xref: /linux/tools/perf/util/annotate-data.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Convert sample address to data type using DWARF debug info.
4  *
5  * Written by Namhyung Kim <namhyung@kernel.org>
6  */
7 
8 #include <stdio.h>
9 #include <stdlib.h>
10 #include <inttypes.h>
11 
12 #include "annotate.h"
13 #include "annotate-data.h"
14 #include "debuginfo.h"
15 #include "debug.h"
16 #include "dso.h"
17 #include "dwarf-regs.h"
18 #include "evsel.h"
19 #include "evlist.h"
20 #include "map.h"
21 #include "map_symbol.h"
22 #include "strbuf.h"
23 #include "symbol.h"
24 #include "symbol_conf.h"
25 
26 /*
27  * Compare type name and size to maintain them in a tree.
28  * I'm not sure if DWARF would have information of a single type in many
29  * different places (compilation units).  If not, it could compare the
30  * offset of the type entry in the .debug_info section.
31  */
32 static int data_type_cmp(const void *_key, const struct rb_node *node)
33 {
34 	const struct annotated_data_type *key = _key;
35 	struct annotated_data_type *type;
36 
37 	type = rb_entry(node, struct annotated_data_type, node);
38 
39 	if (key->self.size != type->self.size)
40 		return key->self.size - type->self.size;
41 	return strcmp(key->self.type_name, type->self.type_name);
42 }
43 
44 static bool data_type_less(struct rb_node *node_a, const struct rb_node *node_b)
45 {
46 	struct annotated_data_type *a, *b;
47 
48 	a = rb_entry(node_a, struct annotated_data_type, node);
49 	b = rb_entry(node_b, struct annotated_data_type, node);
50 
51 	if (a->self.size != b->self.size)
52 		return a->self.size < b->self.size;
53 	return strcmp(a->self.type_name, b->self.type_name) < 0;
54 }
55 
56 /* Recursively add new members for struct/union */
57 static int __add_member_cb(Dwarf_Die *die, void *arg)
58 {
59 	struct annotated_member *parent = arg;
60 	struct annotated_member *member;
61 	Dwarf_Die member_type, die_mem;
62 	Dwarf_Word size, loc;
63 	Dwarf_Attribute attr;
64 	struct strbuf sb;
65 	int tag;
66 
67 	if (dwarf_tag(die) != DW_TAG_member)
68 		return DIE_FIND_CB_SIBLING;
69 
70 	member = zalloc(sizeof(*member));
71 	if (member == NULL)
72 		return DIE_FIND_CB_END;
73 
74 	strbuf_init(&sb, 32);
75 	die_get_typename(die, &sb);
76 
77 	die_get_real_type(die, &member_type);
78 	if (dwarf_aggregate_size(&member_type, &size) < 0)
79 		size = 0;
80 
81 	if (!dwarf_attr_integrate(die, DW_AT_data_member_location, &attr))
82 		loc = 0;
83 	else
84 		dwarf_formudata(&attr, &loc);
85 
86 	member->type_name = strbuf_detach(&sb, NULL);
87 	/* member->var_name can be NULL */
88 	if (dwarf_diename(die))
89 		member->var_name = strdup(dwarf_diename(die));
90 	member->size = size;
91 	member->offset = loc + parent->offset;
92 	INIT_LIST_HEAD(&member->children);
93 	list_add_tail(&member->node, &parent->children);
94 
95 	tag = dwarf_tag(&member_type);
96 	switch (tag) {
97 	case DW_TAG_structure_type:
98 	case DW_TAG_union_type:
99 		die_find_child(&member_type, __add_member_cb, member, &die_mem);
100 		break;
101 	default:
102 		break;
103 	}
104 	return DIE_FIND_CB_SIBLING;
105 }
106 
107 static void add_member_types(struct annotated_data_type *parent, Dwarf_Die *type)
108 {
109 	Dwarf_Die die_mem;
110 
111 	die_find_child(type, __add_member_cb, &parent->self, &die_mem);
112 }
113 
114 static void delete_members(struct annotated_member *member)
115 {
116 	struct annotated_member *child, *tmp;
117 
118 	list_for_each_entry_safe(child, tmp, &member->children, node) {
119 		list_del(&child->node);
120 		delete_members(child);
121 		free(child->type_name);
122 		free(child->var_name);
123 		free(child);
124 	}
125 }
126 
127 static struct annotated_data_type *dso__findnew_data_type(struct dso *dso,
128 							  Dwarf_Die *type_die)
129 {
130 	struct annotated_data_type *result = NULL;
131 	struct annotated_data_type key;
132 	struct rb_node *node;
133 	struct strbuf sb;
134 	char *type_name;
135 	Dwarf_Word size;
136 
137 	strbuf_init(&sb, 32);
138 	if (die_get_typename_from_type(type_die, &sb) < 0)
139 		strbuf_add(&sb, "(unknown type)", 14);
140 	type_name = strbuf_detach(&sb, NULL);
141 	dwarf_aggregate_size(type_die, &size);
142 
143 	/* Check existing nodes in dso->data_types tree */
144 	key.self.type_name = type_name;
145 	key.self.size = size;
146 	node = rb_find(&key, &dso->data_types, data_type_cmp);
147 	if (node) {
148 		result = rb_entry(node, struct annotated_data_type, node);
149 		free(type_name);
150 		return result;
151 	}
152 
153 	/* If not, add a new one */
154 	result = zalloc(sizeof(*result));
155 	if (result == NULL) {
156 		free(type_name);
157 		return NULL;
158 	}
159 
160 	result->self.type_name = type_name;
161 	result->self.size = size;
162 	INIT_LIST_HEAD(&result->self.children);
163 
164 	if (symbol_conf.annotate_data_member)
165 		add_member_types(result, type_die);
166 
167 	rb_add(&result->node, &dso->data_types, data_type_less);
168 	return result;
169 }
170 
171 static bool find_cu_die(struct debuginfo *di, u64 pc, Dwarf_Die *cu_die)
172 {
173 	Dwarf_Off off, next_off;
174 	size_t header_size;
175 
176 	if (dwarf_addrdie(di->dbg, pc, cu_die) != NULL)
177 		return cu_die;
178 
179 	/*
180 	 * There are some kernels don't have full aranges and contain only a few
181 	 * aranges entries.  Fallback to iterate all CU entries in .debug_info
182 	 * in case it's missing.
183 	 */
184 	off = 0;
185 	while (dwarf_nextcu(di->dbg, off, &next_off, &header_size,
186 			    NULL, NULL, NULL) == 0) {
187 		if (dwarf_offdie(di->dbg, off + header_size, cu_die) &&
188 		    dwarf_haspc(cu_die, pc))
189 			return true;
190 
191 		off = next_off;
192 	}
193 	return false;
194 }
195 
196 /* The type info will be saved in @type_die */
197 static int check_variable(Dwarf_Die *var_die, Dwarf_Die *type_die, int offset,
198 			  bool is_pointer)
199 {
200 	Dwarf_Word size;
201 
202 	/* Get the type of the variable */
203 	if (die_get_real_type(var_die, type_die) == NULL) {
204 		pr_debug("variable has no type\n");
205 		ann_data_stat.no_typeinfo++;
206 		return -1;
207 	}
208 
209 	/*
210 	 * Usually it expects a pointer type for a memory access.
211 	 * Convert to a real type it points to.  But global variables
212 	 * and local variables are accessed directly without a pointer.
213 	 */
214 	if (is_pointer) {
215 		if ((dwarf_tag(type_die) != DW_TAG_pointer_type &&
216 		     dwarf_tag(type_die) != DW_TAG_array_type) ||
217 		    die_get_real_type(type_die, type_die) == NULL) {
218 			pr_debug("no pointer or no type\n");
219 			ann_data_stat.no_typeinfo++;
220 			return -1;
221 		}
222 	}
223 
224 	/* Get the size of the actual type */
225 	if (dwarf_aggregate_size(type_die, &size) < 0) {
226 		pr_debug("type size is unknown\n");
227 		ann_data_stat.invalid_size++;
228 		return -1;
229 	}
230 
231 	/* Minimal sanity check */
232 	if ((unsigned)offset >= size) {
233 		pr_debug("offset: %d is bigger than size: %" PRIu64 "\n", offset, size);
234 		ann_data_stat.bad_offset++;
235 		return -1;
236 	}
237 
238 	return 0;
239 }
240 
241 /* The result will be saved in @type_die */
242 static int find_data_type_die(struct debuginfo *di, u64 pc, u64 addr,
243 			      const char *var_name, struct annotated_op_loc *loc,
244 			      Dwarf_Die *type_die)
245 {
246 	Dwarf_Die cu_die, var_die;
247 	Dwarf_Die *scopes = NULL;
248 	int reg, offset;
249 	int ret = -1;
250 	int i, nr_scopes;
251 	int fbreg = -1;
252 	bool is_fbreg = false;
253 	int fb_offset = 0;
254 
255 	/* Get a compile_unit for this address */
256 	if (!find_cu_die(di, pc, &cu_die)) {
257 		pr_debug("cannot find CU for address %" PRIx64 "\n", pc);
258 		ann_data_stat.no_cuinfo++;
259 		return -1;
260 	}
261 
262 	reg = loc->reg1;
263 	offset = loc->offset;
264 
265 	if (reg == DWARF_REG_PC) {
266 		if (die_find_variable_by_addr(&cu_die, pc, addr, &var_die, &offset)) {
267 			ret = check_variable(&var_die, type_die, offset,
268 					     /*is_pointer=*/false);
269 			loc->offset = offset;
270 			goto out;
271 		}
272 
273 		if (var_name && die_find_variable_at(&cu_die, var_name, pc,
274 						     &var_die)) {
275 			ret = check_variable(&var_die, type_die, 0,
276 					     /*is_pointer=*/false);
277 			/* loc->offset will be updated by the caller */
278 			goto out;
279 		}
280 	}
281 
282 	/* Get a list of nested scopes - i.e. (inlined) functions and blocks. */
283 	nr_scopes = die_get_scopes(&cu_die, pc, &scopes);
284 
285 	if (reg != DWARF_REG_PC && dwarf_hasattr(&scopes[0], DW_AT_frame_base)) {
286 		Dwarf_Attribute attr;
287 		Dwarf_Block block;
288 
289 		/* Check if the 'reg' is assigned as frame base register */
290 		if (dwarf_attr(&scopes[0], DW_AT_frame_base, &attr) != NULL &&
291 		    dwarf_formblock(&attr, &block) == 0 && block.length == 1) {
292 			switch (*block.data) {
293 			case DW_OP_reg0 ... DW_OP_reg31:
294 				fbreg = *block.data - DW_OP_reg0;
295 				break;
296 			case DW_OP_call_frame_cfa:
297 				if (die_get_cfa(di->dbg, pc, &fbreg,
298 						&fb_offset) < 0)
299 					fbreg = -1;
300 				break;
301 			default:
302 				break;
303 			}
304 		}
305 	}
306 
307 retry:
308 	is_fbreg = (reg == fbreg);
309 	if (is_fbreg)
310 		offset = loc->offset - fb_offset;
311 
312 	/* Search from the inner-most scope to the outer */
313 	for (i = nr_scopes - 1; i >= 0; i--) {
314 		if (reg == DWARF_REG_PC) {
315 			if (!die_find_variable_by_addr(&scopes[i], pc, addr,
316 						       &var_die, &offset))
317 				continue;
318 		} else {
319 			/* Look up variables/parameters in this scope */
320 			if (!die_find_variable_by_reg(&scopes[i], pc, reg,
321 						      &offset, is_fbreg, &var_die))
322 				continue;
323 		}
324 
325 		/* Found a variable, see if it's correct */
326 		ret = check_variable(&var_die, type_die, offset,
327 				     reg != DWARF_REG_PC && !is_fbreg);
328 		loc->offset = offset;
329 		goto out;
330 	}
331 
332 	if (loc->multi_regs && reg == loc->reg1 && loc->reg1 != loc->reg2) {
333 		reg = loc->reg2;
334 		goto retry;
335 	}
336 
337 	if (ret < 0)
338 		ann_data_stat.no_var++;
339 
340 out:
341 	free(scopes);
342 	return ret;
343 }
344 
345 /**
346  * find_data_type - Return a data type at the location
347  * @ms: map and symbol at the location
348  * @ip: instruction address of the memory access
349  * @loc: instruction operand location
350  * @addr: data address of the memory access
351  * @var_name: global variable name
352  *
353  * This functions searches the debug information of the binary to get the data
354  * type it accesses.  The exact location is expressed by (@ip, reg, offset)
355  * for pointer variables or (@ip, @addr) for global variables.  Note that global
356  * variables might update the @loc->offset after finding the start of the variable.
357  * If it cannot find a global variable by address, it tried to fine a declaration
358  * of the variable using @var_name.  In that case, @loc->offset won't be updated.
359  *
360  * It return %NULL if not found.
361  */
362 struct annotated_data_type *find_data_type(struct map_symbol *ms, u64 ip,
363 					   struct annotated_op_loc *loc, u64 addr,
364 					   const char *var_name)
365 {
366 	struct annotated_data_type *result = NULL;
367 	struct dso *dso = map__dso(ms->map);
368 	struct debuginfo *di;
369 	Dwarf_Die type_die;
370 	u64 pc;
371 
372 	di = debuginfo__new(dso->long_name);
373 	if (di == NULL) {
374 		pr_debug("cannot get the debug info\n");
375 		return NULL;
376 	}
377 
378 	/*
379 	 * IP is a relative instruction address from the start of the map, as
380 	 * it can be randomized/relocated, it needs to translate to PC which is
381 	 * a file address for DWARF processing.
382 	 */
383 	pc = map__rip_2objdump(ms->map, ip);
384 	if (find_data_type_die(di, pc, addr, var_name, loc, &type_die) < 0)
385 		goto out;
386 
387 	result = dso__findnew_data_type(dso, &type_die);
388 
389 out:
390 	debuginfo__delete(di);
391 	return result;
392 }
393 
394 static int alloc_data_type_histograms(struct annotated_data_type *adt, int nr_entries)
395 {
396 	int i;
397 	size_t sz = sizeof(struct type_hist);
398 
399 	sz += sizeof(struct type_hist_entry) * adt->self.size;
400 
401 	/* Allocate a table of pointers for each event */
402 	adt->nr_histograms = nr_entries;
403 	adt->histograms = calloc(nr_entries, sizeof(*adt->histograms));
404 	if (adt->histograms == NULL)
405 		return -ENOMEM;
406 
407 	/*
408 	 * Each histogram is allocated for the whole size of the type.
409 	 * TODO: Probably we can move the histogram to members.
410 	 */
411 	for (i = 0; i < nr_entries; i++) {
412 		adt->histograms[i] = zalloc(sz);
413 		if (adt->histograms[i] == NULL)
414 			goto err;
415 	}
416 	return 0;
417 
418 err:
419 	while (--i >= 0)
420 		free(adt->histograms[i]);
421 	free(adt->histograms);
422 	return -ENOMEM;
423 }
424 
425 static void delete_data_type_histograms(struct annotated_data_type *adt)
426 {
427 	for (int i = 0; i < adt->nr_histograms; i++)
428 		free(adt->histograms[i]);
429 	free(adt->histograms);
430 }
431 
432 void annotated_data_type__tree_delete(struct rb_root *root)
433 {
434 	struct annotated_data_type *pos;
435 
436 	while (!RB_EMPTY_ROOT(root)) {
437 		struct rb_node *node = rb_first(root);
438 
439 		rb_erase(node, root);
440 		pos = rb_entry(node, struct annotated_data_type, node);
441 		delete_members(&pos->self);
442 		delete_data_type_histograms(pos);
443 		free(pos->self.type_name);
444 		free(pos);
445 	}
446 }
447 
448 /**
449  * annotated_data_type__update_samples - Update histogram
450  * @adt: Data type to update
451  * @evsel: Event to update
452  * @offset: Offset in the type
453  * @nr_samples: Number of samples at this offset
454  * @period: Event count at this offset
455  *
456  * This function updates type histogram at @ofs for @evsel.  Samples are
457  * aggregated before calling this function so it can be called with more
458  * than one samples at a certain offset.
459  */
460 int annotated_data_type__update_samples(struct annotated_data_type *adt,
461 					struct evsel *evsel, int offset,
462 					int nr_samples, u64 period)
463 {
464 	struct type_hist *h;
465 
466 	if (adt == NULL)
467 		return 0;
468 
469 	if (adt->histograms == NULL) {
470 		int nr = evsel->evlist->core.nr_entries;
471 
472 		if (alloc_data_type_histograms(adt, nr) < 0)
473 			return -1;
474 	}
475 
476 	if (offset < 0 || offset >= adt->self.size)
477 		return -1;
478 
479 	h = adt->histograms[evsel->core.idx];
480 
481 	h->nr_samples += nr_samples;
482 	h->addr[offset].nr_samples += nr_samples;
483 	h->period += period;
484 	h->addr[offset].period += period;
485 	return 0;
486 }
487