xref: /linux/tools/perf/builtin-timechart.c (revision 913df4453f85f1fe79b35ecf3c9a0c0b707d22a2)
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14 
15 #include "builtin.h"
16 
17 #include "util/util.h"
18 
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include <linux/rbtree.h>
23 #include "util/symbol.h"
24 #include "util/string.h"
25 #include "util/callchain.h"
26 #include "util/strlist.h"
27 
28 #include "perf.h"
29 #include "util/header.h"
30 #include "util/parse-options.h"
31 #include "util/parse-events.h"
32 #include "util/svghelper.h"
33 
34 static char		const *input_name = "perf.data";
35 static char		const *output_name = "output.svg";
36 
37 
38 static unsigned long	page_size;
39 static unsigned long	mmap_window = 32;
40 static u64		sample_type;
41 
42 static unsigned int	numcpus;
43 static u64		min_freq;	/* Lowest CPU frequency seen */
44 static u64		max_freq;	/* Highest CPU frequency seen */
45 static u64		turbo_frequency;
46 
47 static u64		first_time, last_time;
48 
49 static int		power_only;
50 
51 
52 static struct perf_header	*header;
53 
54 struct per_pid;
55 struct per_pidcomm;
56 
57 struct cpu_sample;
58 struct power_event;
59 struct wake_event;
60 
61 struct sample_wrapper;
62 
63 /*
64  * Datastructure layout:
65  * We keep an list of "pid"s, matching the kernels notion of a task struct.
66  * Each "pid" entry, has a list of "comm"s.
67  *	this is because we want to track different programs different, while
68  *	exec will reuse the original pid (by design).
69  * Each comm has a list of samples that will be used to draw
70  * final graph.
71  */
72 
73 struct per_pid {
74 	struct per_pid *next;
75 
76 	int		pid;
77 	int		ppid;
78 
79 	u64		start_time;
80 	u64		end_time;
81 	u64		total_time;
82 	int		display;
83 
84 	struct per_pidcomm *all;
85 	struct per_pidcomm *current;
86 
87 	int painted;
88 };
89 
90 
91 struct per_pidcomm {
92 	struct per_pidcomm *next;
93 
94 	u64		start_time;
95 	u64		end_time;
96 	u64		total_time;
97 
98 	int		Y;
99 	int		display;
100 
101 	long		state;
102 	u64		state_since;
103 
104 	char		*comm;
105 
106 	struct cpu_sample *samples;
107 };
108 
109 struct sample_wrapper {
110 	struct sample_wrapper *next;
111 
112 	u64		timestamp;
113 	unsigned char	data[0];
114 };
115 
116 #define TYPE_NONE	0
117 #define TYPE_RUNNING	1
118 #define TYPE_WAITING	2
119 #define TYPE_BLOCKED	3
120 
121 struct cpu_sample {
122 	struct cpu_sample *next;
123 
124 	u64 start_time;
125 	u64 end_time;
126 	int type;
127 	int cpu;
128 };
129 
130 static struct per_pid *all_data;
131 
132 #define CSTATE 1
133 #define PSTATE 2
134 
135 struct power_event {
136 	struct power_event *next;
137 	int type;
138 	int state;
139 	u64 start_time;
140 	u64 end_time;
141 	int cpu;
142 };
143 
144 struct wake_event {
145 	struct wake_event *next;
146 	int waker;
147 	int wakee;
148 	u64 time;
149 };
150 
151 static struct power_event    *power_events;
152 static struct wake_event     *wake_events;
153 
154 struct sample_wrapper *all_samples;
155 
156 static struct per_pid *find_create_pid(int pid)
157 {
158 	struct per_pid *cursor = all_data;
159 
160 	while (cursor) {
161 		if (cursor->pid == pid)
162 			return cursor;
163 		cursor = cursor->next;
164 	}
165 	cursor = malloc(sizeof(struct per_pid));
166 	assert(cursor != NULL);
167 	memset(cursor, 0, sizeof(struct per_pid));
168 	cursor->pid = pid;
169 	cursor->next = all_data;
170 	all_data = cursor;
171 	return cursor;
172 }
173 
174 static void pid_set_comm(int pid, char *comm)
175 {
176 	struct per_pid *p;
177 	struct per_pidcomm *c;
178 	p = find_create_pid(pid);
179 	c = p->all;
180 	while (c) {
181 		if (c->comm && strcmp(c->comm, comm) == 0) {
182 			p->current = c;
183 			return;
184 		}
185 		if (!c->comm) {
186 			c->comm = strdup(comm);
187 			p->current = c;
188 			return;
189 		}
190 		c = c->next;
191 	}
192 	c = malloc(sizeof(struct per_pidcomm));
193 	assert(c != NULL);
194 	memset(c, 0, sizeof(struct per_pidcomm));
195 	c->comm = strdup(comm);
196 	p->current = c;
197 	c->next = p->all;
198 	p->all = c;
199 }
200 
201 static void pid_fork(int pid, int ppid, u64 timestamp)
202 {
203 	struct per_pid *p, *pp;
204 	p = find_create_pid(pid);
205 	pp = find_create_pid(ppid);
206 	p->ppid = ppid;
207 	if (pp->current && pp->current->comm && !p->current)
208 		pid_set_comm(pid, pp->current->comm);
209 
210 	p->start_time = timestamp;
211 	if (p->current) {
212 		p->current->start_time = timestamp;
213 		p->current->state_since = timestamp;
214 	}
215 }
216 
217 static void pid_exit(int pid, u64 timestamp)
218 {
219 	struct per_pid *p;
220 	p = find_create_pid(pid);
221 	p->end_time = timestamp;
222 	if (p->current)
223 		p->current->end_time = timestamp;
224 }
225 
226 static void
227 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
228 {
229 	struct per_pid *p;
230 	struct per_pidcomm *c;
231 	struct cpu_sample *sample;
232 
233 	p = find_create_pid(pid);
234 	c = p->current;
235 	if (!c) {
236 		c = malloc(sizeof(struct per_pidcomm));
237 		assert(c != NULL);
238 		memset(c, 0, sizeof(struct per_pidcomm));
239 		p->current = c;
240 		c->next = p->all;
241 		p->all = c;
242 	}
243 
244 	sample = malloc(sizeof(struct cpu_sample));
245 	assert(sample != NULL);
246 	memset(sample, 0, sizeof(struct cpu_sample));
247 	sample->start_time = start;
248 	sample->end_time = end;
249 	sample->type = type;
250 	sample->next = c->samples;
251 	sample->cpu = cpu;
252 	c->samples = sample;
253 
254 	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
255 		c->total_time += (end-start);
256 		p->total_time += (end-start);
257 	}
258 
259 	if (c->start_time == 0 || c->start_time > start)
260 		c->start_time = start;
261 	if (p->start_time == 0 || p->start_time > start)
262 		p->start_time = start;
263 
264 	if (cpu > numcpus)
265 		numcpus = cpu;
266 }
267 
268 #define MAX_CPUS 4096
269 
270 static u64 cpus_cstate_start_times[MAX_CPUS];
271 static int cpus_cstate_state[MAX_CPUS];
272 static u64 cpus_pstate_start_times[MAX_CPUS];
273 static u64 cpus_pstate_state[MAX_CPUS];
274 
275 static int
276 process_comm_event(event_t *event)
277 {
278 	pid_set_comm(event->comm.pid, event->comm.comm);
279 	return 0;
280 }
281 static int
282 process_fork_event(event_t *event)
283 {
284 	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
285 	return 0;
286 }
287 
288 static int
289 process_exit_event(event_t *event)
290 {
291 	pid_exit(event->fork.pid, event->fork.time);
292 	return 0;
293 }
294 
295 struct trace_entry {
296 	u32			size;
297 	unsigned short		type;
298 	unsigned char		flags;
299 	unsigned char		preempt_count;
300 	int			pid;
301 	int			tgid;
302 };
303 
304 struct power_entry {
305 	struct trace_entry te;
306 	s64	type;
307 	s64	value;
308 };
309 
310 #define TASK_COMM_LEN 16
311 struct wakeup_entry {
312 	struct trace_entry te;
313 	char comm[TASK_COMM_LEN];
314 	int   pid;
315 	int   prio;
316 	int   success;
317 };
318 
319 /*
320  * trace_flag_type is an enumeration that holds different
321  * states when a trace occurs. These are:
322  *  IRQS_OFF            - interrupts were disabled
323  *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
324  *  NEED_RESCED         - reschedule is requested
325  *  HARDIRQ             - inside an interrupt handler
326  *  SOFTIRQ             - inside a softirq handler
327  */
328 enum trace_flag_type {
329 	TRACE_FLAG_IRQS_OFF		= 0x01,
330 	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
331 	TRACE_FLAG_NEED_RESCHED		= 0x04,
332 	TRACE_FLAG_HARDIRQ		= 0x08,
333 	TRACE_FLAG_SOFTIRQ		= 0x10,
334 };
335 
336 
337 
338 struct sched_switch {
339 	struct trace_entry te;
340 	char prev_comm[TASK_COMM_LEN];
341 	int  prev_pid;
342 	int  prev_prio;
343 	long prev_state; /* Arjan weeps. */
344 	char next_comm[TASK_COMM_LEN];
345 	int  next_pid;
346 	int  next_prio;
347 };
348 
349 static void c_state_start(int cpu, u64 timestamp, int state)
350 {
351 	cpus_cstate_start_times[cpu] = timestamp;
352 	cpus_cstate_state[cpu] = state;
353 }
354 
355 static void c_state_end(int cpu, u64 timestamp)
356 {
357 	struct power_event *pwr;
358 	pwr = malloc(sizeof(struct power_event));
359 	if (!pwr)
360 		return;
361 	memset(pwr, 0, sizeof(struct power_event));
362 
363 	pwr->state = cpus_cstate_state[cpu];
364 	pwr->start_time = cpus_cstate_start_times[cpu];
365 	pwr->end_time = timestamp;
366 	pwr->cpu = cpu;
367 	pwr->type = CSTATE;
368 	pwr->next = power_events;
369 
370 	power_events = pwr;
371 }
372 
373 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
374 {
375 	struct power_event *pwr;
376 	pwr = malloc(sizeof(struct power_event));
377 
378 	if (new_freq > 8000000) /* detect invalid data */
379 		return;
380 
381 	if (!pwr)
382 		return;
383 	memset(pwr, 0, sizeof(struct power_event));
384 
385 	pwr->state = cpus_pstate_state[cpu];
386 	pwr->start_time = cpus_pstate_start_times[cpu];
387 	pwr->end_time = timestamp;
388 	pwr->cpu = cpu;
389 	pwr->type = PSTATE;
390 	pwr->next = power_events;
391 
392 	if (!pwr->start_time)
393 		pwr->start_time = first_time;
394 
395 	power_events = pwr;
396 
397 	cpus_pstate_state[cpu] = new_freq;
398 	cpus_pstate_start_times[cpu] = timestamp;
399 
400 	if ((u64)new_freq > max_freq)
401 		max_freq = new_freq;
402 
403 	if (new_freq < min_freq || min_freq == 0)
404 		min_freq = new_freq;
405 
406 	if (new_freq == max_freq - 1000)
407 			turbo_frequency = max_freq;
408 }
409 
410 static void
411 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
412 {
413 	struct wake_event *we;
414 	struct per_pid *p;
415 	struct wakeup_entry *wake = (void *)te;
416 
417 	we = malloc(sizeof(struct wake_event));
418 	if (!we)
419 		return;
420 
421 	memset(we, 0, sizeof(struct wake_event));
422 	we->time = timestamp;
423 	we->waker = pid;
424 
425 	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
426 		we->waker = -1;
427 
428 	we->wakee = wake->pid;
429 	we->next = wake_events;
430 	wake_events = we;
431 	p = find_create_pid(we->wakee);
432 
433 	if (p && p->current && p->current->state == TYPE_NONE) {
434 		p->current->state_since = timestamp;
435 		p->current->state = TYPE_WAITING;
436 	}
437 	if (p && p->current && p->current->state == TYPE_BLOCKED) {
438 		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
439 		p->current->state_since = timestamp;
440 		p->current->state = TYPE_WAITING;
441 	}
442 }
443 
444 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
445 {
446 	struct per_pid *p = NULL, *prev_p;
447 	struct sched_switch *sw = (void *)te;
448 
449 
450 	prev_p = find_create_pid(sw->prev_pid);
451 
452 	p = find_create_pid(sw->next_pid);
453 
454 	if (prev_p->current && prev_p->current->state != TYPE_NONE)
455 		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
456 	if (p && p->current) {
457 		if (p->current->state != TYPE_NONE)
458 			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
459 
460 			p->current->state_since = timestamp;
461 			p->current->state = TYPE_RUNNING;
462 	}
463 
464 	if (prev_p->current) {
465 		prev_p->current->state = TYPE_NONE;
466 		prev_p->current->state_since = timestamp;
467 		if (sw->prev_state & 2)
468 			prev_p->current->state = TYPE_BLOCKED;
469 		if (sw->prev_state == 0)
470 			prev_p->current->state = TYPE_WAITING;
471 	}
472 }
473 
474 
475 static int
476 process_sample_event(event_t *event)
477 {
478 	int cursor = 0;
479 	u64 addr = 0;
480 	u64 stamp = 0;
481 	u32 cpu = 0;
482 	u32 pid = 0;
483 	struct trace_entry *te;
484 
485 	if (sample_type & PERF_SAMPLE_IP)
486 		cursor++;
487 
488 	if (sample_type & PERF_SAMPLE_TID) {
489 		pid = event->sample.array[cursor]>>32;
490 		cursor++;
491 	}
492 	if (sample_type & PERF_SAMPLE_TIME) {
493 		stamp = event->sample.array[cursor++];
494 
495 		if (!first_time || first_time > stamp)
496 			first_time = stamp;
497 		if (last_time < stamp)
498 			last_time = stamp;
499 
500 	}
501 	if (sample_type & PERF_SAMPLE_ADDR)
502 		addr = event->sample.array[cursor++];
503 	if (sample_type & PERF_SAMPLE_ID)
504 		cursor++;
505 	if (sample_type & PERF_SAMPLE_STREAM_ID)
506 		cursor++;
507 	if (sample_type & PERF_SAMPLE_CPU)
508 		cpu = event->sample.array[cursor++] & 0xFFFFFFFF;
509 	if (sample_type & PERF_SAMPLE_PERIOD)
510 		cursor++;
511 
512 	te = (void *)&event->sample.array[cursor];
513 
514 	if (sample_type & PERF_SAMPLE_RAW && te->size > 0) {
515 		char *event_str;
516 		struct power_entry *pe;
517 
518 		pe = (void *)te;
519 
520 		event_str = perf_header__find_event(te->type);
521 
522 		if (!event_str)
523 			return 0;
524 
525 		if (strcmp(event_str, "power:power_start") == 0)
526 			c_state_start(cpu, stamp, pe->value);
527 
528 		if (strcmp(event_str, "power:power_end") == 0)
529 			c_state_end(cpu, stamp);
530 
531 		if (strcmp(event_str, "power:power_frequency") == 0)
532 			p_state_change(cpu, stamp, pe->value);
533 
534 		if (strcmp(event_str, "sched:sched_wakeup") == 0)
535 			sched_wakeup(cpu, stamp, pid, te);
536 
537 		if (strcmp(event_str, "sched:sched_switch") == 0)
538 			sched_switch(cpu, stamp, te);
539 	}
540 	return 0;
541 }
542 
543 /*
544  * After the last sample we need to wrap up the current C/P state
545  * and close out each CPU for these.
546  */
547 static void end_sample_processing(void)
548 {
549 	u64 cpu;
550 	struct power_event *pwr;
551 
552 	for (cpu = 0; cpu <= numcpus; cpu++) {
553 		pwr = malloc(sizeof(struct power_event));
554 		if (!pwr)
555 			return;
556 		memset(pwr, 0, sizeof(struct power_event));
557 
558 		/* C state */
559 #if 0
560 		pwr->state = cpus_cstate_state[cpu];
561 		pwr->start_time = cpus_cstate_start_times[cpu];
562 		pwr->end_time = last_time;
563 		pwr->cpu = cpu;
564 		pwr->type = CSTATE;
565 		pwr->next = power_events;
566 
567 		power_events = pwr;
568 #endif
569 		/* P state */
570 
571 		pwr = malloc(sizeof(struct power_event));
572 		if (!pwr)
573 			return;
574 		memset(pwr, 0, sizeof(struct power_event));
575 
576 		pwr->state = cpus_pstate_state[cpu];
577 		pwr->start_time = cpus_pstate_start_times[cpu];
578 		pwr->end_time = last_time;
579 		pwr->cpu = cpu;
580 		pwr->type = PSTATE;
581 		pwr->next = power_events;
582 
583 		if (!pwr->start_time)
584 			pwr->start_time = first_time;
585 		if (!pwr->state)
586 			pwr->state = min_freq;
587 		power_events = pwr;
588 	}
589 }
590 
591 static u64 sample_time(event_t *event)
592 {
593 	int cursor;
594 
595 	cursor = 0;
596 	if (sample_type & PERF_SAMPLE_IP)
597 		cursor++;
598 	if (sample_type & PERF_SAMPLE_TID)
599 		cursor++;
600 	if (sample_type & PERF_SAMPLE_TIME)
601 		return event->sample.array[cursor];
602 	return 0;
603 }
604 
605 
606 /*
607  * We first queue all events, sorted backwards by insertion.
608  * The order will get flipped later.
609  */
610 static int
611 queue_sample_event(event_t *event)
612 {
613 	struct sample_wrapper *copy, *prev;
614 	int size;
615 
616 	size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;
617 
618 	copy = malloc(size);
619 	if (!copy)
620 		return 1;
621 
622 	memset(copy, 0, size);
623 
624 	copy->next = NULL;
625 	copy->timestamp = sample_time(event);
626 
627 	memcpy(&copy->data, event, event->sample.header.size);
628 
629 	/* insert in the right place in the list */
630 
631 	if (!all_samples) {
632 		/* first sample ever */
633 		all_samples = copy;
634 		return 0;
635 	}
636 
637 	if (all_samples->timestamp < copy->timestamp) {
638 		/* insert at the head of the list */
639 		copy->next = all_samples;
640 		all_samples = copy;
641 		return 0;
642 	}
643 
644 	prev = all_samples;
645 	while (prev->next) {
646 		if (prev->next->timestamp < copy->timestamp) {
647 			copy->next = prev->next;
648 			prev->next = copy;
649 			return 0;
650 		}
651 		prev = prev->next;
652 	}
653 	/* insert at the end of the list */
654 	prev->next = copy;
655 
656 	return 0;
657 }
658 
659 static void sort_queued_samples(void)
660 {
661 	struct sample_wrapper *cursor, *next;
662 
663 	cursor = all_samples;
664 	all_samples = NULL;
665 
666 	while (cursor) {
667 		next = cursor->next;
668 		cursor->next = all_samples;
669 		all_samples = cursor;
670 		cursor = next;
671 	}
672 }
673 
674 /*
675  * Sort the pid datastructure
676  */
677 static void sort_pids(void)
678 {
679 	struct per_pid *new_list, *p, *cursor, *prev;
680 	/* sort by ppid first, then by pid, lowest to highest */
681 
682 	new_list = NULL;
683 
684 	while (all_data) {
685 		p = all_data;
686 		all_data = p->next;
687 		p->next = NULL;
688 
689 		if (new_list == NULL) {
690 			new_list = p;
691 			p->next = NULL;
692 			continue;
693 		}
694 		prev = NULL;
695 		cursor = new_list;
696 		while (cursor) {
697 			if (cursor->ppid > p->ppid ||
698 				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
699 				/* must insert before */
700 				if (prev) {
701 					p->next = prev->next;
702 					prev->next = p;
703 					cursor = NULL;
704 					continue;
705 				} else {
706 					p->next = new_list;
707 					new_list = p;
708 					cursor = NULL;
709 					continue;
710 				}
711 			}
712 
713 			prev = cursor;
714 			cursor = cursor->next;
715 			if (!cursor)
716 				prev->next = p;
717 		}
718 	}
719 	all_data = new_list;
720 }
721 
722 
723 static void draw_c_p_states(void)
724 {
725 	struct power_event *pwr;
726 	pwr = power_events;
727 
728 	/*
729 	 * two pass drawing so that the P state bars are on top of the C state blocks
730 	 */
731 	while (pwr) {
732 		if (pwr->type == CSTATE)
733 			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
734 		pwr = pwr->next;
735 	}
736 
737 	pwr = power_events;
738 	while (pwr) {
739 		if (pwr->type == PSTATE) {
740 			if (!pwr->state)
741 				pwr->state = min_freq;
742 			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
743 		}
744 		pwr = pwr->next;
745 	}
746 }
747 
748 static void draw_wakeups(void)
749 {
750 	struct wake_event *we;
751 	struct per_pid *p;
752 	struct per_pidcomm *c;
753 
754 	we = wake_events;
755 	while (we) {
756 		int from = 0, to = 0;
757 		char *task_from = NULL, *task_to = NULL;
758 
759 		/* locate the column of the waker and wakee */
760 		p = all_data;
761 		while (p) {
762 			if (p->pid == we->waker || p->pid == we->wakee) {
763 				c = p->all;
764 				while (c) {
765 					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
766 						if (p->pid == we->waker) {
767 							from = c->Y;
768 							task_from = c->comm;
769 						}
770 						if (p->pid == we->wakee) {
771 							to = c->Y;
772 							task_to = c->comm;
773 						}
774 					}
775 					c = c->next;
776 				}
777 			}
778 			p = p->next;
779 		}
780 
781 		if (we->waker == -1)
782 			svg_interrupt(we->time, to);
783 		else if (from && to && abs(from - to) == 1)
784 			svg_wakeline(we->time, from, to);
785 		else
786 			svg_partial_wakeline(we->time, from, task_from, to, task_to);
787 		we = we->next;
788 	}
789 }
790 
791 static void draw_cpu_usage(void)
792 {
793 	struct per_pid *p;
794 	struct per_pidcomm *c;
795 	struct cpu_sample *sample;
796 	p = all_data;
797 	while (p) {
798 		c = p->all;
799 		while (c) {
800 			sample = c->samples;
801 			while (sample) {
802 				if (sample->type == TYPE_RUNNING)
803 					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
804 
805 				sample = sample->next;
806 			}
807 			c = c->next;
808 		}
809 		p = p->next;
810 	}
811 }
812 
813 static void draw_process_bars(void)
814 {
815 	struct per_pid *p;
816 	struct per_pidcomm *c;
817 	struct cpu_sample *sample;
818 	int Y = 0;
819 
820 	Y = 2 * numcpus + 2;
821 
822 	p = all_data;
823 	while (p) {
824 		c = p->all;
825 		while (c) {
826 			if (!c->display) {
827 				c->Y = 0;
828 				c = c->next;
829 				continue;
830 			}
831 
832 			svg_box(Y, c->start_time, c->end_time, "process");
833 			sample = c->samples;
834 			while (sample) {
835 				if (sample->type == TYPE_RUNNING)
836 					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
837 				if (sample->type == TYPE_BLOCKED)
838 					svg_box(Y, sample->start_time, sample->end_time, "blocked");
839 				if (sample->type == TYPE_WAITING)
840 					svg_waiting(Y, sample->start_time, sample->end_time);
841 				sample = sample->next;
842 			}
843 
844 			if (c->comm) {
845 				char comm[256];
846 				if (c->total_time > 5000000000) /* 5 seconds */
847 					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
848 				else
849 					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
850 
851 				svg_text(Y, c->start_time, comm);
852 			}
853 			c->Y = Y;
854 			Y++;
855 			c = c->next;
856 		}
857 		p = p->next;
858 	}
859 }
860 
861 static int determine_display_tasks(u64 threshold)
862 {
863 	struct per_pid *p;
864 	struct per_pidcomm *c;
865 	int count = 0;
866 
867 	p = all_data;
868 	while (p) {
869 		p->display = 0;
870 		if (p->start_time == 1)
871 			p->start_time = first_time;
872 
873 		/* no exit marker, task kept running to the end */
874 		if (p->end_time == 0)
875 			p->end_time = last_time;
876 		if (p->total_time >= threshold && !power_only)
877 			p->display = 1;
878 
879 		c = p->all;
880 
881 		while (c) {
882 			c->display = 0;
883 
884 			if (c->start_time == 1)
885 				c->start_time = first_time;
886 
887 			if (c->total_time >= threshold && !power_only) {
888 				c->display = 1;
889 				count++;
890 			}
891 
892 			if (c->end_time == 0)
893 				c->end_time = last_time;
894 
895 			c = c->next;
896 		}
897 		p = p->next;
898 	}
899 	return count;
900 }
901 
902 
903 
904 #define TIME_THRESH 10000000
905 
906 static void write_svg_file(const char *filename)
907 {
908 	u64 i;
909 	int count;
910 
911 	numcpus++;
912 
913 
914 	count = determine_display_tasks(TIME_THRESH);
915 
916 	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
917 	if (count < 15)
918 		count = determine_display_tasks(TIME_THRESH / 10);
919 
920 	open_svg(filename, numcpus, count, first_time, last_time);
921 
922 	svg_time_grid();
923 	svg_legenda();
924 
925 	for (i = 0; i < numcpus; i++)
926 		svg_cpu_box(i, max_freq, turbo_frequency);
927 
928 	draw_cpu_usage();
929 	draw_process_bars();
930 	draw_c_p_states();
931 	draw_wakeups();
932 
933 	svg_close();
934 }
935 
936 static int
937 process_event(event_t *event)
938 {
939 
940 	switch (event->header.type) {
941 
942 	case PERF_RECORD_COMM:
943 		return process_comm_event(event);
944 	case PERF_RECORD_FORK:
945 		return process_fork_event(event);
946 	case PERF_RECORD_EXIT:
947 		return process_exit_event(event);
948 	case PERF_RECORD_SAMPLE:
949 		return queue_sample_event(event);
950 
951 	/*
952 	 * We dont process them right now but they are fine:
953 	 */
954 	case PERF_RECORD_MMAP:
955 	case PERF_RECORD_THROTTLE:
956 	case PERF_RECORD_UNTHROTTLE:
957 		return 0;
958 
959 	default:
960 		return -1;
961 	}
962 
963 	return 0;
964 }
965 
966 static void process_samples(void)
967 {
968 	struct sample_wrapper *cursor;
969 	event_t *event;
970 
971 	sort_queued_samples();
972 
973 	cursor = all_samples;
974 	while (cursor) {
975 		event = (void *)&cursor->data;
976 		cursor = cursor->next;
977 		process_sample_event(event);
978 	}
979 }
980 
981 
982 static int __cmd_timechart(void)
983 {
984 	int ret, rc = EXIT_FAILURE;
985 	unsigned long offset = 0;
986 	unsigned long head, shift;
987 	struct stat statbuf;
988 	event_t *event;
989 	uint32_t size;
990 	char *buf;
991 	int input;
992 
993 	input = open(input_name, O_RDONLY);
994 	if (input < 0) {
995 		fprintf(stderr, " failed to open file: %s", input_name);
996 		if (!strcmp(input_name, "perf.data"))
997 			fprintf(stderr, "  (try 'perf record' first)");
998 		fprintf(stderr, "\n");
999 		exit(-1);
1000 	}
1001 
1002 	ret = fstat(input, &statbuf);
1003 	if (ret < 0) {
1004 		perror("failed to stat file");
1005 		exit(-1);
1006 	}
1007 
1008 	if (!statbuf.st_size) {
1009 		fprintf(stderr, "zero-sized file, nothing to do!\n");
1010 		exit(0);
1011 	}
1012 
1013 	header = perf_header__read(input);
1014 	head = header->data_offset;
1015 
1016 	sample_type = perf_header__sample_type(header);
1017 
1018 	shift = page_size * (head / page_size);
1019 	offset += shift;
1020 	head -= shift;
1021 
1022 remap:
1023 	buf = (char *)mmap(NULL, page_size * mmap_window, PROT_READ,
1024 			   MAP_SHARED, input, offset);
1025 	if (buf == MAP_FAILED) {
1026 		perror("failed to mmap file");
1027 		exit(-1);
1028 	}
1029 
1030 more:
1031 	event = (event_t *)(buf + head);
1032 
1033 	size = event->header.size;
1034 	if (!size)
1035 		size = 8;
1036 
1037 	if (head + event->header.size >= page_size * mmap_window) {
1038 		int ret2;
1039 
1040 		shift = page_size * (head / page_size);
1041 
1042 		ret2 = munmap(buf, page_size * mmap_window);
1043 		assert(ret2 == 0);
1044 
1045 		offset += shift;
1046 		head -= shift;
1047 		goto remap;
1048 	}
1049 
1050 	size = event->header.size;
1051 
1052 	if (!size || process_event(event) < 0) {
1053 
1054 		printf("%p [%p]: skipping unknown header type: %d\n",
1055 			(void *)(offset + head),
1056 			(void *)(long)(event->header.size),
1057 			event->header.type);
1058 
1059 		/*
1060 		 * assume we lost track of the stream, check alignment, and
1061 		 * increment a single u64 in the hope to catch on again 'soon'.
1062 		 */
1063 
1064 		if (unlikely(head & 7))
1065 			head &= ~7ULL;
1066 
1067 		size = 8;
1068 	}
1069 
1070 	head += size;
1071 
1072 	if (offset + head >= header->data_offset + header->data_size)
1073 		goto done;
1074 
1075 	if (offset + head < (unsigned long)statbuf.st_size)
1076 		goto more;
1077 
1078 done:
1079 	rc = EXIT_SUCCESS;
1080 	close(input);
1081 
1082 
1083 	process_samples();
1084 
1085 	end_sample_processing();
1086 
1087 	sort_pids();
1088 
1089 	write_svg_file(output_name);
1090 
1091 	printf("Written %2.1f seconds of trace to %s.\n", (last_time - first_time) / 1000000000.0, output_name);
1092 
1093 	return rc;
1094 }
1095 
1096 static const char * const timechart_usage[] = {
1097 	"perf timechart [<options>] {record}",
1098 	NULL
1099 };
1100 
1101 static const char *record_args[] = {
1102 	"record",
1103 	"-a",
1104 	"-R",
1105 	"-M",
1106 	"-f",
1107 	"-c", "1",
1108 	"-e", "power:power_start",
1109 	"-e", "power:power_end",
1110 	"-e", "power:power_frequency",
1111 	"-e", "sched:sched_wakeup",
1112 	"-e", "sched:sched_switch",
1113 };
1114 
1115 static int __cmd_record(int argc, const char **argv)
1116 {
1117 	unsigned int rec_argc, i, j;
1118 	const char **rec_argv;
1119 
1120 	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1121 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1122 
1123 	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1124 		rec_argv[i] = strdup(record_args[i]);
1125 
1126 	for (j = 1; j < (unsigned int)argc; j++, i++)
1127 		rec_argv[i] = argv[j];
1128 
1129 	return cmd_record(i, rec_argv, NULL);
1130 }
1131 
1132 static const struct option options[] = {
1133 	OPT_STRING('i', "input", &input_name, "file",
1134 		    "input file name"),
1135 	OPT_STRING('o', "output", &output_name, "file",
1136 		    "output file name"),
1137 	OPT_INTEGER('w', "width", &svg_page_width,
1138 		    "page width"),
1139 	OPT_BOOLEAN('p', "power-only", &power_only,
1140 		    "output power data only"),
1141 	OPT_END()
1142 };
1143 
1144 
1145 int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1146 {
1147 	symbol__init();
1148 
1149 	page_size = getpagesize();
1150 
1151 	argc = parse_options(argc, argv, options, timechart_usage,
1152 			PARSE_OPT_STOP_AT_NON_OPTION);
1153 
1154 	if (argc && !strncmp(argv[0], "rec", 3))
1155 		return __cmd_record(argc, argv);
1156 	else if (argc)
1157 		usage_with_options(timechart_usage, options);
1158 
1159 	setup_pager();
1160 
1161 	return __cmd_timechart();
1162 }
1163