xref: /linux/tools/perf/util/auxtrace.c (revision 173b0b5b0e865348684c02bd9cb1d22b5d46e458)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * auxtrace.c: AUX area trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6 
7 #include <inttypes.h>
8 #include <sys/types.h>
9 #include <sys/mman.h>
10 #include <stdbool.h>
11 #include <string.h>
12 #include <limits.h>
13 #include <errno.h>
14 
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <linux/types.h>
18 #include <linux/bitops.h>
19 #include <linux/log2.h>
20 #include <linux/string.h>
21 #include <linux/time64.h>
22 
23 #include <sys/param.h>
24 #include <stdlib.h>
25 #include <stdio.h>
26 #include <linux/list.h>
27 #include <linux/zalloc.h>
28 
29 #include "config.h"
30 #include "evlist.h"
31 #include "dso.h"
32 #include "map.h"
33 #include "pmu.h"
34 #include "evsel.h"
35 #include "evsel_config.h"
36 #include "symbol.h"
37 #include "util/perf_api_probe.h"
38 #include "util/synthetic-events.h"
39 #include "thread_map.h"
40 #include "asm/bug.h"
41 #include "auxtrace.h"
42 
43 #include <linux/hash.h>
44 
45 #include "event.h"
46 #include "record.h"
47 #include "session.h"
48 #include "debug.h"
49 #include <subcmd/parse-options.h>
50 
51 #include "cs-etm.h"
52 #include "intel-pt.h"
53 #include "intel-bts.h"
54 #include "arm-spe.h"
55 #include "hisi-ptt.h"
56 #include "s390-cpumsf.h"
57 #include "util/mmap.h"
58 
59 #include <linux/ctype.h>
60 #include "symbol/kallsyms.h"
61 #include <internal/lib.h>
62 #include "util/sample.h"
63 
64 /*
65  * Make a group from 'leader' to 'last', requiring that the events were not
66  * already grouped to a different leader.
67  */
68 static int evlist__regroup(struct evlist *evlist, struct evsel *leader, struct evsel *last)
69 {
70 	struct evsel *evsel;
71 	bool grp;
72 
73 	if (!evsel__is_group_leader(leader))
74 		return -EINVAL;
75 
76 	grp = false;
77 	evlist__for_each_entry(evlist, evsel) {
78 		if (grp) {
79 			if (!(evsel__leader(evsel) == leader ||
80 			     (evsel__leader(evsel) == evsel &&
81 			      evsel->core.nr_members <= 1)))
82 				return -EINVAL;
83 		} else if (evsel == leader) {
84 			grp = true;
85 		}
86 		if (evsel == last)
87 			break;
88 	}
89 
90 	grp = false;
91 	evlist__for_each_entry(evlist, evsel) {
92 		if (grp) {
93 			if (!evsel__has_leader(evsel, leader)) {
94 				evsel__set_leader(evsel, leader);
95 				if (leader->core.nr_members < 1)
96 					leader->core.nr_members = 1;
97 				leader->core.nr_members += 1;
98 			}
99 		} else if (evsel == leader) {
100 			grp = true;
101 		}
102 		if (evsel == last)
103 			break;
104 	}
105 
106 	return 0;
107 }
108 
109 static bool auxtrace__dont_decode(struct perf_session *session)
110 {
111 	return !session->itrace_synth_opts ||
112 	       session->itrace_synth_opts->dont_decode;
113 }
114 
115 int auxtrace_mmap__mmap(struct auxtrace_mmap *mm,
116 			struct auxtrace_mmap_params *mp,
117 			void *userpg, int fd)
118 {
119 	struct perf_event_mmap_page *pc = userpg;
120 
121 	WARN_ONCE(mm->base, "Uninitialized auxtrace_mmap\n");
122 
123 	mm->userpg = userpg;
124 	mm->mask = mp->mask;
125 	mm->len = mp->len;
126 	mm->prev = 0;
127 	mm->idx = mp->idx;
128 	mm->tid = mp->tid;
129 	mm->cpu = mp->cpu.cpu;
130 
131 	if (!mp->len || !mp->mmap_needed) {
132 		mm->base = NULL;
133 		return 0;
134 	}
135 
136 	pc->aux_offset = mp->offset;
137 	pc->aux_size = mp->len;
138 
139 	mm->base = mmap(NULL, mp->len, mp->prot, MAP_SHARED, fd, mp->offset);
140 	if (mm->base == MAP_FAILED) {
141 		pr_debug2("failed to mmap AUX area\n");
142 		mm->base = NULL;
143 		return -1;
144 	}
145 
146 	return 0;
147 }
148 
149 void auxtrace_mmap__munmap(struct auxtrace_mmap *mm)
150 {
151 	if (mm->base) {
152 		munmap(mm->base, mm->len);
153 		mm->base = NULL;
154 	}
155 }
156 
157 void auxtrace_mmap_params__init(struct auxtrace_mmap_params *mp,
158 				off_t auxtrace_offset,
159 				unsigned int auxtrace_pages,
160 				bool auxtrace_overwrite)
161 {
162 	if (auxtrace_pages) {
163 		mp->offset = auxtrace_offset;
164 		mp->len = auxtrace_pages * (size_t)page_size;
165 		mp->mask = is_power_of_2(mp->len) ? mp->len - 1 : 0;
166 		mp->prot = PROT_READ | (auxtrace_overwrite ? 0 : PROT_WRITE);
167 		pr_debug2("AUX area mmap length %zu\n", mp->len);
168 	} else {
169 		mp->len = 0;
170 	}
171 }
172 
173 void auxtrace_mmap_params__set_idx(struct auxtrace_mmap_params *mp,
174 				   struct evlist *evlist,
175 				   struct evsel *evsel, int idx)
176 {
177 	bool per_cpu = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
178 
179 	mp->mmap_needed = evsel->needs_auxtrace_mmap;
180 
181 	if (!mp->mmap_needed)
182 		return;
183 
184 	mp->idx = idx;
185 
186 	if (per_cpu) {
187 		mp->cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
188 		if (evlist->core.threads)
189 			mp->tid = perf_thread_map__pid(evlist->core.threads, 0);
190 		else
191 			mp->tid = -1;
192 	} else {
193 		mp->cpu.cpu = -1;
194 		mp->tid = perf_thread_map__pid(evlist->core.threads, idx);
195 	}
196 }
197 
198 #define AUXTRACE_INIT_NR_QUEUES	32
199 
200 static struct auxtrace_queue *auxtrace_alloc_queue_array(unsigned int nr_queues)
201 {
202 	struct auxtrace_queue *queue_array;
203 	unsigned int max_nr_queues, i;
204 
205 	max_nr_queues = UINT_MAX / sizeof(struct auxtrace_queue);
206 	if (nr_queues > max_nr_queues)
207 		return NULL;
208 
209 	queue_array = calloc(nr_queues, sizeof(struct auxtrace_queue));
210 	if (!queue_array)
211 		return NULL;
212 
213 	for (i = 0; i < nr_queues; i++) {
214 		INIT_LIST_HEAD(&queue_array[i].head);
215 		queue_array[i].priv = NULL;
216 	}
217 
218 	return queue_array;
219 }
220 
221 int auxtrace_queues__init(struct auxtrace_queues *queues)
222 {
223 	queues->nr_queues = AUXTRACE_INIT_NR_QUEUES;
224 	queues->queue_array = auxtrace_alloc_queue_array(queues->nr_queues);
225 	if (!queues->queue_array)
226 		return -ENOMEM;
227 	return 0;
228 }
229 
230 static int auxtrace_queues__grow(struct auxtrace_queues *queues,
231 				 unsigned int new_nr_queues)
232 {
233 	unsigned int nr_queues = queues->nr_queues;
234 	struct auxtrace_queue *queue_array;
235 	unsigned int i;
236 
237 	if (!nr_queues)
238 		nr_queues = AUXTRACE_INIT_NR_QUEUES;
239 
240 	while (nr_queues && nr_queues < new_nr_queues)
241 		nr_queues <<= 1;
242 
243 	if (nr_queues < queues->nr_queues || nr_queues < new_nr_queues)
244 		return -EINVAL;
245 
246 	queue_array = auxtrace_alloc_queue_array(nr_queues);
247 	if (!queue_array)
248 		return -ENOMEM;
249 
250 	for (i = 0; i < queues->nr_queues; i++) {
251 		list_splice_tail(&queues->queue_array[i].head,
252 				 &queue_array[i].head);
253 		queue_array[i].tid = queues->queue_array[i].tid;
254 		queue_array[i].cpu = queues->queue_array[i].cpu;
255 		queue_array[i].set = queues->queue_array[i].set;
256 		queue_array[i].priv = queues->queue_array[i].priv;
257 	}
258 
259 	queues->nr_queues = nr_queues;
260 	queues->queue_array = queue_array;
261 
262 	return 0;
263 }
264 
265 static void *auxtrace_copy_data(u64 size, struct perf_session *session)
266 {
267 	int fd = perf_data__fd(session->data);
268 	void *p;
269 	ssize_t ret;
270 
271 	if (size > SSIZE_MAX)
272 		return NULL;
273 
274 	p = malloc(size);
275 	if (!p)
276 		return NULL;
277 
278 	ret = readn(fd, p, size);
279 	if (ret != (ssize_t)size) {
280 		free(p);
281 		return NULL;
282 	}
283 
284 	return p;
285 }
286 
287 static int auxtrace_queues__queue_buffer(struct auxtrace_queues *queues,
288 					 unsigned int idx,
289 					 struct auxtrace_buffer *buffer)
290 {
291 	struct auxtrace_queue *queue;
292 	int err;
293 
294 	if (idx >= queues->nr_queues) {
295 		err = auxtrace_queues__grow(queues, idx + 1);
296 		if (err)
297 			return err;
298 	}
299 
300 	queue = &queues->queue_array[idx];
301 
302 	if (!queue->set) {
303 		queue->set = true;
304 		queue->tid = buffer->tid;
305 		queue->cpu = buffer->cpu.cpu;
306 	}
307 
308 	buffer->buffer_nr = queues->next_buffer_nr++;
309 
310 	list_add_tail(&buffer->list, &queue->head);
311 
312 	queues->new_data = true;
313 	queues->populated = true;
314 
315 	return 0;
316 }
317 
318 /* Limit buffers to 32MiB on 32-bit */
319 #define BUFFER_LIMIT_FOR_32_BIT (32 * 1024 * 1024)
320 
321 static int auxtrace_queues__split_buffer(struct auxtrace_queues *queues,
322 					 unsigned int idx,
323 					 struct auxtrace_buffer *buffer)
324 {
325 	u64 sz = buffer->size;
326 	bool consecutive = false;
327 	struct auxtrace_buffer *b;
328 	int err;
329 
330 	while (sz > BUFFER_LIMIT_FOR_32_BIT) {
331 		b = memdup(buffer, sizeof(struct auxtrace_buffer));
332 		if (!b)
333 			return -ENOMEM;
334 		b->size = BUFFER_LIMIT_FOR_32_BIT;
335 		b->consecutive = consecutive;
336 		err = auxtrace_queues__queue_buffer(queues, idx, b);
337 		if (err) {
338 			auxtrace_buffer__free(b);
339 			return err;
340 		}
341 		buffer->data_offset += BUFFER_LIMIT_FOR_32_BIT;
342 		sz -= BUFFER_LIMIT_FOR_32_BIT;
343 		consecutive = true;
344 	}
345 
346 	buffer->size = sz;
347 	buffer->consecutive = consecutive;
348 
349 	return 0;
350 }
351 
352 static bool filter_cpu(struct perf_session *session, struct perf_cpu cpu)
353 {
354 	unsigned long *cpu_bitmap = session->itrace_synth_opts->cpu_bitmap;
355 
356 	return cpu_bitmap && cpu.cpu != -1 && !test_bit(cpu.cpu, cpu_bitmap);
357 }
358 
359 static int auxtrace_queues__add_buffer(struct auxtrace_queues *queues,
360 				       struct perf_session *session,
361 				       unsigned int idx,
362 				       struct auxtrace_buffer *buffer,
363 				       struct auxtrace_buffer **buffer_ptr)
364 {
365 	int err = -ENOMEM;
366 
367 	if (filter_cpu(session, buffer->cpu))
368 		return 0;
369 
370 	buffer = memdup(buffer, sizeof(*buffer));
371 	if (!buffer)
372 		return -ENOMEM;
373 
374 	if (session->one_mmap) {
375 		buffer->data = buffer->data_offset - session->one_mmap_offset +
376 			       session->one_mmap_addr;
377 	} else if (perf_data__is_pipe(session->data)) {
378 		buffer->data = auxtrace_copy_data(buffer->size, session);
379 		if (!buffer->data)
380 			goto out_free;
381 		buffer->data_needs_freeing = true;
382 	} else if (BITS_PER_LONG == 32 &&
383 		   buffer->size > BUFFER_LIMIT_FOR_32_BIT) {
384 		err = auxtrace_queues__split_buffer(queues, idx, buffer);
385 		if (err)
386 			goto out_free;
387 	}
388 
389 	err = auxtrace_queues__queue_buffer(queues, idx, buffer);
390 	if (err)
391 		goto out_free;
392 
393 	/* FIXME: Doesn't work for split buffer */
394 	if (buffer_ptr)
395 		*buffer_ptr = buffer;
396 
397 	return 0;
398 
399 out_free:
400 	auxtrace_buffer__free(buffer);
401 	return err;
402 }
403 
404 int auxtrace_queues__add_event(struct auxtrace_queues *queues,
405 			       struct perf_session *session,
406 			       union perf_event *event, off_t data_offset,
407 			       struct auxtrace_buffer **buffer_ptr)
408 {
409 	struct auxtrace_buffer buffer = {
410 		.pid = -1,
411 		.tid = event->auxtrace.tid,
412 		.cpu = { event->auxtrace.cpu },
413 		.data_offset = data_offset,
414 		.offset = event->auxtrace.offset,
415 		.reference = event->auxtrace.reference,
416 		.size = event->auxtrace.size,
417 	};
418 	unsigned int idx = event->auxtrace.idx;
419 
420 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer,
421 					   buffer_ptr);
422 }
423 
424 static int auxtrace_queues__add_indexed_event(struct auxtrace_queues *queues,
425 					      struct perf_session *session,
426 					      off_t file_offset, size_t sz)
427 {
428 	union perf_event *event;
429 	int err;
430 	char buf[PERF_SAMPLE_MAX_SIZE];
431 
432 	err = perf_session__peek_event(session, file_offset, buf,
433 				       PERF_SAMPLE_MAX_SIZE, &event, NULL);
434 	if (err)
435 		return err;
436 
437 	if (event->header.type == PERF_RECORD_AUXTRACE) {
438 		if (event->header.size < sizeof(struct perf_record_auxtrace) ||
439 		    event->header.size != sz) {
440 			err = -EINVAL;
441 			goto out;
442 		}
443 		file_offset += event->header.size;
444 		err = auxtrace_queues__add_event(queues, session, event,
445 						 file_offset, NULL);
446 	}
447 out:
448 	return err;
449 }
450 
451 void auxtrace_queues__free(struct auxtrace_queues *queues)
452 {
453 	unsigned int i;
454 
455 	for (i = 0; i < queues->nr_queues; i++) {
456 		while (!list_empty(&queues->queue_array[i].head)) {
457 			struct auxtrace_buffer *buffer;
458 
459 			buffer = list_entry(queues->queue_array[i].head.next,
460 					    struct auxtrace_buffer, list);
461 			list_del_init(&buffer->list);
462 			auxtrace_buffer__free(buffer);
463 		}
464 	}
465 
466 	zfree(&queues->queue_array);
467 	queues->nr_queues = 0;
468 }
469 
470 static void auxtrace_heapify(struct auxtrace_heap_item *heap_array,
471 			     unsigned int pos, unsigned int queue_nr,
472 			     u64 ordinal)
473 {
474 	unsigned int parent;
475 
476 	while (pos) {
477 		parent = (pos - 1) >> 1;
478 		if (heap_array[parent].ordinal <= ordinal)
479 			break;
480 		heap_array[pos] = heap_array[parent];
481 		pos = parent;
482 	}
483 	heap_array[pos].queue_nr = queue_nr;
484 	heap_array[pos].ordinal = ordinal;
485 }
486 
487 int auxtrace_heap__add(struct auxtrace_heap *heap, unsigned int queue_nr,
488 		       u64 ordinal)
489 {
490 	struct auxtrace_heap_item *heap_array;
491 
492 	if (queue_nr >= heap->heap_sz) {
493 		unsigned int heap_sz = AUXTRACE_INIT_NR_QUEUES;
494 
495 		while (heap_sz <= queue_nr)
496 			heap_sz <<= 1;
497 		heap_array = realloc(heap->heap_array,
498 				     heap_sz * sizeof(struct auxtrace_heap_item));
499 		if (!heap_array)
500 			return -ENOMEM;
501 		heap->heap_array = heap_array;
502 		heap->heap_sz = heap_sz;
503 	}
504 
505 	auxtrace_heapify(heap->heap_array, heap->heap_cnt++, queue_nr, ordinal);
506 
507 	return 0;
508 }
509 
510 void auxtrace_heap__free(struct auxtrace_heap *heap)
511 {
512 	zfree(&heap->heap_array);
513 	heap->heap_cnt = 0;
514 	heap->heap_sz = 0;
515 }
516 
517 void auxtrace_heap__pop(struct auxtrace_heap *heap)
518 {
519 	unsigned int pos, last, heap_cnt = heap->heap_cnt;
520 	struct auxtrace_heap_item *heap_array;
521 
522 	if (!heap_cnt)
523 		return;
524 
525 	heap->heap_cnt -= 1;
526 
527 	heap_array = heap->heap_array;
528 
529 	pos = 0;
530 	while (1) {
531 		unsigned int left, right;
532 
533 		left = (pos << 1) + 1;
534 		if (left >= heap_cnt)
535 			break;
536 		right = left + 1;
537 		if (right >= heap_cnt) {
538 			heap_array[pos] = heap_array[left];
539 			return;
540 		}
541 		if (heap_array[left].ordinal < heap_array[right].ordinal) {
542 			heap_array[pos] = heap_array[left];
543 			pos = left;
544 		} else {
545 			heap_array[pos] = heap_array[right];
546 			pos = right;
547 		}
548 	}
549 
550 	last = heap_cnt - 1;
551 	auxtrace_heapify(heap_array, pos, heap_array[last].queue_nr,
552 			 heap_array[last].ordinal);
553 }
554 
555 size_t auxtrace_record__info_priv_size(struct auxtrace_record *itr,
556 				       struct evlist *evlist)
557 {
558 	if (itr)
559 		return itr->info_priv_size(itr, evlist);
560 	return 0;
561 }
562 
563 static int auxtrace_not_supported(void)
564 {
565 	pr_err("AUX area tracing is not supported on this architecture\n");
566 	return -EINVAL;
567 }
568 
569 int auxtrace_record__info_fill(struct auxtrace_record *itr,
570 			       struct perf_session *session,
571 			       struct perf_record_auxtrace_info *auxtrace_info,
572 			       size_t priv_size)
573 {
574 	if (itr)
575 		return itr->info_fill(itr, session, auxtrace_info, priv_size);
576 	return auxtrace_not_supported();
577 }
578 
579 void auxtrace_record__free(struct auxtrace_record *itr)
580 {
581 	if (itr)
582 		itr->free(itr);
583 }
584 
585 int auxtrace_record__snapshot_start(struct auxtrace_record *itr)
586 {
587 	if (itr && itr->snapshot_start)
588 		return itr->snapshot_start(itr);
589 	return 0;
590 }
591 
592 int auxtrace_record__snapshot_finish(struct auxtrace_record *itr, bool on_exit)
593 {
594 	if (!on_exit && itr && itr->snapshot_finish)
595 		return itr->snapshot_finish(itr);
596 	return 0;
597 }
598 
599 int auxtrace_record__find_snapshot(struct auxtrace_record *itr, int idx,
600 				   struct auxtrace_mmap *mm,
601 				   unsigned char *data, u64 *head, u64 *old)
602 {
603 	if (itr && itr->find_snapshot)
604 		return itr->find_snapshot(itr, idx, mm, data, head, old);
605 	return 0;
606 }
607 
608 int auxtrace_record__options(struct auxtrace_record *itr,
609 			     struct evlist *evlist,
610 			     struct record_opts *opts)
611 {
612 	if (itr) {
613 		itr->evlist = evlist;
614 		return itr->recording_options(itr, evlist, opts);
615 	}
616 	return 0;
617 }
618 
619 u64 auxtrace_record__reference(struct auxtrace_record *itr)
620 {
621 	if (itr)
622 		return itr->reference(itr);
623 	return 0;
624 }
625 
626 int auxtrace_parse_snapshot_options(struct auxtrace_record *itr,
627 				    struct record_opts *opts, const char *str)
628 {
629 	if (!str)
630 		return 0;
631 
632 	/* PMU-agnostic options */
633 	switch (*str) {
634 	case 'e':
635 		opts->auxtrace_snapshot_on_exit = true;
636 		str++;
637 		break;
638 	default:
639 		break;
640 	}
641 
642 	if (itr && itr->parse_snapshot_options)
643 		return itr->parse_snapshot_options(itr, opts, str);
644 
645 	pr_err("No AUX area tracing to snapshot\n");
646 	return -EINVAL;
647 }
648 
649 static int evlist__enable_event_idx(struct evlist *evlist, struct evsel *evsel, int idx)
650 {
651 	bool per_cpu_mmaps = !perf_cpu_map__has_any_cpu(evlist->core.user_requested_cpus);
652 
653 	if (per_cpu_mmaps) {
654 		struct perf_cpu evlist_cpu = perf_cpu_map__cpu(evlist->core.all_cpus, idx);
655 		int cpu_map_idx = perf_cpu_map__idx(evsel->core.cpus, evlist_cpu);
656 
657 		if (cpu_map_idx == -1)
658 			return -EINVAL;
659 		return perf_evsel__enable_cpu(&evsel->core, cpu_map_idx);
660 	}
661 
662 	return perf_evsel__enable_thread(&evsel->core, idx);
663 }
664 
665 int auxtrace_record__read_finish(struct auxtrace_record *itr, int idx)
666 {
667 	struct evsel *evsel;
668 
669 	if (!itr->evlist || !itr->pmu)
670 		return -EINVAL;
671 
672 	evlist__for_each_entry(itr->evlist, evsel) {
673 		if (evsel->core.attr.type == itr->pmu->type) {
674 			if (evsel->disabled)
675 				return 0;
676 			return evlist__enable_event_idx(itr->evlist, evsel, idx);
677 		}
678 	}
679 	return -EINVAL;
680 }
681 
682 /*
683  * Event record size is 16-bit which results in a maximum size of about 64KiB.
684  * Allow about 4KiB for the rest of the sample record, to give a maximum
685  * AUX area sample size of 60KiB.
686  */
687 #define MAX_AUX_SAMPLE_SIZE (60 * 1024)
688 
689 /* Arbitrary default size if no other default provided */
690 #define DEFAULT_AUX_SAMPLE_SIZE (4 * 1024)
691 
692 static int auxtrace_validate_aux_sample_size(struct evlist *evlist,
693 					     struct record_opts *opts)
694 {
695 	struct evsel *evsel;
696 	bool has_aux_leader = false;
697 	u32 sz;
698 
699 	evlist__for_each_entry(evlist, evsel) {
700 		sz = evsel->core.attr.aux_sample_size;
701 		if (evsel__is_group_leader(evsel)) {
702 			has_aux_leader = evsel__is_aux_event(evsel);
703 			if (sz) {
704 				if (has_aux_leader)
705 					pr_err("Cannot add AUX area sampling to an AUX area event\n");
706 				else
707 					pr_err("Cannot add AUX area sampling to a group leader\n");
708 				return -EINVAL;
709 			}
710 		}
711 		if (sz > MAX_AUX_SAMPLE_SIZE) {
712 			pr_err("AUX area sample size %u too big, max. %d\n",
713 			       sz, MAX_AUX_SAMPLE_SIZE);
714 			return -EINVAL;
715 		}
716 		if (sz) {
717 			if (!has_aux_leader) {
718 				pr_err("Cannot add AUX area sampling because group leader is not an AUX area event\n");
719 				return -EINVAL;
720 			}
721 			evsel__set_sample_bit(evsel, AUX);
722 			opts->auxtrace_sample_mode = true;
723 		} else {
724 			evsel__reset_sample_bit(evsel, AUX);
725 		}
726 	}
727 
728 	if (!opts->auxtrace_sample_mode) {
729 		pr_err("AUX area sampling requires an AUX area event group leader plus other events to which to add samples\n");
730 		return -EINVAL;
731 	}
732 
733 	if (!perf_can_aux_sample()) {
734 		pr_err("AUX area sampling is not supported by kernel\n");
735 		return -EINVAL;
736 	}
737 
738 	return 0;
739 }
740 
741 int auxtrace_parse_sample_options(struct auxtrace_record *itr,
742 				  struct evlist *evlist,
743 				  struct record_opts *opts, const char *str)
744 {
745 	struct evsel_config_term *term;
746 	struct evsel *aux_evsel;
747 	bool has_aux_sample_size = false;
748 	bool has_aux_leader = false;
749 	struct evsel *evsel;
750 	char *endptr;
751 	unsigned long sz;
752 
753 	if (!str)
754 		goto no_opt;
755 
756 	if (!itr) {
757 		pr_err("No AUX area event to sample\n");
758 		return -EINVAL;
759 	}
760 
761 	sz = strtoul(str, &endptr, 0);
762 	if (*endptr || sz > UINT_MAX) {
763 		pr_err("Bad AUX area sampling option: '%s'\n", str);
764 		return -EINVAL;
765 	}
766 
767 	if (!sz)
768 		sz = itr->default_aux_sample_size;
769 
770 	if (!sz)
771 		sz = DEFAULT_AUX_SAMPLE_SIZE;
772 
773 	/* Set aux_sample_size based on --aux-sample option */
774 	evlist__for_each_entry(evlist, evsel) {
775 		if (evsel__is_group_leader(evsel)) {
776 			has_aux_leader = evsel__is_aux_event(evsel);
777 		} else if (has_aux_leader) {
778 			evsel->core.attr.aux_sample_size = sz;
779 		}
780 	}
781 no_opt:
782 	aux_evsel = NULL;
783 	/* Override with aux_sample_size from config term */
784 	evlist__for_each_entry(evlist, evsel) {
785 		if (evsel__is_aux_event(evsel))
786 			aux_evsel = evsel;
787 		term = evsel__get_config_term(evsel, AUX_SAMPLE_SIZE);
788 		if (term) {
789 			has_aux_sample_size = true;
790 			evsel->core.attr.aux_sample_size = term->val.aux_sample_size;
791 			/* If possible, group with the AUX event */
792 			if (aux_evsel && evsel->core.attr.aux_sample_size)
793 				evlist__regroup(evlist, aux_evsel, evsel);
794 		}
795 	}
796 
797 	if (!str && !has_aux_sample_size)
798 		return 0;
799 
800 	if (!itr) {
801 		pr_err("No AUX area event to sample\n");
802 		return -EINVAL;
803 	}
804 
805 	return auxtrace_validate_aux_sample_size(evlist, opts);
806 }
807 
808 void auxtrace_regroup_aux_output(struct evlist *evlist)
809 {
810 	struct evsel *evsel, *aux_evsel = NULL;
811 	struct evsel_config_term *term;
812 
813 	evlist__for_each_entry(evlist, evsel) {
814 		if (evsel__is_aux_event(evsel))
815 			aux_evsel = evsel;
816 		term = evsel__get_config_term(evsel, AUX_OUTPUT);
817 		/* If possible, group with the AUX event */
818 		if (term && aux_evsel)
819 			evlist__regroup(evlist, aux_evsel, evsel);
820 	}
821 }
822 
823 struct auxtrace_record *__weak
824 auxtrace_record__init(struct evlist *evlist __maybe_unused, int *err)
825 {
826 	*err = 0;
827 	return NULL;
828 }
829 
830 static int auxtrace_index__alloc(struct list_head *head)
831 {
832 	struct auxtrace_index *auxtrace_index;
833 
834 	auxtrace_index = malloc(sizeof(struct auxtrace_index));
835 	if (!auxtrace_index)
836 		return -ENOMEM;
837 
838 	auxtrace_index->nr = 0;
839 	INIT_LIST_HEAD(&auxtrace_index->list);
840 
841 	list_add_tail(&auxtrace_index->list, head);
842 
843 	return 0;
844 }
845 
846 void auxtrace_index__free(struct list_head *head)
847 {
848 	struct auxtrace_index *auxtrace_index, *n;
849 
850 	list_for_each_entry_safe(auxtrace_index, n, head, list) {
851 		list_del_init(&auxtrace_index->list);
852 		free(auxtrace_index);
853 	}
854 }
855 
856 static struct auxtrace_index *auxtrace_index__last(struct list_head *head)
857 {
858 	struct auxtrace_index *auxtrace_index;
859 	int err;
860 
861 	if (list_empty(head)) {
862 		err = auxtrace_index__alloc(head);
863 		if (err)
864 			return NULL;
865 	}
866 
867 	auxtrace_index = list_entry(head->prev, struct auxtrace_index, list);
868 
869 	if (auxtrace_index->nr >= PERF_AUXTRACE_INDEX_ENTRY_COUNT) {
870 		err = auxtrace_index__alloc(head);
871 		if (err)
872 			return NULL;
873 		auxtrace_index = list_entry(head->prev, struct auxtrace_index,
874 					    list);
875 	}
876 
877 	return auxtrace_index;
878 }
879 
880 int auxtrace_index__auxtrace_event(struct list_head *head,
881 				   union perf_event *event, off_t file_offset)
882 {
883 	struct auxtrace_index *auxtrace_index;
884 	size_t nr;
885 
886 	auxtrace_index = auxtrace_index__last(head);
887 	if (!auxtrace_index)
888 		return -ENOMEM;
889 
890 	nr = auxtrace_index->nr;
891 	auxtrace_index->entries[nr].file_offset = file_offset;
892 	auxtrace_index->entries[nr].sz = event->header.size;
893 	auxtrace_index->nr += 1;
894 
895 	return 0;
896 }
897 
898 static int auxtrace_index__do_write(int fd,
899 				    struct auxtrace_index *auxtrace_index)
900 {
901 	struct auxtrace_index_entry ent;
902 	size_t i;
903 
904 	for (i = 0; i < auxtrace_index->nr; i++) {
905 		ent.file_offset = auxtrace_index->entries[i].file_offset;
906 		ent.sz = auxtrace_index->entries[i].sz;
907 		if (writen(fd, &ent, sizeof(ent)) != sizeof(ent))
908 			return -errno;
909 	}
910 	return 0;
911 }
912 
913 int auxtrace_index__write(int fd, struct list_head *head)
914 {
915 	struct auxtrace_index *auxtrace_index;
916 	u64 total = 0;
917 	int err;
918 
919 	list_for_each_entry(auxtrace_index, head, list)
920 		total += auxtrace_index->nr;
921 
922 	if (writen(fd, &total, sizeof(total)) != sizeof(total))
923 		return -errno;
924 
925 	list_for_each_entry(auxtrace_index, head, list) {
926 		err = auxtrace_index__do_write(fd, auxtrace_index);
927 		if (err)
928 			return err;
929 	}
930 
931 	return 0;
932 }
933 
934 static int auxtrace_index__process_entry(int fd, struct list_head *head,
935 					 bool needs_swap)
936 {
937 	struct auxtrace_index *auxtrace_index;
938 	struct auxtrace_index_entry ent;
939 	size_t nr;
940 
941 	if (readn(fd, &ent, sizeof(ent)) != sizeof(ent))
942 		return -1;
943 
944 	auxtrace_index = auxtrace_index__last(head);
945 	if (!auxtrace_index)
946 		return -1;
947 
948 	nr = auxtrace_index->nr;
949 	if (needs_swap) {
950 		auxtrace_index->entries[nr].file_offset =
951 						bswap_64(ent.file_offset);
952 		auxtrace_index->entries[nr].sz = bswap_64(ent.sz);
953 	} else {
954 		auxtrace_index->entries[nr].file_offset = ent.file_offset;
955 		auxtrace_index->entries[nr].sz = ent.sz;
956 	}
957 
958 	auxtrace_index->nr = nr + 1;
959 
960 	return 0;
961 }
962 
963 int auxtrace_index__process(int fd, u64 size, struct perf_session *session,
964 			    bool needs_swap)
965 {
966 	struct list_head *head = &session->auxtrace_index;
967 	u64 nr;
968 
969 	if (readn(fd, &nr, sizeof(u64)) != sizeof(u64))
970 		return -1;
971 
972 	if (needs_swap)
973 		nr = bswap_64(nr);
974 
975 	if (sizeof(u64) + nr * sizeof(struct auxtrace_index_entry) > size)
976 		return -1;
977 
978 	while (nr--) {
979 		int err;
980 
981 		err = auxtrace_index__process_entry(fd, head, needs_swap);
982 		if (err)
983 			return -1;
984 	}
985 
986 	return 0;
987 }
988 
989 static int auxtrace_queues__process_index_entry(struct auxtrace_queues *queues,
990 						struct perf_session *session,
991 						struct auxtrace_index_entry *ent)
992 {
993 	return auxtrace_queues__add_indexed_event(queues, session,
994 						  ent->file_offset, ent->sz);
995 }
996 
997 int auxtrace_queues__process_index(struct auxtrace_queues *queues,
998 				   struct perf_session *session)
999 {
1000 	struct auxtrace_index *auxtrace_index;
1001 	struct auxtrace_index_entry *ent;
1002 	size_t i;
1003 	int err;
1004 
1005 	if (auxtrace__dont_decode(session))
1006 		return 0;
1007 
1008 	list_for_each_entry(auxtrace_index, &session->auxtrace_index, list) {
1009 		for (i = 0; i < auxtrace_index->nr; i++) {
1010 			ent = &auxtrace_index->entries[i];
1011 			err = auxtrace_queues__process_index_entry(queues,
1012 								   session,
1013 								   ent);
1014 			if (err)
1015 				return err;
1016 		}
1017 	}
1018 	return 0;
1019 }
1020 
1021 struct auxtrace_buffer *auxtrace_buffer__next(struct auxtrace_queue *queue,
1022 					      struct auxtrace_buffer *buffer)
1023 {
1024 	if (buffer) {
1025 		if (list_is_last(&buffer->list, &queue->head))
1026 			return NULL;
1027 		return list_entry(buffer->list.next, struct auxtrace_buffer,
1028 				  list);
1029 	} else {
1030 		if (list_empty(&queue->head))
1031 			return NULL;
1032 		return list_entry(queue->head.next, struct auxtrace_buffer,
1033 				  list);
1034 	}
1035 }
1036 
1037 struct auxtrace_queue *auxtrace_queues__sample_queue(struct auxtrace_queues *queues,
1038 						     struct perf_sample *sample,
1039 						     struct perf_session *session)
1040 {
1041 	struct perf_sample_id *sid;
1042 	unsigned int idx;
1043 	u64 id;
1044 
1045 	id = sample->id;
1046 	if (!id)
1047 		return NULL;
1048 
1049 	sid = evlist__id2sid(session->evlist, id);
1050 	if (!sid)
1051 		return NULL;
1052 
1053 	idx = sid->idx;
1054 
1055 	if (idx >= queues->nr_queues)
1056 		return NULL;
1057 
1058 	return &queues->queue_array[idx];
1059 }
1060 
1061 int auxtrace_queues__add_sample(struct auxtrace_queues *queues,
1062 				struct perf_session *session,
1063 				struct perf_sample *sample, u64 data_offset,
1064 				u64 reference)
1065 {
1066 	struct auxtrace_buffer buffer = {
1067 		.pid = -1,
1068 		.data_offset = data_offset,
1069 		.reference = reference,
1070 		.size = sample->aux_sample.size,
1071 	};
1072 	struct perf_sample_id *sid;
1073 	u64 id = sample->id;
1074 	unsigned int idx;
1075 
1076 	if (!id)
1077 		return -EINVAL;
1078 
1079 	sid = evlist__id2sid(session->evlist, id);
1080 	if (!sid)
1081 		return -ENOENT;
1082 
1083 	idx = sid->idx;
1084 	buffer.tid = sid->tid;
1085 	buffer.cpu = sid->cpu;
1086 
1087 	return auxtrace_queues__add_buffer(queues, session, idx, &buffer, NULL);
1088 }
1089 
1090 struct queue_data {
1091 	bool samples;
1092 	bool events;
1093 };
1094 
1095 static int auxtrace_queue_data_cb(struct perf_session *session,
1096 				  union perf_event *event, u64 offset,
1097 				  void *data)
1098 {
1099 	struct queue_data *qd = data;
1100 	struct perf_sample sample;
1101 	int err;
1102 
1103 	if (qd->events && event->header.type == PERF_RECORD_AUXTRACE) {
1104 		if (event->header.size < sizeof(struct perf_record_auxtrace))
1105 			return -EINVAL;
1106 		offset += event->header.size;
1107 		return session->auxtrace->queue_data(session, NULL, event,
1108 						     offset);
1109 	}
1110 
1111 	if (!qd->samples || event->header.type != PERF_RECORD_SAMPLE)
1112 		return 0;
1113 
1114 	err = evlist__parse_sample(session->evlist, event, &sample);
1115 	if (err)
1116 		return err;
1117 
1118 	if (!sample.aux_sample.size)
1119 		return 0;
1120 
1121 	offset += sample.aux_sample.data - (void *)event;
1122 
1123 	return session->auxtrace->queue_data(session, &sample, NULL, offset);
1124 }
1125 
1126 int auxtrace_queue_data(struct perf_session *session, bool samples, bool events)
1127 {
1128 	struct queue_data qd = {
1129 		.samples = samples,
1130 		.events = events,
1131 	};
1132 
1133 	if (auxtrace__dont_decode(session))
1134 		return 0;
1135 
1136 	if (perf_data__is_pipe(session->data))
1137 		return 0;
1138 
1139 	if (!session->auxtrace || !session->auxtrace->queue_data)
1140 		return -EINVAL;
1141 
1142 	return perf_session__peek_events(session, session->header.data_offset,
1143 					 session->header.data_size,
1144 					 auxtrace_queue_data_cb, &qd);
1145 }
1146 
1147 void *auxtrace_buffer__get_data_rw(struct auxtrace_buffer *buffer, int fd, bool rw)
1148 {
1149 	int prot = rw ? PROT_READ | PROT_WRITE : PROT_READ;
1150 	size_t adj = buffer->data_offset & (page_size - 1);
1151 	size_t size = buffer->size + adj;
1152 	off_t file_offset = buffer->data_offset - adj;
1153 	void *addr;
1154 
1155 	if (buffer->data)
1156 		return buffer->data;
1157 
1158 	addr = mmap(NULL, size, prot, MAP_SHARED, fd, file_offset);
1159 	if (addr == MAP_FAILED)
1160 		return NULL;
1161 
1162 	buffer->mmap_addr = addr;
1163 	buffer->mmap_size = size;
1164 
1165 	buffer->data = addr + adj;
1166 
1167 	return buffer->data;
1168 }
1169 
1170 void auxtrace_buffer__put_data(struct auxtrace_buffer *buffer)
1171 {
1172 	if (!buffer->data || !buffer->mmap_addr)
1173 		return;
1174 	munmap(buffer->mmap_addr, buffer->mmap_size);
1175 	buffer->mmap_addr = NULL;
1176 	buffer->mmap_size = 0;
1177 	buffer->data = NULL;
1178 	buffer->use_data = NULL;
1179 }
1180 
1181 void auxtrace_buffer__drop_data(struct auxtrace_buffer *buffer)
1182 {
1183 	auxtrace_buffer__put_data(buffer);
1184 	if (buffer->data_needs_freeing) {
1185 		buffer->data_needs_freeing = false;
1186 		zfree(&buffer->data);
1187 		buffer->use_data = NULL;
1188 		buffer->size = 0;
1189 	}
1190 }
1191 
1192 void auxtrace_buffer__free(struct auxtrace_buffer *buffer)
1193 {
1194 	auxtrace_buffer__drop_data(buffer);
1195 	free(buffer);
1196 }
1197 
1198 void auxtrace_synth_guest_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1199 				int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1200 				const char *msg, u64 timestamp,
1201 				pid_t machine_pid, int vcpu)
1202 {
1203 	size_t size;
1204 
1205 	memset(auxtrace_error, 0, sizeof(struct perf_record_auxtrace_error));
1206 
1207 	auxtrace_error->header.type = PERF_RECORD_AUXTRACE_ERROR;
1208 	auxtrace_error->type = type;
1209 	auxtrace_error->code = code;
1210 	auxtrace_error->cpu = cpu;
1211 	auxtrace_error->pid = pid;
1212 	auxtrace_error->tid = tid;
1213 	auxtrace_error->fmt = 1;
1214 	auxtrace_error->ip = ip;
1215 	auxtrace_error->time = timestamp;
1216 	strlcpy(auxtrace_error->msg, msg, MAX_AUXTRACE_ERROR_MSG);
1217 	if (machine_pid) {
1218 		auxtrace_error->fmt = 2;
1219 		auxtrace_error->machine_pid = machine_pid;
1220 		auxtrace_error->vcpu = vcpu;
1221 		size = sizeof(*auxtrace_error);
1222 	} else {
1223 		size = (void *)auxtrace_error->msg - (void *)auxtrace_error +
1224 		       strlen(auxtrace_error->msg) + 1;
1225 	}
1226 	auxtrace_error->header.size = PERF_ALIGN(size, sizeof(u64));
1227 }
1228 
1229 void auxtrace_synth_error(struct perf_record_auxtrace_error *auxtrace_error, int type,
1230 			  int code, int cpu, pid_t pid, pid_t tid, u64 ip,
1231 			  const char *msg, u64 timestamp)
1232 {
1233 	auxtrace_synth_guest_error(auxtrace_error, type, code, cpu, pid, tid,
1234 				   ip, msg, timestamp, 0, -1);
1235 }
1236 
1237 int perf_event__synthesize_auxtrace_info(struct auxtrace_record *itr,
1238 					 struct perf_tool *tool,
1239 					 struct perf_session *session,
1240 					 perf_event__handler_t process)
1241 {
1242 	union perf_event *ev;
1243 	size_t priv_size;
1244 	int err;
1245 
1246 	pr_debug2("Synthesizing auxtrace information\n");
1247 	priv_size = auxtrace_record__info_priv_size(itr, session->evlist);
1248 	ev = zalloc(sizeof(struct perf_record_auxtrace_info) + priv_size);
1249 	if (!ev)
1250 		return -ENOMEM;
1251 
1252 	ev->auxtrace_info.header.type = PERF_RECORD_AUXTRACE_INFO;
1253 	ev->auxtrace_info.header.size = sizeof(struct perf_record_auxtrace_info) +
1254 					priv_size;
1255 	err = auxtrace_record__info_fill(itr, session, &ev->auxtrace_info,
1256 					 priv_size);
1257 	if (err)
1258 		goto out_free;
1259 
1260 	err = process(tool, ev, NULL, NULL);
1261 out_free:
1262 	free(ev);
1263 	return err;
1264 }
1265 
1266 static void unleader_evsel(struct evlist *evlist, struct evsel *leader)
1267 {
1268 	struct evsel *new_leader = NULL;
1269 	struct evsel *evsel;
1270 
1271 	/* Find new leader for the group */
1272 	evlist__for_each_entry(evlist, evsel) {
1273 		if (!evsel__has_leader(evsel, leader) || evsel == leader)
1274 			continue;
1275 		if (!new_leader)
1276 			new_leader = evsel;
1277 		evsel__set_leader(evsel, new_leader);
1278 	}
1279 
1280 	/* Update group information */
1281 	if (new_leader) {
1282 		zfree(&new_leader->group_name);
1283 		new_leader->group_name = leader->group_name;
1284 		leader->group_name = NULL;
1285 
1286 		new_leader->core.nr_members = leader->core.nr_members - 1;
1287 		leader->core.nr_members = 1;
1288 	}
1289 }
1290 
1291 static void unleader_auxtrace(struct perf_session *session)
1292 {
1293 	struct evsel *evsel;
1294 
1295 	evlist__for_each_entry(session->evlist, evsel) {
1296 		if (auxtrace__evsel_is_auxtrace(session, evsel) &&
1297 		    evsel__is_group_leader(evsel)) {
1298 			unleader_evsel(session->evlist, evsel);
1299 		}
1300 	}
1301 }
1302 
1303 int perf_event__process_auxtrace_info(struct perf_session *session,
1304 				      union perf_event *event)
1305 {
1306 	enum auxtrace_type type = event->auxtrace_info.type;
1307 	int err;
1308 
1309 	if (dump_trace)
1310 		fprintf(stdout, " type: %u\n", type);
1311 
1312 	switch (type) {
1313 	case PERF_AUXTRACE_INTEL_PT:
1314 		err = intel_pt_process_auxtrace_info(event, session);
1315 		break;
1316 	case PERF_AUXTRACE_INTEL_BTS:
1317 		err = intel_bts_process_auxtrace_info(event, session);
1318 		break;
1319 	case PERF_AUXTRACE_ARM_SPE:
1320 		err = arm_spe_process_auxtrace_info(event, session);
1321 		break;
1322 	case PERF_AUXTRACE_CS_ETM:
1323 		err = cs_etm__process_auxtrace_info(event, session);
1324 		break;
1325 	case PERF_AUXTRACE_S390_CPUMSF:
1326 		err = s390_cpumsf_process_auxtrace_info(event, session);
1327 		break;
1328 	case PERF_AUXTRACE_HISI_PTT:
1329 		err = hisi_ptt_process_auxtrace_info(event, session);
1330 		break;
1331 	case PERF_AUXTRACE_UNKNOWN:
1332 	default:
1333 		return -EINVAL;
1334 	}
1335 
1336 	if (err)
1337 		return err;
1338 
1339 	unleader_auxtrace(session);
1340 
1341 	return 0;
1342 }
1343 
1344 s64 perf_event__process_auxtrace(struct perf_session *session,
1345 				 union perf_event *event)
1346 {
1347 	s64 err;
1348 
1349 	if (dump_trace)
1350 		fprintf(stdout, " size: %#"PRI_lx64"  offset: %#"PRI_lx64"  ref: %#"PRI_lx64"  idx: %u  tid: %d  cpu: %d\n",
1351 			event->auxtrace.size, event->auxtrace.offset,
1352 			event->auxtrace.reference, event->auxtrace.idx,
1353 			event->auxtrace.tid, event->auxtrace.cpu);
1354 
1355 	if (auxtrace__dont_decode(session))
1356 		return event->auxtrace.size;
1357 
1358 	if (!session->auxtrace || event->header.type != PERF_RECORD_AUXTRACE)
1359 		return -EINVAL;
1360 
1361 	err = session->auxtrace->process_auxtrace_event(session, event, session->tool);
1362 	if (err < 0)
1363 		return err;
1364 
1365 	return event->auxtrace.size;
1366 }
1367 
1368 #define PERF_ITRACE_DEFAULT_PERIOD_TYPE		PERF_ITRACE_PERIOD_NANOSECS
1369 #define PERF_ITRACE_DEFAULT_PERIOD		100000
1370 #define PERF_ITRACE_DEFAULT_CALLCHAIN_SZ	16
1371 #define PERF_ITRACE_MAX_CALLCHAIN_SZ		1024
1372 #define PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ	64
1373 #define PERF_ITRACE_MAX_LAST_BRANCH_SZ		1024
1374 
1375 void itrace_synth_opts__set_default(struct itrace_synth_opts *synth_opts,
1376 				    bool no_sample)
1377 {
1378 	synth_opts->branches = true;
1379 	synth_opts->transactions = true;
1380 	synth_opts->ptwrites = true;
1381 	synth_opts->pwr_events = true;
1382 	synth_opts->other_events = true;
1383 	synth_opts->intr_events = true;
1384 	synth_opts->errors = true;
1385 	synth_opts->flc = true;
1386 	synth_opts->llc = true;
1387 	synth_opts->tlb = true;
1388 	synth_opts->mem = true;
1389 	synth_opts->remote_access = true;
1390 
1391 	if (no_sample) {
1392 		synth_opts->period_type = PERF_ITRACE_PERIOD_INSTRUCTIONS;
1393 		synth_opts->period = 1;
1394 		synth_opts->calls = true;
1395 	} else {
1396 		synth_opts->instructions = true;
1397 		synth_opts->cycles = true;
1398 		synth_opts->period_type = PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1399 		synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1400 	}
1401 	synth_opts->callchain_sz = PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1402 	synth_opts->last_branch_sz = PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1403 	synth_opts->initial_skip = 0;
1404 }
1405 
1406 static int get_flag(const char **ptr, unsigned int *flags)
1407 {
1408 	while (1) {
1409 		char c = **ptr;
1410 
1411 		if (c >= 'a' && c <= 'z') {
1412 			*flags |= 1 << (c - 'a');
1413 			++*ptr;
1414 			return 0;
1415 		} else if (c == ' ') {
1416 			++*ptr;
1417 			continue;
1418 		} else {
1419 			return -1;
1420 		}
1421 	}
1422 }
1423 
1424 static int get_flags(const char **ptr, unsigned int *plus_flags, unsigned int *minus_flags)
1425 {
1426 	while (1) {
1427 		switch (**ptr) {
1428 		case '+':
1429 			++*ptr;
1430 			if (get_flag(ptr, plus_flags))
1431 				return -1;
1432 			break;
1433 		case '-':
1434 			++*ptr;
1435 			if (get_flag(ptr, minus_flags))
1436 				return -1;
1437 			break;
1438 		case ' ':
1439 			++*ptr;
1440 			break;
1441 		default:
1442 			return 0;
1443 		}
1444 	}
1445 }
1446 
1447 #define ITRACE_DFLT_LOG_ON_ERROR_SZ 16384
1448 
1449 static unsigned int itrace_log_on_error_size(void)
1450 {
1451 	unsigned int sz = 0;
1452 
1453 	perf_config_scan("itrace.debug-log-buffer-size", "%u", &sz);
1454 	return sz ?: ITRACE_DFLT_LOG_ON_ERROR_SZ;
1455 }
1456 
1457 /*
1458  * Please check tools/perf/Documentation/perf-script.txt for information
1459  * about the options parsed here, which is introduced after this cset,
1460  * when support in 'perf script' for these options is introduced.
1461  */
1462 int itrace_do_parse_synth_opts(struct itrace_synth_opts *synth_opts,
1463 			       const char *str, int unset)
1464 {
1465 	const char *p;
1466 	char *endptr;
1467 	bool period_type_set = false;
1468 	bool period_set = false;
1469 	bool iy = false;
1470 
1471 	synth_opts->set = true;
1472 
1473 	if (unset) {
1474 		synth_opts->dont_decode = true;
1475 		return 0;
1476 	}
1477 
1478 	if (!str) {
1479 		itrace_synth_opts__set_default(synth_opts,
1480 					       synth_opts->default_no_sample);
1481 		return 0;
1482 	}
1483 
1484 	for (p = str; *p;) {
1485 		switch (*p++) {
1486 		case 'i':
1487 		case 'y':
1488 			iy = true;
1489 			if (p[-1] == 'y')
1490 				synth_opts->cycles = true;
1491 			else
1492 				synth_opts->instructions = true;
1493 			while (*p == ' ' || *p == ',')
1494 				p += 1;
1495 			if (isdigit(*p)) {
1496 				synth_opts->period = strtoull(p, &endptr, 10);
1497 				period_set = true;
1498 				p = endptr;
1499 				while (*p == ' ' || *p == ',')
1500 					p += 1;
1501 				switch (*p++) {
1502 				case 'i':
1503 					synth_opts->period_type =
1504 						PERF_ITRACE_PERIOD_INSTRUCTIONS;
1505 					period_type_set = true;
1506 					break;
1507 				case 't':
1508 					synth_opts->period_type =
1509 						PERF_ITRACE_PERIOD_TICKS;
1510 					period_type_set = true;
1511 					break;
1512 				case 'm':
1513 					synth_opts->period *= 1000;
1514 					/* Fall through */
1515 				case 'u':
1516 					synth_opts->period *= 1000;
1517 					/* Fall through */
1518 				case 'n':
1519 					if (*p++ != 's')
1520 						goto out_err;
1521 					synth_opts->period_type =
1522 						PERF_ITRACE_PERIOD_NANOSECS;
1523 					period_type_set = true;
1524 					break;
1525 				case '\0':
1526 					goto out;
1527 				default:
1528 					goto out_err;
1529 				}
1530 			}
1531 			break;
1532 		case 'b':
1533 			synth_opts->branches = true;
1534 			break;
1535 		case 'x':
1536 			synth_opts->transactions = true;
1537 			break;
1538 		case 'w':
1539 			synth_opts->ptwrites = true;
1540 			break;
1541 		case 'p':
1542 			synth_opts->pwr_events = true;
1543 			break;
1544 		case 'o':
1545 			synth_opts->other_events = true;
1546 			break;
1547 		case 'I':
1548 			synth_opts->intr_events = true;
1549 			break;
1550 		case 'e':
1551 			synth_opts->errors = true;
1552 			if (get_flags(&p, &synth_opts->error_plus_flags,
1553 				      &synth_opts->error_minus_flags))
1554 				goto out_err;
1555 			break;
1556 		case 'd':
1557 			synth_opts->log = true;
1558 			if (get_flags(&p, &synth_opts->log_plus_flags,
1559 				      &synth_opts->log_minus_flags))
1560 				goto out_err;
1561 			if (synth_opts->log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR)
1562 				synth_opts->log_on_error_size = itrace_log_on_error_size();
1563 			break;
1564 		case 'c':
1565 			synth_opts->branches = true;
1566 			synth_opts->calls = true;
1567 			break;
1568 		case 'r':
1569 			synth_opts->branches = true;
1570 			synth_opts->returns = true;
1571 			break;
1572 		case 'G':
1573 		case 'g':
1574 			if (p[-1] == 'G')
1575 				synth_opts->add_callchain = true;
1576 			else
1577 				synth_opts->callchain = true;
1578 			synth_opts->callchain_sz =
1579 					PERF_ITRACE_DEFAULT_CALLCHAIN_SZ;
1580 			while (*p == ' ' || *p == ',')
1581 				p += 1;
1582 			if (isdigit(*p)) {
1583 				unsigned int val;
1584 
1585 				val = strtoul(p, &endptr, 10);
1586 				p = endptr;
1587 				if (!val || val > PERF_ITRACE_MAX_CALLCHAIN_SZ)
1588 					goto out_err;
1589 				synth_opts->callchain_sz = val;
1590 			}
1591 			break;
1592 		case 'L':
1593 		case 'l':
1594 			if (p[-1] == 'L')
1595 				synth_opts->add_last_branch = true;
1596 			else
1597 				synth_opts->last_branch = true;
1598 			synth_opts->last_branch_sz =
1599 					PERF_ITRACE_DEFAULT_LAST_BRANCH_SZ;
1600 			while (*p == ' ' || *p == ',')
1601 				p += 1;
1602 			if (isdigit(*p)) {
1603 				unsigned int val;
1604 
1605 				val = strtoul(p, &endptr, 10);
1606 				p = endptr;
1607 				if (!val ||
1608 				    val > PERF_ITRACE_MAX_LAST_BRANCH_SZ)
1609 					goto out_err;
1610 				synth_opts->last_branch_sz = val;
1611 			}
1612 			break;
1613 		case 's':
1614 			synth_opts->initial_skip = strtoul(p, &endptr, 10);
1615 			if (p == endptr)
1616 				goto out_err;
1617 			p = endptr;
1618 			break;
1619 		case 'f':
1620 			synth_opts->flc = true;
1621 			break;
1622 		case 'm':
1623 			synth_opts->llc = true;
1624 			break;
1625 		case 't':
1626 			synth_opts->tlb = true;
1627 			break;
1628 		case 'a':
1629 			synth_opts->remote_access = true;
1630 			break;
1631 		case 'M':
1632 			synth_opts->mem = true;
1633 			break;
1634 		case 'q':
1635 			synth_opts->quick += 1;
1636 			break;
1637 		case 'A':
1638 			synth_opts->approx_ipc = true;
1639 			break;
1640 		case 'Z':
1641 			synth_opts->timeless_decoding = true;
1642 			break;
1643 		case 'T':
1644 			synth_opts->use_timestamp = true;
1645 			break;
1646 		case ' ':
1647 		case ',':
1648 			break;
1649 		default:
1650 			goto out_err;
1651 		}
1652 	}
1653 out:
1654 	if (iy) {
1655 		if (!period_type_set)
1656 			synth_opts->period_type =
1657 					PERF_ITRACE_DEFAULT_PERIOD_TYPE;
1658 		if (!period_set)
1659 			synth_opts->period = PERF_ITRACE_DEFAULT_PERIOD;
1660 	}
1661 
1662 	return 0;
1663 
1664 out_err:
1665 	pr_err("Bad Instruction Tracing options '%s'\n", str);
1666 	return -EINVAL;
1667 }
1668 
1669 int itrace_parse_synth_opts(const struct option *opt, const char *str, int unset)
1670 {
1671 	return itrace_do_parse_synth_opts(opt->value, str, unset);
1672 }
1673 
1674 static const char * const auxtrace_error_type_name[] = {
1675 	[PERF_AUXTRACE_ERROR_ITRACE] = "instruction trace",
1676 };
1677 
1678 static const char *auxtrace_error_name(int type)
1679 {
1680 	const char *error_type_name = NULL;
1681 
1682 	if (type < PERF_AUXTRACE_ERROR_MAX)
1683 		error_type_name = auxtrace_error_type_name[type];
1684 	if (!error_type_name)
1685 		error_type_name = "unknown AUX";
1686 	return error_type_name;
1687 }
1688 
1689 size_t perf_event__fprintf_auxtrace_error(union perf_event *event, FILE *fp)
1690 {
1691 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1692 	unsigned long long nsecs = e->time;
1693 	const char *msg = e->msg;
1694 	int ret;
1695 
1696 	ret = fprintf(fp, " %s error type %u",
1697 		      auxtrace_error_name(e->type), e->type);
1698 
1699 	if (e->fmt && nsecs) {
1700 		unsigned long secs = nsecs / NSEC_PER_SEC;
1701 
1702 		nsecs -= secs * NSEC_PER_SEC;
1703 		ret += fprintf(fp, " time %lu.%09llu", secs, nsecs);
1704 	} else {
1705 		ret += fprintf(fp, " time 0");
1706 	}
1707 
1708 	if (!e->fmt)
1709 		msg = (const char *)&e->time;
1710 
1711 	if (e->fmt >= 2 && e->machine_pid)
1712 		ret += fprintf(fp, " machine_pid %d vcpu %d", e->machine_pid, e->vcpu);
1713 
1714 	ret += fprintf(fp, " cpu %d pid %d tid %d ip %#"PRI_lx64" code %u: %s\n",
1715 		       e->cpu, e->pid, e->tid, e->ip, e->code, msg);
1716 	return ret;
1717 }
1718 
1719 void perf_session__auxtrace_error_inc(struct perf_session *session,
1720 				      union perf_event *event)
1721 {
1722 	struct perf_record_auxtrace_error *e = &event->auxtrace_error;
1723 
1724 	if (e->type < PERF_AUXTRACE_ERROR_MAX)
1725 		session->evlist->stats.nr_auxtrace_errors[e->type] += 1;
1726 }
1727 
1728 void events_stats__auxtrace_error_warn(const struct events_stats *stats)
1729 {
1730 	int i;
1731 
1732 	for (i = 0; i < PERF_AUXTRACE_ERROR_MAX; i++) {
1733 		if (!stats->nr_auxtrace_errors[i])
1734 			continue;
1735 		ui__warning("%u %s errors\n",
1736 			    stats->nr_auxtrace_errors[i],
1737 			    auxtrace_error_name(i));
1738 	}
1739 }
1740 
1741 int perf_event__process_auxtrace_error(struct perf_session *session,
1742 				       union perf_event *event)
1743 {
1744 	if (auxtrace__dont_decode(session))
1745 		return 0;
1746 
1747 	perf_event__fprintf_auxtrace_error(event, stdout);
1748 	return 0;
1749 }
1750 
1751 /*
1752  * In the compat mode kernel runs in 64-bit and perf tool runs in 32-bit mode,
1753  * 32-bit perf tool cannot access 64-bit value atomically, which might lead to
1754  * the issues caused by the below sequence on multiple CPUs: when perf tool
1755  * accesses either the load operation or the store operation for 64-bit value,
1756  * on some architectures the operation is divided into two instructions, one
1757  * is for accessing the low 32-bit value and another is for the high 32-bit;
1758  * thus these two user operations can give the kernel chances to access the
1759  * 64-bit value, and thus leads to the unexpected load values.
1760  *
1761  *   kernel (64-bit)                        user (32-bit)
1762  *
1763  *   if (LOAD ->aux_tail) { --,             LOAD ->aux_head_lo
1764  *       STORE $aux_data      |       ,--->
1765  *       FLUSH $aux_data      |       |     LOAD ->aux_head_hi
1766  *       STORE ->aux_head   --|-------`     smp_rmb()
1767  *   }                        |             LOAD $data
1768  *                            |             smp_mb()
1769  *                            |             STORE ->aux_tail_lo
1770  *                            `----------->
1771  *                                          STORE ->aux_tail_hi
1772  *
1773  * For this reason, it's impossible for the perf tool to work correctly when
1774  * the AUX head or tail is bigger than 4GB (more than 32 bits length); and we
1775  * can not simply limit the AUX ring buffer to less than 4GB, the reason is
1776  * the pointers can be increased monotonically, whatever the buffer size it is,
1777  * at the end the head and tail can be bigger than 4GB and carry out to the
1778  * high 32-bit.
1779  *
1780  * To mitigate the issues and improve the user experience, we can allow the
1781  * perf tool working in certain conditions and bail out with error if detect
1782  * any overflow cannot be handled.
1783  *
1784  * For reading the AUX head, it reads out the values for three times, and
1785  * compares the high 4 bytes of the values between the first time and the last
1786  * time, if there has no change for high 4 bytes injected by the kernel during
1787  * the user reading sequence, it's safe for use the second value.
1788  *
1789  * When compat_auxtrace_mmap__write_tail() detects any carrying in the high
1790  * 32 bits, it means there have two store operations in user space and it cannot
1791  * promise the atomicity for 64-bit write, so return '-1' in this case to tell
1792  * the caller an overflow error has happened.
1793  */
1794 u64 __weak compat_auxtrace_mmap__read_head(struct auxtrace_mmap *mm)
1795 {
1796 	struct perf_event_mmap_page *pc = mm->userpg;
1797 	u64 first, second, last;
1798 	u64 mask = (u64)(UINT32_MAX) << 32;
1799 
1800 	do {
1801 		first = READ_ONCE(pc->aux_head);
1802 		/* Ensure all reads are done after we read the head */
1803 		smp_rmb();
1804 		second = READ_ONCE(pc->aux_head);
1805 		/* Ensure all reads are done after we read the head */
1806 		smp_rmb();
1807 		last = READ_ONCE(pc->aux_head);
1808 	} while ((first & mask) != (last & mask));
1809 
1810 	return second;
1811 }
1812 
1813 int __weak compat_auxtrace_mmap__write_tail(struct auxtrace_mmap *mm, u64 tail)
1814 {
1815 	struct perf_event_mmap_page *pc = mm->userpg;
1816 	u64 mask = (u64)(UINT32_MAX) << 32;
1817 
1818 	if (tail & mask)
1819 		return -1;
1820 
1821 	/* Ensure all reads are done before we write the tail out */
1822 	smp_mb();
1823 	WRITE_ONCE(pc->aux_tail, tail);
1824 	return 0;
1825 }
1826 
1827 static int __auxtrace_mmap__read(struct mmap *map,
1828 				 struct auxtrace_record *itr,
1829 				 struct perf_tool *tool, process_auxtrace_t fn,
1830 				 bool snapshot, size_t snapshot_size)
1831 {
1832 	struct auxtrace_mmap *mm = &map->auxtrace_mmap;
1833 	u64 head, old = mm->prev, offset, ref;
1834 	unsigned char *data = mm->base;
1835 	size_t size, head_off, old_off, len1, len2, padding;
1836 	union perf_event ev;
1837 	void *data1, *data2;
1838 	int kernel_is_64_bit = perf_env__kernel_is_64_bit(evsel__env(NULL));
1839 
1840 	head = auxtrace_mmap__read_head(mm, kernel_is_64_bit);
1841 
1842 	if (snapshot &&
1843 	    auxtrace_record__find_snapshot(itr, mm->idx, mm, data, &head, &old))
1844 		return -1;
1845 
1846 	if (old == head)
1847 		return 0;
1848 
1849 	pr_debug3("auxtrace idx %d old %#"PRIx64" head %#"PRIx64" diff %#"PRIx64"\n",
1850 		  mm->idx, old, head, head - old);
1851 
1852 	if (mm->mask) {
1853 		head_off = head & mm->mask;
1854 		old_off = old & mm->mask;
1855 	} else {
1856 		head_off = head % mm->len;
1857 		old_off = old % mm->len;
1858 	}
1859 
1860 	if (head_off > old_off)
1861 		size = head_off - old_off;
1862 	else
1863 		size = mm->len - (old_off - head_off);
1864 
1865 	if (snapshot && size > snapshot_size)
1866 		size = snapshot_size;
1867 
1868 	ref = auxtrace_record__reference(itr);
1869 
1870 	if (head > old || size <= head || mm->mask) {
1871 		offset = head - size;
1872 	} else {
1873 		/*
1874 		 * When the buffer size is not a power of 2, 'head' wraps at the
1875 		 * highest multiple of the buffer size, so we have to subtract
1876 		 * the remainder here.
1877 		 */
1878 		u64 rem = (0ULL - mm->len) % mm->len;
1879 
1880 		offset = head - size - rem;
1881 	}
1882 
1883 	if (size > head_off) {
1884 		len1 = size - head_off;
1885 		data1 = &data[mm->len - len1];
1886 		len2 = head_off;
1887 		data2 = &data[0];
1888 	} else {
1889 		len1 = size;
1890 		data1 = &data[head_off - len1];
1891 		len2 = 0;
1892 		data2 = NULL;
1893 	}
1894 
1895 	if (itr->alignment) {
1896 		unsigned int unwanted = len1 % itr->alignment;
1897 
1898 		len1 -= unwanted;
1899 		size -= unwanted;
1900 	}
1901 
1902 	/* padding must be written by fn() e.g. record__process_auxtrace() */
1903 	padding = size & (PERF_AUXTRACE_RECORD_ALIGNMENT - 1);
1904 	if (padding)
1905 		padding = PERF_AUXTRACE_RECORD_ALIGNMENT - padding;
1906 
1907 	memset(&ev, 0, sizeof(ev));
1908 	ev.auxtrace.header.type = PERF_RECORD_AUXTRACE;
1909 	ev.auxtrace.header.size = sizeof(ev.auxtrace);
1910 	ev.auxtrace.size = size + padding;
1911 	ev.auxtrace.offset = offset;
1912 	ev.auxtrace.reference = ref;
1913 	ev.auxtrace.idx = mm->idx;
1914 	ev.auxtrace.tid = mm->tid;
1915 	ev.auxtrace.cpu = mm->cpu;
1916 
1917 	if (fn(tool, map, &ev, data1, len1, data2, len2))
1918 		return -1;
1919 
1920 	mm->prev = head;
1921 
1922 	if (!snapshot) {
1923 		int err;
1924 
1925 		err = auxtrace_mmap__write_tail(mm, head, kernel_is_64_bit);
1926 		if (err < 0)
1927 			return err;
1928 
1929 		if (itr->read_finish) {
1930 			err = itr->read_finish(itr, mm->idx);
1931 			if (err < 0)
1932 				return err;
1933 		}
1934 	}
1935 
1936 	return 1;
1937 }
1938 
1939 int auxtrace_mmap__read(struct mmap *map, struct auxtrace_record *itr,
1940 			struct perf_tool *tool, process_auxtrace_t fn)
1941 {
1942 	return __auxtrace_mmap__read(map, itr, tool, fn, false, 0);
1943 }
1944 
1945 int auxtrace_mmap__read_snapshot(struct mmap *map,
1946 				 struct auxtrace_record *itr,
1947 				 struct perf_tool *tool, process_auxtrace_t fn,
1948 				 size_t snapshot_size)
1949 {
1950 	return __auxtrace_mmap__read(map, itr, tool, fn, true, snapshot_size);
1951 }
1952 
1953 /**
1954  * struct auxtrace_cache - hash table to implement a cache
1955  * @hashtable: the hashtable
1956  * @sz: hashtable size (number of hlists)
1957  * @entry_size: size of an entry
1958  * @limit: limit the number of entries to this maximum, when reached the cache
1959  *         is dropped and caching begins again with an empty cache
1960  * @cnt: current number of entries
1961  * @bits: hashtable size (@sz = 2^@bits)
1962  */
1963 struct auxtrace_cache {
1964 	struct hlist_head *hashtable;
1965 	size_t sz;
1966 	size_t entry_size;
1967 	size_t limit;
1968 	size_t cnt;
1969 	unsigned int bits;
1970 };
1971 
1972 struct auxtrace_cache *auxtrace_cache__new(unsigned int bits, size_t entry_size,
1973 					   unsigned int limit_percent)
1974 {
1975 	struct auxtrace_cache *c;
1976 	struct hlist_head *ht;
1977 	size_t sz, i;
1978 
1979 	c = zalloc(sizeof(struct auxtrace_cache));
1980 	if (!c)
1981 		return NULL;
1982 
1983 	sz = 1UL << bits;
1984 
1985 	ht = calloc(sz, sizeof(struct hlist_head));
1986 	if (!ht)
1987 		goto out_free;
1988 
1989 	for (i = 0; i < sz; i++)
1990 		INIT_HLIST_HEAD(&ht[i]);
1991 
1992 	c->hashtable = ht;
1993 	c->sz = sz;
1994 	c->entry_size = entry_size;
1995 	c->limit = (c->sz * limit_percent) / 100;
1996 	c->bits = bits;
1997 
1998 	return c;
1999 
2000 out_free:
2001 	free(c);
2002 	return NULL;
2003 }
2004 
2005 static void auxtrace_cache__drop(struct auxtrace_cache *c)
2006 {
2007 	struct auxtrace_cache_entry *entry;
2008 	struct hlist_node *tmp;
2009 	size_t i;
2010 
2011 	if (!c)
2012 		return;
2013 
2014 	for (i = 0; i < c->sz; i++) {
2015 		hlist_for_each_entry_safe(entry, tmp, &c->hashtable[i], hash) {
2016 			hlist_del(&entry->hash);
2017 			auxtrace_cache__free_entry(c, entry);
2018 		}
2019 	}
2020 
2021 	c->cnt = 0;
2022 }
2023 
2024 void auxtrace_cache__free(struct auxtrace_cache *c)
2025 {
2026 	if (!c)
2027 		return;
2028 
2029 	auxtrace_cache__drop(c);
2030 	zfree(&c->hashtable);
2031 	free(c);
2032 }
2033 
2034 void *auxtrace_cache__alloc_entry(struct auxtrace_cache *c)
2035 {
2036 	return malloc(c->entry_size);
2037 }
2038 
2039 void auxtrace_cache__free_entry(struct auxtrace_cache *c __maybe_unused,
2040 				void *entry)
2041 {
2042 	free(entry);
2043 }
2044 
2045 int auxtrace_cache__add(struct auxtrace_cache *c, u32 key,
2046 			struct auxtrace_cache_entry *entry)
2047 {
2048 	if (c->limit && ++c->cnt > c->limit)
2049 		auxtrace_cache__drop(c);
2050 
2051 	entry->key = key;
2052 	hlist_add_head(&entry->hash, &c->hashtable[hash_32(key, c->bits)]);
2053 
2054 	return 0;
2055 }
2056 
2057 static struct auxtrace_cache_entry *auxtrace_cache__rm(struct auxtrace_cache *c,
2058 						       u32 key)
2059 {
2060 	struct auxtrace_cache_entry *entry;
2061 	struct hlist_head *hlist;
2062 	struct hlist_node *n;
2063 
2064 	if (!c)
2065 		return NULL;
2066 
2067 	hlist = &c->hashtable[hash_32(key, c->bits)];
2068 	hlist_for_each_entry_safe(entry, n, hlist, hash) {
2069 		if (entry->key == key) {
2070 			hlist_del(&entry->hash);
2071 			return entry;
2072 		}
2073 	}
2074 
2075 	return NULL;
2076 }
2077 
2078 void auxtrace_cache__remove(struct auxtrace_cache *c, u32 key)
2079 {
2080 	struct auxtrace_cache_entry *entry = auxtrace_cache__rm(c, key);
2081 
2082 	auxtrace_cache__free_entry(c, entry);
2083 }
2084 
2085 void *auxtrace_cache__lookup(struct auxtrace_cache *c, u32 key)
2086 {
2087 	struct auxtrace_cache_entry *entry;
2088 	struct hlist_head *hlist;
2089 
2090 	if (!c)
2091 		return NULL;
2092 
2093 	hlist = &c->hashtable[hash_32(key, c->bits)];
2094 	hlist_for_each_entry(entry, hlist, hash) {
2095 		if (entry->key == key)
2096 			return entry;
2097 	}
2098 
2099 	return NULL;
2100 }
2101 
2102 static void addr_filter__free_str(struct addr_filter *filt)
2103 {
2104 	zfree(&filt->str);
2105 	filt->action   = NULL;
2106 	filt->sym_from = NULL;
2107 	filt->sym_to   = NULL;
2108 	filt->filename = NULL;
2109 }
2110 
2111 static struct addr_filter *addr_filter__new(void)
2112 {
2113 	struct addr_filter *filt = zalloc(sizeof(*filt));
2114 
2115 	if (filt)
2116 		INIT_LIST_HEAD(&filt->list);
2117 
2118 	return filt;
2119 }
2120 
2121 static void addr_filter__free(struct addr_filter *filt)
2122 {
2123 	if (filt)
2124 		addr_filter__free_str(filt);
2125 	free(filt);
2126 }
2127 
2128 static void addr_filters__add(struct addr_filters *filts,
2129 			      struct addr_filter *filt)
2130 {
2131 	list_add_tail(&filt->list, &filts->head);
2132 	filts->cnt += 1;
2133 }
2134 
2135 static void addr_filters__del(struct addr_filters *filts,
2136 			      struct addr_filter *filt)
2137 {
2138 	list_del_init(&filt->list);
2139 	filts->cnt -= 1;
2140 }
2141 
2142 void addr_filters__init(struct addr_filters *filts)
2143 {
2144 	INIT_LIST_HEAD(&filts->head);
2145 	filts->cnt = 0;
2146 }
2147 
2148 void addr_filters__exit(struct addr_filters *filts)
2149 {
2150 	struct addr_filter *filt, *n;
2151 
2152 	list_for_each_entry_safe(filt, n, &filts->head, list) {
2153 		addr_filters__del(filts, filt);
2154 		addr_filter__free(filt);
2155 	}
2156 }
2157 
2158 static int parse_num_or_str(char **inp, u64 *num, const char **str,
2159 			    const char *str_delim)
2160 {
2161 	*inp += strspn(*inp, " ");
2162 
2163 	if (isdigit(**inp)) {
2164 		char *endptr;
2165 
2166 		if (!num)
2167 			return -EINVAL;
2168 		errno = 0;
2169 		*num = strtoull(*inp, &endptr, 0);
2170 		if (errno)
2171 			return -errno;
2172 		if (endptr == *inp)
2173 			return -EINVAL;
2174 		*inp = endptr;
2175 	} else {
2176 		size_t n;
2177 
2178 		if (!str)
2179 			return -EINVAL;
2180 		*inp += strspn(*inp, " ");
2181 		*str = *inp;
2182 		n = strcspn(*inp, str_delim);
2183 		if (!n)
2184 			return -EINVAL;
2185 		*inp += n;
2186 		if (**inp) {
2187 			**inp = '\0';
2188 			*inp += 1;
2189 		}
2190 	}
2191 	return 0;
2192 }
2193 
2194 static int parse_action(struct addr_filter *filt)
2195 {
2196 	if (!strcmp(filt->action, "filter")) {
2197 		filt->start = true;
2198 		filt->range = true;
2199 	} else if (!strcmp(filt->action, "start")) {
2200 		filt->start = true;
2201 	} else if (!strcmp(filt->action, "stop")) {
2202 		filt->start = false;
2203 	} else if (!strcmp(filt->action, "tracestop")) {
2204 		filt->start = false;
2205 		filt->range = true;
2206 		filt->action += 5; /* Change 'tracestop' to 'stop' */
2207 	} else {
2208 		return -EINVAL;
2209 	}
2210 	return 0;
2211 }
2212 
2213 static int parse_sym_idx(char **inp, int *idx)
2214 {
2215 	*idx = -1;
2216 
2217 	*inp += strspn(*inp, " ");
2218 
2219 	if (**inp != '#')
2220 		return 0;
2221 
2222 	*inp += 1;
2223 
2224 	if (**inp == 'g' || **inp == 'G') {
2225 		*inp += 1;
2226 		*idx = 0;
2227 	} else {
2228 		unsigned long num;
2229 		char *endptr;
2230 
2231 		errno = 0;
2232 		num = strtoul(*inp, &endptr, 0);
2233 		if (errno)
2234 			return -errno;
2235 		if (endptr == *inp || num > INT_MAX)
2236 			return -EINVAL;
2237 		*inp = endptr;
2238 		*idx = num;
2239 	}
2240 
2241 	return 0;
2242 }
2243 
2244 static int parse_addr_size(char **inp, u64 *num, const char **str, int *idx)
2245 {
2246 	int err = parse_num_or_str(inp, num, str, " ");
2247 
2248 	if (!err && *str)
2249 		err = parse_sym_idx(inp, idx);
2250 
2251 	return err;
2252 }
2253 
2254 static int parse_one_filter(struct addr_filter *filt, const char **filter_inp)
2255 {
2256 	char *fstr;
2257 	int err;
2258 
2259 	filt->str = fstr = strdup(*filter_inp);
2260 	if (!fstr)
2261 		return -ENOMEM;
2262 
2263 	err = parse_num_or_str(&fstr, NULL, &filt->action, " ");
2264 	if (err)
2265 		goto out_err;
2266 
2267 	err = parse_action(filt);
2268 	if (err)
2269 		goto out_err;
2270 
2271 	err = parse_addr_size(&fstr, &filt->addr, &filt->sym_from,
2272 			      &filt->sym_from_idx);
2273 	if (err)
2274 		goto out_err;
2275 
2276 	fstr += strspn(fstr, " ");
2277 
2278 	if (*fstr == '/') {
2279 		fstr += 1;
2280 		err = parse_addr_size(&fstr, &filt->size, &filt->sym_to,
2281 				      &filt->sym_to_idx);
2282 		if (err)
2283 			goto out_err;
2284 		filt->range = true;
2285 	}
2286 
2287 	fstr += strspn(fstr, " ");
2288 
2289 	if (*fstr == '@') {
2290 		fstr += 1;
2291 		err = parse_num_or_str(&fstr, NULL, &filt->filename, " ,");
2292 		if (err)
2293 			goto out_err;
2294 	}
2295 
2296 	fstr += strspn(fstr, " ,");
2297 
2298 	*filter_inp += fstr - filt->str;
2299 
2300 	return 0;
2301 
2302 out_err:
2303 	addr_filter__free_str(filt);
2304 
2305 	return err;
2306 }
2307 
2308 int addr_filters__parse_bare_filter(struct addr_filters *filts,
2309 				    const char *filter)
2310 {
2311 	struct addr_filter *filt;
2312 	const char *fstr = filter;
2313 	int err;
2314 
2315 	while (*fstr) {
2316 		filt = addr_filter__new();
2317 		err = parse_one_filter(filt, &fstr);
2318 		if (err) {
2319 			addr_filter__free(filt);
2320 			addr_filters__exit(filts);
2321 			return err;
2322 		}
2323 		addr_filters__add(filts, filt);
2324 	}
2325 
2326 	return 0;
2327 }
2328 
2329 struct sym_args {
2330 	const char	*name;
2331 	u64		start;
2332 	u64		size;
2333 	int		idx;
2334 	int		cnt;
2335 	bool		started;
2336 	bool		global;
2337 	bool		selected;
2338 	bool		duplicate;
2339 	bool		near;
2340 };
2341 
2342 static bool kern_sym_name_match(const char *kname, const char *name)
2343 {
2344 	size_t n = strlen(name);
2345 
2346 	return !strcmp(kname, name) ||
2347 	       (!strncmp(kname, name, n) && kname[n] == '\t');
2348 }
2349 
2350 static bool kern_sym_match(struct sym_args *args, const char *name, char type)
2351 {
2352 	/* A function with the same name, and global or the n'th found or any */
2353 	return kallsyms__is_function(type) &&
2354 	       kern_sym_name_match(name, args->name) &&
2355 	       ((args->global && isupper(type)) ||
2356 		(args->selected && ++(args->cnt) == args->idx) ||
2357 		(!args->global && !args->selected));
2358 }
2359 
2360 static int find_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2361 {
2362 	struct sym_args *args = arg;
2363 
2364 	if (args->started) {
2365 		if (!args->size)
2366 			args->size = start - args->start;
2367 		if (args->selected) {
2368 			if (args->size)
2369 				return 1;
2370 		} else if (kern_sym_match(args, name, type)) {
2371 			args->duplicate = true;
2372 			return 1;
2373 		}
2374 	} else if (kern_sym_match(args, name, type)) {
2375 		args->started = true;
2376 		args->start = start;
2377 	}
2378 
2379 	return 0;
2380 }
2381 
2382 static int print_kern_sym_cb(void *arg, const char *name, char type, u64 start)
2383 {
2384 	struct sym_args *args = arg;
2385 
2386 	if (kern_sym_match(args, name, type)) {
2387 		pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2388 		       ++args->cnt, start, type, name);
2389 		args->near = true;
2390 	} else if (args->near) {
2391 		args->near = false;
2392 		pr_err("\t\twhich is near\t\t%s\n", name);
2393 	}
2394 
2395 	return 0;
2396 }
2397 
2398 static int sym_not_found_error(const char *sym_name, int idx)
2399 {
2400 	if (idx > 0) {
2401 		pr_err("N'th occurrence (N=%d) of symbol '%s' not found.\n",
2402 		       idx, sym_name);
2403 	} else if (!idx) {
2404 		pr_err("Global symbol '%s' not found.\n", sym_name);
2405 	} else {
2406 		pr_err("Symbol '%s' not found.\n", sym_name);
2407 	}
2408 	pr_err("Note that symbols must be functions.\n");
2409 
2410 	return -EINVAL;
2411 }
2412 
2413 static int find_kern_sym(const char *sym_name, u64 *start, u64 *size, int idx)
2414 {
2415 	struct sym_args args = {
2416 		.name = sym_name,
2417 		.idx = idx,
2418 		.global = !idx,
2419 		.selected = idx > 0,
2420 	};
2421 	int err;
2422 
2423 	*start = 0;
2424 	*size = 0;
2425 
2426 	err = kallsyms__parse("/proc/kallsyms", &args, find_kern_sym_cb);
2427 	if (err < 0) {
2428 		pr_err("Failed to parse /proc/kallsyms\n");
2429 		return err;
2430 	}
2431 
2432 	if (args.duplicate) {
2433 		pr_err("Multiple kernel symbols with name '%s'\n", sym_name);
2434 		args.cnt = 0;
2435 		kallsyms__parse("/proc/kallsyms", &args, print_kern_sym_cb);
2436 		pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2437 		       sym_name);
2438 		pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2439 		return -EINVAL;
2440 	}
2441 
2442 	if (!args.started) {
2443 		pr_err("Kernel symbol lookup: ");
2444 		return sym_not_found_error(sym_name, idx);
2445 	}
2446 
2447 	*start = args.start;
2448 	*size = args.size;
2449 
2450 	return 0;
2451 }
2452 
2453 static int find_entire_kern_cb(void *arg, const char *name __maybe_unused,
2454 			       char type, u64 start)
2455 {
2456 	struct sym_args *args = arg;
2457 	u64 size;
2458 
2459 	if (!kallsyms__is_function(type))
2460 		return 0;
2461 
2462 	if (!args->started) {
2463 		args->started = true;
2464 		args->start = start;
2465 	}
2466 	/* Don't know exactly where the kernel ends, so we add a page */
2467 	size = round_up(start, page_size) + page_size - args->start;
2468 	if (size > args->size)
2469 		args->size = size;
2470 
2471 	return 0;
2472 }
2473 
2474 static int addr_filter__entire_kernel(struct addr_filter *filt)
2475 {
2476 	struct sym_args args = { .started = false };
2477 	int err;
2478 
2479 	err = kallsyms__parse("/proc/kallsyms", &args, find_entire_kern_cb);
2480 	if (err < 0 || !args.started) {
2481 		pr_err("Failed to parse /proc/kallsyms\n");
2482 		return err;
2483 	}
2484 
2485 	filt->addr = args.start;
2486 	filt->size = args.size;
2487 
2488 	return 0;
2489 }
2490 
2491 static int check_end_after_start(struct addr_filter *filt, u64 start, u64 size)
2492 {
2493 	if (start + size >= filt->addr)
2494 		return 0;
2495 
2496 	if (filt->sym_from) {
2497 		pr_err("Symbol '%s' (0x%"PRIx64") comes before '%s' (0x%"PRIx64")\n",
2498 		       filt->sym_to, start, filt->sym_from, filt->addr);
2499 	} else {
2500 		pr_err("Symbol '%s' (0x%"PRIx64") comes before address 0x%"PRIx64")\n",
2501 		       filt->sym_to, start, filt->addr);
2502 	}
2503 
2504 	return -EINVAL;
2505 }
2506 
2507 static int addr_filter__resolve_kernel_syms(struct addr_filter *filt)
2508 {
2509 	bool no_size = false;
2510 	u64 start, size;
2511 	int err;
2512 
2513 	if (symbol_conf.kptr_restrict) {
2514 		pr_err("Kernel addresses are restricted. Unable to resolve kernel symbols.\n");
2515 		return -EINVAL;
2516 	}
2517 
2518 	if (filt->sym_from && !strcmp(filt->sym_from, "*"))
2519 		return addr_filter__entire_kernel(filt);
2520 
2521 	if (filt->sym_from) {
2522 		err = find_kern_sym(filt->sym_from, &start, &size,
2523 				    filt->sym_from_idx);
2524 		if (err)
2525 			return err;
2526 		filt->addr = start;
2527 		if (filt->range && !filt->size && !filt->sym_to) {
2528 			filt->size = size;
2529 			no_size = !size;
2530 		}
2531 	}
2532 
2533 	if (filt->sym_to) {
2534 		err = find_kern_sym(filt->sym_to, &start, &size,
2535 				    filt->sym_to_idx);
2536 		if (err)
2537 			return err;
2538 
2539 		err = check_end_after_start(filt, start, size);
2540 		if (err)
2541 			return err;
2542 		filt->size = start + size - filt->addr;
2543 		no_size = !size;
2544 	}
2545 
2546 	/* The very last symbol in kallsyms does not imply a particular size */
2547 	if (no_size) {
2548 		pr_err("Cannot determine size of symbol '%s'\n",
2549 		       filt->sym_to ? filt->sym_to : filt->sym_from);
2550 		return -EINVAL;
2551 	}
2552 
2553 	return 0;
2554 }
2555 
2556 static struct dso *load_dso(const char *name)
2557 {
2558 	struct map *map;
2559 	struct dso *dso;
2560 
2561 	map = dso__new_map(name);
2562 	if (!map)
2563 		return NULL;
2564 
2565 	if (map__load(map) < 0)
2566 		pr_err("File '%s' not found or has no symbols.\n", name);
2567 
2568 	dso = dso__get(map__dso(map));
2569 
2570 	map__put(map);
2571 
2572 	return dso;
2573 }
2574 
2575 static bool dso_sym_match(struct symbol *sym, const char *name, int *cnt,
2576 			  int idx)
2577 {
2578 	/* Same name, and global or the n'th found or any */
2579 	return !arch__compare_symbol_names(name, sym->name) &&
2580 	       ((!idx && sym->binding == STB_GLOBAL) ||
2581 		(idx > 0 && ++*cnt == idx) ||
2582 		idx < 0);
2583 }
2584 
2585 static void print_duplicate_syms(struct dso *dso, const char *sym_name)
2586 {
2587 	struct symbol *sym;
2588 	bool near = false;
2589 	int cnt = 0;
2590 
2591 	pr_err("Multiple symbols with name '%s'\n", sym_name);
2592 
2593 	sym = dso__first_symbol(dso);
2594 	while (sym) {
2595 		if (dso_sym_match(sym, sym_name, &cnt, -1)) {
2596 			pr_err("#%d\t0x%"PRIx64"\t%c\t%s\n",
2597 			       ++cnt, sym->start,
2598 			       sym->binding == STB_GLOBAL ? 'g' :
2599 			       sym->binding == STB_LOCAL  ? 'l' : 'w',
2600 			       sym->name);
2601 			near = true;
2602 		} else if (near) {
2603 			near = false;
2604 			pr_err("\t\twhich is near\t\t%s\n", sym->name);
2605 		}
2606 		sym = dso__next_symbol(sym);
2607 	}
2608 
2609 	pr_err("Disambiguate symbol name by inserting #n after the name e.g. %s #2\n",
2610 	       sym_name);
2611 	pr_err("Or select a global symbol by inserting #0 or #g or #G\n");
2612 }
2613 
2614 static int find_dso_sym(struct dso *dso, const char *sym_name, u64 *start,
2615 			u64 *size, int idx)
2616 {
2617 	struct symbol *sym;
2618 	int cnt = 0;
2619 
2620 	*start = 0;
2621 	*size = 0;
2622 
2623 	sym = dso__first_symbol(dso);
2624 	while (sym) {
2625 		if (*start) {
2626 			if (!*size)
2627 				*size = sym->start - *start;
2628 			if (idx > 0) {
2629 				if (*size)
2630 					return 0;
2631 			} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2632 				print_duplicate_syms(dso, sym_name);
2633 				return -EINVAL;
2634 			}
2635 		} else if (dso_sym_match(sym, sym_name, &cnt, idx)) {
2636 			*start = sym->start;
2637 			*size = sym->end - sym->start;
2638 		}
2639 		sym = dso__next_symbol(sym);
2640 	}
2641 
2642 	if (!*start)
2643 		return sym_not_found_error(sym_name, idx);
2644 
2645 	return 0;
2646 }
2647 
2648 static int addr_filter__entire_dso(struct addr_filter *filt, struct dso *dso)
2649 {
2650 	if (dso__data_file_size(dso, NULL)) {
2651 		pr_err("Failed to determine filter for %s\nCannot determine file size.\n",
2652 		       filt->filename);
2653 		return -EINVAL;
2654 	}
2655 
2656 	filt->addr = 0;
2657 	filt->size = dso->data.file_size;
2658 
2659 	return 0;
2660 }
2661 
2662 static int addr_filter__resolve_syms(struct addr_filter *filt)
2663 {
2664 	u64 start, size;
2665 	struct dso *dso;
2666 	int err = 0;
2667 
2668 	if (!filt->sym_from && !filt->sym_to)
2669 		return 0;
2670 
2671 	if (!filt->filename)
2672 		return addr_filter__resolve_kernel_syms(filt);
2673 
2674 	dso = load_dso(filt->filename);
2675 	if (!dso) {
2676 		pr_err("Failed to load symbols from: %s\n", filt->filename);
2677 		return -EINVAL;
2678 	}
2679 
2680 	if (filt->sym_from && !strcmp(filt->sym_from, "*")) {
2681 		err = addr_filter__entire_dso(filt, dso);
2682 		goto put_dso;
2683 	}
2684 
2685 	if (filt->sym_from) {
2686 		err = find_dso_sym(dso, filt->sym_from, &start, &size,
2687 				   filt->sym_from_idx);
2688 		if (err)
2689 			goto put_dso;
2690 		filt->addr = start;
2691 		if (filt->range && !filt->size && !filt->sym_to)
2692 			filt->size = size;
2693 	}
2694 
2695 	if (filt->sym_to) {
2696 		err = find_dso_sym(dso, filt->sym_to, &start, &size,
2697 				   filt->sym_to_idx);
2698 		if (err)
2699 			goto put_dso;
2700 
2701 		err = check_end_after_start(filt, start, size);
2702 		if (err)
2703 			return err;
2704 
2705 		filt->size = start + size - filt->addr;
2706 	}
2707 
2708 put_dso:
2709 	dso__put(dso);
2710 
2711 	return err;
2712 }
2713 
2714 static char *addr_filter__to_str(struct addr_filter *filt)
2715 {
2716 	char filename_buf[PATH_MAX];
2717 	const char *at = "";
2718 	const char *fn = "";
2719 	char *filter;
2720 	int err;
2721 
2722 	if (filt->filename) {
2723 		at = "@";
2724 		fn = realpath(filt->filename, filename_buf);
2725 		if (!fn)
2726 			return NULL;
2727 	}
2728 
2729 	if (filt->range) {
2730 		err = asprintf(&filter, "%s 0x%"PRIx64"/0x%"PRIx64"%s%s",
2731 			       filt->action, filt->addr, filt->size, at, fn);
2732 	} else {
2733 		err = asprintf(&filter, "%s 0x%"PRIx64"%s%s",
2734 			       filt->action, filt->addr, at, fn);
2735 	}
2736 
2737 	return err < 0 ? NULL : filter;
2738 }
2739 
2740 static int parse_addr_filter(struct evsel *evsel, const char *filter,
2741 			     int max_nr)
2742 {
2743 	struct addr_filters filts;
2744 	struct addr_filter *filt;
2745 	int err;
2746 
2747 	addr_filters__init(&filts);
2748 
2749 	err = addr_filters__parse_bare_filter(&filts, filter);
2750 	if (err)
2751 		goto out_exit;
2752 
2753 	if (filts.cnt > max_nr) {
2754 		pr_err("Error: number of address filters (%d) exceeds maximum (%d)\n",
2755 		       filts.cnt, max_nr);
2756 		err = -EINVAL;
2757 		goto out_exit;
2758 	}
2759 
2760 	list_for_each_entry(filt, &filts.head, list) {
2761 		char *new_filter;
2762 
2763 		err = addr_filter__resolve_syms(filt);
2764 		if (err)
2765 			goto out_exit;
2766 
2767 		new_filter = addr_filter__to_str(filt);
2768 		if (!new_filter) {
2769 			err = -ENOMEM;
2770 			goto out_exit;
2771 		}
2772 
2773 		if (evsel__append_addr_filter(evsel, new_filter)) {
2774 			err = -ENOMEM;
2775 			goto out_exit;
2776 		}
2777 	}
2778 
2779 out_exit:
2780 	addr_filters__exit(&filts);
2781 
2782 	if (err) {
2783 		pr_err("Failed to parse address filter: '%s'\n", filter);
2784 		pr_err("Filter format is: filter|start|stop|tracestop <start symbol or address> [/ <end symbol or size>] [@<file name>]\n");
2785 		pr_err("Where multiple filters are separated by space or comma.\n");
2786 	}
2787 
2788 	return err;
2789 }
2790 
2791 static int evsel__nr_addr_filter(struct evsel *evsel)
2792 {
2793 	struct perf_pmu *pmu = evsel__find_pmu(evsel);
2794 	int nr_addr_filters = 0;
2795 
2796 	if (!pmu)
2797 		return 0;
2798 
2799 	perf_pmu__scan_file(pmu, "nr_addr_filters", "%d", &nr_addr_filters);
2800 
2801 	return nr_addr_filters;
2802 }
2803 
2804 int auxtrace_parse_filters(struct evlist *evlist)
2805 {
2806 	struct evsel *evsel;
2807 	char *filter;
2808 	int err, max_nr;
2809 
2810 	evlist__for_each_entry(evlist, evsel) {
2811 		filter = evsel->filter;
2812 		max_nr = evsel__nr_addr_filter(evsel);
2813 		if (!filter || !max_nr)
2814 			continue;
2815 		evsel->filter = NULL;
2816 		err = parse_addr_filter(evsel, filter, max_nr);
2817 		free(filter);
2818 		if (err)
2819 			return err;
2820 		pr_debug("Address filter: %s\n", evsel->filter);
2821 	}
2822 
2823 	return 0;
2824 }
2825 
2826 int auxtrace__process_event(struct perf_session *session, union perf_event *event,
2827 			    struct perf_sample *sample, struct perf_tool *tool)
2828 {
2829 	if (!session->auxtrace)
2830 		return 0;
2831 
2832 	return session->auxtrace->process_event(session, event, sample, tool);
2833 }
2834 
2835 void auxtrace__dump_auxtrace_sample(struct perf_session *session,
2836 				    struct perf_sample *sample)
2837 {
2838 	if (!session->auxtrace || !session->auxtrace->dump_auxtrace_sample ||
2839 	    auxtrace__dont_decode(session))
2840 		return;
2841 
2842 	session->auxtrace->dump_auxtrace_sample(session, sample);
2843 }
2844 
2845 int auxtrace__flush_events(struct perf_session *session, struct perf_tool *tool)
2846 {
2847 	if (!session->auxtrace)
2848 		return 0;
2849 
2850 	return session->auxtrace->flush_events(session, tool);
2851 }
2852 
2853 void auxtrace__free_events(struct perf_session *session)
2854 {
2855 	if (!session->auxtrace)
2856 		return;
2857 
2858 	return session->auxtrace->free_events(session);
2859 }
2860 
2861 void auxtrace__free(struct perf_session *session)
2862 {
2863 	if (!session->auxtrace)
2864 		return;
2865 
2866 	return session->auxtrace->free(session);
2867 }
2868 
2869 bool auxtrace__evsel_is_auxtrace(struct perf_session *session,
2870 				 struct evsel *evsel)
2871 {
2872 	if (!session->auxtrace || !session->auxtrace->evsel_is_auxtrace)
2873 		return false;
2874 
2875 	return session->auxtrace->evsel_is_auxtrace(session, evsel);
2876 }
2877