mm->len - (old_off - head_off);
1833 
1834 	if (snapshot && size > snapshot_size)
1835 		size = snapshot_size;
1836 
1837 	ref = auxtrace_record__reference(itr);
1838 
1839 	if (head > old || size <= head || mm->mask) {
1840 		offset = head - size;
1841 	} else {
1842 		/*
1843 		 * When the buffer size is not a power of 2, 'head' wraps at the
1844 		 * highest multiple of the buffer size, so we have to subtract
1845 		 * the remainder here.
1846 		 */
1847 		u64 rem = (0ULL - mm->len) % mm->len;
1848 
1849 		offset = head - size - rem;
1850 	}
1851 
1852 	if (size > head_off) {
1853 		len1 = size - head_off;
1854 		data1 = &data[mm->len - len1];
1855 		len2 = head_off;
1856 		data2 = &data[0];
1857 	} else {
1858 		len1 = size;
1859 		data1 = &data[head_off - len1];
1860 		len2 = 0;
1861 		data2 = NULL;
1862 	}
1863 
1864 	if (itr->alignment) {
1865 		unsigned int unwanted = len1 % itr->alignment;
1866 
1867 		len1 -= unwanted;
1868 		size -= unwanted;
1869 	}
1870 
1871 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1872 	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1873 	if (padding)
1874 		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1875 
1876 	memset(&ev, 0, sizeof(ev));
1877 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1878 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1879 	ev.auxtrace.size = size + padding;
1880 	ev.auxtrace.offset = offset;
1881 	ev.auxtrace.reference = ref;
1882 	ev.auxtrace.idx = mm->idx;
1883 	ev.auxtrace.tid = mm->tid;
1884 	ev.auxtrace.cpu = mm->cpu;
1885 
1886 	if (fn(tool, map, &ev, data1, len1, data2, len2))
1887 		return -1;
1888 
1889 	mm->prev = head;
1890 
1891 	if (!snapshot) {
1892 		int err;
1893 
1894 		err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1895 		if (err < 0)
1896 			return err;
1897 
1898 		if (itr->read_finish) {
1899 			err = itr->read_finish(itr, mm->idx);
1900 			if (err < 0)
1901 				return err;
1902 		}
1903 	}
1904 
1905 	return 1;
1906 }
1907 
1908 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1909 			struct perf_tool *tool, process_auxtrace_t fn)
1910 {
1911 	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1912 }
1913 
1914 int auxtrace_mmap__read_snapshot(struct mmap *map,
1915 				 struct auxtrace_record *itr,
1916 				 struct perf_tool *tool, process_auxtrace_t fn,
1917 				 size_t snapshot_size)
1918 {
1919 	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1920 }
1921 
1922 /**
1923  * struct auxtrace_cache - hash table to implement a cache
1924  * @hashtable: the hashtable
1925  * @sz: hashtable size (number of hlists)
1926  * @entry_size: size of an entry
1927  * @limit: limit the number of entries to this maximum, when reached the cache
1928  *         is dropped and caching begins again with an empty cache
1929  * @cnt: current number of entries
1930  * @bits: hashtable size (@sz = 2^@bits)
1931  */
1932 struct auxtrace_cache {
1933 	struct hlist_head *hashtable;
1934 	size_t sz;
1935 	size_t entry_size;
1936 	size_t limit;
1937 	size_t cnt;
1938 	unsigned int bits;
1939 };
1940 
1941 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1942 					   unsigned int limit_percent)
1943 {
1944 	struct auxtrace_cache *c;
1945 	struct hlist_head *ht;
1946 	size_t sz, i;
1947 
1948 	c = zalloc(sizeof(struct auxtrace_cache));
1949 	if (!c)
1950 		return NULL;
1951 
1952 	sz = 1UL << bits;
1953 
1954 	ht = calloc(sz, sizeof(struct hlist_head));
1955 	if (!ht)
1956 		goto out_free;
1957 
1958 	for (i = 0; i < sz; i++)
1959 		INIT_HLIST_HEAD(&ht[i]);
1960 
1961 	c->hashtable = ht;
1962 	c->sz = sz;
1963 	c->entry_size = entry_size;
1964 	c->limit = (c->sz * limit_percent) / 100;
1965 	c->bits = bits;
1966 
1967 	return c;
1968 
1969 out_free:
1970 	free(c);
1971 	return NULL;
1972 }
1973 
1974 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1975 {
1976 	struct auxtrace_cache_entry *entry;
1977 	struct hlist_node *tmp;
1978 	size_t i;
1979 
1980 	if (!c)
1981 		return;
1982 
1983 	for (i = 0; i < c->sz; i++) {
1984 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1985 			hlist_del(&entry->hash);
1986 			auxtrace_cache__free_entry(c, entry);
1987 		}
1988 	}
1989 
1990 	c->cnt = 0;
1991 }
1992 
1993 void auxtrace_cache__free(struct auxtrace_cache *c)
1994 {
1995 	if (!c)
1996 		return;
1997 
1998 	auxtrace_cache__drop(c);
1999 	zfree(&c->hashtable);
2000 	free(c);
2001 }
2002 
2003 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2004 {
2005 	return malloc(c->entry_size);
2006 }
2007 
2008 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2009 				void *entry)
2010 {
2011 	free(entry);
2012 }
2013 
2014 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2015 			struct auxtrace_cache_entry *entry)
2016 {
2017 	if (c->limit && ++c->cnt > c->limit)
2018 		auxtrace_cache__drop(c);
2019 
2020 	entry->key = key;
2021 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2022 
2023 	return 0;
2024 }
2025 
2026 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2027 						       u32 key)
2028 {
2029 	struct auxtrace_cache_entry *entry;
2030 	struct hlist_head *hlist;
2031 	struct hlist_node *n;
2032 
2033 	if (!c)
2034 		return NULL;
2035 
2036 	hlist = &c->hashtable[hash_32(key, c->bits)];
2037 	hlist_for_each_entry_safe(entry, n, hlist, hash) {
2038 		if (entry->key == key) {
2039 			hlist_del(&entry->hash);
2040 			return entry;
2041 		}
2042 	}
2043 
2044 	return NULL;
2045 }
2046 
2047 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2048 {
2049 	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2050 
2051 	auxtrace_cache__free_entry(c, entry);
2052 }
2053 
2054 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2055 {
2056 	struct auxtrace_cache_entry *entry;
2057 	struct hlist_head *hlist;
2058 
2059 	if (!c)
2060 		return NULL;
2061 
2062 	hlist = &c->hashtable[hash_32(key, c->bits)];
2063 	hlist_for_each_entry(entry, hlist, hash) {
2064 		if (entry->key == key)
2065 			return entry;
2066 	}
2067 
2068 	return NULL;
2069 }
2070 
2071 static void addr_filter__free_str(struct addr_filter *filt)
2072 {
2073 	zfree(&filt->str);
2074 	filt->action   = NULL;
2075 	filt->sym_from = NULL;
2076 	filt->sym_to   = NULL;
2077 	filt->filename = NULL;
2078 }
2079 
2080 static struct addr_filter *addr_filter__new(void)
2081 {
2082 	struct addr_filter *filt = zalloc(sizeof(*filt));
2083 
2084 	if (filt)
2085 		INIT_LIST_HEAD(&filt->list);
2086 
2087 	return filt;
2088 }
2089 
2090 static void addr_filter__free(struct addr_filter *filt)
2091 {
2092 	if (filt)
2093 		addr_filter__free_str(filt);
2094 	free(filt);
2095 }
2096 
2097 static void addr_filters__add(struct addr_filters *filts,
2098 			      struct addr_filter *filt)
2099 {
2100 	list_add_tail(&filt->list, &filts->head);
2101 	filts->cnt += 1;
2102 }
2103 
2104 static void addr_filters__del(struct addr_filters *filts,
2105 			      struct addr_filter *filt)
2106 {
2107 	list_del_init(&filt->list);
2108 	filts->cnt -= 1;
2109 }
2110 
2111 void addr_filters__init(struct addr_filters *filts)
2112 {
2113 	INIT_LIST_HEAD(&filts->head);
2114 	filts->cnt = 0;
2115 }
2116 
2117 void addr_filters__exit(struct addr_filters *filts)
2118 {
2119 	struct addr_filter *filt, *n;
2120 
2121 	list_for_each_entry_safe(filt, n, &filts->head, list) {
2122 		addr_filters__del(filts, filt);
2123 		addr_filter__free(filt);
2124 	}
2125 }
2126 
2127 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2128 			    const char *str_delim)
2129 {
2130 	*inp += strspn(*inp, " ");
2131 
2132 	if (isdigit(**inp)) {
2133 		char *endptr;
2134 
2135 		if (!num)
2136 			return -EINVAL;
2137 		errno = 0;
2138 		*num = strtoull(*inp, &endptr, 0);
2139 		if (errno)
2140 			return -errno;
2141 		if (endptr == *inp)
2142 			return -EINVAL;
2143 		*inp = endptr;
2144 	} else {
2145 		size_t n;
2146 
2147 		if (!str)
2148 			return -EINVAL;
2149 		*inp += strspn(*inp, " ");
2150 		*str = *inp;
2151 		n = strcspn(*inp, str_delim);
2152 		if (!n)
2153 			return -EINVAL;
2154 		*inp += n;
2155 		if (**inp) {
2156 			**inp = '\0';
2157 			*inp += 1;
2158 		}
2159 	}
2160 	return 0;
2161 }
2162 
2163 static int parse_action(struct addr_filter *filt)
2164 {
2165 	if (!strcmp(filt->action, "filter")) {
2166 		filt->start = true;
2167 		filt->range = true;
2168 	} else if (!strcmp(filt->action, "start")) {
2169 		filt->start = true;
2170 	} else if (!strcmp(filt->action, "stop")) {
2171 		filt->start = false;
2172 	} else if (!strcmp(filt->action, "tracestop")) {
2173 		filt->start = false;
2174 		filt->range = true;
2175 		filt->action += 5; /* Change 'tracestop' to 'stop' */
2176 	} else {
2177 		return -EINVAL;
2178 	}
2179 	return 0;
2180 }
2181 
2182 static int parse_sym_idx(char **inp, int *idx)
2183 {
2184 	*idx = -1;
2185 
2186 	*inp += strspn(*inp, " ");
2187 
2188 	if (**inp != '#')
2189 		return 0;
2190 
2191 	*inp += 1;
2192 
2193 	if (**inp == 'g' || **inp == 'G') {
2194 		*inp += 1;
2195 		*idx = 0;
2196 	} else {
2197 		unsigned long num;
2198 		char *endptr;
2199 
2200 		errno = 0;
2201 		num = strtoul(*inp, &endptr, 0);
2202 		if (errno)
2203 			return -errno;
2204 		if (endptr == *inp || num > INT_MAX)
2205 			return -EINVAL;
2206 		*inp = endptr;
2207 		*idx = num;
2208 	}
2209 
2210 	return 0;
2211 }
2212 
2213 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2214 {
2215 	int err = parse_num_or_str(inp, num, str, " ");
2216 
2217 	if (!err && *str)
2218 		err = parse_sym_idx(inp, idx);
2219 
2220 	return err;
2221 }
2222 
2223 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2224 {
2225 	char *fstr;
2226 	int err;
2227 
2228 	filt->str = fstr = strdup(*filter_inp);
2229 	if (!fstr)
2230 		return -ENOMEM;
2231 
2232 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2233 	if (err)
2234 		goto out_err;
2235 
2236 	err = parse_action(filt);
2237 	if (err)
2238 		goto out_err;
2239 
2240 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2241 			      &filt->sym_from_idx);
2242 	if (err)
2243 		goto out_err;
2244 
2245 	fstr += strspn(fstr, " ");
2246 
2247 	if (*fstr == '/') {
2248 		fstr += 1;
2249 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2250 				      &filt->sym_to_idx);
2251 		if (err)
2252 			goto out_err;
2253 		filt->range = true;
2254 	}
2255 
2256 	fstr += strspn(fstr, " ");
2257 
2258 	if (*fstr == '@') {
2259 		fstr += 1;
2260 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2261 		if (err)
2262 			goto out_err;
2263 	}
2264 
2265 	fstr += strspn(fstr, " ,");
2266 
2267 	*filter_inp += fstr - filt->str;
2268 
2269 	return 0;
2270 
2271 out_err:
2272 	addr_filter__free_str(filt);
2273 
2274 	return err;
2275 }
2276 
2277 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2278 				    const char *filter)
2279 {
2280 	struct addr_filter *filt;
2281 	const char *fstr = filter;
2282 	int err;
2283 
2284 	while (*fstr) {
2285 		filt = addr_filter__new();
2286 		err = parse_one_filter(filt, &fstr);
2287 		if (err) {
2288 			addr_filter__free(filt);
2289 			addr_filters__exit(filts);
2290 			return err;
2291 		}
2292 		addr_filters__add(filts, filt);
2293 	}
2294 
2295 	return 0;
2296 }
2297 
2298 struct sym_args {
2299 	const char	*name;
2300 	u64		start;
2301 	u64		size;
2302 	int		idx;
2303 	int		cnt;
2304 	bool		started;
2305 	bool		global;
2306 	bool		selected;
2307 	bool		duplicate;
2308 	bool		near;
2309 };
2310 
2311 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2312 {
2313 	/* A function with the same name, and global or the n'th found or any */
2314 	return kallsyms__is_function(type) &&
2315 	       !strcmp(name, args->name) &&
2316 	       ((args->global && isupper(type)) ||
2317 		(args->selected && ++(args->cnt) == args->idx) ||
2318 		(!args->global && !args->selected));
2319 }
2320 
2321 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2322 {
2323 	struct sym_args *args = arg;
2324 
2325 	if (args->started) {
2326 		if (!args->size)
2327 			args->size = start - args->start;
2328 		if (args->selected) {
2329 			if (args->size)
2330 				return 1;
2331 		} else if (kern_sym_match(args, name, type)) {
2332 			args->duplicate = true;
2333 			return 1;
2334 		}
2335 	} else if (kern_sym_match(args, name, type)) {
2336 		args->started = true;
2337 		args->start = start;
2338 	}
2339 
2340 	return 0;
2341 }
2342 
2343 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2344 {
2345 	struct sym_args *args = arg;
2346 
2347 	if (kern_sym_match(args, name, type)) {
2348 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2349 		       ++args->cnt, start, type, name);
2350 		args->near = true;
2351 	} else if (args->near) {
2352 		args->near = false;
2353 		pr_err("\t\twhich is near\t\t%s\n", name);
2354 	}
2355 
2356 	return 0;
2357 }
2358 
2359 static int sym_not_found_error(const char *sym_name, int idx)
2360 {
2361 	if (idx > 0) {
2362 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2363 		       idx, sym_name);
2364 	} else if (!idx) {
2365 		pr_err("Global symbol '%s' not found.\n", sym_name);
2366 	} else {
2367 		pr_err("Symbol '%s' not found.\n", sym_name);
2368 	}
2369 	pr_err("Note that symbols must be functions.\n");
2370 
2371 	return -EINVAL;
2372 }
2373 
2374 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2375 {
2376 	struct sym_args args = {
2377 		.name = sym_name,
2378 		.idx = idx,
2379 		.global = !idx,
2380 		.selected = idx > 0,
2381 	};
2382 	int err;
2383 
2384 	*start = 0;
2385 	*size = 0;
2386 
2387 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2388 	if (err < 0) {
2389 		pr_err("Failed to parse /proc/kallsyms\n");
2390 		return err;
2391 	}
2392 
2393 	if (args.duplicate) {
2394 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2395 		args.cnt = 0;
2396 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2397 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2398 		       sym_name);
2399 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2400 		return -EINVAL;
2401 	}
2402 
2403 	if (!args.started) {
2404 		pr_err("Kernel symbol lookup: ");
2405 		return sym_not_found_error(sym_name, idx);
2406 	}
2407 
2408 	*start = args.start;
2409 	*size = args.size;
2410 
2411 	return 0;
2412 }
2413 
2414 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2415 			       char type, u64 start)
2416 {
2417 	struct sym_args *args = arg;
2418 
2419 	if (!kallsyms__is_function(type))
2420 		return 0;
2421 
2422 	if (!args->started) {
2423 		args->started = true;
2424 		args->start = start;
2425 	}
2426 	/* Don't know exactly where the kernel ends, so we add a page */
2427 	args->size = round_up(start, page_size) + page_size - args->start;
2428 
2429 	return 0;
2430 }
2431 
2432 static int addr_filter__entire_kernel(struct addr_filter *filt)
2433 {
2434 	struct sym_args args = { .started = false };
2435 	int err;
2436 
2437 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2438 	if (err < 0 || !args.started) {
2439 		pr_err("Failed to parse /proc/kallsyms\n");
2440 		return err;
2441 	}
2442 
2443 	filt->addr = args.start;
2444 	filt->size = args.size;
2445 
2446 	return 0;
2447 }
2448 
2449 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2450 {
2451 	if (start + size >= filt->addr)
2452 		return 0;
2453 
2454 	if (filt->sym_from) {
2455 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2456 		       filt->sym_to, start, filt->sym_from, filt->addr);
2457 	} else {
2458 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2459 		       filt->sym_to, start, filt->addr);
2460 	}
2461 
2462 	return -EINVAL;
2463 }
2464 
2465 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2466 {
2467 	bool no_size = false;
2468 	u64 start, size;
2469 	int err;
2470 
2471 	if (symbol_conf.kptr_restrict) {
2472 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2473 		return -EINVAL;
2474 	}
2475 
2476 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2477 		return addr_filter__entire_kernel(filt);
2478 
2479 	if (filt->sym_from) {
2480 		err = find_kern_sym(filt->sym_from, &start, &size,
2481 				    filt->sym_from_idx);
2482 		if (err)
2483 			return err;
2484 		filt->addr = start;
2485 		if (filt->range && !filt->size && !filt->sym_to) {
2486 			filt->size = size;
2487 			no_size = !size;
2488 		}
2489 	}
2490 
2491 	if (filt->sym_to) {
2492 		err = find_kern_sym(filt->sym_to, &start, &size,
2493 				    filt->sym_to_idx);
2494 		if (err)
2495 			return err;
2496 
2497 		err = check_end_after_start(filt, start, size);
2498 		if (err)
2499 			return err;
2500 		filt->size = start + size - filt->addr;
2501 		no_size = !size;
2502 	}
2503 
2504 	/* The very last symbol in kallsyms does not imply a particular size */
2505 	if (no_size) {
2506 		pr_err("Cannot determine size of symbol '%s'\n",
2507 		       filt->sym_to ? filt->sym_to : filt->sym_from);
2508 		return -EINVAL;
2509 	}
2510 
2511 	return 0;
2512 }
2513 
2514 static struct dso *load_dso(const char *name)
2515 {
2516 	struct map *map;
2517 	struct dso *dso;
2518 
2519 	map = dso__new_map(name);
2520 	if (!map)
2521 		return NULL;
2522 
2523 	if (map__load(map) < 0)
2524 		pr_err("File '%s' not found or has no symbols.\n", name);
2525 
2526 	dso = dso__get(map->dso);
2527 
2528 	map__put(map);
2529 
2530 	return dso;
2531 }
2532 
2533 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2534 			  int idx)
2535 {
2536 	/* Same name, and global or the n'th found or any */
2537 	return !arch__compare_symbol_names(name, sym->name) &&
2538 	       ((!idx && sym->binding == STB_GLOBAL) ||
2539 		(idx > 0 && ++*cnt == idx) ||
2540 		idx < 0);
2541 }
2542 
2543 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2544 {
2545 	struct symbol *sym;
2546 	bool near = false;
2547 	int cnt = 0;
2548 
2549 	pr_err("Multiple symbols with name '%s'\n", sym_name);
2550 
2551 	sym = dso__first_symbol(dso);
2552 	while (sym) {
2553 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2554 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2555 			       ++cnt, sym->start,
2556 			       sym->binding == STB_GLOBAL ? 'g' :
2557 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2558 			       sym->name);
2559 			near = true;
2560 		} else if (near) {
2561 			near = false;
2562 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2563 		}
2564 		sym = dso__next_symbol(sym);
2565 	}
2566 
2567 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2568 	       sym_name);
2569 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2570 }
2571 
2572 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2573 			u64 *size, int idx)
2574 {
2575 	struct symbol *sym;
2576 	int cnt = 0;
2577 
2578 	*start = 0;
2579 	*size = 0;
2580 
2581 	sym = dso__first_symbol(dso);
2582 	while (sym) {
2583 		if (*start) {
2584 			if (!*size)
2585 				*size = sym->start - *start;
2586 			if (idx > 0) {
2587 				if (*size)
2588 					return 1;
2589 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2590 				print_duplicate_syms(dso, sym_name);
2591 				return -EINVAL;
2592 			}
2593 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2594 			*start = sym->start;
2595 			*size = sym->end - sym->start;
2596 		}
2597 		sym = dso__next_symbol(sym);
2598 	}
2599 
2600 	if (!*start)
2601 		return sym_not_found_error(sym_name, idx);
2602 
2603 	return 0;
2604 }
2605 
2606 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2607 {
2608 	if (dso__data_file_size(dso, NULL)) {
2609 		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2610 		       filt->filename);
2611 		return -EINVAL;
2612 	}
2613 
2614 	filt->addr = 0;
2615 	filt->size = dso->data.file_size;
2616 
2617 	return 0;
2618 }
2619 
2620 static int addr_filter__resolve_syms(struct addr_filter *filt)
2621 {
2622 	u64 start, size;
2623 	struct dso *dso;
2624 	int err = 0;
2625 
2626 	if (!filt->sym_from && !filt->sym_to)
2627 		return 0;
2628 
2629 	if (!filt->filename)
2630 		return addr_filter__resolve_kernel_syms(filt);
2631 
2632 	dso = load_dso(filt->filename);
2633 	if (!dso) {
2634 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2635 		return -EINVAL;
2636 	}
2637 
2638 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2639 		err = addr_filter__entire_dso(filt, dso);
2640 		goto put_dso;
2641 	}
2642 
2643 	if (filt->sym_from) {
2644 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2645 				   filt->sym_from_idx);
2646 		if (err)
2647 			goto put_dso;
2648 		filt->addr = start;
2649 		if (filt->range && !filt->size && !filt->sym_to)
2650 			filt->size = size;
2651 	}
2652 
2653 	if (filt->sym_to) {
2654 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2655 				   filt->sym_to_idx);
2656 		if (err)
2657 			goto put_dso;
2658 
2659 		err = check_end_after_start(filt, start, size);
2660 		if (err)
2661 			return err;
2662 
2663 		filt->size = start + size - filt->addr;
2664 	}
2665 
2666 put_dso:
2667 	dso__put(dso);
2668 
2669 	return err;
2670 }
2671 
2672 static char *addr_filter__to_str(struct addr_filter *filt)
2673 {
2674 	char filename_buf[PATH_MAX];
2675 	const char *at = "";
2676 	const char *fn = "";
2677 	char *filter;
2678 	int err;
2679 
2680 	if (filt->filename) {
2681 		at = "@";
2682 		fn = realpath(filt->filename, filename_buf);
2683 		if (!fn)
2684 			return NULL;
2685 	}
2686 
2687 	if (filt->range) {
2688 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2689 			       filt->action, filt->addr, filt->size, at, fn);
2690 	} else {
2691 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2692 			       filt->action, filt->addr, at, fn);
2693 	}
2694 
2695 	return err < 0 ? NULL : filter;
2696 }
2697 
2698 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2699 			     int max_nr)
2700 {
2701 	struct addr_filters filts;
2702 	struct addr_filter *filt;
2703 	int err;
2704 
2705 	addr_filters__init(&filts);
2706 
2707 	err = addr_filters__parse_bare_filter(&filts, filter);
2708 	if (err)
2709 		goto out_exit;
2710 
2711 	if (filts.cnt > max_nr) {
2712 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2713 		       filts.cnt, max_nr);
2714 		err = -EINVAL;
2715 		goto out_exit;
2716 	}
2717 
2718 	list_for_each_entry(filt, &filts.head, list) {
2719 		char *new_filter;
2720 
2721 		err = addr_filter__resolve_syms(filt);
2722 		if (err)
2723 			goto out_exit;
2724 
2725 		new_filter = addr_filter__to_str(filt);
2726 		if (!new_filter) {
2727 			err = -ENOMEM;
2728 			goto out_exit;
2729 		}
2730 
2731 		if (evsel__append_addr_filter(evsel, new_filter)) {
2732 			err = -ENOMEM;
2733 			goto out_exit;
2734 		}
2735 	}
2736 
2737 out_exit:
2738 	addr_filters__exit(&filts);
2739 
2740 	if (err) {
2741 		pr_err("Failed to parse address filter: '%s'\n", filter);
2742 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2743 		pr_err("Where multiple filters are separated by space or comma.\n");
2744 	}
2745 
2746 	return err;
2747 }
2748 
2749 static int evsel__nr_addr_filter(struct evsel *evsel)
2750 {
2751 	struct perf_pmu *pmu = evsel__find_pmu(evsel);
2752 	int nr_addr_filters = 0;
2753 
2754 	if (!pmu)
2755 		return 0;
2756 
2757 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2758 
2759 	return nr_addr_filters;
2760 }
2761 
2762 int auxtrace_parse_filters(struct evlist *evlist)
2763 {
2764 	struct evsel *evsel;
2765 	char *filter;
2766 	int err, max_nr;
2767 
2768 	evlist__for_each_entry(evlist, evsel) {
2769 		filter = evsel->filter;
2770 		max_nr = evsel__nr_addr_filter(evsel);
2771 		if (!filter || !max_nr)
2772 			continue;
2773 		evsel->filter = NULL;
2774 		err = parse_addr_filter(evsel, filter, max_nr);
2775 		free(filter);
2776 		if (err)
2777 			return err;
2778 		pr_debug("Address filter: %s\n", evsel->filter);
2779 	}
2780 
2781 	return 0;
2782 }
2783 
2784 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2785 			    struct perf_sample *sample, struct perf_tool *tool)
2786 {
2787 	if (!session->auxtrace)
2788 		return 0;
2789 
2790 	return session->auxtrace->process_event(session, event, sample, tool);
2791 }
2792 
2793 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2794 				    struct perf_sample *sample)
2795 {
2796 	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2797 	    auxtrace__dont_decode(session))
2798 		return;
2799 
2800 	session->auxtrace->dump_auxtrace_sample(session, sample);
2801 }
2802 
2803 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2804 {
2805 	if (!session->auxtrace)
2806 		return 0;
2807 
2808 	return session->auxtrace->flush_events(session, tool);
2809 }
2810 
2811 void auxtrace__free_events(struct perf_session *session)
2812 {
2813 	if (!session->auxtrace)
2814 		return;
2815 
2816 	return session->auxtrace->free_events(session);
2817 }
2818 
2819 void auxtrace__free(struct perf_session *session)
2820 {
2821 	if (!session->auxtrace)
2822 		return;
2823 
2824 	return session->auxtrace->free(session);
2825 }
2826 
2827 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2828 				 struct evsel *evsel)
2829 {
2830 	if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2831 		return false;
2832 
2833 	return session->auxtrace->evsel_is_auxtrace(session, evsel);
2834 }
2835