1 // SPDX-License-Identifier: GPL-2.0 2 #include "util/cputopo.h" 3 #include "util/debug.h" 4 #include "util/expr.h" 5 #include "util/header.h" 6 #include "util/smt.h" 7 #include "tests.h" 8 #include <math.h> 9 #include <stdlib.h> 10 #include <string.h> 11 #include <linux/zalloc.h> 12 13 static int test_ids_union(void) 14 { 15 struct hashmap *ids1, *ids2; 16 17 /* Empty union. */ 18 ids1 = ids__new(); 19 TEST_ASSERT_VAL("ids__new", ids1); 20 ids2 = ids__new(); 21 TEST_ASSERT_VAL("ids__new", ids2); 22 23 ids1 = ids__union(ids1, ids2); 24 TEST_ASSERT_EQUAL("union", (int)hashmap__size(ids1), 0); 25 26 /* Union {foo, bar} against {}. */ 27 ids2 = ids__new(); 28 TEST_ASSERT_VAL("ids__new", ids2); 29 30 TEST_ASSERT_EQUAL("ids__insert", ids__insert(ids1, strdup("foo")), 0); 31 TEST_ASSERT_EQUAL("ids__insert", ids__insert(ids1, strdup("bar")), 0); 32 33 ids1 = ids__union(ids1, ids2); 34 TEST_ASSERT_EQUAL("union", (int)hashmap__size(ids1), 2); 35 36 /* Union {foo, bar} against {foo}. */ 37 ids2 = ids__new(); 38 TEST_ASSERT_VAL("ids__new", ids2); 39 TEST_ASSERT_EQUAL("ids__insert", ids__insert(ids2, strdup("foo")), 0); 40 41 ids1 = ids__union(ids1, ids2); 42 TEST_ASSERT_EQUAL("union", (int)hashmap__size(ids1), 2); 43 44 /* Union {foo, bar} against {bar,baz}. */ 45 ids2 = ids__new(); 46 TEST_ASSERT_VAL("ids__new", ids2); 47 TEST_ASSERT_EQUAL("ids__insert", ids__insert(ids2, strdup("bar")), 0); 48 TEST_ASSERT_EQUAL("ids__insert", ids__insert(ids2, strdup("baz")), 0); 49 50 ids1 = ids__union(ids1, ids2); 51 TEST_ASSERT_EQUAL("union", (int)hashmap__size(ids1), 3); 52 53 ids__free(ids1); 54 55 return 0; 56 } 57 58 static int test(struct expr_parse_ctx *ctx, const char *e, double val2) 59 { 60 double val; 61 62 if (expr__parse(&val, ctx, e)) 63 TEST_ASSERT_VAL("parse test failed", 0); 64 TEST_ASSERT_VAL("unexpected value", val == val2); 65 return 0; 66 } 67 68 static int test__expr(struct test_suite *t __maybe_unused, int subtest __maybe_unused) 69 { 70 struct expr_id_data *val_ptr; 71 const char *p; 72 double val, num_cpus, num_cores, num_dies, num_packages; 73 int ret; 74 struct expr_parse_ctx *ctx; 75 bool is_intel = false; 76 char buf[128]; 77 78 if (!get_cpuid(buf, sizeof(buf))) 79 is_intel = strstr(buf, "Intel") != NULL; 80 81 TEST_ASSERT_EQUAL("ids_union", test_ids_union(), 0); 82 83 ctx = expr__ctx_new(); 84 TEST_ASSERT_VAL("expr__ctx_new", ctx); 85 expr__add_id_val(ctx, strdup("FOO"), 1); 86 expr__add_id_val(ctx, strdup("BAR"), 2); 87 88 ret = test(ctx, "1+1", 2); 89 ret |= test(ctx, "FOO+BAR", 3); 90 ret |= test(ctx, "(BAR/2)%2", 1); 91 ret |= test(ctx, "1 - -4", 5); 92 ret |= test(ctx, "(FOO-1)*2 + (BAR/2)%2 - -4", 5); 93 ret |= test(ctx, "1-1 | 1", 1); 94 ret |= test(ctx, "1-1 & 1", 0); 95 ret |= test(ctx, "min(1,2) + 1", 2); 96 ret |= test(ctx, "max(1,2) + 1", 3); 97 ret |= test(ctx, "1+1 if 3*4 else 0", 2); 98 ret |= test(ctx, "1.1 + 2.1", 3.2); 99 ret |= test(ctx, ".1 + 2.", 2.1); 100 ret |= test(ctx, "d_ratio(1, 2)", 0.5); 101 ret |= test(ctx, "d_ratio(2.5, 0)", 0); 102 ret |= test(ctx, "1.1 < 2.2", 1); 103 ret |= test(ctx, "2.2 > 1.1", 1); 104 ret |= test(ctx, "1.1 < 1.1", 0); 105 ret |= test(ctx, "2.2 > 2.2", 0); 106 ret |= test(ctx, "2.2 < 1.1", 0); 107 ret |= test(ctx, "1.1 > 2.2", 0); 108 ret |= test(ctx, "1.1e10 < 1.1e100", 1); 109 ret |= test(ctx, "1.1e2 > 1.1e-2", 1); 110 111 if (ret) { 112 expr__ctx_free(ctx); 113 return ret; 114 } 115 116 p = "FOO/0"; 117 ret = expr__parse(&val, ctx, p); 118 TEST_ASSERT_VAL("division by zero", ret == -1); 119 120 p = "BAR/"; 121 ret = expr__parse(&val, ctx, p); 122 TEST_ASSERT_VAL("missing operand", ret == -1); 123 124 expr__ctx_clear(ctx); 125 TEST_ASSERT_VAL("find ids", 126 expr__find_ids("FOO + BAR + BAZ + BOZO", "FOO", 127 ctx) == 0); 128 TEST_ASSERT_VAL("find ids", hashmap__size(ctx->ids) == 3); 129 TEST_ASSERT_VAL("find ids", hashmap__find(ctx->ids, "BAR", 130 (void **)&val_ptr)); 131 TEST_ASSERT_VAL("find ids", hashmap__find(ctx->ids, "BAZ", 132 (void **)&val_ptr)); 133 TEST_ASSERT_VAL("find ids", hashmap__find(ctx->ids, "BOZO", 134 (void **)&val_ptr)); 135 136 expr__ctx_clear(ctx); 137 ctx->sctx.runtime = 3; 138 TEST_ASSERT_VAL("find ids", 139 expr__find_ids("EVENT1\\,param\\=?@ + EVENT2\\,param\\=?@", 140 NULL, ctx) == 0); 141 TEST_ASSERT_VAL("find ids", hashmap__size(ctx->ids) == 2); 142 TEST_ASSERT_VAL("find ids", hashmap__find(ctx->ids, "EVENT1,param=3@", 143 (void **)&val_ptr)); 144 TEST_ASSERT_VAL("find ids", hashmap__find(ctx->ids, "EVENT2,param=3@", 145 (void **)&val_ptr)); 146 147 expr__ctx_clear(ctx); 148 TEST_ASSERT_VAL("find ids", 149 expr__find_ids("dash\\-event1 - dash\\-event2", 150 NULL, ctx) == 0); 151 TEST_ASSERT_VAL("find ids", hashmap__size(ctx->ids) == 2); 152 TEST_ASSERT_VAL("find ids", hashmap__find(ctx->ids, "dash-event1", 153 (void **)&val_ptr)); 154 TEST_ASSERT_VAL("find ids", hashmap__find(ctx->ids, "dash-event2", 155 (void **)&val_ptr)); 156 157 /* Only EVENT1 or EVENT2 need be measured depending on the value of smt_on. */ 158 { 159 struct cpu_topology *topology = cpu_topology__new(); 160 bool smton = smt_on(topology); 161 bool corewide = core_wide(/*system_wide=*/false, 162 /*user_requested_cpus=*/false, 163 topology); 164 165 cpu_topology__delete(topology); 166 expr__ctx_clear(ctx); 167 TEST_ASSERT_VAL("find ids", 168 expr__find_ids("EVENT1 if #smt_on else EVENT2", 169 NULL, ctx) == 0); 170 TEST_ASSERT_VAL("find ids", hashmap__size(ctx->ids) == 1); 171 TEST_ASSERT_VAL("find ids", hashmap__find(ctx->ids, 172 smton ? "EVENT1" : "EVENT2", 173 (void **)&val_ptr)); 174 175 expr__ctx_clear(ctx); 176 TEST_ASSERT_VAL("find ids", 177 expr__find_ids("EVENT1 if #core_wide else EVENT2", 178 NULL, ctx) == 0); 179 TEST_ASSERT_VAL("find ids", hashmap__size(ctx->ids) == 1); 180 TEST_ASSERT_VAL("find ids", hashmap__find(ctx->ids, 181 corewide ? "EVENT1" : "EVENT2", 182 (void **)&val_ptr)); 183 184 } 185 /* The expression is a constant 1.0 without needing to evaluate EVENT1. */ 186 expr__ctx_clear(ctx); 187 TEST_ASSERT_VAL("find ids", 188 expr__find_ids("1.0 if EVENT1 > 100.0 else 1.0", 189 NULL, ctx) == 0); 190 TEST_ASSERT_VAL("find ids", hashmap__size(ctx->ids) == 0); 191 192 /* Test toplogy constants appear well ordered. */ 193 expr__ctx_clear(ctx); 194 TEST_ASSERT_VAL("#num_cpus", expr__parse(&num_cpus, ctx, "#num_cpus") == 0); 195 TEST_ASSERT_VAL("#num_cores", expr__parse(&num_cores, ctx, "#num_cores") == 0); 196 TEST_ASSERT_VAL("#num_cpus >= #num_cores", num_cpus >= num_cores); 197 TEST_ASSERT_VAL("#num_dies", expr__parse(&num_dies, ctx, "#num_dies") == 0); 198 TEST_ASSERT_VAL("#num_cores >= #num_dies", num_cores >= num_dies); 199 TEST_ASSERT_VAL("#num_packages", expr__parse(&num_packages, ctx, "#num_packages") == 0); 200 201 if (num_dies) // Some platforms do not have CPU die support, for example s390 202 TEST_ASSERT_VAL("#num_dies >= #num_packages", num_dies >= num_packages); 203 204 TEST_ASSERT_VAL("#system_tsc_freq", expr__parse(&val, ctx, "#system_tsc_freq") == 0); 205 if (is_intel) 206 TEST_ASSERT_VAL("#system_tsc_freq > 0", val > 0); 207 else 208 TEST_ASSERT_VAL("#system_tsc_freq == 0", fpclassify(val) == FP_ZERO); 209 210 /* 211 * Source count returns the number of events aggregating in a leader 212 * event including the leader. Check parsing yields an id. 213 */ 214 expr__ctx_clear(ctx); 215 TEST_ASSERT_VAL("source count", 216 expr__find_ids("source_count(EVENT1)", 217 NULL, ctx) == 0); 218 TEST_ASSERT_VAL("source count", hashmap__size(ctx->ids) == 1); 219 TEST_ASSERT_VAL("source count", hashmap__find(ctx->ids, "EVENT1", 220 (void **)&val_ptr)); 221 222 expr__ctx_free(ctx); 223 224 return 0; 225 } 226 227 DEFINE_SUITE("Simple expression parser", expr); 228