xref: /linux/tools/perf/tests/shell/lib/perf_metric_validation.py (revision fd7d598270724cc787982ea48bbe17ad383a8b7f)
1#SPDX-License-Identifier: GPL-2.0
2import re
3import csv
4import json
5import argparse
6from pathlib import Path
7import subprocess
8
9class Validator:
10    def __init__(self, rulefname, reportfname='', t=5, debug=False, datafname='', fullrulefname='', workload='true', metrics=''):
11        self.rulefname = rulefname
12        self.reportfname = reportfname
13        self.rules = None
14        self.collectlist:str = metrics
15        self.metrics = self.__set_metrics(metrics)
16        self.skiplist = set()
17        self.tolerance = t
18
19        self.workloads = [x for x in workload.split(",") if x]
20        self.wlidx = 0 # idx of current workloads
21        self.allresults = dict() # metric results of all workload
22        self.allignoremetrics = dict() # metrics with no results or negative results
23        self.allfailtests = dict()
24        self.alltotalcnt = dict()
25        self.allpassedcnt = dict()
26        self.allerrlist = dict()
27
28        self.results = dict() # metric results of current workload
29        # vars for test pass/failure statistics
30        self.ignoremetrics= set() # metrics with no results or negative results, neg result counts as a failed test
31        self.failtests = dict()
32        self.totalcnt = 0
33        self.passedcnt = 0
34        # vars for errors
35        self.errlist = list()
36
37        # vars for Rule Generator
38        self.pctgmetrics = set() # Percentage rule
39
40        # vars for debug
41        self.datafname = datafname
42        self.debug = debug
43        self.fullrulefname = fullrulefname
44
45    def __set_metrics(self, metrics=''):
46        if metrics != '':
47            return set(metrics.split(","))
48        else:
49            return set()
50
51    def read_json(self, filename: str) -> dict:
52        try:
53            with open(Path(filename).resolve(), "r") as f:
54                data = json.loads(f.read())
55        except OSError as e:
56            print(f"Error when reading file {e}")
57            sys.exit()
58
59        return data
60
61    def json_dump(self, data, output_file):
62        parent = Path(output_file).parent
63        if not parent.exists():
64            parent.mkdir(parents=True)
65
66        with open(output_file, "w+") as output_file:
67            json.dump(data,
68                      output_file,
69                      ensure_ascii=True,
70                      indent=4)
71
72    def get_results(self, idx:int = 0):
73        return self.results[idx]
74
75    def get_bounds(self, lb, ub, error, alias={}, ridx:int = 0) -> list:
76        """
77        Get bounds and tolerance from lb, ub, and error.
78        If missing lb, use 0.0; missing ub, use float('inf); missing error, use self.tolerance.
79
80        @param lb: str/float, lower bound
81        @param ub: str/float, upper bound
82        @param error: float/str, error tolerance
83        @returns: lower bound, return inf if the lower bound is a metric value and is not collected
84                  upper bound, return -1 if the upper bound is a metric value and is not collected
85                  tolerance, denormalized base on upper bound value
86        """
87        # init ubv and lbv to invalid values
88        def get_bound_value (bound, initval, ridx):
89            val = initval
90            if isinstance(bound, int) or isinstance(bound, float):
91                val = bound
92            elif isinstance(bound, str):
93                if bound == '':
94                    val = float("inf")
95                elif bound in alias:
96                    vall = self.get_value(alias[ub], ridx)
97                    if vall:
98                        val = vall[0]
99                elif bound.replace('.', '1').isdigit():
100                    val = float(bound)
101                else:
102                    print("Wrong bound: {0}".format(bound))
103            else:
104                print("Wrong bound: {0}".format(bound))
105            return val
106
107        ubv = get_bound_value(ub, -1, ridx)
108        lbv = get_bound_value(lb, float('inf'), ridx)
109        t = get_bound_value(error, self.tolerance, ridx)
110
111        # denormalize error threshold
112        denormerr = t * ubv / 100 if ubv != 100 and ubv > 0 else t
113
114        return lbv, ubv, denormerr
115
116    def get_value(self, name:str, ridx:int = 0) -> list:
117        """
118        Get value of the metric from self.results.
119        If result of this metric is not provided, the metric name will be added into self.ignoremetics and self.errlist.
120        All future test(s) on this metric will fail.
121
122        @param name: name of the metric
123        @returns: list with value found in self.results; list is empty when value is not found.
124        """
125        results = []
126        data = self.results[ridx] if ridx in self.results else self.results[0]
127        if name not in self.ignoremetrics:
128            if name in data:
129                results.append(data[name])
130            elif name.replace('.', '1').isdigit():
131                results.append(float(name))
132            else:
133                self.ignoremetrics.add(name)
134        return results
135
136    def check_bound(self, val, lb, ub, err):
137        return True if val <= ub + err and val >= lb - err else False
138
139    # Positive Value Sanity check
140    def pos_val_test(self):
141        """
142        Check if metrics value are non-negative.
143        One metric is counted as one test.
144        Failure: when metric value is negative or not provided.
145        Metrics with negative value will be added into the self.failtests['PositiveValueTest'] and self.ignoremetrics.
146        """
147        negmetric = dict()
148        pcnt = 0
149        tcnt = 0
150        rerun = list()
151        for name, val in self.get_results().items():
152            if val < 0:
153                negmetric[name] = val
154                rerun.append(name)
155            else:
156                pcnt += 1
157            tcnt += 1
158        if len(rerun) > 0 and len(rerun) < 20:
159            second_results = dict()
160            self.second_test(rerun, second_results)
161            for name, val in second_results.items():
162                if name not in negmetric: continue
163                if val >= 0:
164                    del negmetric[name]
165                    pcnt += 1
166
167        self.failtests['PositiveValueTest']['Total Tests'] = tcnt
168        self.failtests['PositiveValueTest']['Passed Tests'] = pcnt
169        if len(negmetric.keys()):
170            self.ignoremetrics.update(negmetric.keys())
171            negmessage = ["{0}(={1:.4f})".format(name, val) for name, val in negmetric.items()]
172            self.failtests['PositiveValueTest']['Failed Tests'].append({'NegativeValue': negmessage})
173
174        return
175
176    def evaluate_formula(self, formula:str, alias:dict, ridx:int = 0):
177        """
178        Evaluate the value of formula.
179
180        @param formula: the formula to be evaluated
181        @param alias: the dict has alias to metric name mapping
182        @returns: value of the formula is success; -1 if the one or more metric value not provided
183        """
184        stack = []
185        b = 0
186        errs = []
187        sign = "+"
188        f = str()
189
190        #TODO: support parenthesis?
191        for i in range(len(formula)):
192            if i+1 == len(formula) or formula[i] in ('+', '-', '*', '/'):
193                s = alias[formula[b:i]] if i+1 < len(formula) else alias[formula[b:]]
194                v = self.get_value(s, ridx)
195                if not v:
196                    errs.append(s)
197                else:
198                    f = f + "{0}(={1:.4f})".format(s, v[0])
199                    if sign == "*":
200                        stack[-1] = stack[-1] * v
201                    elif sign == "/":
202                        stack[-1] = stack[-1] / v
203                    elif sign == '-':
204                        stack.append(-v[0])
205                    else:
206                        stack.append(v[0])
207                if i + 1 < len(formula):
208                    sign = formula[i]
209                    f += sign
210                    b = i + 1
211
212        if len(errs) > 0:
213            return -1, "Metric value missing: "+','.join(errs)
214
215        val = sum(stack)
216        return val, f
217
218    # Relationships Tests
219    def relationship_test(self, rule: dict):
220        """
221        Validate if the metrics follow the required relationship in the rule.
222        eg. lower_bound <= eval(formula)<= upper_bound
223        One rule is counted as ont test.
224        Failure: when one or more metric result(s) not provided, or when formula evaluated outside of upper/lower bounds.
225
226        @param rule: dict with metric name(+alias), formula, and required upper and lower bounds.
227        """
228        alias = dict()
229        for m in rule['Metrics']:
230            alias[m['Alias']] = m['Name']
231        lbv, ubv, t = self.get_bounds(rule['RangeLower'], rule['RangeUpper'], rule['ErrorThreshold'], alias, ridx=rule['RuleIndex'])
232        val, f = self.evaluate_formula(rule['Formula'], alias, ridx=rule['RuleIndex'])
233        if val == -1:
234            self.failtests['RelationshipTest']['Failed Tests'].append({'RuleIndex': rule['RuleIndex'], 'Description':f})
235        elif not self.check_bound(val, lbv, ubv, t):
236            lb = rule['RangeLower']
237            ub = rule['RangeUpper']
238            if isinstance(lb, str):
239                if lb in alias:
240                    lb = alias[lb]
241            if isinstance(ub, str):
242                if ub in alias:
243                    ub = alias[ub]
244            self.failtests['RelationshipTest']['Failed Tests'].append({'RuleIndex': rule['RuleIndex'], 'Formula':f,
245                                                                       'RangeLower': lb, 'LowerBoundValue': self.get_value(lb),
246                                                                       'RangeUpper': ub, 'UpperBoundValue':self.get_value(ub),
247                                                                       'ErrorThreshold': t, 'CollectedValue': val})
248        else:
249            self.passedcnt += 1
250            self.failtests['RelationshipTest']['Passed Tests'] += 1
251        self.totalcnt += 1
252        self.failtests['RelationshipTest']['Total Tests'] += 1
253
254        return
255
256
257    # Single Metric Test
258    def single_test(self, rule:dict):
259        """
260        Validate if the metrics are in the required value range.
261        eg. lower_bound <= metrics_value <= upper_bound
262        One metric is counted as one test in this type of test.
263        One rule may include one or more metrics.
264        Failure: when the metric value not provided or the value is outside the bounds.
265        This test updates self.total_cnt and records failed tests in self.failtest['SingleMetricTest'].
266
267        @param rule: dict with metrics to validate and the value range requirement
268        """
269        lbv, ubv, t = self.get_bounds(rule['RangeLower'], rule['RangeUpper'], rule['ErrorThreshold'])
270        metrics = rule['Metrics']
271        passcnt = 0
272        totalcnt = 0
273        faillist = list()
274        failures = dict()
275        rerun = list()
276        for m in metrics:
277            totalcnt += 1
278            result = self.get_value(m['Name'])
279            if len(result) > 0 and self.check_bound(result[0], lbv, ubv, t) or m['Name'] in self.skiplist:
280                passcnt += 1
281            else:
282                failures[m['Name']] = result
283                rerun.append(m['Name'])
284
285        if len(rerun) > 0 and len(rerun) < 20:
286            second_results = dict()
287            self.second_test(rerun, second_results)
288            for name, val in second_results.items():
289                if name not in failures: continue
290                if self.check_bound(val, lbv, ubv, t):
291                    passcnt += 1
292                    del failures[name]
293                else:
294                    failures[name] = val
295                    self.results[0][name] = val
296
297        self.totalcnt += totalcnt
298        self.passedcnt += passcnt
299        self.failtests['SingleMetricTest']['Total Tests'] += totalcnt
300        self.failtests['SingleMetricTest']['Passed Tests'] += passcnt
301        if len(failures.keys()) != 0:
302            faillist = [{'MetricName':name, 'CollectedValue':val} for name, val in failures.items()]
303            self.failtests['SingleMetricTest']['Failed Tests'].append({'RuleIndex':rule['RuleIndex'],
304                                                                       'RangeLower': rule['RangeLower'],
305                                                                       'RangeUpper': rule['RangeUpper'],
306                                                                       'ErrorThreshold':rule['ErrorThreshold'],
307                                                                       'Failure':faillist})
308
309        return
310
311    def create_report(self):
312        """
313        Create final report and write into a JSON file.
314        """
315        alldata = list()
316        for i in range(0, len(self.workloads)):
317            reportstas = {"Total Rule Count": self.alltotalcnt[i], "Passed Rule Count": self.allpassedcnt[i]}
318            data = {"Metric Validation Statistics": reportstas, "Tests in Category": self.allfailtests[i],
319                    "Errors":self.allerrlist[i]}
320            alldata.append({"Workload": self.workloads[i], "Report": data})
321
322        json_str = json.dumps(alldata, indent=4)
323        print("Test validation finished. Final report: ")
324        print(json_str)
325
326        if self.debug:
327            allres = [{"Workload": self.workloads[i], "Results": self.allresults[i]} for i in range(0, len(self.workloads))]
328            self.json_dump(allres, self.datafname)
329
330    def check_rule(self, testtype, metric_list):
331        """
332        Check if the rule uses metric(s) that not exist in current platform.
333
334        @param metric_list: list of metrics from the rule.
335        @return: False when find one metric out in Metric file. (This rule should not skipped.)
336                 True when all metrics used in the rule are found in Metric file.
337        """
338        if testtype == "RelationshipTest":
339            for m in metric_list:
340                if m['Name'] not in self.metrics:
341                    return False
342        return True
343
344    # Start of Collector and Converter
345    def convert(self, data: list, metricvalues:dict):
346        """
347        Convert collected metric data from the -j output to dict of {metric_name:value}.
348        """
349        for json_string in data:
350            try:
351                result =json.loads(json_string)
352                if "metric-unit" in result and result["metric-unit"] != "(null)" and result["metric-unit"] != "":
353                    name = result["metric-unit"].split("  ")[1] if len(result["metric-unit"].split("  ")) > 1 \
354                        else result["metric-unit"]
355                    metricvalues[name.lower()] = float(result["metric-value"])
356            except ValueError as error:
357                continue
358        return
359
360    def _run_perf(self, metric, workload: str):
361        tool = 'perf'
362        command = [tool, 'stat', '-j', '-M', f"{metric}", "-a"]
363        wl = workload.split()
364        command.extend(wl)
365        print(" ".join(command))
366        cmd = subprocess.run(command, stderr=subprocess.PIPE, encoding='utf-8')
367        data = [x+'}' for x in cmd.stderr.split('}\n') if x]
368        return data
369
370
371    def collect_perf(self, workload: str):
372        """
373        Collect metric data with "perf stat -M" on given workload with -a and -j.
374        """
375        self.results = dict()
376        print(f"Starting perf collection")
377        print(f"Long workload: {workload}")
378        collectlist = dict()
379        if self.collectlist != "":
380            collectlist[0] = {x for x in self.collectlist.split(",")}
381        else:
382            collectlist[0] = set(list(self.metrics))
383        # Create metric set for relationship rules
384        for rule in self.rules:
385            if rule["TestType"] == "RelationshipTest":
386                metrics = [m["Name"] for m in rule["Metrics"]]
387                if not any(m not in collectlist[0] for m in metrics):
388                    collectlist[rule["RuleIndex"]] = [",".join(list(set(metrics)))]
389
390        for idx, metrics in collectlist.items():
391            if idx == 0: wl = "true"
392            else: wl = workload
393            for metric in metrics:
394                data = self._run_perf(metric, wl)
395                if idx not in self.results: self.results[idx] = dict()
396                self.convert(data, self.results[idx])
397        return
398
399    def second_test(self, collectlist, second_results):
400        workload = self.workloads[self.wlidx]
401        for metric in collectlist:
402            data = self._run_perf(metric, workload)
403            self.convert(data, second_results)
404
405    # End of Collector and Converter
406
407    # Start of Rule Generator
408    def parse_perf_metrics(self):
409        """
410        Read and parse perf metric file:
411        1) find metrics with '1%' or '100%' as ScaleUnit for Percent check
412        2) create metric name list
413        """
414        command = ['perf', 'list', '-j', '--details', 'metrics']
415        cmd = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, encoding='utf-8')
416        try:
417            data = json.loads(cmd.stdout)
418            for m in data:
419                if 'MetricName' not in m:
420                    print("Warning: no metric name")
421                    continue
422                name = m['MetricName'].lower()
423                self.metrics.add(name)
424                if 'ScaleUnit' in m and (m['ScaleUnit'] == '1%' or m['ScaleUnit'] == '100%'):
425                    self.pctgmetrics.add(name.lower())
426        except ValueError as error:
427            print(f"Error when parsing metric data")
428            sys.exit()
429
430        return
431
432    def remove_unsupported_rules(self, rules):
433        new_rules = []
434        for rule in rules:
435            add_rule = True
436            for m in rule["Metrics"]:
437                if m["Name"] in self.skiplist or m["Name"] not in self.metrics:
438                    add_rule = False
439                    break
440            if add_rule:
441                new_rules.append(rule)
442        return new_rules
443
444    def create_rules(self):
445        """
446        Create full rules which includes:
447        1) All the rules from the "relationshi_rules" file
448        2) SingleMetric rule for all the 'percent' metrics
449
450        Reindex all the rules to avoid repeated RuleIndex
451        """
452        data = self.read_json(self.rulefname)
453        rules = data['RelationshipRules']
454        self.skiplist = set([name.lower() for name in data['SkipList']])
455        self.rules = self.remove_unsupported_rules(rules)
456        pctgrule = {'RuleIndex':0,
457                    'TestType':'SingleMetricTest',
458                    'RangeLower':'0',
459                    'RangeUpper': '100',
460                    'ErrorThreshold': self.tolerance,
461                    'Description':'Metrics in percent unit have value with in [0, 100]',
462                    'Metrics': [{'Name': m.lower()} for m in self.pctgmetrics]}
463        self.rules.append(pctgrule)
464
465        # Re-index all rules to avoid repeated RuleIndex
466        idx = 1
467        for r in self.rules:
468            r['RuleIndex'] = idx
469            idx += 1
470
471        if self.debug:
472            #TODO: need to test and generate file name correctly
473            data = {'RelationshipRules':self.rules, 'SupportedMetrics': [{"MetricName": name} for name in self.metrics]}
474            self.json_dump(data, self.fullrulefname)
475
476        return
477    # End of Rule Generator
478
479    def _storewldata(self, key):
480        '''
481        Store all the data of one workload into the corresponding data structure for all workloads.
482        @param key: key to the dictionaries (index of self.workloads).
483        '''
484        self.allresults[key] = self.results
485        self.allignoremetrics[key] = self.ignoremetrics
486        self.allfailtests[key] = self.failtests
487        self.alltotalcnt[key] = self.totalcnt
488        self.allpassedcnt[key] = self.passedcnt
489        self.allerrlist[key] = self.errlist
490
491    #Initialize data structures before data validation of each workload
492    def _init_data(self):
493
494        testtypes = ['PositiveValueTest', 'RelationshipTest', 'SingleMetricTest']
495        self.results = dict()
496        self.ignoremetrics= set()
497        self.errlist = list()
498        self.failtests = {k:{'Total Tests':0, 'Passed Tests':0, 'Failed Tests':[]} for k in testtypes}
499        self.totalcnt = 0
500        self.passedcnt = 0
501
502    def test(self):
503        '''
504        The real entry point of the test framework.
505        This function loads the validation rule JSON file and Standard Metric file to create rules for
506        testing and namemap dictionaries.
507        It also reads in result JSON file for testing.
508
509        In the test process, it passes through each rule and launch correct test function bases on the
510        'TestType' field of the rule.
511
512        The final report is written into a JSON file.
513        '''
514        if not self.collectlist:
515            self.parse_perf_metrics()
516        self.create_rules()
517        for i in range(0, len(self.workloads)):
518            self.wlidx = i
519            self._init_data()
520            self.collect_perf(self.workloads[i])
521            # Run positive value test
522            self.pos_val_test()
523            for r in self.rules:
524                # skip rules that uses metrics not exist in this platform
525                testtype = r['TestType']
526                if not self.check_rule(testtype, r['Metrics']):
527                    continue
528                if  testtype == 'RelationshipTest':
529                    self.relationship_test(r)
530                elif testtype == 'SingleMetricTest':
531                    self.single_test(r)
532                else:
533                    print("Unsupported Test Type: ", testtype)
534                    self.errlist.append("Unsupported Test Type from rule: " + r['RuleIndex'])
535            self._storewldata(i)
536            print("Workload: ", self.workloads[i])
537            print("Total metrics collected: ", self.failtests['PositiveValueTest']['Total Tests'])
538            print("Non-negative metric count: ", self.failtests['PositiveValueTest']['Passed Tests'])
539            print("Total Test Count: ", self.totalcnt)
540            print("Passed Test Count: ", self.passedcnt)
541
542        self.create_report()
543        return sum(self.alltotalcnt.values()) != sum(self.allpassedcnt.values())
544# End of Class Validator
545
546
547def main() -> None:
548    parser = argparse.ArgumentParser(description="Launch metric value validation")
549
550    parser.add_argument("-rule", help="Base validation rule file", required=True)
551    parser.add_argument("-output_dir", help="Path for validator output file, report file", required=True)
552    parser.add_argument("-debug", help="Debug run, save intermediate data to files", action="store_true", default=False)
553    parser.add_argument("-wl", help="Workload to run while data collection", default="true")
554    parser.add_argument("-m", help="Metric list to validate", default="")
555    args = parser.parse_args()
556    outpath = Path(args.output_dir)
557    reportf = Path.joinpath(outpath, 'perf_report.json')
558    fullrule = Path.joinpath(outpath, 'full_rule.json')
559    datafile = Path.joinpath(outpath, 'perf_data.json')
560
561    validator = Validator(args.rule, reportf, debug=args.debug,
562                        datafname=datafile, fullrulefname=fullrule, workload=args.wl,
563                        metrics=args.m)
564    ret = validator.test()
565
566    return ret
567
568
569if __name__ == "__main__":
570    import sys
571    sys.exit(main())
572
573
574
575