1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * auxtrace.c: AUX area trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <sys/types.h> 9 #include <sys/mman.h> 10 #include <stdbool.h> 11 #include <string.h> 12 #include <limits.h> 13 #include <errno.h> 14 15 #include <linux/kernel.h> 16 #include <linux/perf_event.h> 17 #include <linux/types.h> 18 #include <linux/bitops.h> 19 #include <linux/log2.h> 20 #include <linux/string.h> 21 #include <linux/time64.h> 22 23 #include <sys/param.h> 24 #include <stdlib.h> 25 #include <stdio.h> 26 #include <linux/list.h> 27 #include <linux/zalloc.h> 28 29 #include "evlist.h" 30 #include "dso.h" 31 #include "map.h" 32 #include "pmu.h" 33 #include "evsel.h" 34 #include "evsel_config.h" 35 #include "symbol.h" 36 #include "util/perf_api_probe.h" 37 #include "util/synthetic-events.h" 38 #include "thread_map.h" 39 #include "asm/bug.h" 40 #include "auxtrace.h" 41 42 #include <linux/hash.h> 43 44 #include "event.h" 45 #include "record.h" 46 #include "session.h" 47 #include "debug.h" 48 #include <subcmd/parse-options.h> 49 50 #include "cs-etm.h" 51 #include "intel-pt.h" 52 #include "intel-bts.h" 53 #include "arm-spe.h" 54 #include "s390-cpumsf.h" 55 #include "util/mmap.h" 56 57 #include <linux/ctype.h> 58 #include "symbol/kallsyms.h" 59 #include <internal/lib.h> 60 61 /* 62 * Make a group from 'leader' to 'last', requiring that the events were not 63 * already grouped to a different leader. 64 */ 65 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last) 66 { 67 struct evsel *evsel; 68 bool grp; 69 70 if (!evsel__is_group_leader(leader)) 71 return -EINVAL; 72 73 grp = false; 74 evlist__for_each_entry(evlist, evsel) { 75 if (grp) { 76 if (!(evsel->leader == leader || 77 (evsel->leader == evsel && 78 evsel->core.nr_members <= 1))) 79 return -EINVAL; 80 } else if (evsel == leader) { 81 grp = true; 82 } 83 if (evsel == last) 84 break; 85 } 86 87 grp = false; 88 evlist__for_each_entry(evlist, evsel) { 89 if (grp) { 90 if (evsel->leader != leader) { 91 evsel->leader = leader; 92 if (leader->core.nr_members < 1) 93 leader->core.nr_members = 1; 94 leader->core.nr_members += 1; 95 } 96 } else if (evsel == leader) { 97 grp = true; 98 } 99 if (evsel == last) 100 break; 101 } 102 103 return 0; 104 } 105 106 static bool auxtrace__dont_decode(struct perf_session *session) 107 { 108 return !session->itrace_synth_opts || 109 session->itrace_synth_opts->dont_decode; 110 } 111 112 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 113 struct auxtrace_mmap_params *mp, 114 void *userpg, int fd) 115 { 116 struct perf_event_mmap_page *pc = userpg; 117 118 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 119 120 mm->userpg = userpg; 121 mm->mask = mp->mask; 122 mm->len = mp->len; 123 mm->prev = 0; 124 mm->idx = mp->idx; 125 mm->tid = mp->tid; 126 mm->cpu = mp->cpu; 127 128 if (!mp->len) { 129 mm->base = NULL; 130 return 0; 131 } 132 133 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT) 134 pr_err("Cannot use AUX area tracing mmaps\n"); 135 return -1; 136 #endif 137 138 pc->aux_offset = mp->offset; 139 pc->aux_size = mp->len; 140 141 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 142 if (mm->base == MAP_FAILED) { 143 pr_debug2("failed to mmap AUX area\n"); 144 mm->base = NULL; 145 return -1; 146 } 147 148 return 0; 149 } 150 151 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 152 { 153 if (mm->base) { 154 munmap(mm->base, mm->len); 155 mm->base = NULL; 156 } 157 } 158 159 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 160 off_t auxtrace_offset, 161 unsigned int auxtrace_pages, 162 bool auxtrace_overwrite) 163 { 164 if (auxtrace_pages) { 165 mp->offset = auxtrace_offset; 166 mp->len = auxtrace_pages * (size_t)page_size; 167 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 168 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 169 pr_debug2("AUX area mmap length %zu\n", mp->len); 170 } else { 171 mp->len = 0; 172 } 173 } 174 175 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 176 struct evlist *evlist, int idx, 177 bool per_cpu) 178 { 179 mp->idx = idx; 180 181 if (per_cpu) { 182 mp->cpu = evlist->core.cpus->map[idx]; 183 if (evlist->core.threads) 184 mp->tid = perf_thread_map__pid(evlist->core.threads, 0); 185 else 186 mp->tid = -1; 187 } else { 188 mp->cpu = -1; 189 mp->tid = perf_thread_map__pid(evlist->core.threads, idx); 190 } 191 } 192 193 #define AUXTRACE_INIT_NR_QUEUES 32 194 195 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 196 { 197 struct auxtrace_queue *queue_array; 198 unsigned int max_nr_queues, i; 199 200 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 201 if (nr_queues > max_nr_queues) 202 return NULL; 203 204 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 205 if (!queue_array) 206 return NULL; 207 208 for (i = 0; i < nr_queues; i++) { 209 INIT_LIST_HEAD(&queue_array[i].head); 210 queue_array[i].priv = NULL; 211 } 212 213 return queue_array; 214 } 215 216 int auxtrace_queues__init(struct auxtrace_queues *queues) 217 { 218 queues->nr_queues = AUXTRACE_INIT_NR_QUEUES; 219 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 220 if (!queues->queue_array) 221 return -ENOMEM; 222 return 0; 223 } 224 225 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 226 unsigned int new_nr_queues) 227 { 228 unsigned int nr_queues = queues->nr_queues; 229 struct auxtrace_queue *queue_array; 230 unsigned int i; 231 232 if (!nr_queues) 233 nr_queues = AUXTRACE_INIT_NR_QUEUES; 234 235 while (nr_queues && nr_queues < new_nr_queues) 236 nr_queues <<= 1; 237 238 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 239 return -EINVAL; 240 241 queue_array = auxtrace_alloc_queue_array(nr_queues); 242 if (!queue_array) 243 return -ENOMEM; 244 245 for (i = 0; i < queues->nr_queues; i++) { 246 list_splice_tail(&queues->queue_array[i].head, 247 &queue_array[i].head); 248 queue_array[i].tid = queues->queue_array[i].tid; 249 queue_array[i].cpu = queues->queue_array[i].cpu; 250 queue_array[i].set = queues->queue_array[i].set; 251 queue_array[i].priv = queues->queue_array[i].priv; 252 } 253 254 queues->nr_queues = nr_queues; 255 queues->queue_array = queue_array; 256 257 return 0; 258 } 259 260 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 261 { 262 int fd = perf_data__fd(session->data); 263 void *p; 264 ssize_t ret; 265 266 if (size > SSIZE_MAX) 267 return NULL; 268 269 p = malloc(size); 270 if (!p) 271 return NULL; 272 273 ret = readn(fd, p, size); 274 if (ret != (ssize_t)size) { 275 free(p); 276 return NULL; 277 } 278 279 return p; 280 } 281 282 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 283 unsigned int idx, 284 struct auxtrace_buffer *buffer) 285 { 286 struct auxtrace_queue *queue; 287 int err; 288 289 if (idx >= queues->nr_queues) { 290 err = auxtrace_queues__grow(queues, idx + 1); 291 if (err) 292 return err; 293 } 294 295 queue = &queues->queue_array[idx]; 296 297 if (!queue->set) { 298 queue->set = true; 299 queue->tid = buffer->tid; 300 queue->cpu = buffer->cpu; 301 } 302 303 buffer->buffer_nr = queues->next_buffer_nr++; 304 305 list_add_tail(&buffer->list, &queue->head); 306 307 queues->new_data = true; 308 queues->populated = true; 309 310 return 0; 311 } 312 313 /* Limit buffers to 32MiB on 32-bit */ 314 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 315 316 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 317 unsigned int idx, 318 struct auxtrace_buffer *buffer) 319 { 320 u64 sz = buffer->size; 321 bool consecutive = false; 322 struct auxtrace_buffer *b; 323 int err; 324 325 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 326 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 327 if (!b) 328 return -ENOMEM; 329 b->size = BUFFER_LIMIT_FOR_32_BIT; 330 b->consecutive = consecutive; 331 err = auxtrace_queues__queue_buffer(queues, idx, b); 332 if (err) { 333 auxtrace_buffer__free(b); 334 return err; 335 } 336 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 337 sz -= BUFFER_LIMIT_FOR_32_BIT; 338 consecutive = true; 339 } 340 341 buffer->size = sz; 342 buffer->consecutive = consecutive; 343 344 return 0; 345 } 346 347 static bool filter_cpu(struct perf_session *session, int cpu) 348 { 349 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 350 351 return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap); 352 } 353 354 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 355 struct perf_session *session, 356 unsigned int idx, 357 struct auxtrace_buffer *buffer, 358 struct auxtrace_buffer **buffer_ptr) 359 { 360 int err = -ENOMEM; 361 362 if (filter_cpu(session, buffer->cpu)) 363 return 0; 364 365 buffer = memdup(buffer, sizeof(*buffer)); 366 if (!buffer) 367 return -ENOMEM; 368 369 if (session->one_mmap) { 370 buffer->data = buffer->data_offset - session->one_mmap_offset + 371 session->one_mmap_addr; 372 } else if (perf_data__is_pipe(session->data)) { 373 buffer->data = auxtrace_copy_data(buffer->size, session); 374 if (!buffer->data) 375 goto out_free; 376 buffer->data_needs_freeing = true; 377 } else if (BITS_PER_LONG == 32 && 378 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 379 err = auxtrace_queues__split_buffer(queues, idx, buffer); 380 if (err) 381 goto out_free; 382 } 383 384 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 385 if (err) 386 goto out_free; 387 388 /* FIXME: Doesn't work for split buffer */ 389 if (buffer_ptr) 390 *buffer_ptr = buffer; 391 392 return 0; 393 394 out_free: 395 auxtrace_buffer__free(buffer); 396 return err; 397 } 398 399 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 400 struct perf_session *session, 401 union perf_event *event, off_t data_offset, 402 struct auxtrace_buffer **buffer_ptr) 403 { 404 struct auxtrace_buffer buffer = { 405 .pid = -1, 406 .tid = event->auxtrace.tid, 407 .cpu = event->auxtrace.cpu, 408 .data_offset = data_offset, 409 .offset = event->auxtrace.offset, 410 .reference = event->auxtrace.reference, 411 .size = event->auxtrace.size, 412 }; 413 unsigned int idx = event->auxtrace.idx; 414 415 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 416 buffer_ptr); 417 } 418 419 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 420 struct perf_session *session, 421 off_t file_offset, size_t sz) 422 { 423 union perf_event *event; 424 int err; 425 char buf[PERF_SAMPLE_MAX_SIZE]; 426 427 err = perf_session__peek_event(session, file_offset, buf, 428 PERF_SAMPLE_MAX_SIZE, &event, NULL); 429 if (err) 430 return err; 431 432 if (event->header.type == PERF_RECORD_AUXTRACE) { 433 if (event->header.size < sizeof(struct perf_record_auxtrace) || 434 event->header.size != sz) { 435 err = -EINVAL; 436 goto out; 437 } 438 file_offset += event->header.size; 439 err = auxtrace_queues__add_event(queues, session, event, 440 file_offset, NULL); 441 } 442 out: 443 return err; 444 } 445 446 void auxtrace_queues__free(struct auxtrace_queues *queues) 447 { 448 unsigned int i; 449 450 for (i = 0; i < queues->nr_queues; i++) { 451 while (!list_empty(&queues->queue_array[i].head)) { 452 struct auxtrace_buffer *buffer; 453 454 buffer = list_entry(queues->queue_array[i].head.next, 455 struct auxtrace_buffer, list); 456 list_del_init(&buffer->list); 457 auxtrace_buffer__free(buffer); 458 } 459 } 460 461 zfree(&queues->queue_array); 462 queues->nr_queues = 0; 463 } 464 465 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 466 unsigned int pos, unsigned int queue_nr, 467 u64 ordinal) 468 { 469 unsigned int parent; 470 471 while (pos) { 472 parent = (pos - 1) >> 1; 473 if (heap_array[parent].ordinal <= ordinal) 474 break; 475 heap_array[pos] = heap_array[parent]; 476 pos = parent; 477 } 478 heap_array[pos].queue_nr = queue_nr; 479 heap_array[pos].ordinal = ordinal; 480 } 481 482 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 483 u64 ordinal) 484 { 485 struct auxtrace_heap_item *heap_array; 486 487 if (queue_nr >= heap->heap_sz) { 488 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 489 490 while (heap_sz <= queue_nr) 491 heap_sz <<= 1; 492 heap_array = realloc(heap->heap_array, 493 heap_sz * sizeof(struct auxtrace_heap_item)); 494 if (!heap_array) 495 return -ENOMEM; 496 heap->heap_array = heap_array; 497 heap->heap_sz = heap_sz; 498 } 499 500 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 501 502 return 0; 503 } 504 505 void auxtrace_heap__free(struct auxtrace_heap *heap) 506 { 507 zfree(&heap->heap_array); 508 heap->heap_cnt = 0; 509 heap->heap_sz = 0; 510 } 511 512 void auxtrace_heap__pop(struct auxtrace_heap *heap) 513 { 514 unsigned int pos, last, heap_cnt = heap->heap_cnt; 515 struct auxtrace_heap_item *heap_array; 516 517 if (!heap_cnt) 518 return; 519 520 heap->heap_cnt -= 1; 521 522 heap_array = heap->heap_array; 523 524 pos = 0; 525 while (1) { 526 unsigned int left, right; 527 528 left = (pos << 1) + 1; 529 if (left >= heap_cnt) 530 break; 531 right = left + 1; 532 if (right >= heap_cnt) { 533 heap_array[pos] = heap_array[left]; 534 return; 535 } 536 if (heap_array[left].ordinal < heap_array[right].ordinal) { 537 heap_array[pos] = heap_array[left]; 538 pos = left; 539 } else { 540 heap_array[pos] = heap_array[right]; 541 pos = right; 542 } 543 } 544 545 last = heap_cnt - 1; 546 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 547 heap_array[last].ordinal); 548 } 549 550 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 551 struct evlist *evlist) 552 { 553 if (itr) 554 return itr->info_priv_size(itr, evlist); 555 return 0; 556 } 557 558 static int auxtrace_not_supported(void) 559 { 560 pr_err("AUX area tracing is not supported on this architecture\n"); 561 return -EINVAL; 562 } 563 564 int auxtrace_record__info_fill(struct auxtrace_record *itr, 565 struct perf_session *session, 566 struct perf_record_auxtrace_info *auxtrace_info, 567 size_t priv_size) 568 { 569 if (itr) 570 return itr->info_fill(itr, session, auxtrace_info, priv_size); 571 return auxtrace_not_supported(); 572 } 573 574 void auxtrace_record__free(struct auxtrace_record *itr) 575 { 576 if (itr) 577 itr->free(itr); 578 } 579 580 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 581 { 582 if (itr && itr->snapshot_start) 583 return itr->snapshot_start(itr); 584 return 0; 585 } 586 587 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit) 588 { 589 if (!on_exit && itr && itr->snapshot_finish) 590 return itr->snapshot_finish(itr); 591 return 0; 592 } 593 594 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 595 struct auxtrace_mmap *mm, 596 unsigned char *data, u64 *head, u64 *old) 597 { 598 if (itr && itr->find_snapshot) 599 return itr->find_snapshot(itr, idx, mm, data, head, old); 600 return 0; 601 } 602 603 int auxtrace_record__options(struct auxtrace_record *itr, 604 struct evlist *evlist, 605 struct record_opts *opts) 606 { 607 if (itr) { 608 itr->evlist = evlist; 609 return itr->recording_options(itr, evlist, opts); 610 } 611 return 0; 612 } 613 614 u64 auxtrace_record__reference(struct auxtrace_record *itr) 615 { 616 if (itr) 617 return itr->reference(itr); 618 return 0; 619 } 620 621 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 622 struct record_opts *opts, const char *str) 623 { 624 if (!str) 625 return 0; 626 627 /* PMU-agnostic options */ 628 switch (*str) { 629 case 'e': 630 opts->auxtrace_snapshot_on_exit = true; 631 str++; 632 break; 633 default: 634 break; 635 } 636 637 if (itr && itr->parse_snapshot_options) 638 return itr->parse_snapshot_options(itr, opts, str); 639 640 pr_err("No AUX area tracing to snapshot\n"); 641 return -EINVAL; 642 } 643 644 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx) 645 { 646 struct evsel *evsel; 647 648 if (!itr->evlist || !itr->pmu) 649 return -EINVAL; 650 651 evlist__for_each_entry(itr->evlist, evsel) { 652 if (evsel->core.attr.type == itr->pmu->type) { 653 if (evsel->disabled) 654 return 0; 655 return evlist__enable_event_idx(itr->evlist, evsel, idx); 656 } 657 } 658 return -EINVAL; 659 } 660 661 /* 662 * Event record size is 16-bit which results in a maximum size of about 64KiB. 663 * Allow about 4KiB for the rest of the sample record, to give a maximum 664 * AUX area sample size of 60KiB. 665 */ 666 #define MAX_AUX_SAMPLE_SIZE (60 * 1024) 667 668 /* Arbitrary default size if no other default provided */ 669 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024) 670 671 static int auxtrace_validate_aux_sample_size(struct evlist *evlist, 672 struct record_opts *opts) 673 { 674 struct evsel *evsel; 675 bool has_aux_leader = false; 676 u32 sz; 677 678 evlist__for_each_entry(evlist, evsel) { 679 sz = evsel->core.attr.aux_sample_size; 680 if (evsel__is_group_leader(evsel)) { 681 has_aux_leader = evsel__is_aux_event(evsel); 682 if (sz) { 683 if (has_aux_leader) 684 pr_err("Cannot add AUX area sampling to an AUX area event\n"); 685 else 686 pr_err("Cannot add AUX area sampling to a group leader\n"); 687 return -EINVAL; 688 } 689 } 690 if (sz > MAX_AUX_SAMPLE_SIZE) { 691 pr_err("AUX area sample size %u too big, max. %d\n", 692 sz, MAX_AUX_SAMPLE_SIZE); 693 return -EINVAL; 694 } 695 if (sz) { 696 if (!has_aux_leader) { 697 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n"); 698 return -EINVAL; 699 } 700 evsel__set_sample_bit(evsel, AUX); 701 opts->auxtrace_sample_mode = true; 702 } else { 703 evsel__reset_sample_bit(evsel, AUX); 704 } 705 } 706 707 if (!opts->auxtrace_sample_mode) { 708 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n"); 709 return -EINVAL; 710 } 711 712 if (!perf_can_aux_sample()) { 713 pr_err("AUX area sampling is not supported by kernel\n"); 714 return -EINVAL; 715 } 716 717 return 0; 718 } 719 720 int auxtrace_parse_sample_options(struct auxtrace_record *itr, 721 struct evlist *evlist, 722 struct record_opts *opts, const char *str) 723 { 724 struct evsel_config_term *term; 725 struct evsel *aux_evsel; 726 bool has_aux_sample_size = false; 727 bool has_aux_leader = false; 728 struct evsel *evsel; 729 char *endptr; 730 unsigned long sz; 731 732 if (!str) 733 goto no_opt; 734 735 if (!itr) { 736 pr_err("No AUX area event to sample\n"); 737 return -EINVAL; 738 } 739 740 sz = strtoul(str, &endptr, 0); 741 if (*endptr || sz > UINT_MAX) { 742 pr_err("Bad AUX area sampling option: '%s'\n", str); 743 return -EINVAL; 744 } 745 746 if (!sz) 747 sz = itr->default_aux_sample_size; 748 749 if (!sz) 750 sz = DEFAULT_AUX_SAMPLE_SIZE; 751 752 /* Set aux_sample_size based on --aux-sample option */ 753 evlist__for_each_entry(evlist, evsel) { 754 if (evsel__is_group_leader(evsel)) { 755 has_aux_leader = evsel__is_aux_event(evsel); 756 } else if (has_aux_leader) { 757 evsel->core.attr.aux_sample_size = sz; 758 } 759 } 760 no_opt: 761 aux_evsel = NULL; 762 /* Override with aux_sample_size from config term */ 763 evlist__for_each_entry(evlist, evsel) { 764 if (evsel__is_aux_event(evsel)) 765 aux_evsel = evsel; 766 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE); 767 if (term) { 768 has_aux_sample_size = true; 769 evsel->core.attr.aux_sample_size = term->val.aux_sample_size; 770 /* If possible, group with the AUX event */ 771 if (aux_evsel && evsel->core.attr.aux_sample_size) 772 evlist__regroup(evlist, aux_evsel, evsel); 773 } 774 } 775 776 if (!str && !has_aux_sample_size) 777 return 0; 778 779 if (!itr) { 780 pr_err("No AUX area event to sample\n"); 781 return -EINVAL; 782 } 783 784 return auxtrace_validate_aux_sample_size(evlist, opts); 785 } 786 787 void auxtrace_regroup_aux_output(struct evlist *evlist) 788 { 789 struct evsel *evsel, *aux_evsel = NULL; 790 struct evsel_config_term *term; 791 792 evlist__for_each_entry(evlist, evsel) { 793 if (evsel__is_aux_event(evsel)) 794 aux_evsel = evsel; 795 term = evsel__get_config_term(evsel, AUX_OUTPUT); 796 /* If possible, group with the AUX event */ 797 if (term && aux_evsel) 798 evlist__regroup(evlist, aux_evsel, evsel); 799 } 800 } 801 802 struct auxtrace_record *__weak 803 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err) 804 { 805 *err = 0; 806 return NULL; 807 } 808 809 static int auxtrace_index__alloc(struct list_head *head) 810 { 811 struct auxtrace_index *auxtrace_index; 812 813 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 814 if (!auxtrace_index) 815 return -ENOMEM; 816 817 auxtrace_index->nr = 0; 818 INIT_LIST_HEAD(&auxtrace_index->list); 819 820 list_add_tail(&auxtrace_index->list, head); 821 822 return 0; 823 } 824 825 void auxtrace_index__free(struct list_head *head) 826 { 827 struct auxtrace_index *auxtrace_index, *n; 828 829 list_for_each_entry_safe(auxtrace_index, n, head, list) { 830 list_del_init(&auxtrace_index->list); 831 free(auxtrace_index); 832 } 833 } 834 835 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 836 { 837 struct auxtrace_index *auxtrace_index; 838 int err; 839 840 if (list_empty(head)) { 841 err = auxtrace_index__alloc(head); 842 if (err) 843 return NULL; 844 } 845 846 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 847 848 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 849 err = auxtrace_index__alloc(head); 850 if (err) 851 return NULL; 852 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 853 list); 854 } 855 856 return auxtrace_index; 857 } 858 859 int auxtrace_index__auxtrace_event(struct list_head *head, 860 union perf_event *event, off_t file_offset) 861 { 862 struct auxtrace_index *auxtrace_index; 863 size_t nr; 864 865 auxtrace_index = auxtrace_index__last(head); 866 if (!auxtrace_index) 867 return -ENOMEM; 868 869 nr = auxtrace_index->nr; 870 auxtrace_index->entries[nr].file_offset = file_offset; 871 auxtrace_index->entries[nr].sz = event->header.size; 872 auxtrace_index->nr += 1; 873 874 return 0; 875 } 876 877 static int auxtrace_index__do_write(int fd, 878 struct auxtrace_index *auxtrace_index) 879 { 880 struct auxtrace_index_entry ent; 881 size_t i; 882 883 for (i = 0; i < auxtrace_index->nr; i++) { 884 ent.file_offset = auxtrace_index->entries[i].file_offset; 885 ent.sz = auxtrace_index->entries[i].sz; 886 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 887 return -errno; 888 } 889 return 0; 890 } 891 892 int auxtrace_index__write(int fd, struct list_head *head) 893 { 894 struct auxtrace_index *auxtrace_index; 895 u64 total = 0; 896 int err; 897 898 list_for_each_entry(auxtrace_index, head, list) 899 total += auxtrace_index->nr; 900 901 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 902 return -errno; 903 904 list_for_each_entry(auxtrace_index, head, list) { 905 err = auxtrace_index__do_write(fd, auxtrace_index); 906 if (err) 907 return err; 908 } 909 910 return 0; 911 } 912 913 static int auxtrace_index__process_entry(int fd, struct list_head *head, 914 bool needs_swap) 915 { 916 struct auxtrace_index *auxtrace_index; 917 struct auxtrace_index_entry ent; 918 size_t nr; 919 920 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 921 return -1; 922 923 auxtrace_index = auxtrace_index__last(head); 924 if (!auxtrace_index) 925 return -1; 926 927 nr = auxtrace_index->nr; 928 if (needs_swap) { 929 auxtrace_index->entries[nr].file_offset = 930 bswap_64(ent.file_offset); 931 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 932 } else { 933 auxtrace_index->entries[nr].file_offset = ent.file_offset; 934 auxtrace_index->entries[nr].sz = ent.sz; 935 } 936 937 auxtrace_index->nr = nr + 1; 938 939 return 0; 940 } 941 942 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 943 bool needs_swap) 944 { 945 struct list_head *head = &session->auxtrace_index; 946 u64 nr; 947 948 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 949 return -1; 950 951 if (needs_swap) 952 nr = bswap_64(nr); 953 954 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 955 return -1; 956 957 while (nr--) { 958 int err; 959 960 err = auxtrace_index__process_entry(fd, head, needs_swap); 961 if (err) 962 return -1; 963 } 964 965 return 0; 966 } 967 968 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 969 struct perf_session *session, 970 struct auxtrace_index_entry *ent) 971 { 972 return auxtrace_queues__add_indexed_event(queues, session, 973 ent->file_offset, ent->sz); 974 } 975 976 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 977 struct perf_session *session) 978 { 979 struct auxtrace_index *auxtrace_index; 980 struct auxtrace_index_entry *ent; 981 size_t i; 982 int err; 983 984 if (auxtrace__dont_decode(session)) 985 return 0; 986 987 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 988 for (i = 0; i < auxtrace_index->nr; i++) { 989 ent = &auxtrace_index->entries[i]; 990 err = auxtrace_queues__process_index_entry(queues, 991 session, 992 ent); 993 if (err) 994 return err; 995 } 996 } 997 return 0; 998 } 999 1000 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 1001 struct auxtrace_buffer *buffer) 1002 { 1003 if (buffer) { 1004 if (list_is_last(&buffer->list, &queue->head)) 1005 return NULL; 1006 return list_entry(buffer->list.next, struct auxtrace_buffer, 1007 list); 1008 } else { 1009 if (list_empty(&queue->head)) 1010 return NULL; 1011 return list_entry(queue->head.next, struct auxtrace_buffer, 1012 list); 1013 } 1014 } 1015 1016 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues, 1017 struct perf_sample *sample, 1018 struct perf_session *session) 1019 { 1020 struct perf_sample_id *sid; 1021 unsigned int idx; 1022 u64 id; 1023 1024 id = sample->id; 1025 if (!id) 1026 return NULL; 1027 1028 sid = evlist__id2sid(session->evlist, id); 1029 if (!sid) 1030 return NULL; 1031 1032 idx = sid->idx; 1033 1034 if (idx >= queues->nr_queues) 1035 return NULL; 1036 1037 return &queues->queue_array[idx]; 1038 } 1039 1040 int auxtrace_queues__add_sample(struct auxtrace_queues *queues, 1041 struct perf_session *session, 1042 struct perf_sample *sample, u64 data_offset, 1043 u64 reference) 1044 { 1045 struct auxtrace_buffer buffer = { 1046 .pid = -1, 1047 .data_offset = data_offset, 1048 .reference = reference, 1049 .size = sample->aux_sample.size, 1050 }; 1051 struct perf_sample_id *sid; 1052 u64 id = sample->id; 1053 unsigned int idx; 1054 1055 if (!id) 1056 return -EINVAL; 1057 1058 sid = evlist__id2sid(session->evlist, id); 1059 if (!sid) 1060 return -ENOENT; 1061 1062 idx = sid->idx; 1063 buffer.tid = sid->tid; 1064 buffer.cpu = sid->cpu; 1065 1066 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL); 1067 } 1068 1069 struct queue_data { 1070 bool samples; 1071 bool events; 1072 }; 1073 1074 static int auxtrace_queue_data_cb(struct perf_session *session, 1075 union perf_event *event, u64 offset, 1076 void *data) 1077 { 1078 struct queue_data *qd = data; 1079 struct perf_sample sample; 1080 int err; 1081 1082 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) { 1083 if (event->header.size < sizeof(struct perf_record_auxtrace)) 1084 return -EINVAL; 1085 offset += event->header.size; 1086 return session->auxtrace->queue_data(session, NULL, event, 1087 offset); 1088 } 1089 1090 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE) 1091 return 0; 1092 1093 err = evlist__parse_sample(session->evlist, event, &sample); 1094 if (err) 1095 return err; 1096 1097 if (!sample.aux_sample.size) 1098 return 0; 1099 1100 offset += sample.aux_sample.data - (void *)event; 1101 1102 return session->auxtrace->queue_data(session, &sample, NULL, offset); 1103 } 1104 1105 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events) 1106 { 1107 struct queue_data qd = { 1108 .samples = samples, 1109 .events = events, 1110 }; 1111 1112 if (auxtrace__dont_decode(session)) 1113 return 0; 1114 1115 if (!session->auxtrace || !session->auxtrace->queue_data) 1116 return -EINVAL; 1117 1118 return perf_session__peek_events(session, session->header.data_offset, 1119 session->header.data_size, 1120 auxtrace_queue_data_cb, &qd); 1121 } 1122 1123 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw) 1124 { 1125 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ; 1126 size_t adj = buffer->data_offset & (page_size - 1); 1127 size_t size = buffer->size + adj; 1128 off_t file_offset = buffer->data_offset - adj; 1129 void *addr; 1130 1131 if (buffer->data) 1132 return buffer->data; 1133 1134 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset); 1135 if (addr == MAP_FAILED) 1136 return NULL; 1137 1138 buffer->mmap_addr = addr; 1139 buffer->mmap_size = size; 1140 1141 buffer->data = addr + adj; 1142 1143 return buffer->data; 1144 } 1145 1146 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 1147 { 1148 if (!buffer->data || !buffer->mmap_addr) 1149 return; 1150 munmap(buffer->mmap_addr, buffer->mmap_size); 1151 buffer->mmap_addr = NULL; 1152 buffer->mmap_size = 0; 1153 buffer->data = NULL; 1154 buffer->use_data = NULL; 1155 } 1156 1157 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 1158 { 1159 auxtrace_buffer__put_data(buffer); 1160 if (buffer->data_needs_freeing) { 1161 buffer->data_needs_freeing = false; 1162 zfree(&buffer->data); 1163 buffer->use_data = NULL; 1164 buffer->size = 0; 1165 } 1166 } 1167 1168 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 1169 { 1170 auxtrace_buffer__drop_data(buffer); 1171 free(buffer); 1172 } 1173 1174 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1175 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1176 const char *msg, u64 timestamp) 1177 { 1178 size_t size; 1179 1180 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error)); 1181 1182 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 1183 auxtrace_error->type = type; 1184 auxtrace_error->code = code; 1185 auxtrace_error->cpu = cpu; 1186 auxtrace_error->pid = pid; 1187 auxtrace_error->tid = tid; 1188 auxtrace_error->fmt = 1; 1189 auxtrace_error->ip = ip; 1190 auxtrace_error->time = timestamp; 1191 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 1192 1193 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 1194 strlen(auxtrace_error->msg) + 1; 1195 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 1196 } 1197 1198 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 1199 struct perf_tool *tool, 1200 struct perf_session *session, 1201 perf_event__handler_t process) 1202 { 1203 union perf_event *ev; 1204 size_t priv_size; 1205 int err; 1206 1207 pr_debug2("Synthesizing auxtrace information\n"); 1208 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 1209 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size); 1210 if (!ev) 1211 return -ENOMEM; 1212 1213 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 1214 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) + 1215 priv_size; 1216 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 1217 priv_size); 1218 if (err) 1219 goto out_free; 1220 1221 err = process(tool, ev, NULL, NULL); 1222 out_free: 1223 free(ev); 1224 return err; 1225 } 1226 1227 static void unleader_evsel(struct evlist *evlist, struct evsel *leader) 1228 { 1229 struct evsel *new_leader = NULL; 1230 struct evsel *evsel; 1231 1232 /* Find new leader for the group */ 1233 evlist__for_each_entry(evlist, evsel) { 1234 if (evsel->leader != leader || evsel == leader) 1235 continue; 1236 if (!new_leader) 1237 new_leader = evsel; 1238 evsel->leader = new_leader; 1239 } 1240 1241 /* Update group information */ 1242 if (new_leader) { 1243 zfree(&new_leader->group_name); 1244 new_leader->group_name = leader->group_name; 1245 leader->group_name = NULL; 1246 1247 new_leader->core.nr_members = leader->core.nr_members - 1; 1248 leader->core.nr_members = 1; 1249 } 1250 } 1251 1252 static void unleader_auxtrace(struct perf_session *session) 1253 { 1254 struct evsel *evsel; 1255 1256 evlist__for_each_entry(session->evlist, evsel) { 1257 if (auxtrace__evsel_is_auxtrace(session, evsel) && 1258 evsel__is_group_leader(evsel)) { 1259 unleader_evsel(session->evlist, evsel); 1260 } 1261 } 1262 } 1263 1264 int perf_event__process_auxtrace_info(struct perf_session *session, 1265 union perf_event *event) 1266 { 1267 enum auxtrace_type type = event->auxtrace_info.type; 1268 int err; 1269 1270 if (dump_trace) 1271 fprintf(stdout, " type: %u\n", type); 1272 1273 switch (type) { 1274 case PERF_AUXTRACE_INTEL_PT: 1275 err = intel_pt_process_auxtrace_info(event, session); 1276 break; 1277 case PERF_AUXTRACE_INTEL_BTS: 1278 err = intel_bts_process_auxtrace_info(event, session); 1279 break; 1280 case PERF_AUXTRACE_ARM_SPE: 1281 err = arm_spe_process_auxtrace_info(event, session); 1282 break; 1283 case PERF_AUXTRACE_CS_ETM: 1284 err = cs_etm__process_auxtrace_info(event, session); 1285 break; 1286 case PERF_AUXTRACE_S390_CPUMSF: 1287 err = s390_cpumsf_process_auxtrace_info(event, session); 1288 break; 1289 case PERF_AUXTRACE_UNKNOWN: 1290 default: 1291 return -EINVAL; 1292 } 1293 1294 if (err) 1295 return err; 1296 1297 unleader_auxtrace(session); 1298 1299 return 0; 1300 } 1301 1302 s64 perf_event__process_auxtrace(struct perf_session *session, 1303 union perf_event *event) 1304 { 1305 s64 err; 1306 1307 if (dump_trace) 1308 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n", 1309 event->auxtrace.size, event->auxtrace.offset, 1310 event->auxtrace.reference, event->auxtrace.idx, 1311 event->auxtrace.tid, event->auxtrace.cpu); 1312 1313 if (auxtrace__dont_decode(session)) 1314 return event->auxtrace.size; 1315 1316 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 1317 return -EINVAL; 1318 1319 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 1320 if (err < 0) 1321 return err; 1322 1323 return event->auxtrace.size; 1324 } 1325 1326 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 1327 #define PERF_ITRACE_DEFAULT_PERIOD 100000 1328 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 1329 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 1330 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 1331 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 1332 1333 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, 1334 bool no_sample) 1335 { 1336 synth_opts->branches = true; 1337 synth_opts->transactions = true; 1338 synth_opts->ptwrites = true; 1339 synth_opts->pwr_events = true; 1340 synth_opts->other_events = true; 1341 synth_opts->errors = true; 1342 synth_opts->flc = true; 1343 synth_opts->llc = true; 1344 synth_opts->tlb = true; 1345 synth_opts->mem = true; 1346 synth_opts->remote_access = true; 1347 1348 if (no_sample) { 1349 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; 1350 synth_opts->period = 1; 1351 synth_opts->calls = true; 1352 } else { 1353 synth_opts->instructions = true; 1354 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1355 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1356 } 1357 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1358 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1359 synth_opts->initial_skip = 0; 1360 } 1361 1362 static int get_flag(const char **ptr, unsigned int *flags) 1363 { 1364 while (1) { 1365 char c = **ptr; 1366 1367 if (c >= 'a' && c <= 'z') { 1368 *flags |= 1 << (c - 'a'); 1369 ++*ptr; 1370 return 0; 1371 } else if (c == ' ') { 1372 ++*ptr; 1373 continue; 1374 } else { 1375 return -1; 1376 } 1377 } 1378 } 1379 1380 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags) 1381 { 1382 while (1) { 1383 switch (**ptr) { 1384 case '+': 1385 ++*ptr; 1386 if (get_flag(ptr, plus_flags)) 1387 return -1; 1388 break; 1389 case '-': 1390 ++*ptr; 1391 if (get_flag(ptr, minus_flags)) 1392 return -1; 1393 break; 1394 case ' ': 1395 ++*ptr; 1396 break; 1397 default: 1398 return 0; 1399 } 1400 } 1401 } 1402 1403 /* 1404 * Please check tools/perf/Documentation/perf-script.txt for information 1405 * about the options parsed here, which is introduced after this cset, 1406 * when support in 'perf script' for these options is introduced. 1407 */ 1408 int itrace_parse_synth_opts(const struct option *opt, const char *str, 1409 int unset) 1410 { 1411 struct itrace_synth_opts *synth_opts = opt->value; 1412 const char *p; 1413 char *endptr; 1414 bool period_type_set = false; 1415 bool period_set = false; 1416 1417 synth_opts->set = true; 1418 1419 if (unset) { 1420 synth_opts->dont_decode = true; 1421 return 0; 1422 } 1423 1424 if (!str) { 1425 itrace_synth_opts__set_default(synth_opts, 1426 synth_opts->default_no_sample); 1427 return 0; 1428 } 1429 1430 for (p = str; *p;) { 1431 switch (*p++) { 1432 case 'i': 1433 synth_opts->instructions = true; 1434 while (*p == ' ' || *p == ',') 1435 p += 1; 1436 if (isdigit(*p)) { 1437 synth_opts->period = strtoull(p, &endptr, 10); 1438 period_set = true; 1439 p = endptr; 1440 while (*p == ' ' || *p == ',') 1441 p += 1; 1442 switch (*p++) { 1443 case 'i': 1444 synth_opts->period_type = 1445 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1446 period_type_set = true; 1447 break; 1448 case 't': 1449 synth_opts->period_type = 1450 PERF_ITRACE_PERIOD_TICKS; 1451 period_type_set = true; 1452 break; 1453 case 'm': 1454 synth_opts->period *= 1000; 1455 /* Fall through */ 1456 case 'u': 1457 synth_opts->period *= 1000; 1458 /* Fall through */ 1459 case 'n': 1460 if (*p++ != 's') 1461 goto out_err; 1462 synth_opts->period_type = 1463 PERF_ITRACE_PERIOD_NANOSECS; 1464 period_type_set = true; 1465 break; 1466 case '\0': 1467 goto out; 1468 default: 1469 goto out_err; 1470 } 1471 } 1472 break; 1473 case 'b': 1474 synth_opts->branches = true; 1475 break; 1476 case 'x': 1477 synth_opts->transactions = true; 1478 break; 1479 case 'w': 1480 synth_opts->ptwrites = true; 1481 break; 1482 case 'p': 1483 synth_opts->pwr_events = true; 1484 break; 1485 case 'o': 1486 synth_opts->other_events = true; 1487 break; 1488 case 'e': 1489 synth_opts->errors = true; 1490 if (get_flags(&p, &synth_opts->error_plus_flags, 1491 &synth_opts->error_minus_flags)) 1492 goto out_err; 1493 break; 1494 case 'd': 1495 synth_opts->log = true; 1496 if (get_flags(&p, &synth_opts->log_plus_flags, 1497 &synth_opts->log_minus_flags)) 1498 goto out_err; 1499 break; 1500 case 'c': 1501 synth_opts->branches = true; 1502 synth_opts->calls = true; 1503 break; 1504 case 'r': 1505 synth_opts->branches = true; 1506 synth_opts->returns = true; 1507 break; 1508 case 'G': 1509 case 'g': 1510 if (p[-1] == 'G') 1511 synth_opts->add_callchain = true; 1512 else 1513 synth_opts->callchain = true; 1514 synth_opts->callchain_sz = 1515 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1516 while (*p == ' ' || *p == ',') 1517 p += 1; 1518 if (isdigit(*p)) { 1519 unsigned int val; 1520 1521 val = strtoul(p, &endptr, 10); 1522 p = endptr; 1523 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1524 goto out_err; 1525 synth_opts->callchain_sz = val; 1526 } 1527 break; 1528 case 'L': 1529 case 'l': 1530 if (p[-1] == 'L') 1531 synth_opts->add_last_branch = true; 1532 else 1533 synth_opts->last_branch = true; 1534 synth_opts->last_branch_sz = 1535 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1536 while (*p == ' ' || *p == ',') 1537 p += 1; 1538 if (isdigit(*p)) { 1539 unsigned int val; 1540 1541 val = strtoul(p, &endptr, 10); 1542 p = endptr; 1543 if (!val || 1544 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1545 goto out_err; 1546 synth_opts->last_branch_sz = val; 1547 } 1548 break; 1549 case 's': 1550 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1551 if (p == endptr) 1552 goto out_err; 1553 p = endptr; 1554 break; 1555 case 'f': 1556 synth_opts->flc = true; 1557 break; 1558 case 'm': 1559 synth_opts->llc = true; 1560 break; 1561 case 't': 1562 synth_opts->tlb = true; 1563 break; 1564 case 'a': 1565 synth_opts->remote_access = true; 1566 break; 1567 case 'M': 1568 synth_opts->mem = true; 1569 break; 1570 case 'q': 1571 synth_opts->quick += 1; 1572 break; 1573 case 'Z': 1574 synth_opts->timeless_decoding = true; 1575 break; 1576 case ' ': 1577 case ',': 1578 break; 1579 default: 1580 goto out_err; 1581 } 1582 } 1583 out: 1584 if (synth_opts->instructions) { 1585 if (!period_type_set) 1586 synth_opts->period_type = 1587 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1588 if (!period_set) 1589 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1590 } 1591 1592 return 0; 1593 1594 out_err: 1595 pr_err("Bad Instruction Tracing options '%s'\n", str); 1596 return -EINVAL; 1597 } 1598 1599 static const char * const auxtrace_error_type_name[] = { 1600 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1601 }; 1602 1603 static const char *auxtrace_error_name(int type) 1604 { 1605 const char *error_type_name = NULL; 1606 1607 if (type < PERF_AUXTRACE_ERROR_MAX) 1608 error_type_name = auxtrace_error_type_name[type]; 1609 if (!error_type_name) 1610 error_type_name = "unknown AUX"; 1611 return error_type_name; 1612 } 1613 1614 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1615 { 1616 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1617 unsigned long long nsecs = e->time; 1618 const char *msg = e->msg; 1619 int ret; 1620 1621 ret = fprintf(fp, " %s error type %u", 1622 auxtrace_error_name(e->type), e->type); 1623 1624 if (e->fmt && nsecs) { 1625 unsigned long secs = nsecs / NSEC_PER_SEC; 1626 1627 nsecs -= secs * NSEC_PER_SEC; 1628 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); 1629 } else { 1630 ret += fprintf(fp, " time 0"); 1631 } 1632 1633 if (!e->fmt) 1634 msg = (const char *)&e->time; 1635 1636 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n", 1637 e->cpu, e->pid, e->tid, e->ip, e->code, msg); 1638 return ret; 1639 } 1640 1641 void perf_session__auxtrace_error_inc(struct perf_session *session, 1642 union perf_event *event) 1643 { 1644 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1645 1646 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1647 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1648 } 1649 1650 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1651 { 1652 int i; 1653 1654 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1655 if (!stats->nr_auxtrace_errors[i]) 1656 continue; 1657 ui__warning("%u %s errors\n", 1658 stats->nr_auxtrace_errors[i], 1659 auxtrace_error_name(i)); 1660 } 1661 } 1662 1663 int perf_event__process_auxtrace_error(struct perf_session *session, 1664 union perf_event *event) 1665 { 1666 if (auxtrace__dont_decode(session)) 1667 return 0; 1668 1669 perf_event__fprintf_auxtrace_error(event, stdout); 1670 return 0; 1671 } 1672 1673 static int __auxtrace_mmap__read(struct mmap *map, 1674 struct auxtrace_record *itr, 1675 struct perf_tool *tool, process_auxtrace_t fn, 1676 bool snapshot, size_t snapshot_size) 1677 { 1678 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1679 u64 head, old = mm->prev, offset, ref; 1680 unsigned char *data = mm->base; 1681 size_t size, head_off, old_off, len1, len2, padding; 1682 union perf_event ev; 1683 void *data1, *data2; 1684 1685 if (snapshot) { 1686 head = auxtrace_mmap__read_snapshot_head(mm); 1687 if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data, 1688 &head, &old)) 1689 return -1; 1690 } else { 1691 head = auxtrace_mmap__read_head(mm); 1692 } 1693 1694 if (old == head) 1695 return 0; 1696 1697 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1698 mm->idx, old, head, head - old); 1699 1700 if (mm->mask) { 1701 head_off = head & mm->mask; 1702 old_off = old & mm->mask; 1703 } else { 1704 head_off = head % mm->len; 1705 old_off = old % mm->len; 1706 } 1707 1708 if (head_off > old_off) 1709 size = head_off - old_off; 1710 else 1711 size = mm->len - (old_off - head_off); 1712 1713 if (snapshot && size > snapshot_size) 1714 size = snapshot_size; 1715 1716 ref = auxtrace_record__reference(itr); 1717 1718 if (head > old || size <= head || mm->mask) { 1719 offset = head - size; 1720 } else { 1721 /* 1722 * When the buffer size is not a power of 2, 'head' wraps at the 1723 * highest multiple of the buffer size, so we have to subtract 1724 * the remainder here. 1725 */ 1726 u64 rem = (0ULL - mm->len) % mm->len; 1727 1728 offset = head - size - rem; 1729 } 1730 1731 if (size > head_off) { 1732 len1 = size - head_off; 1733 data1 = &data[mm->len - len1]; 1734 len2 = head_off; 1735 data2 = &data[0]; 1736 } else { 1737 len1 = size; 1738 data1 = &data[head_off - len1]; 1739 len2 = 0; 1740 data2 = NULL; 1741 } 1742 1743 if (itr->alignment) { 1744 unsigned int unwanted = len1 % itr->alignment; 1745 1746 len1 -= unwanted; 1747 size -= unwanted; 1748 } 1749 1750 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1751 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); 1752 if (padding) 1753 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; 1754 1755 memset(&ev, 0, sizeof(ev)); 1756 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1757 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1758 ev.auxtrace.size = size + padding; 1759 ev.auxtrace.offset = offset; 1760 ev.auxtrace.reference = ref; 1761 ev.auxtrace.idx = mm->idx; 1762 ev.auxtrace.tid = mm->tid; 1763 ev.auxtrace.cpu = mm->cpu; 1764 1765 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1766 return -1; 1767 1768 mm->prev = head; 1769 1770 if (!snapshot) { 1771 auxtrace_mmap__write_tail(mm, head); 1772 if (itr->read_finish) { 1773 int err; 1774 1775 err = itr->read_finish(itr, mm->idx); 1776 if (err < 0) 1777 return err; 1778 } 1779 } 1780 1781 return 1; 1782 } 1783 1784 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, 1785 struct perf_tool *tool, process_auxtrace_t fn) 1786 { 1787 return __auxtrace_mmap__read(map, itr, tool, fn, false, 0); 1788 } 1789 1790 int auxtrace_mmap__read_snapshot(struct mmap *map, 1791 struct auxtrace_record *itr, 1792 struct perf_tool *tool, process_auxtrace_t fn, 1793 size_t snapshot_size) 1794 { 1795 return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size); 1796 } 1797 1798 /** 1799 * struct auxtrace_cache - hash table to implement a cache 1800 * @hashtable: the hashtable 1801 * @sz: hashtable size (number of hlists) 1802 * @entry_size: size of an entry 1803 * @limit: limit the number of entries to this maximum, when reached the cache 1804 * is dropped and caching begins again with an empty cache 1805 * @cnt: current number of entries 1806 * @bits: hashtable size (@sz = 2^@bits) 1807 */ 1808 struct auxtrace_cache { 1809 struct hlist_head *hashtable; 1810 size_t sz; 1811 size_t entry_size; 1812 size_t limit; 1813 size_t cnt; 1814 unsigned int bits; 1815 }; 1816 1817 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 1818 unsigned int limit_percent) 1819 { 1820 struct auxtrace_cache *c; 1821 struct hlist_head *ht; 1822 size_t sz, i; 1823 1824 c = zalloc(sizeof(struct auxtrace_cache)); 1825 if (!c) 1826 return NULL; 1827 1828 sz = 1UL << bits; 1829 1830 ht = calloc(sz, sizeof(struct hlist_head)); 1831 if (!ht) 1832 goto out_free; 1833 1834 for (i = 0; i < sz; i++) 1835 INIT_HLIST_HEAD(&ht[i]); 1836 1837 c->hashtable = ht; 1838 c->sz = sz; 1839 c->entry_size = entry_size; 1840 c->limit = (c->sz * limit_percent) / 100; 1841 c->bits = bits; 1842 1843 return c; 1844 1845 out_free: 1846 free(c); 1847 return NULL; 1848 } 1849 1850 static void auxtrace_cache__drop(struct auxtrace_cache *c) 1851 { 1852 struct auxtrace_cache_entry *entry; 1853 struct hlist_node *tmp; 1854 size_t i; 1855 1856 if (!c) 1857 return; 1858 1859 for (i = 0; i < c->sz; i++) { 1860 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 1861 hlist_del(&entry->hash); 1862 auxtrace_cache__free_entry(c, entry); 1863 } 1864 } 1865 1866 c->cnt = 0; 1867 } 1868 1869 void auxtrace_cache__free(struct auxtrace_cache *c) 1870 { 1871 if (!c) 1872 return; 1873 1874 auxtrace_cache__drop(c); 1875 zfree(&c->hashtable); 1876 free(c); 1877 } 1878 1879 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 1880 { 1881 return malloc(c->entry_size); 1882 } 1883 1884 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 1885 void *entry) 1886 { 1887 free(entry); 1888 } 1889 1890 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 1891 struct auxtrace_cache_entry *entry) 1892 { 1893 if (c->limit && ++c->cnt > c->limit) 1894 auxtrace_cache__drop(c); 1895 1896 entry->key = key; 1897 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 1898 1899 return 0; 1900 } 1901 1902 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c, 1903 u32 key) 1904 { 1905 struct auxtrace_cache_entry *entry; 1906 struct hlist_head *hlist; 1907 struct hlist_node *n; 1908 1909 if (!c) 1910 return NULL; 1911 1912 hlist = &c->hashtable[hash_32(key, c->bits)]; 1913 hlist_for_each_entry_safe(entry, n, hlist, hash) { 1914 if (entry->key == key) { 1915 hlist_del(&entry->hash); 1916 return entry; 1917 } 1918 } 1919 1920 return NULL; 1921 } 1922 1923 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key) 1924 { 1925 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key); 1926 1927 auxtrace_cache__free_entry(c, entry); 1928 } 1929 1930 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 1931 { 1932 struct auxtrace_cache_entry *entry; 1933 struct hlist_head *hlist; 1934 1935 if (!c) 1936 return NULL; 1937 1938 hlist = &c->hashtable[hash_32(key, c->bits)]; 1939 hlist_for_each_entry(entry, hlist, hash) { 1940 if (entry->key == key) 1941 return entry; 1942 } 1943 1944 return NULL; 1945 } 1946 1947 static void addr_filter__free_str(struct addr_filter *filt) 1948 { 1949 zfree(&filt->str); 1950 filt->action = NULL; 1951 filt->sym_from = NULL; 1952 filt->sym_to = NULL; 1953 filt->filename = NULL; 1954 } 1955 1956 static struct addr_filter *addr_filter__new(void) 1957 { 1958 struct addr_filter *filt = zalloc(sizeof(*filt)); 1959 1960 if (filt) 1961 INIT_LIST_HEAD(&filt->list); 1962 1963 return filt; 1964 } 1965 1966 static void addr_filter__free(struct addr_filter *filt) 1967 { 1968 if (filt) 1969 addr_filter__free_str(filt); 1970 free(filt); 1971 } 1972 1973 static void addr_filters__add(struct addr_filters *filts, 1974 struct addr_filter *filt) 1975 { 1976 list_add_tail(&filt->list, &filts->head); 1977 filts->cnt += 1; 1978 } 1979 1980 static void addr_filters__del(struct addr_filters *filts, 1981 struct addr_filter *filt) 1982 { 1983 list_del_init(&filt->list); 1984 filts->cnt -= 1; 1985 } 1986 1987 void addr_filters__init(struct addr_filters *filts) 1988 { 1989 INIT_LIST_HEAD(&filts->head); 1990 filts->cnt = 0; 1991 } 1992 1993 void addr_filters__exit(struct addr_filters *filts) 1994 { 1995 struct addr_filter *filt, *n; 1996 1997 list_for_each_entry_safe(filt, n, &filts->head, list) { 1998 addr_filters__del(filts, filt); 1999 addr_filter__free(filt); 2000 } 2001 } 2002 2003 static int parse_num_or_str(char **inp, u64 *num, const char **str, 2004 const char *str_delim) 2005 { 2006 *inp += strspn(*inp, " "); 2007 2008 if (isdigit(**inp)) { 2009 char *endptr; 2010 2011 if (!num) 2012 return -EINVAL; 2013 errno = 0; 2014 *num = strtoull(*inp, &endptr, 0); 2015 if (errno) 2016 return -errno; 2017 if (endptr == *inp) 2018 return -EINVAL; 2019 *inp = endptr; 2020 } else { 2021 size_t n; 2022 2023 if (!str) 2024 return -EINVAL; 2025 *inp += strspn(*inp, " "); 2026 *str = *inp; 2027 n = strcspn(*inp, str_delim); 2028 if (!n) 2029 return -EINVAL; 2030 *inp += n; 2031 if (**inp) { 2032 **inp = '\0'; 2033 *inp += 1; 2034 } 2035 } 2036 return 0; 2037 } 2038 2039 static int parse_action(struct addr_filter *filt) 2040 { 2041 if (!strcmp(filt->action, "filter")) { 2042 filt->start = true; 2043 filt->range = true; 2044 } else if (!strcmp(filt->action, "start")) { 2045 filt->start = true; 2046 } else if (!strcmp(filt->action, "stop")) { 2047 filt->start = false; 2048 } else if (!strcmp(filt->action, "tracestop")) { 2049 filt->start = false; 2050 filt->range = true; 2051 filt->action += 5; /* Change 'tracestop' to 'stop' */ 2052 } else { 2053 return -EINVAL; 2054 } 2055 return 0; 2056 } 2057 2058 static int parse_sym_idx(char **inp, int *idx) 2059 { 2060 *idx = -1; 2061 2062 *inp += strspn(*inp, " "); 2063 2064 if (**inp != '#') 2065 return 0; 2066 2067 *inp += 1; 2068 2069 if (**inp == 'g' || **inp == 'G') { 2070 *inp += 1; 2071 *idx = 0; 2072 } else { 2073 unsigned long num; 2074 char *endptr; 2075 2076 errno = 0; 2077 num = strtoul(*inp, &endptr, 0); 2078 if (errno) 2079 return -errno; 2080 if (endptr == *inp || num > INT_MAX) 2081 return -EINVAL; 2082 *inp = endptr; 2083 *idx = num; 2084 } 2085 2086 return 0; 2087 } 2088 2089 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 2090 { 2091 int err = parse_num_or_str(inp, num, str, " "); 2092 2093 if (!err && *str) 2094 err = parse_sym_idx(inp, idx); 2095 2096 return err; 2097 } 2098 2099 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 2100 { 2101 char *fstr; 2102 int err; 2103 2104 filt->str = fstr = strdup(*filter_inp); 2105 if (!fstr) 2106 return -ENOMEM; 2107 2108 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 2109 if (err) 2110 goto out_err; 2111 2112 err = parse_action(filt); 2113 if (err) 2114 goto out_err; 2115 2116 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 2117 &filt->sym_from_idx); 2118 if (err) 2119 goto out_err; 2120 2121 fstr += strspn(fstr, " "); 2122 2123 if (*fstr == '/') { 2124 fstr += 1; 2125 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 2126 &filt->sym_to_idx); 2127 if (err) 2128 goto out_err; 2129 filt->range = true; 2130 } 2131 2132 fstr += strspn(fstr, " "); 2133 2134 if (*fstr == '@') { 2135 fstr += 1; 2136 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 2137 if (err) 2138 goto out_err; 2139 } 2140 2141 fstr += strspn(fstr, " ,"); 2142 2143 *filter_inp += fstr - filt->str; 2144 2145 return 0; 2146 2147 out_err: 2148 addr_filter__free_str(filt); 2149 2150 return err; 2151 } 2152 2153 int addr_filters__parse_bare_filter(struct addr_filters *filts, 2154 const char *filter) 2155 { 2156 struct addr_filter *filt; 2157 const char *fstr = filter; 2158 int err; 2159 2160 while (*fstr) { 2161 filt = addr_filter__new(); 2162 err = parse_one_filter(filt, &fstr); 2163 if (err) { 2164 addr_filter__free(filt); 2165 addr_filters__exit(filts); 2166 return err; 2167 } 2168 addr_filters__add(filts, filt); 2169 } 2170 2171 return 0; 2172 } 2173 2174 struct sym_args { 2175 const char *name; 2176 u64 start; 2177 u64 size; 2178 int idx; 2179 int cnt; 2180 bool started; 2181 bool global; 2182 bool selected; 2183 bool duplicate; 2184 bool near; 2185 }; 2186 2187 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 2188 { 2189 /* A function with the same name, and global or the n'th found or any */ 2190 return kallsyms__is_function(type) && 2191 !strcmp(name, args->name) && 2192 ((args->global && isupper(type)) || 2193 (args->selected && ++(args->cnt) == args->idx) || 2194 (!args->global && !args->selected)); 2195 } 2196 2197 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2198 { 2199 struct sym_args *args = arg; 2200 2201 if (args->started) { 2202 if (!args->size) 2203 args->size = start - args->start; 2204 if (args->selected) { 2205 if (args->size) 2206 return 1; 2207 } else if (kern_sym_match(args, name, type)) { 2208 args->duplicate = true; 2209 return 1; 2210 } 2211 } else if (kern_sym_match(args, name, type)) { 2212 args->started = true; 2213 args->start = start; 2214 } 2215 2216 return 0; 2217 } 2218 2219 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2220 { 2221 struct sym_args *args = arg; 2222 2223 if (kern_sym_match(args, name, type)) { 2224 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2225 ++args->cnt, start, type, name); 2226 args->near = true; 2227 } else if (args->near) { 2228 args->near = false; 2229 pr_err("\t\twhich is near\t\t%s\n", name); 2230 } 2231 2232 return 0; 2233 } 2234 2235 static int sym_not_found_error(const char *sym_name, int idx) 2236 { 2237 if (idx > 0) { 2238 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 2239 idx, sym_name); 2240 } else if (!idx) { 2241 pr_err("Global symbol '%s' not found.\n", sym_name); 2242 } else { 2243 pr_err("Symbol '%s' not found.\n", sym_name); 2244 } 2245 pr_err("Note that symbols must be functions.\n"); 2246 2247 return -EINVAL; 2248 } 2249 2250 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 2251 { 2252 struct sym_args args = { 2253 .name = sym_name, 2254 .idx = idx, 2255 .global = !idx, 2256 .selected = idx > 0, 2257 }; 2258 int err; 2259 2260 *start = 0; 2261 *size = 0; 2262 2263 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 2264 if (err < 0) { 2265 pr_err("Failed to parse /proc/kallsyms\n"); 2266 return err; 2267 } 2268 2269 if (args.duplicate) { 2270 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 2271 args.cnt = 0; 2272 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 2273 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2274 sym_name); 2275 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2276 return -EINVAL; 2277 } 2278 2279 if (!args.started) { 2280 pr_err("Kernel symbol lookup: "); 2281 return sym_not_found_error(sym_name, idx); 2282 } 2283 2284 *start = args.start; 2285 *size = args.size; 2286 2287 return 0; 2288 } 2289 2290 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 2291 char type, u64 start) 2292 { 2293 struct sym_args *args = arg; 2294 2295 if (!kallsyms__is_function(type)) 2296 return 0; 2297 2298 if (!args->started) { 2299 args->started = true; 2300 args->start = start; 2301 } 2302 /* Don't know exactly where the kernel ends, so we add a page */ 2303 args->size = round_up(start, page_size) + page_size - args->start; 2304 2305 return 0; 2306 } 2307 2308 static int addr_filter__entire_kernel(struct addr_filter *filt) 2309 { 2310 struct sym_args args = { .started = false }; 2311 int err; 2312 2313 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 2314 if (err < 0 || !args.started) { 2315 pr_err("Failed to parse /proc/kallsyms\n"); 2316 return err; 2317 } 2318 2319 filt->addr = args.start; 2320 filt->size = args.size; 2321 2322 return 0; 2323 } 2324 2325 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 2326 { 2327 if (start + size >= filt->addr) 2328 return 0; 2329 2330 if (filt->sym_from) { 2331 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 2332 filt->sym_to, start, filt->sym_from, filt->addr); 2333 } else { 2334 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 2335 filt->sym_to, start, filt->addr); 2336 } 2337 2338 return -EINVAL; 2339 } 2340 2341 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 2342 { 2343 bool no_size = false; 2344 u64 start, size; 2345 int err; 2346 2347 if (symbol_conf.kptr_restrict) { 2348 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 2349 return -EINVAL; 2350 } 2351 2352 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 2353 return addr_filter__entire_kernel(filt); 2354 2355 if (filt->sym_from) { 2356 err = find_kern_sym(filt->sym_from, &start, &size, 2357 filt->sym_from_idx); 2358 if (err) 2359 return err; 2360 filt->addr = start; 2361 if (filt->range && !filt->size && !filt->sym_to) { 2362 filt->size = size; 2363 no_size = !size; 2364 } 2365 } 2366 2367 if (filt->sym_to) { 2368 err = find_kern_sym(filt->sym_to, &start, &size, 2369 filt->sym_to_idx); 2370 if (err) 2371 return err; 2372 2373 err = check_end_after_start(filt, start, size); 2374 if (err) 2375 return err; 2376 filt->size = start + size - filt->addr; 2377 no_size = !size; 2378 } 2379 2380 /* The very last symbol in kallsyms does not imply a particular size */ 2381 if (no_size) { 2382 pr_err("Cannot determine size of symbol '%s'\n", 2383 filt->sym_to ? filt->sym_to : filt->sym_from); 2384 return -EINVAL; 2385 } 2386 2387 return 0; 2388 } 2389 2390 static struct dso *load_dso(const char *name) 2391 { 2392 struct map *map; 2393 struct dso *dso; 2394 2395 map = dso__new_map(name); 2396 if (!map) 2397 return NULL; 2398 2399 if (map__load(map) < 0) 2400 pr_err("File '%s' not found or has no symbols.\n", name); 2401 2402 dso = dso__get(map->dso); 2403 2404 map__put(map); 2405 2406 return dso; 2407 } 2408 2409 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 2410 int idx) 2411 { 2412 /* Same name, and global or the n'th found or any */ 2413 return !arch__compare_symbol_names(name, sym->name) && 2414 ((!idx && sym->binding == STB_GLOBAL) || 2415 (idx > 0 && ++*cnt == idx) || 2416 idx < 0); 2417 } 2418 2419 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 2420 { 2421 struct symbol *sym; 2422 bool near = false; 2423 int cnt = 0; 2424 2425 pr_err("Multiple symbols with name '%s'\n", sym_name); 2426 2427 sym = dso__first_symbol(dso); 2428 while (sym) { 2429 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 2430 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2431 ++cnt, sym->start, 2432 sym->binding == STB_GLOBAL ? 'g' : 2433 sym->binding == STB_LOCAL ? 'l' : 'w', 2434 sym->name); 2435 near = true; 2436 } else if (near) { 2437 near = false; 2438 pr_err("\t\twhich is near\t\t%s\n", sym->name); 2439 } 2440 sym = dso__next_symbol(sym); 2441 } 2442 2443 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2444 sym_name); 2445 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2446 } 2447 2448 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 2449 u64 *size, int idx) 2450 { 2451 struct symbol *sym; 2452 int cnt = 0; 2453 2454 *start = 0; 2455 *size = 0; 2456 2457 sym = dso__first_symbol(dso); 2458 while (sym) { 2459 if (*start) { 2460 if (!*size) 2461 *size = sym->start - *start; 2462 if (idx > 0) { 2463 if (*size) 2464 return 1; 2465 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2466 print_duplicate_syms(dso, sym_name); 2467 return -EINVAL; 2468 } 2469 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2470 *start = sym->start; 2471 *size = sym->end - sym->start; 2472 } 2473 sym = dso__next_symbol(sym); 2474 } 2475 2476 if (!*start) 2477 return sym_not_found_error(sym_name, idx); 2478 2479 return 0; 2480 } 2481 2482 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 2483 { 2484 if (dso__data_file_size(dso, NULL)) { 2485 pr_err("Failed to determine filter for %s\nCannot determine file size.\n", 2486 filt->filename); 2487 return -EINVAL; 2488 } 2489 2490 filt->addr = 0; 2491 filt->size = dso->data.file_size; 2492 2493 return 0; 2494 } 2495 2496 static int addr_filter__resolve_syms(struct addr_filter *filt) 2497 { 2498 u64 start, size; 2499 struct dso *dso; 2500 int err = 0; 2501 2502 if (!filt->sym_from && !filt->sym_to) 2503 return 0; 2504 2505 if (!filt->filename) 2506 return addr_filter__resolve_kernel_syms(filt); 2507 2508 dso = load_dso(filt->filename); 2509 if (!dso) { 2510 pr_err("Failed to load symbols from: %s\n", filt->filename); 2511 return -EINVAL; 2512 } 2513 2514 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2515 err = addr_filter__entire_dso(filt, dso); 2516 goto put_dso; 2517 } 2518 2519 if (filt->sym_from) { 2520 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2521 filt->sym_from_idx); 2522 if (err) 2523 goto put_dso; 2524 filt->addr = start; 2525 if (filt->range && !filt->size && !filt->sym_to) 2526 filt->size = size; 2527 } 2528 2529 if (filt->sym_to) { 2530 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2531 filt->sym_to_idx); 2532 if (err) 2533 goto put_dso; 2534 2535 err = check_end_after_start(filt, start, size); 2536 if (err) 2537 return err; 2538 2539 filt->size = start + size - filt->addr; 2540 } 2541 2542 put_dso: 2543 dso__put(dso); 2544 2545 return err; 2546 } 2547 2548 static char *addr_filter__to_str(struct addr_filter *filt) 2549 { 2550 char filename_buf[PATH_MAX]; 2551 const char *at = ""; 2552 const char *fn = ""; 2553 char *filter; 2554 int err; 2555 2556 if (filt->filename) { 2557 at = "@"; 2558 fn = realpath(filt->filename, filename_buf); 2559 if (!fn) 2560 return NULL; 2561 } 2562 2563 if (filt->range) { 2564 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2565 filt->action, filt->addr, filt->size, at, fn); 2566 } else { 2567 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2568 filt->action, filt->addr, at, fn); 2569 } 2570 2571 return err < 0 ? NULL : filter; 2572 } 2573 2574 static int parse_addr_filter(struct evsel *evsel, const char *filter, 2575 int max_nr) 2576 { 2577 struct addr_filters filts; 2578 struct addr_filter *filt; 2579 int err; 2580 2581 addr_filters__init(&filts); 2582 2583 err = addr_filters__parse_bare_filter(&filts, filter); 2584 if (err) 2585 goto out_exit; 2586 2587 if (filts.cnt > max_nr) { 2588 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2589 filts.cnt, max_nr); 2590 err = -EINVAL; 2591 goto out_exit; 2592 } 2593 2594 list_for_each_entry(filt, &filts.head, list) { 2595 char *new_filter; 2596 2597 err = addr_filter__resolve_syms(filt); 2598 if (err) 2599 goto out_exit; 2600 2601 new_filter = addr_filter__to_str(filt); 2602 if (!new_filter) { 2603 err = -ENOMEM; 2604 goto out_exit; 2605 } 2606 2607 if (evsel__append_addr_filter(evsel, new_filter)) { 2608 err = -ENOMEM; 2609 goto out_exit; 2610 } 2611 } 2612 2613 out_exit: 2614 addr_filters__exit(&filts); 2615 2616 if (err) { 2617 pr_err("Failed to parse address filter: '%s'\n", filter); 2618 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2619 pr_err("Where multiple filters are separated by space or comma.\n"); 2620 } 2621 2622 return err; 2623 } 2624 2625 static int evsel__nr_addr_filter(struct evsel *evsel) 2626 { 2627 struct perf_pmu *pmu = evsel__find_pmu(evsel); 2628 int nr_addr_filters = 0; 2629 2630 if (!pmu) 2631 return 0; 2632 2633 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2634 2635 return nr_addr_filters; 2636 } 2637 2638 int auxtrace_parse_filters(struct evlist *evlist) 2639 { 2640 struct evsel *evsel; 2641 char *filter; 2642 int err, max_nr; 2643 2644 evlist__for_each_entry(evlist, evsel) { 2645 filter = evsel->filter; 2646 max_nr = evsel__nr_addr_filter(evsel); 2647 if (!filter || !max_nr) 2648 continue; 2649 evsel->filter = NULL; 2650 err = parse_addr_filter(evsel, filter, max_nr); 2651 free(filter); 2652 if (err) 2653 return err; 2654 pr_debug("Address filter: %s\n", evsel->filter); 2655 } 2656 2657 return 0; 2658 } 2659 2660 int auxtrace__process_event(struct perf_session *session, union perf_event *event, 2661 struct perf_sample *sample, struct perf_tool *tool) 2662 { 2663 if (!session->auxtrace) 2664 return 0; 2665 2666 return session->auxtrace->process_event(session, event, sample, tool); 2667 } 2668 2669 void auxtrace__dump_auxtrace_sample(struct perf_session *session, 2670 struct perf_sample *sample) 2671 { 2672 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample || 2673 auxtrace__dont_decode(session)) 2674 return; 2675 2676 session->auxtrace->dump_auxtrace_sample(session, sample); 2677 } 2678 2679 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool) 2680 { 2681 if (!session->auxtrace) 2682 return 0; 2683 2684 return session->auxtrace->flush_events(session, tool); 2685 } 2686 2687 void auxtrace__free_events(struct perf_session *session) 2688 { 2689 if (!session->auxtrace) 2690 return; 2691 2692 return session->auxtrace->free_events(session); 2693 } 2694 2695 void auxtrace__free(struct perf_session *session) 2696 { 2697 if (!session->auxtrace) 2698 return; 2699 2700 return session->auxtrace->free(session); 2701 } 2702 2703 bool auxtrace__evsel_is_auxtrace(struct perf_session *session, 2704 struct evsel *evsel) 2705 { 2706 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace) 2707 return false; 2708 2709 return session->auxtrace->evsel_is_auxtrace(session, evsel); 2710 } 2711