1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * auxtrace.c: AUX area trace support 4 * Copyright (c) 2013-2015, Intel Corporation. 5 */ 6 7 #include <inttypes.h> 8 #include <sys/types.h> 9 #include <sys/mman.h> 10 #include <stdbool.h> 11 #include <string.h> 12 #include <limits.h> 13 #include <errno.h> 14 15 #include <linux/kernel.h> 16 #include <linux/perf_event.h> 17 #include <linux/types.h> 18 #include <linux/bitops.h> 19 #include <linux/log2.h> 20 #include <linux/string.h> 21 #include <linux/time64.h> 22 23 #include <sys/param.h> 24 #include <stdlib.h> 25 #include <stdio.h> 26 #include <linux/list.h> 27 #include <linux/zalloc.h> 28 29 #include "config.h" 30 #include "evlist.h" 31 #include "dso.h" 32 #include "map.h" 33 #include "pmu.h" 34 #include "evsel.h" 35 #include "evsel_config.h" 36 #include "symbol.h" 37 #include "util/perf_api_probe.h" 38 #include "util/synthetic-events.h" 39 #include "thread_map.h" 40 #include "asm/bug.h" 41 #include "auxtrace.h" 42 43 #include <linux/hash.h> 44 45 #include "event.h" 46 #include "record.h" 47 #include "session.h" 48 #include "debug.h" 49 #include <subcmd/parse-options.h> 50 51 #include "cs-etm.h" 52 #include "intel-pt.h" 53 #include "intel-bts.h" 54 #include "arm-spe.h" 55 #include "hisi-ptt.h" 56 #include "s390-cpumsf.h" 57 #include "util/mmap.h" 58 59 #include <linux/ctype.h> 60 #include "symbol/kallsyms.h" 61 #include <internal/lib.h> 62 #include "util/sample.h" 63 64 /* 65 * Make a group from 'leader' to 'last', requiring that the events were not 66 * already grouped to a different leader. 67 */ 68 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last) 69 { 70 struct evsel *evsel; 71 bool grp; 72 73 if (!evsel__is_group_leader(leader)) 74 return -EINVAL; 75 76 grp = false; 77 evlist__for_each_entry(evlist, evsel) { 78 if (grp) { 79 if (!(evsel__leader(evsel) == leader || 80 (evsel__leader(evsel) == evsel && 81 evsel->core.nr_members <= 1))) 82 return -EINVAL; 83 } else if (evsel == leader) { 84 grp = true; 85 } 86 if (evsel == last) 87 break; 88 } 89 90 grp = false; 91 evlist__for_each_entry(evlist, evsel) { 92 if (grp) { 93 if (!evsel__has_leader(evsel, leader)) { 94 evsel__set_leader(evsel, leader); 95 if (leader->core.nr_members < 1) 96 leader->core.nr_members = 1; 97 leader->core.nr_members += 1; 98 } 99 } else if (evsel == leader) { 100 grp = true; 101 } 102 if (evsel == last) 103 break; 104 } 105 106 return 0; 107 } 108 109 static bool auxtrace__dont_decode(struct perf_session *session) 110 { 111 return !session->itrace_synth_opts || 112 session->itrace_synth_opts->dont_decode; 113 } 114 115 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm, 116 struct auxtrace_mmap_params *mp, 117 void *userpg, int fd) 118 { 119 struct perf_event_mmap_page *pc = userpg; 120 121 WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n"); 122 123 mm->userpg = userpg; 124 mm->mask = mp->mask; 125 mm->len = mp->len; 126 mm->prev = 0; 127 mm->idx = mp->idx; 128 mm->tid = mp->tid; 129 mm->cpu = mp->cpu.cpu; 130 131 if (!mp->len || !mp->mmap_needed) { 132 mm->base = NULL; 133 return 0; 134 } 135 136 pc->aux_offset = mp->offset; 137 pc->aux_size = mp->len; 138 139 mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset); 140 if (mm->base == MAP_FAILED) { 141 pr_debug2("failed to mmap AUX area\n"); 142 mm->base = NULL; 143 return -1; 144 } 145 146 return 0; 147 } 148 149 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm) 150 { 151 if (mm->base) { 152 munmap(mm->base, mm->len); 153 mm->base = NULL; 154 } 155 } 156 157 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp, 158 off_t auxtrace_offset, 159 unsigned int auxtrace_pages, 160 bool auxtrace_overwrite) 161 { 162 if (auxtrace_pages) { 163 mp->offset = auxtrace_offset; 164 mp->len = auxtrace_pages * (size_t)page_size; 165 mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0; 166 mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE); 167 pr_debug2("AUX area mmap length %zu\n", mp->len); 168 } else { 169 mp->len = 0; 170 } 171 } 172 173 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp, 174 struct evlist *evlist, 175 struct evsel *evsel, int idx) 176 { 177 bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus); 178 179 mp->mmap_needed = evsel->needs_auxtrace_mmap; 180 181 if (!mp->mmap_needed) 182 return; 183 184 mp->idx = idx; 185 186 if (per_cpu) { 187 mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 188 if (evlist->core.threads) 189 mp->tid = perf_thread_map__pid(evlist->core.threads, 0); 190 else 191 mp->tid = -1; 192 } else { 193 mp->cpu.cpu = -1; 194 mp->tid = perf_thread_map__pid(evlist->core.threads, idx); 195 } 196 } 197 198 #define AUXTRACE_INIT_NR_QUEUES 32 199 200 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues) 201 { 202 struct auxtrace_queue *queue_array; 203 unsigned int max_nr_queues, i; 204 205 max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue); 206 if (nr_queues > max_nr_queues) 207 return NULL; 208 209 queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue)); 210 if (!queue_array) 211 return NULL; 212 213 for (i = 0; i < nr_queues; i++) { 214 INIT_LIST_HEAD(&queue_array[i].head); 215 queue_array[i].priv = NULL; 216 } 217 218 return queue_array; 219 } 220 221 int auxtrace_queues__init_nr(struct auxtrace_queues *queues, int nr_queues) 222 { 223 queues->nr_queues = nr_queues; 224 queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues); 225 if (!queues->queue_array) 226 return -ENOMEM; 227 return 0; 228 } 229 230 int auxtrace_queues__init(struct auxtrace_queues *queues) 231 { 232 return auxtrace_queues__init_nr(queues, AUXTRACE_INIT_NR_QUEUES); 233 } 234 235 static int auxtrace_queues__grow(struct auxtrace_queues *queues, 236 unsigned int new_nr_queues) 237 { 238 unsigned int nr_queues = queues->nr_queues; 239 struct auxtrace_queue *queue_array; 240 unsigned int i; 241 242 if (!nr_queues) 243 nr_queues = AUXTRACE_INIT_NR_QUEUES; 244 245 while (nr_queues && nr_queues < new_nr_queues) 246 nr_queues <<= 1; 247 248 if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues) 249 return -EINVAL; 250 251 queue_array = auxtrace_alloc_queue_array(nr_queues); 252 if (!queue_array) 253 return -ENOMEM; 254 255 for (i = 0; i < queues->nr_queues; i++) { 256 list_splice_tail(&queues->queue_array[i].head, 257 &queue_array[i].head); 258 queue_array[i].tid = queues->queue_array[i].tid; 259 queue_array[i].cpu = queues->queue_array[i].cpu; 260 queue_array[i].set = queues->queue_array[i].set; 261 queue_array[i].priv = queues->queue_array[i].priv; 262 } 263 264 queues->nr_queues = nr_queues; 265 queues->queue_array = queue_array; 266 267 return 0; 268 } 269 270 static void *auxtrace_copy_data(u64 size, struct perf_session *session) 271 { 272 int fd = perf_data__fd(session->data); 273 void *p; 274 ssize_t ret; 275 276 if (size > SSIZE_MAX) 277 return NULL; 278 279 p = malloc(size); 280 if (!p) 281 return NULL; 282 283 ret = readn(fd, p, size); 284 if (ret != (ssize_t)size) { 285 free(p); 286 return NULL; 287 } 288 289 return p; 290 } 291 292 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues, 293 unsigned int idx, 294 struct auxtrace_buffer *buffer) 295 { 296 struct auxtrace_queue *queue; 297 int err; 298 299 if (idx >= queues->nr_queues) { 300 err = auxtrace_queues__grow(queues, idx + 1); 301 if (err) 302 return err; 303 } 304 305 queue = &queues->queue_array[idx]; 306 307 if (!queue->set) { 308 queue->set = true; 309 queue->tid = buffer->tid; 310 queue->cpu = buffer->cpu.cpu; 311 } 312 313 buffer->buffer_nr = queues->next_buffer_nr++; 314 315 list_add_tail(&buffer->list, &queue->head); 316 317 queues->new_data = true; 318 queues->populated = true; 319 320 return 0; 321 } 322 323 /* Limit buffers to 32MiB on 32-bit */ 324 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024) 325 326 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues, 327 unsigned int idx, 328 struct auxtrace_buffer *buffer) 329 { 330 u64 sz = buffer->size; 331 bool consecutive = false; 332 struct auxtrace_buffer *b; 333 int err; 334 335 while (sz > BUFFER_LIMIT_FOR_32_BIT) { 336 b = memdup(buffer, sizeof(struct auxtrace_buffer)); 337 if (!b) 338 return -ENOMEM; 339 b->size = BUFFER_LIMIT_FOR_32_BIT; 340 b->consecutive = consecutive; 341 err = auxtrace_queues__queue_buffer(queues, idx, b); 342 if (err) { 343 auxtrace_buffer__free(b); 344 return err; 345 } 346 buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT; 347 sz -= BUFFER_LIMIT_FOR_32_BIT; 348 consecutive = true; 349 } 350 351 buffer->size = sz; 352 buffer->consecutive = consecutive; 353 354 return 0; 355 } 356 357 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu) 358 { 359 unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap; 360 361 return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap); 362 } 363 364 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues, 365 struct perf_session *session, 366 unsigned int idx, 367 struct auxtrace_buffer *buffer, 368 struct auxtrace_buffer **buffer_ptr) 369 { 370 int err = -ENOMEM; 371 372 if (filter_cpu(session, buffer->cpu)) 373 return 0; 374 375 buffer = memdup(buffer, sizeof(*buffer)); 376 if (!buffer) 377 return -ENOMEM; 378 379 if (session->one_mmap) { 380 buffer->data = buffer->data_offset - session->one_mmap_offset + 381 session->one_mmap_addr; 382 } else if (perf_data__is_pipe(session->data)) { 383 buffer->data = auxtrace_copy_data(buffer->size, session); 384 if (!buffer->data) 385 goto out_free; 386 buffer->data_needs_freeing = true; 387 } else if (BITS_PER_LONG == 32 && 388 buffer->size > BUFFER_LIMIT_FOR_32_BIT) { 389 err = auxtrace_queues__split_buffer(queues, idx, buffer); 390 if (err) 391 goto out_free; 392 } 393 394 err = auxtrace_queues__queue_buffer(queues, idx, buffer); 395 if (err) 396 goto out_free; 397 398 /* FIXME: Doesn't work for split buffer */ 399 if (buffer_ptr) 400 *buffer_ptr = buffer; 401 402 return 0; 403 404 out_free: 405 auxtrace_buffer__free(buffer); 406 return err; 407 } 408 409 int auxtrace_queues__add_event(struct auxtrace_queues *queues, 410 struct perf_session *session, 411 union perf_event *event, off_t data_offset, 412 struct auxtrace_buffer **buffer_ptr) 413 { 414 struct auxtrace_buffer buffer = { 415 .pid = -1, 416 .tid = event->auxtrace.tid, 417 .cpu = { event->auxtrace.cpu }, 418 .data_offset = data_offset, 419 .offset = event->auxtrace.offset, 420 .reference = event->auxtrace.reference, 421 .size = event->auxtrace.size, 422 }; 423 unsigned int idx = event->auxtrace.idx; 424 425 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, 426 buffer_ptr); 427 } 428 429 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues, 430 struct perf_session *session, 431 off_t file_offset, size_t sz) 432 { 433 union perf_event *event; 434 int err; 435 char buf[PERF_SAMPLE_MAX_SIZE]; 436 437 err = perf_session__peek_event(session, file_offset, buf, 438 PERF_SAMPLE_MAX_SIZE, &event, NULL); 439 if (err) 440 return err; 441 442 if (event->header.type == PERF_RECORD_AUXTRACE) { 443 if (event->header.size < sizeof(struct perf_record_auxtrace) || 444 event->header.size != sz) { 445 err = -EINVAL; 446 goto out; 447 } 448 file_offset += event->header.size; 449 err = auxtrace_queues__add_event(queues, session, event, 450 file_offset, NULL); 451 } 452 out: 453 return err; 454 } 455 456 void auxtrace_queues__free(struct auxtrace_queues *queues) 457 { 458 unsigned int i; 459 460 for (i = 0; i < queues->nr_queues; i++) { 461 while (!list_empty(&queues->queue_array[i].head)) { 462 struct auxtrace_buffer *buffer; 463 464 buffer = list_entry(queues->queue_array[i].head.next, 465 struct auxtrace_buffer, list); 466 list_del_init(&buffer->list); 467 auxtrace_buffer__free(buffer); 468 } 469 } 470 471 zfree(&queues->queue_array); 472 queues->nr_queues = 0; 473 } 474 475 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array, 476 unsigned int pos, unsigned int queue_nr, 477 u64 ordinal) 478 { 479 unsigned int parent; 480 481 while (pos) { 482 parent = (pos - 1) >> 1; 483 if (heap_array[parent].ordinal <= ordinal) 484 break; 485 heap_array[pos] = heap_array[parent]; 486 pos = parent; 487 } 488 heap_array[pos].queue_nr = queue_nr; 489 heap_array[pos].ordinal = ordinal; 490 } 491 492 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr, 493 u64 ordinal) 494 { 495 struct auxtrace_heap_item *heap_array; 496 497 if (queue_nr >= heap->heap_sz) { 498 unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES; 499 500 while (heap_sz <= queue_nr) 501 heap_sz <<= 1; 502 heap_array = realloc(heap->heap_array, 503 heap_sz * sizeof(struct auxtrace_heap_item)); 504 if (!heap_array) 505 return -ENOMEM; 506 heap->heap_array = heap_array; 507 heap->heap_sz = heap_sz; 508 } 509 510 auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal); 511 512 return 0; 513 } 514 515 void auxtrace_heap__free(struct auxtrace_heap *heap) 516 { 517 zfree(&heap->heap_array); 518 heap->heap_cnt = 0; 519 heap->heap_sz = 0; 520 } 521 522 void auxtrace_heap__pop(struct auxtrace_heap *heap) 523 { 524 unsigned int pos, last, heap_cnt = heap->heap_cnt; 525 struct auxtrace_heap_item *heap_array; 526 527 if (!heap_cnt) 528 return; 529 530 heap->heap_cnt -= 1; 531 532 heap_array = heap->heap_array; 533 534 pos = 0; 535 while (1) { 536 unsigned int left, right; 537 538 left = (pos << 1) + 1; 539 if (left >= heap_cnt) 540 break; 541 right = left + 1; 542 if (right >= heap_cnt) { 543 heap_array[pos] = heap_array[left]; 544 return; 545 } 546 if (heap_array[left].ordinal < heap_array[right].ordinal) { 547 heap_array[pos] = heap_array[left]; 548 pos = left; 549 } else { 550 heap_array[pos] = heap_array[right]; 551 pos = right; 552 } 553 } 554 555 last = heap_cnt - 1; 556 auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr, 557 heap_array[last].ordinal); 558 } 559 560 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr, 561 struct evlist *evlist) 562 { 563 if (itr) 564 return itr->info_priv_size(itr, evlist); 565 return 0; 566 } 567 568 static int auxtrace_not_supported(void) 569 { 570 pr_err("AUX area tracing is not supported on this architecture\n"); 571 return -EINVAL; 572 } 573 574 int auxtrace_record__info_fill(struct auxtrace_record *itr, 575 struct perf_session *session, 576 struct perf_record_auxtrace_info *auxtrace_info, 577 size_t priv_size) 578 { 579 if (itr) 580 return itr->info_fill(itr, session, auxtrace_info, priv_size); 581 return auxtrace_not_supported(); 582 } 583 584 void auxtrace_record__free(struct auxtrace_record *itr) 585 { 586 if (itr) 587 itr->free(itr); 588 } 589 590 int auxtrace_record__snapshot_start(struct auxtrace_record *itr) 591 { 592 if (itr && itr->snapshot_start) 593 return itr->snapshot_start(itr); 594 return 0; 595 } 596 597 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit) 598 { 599 if (!on_exit && itr && itr->snapshot_finish) 600 return itr->snapshot_finish(itr); 601 return 0; 602 } 603 604 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx, 605 struct auxtrace_mmap *mm, 606 unsigned char *data, u64 *head, u64 *old) 607 { 608 if (itr && itr->find_snapshot) 609 return itr->find_snapshot(itr, idx, mm, data, head, old); 610 return 0; 611 } 612 613 int auxtrace_record__options(struct auxtrace_record *itr, 614 struct evlist *evlist, 615 struct record_opts *opts) 616 { 617 if (itr) { 618 itr->evlist = evlist; 619 return itr->recording_options(itr, evlist, opts); 620 } 621 return 0; 622 } 623 624 u64 auxtrace_record__reference(struct auxtrace_record *itr) 625 { 626 if (itr) 627 return itr->reference(itr); 628 return 0; 629 } 630 631 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr, 632 struct record_opts *opts, const char *str) 633 { 634 if (!str) 635 return 0; 636 637 /* PMU-agnostic options */ 638 switch (*str) { 639 case 'e': 640 opts->auxtrace_snapshot_on_exit = true; 641 str++; 642 break; 643 default: 644 break; 645 } 646 647 if (itr && itr->parse_snapshot_options) 648 return itr->parse_snapshot_options(itr, opts, str); 649 650 pr_err("No AUX area tracing to snapshot\n"); 651 return -EINVAL; 652 } 653 654 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx) 655 { 656 bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus); 657 658 if (per_cpu_mmaps) { 659 struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx); 660 int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu); 661 662 if (cpu_map_idx == -1) 663 return -EINVAL; 664 return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx); 665 } 666 667 return perf_evsel__enable_thread(&evsel->core, idx); 668 } 669 670 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx) 671 { 672 struct evsel *evsel; 673 674 if (!itr->evlist) 675 return -EINVAL; 676 677 evlist__for_each_entry(itr->evlist, evsel) { 678 if (evsel__is_aux_event(evsel)) { 679 if (evsel->disabled) 680 return 0; 681 return evlist__enable_event_idx(itr->evlist, evsel, idx); 682 } 683 } 684 return -EINVAL; 685 } 686 687 /* 688 * Event record size is 16-bit which results in a maximum size of about 64KiB. 689 * Allow about 4KiB for the rest of the sample record, to give a maximum 690 * AUX area sample size of 60KiB. 691 */ 692 #define MAX_AUX_SAMPLE_SIZE (60 * 1024) 693 694 /* Arbitrary default size if no other default provided */ 695 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024) 696 697 static int auxtrace_validate_aux_sample_size(struct evlist *evlist, 698 struct record_opts *opts) 699 { 700 struct evsel *evsel; 701 bool has_aux_leader = false; 702 u32 sz; 703 704 evlist__for_each_entry(evlist, evsel) { 705 sz = evsel->core.attr.aux_sample_size; 706 if (evsel__is_group_leader(evsel)) { 707 has_aux_leader = evsel__is_aux_event(evsel); 708 if (sz) { 709 if (has_aux_leader) 710 pr_err("Cannot add AUX area sampling to an AUX area event\n"); 711 else 712 pr_err("Cannot add AUX area sampling to a group leader\n"); 713 return -EINVAL; 714 } 715 } 716 if (sz > MAX_AUX_SAMPLE_SIZE) { 717 pr_err("AUX area sample size %u too big, max. %d\n", 718 sz, MAX_AUX_SAMPLE_SIZE); 719 return -EINVAL; 720 } 721 if (sz) { 722 if (!has_aux_leader) { 723 pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n"); 724 return -EINVAL; 725 } 726 evsel__set_sample_bit(evsel, AUX); 727 opts->auxtrace_sample_mode = true; 728 } else { 729 evsel__reset_sample_bit(evsel, AUX); 730 } 731 } 732 733 if (!opts->auxtrace_sample_mode) { 734 pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n"); 735 return -EINVAL; 736 } 737 738 if (!perf_can_aux_sample()) { 739 pr_err("AUX area sampling is not supported by kernel\n"); 740 return -EINVAL; 741 } 742 743 return 0; 744 } 745 746 int auxtrace_parse_sample_options(struct auxtrace_record *itr, 747 struct evlist *evlist, 748 struct record_opts *opts, const char *str) 749 { 750 struct evsel_config_term *term; 751 struct evsel *aux_evsel; 752 bool has_aux_sample_size = false; 753 bool has_aux_leader = false; 754 struct evsel *evsel; 755 char *endptr; 756 unsigned long sz; 757 758 if (!str) 759 goto no_opt; 760 761 if (!itr) { 762 pr_err("No AUX area event to sample\n"); 763 return -EINVAL; 764 } 765 766 sz = strtoul(str, &endptr, 0); 767 if (*endptr || sz > UINT_MAX) { 768 pr_err("Bad AUX area sampling option: '%s'\n", str); 769 return -EINVAL; 770 } 771 772 if (!sz) 773 sz = itr->default_aux_sample_size; 774 775 if (!sz) 776 sz = DEFAULT_AUX_SAMPLE_SIZE; 777 778 /* Set aux_sample_size based on --aux-sample option */ 779 evlist__for_each_entry(evlist, evsel) { 780 if (evsel__is_group_leader(evsel)) { 781 has_aux_leader = evsel__is_aux_event(evsel); 782 } else if (has_aux_leader) { 783 evsel->core.attr.aux_sample_size = sz; 784 } 785 } 786 no_opt: 787 aux_evsel = NULL; 788 /* Override with aux_sample_size from config term */ 789 evlist__for_each_entry(evlist, evsel) { 790 if (evsel__is_aux_event(evsel)) 791 aux_evsel = evsel; 792 term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE); 793 if (term) { 794 has_aux_sample_size = true; 795 evsel->core.attr.aux_sample_size = term->val.aux_sample_size; 796 /* If possible, group with the AUX event */ 797 if (aux_evsel && evsel->core.attr.aux_sample_size) 798 evlist__regroup(evlist, aux_evsel, evsel); 799 } 800 } 801 802 if (!str && !has_aux_sample_size) 803 return 0; 804 805 if (!itr) { 806 pr_err("No AUX area event to sample\n"); 807 return -EINVAL; 808 } 809 810 return auxtrace_validate_aux_sample_size(evlist, opts); 811 } 812 813 static struct aux_action_opt { 814 const char *str; 815 u32 aux_action; 816 bool aux_event_opt; 817 } aux_action_opts[] = { 818 {"start-paused", BIT(0), true}, 819 {"pause", BIT(1), false}, 820 {"resume", BIT(2), false}, 821 {.str = NULL}, 822 }; 823 824 static const struct aux_action_opt *auxtrace_parse_aux_action_str(const char *str) 825 { 826 const struct aux_action_opt *opt; 827 828 if (!str) 829 return NULL; 830 831 for (opt = aux_action_opts; opt->str; opt++) 832 if (!strcmp(str, opt->str)) 833 return opt; 834 835 return NULL; 836 } 837 838 int auxtrace_parse_aux_action(struct evlist *evlist) 839 { 840 struct evsel_config_term *term; 841 struct evsel *aux_evsel = NULL; 842 struct evsel *evsel; 843 844 evlist__for_each_entry(evlist, evsel) { 845 bool is_aux_event = evsel__is_aux_event(evsel); 846 const struct aux_action_opt *opt; 847 848 if (is_aux_event) 849 aux_evsel = evsel; 850 term = evsel__get_config_term(evsel, AUX_ACTION); 851 if (!term) { 852 if (evsel__get_config_term(evsel, AUX_OUTPUT)) 853 goto regroup; 854 continue; 855 } 856 opt = auxtrace_parse_aux_action_str(term->val.str); 857 if (!opt) { 858 pr_err("Bad aux-action '%s'\n", term->val.str); 859 return -EINVAL; 860 } 861 if (opt->aux_event_opt && !is_aux_event) { 862 pr_err("aux-action '%s' can only be used with AUX area event\n", 863 term->val.str); 864 return -EINVAL; 865 } 866 if (!opt->aux_event_opt && is_aux_event) { 867 pr_err("aux-action '%s' cannot be used for AUX area event itself\n", 868 term->val.str); 869 return -EINVAL; 870 } 871 evsel->core.attr.aux_action = opt->aux_action; 872 regroup: 873 /* If possible, group with the AUX event */ 874 if (aux_evsel) 875 evlist__regroup(evlist, aux_evsel, evsel); 876 if (!evsel__is_aux_event(evsel__leader(evsel))) { 877 pr_err("Events with aux-action must have AUX area event group leader\n"); 878 return -EINVAL; 879 } 880 } 881 882 return 0; 883 } 884 885 struct auxtrace_record *__weak 886 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err) 887 { 888 *err = 0; 889 return NULL; 890 } 891 892 static int auxtrace_index__alloc(struct list_head *head) 893 { 894 struct auxtrace_index *auxtrace_index; 895 896 auxtrace_index = malloc(sizeof(struct auxtrace_index)); 897 if (!auxtrace_index) 898 return -ENOMEM; 899 900 auxtrace_index->nr = 0; 901 INIT_LIST_HEAD(&auxtrace_index->list); 902 903 list_add_tail(&auxtrace_index->list, head); 904 905 return 0; 906 } 907 908 void auxtrace_index__free(struct list_head *head) 909 { 910 struct auxtrace_index *auxtrace_index, *n; 911 912 list_for_each_entry_safe(auxtrace_index, n, head, list) { 913 list_del_init(&auxtrace_index->list); 914 free(auxtrace_index); 915 } 916 } 917 918 static struct auxtrace_index *auxtrace_index__last(struct list_head *head) 919 { 920 struct auxtrace_index *auxtrace_index; 921 int err; 922 923 if (list_empty(head)) { 924 err = auxtrace_index__alloc(head); 925 if (err) 926 return NULL; 927 } 928 929 auxtrace_index = list_entry(head->prev, struct auxtrace_index, list); 930 931 if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) { 932 err = auxtrace_index__alloc(head); 933 if (err) 934 return NULL; 935 auxtrace_index = list_entry(head->prev, struct auxtrace_index, 936 list); 937 } 938 939 return auxtrace_index; 940 } 941 942 int auxtrace_index__auxtrace_event(struct list_head *head, 943 union perf_event *event, off_t file_offset) 944 { 945 struct auxtrace_index *auxtrace_index; 946 size_t nr; 947 948 auxtrace_index = auxtrace_index__last(head); 949 if (!auxtrace_index) 950 return -ENOMEM; 951 952 nr = auxtrace_index->nr; 953 auxtrace_index->entries[nr].file_offset = file_offset; 954 auxtrace_index->entries[nr].sz = event->header.size; 955 auxtrace_index->nr += 1; 956 957 return 0; 958 } 959 960 static int auxtrace_index__do_write(int fd, 961 struct auxtrace_index *auxtrace_index) 962 { 963 struct auxtrace_index_entry ent; 964 size_t i; 965 966 for (i = 0; i < auxtrace_index->nr; i++) { 967 ent.file_offset = auxtrace_index->entries[i].file_offset; 968 ent.sz = auxtrace_index->entries[i].sz; 969 if (writen(fd, &ent, sizeof(ent)) != sizeof(ent)) 970 return -errno; 971 } 972 return 0; 973 } 974 975 int auxtrace_index__write(int fd, struct list_head *head) 976 { 977 struct auxtrace_index *auxtrace_index; 978 u64 total = 0; 979 int err; 980 981 list_for_each_entry(auxtrace_index, head, list) 982 total += auxtrace_index->nr; 983 984 if (writen(fd, &total, sizeof(total)) != sizeof(total)) 985 return -errno; 986 987 list_for_each_entry(auxtrace_index, head, list) { 988 err = auxtrace_index__do_write(fd, auxtrace_index); 989 if (err) 990 return err; 991 } 992 993 return 0; 994 } 995 996 static int auxtrace_index__process_entry(int fd, struct list_head *head, 997 bool needs_swap) 998 { 999 struct auxtrace_index *auxtrace_index; 1000 struct auxtrace_index_entry ent; 1001 size_t nr; 1002 1003 if (readn(fd, &ent, sizeof(ent)) != sizeof(ent)) 1004 return -1; 1005 1006 auxtrace_index = auxtrace_index__last(head); 1007 if (!auxtrace_index) 1008 return -1; 1009 1010 nr = auxtrace_index->nr; 1011 if (needs_swap) { 1012 auxtrace_index->entries[nr].file_offset = 1013 bswap_64(ent.file_offset); 1014 auxtrace_index->entries[nr].sz = bswap_64(ent.sz); 1015 } else { 1016 auxtrace_index->entries[nr].file_offset = ent.file_offset; 1017 auxtrace_index->entries[nr].sz = ent.sz; 1018 } 1019 1020 auxtrace_index->nr = nr + 1; 1021 1022 return 0; 1023 } 1024 1025 int auxtrace_index__process(int fd, u64 size, struct perf_session *session, 1026 bool needs_swap) 1027 { 1028 struct list_head *head = &session->auxtrace_index; 1029 u64 nr; 1030 1031 if (readn(fd, &nr, sizeof(u64)) != sizeof(u64)) 1032 return -1; 1033 1034 if (needs_swap) 1035 nr = bswap_64(nr); 1036 1037 if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size) 1038 return -1; 1039 1040 while (nr--) { 1041 int err; 1042 1043 err = auxtrace_index__process_entry(fd, head, needs_swap); 1044 if (err) 1045 return -1; 1046 } 1047 1048 return 0; 1049 } 1050 1051 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues, 1052 struct perf_session *session, 1053 struct auxtrace_index_entry *ent) 1054 { 1055 return auxtrace_queues__add_indexed_event(queues, session, 1056 ent->file_offset, ent->sz); 1057 } 1058 1059 int auxtrace_queues__process_index(struct auxtrace_queues *queues, 1060 struct perf_session *session) 1061 { 1062 struct auxtrace_index *auxtrace_index; 1063 struct auxtrace_index_entry *ent; 1064 size_t i; 1065 int err; 1066 1067 if (auxtrace__dont_decode(session)) 1068 return 0; 1069 1070 list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) { 1071 for (i = 0; i < auxtrace_index->nr; i++) { 1072 ent = &auxtrace_index->entries[i]; 1073 err = auxtrace_queues__process_index_entry(queues, 1074 session, 1075 ent); 1076 if (err) 1077 return err; 1078 } 1079 } 1080 return 0; 1081 } 1082 1083 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue, 1084 struct auxtrace_buffer *buffer) 1085 { 1086 if (buffer) { 1087 if (list_is_last(&buffer->list, &queue->head)) 1088 return NULL; 1089 return list_entry(buffer->list.next, struct auxtrace_buffer, 1090 list); 1091 } else { 1092 if (list_empty(&queue->head)) 1093 return NULL; 1094 return list_entry(queue->head.next, struct auxtrace_buffer, 1095 list); 1096 } 1097 } 1098 1099 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues, 1100 struct perf_sample *sample, 1101 struct perf_session *session) 1102 { 1103 struct perf_sample_id *sid; 1104 unsigned int idx; 1105 u64 id; 1106 1107 id = sample->id; 1108 if (!id) 1109 return NULL; 1110 1111 sid = evlist__id2sid(session->evlist, id); 1112 if (!sid) 1113 return NULL; 1114 1115 idx = sid->idx; 1116 1117 if (idx >= queues->nr_queues) 1118 return NULL; 1119 1120 return &queues->queue_array[idx]; 1121 } 1122 1123 int auxtrace_queues__add_sample(struct auxtrace_queues *queues, 1124 struct perf_session *session, 1125 struct perf_sample *sample, u64 data_offset, 1126 u64 reference) 1127 { 1128 struct auxtrace_buffer buffer = { 1129 .pid = -1, 1130 .data_offset = data_offset, 1131 .reference = reference, 1132 .size = sample->aux_sample.size, 1133 }; 1134 struct perf_sample_id *sid; 1135 u64 id = sample->id; 1136 unsigned int idx; 1137 1138 if (!id) 1139 return -EINVAL; 1140 1141 sid = evlist__id2sid(session->evlist, id); 1142 if (!sid) 1143 return -ENOENT; 1144 1145 idx = sid->idx; 1146 buffer.tid = sid->tid; 1147 buffer.cpu = sid->cpu; 1148 1149 return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL); 1150 } 1151 1152 struct queue_data { 1153 bool samples; 1154 bool events; 1155 }; 1156 1157 static int auxtrace_queue_data_cb(struct perf_session *session, 1158 union perf_event *event, u64 offset, 1159 void *data) 1160 { 1161 struct queue_data *qd = data; 1162 struct perf_sample sample; 1163 int err; 1164 1165 if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) { 1166 if (event->header.size < sizeof(struct perf_record_auxtrace)) 1167 return -EINVAL; 1168 offset += event->header.size; 1169 return session->auxtrace->queue_data(session, NULL, event, 1170 offset); 1171 } 1172 1173 if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE) 1174 return 0; 1175 1176 perf_sample__init(&sample, /*all=*/false); 1177 err = evlist__parse_sample(session->evlist, event, &sample); 1178 if (err) 1179 goto out; 1180 1181 if (sample.aux_sample.size) { 1182 offset += sample.aux_sample.data - (void *)event; 1183 1184 err = session->auxtrace->queue_data(session, &sample, NULL, offset); 1185 } 1186 out: 1187 perf_sample__exit(&sample); 1188 return err; 1189 } 1190 1191 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events) 1192 { 1193 struct queue_data qd = { 1194 .samples = samples, 1195 .events = events, 1196 }; 1197 1198 if (auxtrace__dont_decode(session)) 1199 return 0; 1200 1201 if (perf_data__is_pipe(session->data)) 1202 return 0; 1203 1204 if (!session->auxtrace || !session->auxtrace->queue_data) 1205 return -EINVAL; 1206 1207 return perf_session__peek_events(session, session->header.data_offset, 1208 session->header.data_size, 1209 auxtrace_queue_data_cb, &qd); 1210 } 1211 1212 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw) 1213 { 1214 int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ; 1215 size_t adj = buffer->data_offset & (page_size - 1); 1216 size_t size = buffer->size + adj; 1217 off_t file_offset = buffer->data_offset - adj; 1218 void *addr; 1219 1220 if (buffer->data) 1221 return buffer->data; 1222 1223 addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset); 1224 if (addr == MAP_FAILED) 1225 return NULL; 1226 1227 buffer->mmap_addr = addr; 1228 buffer->mmap_size = size; 1229 1230 buffer->data = addr + adj; 1231 1232 return buffer->data; 1233 } 1234 1235 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer) 1236 { 1237 if (!buffer->data || !buffer->mmap_addr) 1238 return; 1239 munmap(buffer->mmap_addr, buffer->mmap_size); 1240 buffer->mmap_addr = NULL; 1241 buffer->mmap_size = 0; 1242 buffer->data = NULL; 1243 buffer->use_data = NULL; 1244 } 1245 1246 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer) 1247 { 1248 auxtrace_buffer__put_data(buffer); 1249 if (buffer->data_needs_freeing) { 1250 buffer->data_needs_freeing = false; 1251 zfree(&buffer->data); 1252 buffer->use_data = NULL; 1253 buffer->size = 0; 1254 } 1255 } 1256 1257 void auxtrace_buffer__free(struct auxtrace_buffer *buffer) 1258 { 1259 auxtrace_buffer__drop_data(buffer); 1260 free(buffer); 1261 } 1262 1263 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1264 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1265 const char *msg, u64 timestamp, 1266 pid_t machine_pid, int vcpu) 1267 { 1268 size_t size; 1269 1270 memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error)); 1271 1272 auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR; 1273 auxtrace_error->type = type; 1274 auxtrace_error->code = code; 1275 auxtrace_error->cpu = cpu; 1276 auxtrace_error->pid = pid; 1277 auxtrace_error->tid = tid; 1278 auxtrace_error->fmt = 1; 1279 auxtrace_error->ip = ip; 1280 auxtrace_error->time = timestamp; 1281 strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG); 1282 if (machine_pid) { 1283 auxtrace_error->fmt = 2; 1284 auxtrace_error->machine_pid = machine_pid; 1285 auxtrace_error->vcpu = vcpu; 1286 size = sizeof(*auxtrace_error); 1287 } else { 1288 size = (void *)auxtrace_error->msg - (void *)auxtrace_error + 1289 strlen(auxtrace_error->msg) + 1; 1290 } 1291 auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64)); 1292 } 1293 1294 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type, 1295 int code, int cpu, pid_t pid, pid_t tid, u64 ip, 1296 const char *msg, u64 timestamp) 1297 { 1298 auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid, 1299 ip, msg, timestamp, 0, -1); 1300 } 1301 1302 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr, 1303 const struct perf_tool *tool, 1304 struct perf_session *session, 1305 perf_event__handler_t process) 1306 { 1307 union perf_event *ev; 1308 size_t priv_size; 1309 int err; 1310 1311 pr_debug2("Synthesizing auxtrace information\n"); 1312 priv_size = auxtrace_record__info_priv_size(itr, session->evlist); 1313 ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size); 1314 if (!ev) 1315 return -ENOMEM; 1316 1317 ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO; 1318 ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) + 1319 priv_size; 1320 err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info, 1321 priv_size); 1322 if (err) 1323 goto out_free; 1324 1325 err = process(tool, ev, NULL, NULL); 1326 out_free: 1327 free(ev); 1328 return err; 1329 } 1330 1331 static void unleader_evsel(struct evlist *evlist, struct evsel *leader) 1332 { 1333 struct evsel *new_leader = NULL; 1334 struct evsel *evsel; 1335 1336 /* Find new leader for the group */ 1337 evlist__for_each_entry(evlist, evsel) { 1338 if (!evsel__has_leader(evsel, leader) || evsel == leader) 1339 continue; 1340 if (!new_leader) 1341 new_leader = evsel; 1342 evsel__set_leader(evsel, new_leader); 1343 } 1344 1345 /* Update group information */ 1346 if (new_leader) { 1347 zfree(&new_leader->group_name); 1348 new_leader->group_name = leader->group_name; 1349 leader->group_name = NULL; 1350 1351 new_leader->core.nr_members = leader->core.nr_members - 1; 1352 leader->core.nr_members = 1; 1353 } 1354 } 1355 1356 static void unleader_auxtrace(struct perf_session *session) 1357 { 1358 struct evsel *evsel; 1359 1360 evlist__for_each_entry(session->evlist, evsel) { 1361 if (auxtrace__evsel_is_auxtrace(session, evsel) && 1362 evsel__is_group_leader(evsel)) { 1363 unleader_evsel(session->evlist, evsel); 1364 } 1365 } 1366 } 1367 1368 int perf_event__process_auxtrace_info(struct perf_session *session, 1369 union perf_event *event) 1370 { 1371 enum auxtrace_type type = event->auxtrace_info.type; 1372 int err; 1373 1374 if (dump_trace) 1375 fprintf(stdout, " type: %u\n", type); 1376 1377 switch (type) { 1378 case PERF_AUXTRACE_INTEL_PT: 1379 err = intel_pt_process_auxtrace_info(event, session); 1380 break; 1381 case PERF_AUXTRACE_INTEL_BTS: 1382 err = intel_bts_process_auxtrace_info(event, session); 1383 break; 1384 case PERF_AUXTRACE_ARM_SPE: 1385 err = arm_spe_process_auxtrace_info(event, session); 1386 break; 1387 case PERF_AUXTRACE_CS_ETM: 1388 err = cs_etm__process_auxtrace_info(event, session); 1389 break; 1390 case PERF_AUXTRACE_S390_CPUMSF: 1391 err = s390_cpumsf_process_auxtrace_info(event, session); 1392 break; 1393 case PERF_AUXTRACE_HISI_PTT: 1394 err = hisi_ptt_process_auxtrace_info(event, session); 1395 break; 1396 case PERF_AUXTRACE_UNKNOWN: 1397 default: 1398 return -EINVAL; 1399 } 1400 1401 if (err) 1402 return err; 1403 1404 unleader_auxtrace(session); 1405 1406 return 0; 1407 } 1408 1409 s64 perf_event__process_auxtrace(struct perf_session *session, 1410 union perf_event *event) 1411 { 1412 s64 err; 1413 1414 if (dump_trace) 1415 fprintf(stdout, " size: %#"PRI_lx64" offset: %#"PRI_lx64" ref: %#"PRI_lx64" idx: %u tid: %d cpu: %d\n", 1416 event->auxtrace.size, event->auxtrace.offset, 1417 event->auxtrace.reference, event->auxtrace.idx, 1418 event->auxtrace.tid, event->auxtrace.cpu); 1419 1420 if (auxtrace__dont_decode(session)) 1421 return event->auxtrace.size; 1422 1423 if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE) 1424 return -EINVAL; 1425 1426 err = session->auxtrace->process_auxtrace_event(session, event, session->tool); 1427 if (err < 0) 1428 return err; 1429 1430 return event->auxtrace.size; 1431 } 1432 1433 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE PERF_ITRACE_PERIOD_NANOSECS 1434 #define PERF_ITRACE_DEFAULT_PERIOD 100000 1435 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ 16 1436 #define PERF_ITRACE_MAX_CALLCHAIN_SZ 1024 1437 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ 64 1438 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ 1024 1439 1440 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts, 1441 bool no_sample) 1442 { 1443 synth_opts->branches = true; 1444 synth_opts->transactions = true; 1445 synth_opts->ptwrites = true; 1446 synth_opts->pwr_events = true; 1447 synth_opts->other_events = true; 1448 synth_opts->intr_events = true; 1449 synth_opts->errors = true; 1450 synth_opts->flc = true; 1451 synth_opts->llc = true; 1452 synth_opts->tlb = true; 1453 synth_opts->mem = true; 1454 synth_opts->remote_access = true; 1455 1456 if (no_sample) { 1457 synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS; 1458 synth_opts->period = 1; 1459 synth_opts->calls = true; 1460 } else { 1461 synth_opts->instructions = true; 1462 synth_opts->cycles = true; 1463 synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1464 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1465 } 1466 synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1467 synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1468 synth_opts->initial_skip = 0; 1469 } 1470 1471 static int get_flag(const char **ptr, unsigned int *flags) 1472 { 1473 while (1) { 1474 char c = **ptr; 1475 1476 if (c >= 'a' && c <= 'z') { 1477 *flags |= 1 << (c - 'a'); 1478 ++*ptr; 1479 return 0; 1480 } else if (c == ' ') { 1481 ++*ptr; 1482 continue; 1483 } else { 1484 return -1; 1485 } 1486 } 1487 } 1488 1489 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags) 1490 { 1491 while (1) { 1492 switch (**ptr) { 1493 case '+': 1494 ++*ptr; 1495 if (get_flag(ptr, plus_flags)) 1496 return -1; 1497 break; 1498 case '-': 1499 ++*ptr; 1500 if (get_flag(ptr, minus_flags)) 1501 return -1; 1502 break; 1503 case ' ': 1504 ++*ptr; 1505 break; 1506 default: 1507 return 0; 1508 } 1509 } 1510 } 1511 1512 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384 1513 1514 static unsigned int itrace_log_on_error_size(void) 1515 { 1516 unsigned int sz = 0; 1517 1518 perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz); 1519 return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ; 1520 } 1521 1522 /* 1523 * Please check tools/perf/Documentation/perf-script.txt for information 1524 * about the options parsed here, which is introduced after this cset, 1525 * when support in 'perf script' for these options is introduced. 1526 */ 1527 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts, 1528 const char *str, int unset) 1529 { 1530 const char *p; 1531 char *endptr; 1532 bool period_type_set = false; 1533 bool period_set = false; 1534 bool iy = false; 1535 1536 synth_opts->set = true; 1537 1538 if (unset) { 1539 synth_opts->dont_decode = true; 1540 return 0; 1541 } 1542 1543 if (!str) { 1544 itrace_synth_opts__set_default(synth_opts, 1545 synth_opts->default_no_sample); 1546 return 0; 1547 } 1548 1549 for (p = str; *p;) { 1550 switch (*p++) { 1551 case 'i': 1552 case 'y': 1553 iy = true; 1554 if (p[-1] == 'y') 1555 synth_opts->cycles = true; 1556 else 1557 synth_opts->instructions = true; 1558 while (*p == ' ' || *p == ',') 1559 p += 1; 1560 if (isdigit(*p)) { 1561 synth_opts->period = strtoull(p, &endptr, 10); 1562 period_set = true; 1563 p = endptr; 1564 while (*p == ' ' || *p == ',') 1565 p += 1; 1566 switch (*p++) { 1567 case 'i': 1568 synth_opts->period_type = 1569 PERF_ITRACE_PERIOD_INSTRUCTIONS; 1570 period_type_set = true; 1571 break; 1572 case 't': 1573 synth_opts->period_type = 1574 PERF_ITRACE_PERIOD_TICKS; 1575 period_type_set = true; 1576 break; 1577 case 'm': 1578 synth_opts->period *= 1000; 1579 /* Fall through */ 1580 case 'u': 1581 synth_opts->period *= 1000; 1582 /* Fall through */ 1583 case 'n': 1584 if (*p++ != 's') 1585 goto out_err; 1586 synth_opts->period_type = 1587 PERF_ITRACE_PERIOD_NANOSECS; 1588 period_type_set = true; 1589 break; 1590 case '\0': 1591 goto out; 1592 default: 1593 goto out_err; 1594 } 1595 } 1596 break; 1597 case 'b': 1598 synth_opts->branches = true; 1599 break; 1600 case 'x': 1601 synth_opts->transactions = true; 1602 break; 1603 case 'w': 1604 synth_opts->ptwrites = true; 1605 break; 1606 case 'p': 1607 synth_opts->pwr_events = true; 1608 break; 1609 case 'o': 1610 synth_opts->other_events = true; 1611 break; 1612 case 'I': 1613 synth_opts->intr_events = true; 1614 break; 1615 case 'e': 1616 synth_opts->errors = true; 1617 if (get_flags(&p, &synth_opts->error_plus_flags, 1618 &synth_opts->error_minus_flags)) 1619 goto out_err; 1620 break; 1621 case 'd': 1622 synth_opts->log = true; 1623 if (get_flags(&p, &synth_opts->log_plus_flags, 1624 &synth_opts->log_minus_flags)) 1625 goto out_err; 1626 if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR) 1627 synth_opts->log_on_error_size = itrace_log_on_error_size(); 1628 break; 1629 case 'c': 1630 synth_opts->branches = true; 1631 synth_opts->calls = true; 1632 break; 1633 case 'r': 1634 synth_opts->branches = true; 1635 synth_opts->returns = true; 1636 break; 1637 case 'G': 1638 case 'g': 1639 if (p[-1] == 'G') 1640 synth_opts->add_callchain = true; 1641 else 1642 synth_opts->callchain = true; 1643 synth_opts->callchain_sz = 1644 PERF_ITRACE_DEFAULT_CALLCHAIN_SZ; 1645 while (*p == ' ' || *p == ',') 1646 p += 1; 1647 if (isdigit(*p)) { 1648 unsigned int val; 1649 1650 val = strtoul(p, &endptr, 10); 1651 p = endptr; 1652 if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ) 1653 goto out_err; 1654 synth_opts->callchain_sz = val; 1655 } 1656 break; 1657 case 'L': 1658 case 'l': 1659 if (p[-1] == 'L') 1660 synth_opts->add_last_branch = true; 1661 else 1662 synth_opts->last_branch = true; 1663 synth_opts->last_branch_sz = 1664 PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ; 1665 while (*p == ' ' || *p == ',') 1666 p += 1; 1667 if (isdigit(*p)) { 1668 unsigned int val; 1669 1670 val = strtoul(p, &endptr, 10); 1671 p = endptr; 1672 if (!val || 1673 val > PERF_ITRACE_MAX_LAST_BRANCH_SZ) 1674 goto out_err; 1675 synth_opts->last_branch_sz = val; 1676 } 1677 break; 1678 case 's': 1679 synth_opts->initial_skip = strtoul(p, &endptr, 10); 1680 if (p == endptr) 1681 goto out_err; 1682 p = endptr; 1683 break; 1684 case 'f': 1685 synth_opts->flc = true; 1686 break; 1687 case 'm': 1688 synth_opts->llc = true; 1689 break; 1690 case 't': 1691 synth_opts->tlb = true; 1692 break; 1693 case 'a': 1694 synth_opts->remote_access = true; 1695 break; 1696 case 'M': 1697 synth_opts->mem = true; 1698 break; 1699 case 'q': 1700 synth_opts->quick += 1; 1701 break; 1702 case 'A': 1703 synth_opts->approx_ipc = true; 1704 break; 1705 case 'Z': 1706 synth_opts->timeless_decoding = true; 1707 break; 1708 case 'T': 1709 synth_opts->use_timestamp = true; 1710 break; 1711 case ' ': 1712 case ',': 1713 break; 1714 default: 1715 goto out_err; 1716 } 1717 } 1718 out: 1719 if (iy) { 1720 if (!period_type_set) 1721 synth_opts->period_type = 1722 PERF_ITRACE_DEFAULT_PERIOD_TYPE; 1723 if (!period_set) 1724 synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD; 1725 } 1726 1727 return 0; 1728 1729 out_err: 1730 pr_err("Bad Instruction Tracing options '%s'\n", str); 1731 return -EINVAL; 1732 } 1733 1734 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset) 1735 { 1736 return itrace_do_parse_synth_opts(opt->value, str, unset); 1737 } 1738 1739 static const char * const auxtrace_error_type_name[] = { 1740 [PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace", 1741 }; 1742 1743 static const char *auxtrace_error_name(int type) 1744 { 1745 const char *error_type_name = NULL; 1746 1747 if (type < PERF_AUXTRACE_ERROR_MAX) 1748 error_type_name = auxtrace_error_type_name[type]; 1749 if (!error_type_name) 1750 error_type_name = "unknown AUX"; 1751 return error_type_name; 1752 } 1753 1754 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp) 1755 { 1756 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1757 unsigned long long nsecs = e->time; 1758 const char *msg = e->msg; 1759 int ret; 1760 1761 ret = fprintf(fp, " %s error type %u", 1762 auxtrace_error_name(e->type), e->type); 1763 1764 if (e->fmt && nsecs) { 1765 unsigned long secs = nsecs / NSEC_PER_SEC; 1766 1767 nsecs -= secs * NSEC_PER_SEC; 1768 ret += fprintf(fp, " time %lu.%09llu", secs, nsecs); 1769 } else { 1770 ret += fprintf(fp, " time 0"); 1771 } 1772 1773 if (!e->fmt) 1774 msg = (const char *)&e->time; 1775 1776 if (e->fmt >= 2 && e->machine_pid) 1777 ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu); 1778 1779 ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n", 1780 e->cpu, e->pid, e->tid, e->ip, e->code, msg); 1781 return ret; 1782 } 1783 1784 void perf_session__auxtrace_error_inc(struct perf_session *session, 1785 union perf_event *event) 1786 { 1787 struct perf_record_auxtrace_error *e = &event->auxtrace_error; 1788 1789 if (e->type < PERF_AUXTRACE_ERROR_MAX) 1790 session->evlist->stats.nr_auxtrace_errors[e->type] += 1; 1791 } 1792 1793 void events_stats__auxtrace_error_warn(const struct events_stats *stats) 1794 { 1795 int i; 1796 1797 for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) { 1798 if (!stats->nr_auxtrace_errors[i]) 1799 continue; 1800 ui__warning("%u %s errors\n", 1801 stats->nr_auxtrace_errors[i], 1802 auxtrace_error_name(i)); 1803 } 1804 } 1805 1806 int perf_event__process_auxtrace_error(struct perf_session *session, 1807 union perf_event *event) 1808 { 1809 if (auxtrace__dont_decode(session)) 1810 return 0; 1811 1812 perf_event__fprintf_auxtrace_error(event, stdout); 1813 return 0; 1814 } 1815 1816 /* 1817 * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode, 1818 * 32-bit perf tool cannot access 64-bit value atomically, which might lead to 1819 * the issues caused by the below sequence on multiple CPUs: when perf tool 1820 * accesses either the load operation or the store operation for 64-bit value, 1821 * on some architectures the operation is divided into two instructions, one 1822 * is for accessing the low 32-bit value and another is for the high 32-bit; 1823 * thus these two user operations can give the kernel chances to access the 1824 * 64-bit value, and thus leads to the unexpected load values. 1825 * 1826 * kernel (64-bit) user (32-bit) 1827 * 1828 * if (LOAD ->aux_tail) { --, LOAD ->aux_head_lo 1829 * STORE $aux_data | ,---> 1830 * FLUSH $aux_data | | LOAD ->aux_head_hi 1831 * STORE ->aux_head --|-------` smp_rmb() 1832 * } | LOAD $data 1833 * | smp_mb() 1834 * | STORE ->aux_tail_lo 1835 * `-----------> 1836 * STORE ->aux_tail_hi 1837 * 1838 * For this reason, it's impossible for the perf tool to work correctly when 1839 * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we 1840 * can not simply limit the AUX ring buffer to less than 4GB, the reason is 1841 * the pointers can be increased monotonically, whatever the buffer size it is, 1842 * at the end the head and tail can be bigger than 4GB and carry out to the 1843 * high 32-bit. 1844 * 1845 * To mitigate the issues and improve the user experience, we can allow the 1846 * perf tool working in certain conditions and bail out with error if detect 1847 * any overflow cannot be handled. 1848 * 1849 * For reading the AUX head, it reads out the values for three times, and 1850 * compares the high 4 bytes of the values between the first time and the last 1851 * time, if there has no change for high 4 bytes injected by the kernel during 1852 * the user reading sequence, it's safe for use the second value. 1853 * 1854 * When compat_auxtrace_mmap__write_tail() detects any carrying in the high 1855 * 32 bits, it means there have two store operations in user space and it cannot 1856 * promise the atomicity for 64-bit write, so return '-1' in this case to tell 1857 * the caller an overflow error has happened. 1858 */ 1859 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm) 1860 { 1861 struct perf_event_mmap_page *pc = mm->userpg; 1862 u64 first, second, last; 1863 u64 mask = (u64)(UINT32_MAX) << 32; 1864 1865 do { 1866 first = READ_ONCE(pc->aux_head); 1867 /* Ensure all reads are done after we read the head */ 1868 smp_rmb(); 1869 second = READ_ONCE(pc->aux_head); 1870 /* Ensure all reads are done after we read the head */ 1871 smp_rmb(); 1872 last = READ_ONCE(pc->aux_head); 1873 } while ((first & mask) != (last & mask)); 1874 1875 return second; 1876 } 1877 1878 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail) 1879 { 1880 struct perf_event_mmap_page *pc = mm->userpg; 1881 u64 mask = (u64)(UINT32_MAX) << 32; 1882 1883 if (tail & mask) 1884 return -1; 1885 1886 /* Ensure all reads are done before we write the tail out */ 1887 smp_mb(); 1888 WRITE_ONCE(pc->aux_tail, tail); 1889 return 0; 1890 } 1891 1892 static int __auxtrace_mmap__read(struct mmap *map, 1893 struct auxtrace_record *itr, struct perf_env *env, 1894 const struct perf_tool *tool, process_auxtrace_t fn, 1895 bool snapshot, size_t snapshot_size) 1896 { 1897 struct auxtrace_mmap *mm = &map->auxtrace_mmap; 1898 u64 head, old = mm->prev, offset, ref; 1899 unsigned char *data = mm->base; 1900 size_t size, head_off, old_off, len1, len2, padding; 1901 union perf_event ev; 1902 void *data1, *data2; 1903 int kernel_is_64_bit = perf_env__kernel_is_64_bit(env); 1904 1905 head = auxtrace_mmap__read_head(mm, kernel_is_64_bit); 1906 1907 if (snapshot && 1908 auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old)) 1909 return -1; 1910 1911 if (old == head) 1912 return 0; 1913 1914 pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n", 1915 mm->idx, old, head, head - old); 1916 1917 if (mm->mask) { 1918 head_off = head & mm->mask; 1919 old_off = old & mm->mask; 1920 } else { 1921 head_off = head % mm->len; 1922 old_off = old % mm->len; 1923 } 1924 1925 if (head_off > old_off) 1926 size = head_off - old_off; 1927 else 1928 size = mm->len - (old_off - head_off); 1929 1930 if (snapshot && size > snapshot_size) 1931 size = snapshot_size; 1932 1933 ref = auxtrace_record__reference(itr); 1934 1935 if (head > old || size <= head || mm->mask) { 1936 offset = head - size; 1937 } else { 1938 /* 1939 * When the buffer size is not a power of 2, 'head' wraps at the 1940 * highest multiple of the buffer size, so we have to subtract 1941 * the remainder here. 1942 */ 1943 u64 rem = (0ULL - mm->len) % mm->len; 1944 1945 offset = head - size - rem; 1946 } 1947 1948 if (size > head_off) { 1949 len1 = size - head_off; 1950 data1 = &data[mm->len - len1]; 1951 len2 = head_off; 1952 data2 = &data[0]; 1953 } else { 1954 len1 = size; 1955 data1 = &data[head_off - len1]; 1956 len2 = 0; 1957 data2 = NULL; 1958 } 1959 1960 if (itr->alignment) { 1961 unsigned int unwanted = len1 % itr->alignment; 1962 1963 len1 -= unwanted; 1964 size -= unwanted; 1965 } 1966 1967 /* padding must be written by fn() e.g. record__process_auxtrace() */ 1968 padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1); 1969 if (padding) 1970 padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding; 1971 1972 memset(&ev, 0, sizeof(ev)); 1973 ev.auxtrace.header.type = PERF_RECORD_AUXTRACE; 1974 ev.auxtrace.header.size = sizeof(ev.auxtrace); 1975 ev.auxtrace.size = size + padding; 1976 ev.auxtrace.offset = offset; 1977 ev.auxtrace.reference = ref; 1978 ev.auxtrace.idx = mm->idx; 1979 ev.auxtrace.tid = mm->tid; 1980 ev.auxtrace.cpu = mm->cpu; 1981 1982 if (fn(tool, map, &ev, data1, len1, data2, len2)) 1983 return -1; 1984 1985 mm->prev = head; 1986 1987 if (!snapshot) { 1988 int err; 1989 1990 err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit); 1991 if (err < 0) 1992 return err; 1993 1994 if (itr->read_finish) { 1995 err = itr->read_finish(itr, mm->idx); 1996 if (err < 0) 1997 return err; 1998 } 1999 } 2000 2001 return 1; 2002 } 2003 2004 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr, 2005 struct perf_env *env, const struct perf_tool *tool, 2006 process_auxtrace_t fn) 2007 { 2008 return __auxtrace_mmap__read(map, itr, env, tool, fn, false, 0); 2009 } 2010 2011 int auxtrace_mmap__read_snapshot(struct mmap *map, 2012 struct auxtrace_record *itr, struct perf_env *env, 2013 const struct perf_tool *tool, process_auxtrace_t fn, 2014 size_t snapshot_size) 2015 { 2016 return __auxtrace_mmap__read(map, itr, env, tool, fn, true, snapshot_size); 2017 } 2018 2019 /** 2020 * struct auxtrace_cache - hash table to implement a cache 2021 * @hashtable: the hashtable 2022 * @sz: hashtable size (number of hlists) 2023 * @entry_size: size of an entry 2024 * @limit: limit the number of entries to this maximum, when reached the cache 2025 * is dropped and caching begins again with an empty cache 2026 * @cnt: current number of entries 2027 * @bits: hashtable size (@sz = 2^@bits) 2028 */ 2029 struct auxtrace_cache { 2030 struct hlist_head *hashtable; 2031 size_t sz; 2032 size_t entry_size; 2033 size_t limit; 2034 size_t cnt; 2035 unsigned int bits; 2036 }; 2037 2038 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size, 2039 unsigned int limit_percent) 2040 { 2041 struct auxtrace_cache *c; 2042 struct hlist_head *ht; 2043 size_t sz, i; 2044 2045 c = zalloc(sizeof(struct auxtrace_cache)); 2046 if (!c) 2047 return NULL; 2048 2049 sz = 1UL << bits; 2050 2051 ht = calloc(sz, sizeof(struct hlist_head)); 2052 if (!ht) 2053 goto out_free; 2054 2055 for (i = 0; i < sz; i++) 2056 INIT_HLIST_HEAD(&ht[i]); 2057 2058 c->hashtable = ht; 2059 c->sz = sz; 2060 c->entry_size = entry_size; 2061 c->limit = (c->sz * limit_percent) / 100; 2062 c->bits = bits; 2063 2064 return c; 2065 2066 out_free: 2067 free(c); 2068 return NULL; 2069 } 2070 2071 static void auxtrace_cache__drop(struct auxtrace_cache *c) 2072 { 2073 struct auxtrace_cache_entry *entry; 2074 struct hlist_node *tmp; 2075 size_t i; 2076 2077 if (!c) 2078 return; 2079 2080 for (i = 0; i < c->sz; i++) { 2081 hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) { 2082 hlist_del(&entry->hash); 2083 auxtrace_cache__free_entry(c, entry); 2084 } 2085 } 2086 2087 c->cnt = 0; 2088 } 2089 2090 void auxtrace_cache__free(struct auxtrace_cache *c) 2091 { 2092 if (!c) 2093 return; 2094 2095 auxtrace_cache__drop(c); 2096 zfree(&c->hashtable); 2097 free(c); 2098 } 2099 2100 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c) 2101 { 2102 return malloc(c->entry_size); 2103 } 2104 2105 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused, 2106 void *entry) 2107 { 2108 free(entry); 2109 } 2110 2111 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key, 2112 struct auxtrace_cache_entry *entry) 2113 { 2114 if (c->limit && ++c->cnt > c->limit) 2115 auxtrace_cache__drop(c); 2116 2117 entry->key = key; 2118 hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]); 2119 2120 return 0; 2121 } 2122 2123 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c, 2124 u32 key) 2125 { 2126 struct auxtrace_cache_entry *entry; 2127 struct hlist_head *hlist; 2128 struct hlist_node *n; 2129 2130 if (!c) 2131 return NULL; 2132 2133 hlist = &c->hashtable[hash_32(key, c->bits)]; 2134 hlist_for_each_entry_safe(entry, n, hlist, hash) { 2135 if (entry->key == key) { 2136 hlist_del(&entry->hash); 2137 return entry; 2138 } 2139 } 2140 2141 return NULL; 2142 } 2143 2144 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key) 2145 { 2146 struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key); 2147 2148 auxtrace_cache__free_entry(c, entry); 2149 } 2150 2151 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key) 2152 { 2153 struct auxtrace_cache_entry *entry; 2154 struct hlist_head *hlist; 2155 2156 if (!c) 2157 return NULL; 2158 2159 hlist = &c->hashtable[hash_32(key, c->bits)]; 2160 hlist_for_each_entry(entry, hlist, hash) { 2161 if (entry->key == key) 2162 return entry; 2163 } 2164 2165 return NULL; 2166 } 2167 2168 static void addr_filter__free_str(struct addr_filter *filt) 2169 { 2170 zfree(&filt->str); 2171 filt->action = NULL; 2172 filt->sym_from = NULL; 2173 filt->sym_to = NULL; 2174 filt->filename = NULL; 2175 } 2176 2177 static struct addr_filter *addr_filter__new(void) 2178 { 2179 struct addr_filter *filt = zalloc(sizeof(*filt)); 2180 2181 if (filt) 2182 INIT_LIST_HEAD(&filt->list); 2183 2184 return filt; 2185 } 2186 2187 static void addr_filter__free(struct addr_filter *filt) 2188 { 2189 if (filt) 2190 addr_filter__free_str(filt); 2191 free(filt); 2192 } 2193 2194 static void addr_filters__add(struct addr_filters *filts, 2195 struct addr_filter *filt) 2196 { 2197 list_add_tail(&filt->list, &filts->head); 2198 filts->cnt += 1; 2199 } 2200 2201 static void addr_filters__del(struct addr_filters *filts, 2202 struct addr_filter *filt) 2203 { 2204 list_del_init(&filt->list); 2205 filts->cnt -= 1; 2206 } 2207 2208 void addr_filters__init(struct addr_filters *filts) 2209 { 2210 INIT_LIST_HEAD(&filts->head); 2211 filts->cnt = 0; 2212 } 2213 2214 void addr_filters__exit(struct addr_filters *filts) 2215 { 2216 struct addr_filter *filt, *n; 2217 2218 list_for_each_entry_safe(filt, n, &filts->head, list) { 2219 addr_filters__del(filts, filt); 2220 addr_filter__free(filt); 2221 } 2222 } 2223 2224 static int parse_num_or_str(char **inp, u64 *num, const char **str, 2225 const char *str_delim) 2226 { 2227 *inp += strspn(*inp, " "); 2228 2229 if (isdigit(**inp)) { 2230 char *endptr; 2231 2232 if (!num) 2233 return -EINVAL; 2234 errno = 0; 2235 *num = strtoull(*inp, &endptr, 0); 2236 if (errno) 2237 return -errno; 2238 if (endptr == *inp) 2239 return -EINVAL; 2240 *inp = endptr; 2241 } else { 2242 size_t n; 2243 2244 if (!str) 2245 return -EINVAL; 2246 *inp += strspn(*inp, " "); 2247 *str = *inp; 2248 n = strcspn(*inp, str_delim); 2249 if (!n) 2250 return -EINVAL; 2251 *inp += n; 2252 if (**inp) { 2253 **inp = '\0'; 2254 *inp += 1; 2255 } 2256 } 2257 return 0; 2258 } 2259 2260 static int parse_action(struct addr_filter *filt) 2261 { 2262 if (!strcmp(filt->action, "filter")) { 2263 filt->start = true; 2264 filt->range = true; 2265 } else if (!strcmp(filt->action, "start")) { 2266 filt->start = true; 2267 } else if (!strcmp(filt->action, "stop")) { 2268 filt->start = false; 2269 } else if (!strcmp(filt->action, "tracestop")) { 2270 filt->start = false; 2271 filt->range = true; 2272 filt->action += 5; /* Change 'tracestop' to 'stop' */ 2273 } else { 2274 return -EINVAL; 2275 } 2276 return 0; 2277 } 2278 2279 static int parse_sym_idx(char **inp, int *idx) 2280 { 2281 *idx = -1; 2282 2283 *inp += strspn(*inp, " "); 2284 2285 if (**inp != '#') 2286 return 0; 2287 2288 *inp += 1; 2289 2290 if (**inp == 'g' || **inp == 'G') { 2291 *inp += 1; 2292 *idx = 0; 2293 } else { 2294 unsigned long num; 2295 char *endptr; 2296 2297 errno = 0; 2298 num = strtoul(*inp, &endptr, 0); 2299 if (errno) 2300 return -errno; 2301 if (endptr == *inp || num > INT_MAX) 2302 return -EINVAL; 2303 *inp = endptr; 2304 *idx = num; 2305 } 2306 2307 return 0; 2308 } 2309 2310 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx) 2311 { 2312 int err = parse_num_or_str(inp, num, str, " "); 2313 2314 if (!err && *str) 2315 err = parse_sym_idx(inp, idx); 2316 2317 return err; 2318 } 2319 2320 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp) 2321 { 2322 char *fstr; 2323 int err; 2324 2325 filt->str = fstr = strdup(*filter_inp); 2326 if (!fstr) 2327 return -ENOMEM; 2328 2329 err = parse_num_or_str(&fstr, NULL, &filt->action, " "); 2330 if (err) 2331 goto out_err; 2332 2333 err = parse_action(filt); 2334 if (err) 2335 goto out_err; 2336 2337 err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from, 2338 &filt->sym_from_idx); 2339 if (err) 2340 goto out_err; 2341 2342 fstr += strspn(fstr, " "); 2343 2344 if (*fstr == '/') { 2345 fstr += 1; 2346 err = parse_addr_size(&fstr, &filt->size, &filt->sym_to, 2347 &filt->sym_to_idx); 2348 if (err) 2349 goto out_err; 2350 filt->range = true; 2351 } 2352 2353 fstr += strspn(fstr, " "); 2354 2355 if (*fstr == '@') { 2356 fstr += 1; 2357 err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,"); 2358 if (err) 2359 goto out_err; 2360 } 2361 2362 fstr += strspn(fstr, " ,"); 2363 2364 *filter_inp += fstr - filt->str; 2365 2366 return 0; 2367 2368 out_err: 2369 addr_filter__free_str(filt); 2370 2371 return err; 2372 } 2373 2374 int addr_filters__parse_bare_filter(struct addr_filters *filts, 2375 const char *filter) 2376 { 2377 struct addr_filter *filt; 2378 const char *fstr = filter; 2379 int err; 2380 2381 while (*fstr) { 2382 filt = addr_filter__new(); 2383 err = parse_one_filter(filt, &fstr); 2384 if (err) { 2385 addr_filter__free(filt); 2386 addr_filters__exit(filts); 2387 return err; 2388 } 2389 addr_filters__add(filts, filt); 2390 } 2391 2392 return 0; 2393 } 2394 2395 struct sym_args { 2396 const char *name; 2397 u64 start; 2398 u64 size; 2399 int idx; 2400 int cnt; 2401 bool started; 2402 bool global; 2403 bool selected; 2404 bool duplicate; 2405 bool near; 2406 }; 2407 2408 static bool kern_sym_name_match(const char *kname, const char *name) 2409 { 2410 size_t n = strlen(name); 2411 2412 return !strcmp(kname, name) || 2413 (!strncmp(kname, name, n) && kname[n] == '\t'); 2414 } 2415 2416 static bool kern_sym_match(struct sym_args *args, const char *name, char type) 2417 { 2418 /* A function with the same name, and global or the n'th found or any */ 2419 return kallsyms__is_function(type) && 2420 kern_sym_name_match(name, args->name) && 2421 ((args->global && isupper(type)) || 2422 (args->selected && ++(args->cnt) == args->idx) || 2423 (!args->global && !args->selected)); 2424 } 2425 2426 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2427 { 2428 struct sym_args *args = arg; 2429 2430 if (args->started) { 2431 if (!args->size) 2432 args->size = start - args->start; 2433 if (args->selected) { 2434 if (args->size) 2435 return 1; 2436 } else if (kern_sym_match(args, name, type)) { 2437 args->duplicate = true; 2438 return 1; 2439 } 2440 } else if (kern_sym_match(args, name, type)) { 2441 args->started = true; 2442 args->start = start; 2443 } 2444 2445 return 0; 2446 } 2447 2448 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start) 2449 { 2450 struct sym_args *args = arg; 2451 2452 if (kern_sym_match(args, name, type)) { 2453 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2454 ++args->cnt, start, type, name); 2455 args->near = true; 2456 } else if (args->near) { 2457 args->near = false; 2458 pr_err("\t\twhich is near\t\t%s\n", name); 2459 } 2460 2461 return 0; 2462 } 2463 2464 static int sym_not_found_error(const char *sym_name, int idx) 2465 { 2466 if (idx > 0) { 2467 pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n", 2468 idx, sym_name); 2469 } else if (!idx) { 2470 pr_err("Global symbol '%s' not found.\n", sym_name); 2471 } else { 2472 pr_err("Symbol '%s' not found.\n", sym_name); 2473 } 2474 pr_err("Note that symbols must be functions.\n"); 2475 2476 return -EINVAL; 2477 } 2478 2479 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx) 2480 { 2481 struct sym_args args = { 2482 .name = sym_name, 2483 .idx = idx, 2484 .global = !idx, 2485 .selected = idx > 0, 2486 }; 2487 int err; 2488 2489 *start = 0; 2490 *size = 0; 2491 2492 err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb); 2493 if (err < 0) { 2494 pr_err("Failed to parse /proc/kallsyms\n"); 2495 return err; 2496 } 2497 2498 if (args.duplicate) { 2499 pr_err("Multiple kernel symbols with name '%s'\n", sym_name); 2500 args.cnt = 0; 2501 kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb); 2502 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2503 sym_name); 2504 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2505 return -EINVAL; 2506 } 2507 2508 if (!args.started) { 2509 pr_err("Kernel symbol lookup: "); 2510 return sym_not_found_error(sym_name, idx); 2511 } 2512 2513 *start = args.start; 2514 *size = args.size; 2515 2516 return 0; 2517 } 2518 2519 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused, 2520 char type, u64 start) 2521 { 2522 struct sym_args *args = arg; 2523 u64 size; 2524 2525 if (!kallsyms__is_function(type)) 2526 return 0; 2527 2528 if (!args->started) { 2529 args->started = true; 2530 args->start = start; 2531 } 2532 /* Don't know exactly where the kernel ends, so we add a page */ 2533 size = round_up(start, page_size) + page_size - args->start; 2534 if (size > args->size) 2535 args->size = size; 2536 2537 return 0; 2538 } 2539 2540 static int addr_filter__entire_kernel(struct addr_filter *filt) 2541 { 2542 struct sym_args args = { .started = false }; 2543 int err; 2544 2545 err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb); 2546 if (err < 0 || !args.started) { 2547 pr_err("Failed to parse /proc/kallsyms\n"); 2548 return err; 2549 } 2550 2551 filt->addr = args.start; 2552 filt->size = args.size; 2553 2554 return 0; 2555 } 2556 2557 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size) 2558 { 2559 if (start + size >= filt->addr) 2560 return 0; 2561 2562 if (filt->sym_from) { 2563 pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n", 2564 filt->sym_to, start, filt->sym_from, filt->addr); 2565 } else { 2566 pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n", 2567 filt->sym_to, start, filt->addr); 2568 } 2569 2570 return -EINVAL; 2571 } 2572 2573 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt) 2574 { 2575 bool no_size = false; 2576 u64 start, size; 2577 int err; 2578 2579 if (symbol_conf.kptr_restrict) { 2580 pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n"); 2581 return -EINVAL; 2582 } 2583 2584 if (filt->sym_from && !strcmp(filt->sym_from, "*")) 2585 return addr_filter__entire_kernel(filt); 2586 2587 if (filt->sym_from) { 2588 err = find_kern_sym(filt->sym_from, &start, &size, 2589 filt->sym_from_idx); 2590 if (err) 2591 return err; 2592 filt->addr = start; 2593 if (filt->range && !filt->size && !filt->sym_to) { 2594 filt->size = size; 2595 no_size = !size; 2596 } 2597 } 2598 2599 if (filt->sym_to) { 2600 err = find_kern_sym(filt->sym_to, &start, &size, 2601 filt->sym_to_idx); 2602 if (err) 2603 return err; 2604 2605 err = check_end_after_start(filt, start, size); 2606 if (err) 2607 return err; 2608 filt->size = start + size - filt->addr; 2609 no_size = !size; 2610 } 2611 2612 /* The very last symbol in kallsyms does not imply a particular size */ 2613 if (no_size) { 2614 pr_err("Cannot determine size of symbol '%s'\n", 2615 filt->sym_to ? filt->sym_to : filt->sym_from); 2616 return -EINVAL; 2617 } 2618 2619 return 0; 2620 } 2621 2622 static struct dso *load_dso(const char *name) 2623 { 2624 struct map *map; 2625 struct dso *dso; 2626 2627 map = dso__new_map(name); 2628 if (!map) 2629 return NULL; 2630 2631 if (map__load(map) < 0) 2632 pr_err("File '%s' not found or has no symbols.\n", name); 2633 2634 dso = dso__get(map__dso(map)); 2635 2636 map__put(map); 2637 2638 return dso; 2639 } 2640 2641 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt, 2642 int idx) 2643 { 2644 /* Same name, and global or the n'th found or any */ 2645 return !arch__compare_symbol_names(name, sym->name) && 2646 ((!idx && sym->binding == STB_GLOBAL) || 2647 (idx > 0 && ++*cnt == idx) || 2648 idx < 0); 2649 } 2650 2651 static void print_duplicate_syms(struct dso *dso, const char *sym_name) 2652 { 2653 struct symbol *sym; 2654 bool near = false; 2655 int cnt = 0; 2656 2657 pr_err("Multiple symbols with name '%s'\n", sym_name); 2658 2659 sym = dso__first_symbol(dso); 2660 while (sym) { 2661 if (dso_sym_match(sym, sym_name, &cnt, -1)) { 2662 pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n", 2663 ++cnt, sym->start, 2664 sym->binding == STB_GLOBAL ? 'g' : 2665 sym->binding == STB_LOCAL ? 'l' : 'w', 2666 sym->name); 2667 near = true; 2668 } else if (near) { 2669 near = false; 2670 pr_err("\t\twhich is near\t\t%s\n", sym->name); 2671 } 2672 sym = dso__next_symbol(sym); 2673 } 2674 2675 pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n", 2676 sym_name); 2677 pr_err("Or select a global symbol by inserting #0 or #g or #G\n"); 2678 } 2679 2680 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start, 2681 u64 *size, int idx) 2682 { 2683 struct symbol *sym; 2684 int cnt = 0; 2685 2686 *start = 0; 2687 *size = 0; 2688 2689 sym = dso__first_symbol(dso); 2690 while (sym) { 2691 if (*start) { 2692 if (!*size) 2693 *size = sym->start - *start; 2694 if (idx > 0) { 2695 if (*size) 2696 return 0; 2697 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2698 print_duplicate_syms(dso, sym_name); 2699 return -EINVAL; 2700 } 2701 } else if (dso_sym_match(sym, sym_name, &cnt, idx)) { 2702 *start = sym->start; 2703 *size = sym->end - sym->start; 2704 } 2705 sym = dso__next_symbol(sym); 2706 } 2707 2708 if (!*start) 2709 return sym_not_found_error(sym_name, idx); 2710 2711 return 0; 2712 } 2713 2714 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso) 2715 { 2716 if (dso__data_file_size(dso, NULL)) { 2717 pr_err("Failed to determine filter for %s\nCannot determine file size.\n", 2718 filt->filename); 2719 return -EINVAL; 2720 } 2721 2722 filt->addr = 0; 2723 filt->size = dso__data(dso)->file_size; 2724 2725 return 0; 2726 } 2727 2728 static int addr_filter__resolve_syms(struct addr_filter *filt) 2729 { 2730 u64 start, size; 2731 struct dso *dso; 2732 int err = 0; 2733 2734 if (!filt->sym_from && !filt->sym_to) 2735 return 0; 2736 2737 if (!filt->filename) 2738 return addr_filter__resolve_kernel_syms(filt); 2739 2740 dso = load_dso(filt->filename); 2741 if (!dso) { 2742 pr_err("Failed to load symbols from: %s\n", filt->filename); 2743 return -EINVAL; 2744 } 2745 2746 if (filt->sym_from && !strcmp(filt->sym_from, "*")) { 2747 err = addr_filter__entire_dso(filt, dso); 2748 goto put_dso; 2749 } 2750 2751 if (filt->sym_from) { 2752 err = find_dso_sym(dso, filt->sym_from, &start, &size, 2753 filt->sym_from_idx); 2754 if (err) 2755 goto put_dso; 2756 filt->addr = start; 2757 if (filt->range && !filt->size && !filt->sym_to) 2758 filt->size = size; 2759 } 2760 2761 if (filt->sym_to) { 2762 err = find_dso_sym(dso, filt->sym_to, &start, &size, 2763 filt->sym_to_idx); 2764 if (err) 2765 goto put_dso; 2766 2767 err = check_end_after_start(filt, start, size); 2768 if (err) 2769 return err; 2770 2771 filt->size = start + size - filt->addr; 2772 } 2773 2774 put_dso: 2775 dso__put(dso); 2776 2777 return err; 2778 } 2779 2780 static char *addr_filter__to_str(struct addr_filter *filt) 2781 { 2782 char filename_buf[PATH_MAX]; 2783 const char *at = ""; 2784 const char *fn = ""; 2785 char *filter; 2786 int err; 2787 2788 if (filt->filename) { 2789 at = "@"; 2790 fn = realpath(filt->filename, filename_buf); 2791 if (!fn) 2792 return NULL; 2793 } 2794 2795 if (filt->range) { 2796 err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s", 2797 filt->action, filt->addr, filt->size, at, fn); 2798 } else { 2799 err = asprintf(&filter, "%s 0x%"PRIx64"%s%s", 2800 filt->action, filt->addr, at, fn); 2801 } 2802 2803 return err < 0 ? NULL : filter; 2804 } 2805 2806 static int parse_addr_filter(struct evsel *evsel, const char *filter, 2807 int max_nr) 2808 { 2809 struct addr_filters filts; 2810 struct addr_filter *filt; 2811 int err; 2812 2813 addr_filters__init(&filts); 2814 2815 err = addr_filters__parse_bare_filter(&filts, filter); 2816 if (err) 2817 goto out_exit; 2818 2819 if (filts.cnt > max_nr) { 2820 pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n", 2821 filts.cnt, max_nr); 2822 err = -EINVAL; 2823 goto out_exit; 2824 } 2825 2826 list_for_each_entry(filt, &filts.head, list) { 2827 char *new_filter; 2828 2829 err = addr_filter__resolve_syms(filt); 2830 if (err) 2831 goto out_exit; 2832 2833 new_filter = addr_filter__to_str(filt); 2834 if (!new_filter) { 2835 err = -ENOMEM; 2836 goto out_exit; 2837 } 2838 2839 if (evsel__append_addr_filter(evsel, new_filter)) { 2840 err = -ENOMEM; 2841 goto out_exit; 2842 } 2843 } 2844 2845 out_exit: 2846 addr_filters__exit(&filts); 2847 2848 if (err) { 2849 pr_err("Failed to parse address filter: '%s'\n", filter); 2850 pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n"); 2851 pr_err("Where multiple filters are separated by space or comma.\n"); 2852 } 2853 2854 return err; 2855 } 2856 2857 static int evsel__nr_addr_filter(struct evsel *evsel) 2858 { 2859 struct perf_pmu *pmu = evsel__find_pmu(evsel); 2860 int nr_addr_filters = 0; 2861 2862 if (!pmu) 2863 return 0; 2864 2865 perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters); 2866 2867 return nr_addr_filters; 2868 } 2869 2870 int auxtrace_parse_filters(struct evlist *evlist) 2871 { 2872 struct evsel *evsel; 2873 char *filter; 2874 int err, max_nr; 2875 2876 evlist__for_each_entry(evlist, evsel) { 2877 filter = evsel->filter; 2878 max_nr = evsel__nr_addr_filter(evsel); 2879 if (!filter || !max_nr) 2880 continue; 2881 evsel->filter = NULL; 2882 err = parse_addr_filter(evsel, filter, max_nr); 2883 free(filter); 2884 if (err) 2885 return err; 2886 pr_debug("Address filter: %s\n", evsel->filter); 2887 } 2888 2889 return 0; 2890 } 2891 2892 int auxtrace__process_event(struct perf_session *session, union perf_event *event, 2893 struct perf_sample *sample, const struct perf_tool *tool) 2894 { 2895 if (!session->auxtrace) 2896 return 0; 2897 2898 return session->auxtrace->process_event(session, event, sample, tool); 2899 } 2900 2901 void auxtrace__dump_auxtrace_sample(struct perf_session *session, 2902 struct perf_sample *sample) 2903 { 2904 if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample || 2905 auxtrace__dont_decode(session)) 2906 return; 2907 2908 session->auxtrace->dump_auxtrace_sample(session, sample); 2909 } 2910 2911 int auxtrace__flush_events(struct perf_session *session, const struct perf_tool *tool) 2912 { 2913 if (!session->auxtrace) 2914 return 0; 2915 2916 return session->auxtrace->flush_events(session, tool); 2917 } 2918 2919 void auxtrace__free_events(struct perf_session *session) 2920 { 2921 if (!session->auxtrace) 2922 return; 2923 2924 return session->auxtrace->free_events(session); 2925 } 2926 2927 void auxtrace__free(struct perf_session *session) 2928 { 2929 if (!session->auxtrace) 2930 return; 2931 2932 return session->auxtrace->free(session); 2933 } 2934 2935 bool auxtrace__evsel_is_auxtrace(struct perf_session *session, 2936 struct evsel *evsel) 2937 { 2938 if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace) 2939 return false; 2940 2941 return session->auxtrace->evsel_is_auxtrace(session, evsel); 2942 } 2943