xref: /linux/tools/perf/util/auxtrace.c (revision 2c97b5ae83dca56718774e7b4bf9640f05d11867)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14 
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22 
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28 
29 #include "evlist.h"
30 #include "dso.h"
31 #include "map.h"
32 #include "pmu.h"
33 #include "evsel.h"
34 #include "evsel_config.h"
35 #include "symbol.h"
36 #include "util/synthetic-events.h"
37 #include "thread_map.h"
38 #include "asm/bug.h"
39 #include "auxtrace.h"
40 
41 #include <linux/hash.h>
42 
43 #include "event.h"
44 #include "record.h"
45 #include "session.h"
46 #include "debug.h"
47 #include <subcmd/parse-options.h>
48 
49 #include "cs-etm.h"
50 #include "intel-pt.h"
51 #include "intel-bts.h"
52 #include "arm-spe.h"
53 #include "s390-cpumsf.h"
54 #include "util/mmap.h"
55 
56 #include <linux/ctype.h>
57 #include <linux/kernel.h>
58 #include "symbol/kallsyms.h"
59 #include <internal/lib.h>
60 
61 static struct perf_pmu *perf_evsel__find_pmu(struct evsel *evsel)
62 {
63 	struct perf_pmu *pmu = NULL;
64 
65 	while ((pmu = perf_pmu__scan(pmu)) != NULL) {
66 		if (pmu->type == evsel->core.attr.type)
67 			break;
68 	}
69 
70 	return pmu;
71 }
72 
73 static bool perf_evsel__is_aux_event(struct evsel *evsel)
74 {
75 	struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
76 
77 	return pmu && pmu->auxtrace;
78 }
79 
80 /*
81  * Make a group from 'leader' to 'last', requiring that the events were not
82  * already grouped to a different leader.
83  */
84 static int perf_evlist__regroup(struct evlist *evlist,
85 				struct evsel *leader,
86 				struct evsel *last)
87 {
88 	struct evsel *evsel;
89 	bool grp;
90 
91 	if (!perf_evsel__is_group_leader(leader))
92 		return -EINVAL;
93 
94 	grp = false;
95 	evlist__for_each_entry(evlist, evsel) {
96 		if (grp) {
97 			if (!(evsel->leader == leader ||
98 			     (evsel->leader == evsel &&
99 			      evsel->core.nr_members <= 1)))
100 				return -EINVAL;
101 		} else if (evsel == leader) {
102 			grp = true;
103 		}
104 		if (evsel == last)
105 			break;
106 	}
107 
108 	grp = false;
109 	evlist__for_each_entry(evlist, evsel) {
110 		if (grp) {
111 			if (evsel->leader != leader) {
112 				evsel->leader = leader;
113 				if (leader->core.nr_members < 1)
114 					leader->core.nr_members = 1;
115 				leader->core.nr_members += 1;
116 			}
117 		} else if (evsel == leader) {
118 			grp = true;
119 		}
120 		if (evsel == last)
121 			break;
122 	}
123 
124 	return 0;
125 }
126 
127 static bool auxtrace__dont_decode(struct perf_session *session)
128 {
129 	return !session->itrace_synth_opts ||
130 	       session->itrace_synth_opts->dont_decode;
131 }
132 
133 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
134 			struct auxtrace_mmap_params *mp,
135 			void *userpg, int fd)
136 {
137 	struct perf_event_mmap_page *pc = userpg;
138 
139 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
140 
141 	mm->userpg = userpg;
142 	mm->mask = mp->mask;
143 	mm->len = mp->len;
144 	mm->prev = 0;
145 	mm->idx = mp->idx;
146 	mm->tid = mp->tid;
147 	mm->cpu = mp->cpu;
148 
149 	if (!mp->len) {
150 		mm->base = NULL;
151 		return 0;
152 	}
153 
154 #if BITS_PER_LONG != 64 && !defined(HAVE_SYNC_COMPARE_AND_SWAP_SUPPORT)
155 	pr_err("Cannot use AUX area tracing mmaps\n");
156 	return -1;
157 #endif
158 
159 	pc->aux_offset = mp->offset;
160 	pc->aux_size = mp->len;
161 
162 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
163 	if (mm->base == MAP_FAILED) {
164 		pr_debug2("failed to mmap AUX area\n");
165 		mm->base = NULL;
166 		return -1;
167 	}
168 
169 	return 0;
170 }
171 
172 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
173 {
174 	if (mm->base) {
175 		munmap(mm->base, mm->len);
176 		mm->base = NULL;
177 	}
178 }
179 
180 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
181 				off_t auxtrace_offset,
182 				unsigned int auxtrace_pages,
183 				bool auxtrace_overwrite)
184 {
185 	if (auxtrace_pages) {
186 		mp->offset = auxtrace_offset;
187 		mp->len = auxtrace_pages * (size_t)page_size;
188 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
189 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
190 		pr_debug2("AUX area mmap length %zu\n", mp->len);
191 	} else {
192 		mp->len = 0;
193 	}
194 }
195 
196 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
197 				   struct evlist *evlist, int idx,
198 				   bool per_cpu)
199 {
200 	mp->idx = idx;
201 
202 	if (per_cpu) {
203 		mp->cpu = evlist->core.cpus->map[idx];
204 		if (evlist->core.threads)
205 			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
206 		else
207 			mp->tid = -1;
208 	} else {
209 		mp->cpu = -1;
210 		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
211 	}
212 }
213 
214 #define AUXTRACE_INIT_NR_QUEUES	32
215 
216 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
217 {
218 	struct auxtrace_queue *queue_array;
219 	unsigned int max_nr_queues, i;
220 
221 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
222 	if (nr_queues > max_nr_queues)
223 		return NULL;
224 
225 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
226 	if (!queue_array)
227 		return NULL;
228 
229 	for (i = 0; i < nr_queues; i++) {
230 		INIT_LIST_HEAD(&queue_array[i].head);
231 		queue_array[i].priv = NULL;
232 	}
233 
234 	return queue_array;
235 }
236 
237 int auxtrace_queues__init(struct auxtrace_queues *queues)
238 {
239 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
240 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
241 	if (!queues->queue_array)
242 		return -ENOMEM;
243 	return 0;
244 }
245 
246 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
247 				 unsigned int new_nr_queues)
248 {
249 	unsigned int nr_queues = queues->nr_queues;
250 	struct auxtrace_queue *queue_array;
251 	unsigned int i;
252 
253 	if (!nr_queues)
254 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
255 
256 	while (nr_queues && nr_queues < new_nr_queues)
257 		nr_queues <<= 1;
258 
259 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
260 		return -EINVAL;
261 
262 	queue_array = auxtrace_alloc_queue_array(nr_queues);
263 	if (!queue_array)
264 		return -ENOMEM;
265 
266 	for (i = 0; i < queues->nr_queues; i++) {
267 		list_splice_tail(&queues->queue_array[i].head,
268 				 &queue_array[i].head);
269 		queue_array[i].tid = queues->queue_array[i].tid;
270 		queue_array[i].cpu = queues->queue_array[i].cpu;
271 		queue_array[i].set = queues->queue_array[i].set;
272 		queue_array[i].priv = queues->queue_array[i].priv;
273 	}
274 
275 	queues->nr_queues = nr_queues;
276 	queues->queue_array = queue_array;
277 
278 	return 0;
279 }
280 
281 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
282 {
283 	int fd = perf_data__fd(session->data);
284 	void *p;
285 	ssize_t ret;
286 
287 	if (size > SSIZE_MAX)
288 		return NULL;
289 
290 	p = malloc(size);
291 	if (!p)
292 		return NULL;
293 
294 	ret = readn(fd, p, size);
295 	if (ret != (ssize_t)size) {
296 		free(p);
297 		return NULL;
298 	}
299 
300 	return p;
301 }
302 
303 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
304 					 unsigned int idx,
305 					 struct auxtrace_buffer *buffer)
306 {
307 	struct auxtrace_queue *queue;
308 	int err;
309 
310 	if (idx >= queues->nr_queues) {
311 		err = auxtrace_queues__grow(queues, idx + 1);
312 		if (err)
313 			return err;
314 	}
315 
316 	queue = &queues->queue_array[idx];
317 
318 	if (!queue->set) {
319 		queue->set = true;
320 		queue->tid = buffer->tid;
321 		queue->cpu = buffer->cpu;
322 	} else if (buffer->cpu != queue->cpu || buffer->tid != queue->tid) {
323 		pr_err("auxtrace queue conflict: cpu %d, tid %d vs cpu %d, tid %d\n",
324 		       queue->cpu, queue->tid, buffer->cpu, buffer->tid);
325 		return -EINVAL;
326 	}
327 
328 	buffer->buffer_nr = queues->next_buffer_nr++;
329 
330 	list_add_tail(&buffer->list, &queue->head);
331 
332 	queues->new_data = true;
333 	queues->populated = true;
334 
335 	return 0;
336 }
337 
338 /* Limit buffers to 32MiB on 32-bit */
339 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
340 
341 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
342 					 unsigned int idx,
343 					 struct auxtrace_buffer *buffer)
344 {
345 	u64 sz = buffer->size;
346 	bool consecutive = false;
347 	struct auxtrace_buffer *b;
348 	int err;
349 
350 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
351 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
352 		if (!b)
353 			return -ENOMEM;
354 		b->size = BUFFER_LIMIT_FOR_32_BIT;
355 		b->consecutive = consecutive;
356 		err = auxtrace_queues__queue_buffer(queues, idx, b);
357 		if (err) {
358 			auxtrace_buffer__free(b);
359 			return err;
360 		}
361 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
362 		sz -= BUFFER_LIMIT_FOR_32_BIT;
363 		consecutive = true;
364 	}
365 
366 	buffer->size = sz;
367 	buffer->consecutive = consecutive;
368 
369 	return 0;
370 }
371 
372 static bool filter_cpu(struct perf_session *session, int cpu)
373 {
374 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
375 
376 	return cpu_bitmap && cpu != -1 && !test_bit(cpu, cpu_bitmap);
377 }
378 
379 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
380 				       struct perf_session *session,
381 				       unsigned int idx,
382 				       struct auxtrace_buffer *buffer,
383 				       struct auxtrace_buffer **buffer_ptr)
384 {
385 	int err = -ENOMEM;
386 
387 	if (filter_cpu(session, buffer->cpu))
388 		return 0;
389 
390 	buffer = memdup(buffer, sizeof(*buffer));
391 	if (!buffer)
392 		return -ENOMEM;
393 
394 	if (session->one_mmap) {
395 		buffer->data = buffer->data_offset - session->one_mmap_offset +
396 			       session->one_mmap_addr;
397 	} else if (perf_data__is_pipe(session->data)) {
398 		buffer->data = auxtrace_copy_data(buffer->size, session);
399 		if (!buffer->data)
400 			goto out_free;
401 		buffer->data_needs_freeing = true;
402 	} else if (BITS_PER_LONG == 32 &&
403 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
404 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
405 		if (err)
406 			goto out_free;
407 	}
408 
409 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
410 	if (err)
411 		goto out_free;
412 
413 	/* FIXME: Doesn't work for split buffer */
414 	if (buffer_ptr)
415 		*buffer_ptr = buffer;
416 
417 	return 0;
418 
419 out_free:
420 	auxtrace_buffer__free(buffer);
421 	return err;
422 }
423 
424 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
425 			       struct perf_session *session,
426 			       union perf_event *event, off_t data_offset,
427 			       struct auxtrace_buffer **buffer_ptr)
428 {
429 	struct auxtrace_buffer buffer = {
430 		.pid = -1,
431 		.tid = event->auxtrace.tid,
432 		.cpu = event->auxtrace.cpu,
433 		.data_offset = data_offset,
434 		.offset = event->auxtrace.offset,
435 		.reference = event->auxtrace.reference,
436 		.size = event->auxtrace.size,
437 	};
438 	unsigned int idx = event->auxtrace.idx;
439 
440 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
441 					   buffer_ptr);
442 }
443 
444 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
445 					      struct perf_session *session,
446 					      off_t file_offset, size_t sz)
447 {
448 	union perf_event *event;
449 	int err;
450 	char buf[PERF_SAMPLE_MAX_SIZE];
451 
452 	err = perf_session__peek_event(session, file_offset, buf,
453 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
454 	if (err)
455 		return err;
456 
457 	if (event->header.type == PERF_RECORD_AUXTRACE) {
458 		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
459 		    event->header.size != sz) {
460 			err = -EINVAL;
461 			goto out;
462 		}
463 		file_offset += event->header.size;
464 		err = auxtrace_queues__add_event(queues, session, event,
465 						 file_offset, NULL);
466 	}
467 out:
468 	return err;
469 }
470 
471 void auxtrace_queues__free(struct auxtrace_queues *queues)
472 {
473 	unsigned int i;
474 
475 	for (i = 0; i < queues->nr_queues; i++) {
476 		while (!list_empty(&queues->queue_array[i].head)) {
477 			struct auxtrace_buffer *buffer;
478 
479 			buffer = list_entry(queues->queue_array[i].head.next,
480 					    struct auxtrace_buffer, list);
481 			list_del_init(&buffer->list);
482 			auxtrace_buffer__free(buffer);
483 		}
484 	}
485 
486 	zfree(&queues->queue_array);
487 	queues->nr_queues = 0;
488 }
489 
490 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
491 			     unsigned int pos, unsigned int queue_nr,
492 			     u64 ordinal)
493 {
494 	unsigned int parent;
495 
496 	while (pos) {
497 		parent = (pos - 1) >> 1;
498 		if (heap_array[parent].ordinal <= ordinal)
499 			break;
500 		heap_array[pos] = heap_array[parent];
501 		pos = parent;
502 	}
503 	heap_array[pos].queue_nr = queue_nr;
504 	heap_array[pos].ordinal = ordinal;
505 }
506 
507 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
508 		       u64 ordinal)
509 {
510 	struct auxtrace_heap_item *heap_array;
511 
512 	if (queue_nr >= heap->heap_sz) {
513 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
514 
515 		while (heap_sz <= queue_nr)
516 			heap_sz <<= 1;
517 		heap_array = realloc(heap->heap_array,
518 				     heap_sz * sizeof(struct auxtrace_heap_item));
519 		if (!heap_array)
520 			return -ENOMEM;
521 		heap->heap_array = heap_array;
522 		heap->heap_sz = heap_sz;
523 	}
524 
525 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
526 
527 	return 0;
528 }
529 
530 void auxtrace_heap__free(struct auxtrace_heap *heap)
531 {
532 	zfree(&heap->heap_array);
533 	heap->heap_cnt = 0;
534 	heap->heap_sz = 0;
535 }
536 
537 void auxtrace_heap__pop(struct auxtrace_heap *heap)
538 {
539 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
540 	struct auxtrace_heap_item *heap_array;
541 
542 	if (!heap_cnt)
543 		return;
544 
545 	heap->heap_cnt -= 1;
546 
547 	heap_array = heap->heap_array;
548 
549 	pos = 0;
550 	while (1) {
551 		unsigned int left, right;
552 
553 		left = (pos << 1) + 1;
554 		if (left >= heap_cnt)
555 			break;
556 		right = left + 1;
557 		if (right >= heap_cnt) {
558 			heap_array[pos] = heap_array[left];
559 			return;
560 		}
561 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
562 			heap_array[pos] = heap_array[left];
563 			pos = left;
564 		} else {
565 			heap_array[pos] = heap_array[right];
566 			pos = right;
567 		}
568 	}
569 
570 	last = heap_cnt - 1;
571 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
572 			 heap_array[last].ordinal);
573 }
574 
575 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
576 				       struct evlist *evlist)
577 {
578 	if (itr)
579 		return itr->info_priv_size(itr, evlist);
580 	return 0;
581 }
582 
583 static int auxtrace_not_supported(void)
584 {
585 	pr_err("AUX area tracing is not supported on this architecture\n");
586 	return -EINVAL;
587 }
588 
589 int auxtrace_record__info_fill(struct auxtrace_record *itr,
590 			       struct perf_session *session,
591 			       struct perf_record_auxtrace_info *auxtrace_info,
592 			       size_t priv_size)
593 {
594 	if (itr)
595 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
596 	return auxtrace_not_supported();
597 }
598 
599 void auxtrace_record__free(struct auxtrace_record *itr)
600 {
601 	if (itr)
602 		itr->free(itr);
603 }
604 
605 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
606 {
607 	if (itr && itr->snapshot_start)
608 		return itr->snapshot_start(itr);
609 	return 0;
610 }
611 
612 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
613 {
614 	if (!on_exit && itr && itr->snapshot_finish)
615 		return itr->snapshot_finish(itr);
616 	return 0;
617 }
618 
619 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
620 				   struct auxtrace_mmap *mm,
621 				   unsigned char *data, u64 *head, u64 *old)
622 {
623 	if (itr && itr->find_snapshot)
624 		return itr->find_snapshot(itr, idx, mm, data, head, old);
625 	return 0;
626 }
627 
628 int auxtrace_record__options(struct auxtrace_record *itr,
629 			     struct evlist *evlist,
630 			     struct record_opts *opts)
631 {
632 	if (itr)
633 		return itr->recording_options(itr, evlist, opts);
634 	return 0;
635 }
636 
637 u64 auxtrace_record__reference(struct auxtrace_record *itr)
638 {
639 	if (itr)
640 		return itr->reference(itr);
641 	return 0;
642 }
643 
644 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
645 				    struct record_opts *opts, const char *str)
646 {
647 	if (!str)
648 		return 0;
649 
650 	/* PMU-agnostic options */
651 	switch (*str) {
652 	case 'e':
653 		opts->auxtrace_snapshot_on_exit = true;
654 		str++;
655 		break;
656 	default:
657 		break;
658 	}
659 
660 	if (itr)
661 		return itr->parse_snapshot_options(itr, opts, str);
662 
663 	pr_err("No AUX area tracing to snapshot\n");
664 	return -EINVAL;
665 }
666 
667 /*
668  * Event record size is 16-bit which results in a maximum size of about 64KiB.
669  * Allow about 4KiB for the rest of the sample record, to give a maximum
670  * AUX area sample size of 60KiB.
671  */
672 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
673 
674 /* Arbitrary default size if no other default provided */
675 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
676 
677 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
678 					     struct record_opts *opts)
679 {
680 	struct evsel *evsel;
681 	bool has_aux_leader = false;
682 	u32 sz;
683 
684 	evlist__for_each_entry(evlist, evsel) {
685 		sz = evsel->core.attr.aux_sample_size;
686 		if (perf_evsel__is_group_leader(evsel)) {
687 			has_aux_leader = perf_evsel__is_aux_event(evsel);
688 			if (sz) {
689 				if (has_aux_leader)
690 					pr_err("Cannot add AUX area sampling to an AUX area event\n");
691 				else
692 					pr_err("Cannot add AUX area sampling to a group leader\n");
693 				return -EINVAL;
694 			}
695 		}
696 		if (sz > MAX_AUX_SAMPLE_SIZE) {
697 			pr_err("AUX area sample size %u too big, max. %d\n",
698 			       sz, MAX_AUX_SAMPLE_SIZE);
699 			return -EINVAL;
700 		}
701 		if (sz) {
702 			if (!has_aux_leader) {
703 				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
704 				return -EINVAL;
705 			}
706 			perf_evsel__set_sample_bit(evsel, AUX);
707 			opts->auxtrace_sample_mode = true;
708 		} else {
709 			perf_evsel__reset_sample_bit(evsel, AUX);
710 		}
711 	}
712 
713 	if (!opts->auxtrace_sample_mode) {
714 		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
715 		return -EINVAL;
716 	}
717 
718 	if (!perf_can_aux_sample()) {
719 		pr_err("AUX area sampling is not supported by kernel\n");
720 		return -EINVAL;
721 	}
722 
723 	return 0;
724 }
725 
726 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
727 				  struct evlist *evlist,
728 				  struct record_opts *opts, const char *str)
729 {
730 	struct perf_evsel_config_term *term;
731 	struct evsel *aux_evsel;
732 	bool has_aux_sample_size = false;
733 	bool has_aux_leader = false;
734 	struct evsel *evsel;
735 	char *endptr;
736 	unsigned long sz;
737 
738 	if (!str)
739 		goto no_opt;
740 
741 	if (!itr) {
742 		pr_err("No AUX area event to sample\n");
743 		return -EINVAL;
744 	}
745 
746 	sz = strtoul(str, &endptr, 0);
747 	if (*endptr || sz > UINT_MAX) {
748 		pr_err("Bad AUX area sampling option: '%s'\n", str);
749 		return -EINVAL;
750 	}
751 
752 	if (!sz)
753 		sz = itr->default_aux_sample_size;
754 
755 	if (!sz)
756 		sz = DEFAULT_AUX_SAMPLE_SIZE;
757 
758 	/* Set aux_sample_size based on --aux-sample option */
759 	evlist__for_each_entry(evlist, evsel) {
760 		if (perf_evsel__is_group_leader(evsel)) {
761 			has_aux_leader = perf_evsel__is_aux_event(evsel);
762 		} else if (has_aux_leader) {
763 			evsel->core.attr.aux_sample_size = sz;
764 		}
765 	}
766 no_opt:
767 	aux_evsel = NULL;
768 	/* Override with aux_sample_size from config term */
769 	evlist__for_each_entry(evlist, evsel) {
770 		if (perf_evsel__is_aux_event(evsel))
771 			aux_evsel = evsel;
772 		term = perf_evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
773 		if (term) {
774 			has_aux_sample_size = true;
775 			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
776 			/* If possible, group with the AUX event */
777 			if (aux_evsel && evsel->core.attr.aux_sample_size)
778 				perf_evlist__regroup(evlist, aux_evsel, evsel);
779 		}
780 	}
781 
782 	if (!str && !has_aux_sample_size)
783 		return 0;
784 
785 	if (!itr) {
786 		pr_err("No AUX area event to sample\n");
787 		return -EINVAL;
788 	}
789 
790 	return auxtrace_validate_aux_sample_size(evlist, opts);
791 }
792 
793 struct auxtrace_record *__weak
794 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
795 {
796 	*err = 0;
797 	return NULL;
798 }
799 
800 static int auxtrace_index__alloc(struct list_head *head)
801 {
802 	struct auxtrace_index *auxtrace_index;
803 
804 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
805 	if (!auxtrace_index)
806 		return -ENOMEM;
807 
808 	auxtrace_index->nr = 0;
809 	INIT_LIST_HEAD(&auxtrace_index->list);
810 
811 	list_add_tail(&auxtrace_index->list, head);
812 
813 	return 0;
814 }
815 
816 void auxtrace_index__free(struct list_head *head)
817 {
818 	struct auxtrace_index *auxtrace_index, *n;
819 
820 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
821 		list_del_init(&auxtrace_index->list);
822 		free(auxtrace_index);
823 	}
824 }
825 
826 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
827 {
828 	struct auxtrace_index *auxtrace_index;
829 	int err;
830 
831 	if (list_empty(head)) {
832 		err = auxtrace_index__alloc(head);
833 		if (err)
834 			return NULL;
835 	}
836 
837 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
838 
839 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
840 		err = auxtrace_index__alloc(head);
841 		if (err)
842 			return NULL;
843 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
844 					    list);
845 	}
846 
847 	return auxtrace_index;
848 }
849 
850 int auxtrace_index__auxtrace_event(struct list_head *head,
851 				   union perf_event *event, off_t file_offset)
852 {
853 	struct auxtrace_index *auxtrace_index;
854 	size_t nr;
855 
856 	auxtrace_index = auxtrace_index__last(head);
857 	if (!auxtrace_index)
858 		return -ENOMEM;
859 
860 	nr = auxtrace_index->nr;
861 	auxtrace_index->entries[nr].file_offset = file_offset;
862 	auxtrace_index->entries[nr].sz = event->header.size;
863 	auxtrace_index->nr += 1;
864 
865 	return 0;
866 }
867 
868 static int auxtrace_index__do_write(int fd,
869 				    struct auxtrace_index *auxtrace_index)
870 {
871 	struct auxtrace_index_entry ent;
872 	size_t i;
873 
874 	for (i = 0; i < auxtrace_index->nr; i++) {
875 		ent.file_offset = auxtrace_index->entries[i].file_offset;
876 		ent.sz = auxtrace_index->entries[i].sz;
877 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
878 			return -errno;
879 	}
880 	return 0;
881 }
882 
883 int auxtrace_index__write(int fd, struct list_head *head)
884 {
885 	struct auxtrace_index *auxtrace_index;
886 	u64 total = 0;
887 	int err;
888 
889 	list_for_each_entry(auxtrace_index, head, list)
890 		total += auxtrace_index->nr;
891 
892 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
893 		return -errno;
894 
895 	list_for_each_entry(auxtrace_index, head, list) {
896 		err = auxtrace_index__do_write(fd, auxtrace_index);
897 		if (err)
898 			return err;
899 	}
900 
901 	return 0;
902 }
903 
904 static int auxtrace_index__process_entry(int fd, struct list_head *head,
905 					 bool needs_swap)
906 {
907 	struct auxtrace_index *auxtrace_index;
908 	struct auxtrace_index_entry ent;
909 	size_t nr;
910 
911 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
912 		return -1;
913 
914 	auxtrace_index = auxtrace_index__last(head);
915 	if (!auxtrace_index)
916 		return -1;
917 
918 	nr = auxtrace_index->nr;
919 	if (needs_swap) {
920 		auxtrace_index->entries[nr].file_offset =
921 						bswap_64(ent.file_offset);
922 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
923 	} else {
924 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
925 		auxtrace_index->entries[nr].sz = ent.sz;
926 	}
927 
928 	auxtrace_index->nr = nr + 1;
929 
930 	return 0;
931 }
932 
933 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
934 			    bool needs_swap)
935 {
936 	struct list_head *head = &session->auxtrace_index;
937 	u64 nr;
938 
939 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
940 		return -1;
941 
942 	if (needs_swap)
943 		nr = bswap_64(nr);
944 
945 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
946 		return -1;
947 
948 	while (nr--) {
949 		int err;
950 
951 		err = auxtrace_index__process_entry(fd, head, needs_swap);
952 		if (err)
953 			return -1;
954 	}
955 
956 	return 0;
957 }
958 
959 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
960 						struct perf_session *session,
961 						struct auxtrace_index_entry *ent)
962 {
963 	return auxtrace_queues__add_indexed_event(queues, session,
964 						  ent->file_offset, ent->sz);
965 }
966 
967 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
968 				   struct perf_session *session)
969 {
970 	struct auxtrace_index *auxtrace_index;
971 	struct auxtrace_index_entry *ent;
972 	size_t i;
973 	int err;
974 
975 	if (auxtrace__dont_decode(session))
976 		return 0;
977 
978 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
979 		for (i = 0; i < auxtrace_index->nr; i++) {
980 			ent = &auxtrace_index->entries[i];
981 			err = auxtrace_queues__process_index_entry(queues,
982 								   session,
983 								   ent);
984 			if (err)
985 				return err;
986 		}
987 	}
988 	return 0;
989 }
990 
991 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
992 					      struct auxtrace_buffer *buffer)
993 {
994 	if (buffer) {
995 		if (list_is_last(&buffer->list, &queue->head))
996 			return NULL;
997 		return list_entry(buffer->list.next, struct auxtrace_buffer,
998 				  list);
999 	} else {
1000 		if (list_empty(&queue->head))
1001 			return NULL;
1002 		return list_entry(queue->head.next, struct auxtrace_buffer,
1003 				  list);
1004 	}
1005 }
1006 
1007 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1008 						     struct perf_sample *sample,
1009 						     struct perf_session *session)
1010 {
1011 	struct perf_sample_id *sid;
1012 	unsigned int idx;
1013 	u64 id;
1014 
1015 	id = sample->id;
1016 	if (!id)
1017 		return NULL;
1018 
1019 	sid = perf_evlist__id2sid(session->evlist, id);
1020 	if (!sid)
1021 		return NULL;
1022 
1023 	idx = sid->idx;
1024 
1025 	if (idx >= queues->nr_queues)
1026 		return NULL;
1027 
1028 	return &queues->queue_array[idx];
1029 }
1030 
1031 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1032 				struct perf_session *session,
1033 				struct perf_sample *sample, u64 data_offset,
1034 				u64 reference)
1035 {
1036 	struct auxtrace_buffer buffer = {
1037 		.pid = -1,
1038 		.data_offset = data_offset,
1039 		.reference = reference,
1040 		.size = sample->aux_sample.size,
1041 	};
1042 	struct perf_sample_id *sid;
1043 	u64 id = sample->id;
1044 	unsigned int idx;
1045 
1046 	if (!id)
1047 		return -EINVAL;
1048 
1049 	sid = perf_evlist__id2sid(session->evlist, id);
1050 	if (!sid)
1051 		return -ENOENT;
1052 
1053 	idx = sid->idx;
1054 	buffer.tid = sid->tid;
1055 	buffer.cpu = sid->cpu;
1056 
1057 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1058 }
1059 
1060 struct queue_data {
1061 	bool samples;
1062 	bool events;
1063 };
1064 
1065 static int auxtrace_queue_data_cb(struct perf_session *session,
1066 				  union perf_event *event, u64 offset,
1067 				  void *data)
1068 {
1069 	struct queue_data *qd = data;
1070 	struct perf_sample sample;
1071 	int err;
1072 
1073 	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1074 		if (event->header.size < sizeof(struct perf_record_auxtrace))
1075 			return -EINVAL;
1076 		offset += event->header.size;
1077 		return session->auxtrace->queue_data(session, NULL, event,
1078 						     offset);
1079 	}
1080 
1081 	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1082 		return 0;
1083 
1084 	err = perf_evlist__parse_sample(session->evlist, event, &sample);
1085 	if (err)
1086 		return err;
1087 
1088 	if (!sample.aux_sample.size)
1089 		return 0;
1090 
1091 	offset += sample.aux_sample.data - (void *)event;
1092 
1093 	return session->auxtrace->queue_data(session, &sample, NULL, offset);
1094 }
1095 
1096 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1097 {
1098 	struct queue_data qd = {
1099 		.samples = samples,
1100 		.events = events,
1101 	};
1102 
1103 	if (auxtrace__dont_decode(session))
1104 		return 0;
1105 
1106 	if (!session->auxtrace || !session->auxtrace->queue_data)
1107 		return -EINVAL;
1108 
1109 	return perf_session__peek_events(session, session->header.data_offset,
1110 					 session->header.data_size,
1111 					 auxtrace_queue_data_cb, &qd);
1112 }
1113 
1114 void *auxtrace_buffer__get_data(struct auxtrace_buffer *buffer, int fd)
1115 {
1116 	size_t adj = buffer->data_offset & (page_size - 1);
1117 	size_t size = buffer->size + adj;
1118 	off_t file_offset = buffer->data_offset - adj;
1119 	void *addr;
1120 
1121 	if (buffer->data)
1122 		return buffer->data;
1123 
1124 	addr = mmap(NULL, size, PROT_READ, MAP_SHARED, fd, file_offset);
1125 	if (addr == MAP_FAILED)
1126 		return NULL;
1127 
1128 	buffer->mmap_addr = addr;
1129 	buffer->mmap_size = size;
1130 
1131 	buffer->data = addr + adj;
1132 
1133 	return buffer->data;
1134 }
1135 
1136 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1137 {
1138 	if (!buffer->data || !buffer->mmap_addr)
1139 		return;
1140 	munmap(buffer->mmap_addr, buffer->mmap_size);
1141 	buffer->mmap_addr = NULL;
1142 	buffer->mmap_size = 0;
1143 	buffer->data = NULL;
1144 	buffer->use_data = NULL;
1145 }
1146 
1147 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1148 {
1149 	auxtrace_buffer__put_data(buffer);
1150 	if (buffer->data_needs_freeing) {
1151 		buffer->data_needs_freeing = false;
1152 		zfree(&buffer->data);
1153 		buffer->use_data = NULL;
1154 		buffer->size = 0;
1155 	}
1156 }
1157 
1158 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1159 {
1160 	auxtrace_buffer__drop_data(buffer);
1161 	free(buffer);
1162 }
1163 
1164 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1165 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1166 			  const char *msg, u64 timestamp)
1167 {
1168 	size_t size;
1169 
1170 	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1171 
1172 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1173 	auxtrace_error->type = type;
1174 	auxtrace_error->code = code;
1175 	auxtrace_error->cpu = cpu;
1176 	auxtrace_error->pid = pid;
1177 	auxtrace_error->tid = tid;
1178 	auxtrace_error->fmt = 1;
1179 	auxtrace_error->ip = ip;
1180 	auxtrace_error->time = timestamp;
1181 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1182 
1183 	size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1184 	       strlen(auxtrace_error->msg) + 1;
1185 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1186 }
1187 
1188 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1189 					 struct perf_tool *tool,
1190 					 struct perf_session *session,
1191 					 perf_event__handler_t process)
1192 {
1193 	union perf_event *ev;
1194 	size_t priv_size;
1195 	int err;
1196 
1197 	pr_debug2("Synthesizing auxtrace information\n");
1198 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1199 	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1200 	if (!ev)
1201 		return -ENOMEM;
1202 
1203 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1204 	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1205 					priv_size;
1206 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1207 					 priv_size);
1208 	if (err)
1209 		goto out_free;
1210 
1211 	err = process(tool, ev, NULL, NULL);
1212 out_free:
1213 	free(ev);
1214 	return err;
1215 }
1216 
1217 int perf_event__process_auxtrace_info(struct perf_session *session,
1218 				      union perf_event *event)
1219 {
1220 	enum auxtrace_type type = event->auxtrace_info.type;
1221 
1222 	if (dump_trace)
1223 		fprintf(stdout, " type: %u\n", type);
1224 
1225 	switch (type) {
1226 	case PERF_AUXTRACE_INTEL_PT:
1227 		return intel_pt_process_auxtrace_info(event, session);
1228 	case PERF_AUXTRACE_INTEL_BTS:
1229 		return intel_bts_process_auxtrace_info(event, session);
1230 	case PERF_AUXTRACE_ARM_SPE:
1231 		return arm_spe_process_auxtrace_info(event, session);
1232 	case PERF_AUXTRACE_CS_ETM:
1233 		return cs_etm__process_auxtrace_info(event, session);
1234 	case PERF_AUXTRACE_S390_CPUMSF:
1235 		return s390_cpumsf_process_auxtrace_info(event, session);
1236 	case PERF_AUXTRACE_UNKNOWN:
1237 	default:
1238 		return -EINVAL;
1239 	}
1240 }
1241 
1242 s64 perf_event__process_auxtrace(struct perf_session *session,
1243 				 union perf_event *event)
1244 {
1245 	s64 err;
1246 
1247 	if (dump_trace)
1248 		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1249 			event->auxtrace.size, event->auxtrace.offset,
1250 			event->auxtrace.reference, event->auxtrace.idx,
1251 			event->auxtrace.tid, event->auxtrace.cpu);
1252 
1253 	if (auxtrace__dont_decode(session))
1254 		return event->auxtrace.size;
1255 
1256 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1257 		return -EINVAL;
1258 
1259 	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1260 	if (err < 0)
1261 		return err;
1262 
1263 	return event->auxtrace.size;
1264 }
1265 
1266 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1267 #define PERF_ITRACE_DEFAULT_PERIOD		100000
1268 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1269 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1270 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1271 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1272 
1273 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1274 				    bool no_sample)
1275 {
1276 	synth_opts->branches = true;
1277 	synth_opts->transactions = true;
1278 	synth_opts->ptwrites = true;
1279 	synth_opts->pwr_events = true;
1280 	synth_opts->other_events = true;
1281 	synth_opts->errors = true;
1282 	if (no_sample) {
1283 		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1284 		synth_opts->period = 1;
1285 		synth_opts->calls = true;
1286 	} else {
1287 		synth_opts->instructions = true;
1288 		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1289 		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1290 	}
1291 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1292 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1293 	synth_opts->initial_skip = 0;
1294 }
1295 
1296 /*
1297  * Please check tools/perf/Documentation/perf-script.txt for information
1298  * about the options parsed here, which is introduced after this cset,
1299  * when support in 'perf script' for these options is introduced.
1300  */
1301 int itrace_parse_synth_opts(const struct option *opt, const char *str,
1302 			    int unset)
1303 {
1304 	struct itrace_synth_opts *synth_opts = opt->value;
1305 	const char *p;
1306 	char *endptr;
1307 	bool period_type_set = false;
1308 	bool period_set = false;
1309 
1310 	synth_opts->set = true;
1311 
1312 	if (unset) {
1313 		synth_opts->dont_decode = true;
1314 		return 0;
1315 	}
1316 
1317 	if (!str) {
1318 		itrace_synth_opts__set_default(synth_opts,
1319 					       synth_opts->default_no_sample);
1320 		return 0;
1321 	}
1322 
1323 	for (p = str; *p;) {
1324 		switch (*p++) {
1325 		case 'i':
1326 			synth_opts->instructions = true;
1327 			while (*p == ' ' || *p == ',')
1328 				p += 1;
1329 			if (isdigit(*p)) {
1330 				synth_opts->period = strtoull(p, &endptr, 10);
1331 				period_set = true;
1332 				p = endptr;
1333 				while (*p == ' ' || *p == ',')
1334 					p += 1;
1335 				switch (*p++) {
1336 				case 'i':
1337 					synth_opts->period_type =
1338 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1339 					period_type_set = true;
1340 					break;
1341 				case 't':
1342 					synth_opts->period_type =
1343 						PERF_ITRACE_PERIOD_TICKS;
1344 					period_type_set = true;
1345 					break;
1346 				case 'm':
1347 					synth_opts->period *= 1000;
1348 					/* Fall through */
1349 				case 'u':
1350 					synth_opts->period *= 1000;
1351 					/* Fall through */
1352 				case 'n':
1353 					if (*p++ != 's')
1354 						goto out_err;
1355 					synth_opts->period_type =
1356 						PERF_ITRACE_PERIOD_NANOSECS;
1357 					period_type_set = true;
1358 					break;
1359 				case '\0':
1360 					goto out;
1361 				default:
1362 					goto out_err;
1363 				}
1364 			}
1365 			break;
1366 		case 'b':
1367 			synth_opts->branches = true;
1368 			break;
1369 		case 'x':
1370 			synth_opts->transactions = true;
1371 			break;
1372 		case 'w':
1373 			synth_opts->ptwrites = true;
1374 			break;
1375 		case 'p':
1376 			synth_opts->pwr_events = true;
1377 			break;
1378 		case 'o':
1379 			synth_opts->other_events = true;
1380 			break;
1381 		case 'e':
1382 			synth_opts->errors = true;
1383 			break;
1384 		case 'd':
1385 			synth_opts->log = true;
1386 			break;
1387 		case 'c':
1388 			synth_opts->branches = true;
1389 			synth_opts->calls = true;
1390 			break;
1391 		case 'r':
1392 			synth_opts->branches = true;
1393 			synth_opts->returns = true;
1394 			break;
1395 		case 'g':
1396 			synth_opts->callchain = true;
1397 			synth_opts->callchain_sz =
1398 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1399 			while (*p == ' ' || *p == ',')
1400 				p += 1;
1401 			if (isdigit(*p)) {
1402 				unsigned int val;
1403 
1404 				val = strtoul(p, &endptr, 10);
1405 				p = endptr;
1406 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1407 					goto out_err;
1408 				synth_opts->callchain_sz = val;
1409 			}
1410 			break;
1411 		case 'l':
1412 			synth_opts->last_branch = true;
1413 			synth_opts->last_branch_sz =
1414 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1415 			while (*p == ' ' || *p == ',')
1416 				p += 1;
1417 			if (isdigit(*p)) {
1418 				unsigned int val;
1419 
1420 				val = strtoul(p, &endptr, 10);
1421 				p = endptr;
1422 				if (!val ||
1423 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1424 					goto out_err;
1425 				synth_opts->last_branch_sz = val;
1426 			}
1427 			break;
1428 		case 's':
1429 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1430 			if (p == endptr)
1431 				goto out_err;
1432 			p = endptr;
1433 			break;
1434 		case ' ':
1435 		case ',':
1436 			break;
1437 		default:
1438 			goto out_err;
1439 		}
1440 	}
1441 out:
1442 	if (synth_opts->instructions) {
1443 		if (!period_type_set)
1444 			synth_opts->period_type =
1445 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1446 		if (!period_set)
1447 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1448 	}
1449 
1450 	return 0;
1451 
1452 out_err:
1453 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1454 	return -EINVAL;
1455 }
1456 
1457 static const char * const auxtrace_error_type_name[] = {
1458 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1459 };
1460 
1461 static const char *auxtrace_error_name(int type)
1462 {
1463 	const char *error_type_name = NULL;
1464 
1465 	if (type < PERF_AUXTRACE_ERROR_MAX)
1466 		error_type_name = auxtrace_error_type_name[type];
1467 	if (!error_type_name)
1468 		error_type_name = "unknown AUX";
1469 	return error_type_name;
1470 }
1471 
1472 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1473 {
1474 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1475 	unsigned long long nsecs = e->time;
1476 	const char *msg = e->msg;
1477 	int ret;
1478 
1479 	ret = fprintf(fp, " %s error type %u",
1480 		      auxtrace_error_name(e->type), e->type);
1481 
1482 	if (e->fmt && nsecs) {
1483 		unsigned long secs = nsecs / NSEC_PER_SEC;
1484 
1485 		nsecs -= secs * NSEC_PER_SEC;
1486 		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1487 	} else {
1488 		ret += fprintf(fp, " time 0");
1489 	}
1490 
1491 	if (!e->fmt)
1492 		msg = (const char *)&e->time;
1493 
1494 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1495 		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1496 	return ret;
1497 }
1498 
1499 void perf_session__auxtrace_error_inc(struct perf_session *session,
1500 				      union perf_event *event)
1501 {
1502 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1503 
1504 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1505 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1506 }
1507 
1508 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1509 {
1510 	int i;
1511 
1512 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1513 		if (!stats->nr_auxtrace_errors[i])
1514 			continue;
1515 		ui__warning("%u %s errors\n",
1516 			    stats->nr_auxtrace_errors[i],
1517 			    auxtrace_error_name(i));
1518 	}
1519 }
1520 
1521 int perf_event__process_auxtrace_error(struct perf_session *session,
1522 				       union perf_event *event)
1523 {
1524 	if (auxtrace__dont_decode(session))
1525 		return 0;
1526 
1527 	perf_event__fprintf_auxtrace_error(event, stdout);
1528 	return 0;
1529 }
1530 
1531 static int __auxtrace_mmap__read(struct mmap *map,
1532 				 struct auxtrace_record *itr,
1533 				 struct perf_tool *tool, process_auxtrace_t fn,
1534 				 bool snapshot, size_t snapshot_size)
1535 {
1536 	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1537 	u64 head, old = mm->prev, offset, ref;
1538 	unsigned char *data = mm->base;
1539 	size_t size, head_off, old_off, len1, len2, padding;
1540 	union perf_event ev;
1541 	void *data1, *data2;
1542 
1543 	if (snapshot) {
1544 		head = auxtrace_mmap__read_snapshot_head(mm);
1545 		if (auxtrace_record__find_snapshot(itr, mm->idx, mm, data,
1546 						   &head, &old))
1547 			return -1;
1548 	} else {
1549 		head = auxtrace_mmap__read_head(mm);
1550 	}
1551 
1552 	if (old == head)
1553 		return 0;
1554 
1555 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1556 		  mm->idx, old, head, head - old);
1557 
1558 	if (mm->mask) {
1559 		head_off = head & mm->mask;
1560 		old_off = old & mm->mask;
1561 	} else {
1562 		head_off = head % mm->len;
1563 		old_off = old % mm->len;
1564 	}
1565 
1566 	if (head_off > old_off)
1567 		size = head_off - old_off;
1568 	else
1569 		size = mm->len - (old_off - head_off);
1570 
1571 	if (snapshot && size > snapshot_size)
1572 		size = snapshot_size;
1573 
1574 	ref = auxtrace_record__reference(itr);
1575 
1576 	if (head > old || size <= head || mm->mask) {
1577 		offset = head - size;
1578 	} else {
1579 		/*
1580 		 * When the buffer size is not a power of 2, 'head' wraps at the
1581 		 * highest multiple of the buffer size, so we have to subtract
1582 		 * the remainder here.
1583 		 */
1584 		u64 rem = (0ULL - mm->len) % mm->len;
1585 
1586 		offset = head - size - rem;
1587 	}
1588 
1589 	if (size > head_off) {
1590 		len1 = size - head_off;
1591 		data1 = &data[mm->len - len1];
1592 		len2 = head_off;
1593 		data2 = &data[0];
1594 	} else {
1595 		len1 = size;
1596 		data1 = &data[head_off - len1];
1597 		len2 = 0;
1598 		data2 = NULL;
1599 	}
1600 
1601 	if (itr->alignment) {
1602 		unsigned int unwanted = len1 % itr->alignment;
1603 
1604 		len1 -= unwanted;
1605 		size -= unwanted;
1606 	}
1607 
1608 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1609 	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1610 	if (padding)
1611 		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1612 
1613 	memset(&ev, 0, sizeof(ev));
1614 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1615 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1616 	ev.auxtrace.size = size + padding;
1617 	ev.auxtrace.offset = offset;
1618 	ev.auxtrace.reference = ref;
1619 	ev.auxtrace.idx = mm->idx;
1620 	ev.auxtrace.tid = mm->tid;
1621 	ev.auxtrace.cpu = mm->cpu;
1622 
1623 	if (fn(tool, map, &ev, data1, len1, data2, len2))
1624 		return -1;
1625 
1626 	mm->prev = head;
1627 
1628 	if (!snapshot) {
1629 		auxtrace_mmap__write_tail(mm, head);
1630 		if (itr->read_finish) {
1631 			int err;
1632 
1633 			err = itr->read_finish(itr, mm->idx);
1634 			if (err < 0)
1635 				return err;
1636 		}
1637 	}
1638 
1639 	return 1;
1640 }
1641 
1642 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1643 			struct perf_tool *tool, process_auxtrace_t fn)
1644 {
1645 	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1646 }
1647 
1648 int auxtrace_mmap__read_snapshot(struct mmap *map,
1649 				 struct auxtrace_record *itr,
1650 				 struct perf_tool *tool, process_auxtrace_t fn,
1651 				 size_t snapshot_size)
1652 {
1653 	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1654 }
1655 
1656 /**
1657  * struct auxtrace_cache - hash table to implement a cache
1658  * @hashtable: the hashtable
1659  * @sz: hashtable size (number of hlists)
1660  * @entry_size: size of an entry
1661  * @limit: limit the number of entries to this maximum, when reached the cache
1662  *         is dropped and caching begins again with an empty cache
1663  * @cnt: current number of entries
1664  * @bits: hashtable size (@sz = 2^@bits)
1665  */
1666 struct auxtrace_cache {
1667 	struct hlist_head *hashtable;
1668 	size_t sz;
1669 	size_t entry_size;
1670 	size_t limit;
1671 	size_t cnt;
1672 	unsigned int bits;
1673 };
1674 
1675 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1676 					   unsigned int limit_percent)
1677 {
1678 	struct auxtrace_cache *c;
1679 	struct hlist_head *ht;
1680 	size_t sz, i;
1681 
1682 	c = zalloc(sizeof(struct auxtrace_cache));
1683 	if (!c)
1684 		return NULL;
1685 
1686 	sz = 1UL << bits;
1687 
1688 	ht = calloc(sz, sizeof(struct hlist_head));
1689 	if (!ht)
1690 		goto out_free;
1691 
1692 	for (i = 0; i < sz; i++)
1693 		INIT_HLIST_HEAD(&ht[i]);
1694 
1695 	c->hashtable = ht;
1696 	c->sz = sz;
1697 	c->entry_size = entry_size;
1698 	c->limit = (c->sz * limit_percent) / 100;
1699 	c->bits = bits;
1700 
1701 	return c;
1702 
1703 out_free:
1704 	free(c);
1705 	return NULL;
1706 }
1707 
1708 static void auxtrace_cache__drop(struct auxtrace_cache *c)
1709 {
1710 	struct auxtrace_cache_entry *entry;
1711 	struct hlist_node *tmp;
1712 	size_t i;
1713 
1714 	if (!c)
1715 		return;
1716 
1717 	for (i = 0; i < c->sz; i++) {
1718 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
1719 			hlist_del(&entry->hash);
1720 			auxtrace_cache__free_entry(c, entry);
1721 		}
1722 	}
1723 
1724 	c->cnt = 0;
1725 }
1726 
1727 void auxtrace_cache__free(struct auxtrace_cache *c)
1728 {
1729 	if (!c)
1730 		return;
1731 
1732 	auxtrace_cache__drop(c);
1733 	zfree(&c->hashtable);
1734 	free(c);
1735 }
1736 
1737 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
1738 {
1739 	return malloc(c->entry_size);
1740 }
1741 
1742 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
1743 				void *entry)
1744 {
1745 	free(entry);
1746 }
1747 
1748 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
1749 			struct auxtrace_cache_entry *entry)
1750 {
1751 	if (c->limit && ++c->cnt > c->limit)
1752 		auxtrace_cache__drop(c);
1753 
1754 	entry->key = key;
1755 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
1756 
1757 	return 0;
1758 }
1759 
1760 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
1761 						       u32 key)
1762 {
1763 	struct auxtrace_cache_entry *entry;
1764 	struct hlist_head *hlist;
1765 	struct hlist_node *n;
1766 
1767 	if (!c)
1768 		return NULL;
1769 
1770 	hlist = &c->hashtable[hash_32(key, c->bits)];
1771 	hlist_for_each_entry_safe(entry, n, hlist, hash) {
1772 		if (entry->key == key) {
1773 			hlist_del(&entry->hash);
1774 			return entry;
1775 		}
1776 	}
1777 
1778 	return NULL;
1779 }
1780 
1781 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
1782 {
1783 	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
1784 
1785 	auxtrace_cache__free_entry(c, entry);
1786 }
1787 
1788 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
1789 {
1790 	struct auxtrace_cache_entry *entry;
1791 	struct hlist_head *hlist;
1792 
1793 	if (!c)
1794 		return NULL;
1795 
1796 	hlist = &c->hashtable[hash_32(key, c->bits)];
1797 	hlist_for_each_entry(entry, hlist, hash) {
1798 		if (entry->key == key)
1799 			return entry;
1800 	}
1801 
1802 	return NULL;
1803 }
1804 
1805 static void addr_filter__free_str(struct addr_filter *filt)
1806 {
1807 	zfree(&filt->str);
1808 	filt->action   = NULL;
1809 	filt->sym_from = NULL;
1810 	filt->sym_to   = NULL;
1811 	filt->filename = NULL;
1812 }
1813 
1814 static struct addr_filter *addr_filter__new(void)
1815 {
1816 	struct addr_filter *filt = zalloc(sizeof(*filt));
1817 
1818 	if (filt)
1819 		INIT_LIST_HEAD(&filt->list);
1820 
1821 	return filt;
1822 }
1823 
1824 static void addr_filter__free(struct addr_filter *filt)
1825 {
1826 	if (filt)
1827 		addr_filter__free_str(filt);
1828 	free(filt);
1829 }
1830 
1831 static void addr_filters__add(struct addr_filters *filts,
1832 			      struct addr_filter *filt)
1833 {
1834 	list_add_tail(&filt->list, &filts->head);
1835 	filts->cnt += 1;
1836 }
1837 
1838 static void addr_filters__del(struct addr_filters *filts,
1839 			      struct addr_filter *filt)
1840 {
1841 	list_del_init(&filt->list);
1842 	filts->cnt -= 1;
1843 }
1844 
1845 void addr_filters__init(struct addr_filters *filts)
1846 {
1847 	INIT_LIST_HEAD(&filts->head);
1848 	filts->cnt = 0;
1849 }
1850 
1851 void addr_filters__exit(struct addr_filters *filts)
1852 {
1853 	struct addr_filter *filt, *n;
1854 
1855 	list_for_each_entry_safe(filt, n, &filts->head, list) {
1856 		addr_filters__del(filts, filt);
1857 		addr_filter__free(filt);
1858 	}
1859 }
1860 
1861 static int parse_num_or_str(char **inp, u64 *num, const char **str,
1862 			    const char *str_delim)
1863 {
1864 	*inp += strspn(*inp, " ");
1865 
1866 	if (isdigit(**inp)) {
1867 		char *endptr;
1868 
1869 		if (!num)
1870 			return -EINVAL;
1871 		errno = 0;
1872 		*num = strtoull(*inp, &endptr, 0);
1873 		if (errno)
1874 			return -errno;
1875 		if (endptr == *inp)
1876 			return -EINVAL;
1877 		*inp = endptr;
1878 	} else {
1879 		size_t n;
1880 
1881 		if (!str)
1882 			return -EINVAL;
1883 		*inp += strspn(*inp, " ");
1884 		*str = *inp;
1885 		n = strcspn(*inp, str_delim);
1886 		if (!n)
1887 			return -EINVAL;
1888 		*inp += n;
1889 		if (**inp) {
1890 			**inp = '\0';
1891 			*inp += 1;
1892 		}
1893 	}
1894 	return 0;
1895 }
1896 
1897 static int parse_action(struct addr_filter *filt)
1898 {
1899 	if (!strcmp(filt->action, "filter")) {
1900 		filt->start = true;
1901 		filt->range = true;
1902 	} else if (!strcmp(filt->action, "start")) {
1903 		filt->start = true;
1904 	} else if (!strcmp(filt->action, "stop")) {
1905 		filt->start = false;
1906 	} else if (!strcmp(filt->action, "tracestop")) {
1907 		filt->start = false;
1908 		filt->range = true;
1909 		filt->action += 5; /* Change 'tracestop' to 'stop' */
1910 	} else {
1911 		return -EINVAL;
1912 	}
1913 	return 0;
1914 }
1915 
1916 static int parse_sym_idx(char **inp, int *idx)
1917 {
1918 	*idx = -1;
1919 
1920 	*inp += strspn(*inp, " ");
1921 
1922 	if (**inp != '#')
1923 		return 0;
1924 
1925 	*inp += 1;
1926 
1927 	if (**inp == 'g' || **inp == 'G') {
1928 		*inp += 1;
1929 		*idx = 0;
1930 	} else {
1931 		unsigned long num;
1932 		char *endptr;
1933 
1934 		errno = 0;
1935 		num = strtoul(*inp, &endptr, 0);
1936 		if (errno)
1937 			return -errno;
1938 		if (endptr == *inp || num > INT_MAX)
1939 			return -EINVAL;
1940 		*inp = endptr;
1941 		*idx = num;
1942 	}
1943 
1944 	return 0;
1945 }
1946 
1947 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
1948 {
1949 	int err = parse_num_or_str(inp, num, str, " ");
1950 
1951 	if (!err && *str)
1952 		err = parse_sym_idx(inp, idx);
1953 
1954 	return err;
1955 }
1956 
1957 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
1958 {
1959 	char *fstr;
1960 	int err;
1961 
1962 	filt->str = fstr = strdup(*filter_inp);
1963 	if (!fstr)
1964 		return -ENOMEM;
1965 
1966 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
1967 	if (err)
1968 		goto out_err;
1969 
1970 	err = parse_action(filt);
1971 	if (err)
1972 		goto out_err;
1973 
1974 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
1975 			      &filt->sym_from_idx);
1976 	if (err)
1977 		goto out_err;
1978 
1979 	fstr += strspn(fstr, " ");
1980 
1981 	if (*fstr == '/') {
1982 		fstr += 1;
1983 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
1984 				      &filt->sym_to_idx);
1985 		if (err)
1986 			goto out_err;
1987 		filt->range = true;
1988 	}
1989 
1990 	fstr += strspn(fstr, " ");
1991 
1992 	if (*fstr == '@') {
1993 		fstr += 1;
1994 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
1995 		if (err)
1996 			goto out_err;
1997 	}
1998 
1999 	fstr += strspn(fstr, " ,");
2000 
2001 	*filter_inp += fstr - filt->str;
2002 
2003 	return 0;
2004 
2005 out_err:
2006 	addr_filter__free_str(filt);
2007 
2008 	return err;
2009 }
2010 
2011 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2012 				    const char *filter)
2013 {
2014 	struct addr_filter *filt;
2015 	const char *fstr = filter;
2016 	int err;
2017 
2018 	while (*fstr) {
2019 		filt = addr_filter__new();
2020 		err = parse_one_filter(filt, &fstr);
2021 		if (err) {
2022 			addr_filter__free(filt);
2023 			addr_filters__exit(filts);
2024 			return err;
2025 		}
2026 		addr_filters__add(filts, filt);
2027 	}
2028 
2029 	return 0;
2030 }
2031 
2032 struct sym_args {
2033 	const char	*name;
2034 	u64		start;
2035 	u64		size;
2036 	int		idx;
2037 	int		cnt;
2038 	bool		started;
2039 	bool		global;
2040 	bool		selected;
2041 	bool		duplicate;
2042 	bool		near;
2043 };
2044 
2045 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2046 {
2047 	/* A function with the same name, and global or the n'th found or any */
2048 	return kallsyms__is_function(type) &&
2049 	       !strcmp(name, args->name) &&
2050 	       ((args->global && isupper(type)) ||
2051 		(args->selected && ++(args->cnt) == args->idx) ||
2052 		(!args->global && !args->selected));
2053 }
2054 
2055 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2056 {
2057 	struct sym_args *args = arg;
2058 
2059 	if (args->started) {
2060 		if (!args->size)
2061 			args->size = start - args->start;
2062 		if (args->selected) {
2063 			if (args->size)
2064 				return 1;
2065 		} else if (kern_sym_match(args, name, type)) {
2066 			args->duplicate = true;
2067 			return 1;
2068 		}
2069 	} else if (kern_sym_match(args, name, type)) {
2070 		args->started = true;
2071 		args->start = start;
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2078 {
2079 	struct sym_args *args = arg;
2080 
2081 	if (kern_sym_match(args, name, type)) {
2082 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2083 		       ++args->cnt, start, type, name);
2084 		args->near = true;
2085 	} else if (args->near) {
2086 		args->near = false;
2087 		pr_err("\t\twhich is near\t\t%s\n", name);
2088 	}
2089 
2090 	return 0;
2091 }
2092 
2093 static int sym_not_found_error(const char *sym_name, int idx)
2094 {
2095 	if (idx > 0) {
2096 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2097 		       idx, sym_name);
2098 	} else if (!idx) {
2099 		pr_err("Global symbol '%s' not found.\n", sym_name);
2100 	} else {
2101 		pr_err("Symbol '%s' not found.\n", sym_name);
2102 	}
2103 	pr_err("Note that symbols must be functions.\n");
2104 
2105 	return -EINVAL;
2106 }
2107 
2108 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2109 {
2110 	struct sym_args args = {
2111 		.name = sym_name,
2112 		.idx = idx,
2113 		.global = !idx,
2114 		.selected = idx > 0,
2115 	};
2116 	int err;
2117 
2118 	*start = 0;
2119 	*size = 0;
2120 
2121 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2122 	if (err < 0) {
2123 		pr_err("Failed to parse /proc/kallsyms\n");
2124 		return err;
2125 	}
2126 
2127 	if (args.duplicate) {
2128 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2129 		args.cnt = 0;
2130 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2131 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2132 		       sym_name);
2133 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2134 		return -EINVAL;
2135 	}
2136 
2137 	if (!args.started) {
2138 		pr_err("Kernel symbol lookup: ");
2139 		return sym_not_found_error(sym_name, idx);
2140 	}
2141 
2142 	*start = args.start;
2143 	*size = args.size;
2144 
2145 	return 0;
2146 }
2147 
2148 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2149 			       char type, u64 start)
2150 {
2151 	struct sym_args *args = arg;
2152 
2153 	if (!kallsyms__is_function(type))
2154 		return 0;
2155 
2156 	if (!args->started) {
2157 		args->started = true;
2158 		args->start = start;
2159 	}
2160 	/* Don't know exactly where the kernel ends, so we add a page */
2161 	args->size = round_up(start, page_size) + page_size - args->start;
2162 
2163 	return 0;
2164 }
2165 
2166 static int addr_filter__entire_kernel(struct addr_filter *filt)
2167 {
2168 	struct sym_args args = { .started = false };
2169 	int err;
2170 
2171 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2172 	if (err < 0 || !args.started) {
2173 		pr_err("Failed to parse /proc/kallsyms\n");
2174 		return err;
2175 	}
2176 
2177 	filt->addr = args.start;
2178 	filt->size = args.size;
2179 
2180 	return 0;
2181 }
2182 
2183 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2184 {
2185 	if (start + size >= filt->addr)
2186 		return 0;
2187 
2188 	if (filt->sym_from) {
2189 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2190 		       filt->sym_to, start, filt->sym_from, filt->addr);
2191 	} else {
2192 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2193 		       filt->sym_to, start, filt->addr);
2194 	}
2195 
2196 	return -EINVAL;
2197 }
2198 
2199 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2200 {
2201 	bool no_size = false;
2202 	u64 start, size;
2203 	int err;
2204 
2205 	if (symbol_conf.kptr_restrict) {
2206 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2207 		return -EINVAL;
2208 	}
2209 
2210 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2211 		return addr_filter__entire_kernel(filt);
2212 
2213 	if (filt->sym_from) {
2214 		err = find_kern_sym(filt->sym_from, &start, &size,
2215 				    filt->sym_from_idx);
2216 		if (err)
2217 			return err;
2218 		filt->addr = start;
2219 		if (filt->range && !filt->size && !filt->sym_to) {
2220 			filt->size = size;
2221 			no_size = !size;
2222 		}
2223 	}
2224 
2225 	if (filt->sym_to) {
2226 		err = find_kern_sym(filt->sym_to, &start, &size,
2227 				    filt->sym_to_idx);
2228 		if (err)
2229 			return err;
2230 
2231 		err = check_end_after_start(filt, start, size);
2232 		if (err)
2233 			return err;
2234 		filt->size = start + size - filt->addr;
2235 		no_size = !size;
2236 	}
2237 
2238 	/* The very last symbol in kallsyms does not imply a particular size */
2239 	if (no_size) {
2240 		pr_err("Cannot determine size of symbol '%s'\n",
2241 		       filt->sym_to ? filt->sym_to : filt->sym_from);
2242 		return -EINVAL;
2243 	}
2244 
2245 	return 0;
2246 }
2247 
2248 static struct dso *load_dso(const char *name)
2249 {
2250 	struct map *map;
2251 	struct dso *dso;
2252 
2253 	map = dso__new_map(name);
2254 	if (!map)
2255 		return NULL;
2256 
2257 	if (map__load(map) < 0)
2258 		pr_err("File '%s' not found or has no symbols.\n", name);
2259 
2260 	dso = dso__get(map->dso);
2261 
2262 	map__put(map);
2263 
2264 	return dso;
2265 }
2266 
2267 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2268 			  int idx)
2269 {
2270 	/* Same name, and global or the n'th found or any */
2271 	return !arch__compare_symbol_names(name, sym->name) &&
2272 	       ((!idx && sym->binding == STB_GLOBAL) ||
2273 		(idx > 0 && ++*cnt == idx) ||
2274 		idx < 0);
2275 }
2276 
2277 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2278 {
2279 	struct symbol *sym;
2280 	bool near = false;
2281 	int cnt = 0;
2282 
2283 	pr_err("Multiple symbols with name '%s'\n", sym_name);
2284 
2285 	sym = dso__first_symbol(dso);
2286 	while (sym) {
2287 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2288 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2289 			       ++cnt, sym->start,
2290 			       sym->binding == STB_GLOBAL ? 'g' :
2291 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2292 			       sym->name);
2293 			near = true;
2294 		} else if (near) {
2295 			near = false;
2296 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2297 		}
2298 		sym = dso__next_symbol(sym);
2299 	}
2300 
2301 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2302 	       sym_name);
2303 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2304 }
2305 
2306 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2307 			u64 *size, int idx)
2308 {
2309 	struct symbol *sym;
2310 	int cnt = 0;
2311 
2312 	*start = 0;
2313 	*size = 0;
2314 
2315 	sym = dso__first_symbol(dso);
2316 	while (sym) {
2317 		if (*start) {
2318 			if (!*size)
2319 				*size = sym->start - *start;
2320 			if (idx > 0) {
2321 				if (*size)
2322 					return 1;
2323 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2324 				print_duplicate_syms(dso, sym_name);
2325 				return -EINVAL;
2326 			}
2327 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2328 			*start = sym->start;
2329 			*size = sym->end - sym->start;
2330 		}
2331 		sym = dso__next_symbol(sym);
2332 	}
2333 
2334 	if (!*start)
2335 		return sym_not_found_error(sym_name, idx);
2336 
2337 	return 0;
2338 }
2339 
2340 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2341 {
2342 	if (dso__data_file_size(dso, NULL)) {
2343 		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2344 		       filt->filename);
2345 		return -EINVAL;
2346 	}
2347 
2348 	filt->addr = 0;
2349 	filt->size = dso->data.file_size;
2350 
2351 	return 0;
2352 }
2353 
2354 static int addr_filter__resolve_syms(struct addr_filter *filt)
2355 {
2356 	u64 start, size;
2357 	struct dso *dso;
2358 	int err = 0;
2359 
2360 	if (!filt->sym_from && !filt->sym_to)
2361 		return 0;
2362 
2363 	if (!filt->filename)
2364 		return addr_filter__resolve_kernel_syms(filt);
2365 
2366 	dso = load_dso(filt->filename);
2367 	if (!dso) {
2368 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2369 		return -EINVAL;
2370 	}
2371 
2372 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2373 		err = addr_filter__entire_dso(filt, dso);
2374 		goto put_dso;
2375 	}
2376 
2377 	if (filt->sym_from) {
2378 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2379 				   filt->sym_from_idx);
2380 		if (err)
2381 			goto put_dso;
2382 		filt->addr = start;
2383 		if (filt->range && !filt->size && !filt->sym_to)
2384 			filt->size = size;
2385 	}
2386 
2387 	if (filt->sym_to) {
2388 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2389 				   filt->sym_to_idx);
2390 		if (err)
2391 			goto put_dso;
2392 
2393 		err = check_end_after_start(filt, start, size);
2394 		if (err)
2395 			return err;
2396 
2397 		filt->size = start + size - filt->addr;
2398 	}
2399 
2400 put_dso:
2401 	dso__put(dso);
2402 
2403 	return err;
2404 }
2405 
2406 static char *addr_filter__to_str(struct addr_filter *filt)
2407 {
2408 	char filename_buf[PATH_MAX];
2409 	const char *at = "";
2410 	const char *fn = "";
2411 	char *filter;
2412 	int err;
2413 
2414 	if (filt->filename) {
2415 		at = "@";
2416 		fn = realpath(filt->filename, filename_buf);
2417 		if (!fn)
2418 			return NULL;
2419 	}
2420 
2421 	if (filt->range) {
2422 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2423 			       filt->action, filt->addr, filt->size, at, fn);
2424 	} else {
2425 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2426 			       filt->action, filt->addr, at, fn);
2427 	}
2428 
2429 	return err < 0 ? NULL : filter;
2430 }
2431 
2432 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2433 			     int max_nr)
2434 {
2435 	struct addr_filters filts;
2436 	struct addr_filter *filt;
2437 	int err;
2438 
2439 	addr_filters__init(&filts);
2440 
2441 	err = addr_filters__parse_bare_filter(&filts, filter);
2442 	if (err)
2443 		goto out_exit;
2444 
2445 	if (filts.cnt > max_nr) {
2446 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2447 		       filts.cnt, max_nr);
2448 		err = -EINVAL;
2449 		goto out_exit;
2450 	}
2451 
2452 	list_for_each_entry(filt, &filts.head, list) {
2453 		char *new_filter;
2454 
2455 		err = addr_filter__resolve_syms(filt);
2456 		if (err)
2457 			goto out_exit;
2458 
2459 		new_filter = addr_filter__to_str(filt);
2460 		if (!new_filter) {
2461 			err = -ENOMEM;
2462 			goto out_exit;
2463 		}
2464 
2465 		if (perf_evsel__append_addr_filter(evsel, new_filter)) {
2466 			err = -ENOMEM;
2467 			goto out_exit;
2468 		}
2469 	}
2470 
2471 out_exit:
2472 	addr_filters__exit(&filts);
2473 
2474 	if (err) {
2475 		pr_err("Failed to parse address filter: '%s'\n", filter);
2476 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2477 		pr_err("Where multiple filters are separated by space or comma.\n");
2478 	}
2479 
2480 	return err;
2481 }
2482 
2483 static int perf_evsel__nr_addr_filter(struct evsel *evsel)
2484 {
2485 	struct perf_pmu *pmu = perf_evsel__find_pmu(evsel);
2486 	int nr_addr_filters = 0;
2487 
2488 	if (!pmu)
2489 		return 0;
2490 
2491 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2492 
2493 	return nr_addr_filters;
2494 }
2495 
2496 int auxtrace_parse_filters(struct evlist *evlist)
2497 {
2498 	struct evsel *evsel;
2499 	char *filter;
2500 	int err, max_nr;
2501 
2502 	evlist__for_each_entry(evlist, evsel) {
2503 		filter = evsel->filter;
2504 		max_nr = perf_evsel__nr_addr_filter(evsel);
2505 		if (!filter || !max_nr)
2506 			continue;
2507 		evsel->filter = NULL;
2508 		err = parse_addr_filter(evsel, filter, max_nr);
2509 		free(filter);
2510 		if (err)
2511 			return err;
2512 		pr_debug("Address filter: %s\n", evsel->filter);
2513 	}
2514 
2515 	return 0;
2516 }
2517 
2518 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2519 			    struct perf_sample *sample, struct perf_tool *tool)
2520 {
2521 	if (!session->auxtrace)
2522 		return 0;
2523 
2524 	return session->auxtrace->process_event(session, event, sample, tool);
2525 }
2526 
2527 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2528 				    struct perf_sample *sample)
2529 {
2530 	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2531 	    auxtrace__dont_decode(session))
2532 		return;
2533 
2534 	session->auxtrace->dump_auxtrace_sample(session, sample);
2535 }
2536 
2537 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2538 {
2539 	if (!session->auxtrace)
2540 		return 0;
2541 
2542 	return session->auxtrace->flush_events(session, tool);
2543 }
2544 
2545 void auxtrace__free_events(struct perf_session *session)
2546 {
2547 	if (!session->auxtrace)
2548 		return;
2549 
2550 	return session->auxtrace->free_events(session);
2551 }
2552 
2553 void auxtrace__free(struct perf_session *session)
2554 {
2555 	if (!session->auxtrace)
2556 		return;
2557 
2558 	return session->auxtrace->free(session);
2559 }
2560