1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Convert sample address to data type using DWARF debug info. 4 * 5 * Written by Namhyung Kim <namhyung@kernel.org> 6 */ 7 8 #include <stdio.h> 9 #include <stdlib.h> 10 #include <inttypes.h> 11 #include <linux/zalloc.h> 12 13 #include "annotate.h" 14 #include "annotate-data.h" 15 #include "debuginfo.h" 16 #include "debug.h" 17 #include "dso.h" 18 #include "dwarf-regs.h" 19 #include "evsel.h" 20 #include "evlist.h" 21 #include "map.h" 22 #include "map_symbol.h" 23 #include "sort.h" 24 #include "strbuf.h" 25 #include "symbol.h" 26 #include "symbol_conf.h" 27 #include "thread.h" 28 29 /* register number of the stack pointer */ 30 #define X86_REG_SP 7 31 32 static void delete_var_types(struct die_var_type *var_types); 33 34 #define pr_debug_dtp(fmt, ...) \ 35 do { \ 36 if (debug_type_profile) \ 37 pr_info(fmt, ##__VA_ARGS__); \ 38 else \ 39 pr_debug3(fmt, ##__VA_ARGS__); \ 40 } while (0) 41 42 void pr_debug_type_name(Dwarf_Die *die, enum type_state_kind kind) 43 { 44 struct strbuf sb; 45 char *str; 46 Dwarf_Word size = 0; 47 48 if (!debug_type_profile && verbose < 3) 49 return; 50 51 switch (kind) { 52 case TSR_KIND_INVALID: 53 pr_info("\n"); 54 return; 55 case TSR_KIND_PERCPU_BASE: 56 pr_info(" percpu base\n"); 57 return; 58 case TSR_KIND_CONST: 59 pr_info(" constant\n"); 60 return; 61 case TSR_KIND_POINTER: 62 pr_info(" pointer"); 63 /* it also prints the type info */ 64 break; 65 case TSR_KIND_CANARY: 66 pr_info(" stack canary\n"); 67 return; 68 case TSR_KIND_TYPE: 69 default: 70 break; 71 } 72 73 dwarf_aggregate_size(die, &size); 74 75 strbuf_init(&sb, 32); 76 die_get_typename_from_type(die, &sb); 77 str = strbuf_detach(&sb, NULL); 78 pr_info(" type='%s' size=%#lx (die:%#lx)\n", 79 str, (long)size, (long)dwarf_dieoffset(die)); 80 free(str); 81 } 82 83 static void pr_debug_location(Dwarf_Die *die, u64 pc, int reg) 84 { 85 ptrdiff_t off = 0; 86 Dwarf_Attribute attr; 87 Dwarf_Addr base, start, end; 88 Dwarf_Op *ops; 89 size_t nops; 90 91 if (!debug_type_profile && verbose < 3) 92 return; 93 94 if (dwarf_attr(die, DW_AT_location, &attr) == NULL) 95 return; 96 97 while ((off = dwarf_getlocations(&attr, off, &base, &start, &end, &ops, &nops)) > 0) { 98 if (reg != DWARF_REG_PC && end <= pc) 99 continue; 100 if (reg != DWARF_REG_PC && start > pc) 101 break; 102 103 pr_info(" variable location: "); 104 switch (ops->atom) { 105 case DW_OP_reg0 ...DW_OP_reg31: 106 pr_info("reg%d\n", ops->atom - DW_OP_reg0); 107 break; 108 case DW_OP_breg0 ...DW_OP_breg31: 109 pr_info("base=reg%d, offset=%#lx\n", 110 ops->atom - DW_OP_breg0, (long)ops->number); 111 break; 112 case DW_OP_regx: 113 pr_info("reg%ld\n", (long)ops->number); 114 break; 115 case DW_OP_bregx: 116 pr_info("base=reg%ld, offset=%#lx\n", 117 (long)ops->number, (long)ops->number2); 118 break; 119 case DW_OP_fbreg: 120 pr_info("use frame base, offset=%#lx\n", (long)ops->number); 121 break; 122 case DW_OP_addr: 123 pr_info("address=%#lx\n", (long)ops->number); 124 break; 125 default: 126 pr_info("unknown: code=%#x, number=%#lx\n", 127 ops->atom, (long)ops->number); 128 break; 129 } 130 break; 131 } 132 } 133 134 static void pr_debug_scope(Dwarf_Die *scope_die) 135 { 136 int tag; 137 138 if (!debug_type_profile && verbose < 3) 139 return; 140 141 pr_info("(die:%lx) ", (long)dwarf_dieoffset(scope_die)); 142 143 tag = dwarf_tag(scope_die); 144 if (tag == DW_TAG_subprogram) 145 pr_info("[function] %s\n", dwarf_diename(scope_die)); 146 else if (tag == DW_TAG_inlined_subroutine) 147 pr_info("[inlined] %s\n", dwarf_diename(scope_die)); 148 else if (tag == DW_TAG_lexical_block) 149 pr_info("[block]\n"); 150 else 151 pr_info("[unknown] tag=%x\n", tag); 152 } 153 154 bool has_reg_type(struct type_state *state, int reg) 155 { 156 return (unsigned)reg < ARRAY_SIZE(state->regs); 157 } 158 159 static void init_type_state(struct type_state *state, struct arch *arch) 160 { 161 memset(state, 0, sizeof(*state)); 162 INIT_LIST_HEAD(&state->stack_vars); 163 164 if (arch__is(arch, "x86")) { 165 state->regs[0].caller_saved = true; 166 state->regs[1].caller_saved = true; 167 state->regs[2].caller_saved = true; 168 state->regs[4].caller_saved = true; 169 state->regs[5].caller_saved = true; 170 state->regs[8].caller_saved = true; 171 state->regs[9].caller_saved = true; 172 state->regs[10].caller_saved = true; 173 state->regs[11].caller_saved = true; 174 state->ret_reg = 0; 175 state->stack_reg = X86_REG_SP; 176 } 177 } 178 179 static void exit_type_state(struct type_state *state) 180 { 181 struct type_state_stack *stack, *tmp; 182 183 list_for_each_entry_safe(stack, tmp, &state->stack_vars, list) { 184 list_del(&stack->list); 185 free(stack); 186 } 187 } 188 189 /* 190 * Compare type name and size to maintain them in a tree. 191 * I'm not sure if DWARF would have information of a single type in many 192 * different places (compilation units). If not, it could compare the 193 * offset of the type entry in the .debug_info section. 194 */ 195 static int data_type_cmp(const void *_key, const struct rb_node *node) 196 { 197 const struct annotated_data_type *key = _key; 198 struct annotated_data_type *type; 199 200 type = rb_entry(node, struct annotated_data_type, node); 201 202 if (key->self.size != type->self.size) 203 return key->self.size - type->self.size; 204 return strcmp(key->self.type_name, type->self.type_name); 205 } 206 207 static bool data_type_less(struct rb_node *node_a, const struct rb_node *node_b) 208 { 209 struct annotated_data_type *a, *b; 210 211 a = rb_entry(node_a, struct annotated_data_type, node); 212 b = rb_entry(node_b, struct annotated_data_type, node); 213 214 if (a->self.size != b->self.size) 215 return a->self.size < b->self.size; 216 return strcmp(a->self.type_name, b->self.type_name) < 0; 217 } 218 219 /* Recursively add new members for struct/union */ 220 static int __add_member_cb(Dwarf_Die *die, void *arg) 221 { 222 struct annotated_member *parent = arg; 223 struct annotated_member *member; 224 Dwarf_Die member_type, die_mem; 225 Dwarf_Word size, loc, bit_size = 0; 226 Dwarf_Attribute attr; 227 struct strbuf sb; 228 int tag; 229 230 if (dwarf_tag(die) != DW_TAG_member) 231 return DIE_FIND_CB_SIBLING; 232 233 member = zalloc(sizeof(*member)); 234 if (member == NULL) 235 return DIE_FIND_CB_END; 236 237 strbuf_init(&sb, 32); 238 die_get_typename(die, &sb); 239 240 __die_get_real_type(die, &member_type); 241 if (dwarf_tag(&member_type) == DW_TAG_typedef) 242 die_get_real_type(&member_type, &die_mem); 243 else 244 die_mem = member_type; 245 246 if (dwarf_aggregate_size(&die_mem, &size) < 0) 247 size = 0; 248 249 if (dwarf_attr_integrate(die, DW_AT_data_member_location, &attr)) 250 dwarf_formudata(&attr, &loc); 251 else { 252 /* bitfield member */ 253 if (dwarf_attr_integrate(die, DW_AT_data_bit_offset, &attr) && 254 dwarf_formudata(&attr, &loc) == 0) 255 loc /= 8; 256 else 257 loc = 0; 258 259 if (dwarf_attr_integrate(die, DW_AT_bit_size, &attr) && 260 dwarf_formudata(&attr, &bit_size) == 0) 261 size = (bit_size + 7) / 8; 262 } 263 264 member->type_name = strbuf_detach(&sb, NULL); 265 /* member->var_name can be NULL */ 266 if (dwarf_diename(die)) { 267 if (bit_size) { 268 if (asprintf(&member->var_name, "%s:%ld", 269 dwarf_diename(die), (long)bit_size) < 0) 270 member->var_name = NULL; 271 } else { 272 member->var_name = strdup(dwarf_diename(die)); 273 } 274 275 if (member->var_name == NULL) { 276 free(member); 277 return DIE_FIND_CB_END; 278 } 279 } 280 member->size = size; 281 member->offset = loc + parent->offset; 282 INIT_LIST_HEAD(&member->children); 283 list_add_tail(&member->node, &parent->children); 284 285 tag = dwarf_tag(&die_mem); 286 switch (tag) { 287 case DW_TAG_structure_type: 288 case DW_TAG_union_type: 289 die_find_child(&die_mem, __add_member_cb, member, &die_mem); 290 break; 291 default: 292 break; 293 } 294 return DIE_FIND_CB_SIBLING; 295 } 296 297 static void add_member_types(struct annotated_data_type *parent, Dwarf_Die *type) 298 { 299 Dwarf_Die die_mem; 300 301 die_find_child(type, __add_member_cb, &parent->self, &die_mem); 302 } 303 304 static void delete_members(struct annotated_member *member) 305 { 306 struct annotated_member *child, *tmp; 307 308 list_for_each_entry_safe(child, tmp, &member->children, node) { 309 list_del(&child->node); 310 delete_members(child); 311 zfree(&child->type_name); 312 zfree(&child->var_name); 313 free(child); 314 } 315 } 316 317 static struct annotated_data_type *dso__findnew_data_type(struct dso *dso, 318 Dwarf_Die *type_die) 319 { 320 struct annotated_data_type *result = NULL; 321 struct annotated_data_type key; 322 struct rb_node *node; 323 struct strbuf sb; 324 char *type_name; 325 Dwarf_Word size; 326 327 strbuf_init(&sb, 32); 328 if (die_get_typename_from_type(type_die, &sb) < 0) 329 strbuf_add(&sb, "(unknown type)", 14); 330 type_name = strbuf_detach(&sb, NULL); 331 332 if (dwarf_tag(type_die) == DW_TAG_typedef) 333 die_get_real_type(type_die, type_die); 334 335 dwarf_aggregate_size(type_die, &size); 336 337 /* Check existing nodes in dso->data_types tree */ 338 key.self.type_name = type_name; 339 key.self.size = size; 340 node = rb_find(&key, dso__data_types(dso), data_type_cmp); 341 if (node) { 342 result = rb_entry(node, struct annotated_data_type, node); 343 free(type_name); 344 return result; 345 } 346 347 /* If not, add a new one */ 348 result = zalloc(sizeof(*result)); 349 if (result == NULL) { 350 free(type_name); 351 return NULL; 352 } 353 354 result->self.type_name = type_name; 355 result->self.size = size; 356 INIT_LIST_HEAD(&result->self.children); 357 358 if (symbol_conf.annotate_data_member) 359 add_member_types(result, type_die); 360 361 rb_add(&result->node, dso__data_types(dso), data_type_less); 362 return result; 363 } 364 365 static bool find_cu_die(struct debuginfo *di, u64 pc, Dwarf_Die *cu_die) 366 { 367 Dwarf_Off off, next_off; 368 size_t header_size; 369 370 if (dwarf_addrdie(di->dbg, pc, cu_die) != NULL) 371 return cu_die; 372 373 /* 374 * There are some kernels don't have full aranges and contain only a few 375 * aranges entries. Fallback to iterate all CU entries in .debug_info 376 * in case it's missing. 377 */ 378 off = 0; 379 while (dwarf_nextcu(di->dbg, off, &next_off, &header_size, 380 NULL, NULL, NULL) == 0) { 381 if (dwarf_offdie(di->dbg, off + header_size, cu_die) && 382 dwarf_haspc(cu_die, pc)) 383 return true; 384 385 off = next_off; 386 } 387 return false; 388 } 389 390 enum type_match_result { 391 PERF_TMR_UNKNOWN = 0, 392 PERF_TMR_OK, 393 PERF_TMR_NO_TYPE, 394 PERF_TMR_NO_POINTER, 395 PERF_TMR_NO_SIZE, 396 PERF_TMR_BAD_OFFSET, 397 PERF_TMR_BAIL_OUT, 398 }; 399 400 static const char *match_result_str(enum type_match_result tmr) 401 { 402 switch (tmr) { 403 case PERF_TMR_OK: 404 return "Good!"; 405 case PERF_TMR_NO_TYPE: 406 return "no type information"; 407 case PERF_TMR_NO_POINTER: 408 return "no/void pointer"; 409 case PERF_TMR_NO_SIZE: 410 return "type size is unknown"; 411 case PERF_TMR_BAD_OFFSET: 412 return "offset bigger than size"; 413 case PERF_TMR_UNKNOWN: 414 case PERF_TMR_BAIL_OUT: 415 default: 416 return "invalid state"; 417 } 418 } 419 420 static bool is_pointer_type(Dwarf_Die *type_die) 421 { 422 int tag = dwarf_tag(type_die); 423 424 return tag == DW_TAG_pointer_type || tag == DW_TAG_array_type; 425 } 426 427 static bool is_compound_type(Dwarf_Die *type_die) 428 { 429 int tag = dwarf_tag(type_die); 430 431 return tag == DW_TAG_structure_type || tag == DW_TAG_union_type; 432 } 433 434 /* returns if Type B has better information than Type A */ 435 static bool is_better_type(Dwarf_Die *type_a, Dwarf_Die *type_b) 436 { 437 Dwarf_Word size_a, size_b; 438 Dwarf_Die die_a, die_b; 439 440 /* pointer type is preferred */ 441 if (is_pointer_type(type_a) != is_pointer_type(type_b)) 442 return is_pointer_type(type_b); 443 444 if (is_pointer_type(type_b)) { 445 /* 446 * We want to compare the target type, but 'void *' can fail to 447 * get the target type. 448 */ 449 if (die_get_real_type(type_a, &die_a) == NULL) 450 return true; 451 if (die_get_real_type(type_b, &die_b) == NULL) 452 return false; 453 454 type_a = &die_a; 455 type_b = &die_b; 456 } 457 458 /* bigger type is preferred */ 459 if (dwarf_aggregate_size(type_a, &size_a) < 0 || 460 dwarf_aggregate_size(type_b, &size_b) < 0) 461 return false; 462 463 if (size_a != size_b) 464 return size_a < size_b; 465 466 /* struct or union is preferred */ 467 if (is_compound_type(type_a) != is_compound_type(type_b)) 468 return is_compound_type(type_b); 469 470 /* typedef is preferred */ 471 if (dwarf_tag(type_b) == DW_TAG_typedef) 472 return true; 473 474 return false; 475 } 476 477 /* The type info will be saved in @type_die */ 478 static enum type_match_result check_variable(struct data_loc_info *dloc, 479 Dwarf_Die *var_die, 480 Dwarf_Die *type_die, int reg, 481 int offset, bool is_fbreg) 482 { 483 Dwarf_Word size; 484 bool needs_pointer = true; 485 Dwarf_Die sized_type; 486 487 if (reg == DWARF_REG_PC) 488 needs_pointer = false; 489 else if (reg == dloc->fbreg || is_fbreg) 490 needs_pointer = false; 491 else if (arch__is(dloc->arch, "x86") && reg == X86_REG_SP) 492 needs_pointer = false; 493 494 /* Get the type of the variable */ 495 if (__die_get_real_type(var_die, type_die) == NULL) 496 return PERF_TMR_NO_TYPE; 497 498 /* 499 * Usually it expects a pointer type for a memory access. 500 * Convert to a real type it points to. But global variables 501 * and local variables are accessed directly without a pointer. 502 */ 503 if (needs_pointer) { 504 if (!is_pointer_type(type_die) || 505 __die_get_real_type(type_die, type_die) == NULL) 506 return PERF_TMR_NO_POINTER; 507 } 508 509 if (dwarf_tag(type_die) == DW_TAG_typedef) 510 die_get_real_type(type_die, &sized_type); 511 else 512 sized_type = *type_die; 513 514 /* Get the size of the actual type */ 515 if (dwarf_aggregate_size(&sized_type, &size) < 0) 516 return PERF_TMR_NO_SIZE; 517 518 /* Minimal sanity check */ 519 if ((unsigned)offset >= size) 520 return PERF_TMR_BAD_OFFSET; 521 522 return PERF_TMR_OK; 523 } 524 525 struct type_state_stack *find_stack_state(struct type_state *state, 526 int offset) 527 { 528 struct type_state_stack *stack; 529 530 list_for_each_entry(stack, &state->stack_vars, list) { 531 if (offset == stack->offset) 532 return stack; 533 534 if (stack->compound && stack->offset < offset && 535 offset < stack->offset + stack->size) 536 return stack; 537 } 538 return NULL; 539 } 540 541 void set_stack_state(struct type_state_stack *stack, int offset, u8 kind, 542 Dwarf_Die *type_die) 543 { 544 int tag; 545 Dwarf_Word size; 546 547 if (dwarf_aggregate_size(type_die, &size) < 0) 548 size = 0; 549 550 tag = dwarf_tag(type_die); 551 552 stack->type = *type_die; 553 stack->size = size; 554 stack->offset = offset; 555 stack->kind = kind; 556 557 switch (tag) { 558 case DW_TAG_structure_type: 559 case DW_TAG_union_type: 560 stack->compound = (kind != TSR_KIND_POINTER); 561 break; 562 default: 563 stack->compound = false; 564 break; 565 } 566 } 567 568 struct type_state_stack *findnew_stack_state(struct type_state *state, 569 int offset, u8 kind, 570 Dwarf_Die *type_die) 571 { 572 struct type_state_stack *stack = find_stack_state(state, offset); 573 574 if (stack) { 575 set_stack_state(stack, offset, kind, type_die); 576 return stack; 577 } 578 579 stack = malloc(sizeof(*stack)); 580 if (stack) { 581 set_stack_state(stack, offset, kind, type_die); 582 list_add(&stack->list, &state->stack_vars); 583 } 584 return stack; 585 } 586 587 /* Maintain a cache for quick global variable lookup */ 588 struct global_var_entry { 589 struct rb_node node; 590 char *name; 591 u64 start; 592 u64 end; 593 u64 die_offset; 594 }; 595 596 static int global_var_cmp(const void *_key, const struct rb_node *node) 597 { 598 const u64 addr = (uintptr_t)_key; 599 struct global_var_entry *gvar; 600 601 gvar = rb_entry(node, struct global_var_entry, node); 602 603 if (gvar->start <= addr && addr < gvar->end) 604 return 0; 605 return gvar->start > addr ? -1 : 1; 606 } 607 608 static bool global_var_less(struct rb_node *node_a, const struct rb_node *node_b) 609 { 610 struct global_var_entry *gvar_a, *gvar_b; 611 612 gvar_a = rb_entry(node_a, struct global_var_entry, node); 613 gvar_b = rb_entry(node_b, struct global_var_entry, node); 614 615 return gvar_a->start < gvar_b->start; 616 } 617 618 static struct global_var_entry *global_var__find(struct data_loc_info *dloc, u64 addr) 619 { 620 struct dso *dso = map__dso(dloc->ms->map); 621 struct rb_node *node; 622 623 node = rb_find((void *)(uintptr_t)addr, dso__global_vars(dso), global_var_cmp); 624 if (node == NULL) 625 return NULL; 626 627 return rb_entry(node, struct global_var_entry, node); 628 } 629 630 static bool global_var__add(struct data_loc_info *dloc, u64 addr, 631 const char *name, Dwarf_Die *type_die) 632 { 633 struct dso *dso = map__dso(dloc->ms->map); 634 struct global_var_entry *gvar; 635 Dwarf_Word size; 636 637 if (dwarf_aggregate_size(type_die, &size) < 0) 638 return false; 639 640 gvar = malloc(sizeof(*gvar)); 641 if (gvar == NULL) 642 return false; 643 644 gvar->name = name ? strdup(name) : NULL; 645 if (name && gvar->name == NULL) { 646 free(gvar); 647 return false; 648 } 649 650 gvar->start = addr; 651 gvar->end = addr + size; 652 gvar->die_offset = dwarf_dieoffset(type_die); 653 654 rb_add(&gvar->node, dso__global_vars(dso), global_var_less); 655 return true; 656 } 657 658 void global_var_type__tree_delete(struct rb_root *root) 659 { 660 struct global_var_entry *gvar; 661 662 while (!RB_EMPTY_ROOT(root)) { 663 struct rb_node *node = rb_first(root); 664 665 rb_erase(node, root); 666 gvar = rb_entry(node, struct global_var_entry, node); 667 zfree(&gvar->name); 668 free(gvar); 669 } 670 } 671 672 bool get_global_var_info(struct data_loc_info *dloc, u64 addr, 673 const char **var_name, int *var_offset) 674 { 675 struct addr_location al; 676 struct symbol *sym; 677 u64 mem_addr; 678 679 /* Kernel symbols might be relocated */ 680 mem_addr = addr + map__reloc(dloc->ms->map); 681 682 addr_location__init(&al); 683 sym = thread__find_symbol_fb(dloc->thread, dloc->cpumode, 684 mem_addr, &al); 685 if (sym) { 686 *var_name = sym->name; 687 /* Calculate type offset from the start of variable */ 688 *var_offset = mem_addr - map__unmap_ip(al.map, sym->start); 689 } else { 690 *var_name = NULL; 691 } 692 addr_location__exit(&al); 693 if (*var_name == NULL) 694 return false; 695 696 return true; 697 } 698 699 static void global_var__collect(struct data_loc_info *dloc) 700 { 701 Dwarf *dwarf = dloc->di->dbg; 702 Dwarf_Off off, next_off; 703 Dwarf_Die cu_die, type_die; 704 size_t header_size; 705 706 /* Iterate all CU and collect global variables that have no location in a register. */ 707 off = 0; 708 while (dwarf_nextcu(dwarf, off, &next_off, &header_size, 709 NULL, NULL, NULL) == 0) { 710 struct die_var_type *var_types = NULL; 711 struct die_var_type *pos; 712 713 if (dwarf_offdie(dwarf, off + header_size, &cu_die) == NULL) { 714 off = next_off; 715 continue; 716 } 717 718 die_collect_global_vars(&cu_die, &var_types); 719 720 for (pos = var_types; pos; pos = pos->next) { 721 const char *var_name = NULL; 722 int var_offset = 0; 723 724 if (pos->reg != -1) 725 continue; 726 727 if (!dwarf_offdie(dwarf, pos->die_off, &type_die)) 728 continue; 729 730 if (!get_global_var_info(dloc, pos->addr, &var_name, 731 &var_offset)) 732 continue; 733 734 if (var_offset != 0) 735 continue; 736 737 global_var__add(dloc, pos->addr, var_name, &type_die); 738 } 739 740 delete_var_types(var_types); 741 742 off = next_off; 743 } 744 } 745 746 bool get_global_var_type(Dwarf_Die *cu_die, struct data_loc_info *dloc, 747 u64 ip, u64 var_addr, int *var_offset, 748 Dwarf_Die *type_die) 749 { 750 u64 pc; 751 int offset; 752 const char *var_name = NULL; 753 struct global_var_entry *gvar; 754 struct dso *dso = map__dso(dloc->ms->map); 755 Dwarf_Die var_die; 756 757 if (RB_EMPTY_ROOT(dso__global_vars(dso))) 758 global_var__collect(dloc); 759 760 gvar = global_var__find(dloc, var_addr); 761 if (gvar) { 762 if (!dwarf_offdie(dloc->di->dbg, gvar->die_offset, type_die)) 763 return false; 764 765 *var_offset = var_addr - gvar->start; 766 return true; 767 } 768 769 /* Try to get the variable by address first */ 770 if (die_find_variable_by_addr(cu_die, var_addr, &var_die, &offset) && 771 check_variable(dloc, &var_die, type_die, DWARF_REG_PC, offset, 772 /*is_fbreg=*/false) == PERF_TMR_OK) { 773 var_name = dwarf_diename(&var_die); 774 *var_offset = offset; 775 goto ok; 776 } 777 778 if (!get_global_var_info(dloc, var_addr, &var_name, var_offset)) 779 return false; 780 781 pc = map__rip_2objdump(dloc->ms->map, ip); 782 783 /* Try to get the name of global variable */ 784 if (die_find_variable_at(cu_die, var_name, pc, &var_die) && 785 check_variable(dloc, &var_die, type_die, DWARF_REG_PC, *var_offset, 786 /*is_fbreg=*/false) == PERF_TMR_OK) 787 goto ok; 788 789 return false; 790 791 ok: 792 /* The address should point to the start of the variable */ 793 global_var__add(dloc, var_addr - *var_offset, var_name, type_die); 794 return true; 795 } 796 797 static bool die_is_same(Dwarf_Die *die_a, Dwarf_Die *die_b) 798 { 799 return (die_a->cu == die_b->cu) && (die_a->addr == die_b->addr); 800 } 801 802 /** 803 * update_var_state - Update type state using given variables 804 * @state: type state table 805 * @dloc: data location info 806 * @addr: instruction address to match with variable 807 * @insn_offset: instruction offset (for debug) 808 * @var_types: list of variables with type info 809 * 810 * This function fills the @state table using @var_types info. Each variable 811 * is used only at the given location and updates an entry in the table. 812 */ 813 static void update_var_state(struct type_state *state, struct data_loc_info *dloc, 814 u64 addr, u64 insn_offset, struct die_var_type *var_types) 815 { 816 Dwarf_Die mem_die; 817 struct die_var_type *var; 818 int fbreg = dloc->fbreg; 819 int fb_offset = 0; 820 821 if (dloc->fb_cfa) { 822 if (die_get_cfa(dloc->di->dbg, addr, &fbreg, &fb_offset) < 0) 823 fbreg = -1; 824 } 825 826 for (var = var_types; var != NULL; var = var->next) { 827 if (var->addr != addr) 828 continue; 829 /* Get the type DIE using the offset */ 830 if (!dwarf_offdie(dloc->di->dbg, var->die_off, &mem_die)) 831 continue; 832 833 if (var->reg == DWARF_REG_FB || var->reg == fbreg || var->reg == state->stack_reg) { 834 int offset = var->offset; 835 struct type_state_stack *stack; 836 837 if (var->reg != DWARF_REG_FB) 838 offset -= fb_offset; 839 840 stack = find_stack_state(state, offset); 841 if (stack && stack->kind == TSR_KIND_TYPE && 842 !is_better_type(&stack->type, &mem_die)) 843 continue; 844 845 findnew_stack_state(state, offset, TSR_KIND_TYPE, 846 &mem_die); 847 848 if (var->reg == state->stack_reg) { 849 pr_debug_dtp("var [%"PRIx64"] %#x(reg%d)", 850 insn_offset, offset, state->stack_reg); 851 } else { 852 pr_debug_dtp("var [%"PRIx64"] -%#x(stack)", 853 insn_offset, -offset); 854 } 855 pr_debug_type_name(&mem_die, TSR_KIND_TYPE); 856 } else if (has_reg_type(state, var->reg) && var->offset == 0) { 857 struct type_state_reg *reg; 858 Dwarf_Die orig_type; 859 860 reg = &state->regs[var->reg]; 861 862 if (reg->ok && reg->kind == TSR_KIND_TYPE && 863 !is_better_type(®->type, &mem_die)) 864 continue; 865 866 orig_type = reg->type; 867 868 reg->type = mem_die; 869 reg->kind = TSR_KIND_TYPE; 870 reg->ok = true; 871 872 pr_debug_dtp("var [%"PRIx64"] reg%d", 873 insn_offset, var->reg); 874 pr_debug_type_name(&mem_die, TSR_KIND_TYPE); 875 876 /* 877 * If this register is directly copied from another and it gets a 878 * better type, also update the type of the source register. This 879 * is usually the case of container_of() macro with offset of 0. 880 */ 881 if (has_reg_type(state, reg->copied_from)) { 882 struct type_state_reg *copy_reg; 883 884 copy_reg = &state->regs[reg->copied_from]; 885 886 /* TODO: check if type is compatible or embedded */ 887 if (!copy_reg->ok || (copy_reg->kind != TSR_KIND_TYPE) || 888 !die_is_same(©_reg->type, &orig_type) || 889 !is_better_type(©_reg->type, &mem_die)) 890 continue; 891 892 copy_reg->type = mem_die; 893 894 pr_debug_dtp("var [%"PRIx64"] copyback reg%d", 895 insn_offset, reg->copied_from); 896 pr_debug_type_name(&mem_die, TSR_KIND_TYPE); 897 } 898 } 899 } 900 } 901 902 /** 903 * update_insn_state - Update type state for an instruction 904 * @state: type state table 905 * @dloc: data location info 906 * @cu_die: compile unit debug entry 907 * @dl: disasm line for the instruction 908 * 909 * This function updates the @state table for the target operand of the 910 * instruction at @dl if it transfers the type like MOV on x86. Since it 911 * tracks the type, it won't care about the values like in arithmetic 912 * instructions like ADD/SUB/MUL/DIV and INC/DEC. 913 * 914 * Note that ops->reg2 is only available when both mem_ref and multi_regs 915 * are true. 916 */ 917 static void update_insn_state(struct type_state *state, struct data_loc_info *dloc, 918 Dwarf_Die *cu_die, struct disasm_line *dl) 919 { 920 if (dloc->arch->update_insn_state) 921 dloc->arch->update_insn_state(state, dloc, cu_die, dl); 922 } 923 924 /* 925 * Prepend this_blocks (from the outer scope) to full_blocks, removing 926 * duplicate disasm line. 927 */ 928 static void prepend_basic_blocks(struct list_head *this_blocks, 929 struct list_head *full_blocks) 930 { 931 struct annotated_basic_block *first_bb, *last_bb; 932 933 last_bb = list_last_entry(this_blocks, typeof(*last_bb), list); 934 first_bb = list_first_entry(full_blocks, typeof(*first_bb), list); 935 936 if (list_empty(full_blocks)) 937 goto out; 938 939 /* Last insn in this_blocks should be same as first insn in full_blocks */ 940 if (last_bb->end != first_bb->begin) { 941 pr_debug("prepend basic blocks: mismatched disasm line %"PRIx64" -> %"PRIx64"\n", 942 last_bb->end->al.offset, first_bb->begin->al.offset); 943 goto out; 944 } 945 946 /* Is the basic block have only one disasm_line? */ 947 if (last_bb->begin == last_bb->end) { 948 list_del(&last_bb->list); 949 free(last_bb); 950 goto out; 951 } 952 953 /* Point to the insn before the last when adding this block to full_blocks */ 954 last_bb->end = list_prev_entry(last_bb->end, al.node); 955 956 out: 957 list_splice(this_blocks, full_blocks); 958 } 959 960 static void delete_basic_blocks(struct list_head *basic_blocks) 961 { 962 struct annotated_basic_block *bb, *tmp; 963 964 list_for_each_entry_safe(bb, tmp, basic_blocks, list) { 965 list_del(&bb->list); 966 free(bb); 967 } 968 } 969 970 /* Make sure all variables have a valid start address */ 971 static void fixup_var_address(struct die_var_type *var_types, u64 addr) 972 { 973 while (var_types) { 974 /* 975 * Some variables have no address range meaning it's always 976 * available in the whole scope. Let's adjust the start 977 * address to the start of the scope. 978 */ 979 if (var_types->addr == 0) 980 var_types->addr = addr; 981 982 var_types = var_types->next; 983 } 984 } 985 986 static void delete_var_types(struct die_var_type *var_types) 987 { 988 while (var_types) { 989 struct die_var_type *next = var_types->next; 990 991 free(var_types); 992 var_types = next; 993 } 994 } 995 996 /* should match to is_stack_canary() in util/annotate.c */ 997 static void setup_stack_canary(struct data_loc_info *dloc) 998 { 999 if (arch__is(dloc->arch, "x86")) { 1000 dloc->op->segment = INSN_SEG_X86_GS; 1001 dloc->op->imm = true; 1002 dloc->op->offset = 40; 1003 } 1004 } 1005 1006 /* 1007 * It's at the target address, check if it has a matching type. 1008 * It returns PERF_TMR_BAIL_OUT when it looks up per-cpu variables which 1009 * are similar to global variables and no additional info is needed. 1010 */ 1011 static enum type_match_result check_matching_type(struct type_state *state, 1012 struct data_loc_info *dloc, 1013 Dwarf_Die *cu_die, 1014 struct disasm_line *dl, 1015 Dwarf_Die *type_die) 1016 { 1017 Dwarf_Word size; 1018 u32 insn_offset = dl->al.offset; 1019 int reg = dloc->op->reg1; 1020 int offset = dloc->op->offset; 1021 const char *offset_sign = ""; 1022 bool retry = true; 1023 1024 if (offset < 0) { 1025 offset = -offset; 1026 offset_sign = "-"; 1027 } 1028 1029 again: 1030 pr_debug_dtp("chk [%x] reg%d offset=%s%#x ok=%d kind=%d ", 1031 insn_offset, reg, offset_sign, offset, 1032 state->regs[reg].ok, state->regs[reg].kind); 1033 1034 if (!state->regs[reg].ok) 1035 goto check_non_register; 1036 1037 if (state->regs[reg].kind == TSR_KIND_TYPE) { 1038 Dwarf_Die sized_type; 1039 struct strbuf sb; 1040 1041 strbuf_init(&sb, 32); 1042 die_get_typename_from_type(&state->regs[reg].type, &sb); 1043 pr_debug_dtp("(%s)", sb.buf); 1044 strbuf_release(&sb); 1045 1046 /* 1047 * Normal registers should hold a pointer (or array) to 1048 * dereference a memory location. 1049 */ 1050 if (!is_pointer_type(&state->regs[reg].type)) { 1051 if (dloc->op->offset < 0 && reg != state->stack_reg) 1052 goto check_kernel; 1053 1054 return PERF_TMR_NO_POINTER; 1055 } 1056 1057 /* Remove the pointer and get the target type */ 1058 if (__die_get_real_type(&state->regs[reg].type, type_die) == NULL) 1059 return PERF_TMR_NO_POINTER; 1060 1061 dloc->type_offset = dloc->op->offset; 1062 1063 if (dwarf_tag(type_die) == DW_TAG_typedef) 1064 die_get_real_type(type_die, &sized_type); 1065 else 1066 sized_type = *type_die; 1067 1068 /* Get the size of the actual type */ 1069 if (dwarf_aggregate_size(&sized_type, &size) < 0 || 1070 (unsigned)dloc->type_offset >= size) 1071 return PERF_TMR_BAD_OFFSET; 1072 1073 return PERF_TMR_OK; 1074 } 1075 1076 if (state->regs[reg].kind == TSR_KIND_POINTER) { 1077 pr_debug_dtp("percpu ptr"); 1078 1079 /* 1080 * It's actaully pointer but the address was calculated using 1081 * some arithmetic. So it points to the actual type already. 1082 */ 1083 *type_die = state->regs[reg].type; 1084 1085 dloc->type_offset = dloc->op->offset; 1086 1087 /* Get the size of the actual type */ 1088 if (dwarf_aggregate_size(type_die, &size) < 0 || 1089 (unsigned)dloc->type_offset >= size) 1090 return PERF_TMR_BAIL_OUT; 1091 1092 return PERF_TMR_OK; 1093 } 1094 1095 if (state->regs[reg].kind == TSR_KIND_CANARY) { 1096 pr_debug_dtp("stack canary"); 1097 1098 /* 1099 * This is a saved value of the stack canary which will be handled 1100 * in the outer logic when it returns failure here. Pretend it's 1101 * from the stack canary directly. 1102 */ 1103 setup_stack_canary(dloc); 1104 1105 return PERF_TMR_BAIL_OUT; 1106 } 1107 1108 if (state->regs[reg].kind == TSR_KIND_PERCPU_BASE) { 1109 u64 var_addr = dloc->op->offset; 1110 int var_offset; 1111 1112 pr_debug_dtp("percpu var"); 1113 1114 if (dloc->op->multi_regs) { 1115 int reg2 = dloc->op->reg2; 1116 1117 if (dloc->op->reg2 == reg) 1118 reg2 = dloc->op->reg1; 1119 1120 if (has_reg_type(state, reg2) && state->regs[reg2].ok && 1121 state->regs[reg2].kind == TSR_KIND_CONST) 1122 var_addr += state->regs[reg2].imm_value; 1123 } 1124 1125 if (get_global_var_type(cu_die, dloc, dloc->ip, var_addr, 1126 &var_offset, type_die)) { 1127 dloc->type_offset = var_offset; 1128 return PERF_TMR_OK; 1129 } 1130 /* No need to retry per-cpu (global) variables */ 1131 return PERF_TMR_BAIL_OUT; 1132 } 1133 1134 check_non_register: 1135 if (reg == dloc->fbreg || reg == state->stack_reg) { 1136 struct type_state_stack *stack; 1137 1138 pr_debug_dtp("%s", reg == dloc->fbreg ? "fbreg" : "stack"); 1139 1140 stack = find_stack_state(state, dloc->type_offset); 1141 if (stack == NULL) { 1142 if (retry) { 1143 pr_debug_dtp(" : retry\n"); 1144 retry = false; 1145 1146 /* update type info it's the first store to the stack */ 1147 update_insn_state(state, dloc, cu_die, dl); 1148 goto again; 1149 } 1150 return PERF_TMR_NO_TYPE; 1151 } 1152 1153 if (stack->kind == TSR_KIND_CANARY) { 1154 setup_stack_canary(dloc); 1155 return PERF_TMR_BAIL_OUT; 1156 } 1157 1158 if (stack->kind != TSR_KIND_TYPE) 1159 return PERF_TMR_NO_TYPE; 1160 1161 *type_die = stack->type; 1162 /* Update the type offset from the start of slot */ 1163 dloc->type_offset -= stack->offset; 1164 1165 return PERF_TMR_OK; 1166 } 1167 1168 if (dloc->fb_cfa) { 1169 struct type_state_stack *stack; 1170 u64 pc = map__rip_2objdump(dloc->ms->map, dloc->ip); 1171 int fbreg, fboff; 1172 1173 pr_debug_dtp("cfa"); 1174 1175 if (die_get_cfa(dloc->di->dbg, pc, &fbreg, &fboff) < 0) 1176 fbreg = -1; 1177 1178 if (reg != fbreg) 1179 return PERF_TMR_NO_TYPE; 1180 1181 stack = find_stack_state(state, dloc->type_offset - fboff); 1182 if (stack == NULL) { 1183 if (retry) { 1184 pr_debug_dtp(" : retry\n"); 1185 retry = false; 1186 1187 /* update type info it's the first store to the stack */ 1188 update_insn_state(state, dloc, cu_die, dl); 1189 goto again; 1190 } 1191 return PERF_TMR_NO_TYPE; 1192 } 1193 1194 if (stack->kind == TSR_KIND_CANARY) { 1195 setup_stack_canary(dloc); 1196 return PERF_TMR_BAIL_OUT; 1197 } 1198 1199 if (stack->kind != TSR_KIND_TYPE) 1200 return PERF_TMR_NO_TYPE; 1201 1202 *type_die = stack->type; 1203 /* Update the type offset from the start of slot */ 1204 dloc->type_offset -= fboff + stack->offset; 1205 1206 return PERF_TMR_OK; 1207 } 1208 1209 check_kernel: 1210 if (dso__kernel(map__dso(dloc->ms->map))) { 1211 u64 addr; 1212 1213 /* Direct this-cpu access like "%gs:0x34740" */ 1214 if (dloc->op->segment == INSN_SEG_X86_GS && dloc->op->imm && 1215 arch__is(dloc->arch, "x86")) { 1216 pr_debug_dtp("this-cpu var"); 1217 1218 addr = dloc->op->offset; 1219 1220 if (get_global_var_type(cu_die, dloc, dloc->ip, addr, 1221 &offset, type_die)) { 1222 dloc->type_offset = offset; 1223 return PERF_TMR_OK; 1224 } 1225 return PERF_TMR_BAIL_OUT; 1226 } 1227 1228 /* Access to global variable like "-0x7dcf0500(,%rdx,8)" */ 1229 if (dloc->op->offset < 0 && reg != state->stack_reg) { 1230 addr = (s64) dloc->op->offset; 1231 1232 if (get_global_var_type(cu_die, dloc, dloc->ip, addr, 1233 &offset, type_die)) { 1234 pr_debug_dtp("global var"); 1235 1236 dloc->type_offset = offset; 1237 return PERF_TMR_OK; 1238 } 1239 return PERF_TMR_BAIL_OUT; 1240 } 1241 } 1242 1243 return PERF_TMR_UNKNOWN; 1244 } 1245 1246 /* Iterate instructions in basic blocks and update type table */ 1247 static enum type_match_result find_data_type_insn(struct data_loc_info *dloc, 1248 struct list_head *basic_blocks, 1249 struct die_var_type *var_types, 1250 Dwarf_Die *cu_die, 1251 Dwarf_Die *type_die) 1252 { 1253 struct type_state state; 1254 struct symbol *sym = dloc->ms->sym; 1255 struct annotation *notes = symbol__annotation(sym); 1256 struct annotated_basic_block *bb; 1257 enum type_match_result ret = PERF_TMR_UNKNOWN; 1258 1259 init_type_state(&state, dloc->arch); 1260 1261 list_for_each_entry(bb, basic_blocks, list) { 1262 struct disasm_line *dl = bb->begin; 1263 1264 BUG_ON(bb->begin->al.offset == -1 || bb->end->al.offset == -1); 1265 1266 pr_debug_dtp("bb: [%"PRIx64" - %"PRIx64"]\n", 1267 bb->begin->al.offset, bb->end->al.offset); 1268 1269 list_for_each_entry_from(dl, ¬es->src->source, al.node) { 1270 u64 this_ip = sym->start + dl->al.offset; 1271 u64 addr = map__rip_2objdump(dloc->ms->map, this_ip); 1272 1273 /* Skip comment or debug info lines */ 1274 if (dl->al.offset == -1) 1275 continue; 1276 1277 /* Update variable type at this address */ 1278 update_var_state(&state, dloc, addr, dl->al.offset, var_types); 1279 1280 if (this_ip == dloc->ip) { 1281 ret = check_matching_type(&state, dloc, 1282 cu_die, dl, type_die); 1283 pr_debug_dtp(" : %s\n", match_result_str(ret)); 1284 goto out; 1285 } 1286 1287 /* Update type table after processing the instruction */ 1288 update_insn_state(&state, dloc, cu_die, dl); 1289 if (dl == bb->end) 1290 break; 1291 } 1292 } 1293 1294 out: 1295 exit_type_state(&state); 1296 return ret; 1297 } 1298 1299 static int arch_supports_insn_tracking(struct data_loc_info *dloc) 1300 { 1301 if ((arch__is(dloc->arch, "x86")) || (arch__is(dloc->arch, "powerpc"))) 1302 return 1; 1303 return 0; 1304 } 1305 1306 /* 1307 * Construct a list of basic blocks for each scope with variables and try to find 1308 * the data type by updating a type state table through instructions. 1309 */ 1310 static enum type_match_result find_data_type_block(struct data_loc_info *dloc, 1311 Dwarf_Die *cu_die, 1312 Dwarf_Die *scopes, 1313 int nr_scopes, 1314 Dwarf_Die *type_die) 1315 { 1316 LIST_HEAD(basic_blocks); 1317 struct die_var_type *var_types = NULL; 1318 u64 src_ip, dst_ip, prev_dst_ip; 1319 enum type_match_result ret = PERF_TMR_UNKNOWN; 1320 1321 /* TODO: other architecture support */ 1322 if (!arch_supports_insn_tracking(dloc)) 1323 return PERF_TMR_BAIL_OUT; 1324 1325 prev_dst_ip = dst_ip = dloc->ip; 1326 for (int i = nr_scopes - 1; i >= 0; i--) { 1327 Dwarf_Addr base, start, end; 1328 LIST_HEAD(this_blocks); 1329 1330 if (dwarf_ranges(&scopes[i], 0, &base, &start, &end) < 0) 1331 break; 1332 1333 pr_debug_dtp("scope: [%d/%d] ", i + 1, nr_scopes); 1334 pr_debug_scope(&scopes[i]); 1335 1336 src_ip = map__objdump_2rip(dloc->ms->map, start); 1337 1338 again: 1339 /* Get basic blocks for this scope */ 1340 if (annotate_get_basic_blocks(dloc->ms->sym, src_ip, dst_ip, 1341 &this_blocks) < 0) { 1342 /* Try previous block if they are not connected */ 1343 if (prev_dst_ip != dst_ip) { 1344 dst_ip = prev_dst_ip; 1345 goto again; 1346 } 1347 1348 pr_debug_dtp("cannot find a basic block from %"PRIx64" to %"PRIx64"\n", 1349 src_ip - dloc->ms->sym->start, 1350 dst_ip - dloc->ms->sym->start); 1351 continue; 1352 } 1353 prepend_basic_blocks(&this_blocks, &basic_blocks); 1354 1355 /* Get variable info for this scope and add to var_types list */ 1356 die_collect_vars(&scopes[i], &var_types); 1357 fixup_var_address(var_types, start); 1358 1359 /* Find from start of this scope to the target instruction */ 1360 ret = find_data_type_insn(dloc, &basic_blocks, var_types, 1361 cu_die, type_die); 1362 if (ret == PERF_TMR_OK) { 1363 char buf[64]; 1364 int offset = dloc->op->offset; 1365 const char *offset_sign = ""; 1366 1367 if (offset < 0) { 1368 offset = -offset; 1369 offset_sign = "-"; 1370 } 1371 1372 if (dloc->op->multi_regs) 1373 snprintf(buf, sizeof(buf), "reg%d, reg%d", 1374 dloc->op->reg1, dloc->op->reg2); 1375 else 1376 snprintf(buf, sizeof(buf), "reg%d", dloc->op->reg1); 1377 1378 pr_debug_dtp("found by insn track: %s%#x(%s) type-offset=%#x\n", 1379 offset_sign, offset, buf, dloc->type_offset); 1380 break; 1381 } 1382 1383 if (ret == PERF_TMR_BAIL_OUT) 1384 break; 1385 1386 /* Go up to the next scope and find blocks to the start */ 1387 prev_dst_ip = dst_ip; 1388 dst_ip = src_ip; 1389 } 1390 1391 delete_basic_blocks(&basic_blocks); 1392 delete_var_types(var_types); 1393 return ret; 1394 } 1395 1396 /* The result will be saved in @type_die */ 1397 static int find_data_type_die(struct data_loc_info *dloc, Dwarf_Die *type_die) 1398 { 1399 struct annotated_op_loc *loc = dloc->op; 1400 Dwarf_Die cu_die, var_die; 1401 Dwarf_Die *scopes = NULL; 1402 int reg, offset = loc->offset; 1403 int ret = -1; 1404 int i, nr_scopes; 1405 int fbreg = -1; 1406 int fb_offset = 0; 1407 bool is_fbreg = false; 1408 bool found = false; 1409 u64 pc; 1410 char buf[64]; 1411 enum type_match_result result = PERF_TMR_UNKNOWN; 1412 const char *offset_sign = ""; 1413 1414 if (dloc->op->multi_regs) 1415 snprintf(buf, sizeof(buf), "reg%d, reg%d", dloc->op->reg1, dloc->op->reg2); 1416 else if (dloc->op->reg1 == DWARF_REG_PC) 1417 snprintf(buf, sizeof(buf), "PC"); 1418 else 1419 snprintf(buf, sizeof(buf), "reg%d", dloc->op->reg1); 1420 1421 if (offset < 0) { 1422 offset = -offset; 1423 offset_sign = "-"; 1424 } 1425 1426 pr_debug_dtp("-----------------------------------------------------------\n"); 1427 pr_debug_dtp("find data type for %s%#x(%s) at %s+%#"PRIx64"\n", 1428 offset_sign, offset, buf, 1429 dloc->ms->sym->name, dloc->ip - dloc->ms->sym->start); 1430 1431 /* 1432 * IP is a relative instruction address from the start of the map, as 1433 * it can be randomized/relocated, it needs to translate to PC which is 1434 * a file address for DWARF processing. 1435 */ 1436 pc = map__rip_2objdump(dloc->ms->map, dloc->ip); 1437 1438 /* Get a compile_unit for this address */ 1439 if (!find_cu_die(dloc->di, pc, &cu_die)) { 1440 pr_debug_dtp("cannot find CU for address %"PRIx64"\n", pc); 1441 ann_data_stat.no_cuinfo++; 1442 return -1; 1443 } 1444 1445 reg = loc->reg1; 1446 offset = loc->offset; 1447 1448 pr_debug_dtp("CU for %s (die:%#lx)\n", 1449 dwarf_diename(&cu_die), (long)dwarf_dieoffset(&cu_die)); 1450 1451 if (reg == DWARF_REG_PC) { 1452 if (get_global_var_type(&cu_die, dloc, dloc->ip, dloc->var_addr, 1453 &offset, type_die)) { 1454 dloc->type_offset = offset; 1455 1456 pr_debug_dtp("found by addr=%#"PRIx64" type_offset=%#x\n", 1457 dloc->var_addr, offset); 1458 pr_debug_type_name(type_die, TSR_KIND_TYPE); 1459 found = true; 1460 goto out; 1461 } 1462 } 1463 1464 /* Get a list of nested scopes - i.e. (inlined) functions and blocks. */ 1465 nr_scopes = die_get_scopes(&cu_die, pc, &scopes); 1466 1467 if (reg != DWARF_REG_PC && dwarf_hasattr(&scopes[0], DW_AT_frame_base)) { 1468 Dwarf_Attribute attr; 1469 Dwarf_Block block; 1470 1471 /* Check if the 'reg' is assigned as frame base register */ 1472 if (dwarf_attr(&scopes[0], DW_AT_frame_base, &attr) != NULL && 1473 dwarf_formblock(&attr, &block) == 0 && block.length == 1) { 1474 switch (*block.data) { 1475 case DW_OP_reg0 ... DW_OP_reg31: 1476 fbreg = dloc->fbreg = *block.data - DW_OP_reg0; 1477 break; 1478 case DW_OP_call_frame_cfa: 1479 dloc->fb_cfa = true; 1480 if (die_get_cfa(dloc->di->dbg, pc, &fbreg, 1481 &fb_offset) < 0) 1482 fbreg = -1; 1483 break; 1484 default: 1485 break; 1486 } 1487 1488 pr_debug_dtp("frame base: cfa=%d fbreg=%d\n", 1489 dloc->fb_cfa, fbreg); 1490 } 1491 } 1492 1493 retry: 1494 is_fbreg = (reg == fbreg); 1495 if (is_fbreg) 1496 offset = loc->offset - fb_offset; 1497 1498 /* Search from the inner-most scope to the outer */ 1499 for (i = nr_scopes - 1; i >= 0; i--) { 1500 Dwarf_Die mem_die; 1501 int type_offset = offset; 1502 1503 if (reg == DWARF_REG_PC) { 1504 if (!die_find_variable_by_addr(&scopes[i], dloc->var_addr, 1505 &var_die, &type_offset)) 1506 continue; 1507 } else { 1508 /* Look up variables/parameters in this scope */ 1509 if (!die_find_variable_by_reg(&scopes[i], pc, reg, 1510 &type_offset, is_fbreg, &var_die)) 1511 continue; 1512 } 1513 1514 pr_debug_dtp("found \"%s\" (die: %#lx) in scope=%d/%d (die: %#lx) ", 1515 dwarf_diename(&var_die), (long)dwarf_dieoffset(&var_die), 1516 i+1, nr_scopes, (long)dwarf_dieoffset(&scopes[i])); 1517 1518 /* Found a variable, see if it's correct */ 1519 result = check_variable(dloc, &var_die, &mem_die, reg, type_offset, is_fbreg); 1520 if (result == PERF_TMR_OK) { 1521 if (reg == DWARF_REG_PC) { 1522 pr_debug_dtp("addr=%#"PRIx64" type_offset=%#x\n", 1523 dloc->var_addr, type_offset); 1524 } else if (reg == DWARF_REG_FB || is_fbreg) { 1525 pr_debug_dtp("stack_offset=%#x type_offset=%#x\n", 1526 fb_offset, type_offset); 1527 } else { 1528 pr_debug_dtp("type_offset=%#x\n", type_offset); 1529 } 1530 1531 if (!found || is_better_type(type_die, &mem_die)) { 1532 *type_die = mem_die; 1533 dloc->type_offset = type_offset; 1534 found = true; 1535 } 1536 } else { 1537 pr_debug_dtp("failed: %s\n", match_result_str(result)); 1538 } 1539 1540 pr_debug_location(&var_die, pc, reg); 1541 pr_debug_type_name(&mem_die, TSR_KIND_TYPE); 1542 } 1543 1544 if (!found && loc->multi_regs && reg == loc->reg1 && loc->reg1 != loc->reg2) { 1545 reg = loc->reg2; 1546 goto retry; 1547 } 1548 1549 if (!found && reg != DWARF_REG_PC) { 1550 result = find_data_type_block(dloc, &cu_die, scopes, 1551 nr_scopes, type_die); 1552 if (result == PERF_TMR_OK) { 1553 ann_data_stat.insn_track++; 1554 found = true; 1555 } 1556 } 1557 1558 out: 1559 pr_debug_dtp("final result: "); 1560 if (found) { 1561 pr_debug_type_name(type_die, TSR_KIND_TYPE); 1562 ret = 0; 1563 } else { 1564 switch (result) { 1565 case PERF_TMR_NO_TYPE: 1566 case PERF_TMR_NO_POINTER: 1567 pr_debug_dtp("%s\n", match_result_str(result)); 1568 ann_data_stat.no_typeinfo++; 1569 break; 1570 case PERF_TMR_NO_SIZE: 1571 pr_debug_dtp("%s\n", match_result_str(result)); 1572 ann_data_stat.invalid_size++; 1573 break; 1574 case PERF_TMR_BAD_OFFSET: 1575 pr_debug_dtp("%s\n", match_result_str(result)); 1576 ann_data_stat.bad_offset++; 1577 break; 1578 case PERF_TMR_UNKNOWN: 1579 case PERF_TMR_BAIL_OUT: 1580 case PERF_TMR_OK: /* should not reach here */ 1581 default: 1582 pr_debug_dtp("no variable found\n"); 1583 ann_data_stat.no_var++; 1584 break; 1585 } 1586 ret = -1; 1587 } 1588 1589 free(scopes); 1590 return ret; 1591 } 1592 1593 /** 1594 * find_data_type - Return a data type at the location 1595 * @dloc: data location 1596 * 1597 * This functions searches the debug information of the binary to get the data 1598 * type it accesses. The exact location is expressed by (ip, reg, offset) 1599 * for pointer variables or (ip, addr) for global variables. Note that global 1600 * variables might update the @dloc->type_offset after finding the start of the 1601 * variable. If it cannot find a global variable by address, it tried to find 1602 * a declaration of the variable using var_name. In that case, @dloc->offset 1603 * won't be updated. 1604 * 1605 * It return %NULL if not found. 1606 */ 1607 struct annotated_data_type *find_data_type(struct data_loc_info *dloc) 1608 { 1609 struct dso *dso = map__dso(dloc->ms->map); 1610 Dwarf_Die type_die; 1611 1612 /* 1613 * The type offset is the same as instruction offset by default. 1614 * But when finding a global variable, the offset won't be valid. 1615 */ 1616 dloc->type_offset = dloc->op->offset; 1617 1618 dloc->fbreg = -1; 1619 1620 if (find_data_type_die(dloc, &type_die) < 0) 1621 return NULL; 1622 1623 return dso__findnew_data_type(dso, &type_die); 1624 } 1625 1626 static int alloc_data_type_histograms(struct annotated_data_type *adt, int nr_entries) 1627 { 1628 int i; 1629 size_t sz = sizeof(struct type_hist); 1630 1631 sz += sizeof(struct type_hist_entry) * adt->self.size; 1632 1633 /* Allocate a table of pointers for each event */ 1634 adt->histograms = calloc(nr_entries, sizeof(*adt->histograms)); 1635 if (adt->histograms == NULL) 1636 return -ENOMEM; 1637 1638 /* 1639 * Each histogram is allocated for the whole size of the type. 1640 * TODO: Probably we can move the histogram to members. 1641 */ 1642 for (i = 0; i < nr_entries; i++) { 1643 adt->histograms[i] = zalloc(sz); 1644 if (adt->histograms[i] == NULL) 1645 goto err; 1646 } 1647 1648 adt->nr_histograms = nr_entries; 1649 return 0; 1650 1651 err: 1652 while (--i >= 0) 1653 zfree(&(adt->histograms[i])); 1654 zfree(&adt->histograms); 1655 return -ENOMEM; 1656 } 1657 1658 static void delete_data_type_histograms(struct annotated_data_type *adt) 1659 { 1660 for (int i = 0; i < adt->nr_histograms; i++) 1661 zfree(&(adt->histograms[i])); 1662 1663 zfree(&adt->histograms); 1664 adt->nr_histograms = 0; 1665 } 1666 1667 void annotated_data_type__tree_delete(struct rb_root *root) 1668 { 1669 struct annotated_data_type *pos; 1670 1671 while (!RB_EMPTY_ROOT(root)) { 1672 struct rb_node *node = rb_first(root); 1673 1674 rb_erase(node, root); 1675 pos = rb_entry(node, struct annotated_data_type, node); 1676 delete_members(&pos->self); 1677 delete_data_type_histograms(pos); 1678 zfree(&pos->self.type_name); 1679 free(pos); 1680 } 1681 } 1682 1683 /** 1684 * annotated_data_type__update_samples - Update histogram 1685 * @adt: Data type to update 1686 * @evsel: Event to update 1687 * @offset: Offset in the type 1688 * @nr_samples: Number of samples at this offset 1689 * @period: Event count at this offset 1690 * 1691 * This function updates type histogram at @ofs for @evsel. Samples are 1692 * aggregated before calling this function so it can be called with more 1693 * than one samples at a certain offset. 1694 */ 1695 int annotated_data_type__update_samples(struct annotated_data_type *adt, 1696 struct evsel *evsel, int offset, 1697 int nr_samples, u64 period) 1698 { 1699 struct type_hist *h; 1700 1701 if (adt == NULL) 1702 return 0; 1703 1704 if (adt->histograms == NULL) { 1705 int nr = evsel->evlist->core.nr_entries; 1706 1707 if (alloc_data_type_histograms(adt, nr) < 0) 1708 return -1; 1709 } 1710 1711 if (offset < 0 || offset >= adt->self.size) 1712 return -1; 1713 1714 h = adt->histograms[evsel->core.idx]; 1715 1716 h->nr_samples += nr_samples; 1717 h->addr[offset].nr_samples += nr_samples; 1718 h->period += period; 1719 h->addr[offset].period += period; 1720 return 0; 1721 } 1722 1723 static void print_annotated_data_header(struct hist_entry *he, struct evsel *evsel) 1724 { 1725 struct dso *dso = map__dso(he->ms.map); 1726 int nr_members = 1; 1727 int nr_samples = he->stat.nr_events; 1728 int width = 7; 1729 const char *val_hdr = "Percent"; 1730 1731 if (evsel__is_group_event(evsel)) { 1732 struct hist_entry *pair; 1733 1734 list_for_each_entry(pair, &he->pairs.head, pairs.node) 1735 nr_samples += pair->stat.nr_events; 1736 } 1737 1738 printf("Annotate type: '%s' in %s (%d samples):\n", 1739 he->mem_type->self.type_name, dso__name(dso), nr_samples); 1740 1741 if (evsel__is_group_event(evsel)) { 1742 struct evsel *pos; 1743 int i = 0; 1744 1745 nr_members = 0; 1746 for_each_group_evsel(pos, evsel) { 1747 if (symbol_conf.skip_empty && 1748 evsel__hists(pos)->stats.nr_samples == 0) 1749 continue; 1750 1751 printf(" event[%d] = %s\n", i++, pos->name); 1752 nr_members++; 1753 } 1754 } 1755 1756 if (symbol_conf.show_total_period) { 1757 width = 11; 1758 val_hdr = "Period"; 1759 } else if (symbol_conf.show_nr_samples) { 1760 width = 7; 1761 val_hdr = "Samples"; 1762 } 1763 1764 printf("============================================================================\n"); 1765 printf("%*s %10s %10s %s\n", (width + 1) * nr_members, val_hdr, 1766 "offset", "size", "field"); 1767 } 1768 1769 static void print_annotated_data_value(struct type_hist *h, u64 period, int nr_samples) 1770 { 1771 double percent = h->period ? (100.0 * period / h->period) : 0; 1772 const char *color = get_percent_color(percent); 1773 1774 if (symbol_conf.show_total_period) 1775 color_fprintf(stdout, color, " %11" PRIu64, period); 1776 else if (symbol_conf.show_nr_samples) 1777 color_fprintf(stdout, color, " %7d", nr_samples); 1778 else 1779 color_fprintf(stdout, color, " %7.2f", percent); 1780 } 1781 1782 static void print_annotated_data_type(struct annotated_data_type *mem_type, 1783 struct annotated_member *member, 1784 struct evsel *evsel, int indent) 1785 { 1786 struct annotated_member *child; 1787 struct type_hist *h = mem_type->histograms[evsel->core.idx]; 1788 int i, nr_events = 0, samples = 0; 1789 u64 period = 0; 1790 int width = symbol_conf.show_total_period ? 11 : 7; 1791 struct evsel *pos; 1792 1793 for_each_group_evsel(pos, evsel) { 1794 h = mem_type->histograms[pos->core.idx]; 1795 1796 if (symbol_conf.skip_empty && 1797 evsel__hists(pos)->stats.nr_samples == 0) 1798 continue; 1799 1800 samples = 0; 1801 period = 0; 1802 for (i = 0; i < member->size; i++) { 1803 samples += h->addr[member->offset + i].nr_samples; 1804 period += h->addr[member->offset + i].period; 1805 } 1806 print_annotated_data_value(h, period, samples); 1807 nr_events++; 1808 } 1809 1810 printf(" %#10x %#10x %*s%s\t%s", 1811 member->offset, member->size, indent, "", member->type_name, 1812 member->var_name ?: ""); 1813 1814 if (!list_empty(&member->children)) 1815 printf(" {\n"); 1816 1817 list_for_each_entry(child, &member->children, node) 1818 print_annotated_data_type(mem_type, child, evsel, indent + 4); 1819 1820 if (!list_empty(&member->children)) 1821 printf("%*s}", (width + 1) * nr_events + 24 + indent, ""); 1822 printf(";\n"); 1823 } 1824 1825 int hist_entry__annotate_data_tty(struct hist_entry *he, struct evsel *evsel) 1826 { 1827 print_annotated_data_header(he, evsel); 1828 print_annotated_data_type(he->mem_type, &he->mem_type->self, evsel, 0); 1829 printf("\n"); 1830 1831 /* move to the next entry */ 1832 return '>'; 1833 } 1834