1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * Convert sample address to data type using DWARF debug info. 4 * 5 * Written by Namhyung Kim <namhyung@kernel.org> 6 */ 7 8 #include <stdio.h> 9 #include <stdlib.h> 10 #include <inttypes.h> 11 #include <linux/zalloc.h> 12 13 #include "annotate.h" 14 #include "annotate-data.h" 15 #include "debuginfo.h" 16 #include "debug.h" 17 #include "dso.h" 18 #include "dwarf-regs.h" 19 #include "evsel.h" 20 #include "evlist.h" 21 #include "map.h" 22 #include "map_symbol.h" 23 #include "sort.h" 24 #include "strbuf.h" 25 #include "symbol.h" 26 #include "symbol_conf.h" 27 #include "thread.h" 28 29 /* register number of the stack pointer */ 30 #define X86_REG_SP 7 31 32 static void delete_var_types(struct die_var_type *var_types); 33 34 #define pr_debug_dtp(fmt, ...) \ 35 do { \ 36 if (debug_type_profile) \ 37 pr_info(fmt, ##__VA_ARGS__); \ 38 else \ 39 pr_debug3(fmt, ##__VA_ARGS__); \ 40 } while (0) 41 42 void pr_debug_type_name(Dwarf_Die *die, enum type_state_kind kind) 43 { 44 struct strbuf sb; 45 char *str; 46 Dwarf_Word size = 0; 47 48 if (!debug_type_profile && verbose < 3) 49 return; 50 51 switch (kind) { 52 case TSR_KIND_INVALID: 53 pr_info("\n"); 54 return; 55 case TSR_KIND_PERCPU_BASE: 56 pr_info(" percpu base\n"); 57 return; 58 case TSR_KIND_CONST: 59 pr_info(" constant\n"); 60 return; 61 case TSR_KIND_POINTER: 62 pr_info(" pointer"); 63 /* it also prints the type info */ 64 break; 65 case TSR_KIND_CANARY: 66 pr_info(" stack canary\n"); 67 return; 68 case TSR_KIND_TYPE: 69 default: 70 break; 71 } 72 73 dwarf_aggregate_size(die, &size); 74 75 strbuf_init(&sb, 32); 76 die_get_typename_from_type(die, &sb); 77 str = strbuf_detach(&sb, NULL); 78 pr_info(" type='%s' size=%#lx (die:%#lx)\n", 79 str, (long)size, (long)dwarf_dieoffset(die)); 80 free(str); 81 } 82 83 static void pr_debug_location(Dwarf_Die *die, u64 pc, int reg) 84 { 85 ptrdiff_t off = 0; 86 Dwarf_Attribute attr; 87 Dwarf_Addr base, start, end; 88 Dwarf_Op *ops; 89 size_t nops; 90 91 if (!debug_type_profile && verbose < 3) 92 return; 93 94 if (dwarf_attr(die, DW_AT_location, &attr) == NULL) 95 return; 96 97 while ((off = dwarf_getlocations(&attr, off, &base, &start, &end, &ops, &nops)) > 0) { 98 if (reg != DWARF_REG_PC && end <= pc) 99 continue; 100 if (reg != DWARF_REG_PC && start > pc) 101 break; 102 103 pr_info(" variable location: "); 104 switch (ops->atom) { 105 case DW_OP_reg0 ...DW_OP_reg31: 106 pr_info("reg%d\n", ops->atom - DW_OP_reg0); 107 break; 108 case DW_OP_breg0 ...DW_OP_breg31: 109 pr_info("base=reg%d, offset=%#lx\n", 110 ops->atom - DW_OP_breg0, (long)ops->number); 111 break; 112 case DW_OP_regx: 113 pr_info("reg%ld\n", (long)ops->number); 114 break; 115 case DW_OP_bregx: 116 pr_info("base=reg%ld, offset=%#lx\n", 117 (long)ops->number, (long)ops->number2); 118 break; 119 case DW_OP_fbreg: 120 pr_info("use frame base, offset=%#lx\n", (long)ops->number); 121 break; 122 case DW_OP_addr: 123 pr_info("address=%#lx\n", (long)ops->number); 124 break; 125 default: 126 pr_info("unknown: code=%#x, number=%#lx\n", 127 ops->atom, (long)ops->number); 128 break; 129 } 130 break; 131 } 132 } 133 134 static void pr_debug_scope(Dwarf_Die *scope_die) 135 { 136 int tag; 137 138 if (!debug_type_profile && verbose < 3) 139 return; 140 141 pr_info("(die:%lx) ", (long)dwarf_dieoffset(scope_die)); 142 143 tag = dwarf_tag(scope_die); 144 if (tag == DW_TAG_subprogram) 145 pr_info("[function] %s\n", dwarf_diename(scope_die)); 146 else if (tag == DW_TAG_inlined_subroutine) 147 pr_info("[inlined] %s\n", dwarf_diename(scope_die)); 148 else if (tag == DW_TAG_lexical_block) 149 pr_info("[block]\n"); 150 else 151 pr_info("[unknown] tag=%x\n", tag); 152 } 153 154 bool has_reg_type(struct type_state *state, int reg) 155 { 156 return (unsigned)reg < ARRAY_SIZE(state->regs); 157 } 158 159 static void init_type_state(struct type_state *state, struct arch *arch) 160 { 161 memset(state, 0, sizeof(*state)); 162 INIT_LIST_HEAD(&state->stack_vars); 163 164 if (arch__is(arch, "x86")) { 165 state->regs[0].caller_saved = true; 166 state->regs[1].caller_saved = true; 167 state->regs[2].caller_saved = true; 168 state->regs[4].caller_saved = true; 169 state->regs[5].caller_saved = true; 170 state->regs[8].caller_saved = true; 171 state->regs[9].caller_saved = true; 172 state->regs[10].caller_saved = true; 173 state->regs[11].caller_saved = true; 174 state->ret_reg = 0; 175 state->stack_reg = X86_REG_SP; 176 } 177 } 178 179 static void exit_type_state(struct type_state *state) 180 { 181 struct type_state_stack *stack, *tmp; 182 183 list_for_each_entry_safe(stack, tmp, &state->stack_vars, list) { 184 list_del(&stack->list); 185 free(stack); 186 } 187 } 188 189 /* 190 * Compare type name and size to maintain them in a tree. 191 * I'm not sure if DWARF would have information of a single type in many 192 * different places (compilation units). If not, it could compare the 193 * offset of the type entry in the .debug_info section. 194 */ 195 static int data_type_cmp(const void *_key, const struct rb_node *node) 196 { 197 const struct annotated_data_type *key = _key; 198 struct annotated_data_type *type; 199 200 type = rb_entry(node, struct annotated_data_type, node); 201 202 if (key->self.size != type->self.size) 203 return key->self.size - type->self.size; 204 return strcmp(key->self.type_name, type->self.type_name); 205 } 206 207 static bool data_type_less(struct rb_node *node_a, const struct rb_node *node_b) 208 { 209 struct annotated_data_type *a, *b; 210 211 a = rb_entry(node_a, struct annotated_data_type, node); 212 b = rb_entry(node_b, struct annotated_data_type, node); 213 214 if (a->self.size != b->self.size) 215 return a->self.size < b->self.size; 216 return strcmp(a->self.type_name, b->self.type_name) < 0; 217 } 218 219 /* Recursively add new members for struct/union */ 220 static int __add_member_cb(Dwarf_Die *die, void *arg) 221 { 222 struct annotated_member *parent = arg; 223 struct annotated_member *member; 224 Dwarf_Die member_type, die_mem; 225 Dwarf_Word size, loc, bit_size = 0; 226 Dwarf_Attribute attr; 227 struct strbuf sb; 228 int tag; 229 230 if (dwarf_tag(die) != DW_TAG_member) 231 return DIE_FIND_CB_SIBLING; 232 233 member = zalloc(sizeof(*member)); 234 if (member == NULL) 235 return DIE_FIND_CB_END; 236 237 strbuf_init(&sb, 32); 238 die_get_typename(die, &sb); 239 240 __die_get_real_type(die, &member_type); 241 if (dwarf_tag(&member_type) == DW_TAG_typedef) 242 die_get_real_type(&member_type, &die_mem); 243 else 244 die_mem = member_type; 245 246 if (dwarf_aggregate_size(&die_mem, &size) < 0) 247 size = 0; 248 249 if (dwarf_attr_integrate(die, DW_AT_data_member_location, &attr)) 250 dwarf_formudata(&attr, &loc); 251 else { 252 /* bitfield member */ 253 if (dwarf_attr_integrate(die, DW_AT_data_bit_offset, &attr) && 254 dwarf_formudata(&attr, &loc) == 0) 255 loc /= 8; 256 else 257 loc = 0; 258 259 if (dwarf_attr_integrate(die, DW_AT_bit_size, &attr) && 260 dwarf_formudata(&attr, &bit_size) == 0) 261 size = (bit_size + 7) / 8; 262 } 263 264 member->type_name = strbuf_detach(&sb, NULL); 265 /* member->var_name can be NULL */ 266 if (dwarf_diename(die)) { 267 if (bit_size) { 268 if (asprintf(&member->var_name, "%s:%ld", 269 dwarf_diename(die), (long)bit_size) < 0) 270 member->var_name = NULL; 271 } else { 272 member->var_name = strdup(dwarf_diename(die)); 273 } 274 275 if (member->var_name == NULL) { 276 free(member); 277 return DIE_FIND_CB_END; 278 } 279 } 280 member->size = size; 281 member->offset = loc + parent->offset; 282 INIT_LIST_HEAD(&member->children); 283 list_add_tail(&member->node, &parent->children); 284 285 tag = dwarf_tag(&die_mem); 286 switch (tag) { 287 case DW_TAG_structure_type: 288 case DW_TAG_union_type: 289 die_find_child(&die_mem, __add_member_cb, member, &die_mem); 290 break; 291 default: 292 break; 293 } 294 return DIE_FIND_CB_SIBLING; 295 } 296 297 static void add_member_types(struct annotated_data_type *parent, Dwarf_Die *type) 298 { 299 Dwarf_Die die_mem; 300 301 die_find_child(type, __add_member_cb, &parent->self, &die_mem); 302 } 303 304 static void delete_members(struct annotated_member *member) 305 { 306 struct annotated_member *child, *tmp; 307 308 list_for_each_entry_safe(child, tmp, &member->children, node) { 309 list_del(&child->node); 310 delete_members(child); 311 zfree(&child->type_name); 312 zfree(&child->var_name); 313 free(child); 314 } 315 } 316 317 static struct annotated_data_type *dso__findnew_data_type(struct dso *dso, 318 Dwarf_Die *type_die) 319 { 320 struct annotated_data_type *result = NULL; 321 struct annotated_data_type key; 322 struct rb_node *node; 323 struct strbuf sb; 324 char *type_name; 325 Dwarf_Word size; 326 327 strbuf_init(&sb, 32); 328 if (die_get_typename_from_type(type_die, &sb) < 0) 329 strbuf_add(&sb, "(unknown type)", 14); 330 type_name = strbuf_detach(&sb, NULL); 331 332 if (dwarf_tag(type_die) == DW_TAG_typedef) 333 die_get_real_type(type_die, type_die); 334 335 dwarf_aggregate_size(type_die, &size); 336 337 /* Check existing nodes in dso->data_types tree */ 338 key.self.type_name = type_name; 339 key.self.size = size; 340 node = rb_find(&key, dso__data_types(dso), data_type_cmp); 341 if (node) { 342 result = rb_entry(node, struct annotated_data_type, node); 343 free(type_name); 344 return result; 345 } 346 347 /* If not, add a new one */ 348 result = zalloc(sizeof(*result)); 349 if (result == NULL) { 350 free(type_name); 351 return NULL; 352 } 353 354 result->self.type_name = type_name; 355 result->self.size = size; 356 INIT_LIST_HEAD(&result->self.children); 357 358 if (symbol_conf.annotate_data_member) 359 add_member_types(result, type_die); 360 361 rb_add(&result->node, dso__data_types(dso), data_type_less); 362 return result; 363 } 364 365 static bool find_cu_die(struct debuginfo *di, u64 pc, Dwarf_Die *cu_die) 366 { 367 Dwarf_Off off, next_off; 368 size_t header_size; 369 370 if (dwarf_addrdie(di->dbg, pc, cu_die) != NULL) 371 return cu_die; 372 373 /* 374 * There are some kernels don't have full aranges and contain only a few 375 * aranges entries. Fallback to iterate all CU entries in .debug_info 376 * in case it's missing. 377 */ 378 off = 0; 379 while (dwarf_nextcu(di->dbg, off, &next_off, &header_size, 380 NULL, NULL, NULL) == 0) { 381 if (dwarf_offdie(di->dbg, off + header_size, cu_die) && 382 dwarf_haspc(cu_die, pc)) 383 return true; 384 385 off = next_off; 386 } 387 return false; 388 } 389 390 enum type_match_result { 391 PERF_TMR_UNKNOWN = 0, 392 PERF_TMR_OK, 393 PERF_TMR_NO_TYPE, 394 PERF_TMR_NO_POINTER, 395 PERF_TMR_NO_SIZE, 396 PERF_TMR_BAD_OFFSET, 397 PERF_TMR_BAIL_OUT, 398 }; 399 400 static const char *match_result_str(enum type_match_result tmr) 401 { 402 switch (tmr) { 403 case PERF_TMR_OK: 404 return "Good!"; 405 case PERF_TMR_NO_TYPE: 406 return "no type information"; 407 case PERF_TMR_NO_POINTER: 408 return "no/void pointer"; 409 case PERF_TMR_NO_SIZE: 410 return "type size is unknown"; 411 case PERF_TMR_BAD_OFFSET: 412 return "offset bigger than size"; 413 case PERF_TMR_UNKNOWN: 414 case PERF_TMR_BAIL_OUT: 415 default: 416 return "invalid state"; 417 } 418 } 419 420 static bool is_pointer_type(Dwarf_Die *type_die) 421 { 422 int tag = dwarf_tag(type_die); 423 424 return tag == DW_TAG_pointer_type || tag == DW_TAG_array_type; 425 } 426 427 static bool is_compound_type(Dwarf_Die *type_die) 428 { 429 int tag = dwarf_tag(type_die); 430 431 return tag == DW_TAG_structure_type || tag == DW_TAG_union_type; 432 } 433 434 /* returns if Type B has better information than Type A */ 435 static bool is_better_type(Dwarf_Die *type_a, Dwarf_Die *type_b) 436 { 437 Dwarf_Word size_a, size_b; 438 Dwarf_Die die_a, die_b; 439 440 /* pointer type is preferred */ 441 if (is_pointer_type(type_a) != is_pointer_type(type_b)) 442 return is_pointer_type(type_b); 443 444 if (is_pointer_type(type_b)) { 445 /* 446 * We want to compare the target type, but 'void *' can fail to 447 * get the target type. 448 */ 449 if (die_get_real_type(type_a, &die_a) == NULL) 450 return true; 451 if (die_get_real_type(type_b, &die_b) == NULL) 452 return false; 453 454 type_a = &die_a; 455 type_b = &die_b; 456 } 457 458 /* bigger type is preferred */ 459 if (dwarf_aggregate_size(type_a, &size_a) < 0 || 460 dwarf_aggregate_size(type_b, &size_b) < 0) 461 return false; 462 463 if (size_a != size_b) 464 return size_a < size_b; 465 466 /* struct or union is preferred */ 467 if (is_compound_type(type_a) != is_compound_type(type_b)) 468 return is_compound_type(type_b); 469 470 /* typedef is preferred */ 471 if (dwarf_tag(type_b) == DW_TAG_typedef) 472 return true; 473 474 return false; 475 } 476 477 /* The type info will be saved in @type_die */ 478 static enum type_match_result check_variable(struct data_loc_info *dloc, 479 Dwarf_Die *var_die, 480 Dwarf_Die *type_die, int reg, 481 int offset, bool is_fbreg) 482 { 483 Dwarf_Word size; 484 bool needs_pointer = true; 485 Dwarf_Die sized_type; 486 487 if (reg == DWARF_REG_PC) 488 needs_pointer = false; 489 else if (reg == dloc->fbreg || is_fbreg) 490 needs_pointer = false; 491 else if (arch__is(dloc->arch, "x86") && reg == X86_REG_SP) 492 needs_pointer = false; 493 494 /* Get the type of the variable */ 495 if (__die_get_real_type(var_die, type_die) == NULL) 496 return PERF_TMR_NO_TYPE; 497 498 /* 499 * Usually it expects a pointer type for a memory access. 500 * Convert to a real type it points to. But global variables 501 * and local variables are accessed directly without a pointer. 502 */ 503 if (needs_pointer) { 504 if (!is_pointer_type(type_die) || 505 __die_get_real_type(type_die, type_die) == NULL) 506 return PERF_TMR_NO_POINTER; 507 } 508 509 if (dwarf_tag(type_die) == DW_TAG_typedef) 510 die_get_real_type(type_die, &sized_type); 511 else 512 sized_type = *type_die; 513 514 /* Get the size of the actual type */ 515 if (dwarf_aggregate_size(&sized_type, &size) < 0) 516 return PERF_TMR_NO_SIZE; 517 518 /* Minimal sanity check */ 519 if ((unsigned)offset >= size) 520 return PERF_TMR_BAD_OFFSET; 521 522 return PERF_TMR_OK; 523 } 524 525 struct type_state_stack *find_stack_state(struct type_state *state, 526 int offset) 527 { 528 struct type_state_stack *stack; 529 530 list_for_each_entry(stack, &state->stack_vars, list) { 531 if (offset == stack->offset) 532 return stack; 533 534 if (stack->compound && stack->offset < offset && 535 offset < stack->offset + stack->size) 536 return stack; 537 } 538 return NULL; 539 } 540 541 void set_stack_state(struct type_state_stack *stack, int offset, u8 kind, 542 Dwarf_Die *type_die) 543 { 544 int tag; 545 Dwarf_Word size; 546 547 if (dwarf_aggregate_size(type_die, &size) < 0) 548 size = 0; 549 550 tag = dwarf_tag(type_die); 551 552 stack->type = *type_die; 553 stack->size = size; 554 stack->offset = offset; 555 stack->kind = kind; 556 557 switch (tag) { 558 case DW_TAG_structure_type: 559 case DW_TAG_union_type: 560 stack->compound = (kind != TSR_KIND_POINTER); 561 break; 562 default: 563 stack->compound = false; 564 break; 565 } 566 } 567 568 struct type_state_stack *findnew_stack_state(struct type_state *state, 569 int offset, u8 kind, 570 Dwarf_Die *type_die) 571 { 572 struct type_state_stack *stack = find_stack_state(state, offset); 573 574 if (stack) { 575 set_stack_state(stack, offset, kind, type_die); 576 return stack; 577 } 578 579 stack = malloc(sizeof(*stack)); 580 if (stack) { 581 set_stack_state(stack, offset, kind, type_die); 582 list_add(&stack->list, &state->stack_vars); 583 } 584 return stack; 585 } 586 587 /* Maintain a cache for quick global variable lookup */ 588 struct global_var_entry { 589 struct rb_node node; 590 char *name; 591 u64 start; 592 u64 end; 593 u64 die_offset; 594 }; 595 596 static int global_var_cmp(const void *_key, const struct rb_node *node) 597 { 598 const u64 addr = (uintptr_t)_key; 599 struct global_var_entry *gvar; 600 601 gvar = rb_entry(node, struct global_var_entry, node); 602 603 if (gvar->start <= addr && addr < gvar->end) 604 return 0; 605 return gvar->start > addr ? -1 : 1; 606 } 607 608 static bool global_var_less(struct rb_node *node_a, const struct rb_node *node_b) 609 { 610 struct global_var_entry *gvar_a, *gvar_b; 611 612 gvar_a = rb_entry(node_a, struct global_var_entry, node); 613 gvar_b = rb_entry(node_b, struct global_var_entry, node); 614 615 return gvar_a->start < gvar_b->start; 616 } 617 618 static struct global_var_entry *global_var__find(struct data_loc_info *dloc, u64 addr) 619 { 620 struct dso *dso = map__dso(dloc->ms->map); 621 struct rb_node *node; 622 623 node = rb_find((void *)(uintptr_t)addr, dso__global_vars(dso), global_var_cmp); 624 if (node == NULL) 625 return NULL; 626 627 return rb_entry(node, struct global_var_entry, node); 628 } 629 630 static bool global_var__add(struct data_loc_info *dloc, u64 addr, 631 const char *name, Dwarf_Die *type_die) 632 { 633 struct dso *dso = map__dso(dloc->ms->map); 634 struct global_var_entry *gvar; 635 Dwarf_Word size; 636 637 if (dwarf_aggregate_size(type_die, &size) < 0) 638 return false; 639 640 gvar = malloc(sizeof(*gvar)); 641 if (gvar == NULL) 642 return false; 643 644 gvar->name = name ? strdup(name) : NULL; 645 if (name && gvar->name == NULL) { 646 free(gvar); 647 return false; 648 } 649 650 gvar->start = addr; 651 gvar->end = addr + size; 652 gvar->die_offset = dwarf_dieoffset(type_die); 653 654 rb_add(&gvar->node, dso__global_vars(dso), global_var_less); 655 return true; 656 } 657 658 void global_var_type__tree_delete(struct rb_root *root) 659 { 660 struct global_var_entry *gvar; 661 662 while (!RB_EMPTY_ROOT(root)) { 663 struct rb_node *node = rb_first(root); 664 665 rb_erase(node, root); 666 gvar = rb_entry(node, struct global_var_entry, node); 667 zfree(&gvar->name); 668 free(gvar); 669 } 670 } 671 672 bool get_global_var_info(struct data_loc_info *dloc, u64 addr, 673 const char **var_name, int *var_offset) 674 { 675 struct addr_location al; 676 struct symbol *sym; 677 u64 mem_addr; 678 679 /* Kernel symbols might be relocated */ 680 mem_addr = addr + map__reloc(dloc->ms->map); 681 682 addr_location__init(&al); 683 sym = thread__find_symbol_fb(dloc->thread, dloc->cpumode, 684 mem_addr, &al); 685 if (sym) { 686 *var_name = sym->name; 687 /* Calculate type offset from the start of variable */ 688 *var_offset = mem_addr - map__unmap_ip(al.map, sym->start); 689 } else { 690 *var_name = NULL; 691 } 692 addr_location__exit(&al); 693 if (*var_name == NULL) 694 return false; 695 696 return true; 697 } 698 699 static void global_var__collect(struct data_loc_info *dloc) 700 { 701 Dwarf *dwarf = dloc->di->dbg; 702 Dwarf_Off off, next_off; 703 Dwarf_Die cu_die, type_die; 704 size_t header_size; 705 706 /* Iterate all CU and collect global variables that have no location in a register. */ 707 off = 0; 708 while (dwarf_nextcu(dwarf, off, &next_off, &header_size, 709 NULL, NULL, NULL) == 0) { 710 struct die_var_type *var_types = NULL; 711 struct die_var_type *pos; 712 713 if (dwarf_offdie(dwarf, off + header_size, &cu_die) == NULL) { 714 off = next_off; 715 continue; 716 } 717 718 die_collect_global_vars(&cu_die, &var_types); 719 720 for (pos = var_types; pos; pos = pos->next) { 721 const char *var_name = NULL; 722 int var_offset = 0; 723 724 if (pos->reg != -1) 725 continue; 726 727 if (!dwarf_offdie(dwarf, pos->die_off, &type_die)) 728 continue; 729 730 if (!get_global_var_info(dloc, pos->addr, &var_name, 731 &var_offset)) 732 continue; 733 734 if (var_offset != 0) 735 continue; 736 737 global_var__add(dloc, pos->addr, var_name, &type_die); 738 } 739 740 delete_var_types(var_types); 741 742 off = next_off; 743 } 744 } 745 746 bool get_global_var_type(Dwarf_Die *cu_die, struct data_loc_info *dloc, 747 u64 ip, u64 var_addr, int *var_offset, 748 Dwarf_Die *type_die) 749 { 750 u64 pc; 751 int offset; 752 const char *var_name = NULL; 753 struct global_var_entry *gvar; 754 struct dso *dso = map__dso(dloc->ms->map); 755 Dwarf_Die var_die; 756 757 if (RB_EMPTY_ROOT(dso__global_vars(dso))) 758 global_var__collect(dloc); 759 760 gvar = global_var__find(dloc, var_addr); 761 if (gvar) { 762 if (!dwarf_offdie(dloc->di->dbg, gvar->die_offset, type_die)) 763 return false; 764 765 *var_offset = var_addr - gvar->start; 766 return true; 767 } 768 769 /* Try to get the variable by address first */ 770 if (die_find_variable_by_addr(cu_die, var_addr, &var_die, &offset) && 771 check_variable(dloc, &var_die, type_die, DWARF_REG_PC, offset, 772 /*is_fbreg=*/false) == PERF_TMR_OK) { 773 var_name = dwarf_diename(&var_die); 774 *var_offset = offset; 775 goto ok; 776 } 777 778 if (!get_global_var_info(dloc, var_addr, &var_name, var_offset)) 779 return false; 780 781 pc = map__rip_2objdump(dloc->ms->map, ip); 782 783 /* Try to get the name of global variable */ 784 if (die_find_variable_at(cu_die, var_name, pc, &var_die) && 785 check_variable(dloc, &var_die, type_die, DWARF_REG_PC, *var_offset, 786 /*is_fbreg=*/false) == PERF_TMR_OK) 787 goto ok; 788 789 return false; 790 791 ok: 792 /* The address should point to the start of the variable */ 793 global_var__add(dloc, var_addr - *var_offset, var_name, type_die); 794 return true; 795 } 796 797 static bool die_is_same(Dwarf_Die *die_a, Dwarf_Die *die_b) 798 { 799 return (die_a->cu == die_b->cu) && (die_a->addr == die_b->addr); 800 } 801 802 /** 803 * update_var_state - Update type state using given variables 804 * @state: type state table 805 * @dloc: data location info 806 * @addr: instruction address to match with variable 807 * @insn_offset: instruction offset (for debug) 808 * @var_types: list of variables with type info 809 * 810 * This function fills the @state table using @var_types info. Each variable 811 * is used only at the given location and updates an entry in the table. 812 */ 813 static void update_var_state(struct type_state *state, struct data_loc_info *dloc, 814 u64 addr, u64 insn_offset, struct die_var_type *var_types) 815 { 816 Dwarf_Die mem_die; 817 struct die_var_type *var; 818 int fbreg = dloc->fbreg; 819 int fb_offset = 0; 820 821 if (dloc->fb_cfa) { 822 if (die_get_cfa(dloc->di->dbg, addr, &fbreg, &fb_offset) < 0) 823 fbreg = -1; 824 } 825 826 for (var = var_types; var != NULL; var = var->next) { 827 if (var->addr != addr) 828 continue; 829 /* Get the type DIE using the offset */ 830 if (!dwarf_offdie(dloc->di->dbg, var->die_off, &mem_die)) 831 continue; 832 833 if (var->reg == DWARF_REG_FB || var->reg == fbreg) { 834 int offset = var->offset; 835 struct type_state_stack *stack; 836 837 if (var->reg != DWARF_REG_FB) 838 offset -= fb_offset; 839 840 stack = find_stack_state(state, offset); 841 if (stack && stack->kind == TSR_KIND_TYPE && 842 !is_better_type(&stack->type, &mem_die)) 843 continue; 844 845 findnew_stack_state(state, offset, TSR_KIND_TYPE, 846 &mem_die); 847 848 pr_debug_dtp("var [%"PRIx64"] -%#x(stack)", 849 insn_offset, -offset); 850 pr_debug_type_name(&mem_die, TSR_KIND_TYPE); 851 } else if (has_reg_type(state, var->reg) && var->offset == 0) { 852 struct type_state_reg *reg; 853 Dwarf_Die orig_type; 854 855 reg = &state->regs[var->reg]; 856 857 if (reg->ok && reg->kind == TSR_KIND_TYPE && 858 !is_better_type(®->type, &mem_die)) 859 continue; 860 861 orig_type = reg->type; 862 863 reg->type = mem_die; 864 reg->kind = TSR_KIND_TYPE; 865 reg->ok = true; 866 867 pr_debug_dtp("var [%"PRIx64"] reg%d", 868 insn_offset, var->reg); 869 pr_debug_type_name(&mem_die, TSR_KIND_TYPE); 870 871 /* 872 * If this register is directly copied from another and it gets a 873 * better type, also update the type of the source register. This 874 * is usually the case of container_of() macro with offset of 0. 875 */ 876 if (has_reg_type(state, reg->copied_from)) { 877 struct type_state_reg *copy_reg; 878 879 copy_reg = &state->regs[reg->copied_from]; 880 881 /* TODO: check if type is compatible or embedded */ 882 if (!copy_reg->ok || (copy_reg->kind != TSR_KIND_TYPE) || 883 !die_is_same(©_reg->type, &orig_type) || 884 !is_better_type(©_reg->type, &mem_die)) 885 continue; 886 887 copy_reg->type = mem_die; 888 889 pr_debug_dtp("var [%"PRIx64"] copyback reg%d", 890 insn_offset, reg->copied_from); 891 pr_debug_type_name(&mem_die, TSR_KIND_TYPE); 892 } 893 } 894 } 895 } 896 897 /** 898 * update_insn_state - Update type state for an instruction 899 * @state: type state table 900 * @dloc: data location info 901 * @cu_die: compile unit debug entry 902 * @dl: disasm line for the instruction 903 * 904 * This function updates the @state table for the target operand of the 905 * instruction at @dl if it transfers the type like MOV on x86. Since it 906 * tracks the type, it won't care about the values like in arithmetic 907 * instructions like ADD/SUB/MUL/DIV and INC/DEC. 908 * 909 * Note that ops->reg2 is only available when both mem_ref and multi_regs 910 * are true. 911 */ 912 static void update_insn_state(struct type_state *state, struct data_loc_info *dloc, 913 Dwarf_Die *cu_die, struct disasm_line *dl) 914 { 915 if (dloc->arch->update_insn_state) 916 dloc->arch->update_insn_state(state, dloc, cu_die, dl); 917 } 918 919 /* 920 * Prepend this_blocks (from the outer scope) to full_blocks, removing 921 * duplicate disasm line. 922 */ 923 static void prepend_basic_blocks(struct list_head *this_blocks, 924 struct list_head *full_blocks) 925 { 926 struct annotated_basic_block *first_bb, *last_bb; 927 928 last_bb = list_last_entry(this_blocks, typeof(*last_bb), list); 929 first_bb = list_first_entry(full_blocks, typeof(*first_bb), list); 930 931 if (list_empty(full_blocks)) 932 goto out; 933 934 /* Last insn in this_blocks should be same as first insn in full_blocks */ 935 if (last_bb->end != first_bb->begin) { 936 pr_debug("prepend basic blocks: mismatched disasm line %"PRIx64" -> %"PRIx64"\n", 937 last_bb->end->al.offset, first_bb->begin->al.offset); 938 goto out; 939 } 940 941 /* Is the basic block have only one disasm_line? */ 942 if (last_bb->begin == last_bb->end) { 943 list_del(&last_bb->list); 944 free(last_bb); 945 goto out; 946 } 947 948 /* Point to the insn before the last when adding this block to full_blocks */ 949 last_bb->end = list_prev_entry(last_bb->end, al.node); 950 951 out: 952 list_splice(this_blocks, full_blocks); 953 } 954 955 static void delete_basic_blocks(struct list_head *basic_blocks) 956 { 957 struct annotated_basic_block *bb, *tmp; 958 959 list_for_each_entry_safe(bb, tmp, basic_blocks, list) { 960 list_del(&bb->list); 961 free(bb); 962 } 963 } 964 965 /* Make sure all variables have a valid start address */ 966 static void fixup_var_address(struct die_var_type *var_types, u64 addr) 967 { 968 while (var_types) { 969 /* 970 * Some variables have no address range meaning it's always 971 * available in the whole scope. Let's adjust the start 972 * address to the start of the scope. 973 */ 974 if (var_types->addr == 0) 975 var_types->addr = addr; 976 977 var_types = var_types->next; 978 } 979 } 980 981 static void delete_var_types(struct die_var_type *var_types) 982 { 983 while (var_types) { 984 struct die_var_type *next = var_types->next; 985 986 free(var_types); 987 var_types = next; 988 } 989 } 990 991 /* should match to is_stack_canary() in util/annotate.c */ 992 static void setup_stack_canary(struct data_loc_info *dloc) 993 { 994 if (arch__is(dloc->arch, "x86")) { 995 dloc->op->segment = INSN_SEG_X86_GS; 996 dloc->op->imm = true; 997 dloc->op->offset = 40; 998 } 999 } 1000 1001 /* 1002 * It's at the target address, check if it has a matching type. 1003 * It returns PERF_TMR_BAIL_OUT when it looks up per-cpu variables which 1004 * are similar to global variables and no additional info is needed. 1005 */ 1006 static enum type_match_result check_matching_type(struct type_state *state, 1007 struct data_loc_info *dloc, 1008 Dwarf_Die *cu_die, 1009 struct disasm_line *dl, 1010 Dwarf_Die *type_die) 1011 { 1012 Dwarf_Word size; 1013 u32 insn_offset = dl->al.offset; 1014 int reg = dloc->op->reg1; 1015 int offset = dloc->op->offset; 1016 const char *offset_sign = ""; 1017 bool retry = true; 1018 1019 if (offset < 0) { 1020 offset = -offset; 1021 offset_sign = "-"; 1022 } 1023 1024 again: 1025 pr_debug_dtp("chk [%x] reg%d offset=%s%#x ok=%d kind=%d ", 1026 insn_offset, reg, offset_sign, offset, 1027 state->regs[reg].ok, state->regs[reg].kind); 1028 1029 if (!state->regs[reg].ok) 1030 goto check_non_register; 1031 1032 if (state->regs[reg].kind == TSR_KIND_TYPE) { 1033 Dwarf_Die sized_type; 1034 struct strbuf sb; 1035 1036 strbuf_init(&sb, 32); 1037 die_get_typename_from_type(&state->regs[reg].type, &sb); 1038 pr_debug_dtp("(%s)", sb.buf); 1039 strbuf_release(&sb); 1040 1041 /* 1042 * Normal registers should hold a pointer (or array) to 1043 * dereference a memory location. 1044 */ 1045 if (!is_pointer_type(&state->regs[reg].type)) { 1046 if (dloc->op->offset < 0 && reg != state->stack_reg) 1047 goto check_kernel; 1048 1049 return PERF_TMR_NO_POINTER; 1050 } 1051 1052 /* Remove the pointer and get the target type */ 1053 if (__die_get_real_type(&state->regs[reg].type, type_die) == NULL) 1054 return PERF_TMR_NO_POINTER; 1055 1056 dloc->type_offset = dloc->op->offset; 1057 1058 if (dwarf_tag(type_die) == DW_TAG_typedef) 1059 die_get_real_type(type_die, &sized_type); 1060 else 1061 sized_type = *type_die; 1062 1063 /* Get the size of the actual type */ 1064 if (dwarf_aggregate_size(&sized_type, &size) < 0 || 1065 (unsigned)dloc->type_offset >= size) 1066 return PERF_TMR_BAD_OFFSET; 1067 1068 return PERF_TMR_OK; 1069 } 1070 1071 if (state->regs[reg].kind == TSR_KIND_POINTER) { 1072 pr_debug_dtp("percpu ptr"); 1073 1074 /* 1075 * It's actaully pointer but the address was calculated using 1076 * some arithmetic. So it points to the actual type already. 1077 */ 1078 *type_die = state->regs[reg].type; 1079 1080 dloc->type_offset = dloc->op->offset; 1081 1082 /* Get the size of the actual type */ 1083 if (dwarf_aggregate_size(type_die, &size) < 0 || 1084 (unsigned)dloc->type_offset >= size) 1085 return PERF_TMR_BAIL_OUT; 1086 1087 return PERF_TMR_OK; 1088 } 1089 1090 if (state->regs[reg].kind == TSR_KIND_CANARY) { 1091 pr_debug_dtp("stack canary"); 1092 1093 /* 1094 * This is a saved value of the stack canary which will be handled 1095 * in the outer logic when it returns failure here. Pretend it's 1096 * from the stack canary directly. 1097 */ 1098 setup_stack_canary(dloc); 1099 1100 return PERF_TMR_BAIL_OUT; 1101 } 1102 1103 if (state->regs[reg].kind == TSR_KIND_PERCPU_BASE) { 1104 u64 var_addr = dloc->op->offset; 1105 int var_offset; 1106 1107 pr_debug_dtp("percpu var"); 1108 1109 if (dloc->op->multi_regs) { 1110 int reg2 = dloc->op->reg2; 1111 1112 if (dloc->op->reg2 == reg) 1113 reg2 = dloc->op->reg1; 1114 1115 if (has_reg_type(state, reg2) && state->regs[reg2].ok && 1116 state->regs[reg2].kind == TSR_KIND_CONST) 1117 var_addr += state->regs[reg2].imm_value; 1118 } 1119 1120 if (get_global_var_type(cu_die, dloc, dloc->ip, var_addr, 1121 &var_offset, type_die)) { 1122 dloc->type_offset = var_offset; 1123 return PERF_TMR_OK; 1124 } 1125 /* No need to retry per-cpu (global) variables */ 1126 return PERF_TMR_BAIL_OUT; 1127 } 1128 1129 check_non_register: 1130 if (reg == dloc->fbreg) { 1131 struct type_state_stack *stack; 1132 1133 pr_debug_dtp("fbreg"); 1134 1135 stack = find_stack_state(state, dloc->type_offset); 1136 if (stack == NULL) { 1137 if (retry) { 1138 pr_debug_dtp(" : retry\n"); 1139 retry = false; 1140 1141 /* update type info it's the first store to the stack */ 1142 update_insn_state(state, dloc, cu_die, dl); 1143 goto again; 1144 } 1145 return PERF_TMR_NO_TYPE; 1146 } 1147 1148 if (stack->kind == TSR_KIND_CANARY) { 1149 setup_stack_canary(dloc); 1150 return PERF_TMR_BAIL_OUT; 1151 } 1152 1153 if (stack->kind != TSR_KIND_TYPE) 1154 return PERF_TMR_NO_TYPE; 1155 1156 *type_die = stack->type; 1157 /* Update the type offset from the start of slot */ 1158 dloc->type_offset -= stack->offset; 1159 1160 return PERF_TMR_OK; 1161 } 1162 1163 if (dloc->fb_cfa) { 1164 struct type_state_stack *stack; 1165 u64 pc = map__rip_2objdump(dloc->ms->map, dloc->ip); 1166 int fbreg, fboff; 1167 1168 pr_debug_dtp("cfa"); 1169 1170 if (die_get_cfa(dloc->di->dbg, pc, &fbreg, &fboff) < 0) 1171 fbreg = -1; 1172 1173 if (reg != fbreg) 1174 return PERF_TMR_NO_TYPE; 1175 1176 stack = find_stack_state(state, dloc->type_offset - fboff); 1177 if (stack == NULL) { 1178 if (retry) { 1179 pr_debug_dtp(" : retry\n"); 1180 retry = false; 1181 1182 /* update type info it's the first store to the stack */ 1183 update_insn_state(state, dloc, cu_die, dl); 1184 goto again; 1185 } 1186 return PERF_TMR_NO_TYPE; 1187 } 1188 1189 if (stack->kind == TSR_KIND_CANARY) { 1190 setup_stack_canary(dloc); 1191 return PERF_TMR_BAIL_OUT; 1192 } 1193 1194 if (stack->kind != TSR_KIND_TYPE) 1195 return PERF_TMR_NO_TYPE; 1196 1197 *type_die = stack->type; 1198 /* Update the type offset from the start of slot */ 1199 dloc->type_offset -= fboff + stack->offset; 1200 1201 return PERF_TMR_OK; 1202 } 1203 1204 check_kernel: 1205 if (dso__kernel(map__dso(dloc->ms->map))) { 1206 u64 addr; 1207 1208 /* Direct this-cpu access like "%gs:0x34740" */ 1209 if (dloc->op->segment == INSN_SEG_X86_GS && dloc->op->imm && 1210 arch__is(dloc->arch, "x86")) { 1211 pr_debug_dtp("this-cpu var"); 1212 1213 addr = dloc->op->offset; 1214 1215 if (get_global_var_type(cu_die, dloc, dloc->ip, addr, 1216 &offset, type_die)) { 1217 dloc->type_offset = offset; 1218 return PERF_TMR_OK; 1219 } 1220 return PERF_TMR_BAIL_OUT; 1221 } 1222 1223 /* Access to global variable like "-0x7dcf0500(,%rdx,8)" */ 1224 if (dloc->op->offset < 0 && reg != state->stack_reg) { 1225 addr = (s64) dloc->op->offset; 1226 1227 if (get_global_var_type(cu_die, dloc, dloc->ip, addr, 1228 &offset, type_die)) { 1229 pr_debug_dtp("global var"); 1230 1231 dloc->type_offset = offset; 1232 return PERF_TMR_OK; 1233 } 1234 return PERF_TMR_BAIL_OUT; 1235 } 1236 } 1237 1238 return PERF_TMR_UNKNOWN; 1239 } 1240 1241 /* Iterate instructions in basic blocks and update type table */ 1242 static enum type_match_result find_data_type_insn(struct data_loc_info *dloc, 1243 struct list_head *basic_blocks, 1244 struct die_var_type *var_types, 1245 Dwarf_Die *cu_die, 1246 Dwarf_Die *type_die) 1247 { 1248 struct type_state state; 1249 struct symbol *sym = dloc->ms->sym; 1250 struct annotation *notes = symbol__annotation(sym); 1251 struct annotated_basic_block *bb; 1252 enum type_match_result ret = PERF_TMR_UNKNOWN; 1253 1254 init_type_state(&state, dloc->arch); 1255 1256 list_for_each_entry(bb, basic_blocks, list) { 1257 struct disasm_line *dl = bb->begin; 1258 1259 BUG_ON(bb->begin->al.offset == -1 || bb->end->al.offset == -1); 1260 1261 pr_debug_dtp("bb: [%"PRIx64" - %"PRIx64"]\n", 1262 bb->begin->al.offset, bb->end->al.offset); 1263 1264 list_for_each_entry_from(dl, ¬es->src->source, al.node) { 1265 u64 this_ip = sym->start + dl->al.offset; 1266 u64 addr = map__rip_2objdump(dloc->ms->map, this_ip); 1267 1268 /* Skip comment or debug info lines */ 1269 if (dl->al.offset == -1) 1270 continue; 1271 1272 /* Update variable type at this address */ 1273 update_var_state(&state, dloc, addr, dl->al.offset, var_types); 1274 1275 if (this_ip == dloc->ip) { 1276 ret = check_matching_type(&state, dloc, 1277 cu_die, dl, type_die); 1278 pr_debug_dtp(" : %s\n", match_result_str(ret)); 1279 goto out; 1280 } 1281 1282 /* Update type table after processing the instruction */ 1283 update_insn_state(&state, dloc, cu_die, dl); 1284 if (dl == bb->end) 1285 break; 1286 } 1287 } 1288 1289 out: 1290 exit_type_state(&state); 1291 return ret; 1292 } 1293 1294 static int arch_supports_insn_tracking(struct data_loc_info *dloc) 1295 { 1296 if ((arch__is(dloc->arch, "x86")) || (arch__is(dloc->arch, "powerpc"))) 1297 return 1; 1298 return 0; 1299 } 1300 1301 /* 1302 * Construct a list of basic blocks for each scope with variables and try to find 1303 * the data type by updating a type state table through instructions. 1304 */ 1305 static enum type_match_result find_data_type_block(struct data_loc_info *dloc, 1306 Dwarf_Die *cu_die, 1307 Dwarf_Die *scopes, 1308 int nr_scopes, 1309 Dwarf_Die *type_die) 1310 { 1311 LIST_HEAD(basic_blocks); 1312 struct die_var_type *var_types = NULL; 1313 u64 src_ip, dst_ip, prev_dst_ip; 1314 enum type_match_result ret = PERF_TMR_UNKNOWN; 1315 1316 /* TODO: other architecture support */ 1317 if (!arch_supports_insn_tracking(dloc)) 1318 return PERF_TMR_BAIL_OUT; 1319 1320 prev_dst_ip = dst_ip = dloc->ip; 1321 for (int i = nr_scopes - 1; i >= 0; i--) { 1322 Dwarf_Addr base, start, end; 1323 LIST_HEAD(this_blocks); 1324 1325 if (dwarf_ranges(&scopes[i], 0, &base, &start, &end) < 0) 1326 break; 1327 1328 pr_debug_dtp("scope: [%d/%d] ", i + 1, nr_scopes); 1329 pr_debug_scope(&scopes[i]); 1330 1331 src_ip = map__objdump_2rip(dloc->ms->map, start); 1332 1333 again: 1334 /* Get basic blocks for this scope */ 1335 if (annotate_get_basic_blocks(dloc->ms->sym, src_ip, dst_ip, 1336 &this_blocks) < 0) { 1337 /* Try previous block if they are not connected */ 1338 if (prev_dst_ip != dst_ip) { 1339 dst_ip = prev_dst_ip; 1340 goto again; 1341 } 1342 1343 pr_debug_dtp("cannot find a basic block from %"PRIx64" to %"PRIx64"\n", 1344 src_ip - dloc->ms->sym->start, 1345 dst_ip - dloc->ms->sym->start); 1346 continue; 1347 } 1348 prepend_basic_blocks(&this_blocks, &basic_blocks); 1349 1350 /* Get variable info for this scope and add to var_types list */ 1351 die_collect_vars(&scopes[i], &var_types); 1352 fixup_var_address(var_types, start); 1353 1354 /* Find from start of this scope to the target instruction */ 1355 ret = find_data_type_insn(dloc, &basic_blocks, var_types, 1356 cu_die, type_die); 1357 if (ret == PERF_TMR_OK) { 1358 char buf[64]; 1359 int offset = dloc->op->offset; 1360 const char *offset_sign = ""; 1361 1362 if (offset < 0) { 1363 offset = -offset; 1364 offset_sign = "-"; 1365 } 1366 1367 if (dloc->op->multi_regs) 1368 snprintf(buf, sizeof(buf), "reg%d, reg%d", 1369 dloc->op->reg1, dloc->op->reg2); 1370 else 1371 snprintf(buf, sizeof(buf), "reg%d", dloc->op->reg1); 1372 1373 pr_debug_dtp("found by insn track: %s%#x(%s) type-offset=%#x\n", 1374 offset_sign, offset, buf, dloc->type_offset); 1375 break; 1376 } 1377 1378 if (ret == PERF_TMR_BAIL_OUT) 1379 break; 1380 1381 /* Go up to the next scope and find blocks to the start */ 1382 prev_dst_ip = dst_ip; 1383 dst_ip = src_ip; 1384 } 1385 1386 delete_basic_blocks(&basic_blocks); 1387 delete_var_types(var_types); 1388 return ret; 1389 } 1390 1391 /* The result will be saved in @type_die */ 1392 static int find_data_type_die(struct data_loc_info *dloc, Dwarf_Die *type_die) 1393 { 1394 struct annotated_op_loc *loc = dloc->op; 1395 Dwarf_Die cu_die, var_die; 1396 Dwarf_Die *scopes = NULL; 1397 int reg, offset = loc->offset; 1398 int ret = -1; 1399 int i, nr_scopes; 1400 int fbreg = -1; 1401 int fb_offset = 0; 1402 bool is_fbreg = false; 1403 bool found = false; 1404 u64 pc; 1405 char buf[64]; 1406 enum type_match_result result = PERF_TMR_UNKNOWN; 1407 const char *offset_sign = ""; 1408 1409 if (dloc->op->multi_regs) 1410 snprintf(buf, sizeof(buf), "reg%d, reg%d", dloc->op->reg1, dloc->op->reg2); 1411 else if (dloc->op->reg1 == DWARF_REG_PC) 1412 snprintf(buf, sizeof(buf), "PC"); 1413 else 1414 snprintf(buf, sizeof(buf), "reg%d", dloc->op->reg1); 1415 1416 if (offset < 0) { 1417 offset = -offset; 1418 offset_sign = "-"; 1419 } 1420 1421 pr_debug_dtp("-----------------------------------------------------------\n"); 1422 pr_debug_dtp("find data type for %s%#x(%s) at %s+%#"PRIx64"\n", 1423 offset_sign, offset, buf, 1424 dloc->ms->sym->name, dloc->ip - dloc->ms->sym->start); 1425 1426 /* 1427 * IP is a relative instruction address from the start of the map, as 1428 * it can be randomized/relocated, it needs to translate to PC which is 1429 * a file address for DWARF processing. 1430 */ 1431 pc = map__rip_2objdump(dloc->ms->map, dloc->ip); 1432 1433 /* Get a compile_unit for this address */ 1434 if (!find_cu_die(dloc->di, pc, &cu_die)) { 1435 pr_debug_dtp("cannot find CU for address %"PRIx64"\n", pc); 1436 ann_data_stat.no_cuinfo++; 1437 return -1; 1438 } 1439 1440 reg = loc->reg1; 1441 offset = loc->offset; 1442 1443 pr_debug_dtp("CU for %s (die:%#lx)\n", 1444 dwarf_diename(&cu_die), (long)dwarf_dieoffset(&cu_die)); 1445 1446 if (reg == DWARF_REG_PC) { 1447 if (get_global_var_type(&cu_die, dloc, dloc->ip, dloc->var_addr, 1448 &offset, type_die)) { 1449 dloc->type_offset = offset; 1450 1451 pr_debug_dtp("found by addr=%#"PRIx64" type_offset=%#x\n", 1452 dloc->var_addr, offset); 1453 pr_debug_type_name(type_die, TSR_KIND_TYPE); 1454 found = true; 1455 goto out; 1456 } 1457 } 1458 1459 /* Get a list of nested scopes - i.e. (inlined) functions and blocks. */ 1460 nr_scopes = die_get_scopes(&cu_die, pc, &scopes); 1461 1462 if (reg != DWARF_REG_PC && dwarf_hasattr(&scopes[0], DW_AT_frame_base)) { 1463 Dwarf_Attribute attr; 1464 Dwarf_Block block; 1465 1466 /* Check if the 'reg' is assigned as frame base register */ 1467 if (dwarf_attr(&scopes[0], DW_AT_frame_base, &attr) != NULL && 1468 dwarf_formblock(&attr, &block) == 0 && block.length == 1) { 1469 switch (*block.data) { 1470 case DW_OP_reg0 ... DW_OP_reg31: 1471 fbreg = dloc->fbreg = *block.data - DW_OP_reg0; 1472 break; 1473 case DW_OP_call_frame_cfa: 1474 dloc->fb_cfa = true; 1475 if (die_get_cfa(dloc->di->dbg, pc, &fbreg, 1476 &fb_offset) < 0) 1477 fbreg = -1; 1478 break; 1479 default: 1480 break; 1481 } 1482 1483 pr_debug_dtp("frame base: cfa=%d fbreg=%d\n", 1484 dloc->fb_cfa, fbreg); 1485 } 1486 } 1487 1488 retry: 1489 is_fbreg = (reg == fbreg); 1490 if (is_fbreg) 1491 offset = loc->offset - fb_offset; 1492 1493 /* Search from the inner-most scope to the outer */ 1494 for (i = nr_scopes - 1; i >= 0; i--) { 1495 Dwarf_Die mem_die; 1496 int type_offset = offset; 1497 1498 if (reg == DWARF_REG_PC) { 1499 if (!die_find_variable_by_addr(&scopes[i], dloc->var_addr, 1500 &var_die, &type_offset)) 1501 continue; 1502 } else { 1503 /* Look up variables/parameters in this scope */ 1504 if (!die_find_variable_by_reg(&scopes[i], pc, reg, 1505 &type_offset, is_fbreg, &var_die)) 1506 continue; 1507 } 1508 1509 pr_debug_dtp("found \"%s\" (die: %#lx) in scope=%d/%d (die: %#lx) ", 1510 dwarf_diename(&var_die), (long)dwarf_dieoffset(&var_die), 1511 i+1, nr_scopes, (long)dwarf_dieoffset(&scopes[i])); 1512 1513 /* Found a variable, see if it's correct */ 1514 result = check_variable(dloc, &var_die, &mem_die, reg, type_offset, is_fbreg); 1515 if (result == PERF_TMR_OK) { 1516 if (reg == DWARF_REG_PC) { 1517 pr_debug_dtp("addr=%#"PRIx64" type_offset=%#x\n", 1518 dloc->var_addr, type_offset); 1519 } else if (reg == DWARF_REG_FB || is_fbreg) { 1520 pr_debug_dtp("stack_offset=%#x type_offset=%#x\n", 1521 fb_offset, type_offset); 1522 } else { 1523 pr_debug_dtp("type_offset=%#x\n", type_offset); 1524 } 1525 1526 if (!found || is_better_type(type_die, &mem_die)) { 1527 *type_die = mem_die; 1528 dloc->type_offset = type_offset; 1529 found = true; 1530 } 1531 } else { 1532 pr_debug_dtp("failed: %s\n", match_result_str(result)); 1533 } 1534 1535 pr_debug_location(&var_die, pc, reg); 1536 pr_debug_type_name(&mem_die, TSR_KIND_TYPE); 1537 } 1538 1539 if (!found && loc->multi_regs && reg == loc->reg1 && loc->reg1 != loc->reg2) { 1540 reg = loc->reg2; 1541 goto retry; 1542 } 1543 1544 if (!found && reg != DWARF_REG_PC) { 1545 result = find_data_type_block(dloc, &cu_die, scopes, 1546 nr_scopes, type_die); 1547 if (result == PERF_TMR_OK) { 1548 ann_data_stat.insn_track++; 1549 found = true; 1550 } 1551 } 1552 1553 out: 1554 pr_debug_dtp("final result: "); 1555 if (found) { 1556 pr_debug_type_name(type_die, TSR_KIND_TYPE); 1557 ret = 0; 1558 } else { 1559 switch (result) { 1560 case PERF_TMR_NO_TYPE: 1561 case PERF_TMR_NO_POINTER: 1562 pr_debug_dtp("%s\n", match_result_str(result)); 1563 ann_data_stat.no_typeinfo++; 1564 break; 1565 case PERF_TMR_NO_SIZE: 1566 pr_debug_dtp("%s\n", match_result_str(result)); 1567 ann_data_stat.invalid_size++; 1568 break; 1569 case PERF_TMR_BAD_OFFSET: 1570 pr_debug_dtp("%s\n", match_result_str(result)); 1571 ann_data_stat.bad_offset++; 1572 break; 1573 case PERF_TMR_UNKNOWN: 1574 case PERF_TMR_BAIL_OUT: 1575 case PERF_TMR_OK: /* should not reach here */ 1576 default: 1577 pr_debug_dtp("no variable found\n"); 1578 ann_data_stat.no_var++; 1579 break; 1580 } 1581 ret = -1; 1582 } 1583 1584 free(scopes); 1585 return ret; 1586 } 1587 1588 /** 1589 * find_data_type - Return a data type at the location 1590 * @dloc: data location 1591 * 1592 * This functions searches the debug information of the binary to get the data 1593 * type it accesses. The exact location is expressed by (ip, reg, offset) 1594 * for pointer variables or (ip, addr) for global variables. Note that global 1595 * variables might update the @dloc->type_offset after finding the start of the 1596 * variable. If it cannot find a global variable by address, it tried to find 1597 * a declaration of the variable using var_name. In that case, @dloc->offset 1598 * won't be updated. 1599 * 1600 * It return %NULL if not found. 1601 */ 1602 struct annotated_data_type *find_data_type(struct data_loc_info *dloc) 1603 { 1604 struct dso *dso = map__dso(dloc->ms->map); 1605 Dwarf_Die type_die; 1606 1607 /* 1608 * The type offset is the same as instruction offset by default. 1609 * But when finding a global variable, the offset won't be valid. 1610 */ 1611 dloc->type_offset = dloc->op->offset; 1612 1613 dloc->fbreg = -1; 1614 1615 if (find_data_type_die(dloc, &type_die) < 0) 1616 return NULL; 1617 1618 return dso__findnew_data_type(dso, &type_die); 1619 } 1620 1621 static int alloc_data_type_histograms(struct annotated_data_type *adt, int nr_entries) 1622 { 1623 int i; 1624 size_t sz = sizeof(struct type_hist); 1625 1626 sz += sizeof(struct type_hist_entry) * adt->self.size; 1627 1628 /* Allocate a table of pointers for each event */ 1629 adt->histograms = calloc(nr_entries, sizeof(*adt->histograms)); 1630 if (adt->histograms == NULL) 1631 return -ENOMEM; 1632 1633 /* 1634 * Each histogram is allocated for the whole size of the type. 1635 * TODO: Probably we can move the histogram to members. 1636 */ 1637 for (i = 0; i < nr_entries; i++) { 1638 adt->histograms[i] = zalloc(sz); 1639 if (adt->histograms[i] == NULL) 1640 goto err; 1641 } 1642 1643 adt->nr_histograms = nr_entries; 1644 return 0; 1645 1646 err: 1647 while (--i >= 0) 1648 zfree(&(adt->histograms[i])); 1649 zfree(&adt->histograms); 1650 return -ENOMEM; 1651 } 1652 1653 static void delete_data_type_histograms(struct annotated_data_type *adt) 1654 { 1655 for (int i = 0; i < adt->nr_histograms; i++) 1656 zfree(&(adt->histograms[i])); 1657 1658 zfree(&adt->histograms); 1659 adt->nr_histograms = 0; 1660 } 1661 1662 void annotated_data_type__tree_delete(struct rb_root *root) 1663 { 1664 struct annotated_data_type *pos; 1665 1666 while (!RB_EMPTY_ROOT(root)) { 1667 struct rb_node *node = rb_first(root); 1668 1669 rb_erase(node, root); 1670 pos = rb_entry(node, struct annotated_data_type, node); 1671 delete_members(&pos->self); 1672 delete_data_type_histograms(pos); 1673 zfree(&pos->self.type_name); 1674 free(pos); 1675 } 1676 } 1677 1678 /** 1679 * annotated_data_type__update_samples - Update histogram 1680 * @adt: Data type to update 1681 * @evsel: Event to update 1682 * @offset: Offset in the type 1683 * @nr_samples: Number of samples at this offset 1684 * @period: Event count at this offset 1685 * 1686 * This function updates type histogram at @ofs for @evsel. Samples are 1687 * aggregated before calling this function so it can be called with more 1688 * than one samples at a certain offset. 1689 */ 1690 int annotated_data_type__update_samples(struct annotated_data_type *adt, 1691 struct evsel *evsel, int offset, 1692 int nr_samples, u64 period) 1693 { 1694 struct type_hist *h; 1695 1696 if (adt == NULL) 1697 return 0; 1698 1699 if (adt->histograms == NULL) { 1700 int nr = evsel->evlist->core.nr_entries; 1701 1702 if (alloc_data_type_histograms(adt, nr) < 0) 1703 return -1; 1704 } 1705 1706 if (offset < 0 || offset >= adt->self.size) 1707 return -1; 1708 1709 h = adt->histograms[evsel->core.idx]; 1710 1711 h->nr_samples += nr_samples; 1712 h->addr[offset].nr_samples += nr_samples; 1713 h->period += period; 1714 h->addr[offset].period += period; 1715 return 0; 1716 } 1717 1718 static void print_annotated_data_header(struct hist_entry *he, struct evsel *evsel) 1719 { 1720 struct dso *dso = map__dso(he->ms.map); 1721 int nr_members = 1; 1722 int nr_samples = he->stat.nr_events; 1723 int width = 7; 1724 const char *val_hdr = "Percent"; 1725 1726 if (evsel__is_group_event(evsel)) { 1727 struct hist_entry *pair; 1728 1729 list_for_each_entry(pair, &he->pairs.head, pairs.node) 1730 nr_samples += pair->stat.nr_events; 1731 } 1732 1733 printf("Annotate type: '%s' in %s (%d samples):\n", 1734 he->mem_type->self.type_name, dso__name(dso), nr_samples); 1735 1736 if (evsel__is_group_event(evsel)) { 1737 struct evsel *pos; 1738 int i = 0; 1739 1740 nr_members = 0; 1741 for_each_group_evsel(pos, evsel) { 1742 if (symbol_conf.skip_empty && 1743 evsel__hists(pos)->stats.nr_samples == 0) 1744 continue; 1745 1746 printf(" event[%d] = %s\n", i++, pos->name); 1747 nr_members++; 1748 } 1749 } 1750 1751 if (symbol_conf.show_total_period) { 1752 width = 11; 1753 val_hdr = "Period"; 1754 } else if (symbol_conf.show_nr_samples) { 1755 width = 7; 1756 val_hdr = "Samples"; 1757 } 1758 1759 printf("============================================================================\n"); 1760 printf("%*s %10s %10s %s\n", (width + 1) * nr_members, val_hdr, 1761 "offset", "size", "field"); 1762 } 1763 1764 static void print_annotated_data_value(struct type_hist *h, u64 period, int nr_samples) 1765 { 1766 double percent = h->period ? (100.0 * period / h->period) : 0; 1767 const char *color = get_percent_color(percent); 1768 1769 if (symbol_conf.show_total_period) 1770 color_fprintf(stdout, color, " %11" PRIu64, period); 1771 else if (symbol_conf.show_nr_samples) 1772 color_fprintf(stdout, color, " %7d", nr_samples); 1773 else 1774 color_fprintf(stdout, color, " %7.2f", percent); 1775 } 1776 1777 static void print_annotated_data_type(struct annotated_data_type *mem_type, 1778 struct annotated_member *member, 1779 struct evsel *evsel, int indent) 1780 { 1781 struct annotated_member *child; 1782 struct type_hist *h = mem_type->histograms[evsel->core.idx]; 1783 int i, nr_events = 0, samples = 0; 1784 u64 period = 0; 1785 int width = symbol_conf.show_total_period ? 11 : 7; 1786 struct evsel *pos; 1787 1788 for_each_group_evsel(pos, evsel) { 1789 h = mem_type->histograms[pos->core.idx]; 1790 1791 if (symbol_conf.skip_empty && 1792 evsel__hists(pos)->stats.nr_samples == 0) 1793 continue; 1794 1795 samples = 0; 1796 period = 0; 1797 for (i = 0; i < member->size; i++) { 1798 samples += h->addr[member->offset + i].nr_samples; 1799 period += h->addr[member->offset + i].period; 1800 } 1801 print_annotated_data_value(h, period, samples); 1802 nr_events++; 1803 } 1804 1805 printf(" %#10x %#10x %*s%s\t%s", 1806 member->offset, member->size, indent, "", member->type_name, 1807 member->var_name ?: ""); 1808 1809 if (!list_empty(&member->children)) 1810 printf(" {\n"); 1811 1812 list_for_each_entry(child, &member->children, node) 1813 print_annotated_data_type(mem_type, child, evsel, indent + 4); 1814 1815 if (!list_empty(&member->children)) 1816 printf("%*s}", (width + 1) * nr_events + 24 + indent, ""); 1817 printf(";\n"); 1818 } 1819 1820 int hist_entry__annotate_data_tty(struct hist_entry *he, struct evsel *evsel) 1821 { 1822 print_annotated_data_header(he, evsel); 1823 print_annotated_data_type(he->mem_type, &he->mem_type->self, evsel, 0); 1824 printf("\n"); 1825 1826 /* move to the next entry */ 1827 return '>'; 1828 } 1829