xref: /linux/tools/perf/builtin-timechart.c (revision 273b281fa22c293963ee3e6eec418f5dda2dbc83)
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14 
15 #include "builtin.h"
16 
17 #include "util/util.h"
18 
19 #include "util/color.h"
20 #include <linux/list.h>
21 #include "util/cache.h"
22 #include <linux/rbtree.h>
23 #include "util/symbol.h"
24 #include "util/string.h"
25 #include "util/callchain.h"
26 #include "util/strlist.h"
27 
28 #include "perf.h"
29 #include "util/header.h"
30 #include "util/parse-options.h"
31 #include "util/parse-events.h"
32 #include "util/event.h"
33 #include "util/data_map.h"
34 #include "util/svghelper.h"
35 
36 static char		const *input_name = "perf.data";
37 static char		const *output_name = "output.svg";
38 
39 
40 static u64		sample_type;
41 
42 static unsigned int	numcpus;
43 static u64		min_freq;	/* Lowest CPU frequency seen */
44 static u64		max_freq;	/* Highest CPU frequency seen */
45 static u64		turbo_frequency;
46 
47 static u64		first_time, last_time;
48 
49 static int		power_only;
50 
51 
52 struct per_pid;
53 struct per_pidcomm;
54 
55 struct cpu_sample;
56 struct power_event;
57 struct wake_event;
58 
59 struct sample_wrapper;
60 
61 /*
62  * Datastructure layout:
63  * We keep an list of "pid"s, matching the kernels notion of a task struct.
64  * Each "pid" entry, has a list of "comm"s.
65  *	this is because we want to track different programs different, while
66  *	exec will reuse the original pid (by design).
67  * Each comm has a list of samples that will be used to draw
68  * final graph.
69  */
70 
71 struct per_pid {
72 	struct per_pid *next;
73 
74 	int		pid;
75 	int		ppid;
76 
77 	u64		start_time;
78 	u64		end_time;
79 	u64		total_time;
80 	int		display;
81 
82 	struct per_pidcomm *all;
83 	struct per_pidcomm *current;
84 
85 	int painted;
86 };
87 
88 
89 struct per_pidcomm {
90 	struct per_pidcomm *next;
91 
92 	u64		start_time;
93 	u64		end_time;
94 	u64		total_time;
95 
96 	int		Y;
97 	int		display;
98 
99 	long		state;
100 	u64		state_since;
101 
102 	char		*comm;
103 
104 	struct cpu_sample *samples;
105 };
106 
107 struct sample_wrapper {
108 	struct sample_wrapper *next;
109 
110 	u64		timestamp;
111 	unsigned char	data[0];
112 };
113 
114 #define TYPE_NONE	0
115 #define TYPE_RUNNING	1
116 #define TYPE_WAITING	2
117 #define TYPE_BLOCKED	3
118 
119 struct cpu_sample {
120 	struct cpu_sample *next;
121 
122 	u64 start_time;
123 	u64 end_time;
124 	int type;
125 	int cpu;
126 };
127 
128 static struct per_pid *all_data;
129 
130 #define CSTATE 1
131 #define PSTATE 2
132 
133 struct power_event {
134 	struct power_event *next;
135 	int type;
136 	int state;
137 	u64 start_time;
138 	u64 end_time;
139 	int cpu;
140 };
141 
142 struct wake_event {
143 	struct wake_event *next;
144 	int waker;
145 	int wakee;
146 	u64 time;
147 };
148 
149 static struct power_event    *power_events;
150 static struct wake_event     *wake_events;
151 
152 struct sample_wrapper *all_samples;
153 
154 
155 struct process_filter;
156 struct process_filter {
157 	char			*name;
158 	int			pid;
159 	struct process_filter	*next;
160 };
161 
162 static struct process_filter *process_filter;
163 
164 
165 static struct per_pid *find_create_pid(int pid)
166 {
167 	struct per_pid *cursor = all_data;
168 
169 	while (cursor) {
170 		if (cursor->pid == pid)
171 			return cursor;
172 		cursor = cursor->next;
173 	}
174 	cursor = malloc(sizeof(struct per_pid));
175 	assert(cursor != NULL);
176 	memset(cursor, 0, sizeof(struct per_pid));
177 	cursor->pid = pid;
178 	cursor->next = all_data;
179 	all_data = cursor;
180 	return cursor;
181 }
182 
183 static void pid_set_comm(int pid, char *comm)
184 {
185 	struct per_pid *p;
186 	struct per_pidcomm *c;
187 	p = find_create_pid(pid);
188 	c = p->all;
189 	while (c) {
190 		if (c->comm && strcmp(c->comm, comm) == 0) {
191 			p->current = c;
192 			return;
193 		}
194 		if (!c->comm) {
195 			c->comm = strdup(comm);
196 			p->current = c;
197 			return;
198 		}
199 		c = c->next;
200 	}
201 	c = malloc(sizeof(struct per_pidcomm));
202 	assert(c != NULL);
203 	memset(c, 0, sizeof(struct per_pidcomm));
204 	c->comm = strdup(comm);
205 	p->current = c;
206 	c->next = p->all;
207 	p->all = c;
208 }
209 
210 static void pid_fork(int pid, int ppid, u64 timestamp)
211 {
212 	struct per_pid *p, *pp;
213 	p = find_create_pid(pid);
214 	pp = find_create_pid(ppid);
215 	p->ppid = ppid;
216 	if (pp->current && pp->current->comm && !p->current)
217 		pid_set_comm(pid, pp->current->comm);
218 
219 	p->start_time = timestamp;
220 	if (p->current) {
221 		p->current->start_time = timestamp;
222 		p->current->state_since = timestamp;
223 	}
224 }
225 
226 static void pid_exit(int pid, u64 timestamp)
227 {
228 	struct per_pid *p;
229 	p = find_create_pid(pid);
230 	p->end_time = timestamp;
231 	if (p->current)
232 		p->current->end_time = timestamp;
233 }
234 
235 static void
236 pid_put_sample(int pid, int type, unsigned int cpu, u64 start, u64 end)
237 {
238 	struct per_pid *p;
239 	struct per_pidcomm *c;
240 	struct cpu_sample *sample;
241 
242 	p = find_create_pid(pid);
243 	c = p->current;
244 	if (!c) {
245 		c = malloc(sizeof(struct per_pidcomm));
246 		assert(c != NULL);
247 		memset(c, 0, sizeof(struct per_pidcomm));
248 		p->current = c;
249 		c->next = p->all;
250 		p->all = c;
251 	}
252 
253 	sample = malloc(sizeof(struct cpu_sample));
254 	assert(sample != NULL);
255 	memset(sample, 0, sizeof(struct cpu_sample));
256 	sample->start_time = start;
257 	sample->end_time = end;
258 	sample->type = type;
259 	sample->next = c->samples;
260 	sample->cpu = cpu;
261 	c->samples = sample;
262 
263 	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
264 		c->total_time += (end-start);
265 		p->total_time += (end-start);
266 	}
267 
268 	if (c->start_time == 0 || c->start_time > start)
269 		c->start_time = start;
270 	if (p->start_time == 0 || p->start_time > start)
271 		p->start_time = start;
272 
273 	if (cpu > numcpus)
274 		numcpus = cpu;
275 }
276 
277 #define MAX_CPUS 4096
278 
279 static u64 cpus_cstate_start_times[MAX_CPUS];
280 static int cpus_cstate_state[MAX_CPUS];
281 static u64 cpus_pstate_start_times[MAX_CPUS];
282 static u64 cpus_pstate_state[MAX_CPUS];
283 
284 static int
285 process_comm_event(event_t *event)
286 {
287 	pid_set_comm(event->comm.pid, event->comm.comm);
288 	return 0;
289 }
290 static int
291 process_fork_event(event_t *event)
292 {
293 	pid_fork(event->fork.pid, event->fork.ppid, event->fork.time);
294 	return 0;
295 }
296 
297 static int
298 process_exit_event(event_t *event)
299 {
300 	pid_exit(event->fork.pid, event->fork.time);
301 	return 0;
302 }
303 
304 struct trace_entry {
305 	unsigned short		type;
306 	unsigned char		flags;
307 	unsigned char		preempt_count;
308 	int			pid;
309 	int			lock_depth;
310 };
311 
312 struct power_entry {
313 	struct trace_entry te;
314 	s64	type;
315 	s64	value;
316 };
317 
318 #define TASK_COMM_LEN 16
319 struct wakeup_entry {
320 	struct trace_entry te;
321 	char comm[TASK_COMM_LEN];
322 	int   pid;
323 	int   prio;
324 	int   success;
325 };
326 
327 /*
328  * trace_flag_type is an enumeration that holds different
329  * states when a trace occurs. These are:
330  *  IRQS_OFF            - interrupts were disabled
331  *  IRQS_NOSUPPORT      - arch does not support irqs_disabled_flags
332  *  NEED_RESCED         - reschedule is requested
333  *  HARDIRQ             - inside an interrupt handler
334  *  SOFTIRQ             - inside a softirq handler
335  */
336 enum trace_flag_type {
337 	TRACE_FLAG_IRQS_OFF		= 0x01,
338 	TRACE_FLAG_IRQS_NOSUPPORT	= 0x02,
339 	TRACE_FLAG_NEED_RESCHED		= 0x04,
340 	TRACE_FLAG_HARDIRQ		= 0x08,
341 	TRACE_FLAG_SOFTIRQ		= 0x10,
342 };
343 
344 
345 
346 struct sched_switch {
347 	struct trace_entry te;
348 	char prev_comm[TASK_COMM_LEN];
349 	int  prev_pid;
350 	int  prev_prio;
351 	long prev_state; /* Arjan weeps. */
352 	char next_comm[TASK_COMM_LEN];
353 	int  next_pid;
354 	int  next_prio;
355 };
356 
357 static void c_state_start(int cpu, u64 timestamp, int state)
358 {
359 	cpus_cstate_start_times[cpu] = timestamp;
360 	cpus_cstate_state[cpu] = state;
361 }
362 
363 static void c_state_end(int cpu, u64 timestamp)
364 {
365 	struct power_event *pwr;
366 	pwr = malloc(sizeof(struct power_event));
367 	if (!pwr)
368 		return;
369 	memset(pwr, 0, sizeof(struct power_event));
370 
371 	pwr->state = cpus_cstate_state[cpu];
372 	pwr->start_time = cpus_cstate_start_times[cpu];
373 	pwr->end_time = timestamp;
374 	pwr->cpu = cpu;
375 	pwr->type = CSTATE;
376 	pwr->next = power_events;
377 
378 	power_events = pwr;
379 }
380 
381 static void p_state_change(int cpu, u64 timestamp, u64 new_freq)
382 {
383 	struct power_event *pwr;
384 	pwr = malloc(sizeof(struct power_event));
385 
386 	if (new_freq > 8000000) /* detect invalid data */
387 		return;
388 
389 	if (!pwr)
390 		return;
391 	memset(pwr, 0, sizeof(struct power_event));
392 
393 	pwr->state = cpus_pstate_state[cpu];
394 	pwr->start_time = cpus_pstate_start_times[cpu];
395 	pwr->end_time = timestamp;
396 	pwr->cpu = cpu;
397 	pwr->type = PSTATE;
398 	pwr->next = power_events;
399 
400 	if (!pwr->start_time)
401 		pwr->start_time = first_time;
402 
403 	power_events = pwr;
404 
405 	cpus_pstate_state[cpu] = new_freq;
406 	cpus_pstate_start_times[cpu] = timestamp;
407 
408 	if ((u64)new_freq > max_freq)
409 		max_freq = new_freq;
410 
411 	if (new_freq < min_freq || min_freq == 0)
412 		min_freq = new_freq;
413 
414 	if (new_freq == max_freq - 1000)
415 			turbo_frequency = max_freq;
416 }
417 
418 static void
419 sched_wakeup(int cpu, u64 timestamp, int pid, struct trace_entry *te)
420 {
421 	struct wake_event *we;
422 	struct per_pid *p;
423 	struct wakeup_entry *wake = (void *)te;
424 
425 	we = malloc(sizeof(struct wake_event));
426 	if (!we)
427 		return;
428 
429 	memset(we, 0, sizeof(struct wake_event));
430 	we->time = timestamp;
431 	we->waker = pid;
432 
433 	if ((te->flags & TRACE_FLAG_HARDIRQ) || (te->flags & TRACE_FLAG_SOFTIRQ))
434 		we->waker = -1;
435 
436 	we->wakee = wake->pid;
437 	we->next = wake_events;
438 	wake_events = we;
439 	p = find_create_pid(we->wakee);
440 
441 	if (p && p->current && p->current->state == TYPE_NONE) {
442 		p->current->state_since = timestamp;
443 		p->current->state = TYPE_WAITING;
444 	}
445 	if (p && p->current && p->current->state == TYPE_BLOCKED) {
446 		pid_put_sample(p->pid, p->current->state, cpu, p->current->state_since, timestamp);
447 		p->current->state_since = timestamp;
448 		p->current->state = TYPE_WAITING;
449 	}
450 }
451 
452 static void sched_switch(int cpu, u64 timestamp, struct trace_entry *te)
453 {
454 	struct per_pid *p = NULL, *prev_p;
455 	struct sched_switch *sw = (void *)te;
456 
457 
458 	prev_p = find_create_pid(sw->prev_pid);
459 
460 	p = find_create_pid(sw->next_pid);
461 
462 	if (prev_p->current && prev_p->current->state != TYPE_NONE)
463 		pid_put_sample(sw->prev_pid, TYPE_RUNNING, cpu, prev_p->current->state_since, timestamp);
464 	if (p && p->current) {
465 		if (p->current->state != TYPE_NONE)
466 			pid_put_sample(sw->next_pid, p->current->state, cpu, p->current->state_since, timestamp);
467 
468 			p->current->state_since = timestamp;
469 			p->current->state = TYPE_RUNNING;
470 	}
471 
472 	if (prev_p->current) {
473 		prev_p->current->state = TYPE_NONE;
474 		prev_p->current->state_since = timestamp;
475 		if (sw->prev_state & 2)
476 			prev_p->current->state = TYPE_BLOCKED;
477 		if (sw->prev_state == 0)
478 			prev_p->current->state = TYPE_WAITING;
479 	}
480 }
481 
482 
483 static int
484 process_sample_event(event_t *event)
485 {
486 	struct sample_data data;
487 	struct trace_entry *te;
488 
489 	memset(&data, 0, sizeof(data));
490 
491 	event__parse_sample(event, sample_type, &data);
492 
493 	if (sample_type & PERF_SAMPLE_TIME) {
494 		if (!first_time || first_time > data.time)
495 			first_time = data.time;
496 		if (last_time < data.time)
497 			last_time = data.time;
498 	}
499 
500 	te = (void *)data.raw_data;
501 	if (sample_type & PERF_SAMPLE_RAW && data.raw_size > 0) {
502 		char *event_str;
503 		struct power_entry *pe;
504 
505 		pe = (void *)te;
506 
507 		event_str = perf_header__find_event(te->type);
508 
509 		if (!event_str)
510 			return 0;
511 
512 		if (strcmp(event_str, "power:power_start") == 0)
513 			c_state_start(data.cpu, data.time, pe->value);
514 
515 		if (strcmp(event_str, "power:power_end") == 0)
516 			c_state_end(data.cpu, data.time);
517 
518 		if (strcmp(event_str, "power:power_frequency") == 0)
519 			p_state_change(data.cpu, data.time, pe->value);
520 
521 		if (strcmp(event_str, "sched:sched_wakeup") == 0)
522 			sched_wakeup(data.cpu, data.time, data.pid, te);
523 
524 		if (strcmp(event_str, "sched:sched_switch") == 0)
525 			sched_switch(data.cpu, data.time, te);
526 	}
527 	return 0;
528 }
529 
530 /*
531  * After the last sample we need to wrap up the current C/P state
532  * and close out each CPU for these.
533  */
534 static void end_sample_processing(void)
535 {
536 	u64 cpu;
537 	struct power_event *pwr;
538 
539 	for (cpu = 0; cpu <= numcpus; cpu++) {
540 		pwr = malloc(sizeof(struct power_event));
541 		if (!pwr)
542 			return;
543 		memset(pwr, 0, sizeof(struct power_event));
544 
545 		/* C state */
546 #if 0
547 		pwr->state = cpus_cstate_state[cpu];
548 		pwr->start_time = cpus_cstate_start_times[cpu];
549 		pwr->end_time = last_time;
550 		pwr->cpu = cpu;
551 		pwr->type = CSTATE;
552 		pwr->next = power_events;
553 
554 		power_events = pwr;
555 #endif
556 		/* P state */
557 
558 		pwr = malloc(sizeof(struct power_event));
559 		if (!pwr)
560 			return;
561 		memset(pwr, 0, sizeof(struct power_event));
562 
563 		pwr->state = cpus_pstate_state[cpu];
564 		pwr->start_time = cpus_pstate_start_times[cpu];
565 		pwr->end_time = last_time;
566 		pwr->cpu = cpu;
567 		pwr->type = PSTATE;
568 		pwr->next = power_events;
569 
570 		if (!pwr->start_time)
571 			pwr->start_time = first_time;
572 		if (!pwr->state)
573 			pwr->state = min_freq;
574 		power_events = pwr;
575 	}
576 }
577 
578 static u64 sample_time(event_t *event)
579 {
580 	int cursor;
581 
582 	cursor = 0;
583 	if (sample_type & PERF_SAMPLE_IP)
584 		cursor++;
585 	if (sample_type & PERF_SAMPLE_TID)
586 		cursor++;
587 	if (sample_type & PERF_SAMPLE_TIME)
588 		return event->sample.array[cursor];
589 	return 0;
590 }
591 
592 
593 /*
594  * We first queue all events, sorted backwards by insertion.
595  * The order will get flipped later.
596  */
597 static int
598 queue_sample_event(event_t *event)
599 {
600 	struct sample_wrapper *copy, *prev;
601 	int size;
602 
603 	size = event->sample.header.size + sizeof(struct sample_wrapper) + 8;
604 
605 	copy = malloc(size);
606 	if (!copy)
607 		return 1;
608 
609 	memset(copy, 0, size);
610 
611 	copy->next = NULL;
612 	copy->timestamp = sample_time(event);
613 
614 	memcpy(&copy->data, event, event->sample.header.size);
615 
616 	/* insert in the right place in the list */
617 
618 	if (!all_samples) {
619 		/* first sample ever */
620 		all_samples = copy;
621 		return 0;
622 	}
623 
624 	if (all_samples->timestamp < copy->timestamp) {
625 		/* insert at the head of the list */
626 		copy->next = all_samples;
627 		all_samples = copy;
628 		return 0;
629 	}
630 
631 	prev = all_samples;
632 	while (prev->next) {
633 		if (prev->next->timestamp < copy->timestamp) {
634 			copy->next = prev->next;
635 			prev->next = copy;
636 			return 0;
637 		}
638 		prev = prev->next;
639 	}
640 	/* insert at the end of the list */
641 	prev->next = copy;
642 
643 	return 0;
644 }
645 
646 static void sort_queued_samples(void)
647 {
648 	struct sample_wrapper *cursor, *next;
649 
650 	cursor = all_samples;
651 	all_samples = NULL;
652 
653 	while (cursor) {
654 		next = cursor->next;
655 		cursor->next = all_samples;
656 		all_samples = cursor;
657 		cursor = next;
658 	}
659 }
660 
661 /*
662  * Sort the pid datastructure
663  */
664 static void sort_pids(void)
665 {
666 	struct per_pid *new_list, *p, *cursor, *prev;
667 	/* sort by ppid first, then by pid, lowest to highest */
668 
669 	new_list = NULL;
670 
671 	while (all_data) {
672 		p = all_data;
673 		all_data = p->next;
674 		p->next = NULL;
675 
676 		if (new_list == NULL) {
677 			new_list = p;
678 			p->next = NULL;
679 			continue;
680 		}
681 		prev = NULL;
682 		cursor = new_list;
683 		while (cursor) {
684 			if (cursor->ppid > p->ppid ||
685 				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
686 				/* must insert before */
687 				if (prev) {
688 					p->next = prev->next;
689 					prev->next = p;
690 					cursor = NULL;
691 					continue;
692 				} else {
693 					p->next = new_list;
694 					new_list = p;
695 					cursor = NULL;
696 					continue;
697 				}
698 			}
699 
700 			prev = cursor;
701 			cursor = cursor->next;
702 			if (!cursor)
703 				prev->next = p;
704 		}
705 	}
706 	all_data = new_list;
707 }
708 
709 
710 static void draw_c_p_states(void)
711 {
712 	struct power_event *pwr;
713 	pwr = power_events;
714 
715 	/*
716 	 * two pass drawing so that the P state bars are on top of the C state blocks
717 	 */
718 	while (pwr) {
719 		if (pwr->type == CSTATE)
720 			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
721 		pwr = pwr->next;
722 	}
723 
724 	pwr = power_events;
725 	while (pwr) {
726 		if (pwr->type == PSTATE) {
727 			if (!pwr->state)
728 				pwr->state = min_freq;
729 			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
730 		}
731 		pwr = pwr->next;
732 	}
733 }
734 
735 static void draw_wakeups(void)
736 {
737 	struct wake_event *we;
738 	struct per_pid *p;
739 	struct per_pidcomm *c;
740 
741 	we = wake_events;
742 	while (we) {
743 		int from = 0, to = 0;
744 		char *task_from = NULL, *task_to = NULL;
745 
746 		/* locate the column of the waker and wakee */
747 		p = all_data;
748 		while (p) {
749 			if (p->pid == we->waker || p->pid == we->wakee) {
750 				c = p->all;
751 				while (c) {
752 					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
753 						if (p->pid == we->waker && !from) {
754 							from = c->Y;
755 							task_from = strdup(c->comm);
756 						}
757 						if (p->pid == we->wakee && !to) {
758 							to = c->Y;
759 							task_to = strdup(c->comm);
760 						}
761 					}
762 					c = c->next;
763 				}
764 				c = p->all;
765 				while (c) {
766 					if (p->pid == we->waker && !from) {
767 						from = c->Y;
768 						task_from = strdup(c->comm);
769 					}
770 					if (p->pid == we->wakee && !to) {
771 						to = c->Y;
772 						task_to = strdup(c->comm);
773 					}
774 					c = c->next;
775 				}
776 			}
777 			p = p->next;
778 		}
779 
780 		if (!task_from) {
781 			task_from = malloc(40);
782 			sprintf(task_from, "[%i]", we->waker);
783 		}
784 		if (!task_to) {
785 			task_to = malloc(40);
786 			sprintf(task_to, "[%i]", we->wakee);
787 		}
788 
789 		if (we->waker == -1)
790 			svg_interrupt(we->time, to);
791 		else if (from && to && abs(from - to) == 1)
792 			svg_wakeline(we->time, from, to);
793 		else
794 			svg_partial_wakeline(we->time, from, task_from, to, task_to);
795 		we = we->next;
796 
797 		free(task_from);
798 		free(task_to);
799 	}
800 }
801 
802 static void draw_cpu_usage(void)
803 {
804 	struct per_pid *p;
805 	struct per_pidcomm *c;
806 	struct cpu_sample *sample;
807 	p = all_data;
808 	while (p) {
809 		c = p->all;
810 		while (c) {
811 			sample = c->samples;
812 			while (sample) {
813 				if (sample->type == TYPE_RUNNING)
814 					svg_process(sample->cpu, sample->start_time, sample->end_time, "sample", c->comm);
815 
816 				sample = sample->next;
817 			}
818 			c = c->next;
819 		}
820 		p = p->next;
821 	}
822 }
823 
824 static void draw_process_bars(void)
825 {
826 	struct per_pid *p;
827 	struct per_pidcomm *c;
828 	struct cpu_sample *sample;
829 	int Y = 0;
830 
831 	Y = 2 * numcpus + 2;
832 
833 	p = all_data;
834 	while (p) {
835 		c = p->all;
836 		while (c) {
837 			if (!c->display) {
838 				c->Y = 0;
839 				c = c->next;
840 				continue;
841 			}
842 
843 			svg_box(Y, c->start_time, c->end_time, "process");
844 			sample = c->samples;
845 			while (sample) {
846 				if (sample->type == TYPE_RUNNING)
847 					svg_sample(Y, sample->cpu, sample->start_time, sample->end_time);
848 				if (sample->type == TYPE_BLOCKED)
849 					svg_box(Y, sample->start_time, sample->end_time, "blocked");
850 				if (sample->type == TYPE_WAITING)
851 					svg_waiting(Y, sample->start_time, sample->end_time);
852 				sample = sample->next;
853 			}
854 
855 			if (c->comm) {
856 				char comm[256];
857 				if (c->total_time > 5000000000) /* 5 seconds */
858 					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
859 				else
860 					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
861 
862 				svg_text(Y, c->start_time, comm);
863 			}
864 			c->Y = Y;
865 			Y++;
866 			c = c->next;
867 		}
868 		p = p->next;
869 	}
870 }
871 
872 static void add_process_filter(const char *string)
873 {
874 	struct process_filter *filt;
875 	int pid;
876 
877 	pid = strtoull(string, NULL, 10);
878 	filt = malloc(sizeof(struct process_filter));
879 	if (!filt)
880 		return;
881 
882 	filt->name = strdup(string);
883 	filt->pid  = pid;
884 	filt->next = process_filter;
885 
886 	process_filter = filt;
887 }
888 
889 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
890 {
891 	struct process_filter *filt;
892 	if (!process_filter)
893 		return 1;
894 
895 	filt = process_filter;
896 	while (filt) {
897 		if (filt->pid && p->pid == filt->pid)
898 			return 1;
899 		if (strcmp(filt->name, c->comm) == 0)
900 			return 1;
901 		filt = filt->next;
902 	}
903 	return 0;
904 }
905 
906 static int determine_display_tasks_filtered(void)
907 {
908 	struct per_pid *p;
909 	struct per_pidcomm *c;
910 	int count = 0;
911 
912 	p = all_data;
913 	while (p) {
914 		p->display = 0;
915 		if (p->start_time == 1)
916 			p->start_time = first_time;
917 
918 		/* no exit marker, task kept running to the end */
919 		if (p->end_time == 0)
920 			p->end_time = last_time;
921 
922 		c = p->all;
923 
924 		while (c) {
925 			c->display = 0;
926 
927 			if (c->start_time == 1)
928 				c->start_time = first_time;
929 
930 			if (passes_filter(p, c)) {
931 				c->display = 1;
932 				p->display = 1;
933 				count++;
934 			}
935 
936 			if (c->end_time == 0)
937 				c->end_time = last_time;
938 
939 			c = c->next;
940 		}
941 		p = p->next;
942 	}
943 	return count;
944 }
945 
946 static int determine_display_tasks(u64 threshold)
947 {
948 	struct per_pid *p;
949 	struct per_pidcomm *c;
950 	int count = 0;
951 
952 	if (process_filter)
953 		return determine_display_tasks_filtered();
954 
955 	p = all_data;
956 	while (p) {
957 		p->display = 0;
958 		if (p->start_time == 1)
959 			p->start_time = first_time;
960 
961 		/* no exit marker, task kept running to the end */
962 		if (p->end_time == 0)
963 			p->end_time = last_time;
964 		if (p->total_time >= threshold && !power_only)
965 			p->display = 1;
966 
967 		c = p->all;
968 
969 		while (c) {
970 			c->display = 0;
971 
972 			if (c->start_time == 1)
973 				c->start_time = first_time;
974 
975 			if (c->total_time >= threshold && !power_only) {
976 				c->display = 1;
977 				count++;
978 			}
979 
980 			if (c->end_time == 0)
981 				c->end_time = last_time;
982 
983 			c = c->next;
984 		}
985 		p = p->next;
986 	}
987 	return count;
988 }
989 
990 
991 
992 #define TIME_THRESH 10000000
993 
994 static void write_svg_file(const char *filename)
995 {
996 	u64 i;
997 	int count;
998 
999 	numcpus++;
1000 
1001 
1002 	count = determine_display_tasks(TIME_THRESH);
1003 
1004 	/* We'd like to show at least 15 tasks; be less picky if we have fewer */
1005 	if (count < 15)
1006 		count = determine_display_tasks(TIME_THRESH / 10);
1007 
1008 	open_svg(filename, numcpus, count, first_time, last_time);
1009 
1010 	svg_time_grid();
1011 	svg_legenda();
1012 
1013 	for (i = 0; i < numcpus; i++)
1014 		svg_cpu_box(i, max_freq, turbo_frequency);
1015 
1016 	draw_cpu_usage();
1017 	draw_process_bars();
1018 	draw_c_p_states();
1019 	draw_wakeups();
1020 
1021 	svg_close();
1022 }
1023 
1024 static void process_samples(void)
1025 {
1026 	struct sample_wrapper *cursor;
1027 	event_t *event;
1028 
1029 	sort_queued_samples();
1030 
1031 	cursor = all_samples;
1032 	while (cursor) {
1033 		event = (void *)&cursor->data;
1034 		cursor = cursor->next;
1035 		process_sample_event(event);
1036 	}
1037 }
1038 
1039 static int sample_type_check(u64 type)
1040 {
1041 	sample_type = type;
1042 
1043 	if (!(sample_type & PERF_SAMPLE_RAW)) {
1044 		fprintf(stderr, "No trace samples found in the file.\n"
1045 				"Have you used 'perf timechart record' to record it?\n");
1046 		return -1;
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 static struct perf_file_handler file_handler = {
1053 	.process_comm_event	= process_comm_event,
1054 	.process_fork_event	= process_fork_event,
1055 	.process_exit_event	= process_exit_event,
1056 	.process_sample_event	= queue_sample_event,
1057 	.sample_type_check	= sample_type_check,
1058 };
1059 
1060 static int __cmd_timechart(void)
1061 {
1062 	struct perf_header *header;
1063 	int ret;
1064 
1065 	register_perf_file_handler(&file_handler);
1066 
1067 	ret = mmap_dispatch_perf_file(&header, input_name, 0, 0,
1068 				      &event__cwdlen, &event__cwd);
1069 	if (ret)
1070 		return EXIT_FAILURE;
1071 
1072 	process_samples();
1073 
1074 	end_sample_processing();
1075 
1076 	sort_pids();
1077 
1078 	write_svg_file(output_name);
1079 
1080 	pr_info("Written %2.1f seconds of trace to %s.\n",
1081 		(last_time - first_time) / 1000000000.0, output_name);
1082 
1083 	return EXIT_SUCCESS;
1084 }
1085 
1086 static const char * const timechart_usage[] = {
1087 	"perf timechart [<options>] {record}",
1088 	NULL
1089 };
1090 
1091 static const char *record_args[] = {
1092 	"record",
1093 	"-a",
1094 	"-R",
1095 	"-M",
1096 	"-f",
1097 	"-c", "1",
1098 	"-e", "power:power_start",
1099 	"-e", "power:power_end",
1100 	"-e", "power:power_frequency",
1101 	"-e", "sched:sched_wakeup",
1102 	"-e", "sched:sched_switch",
1103 };
1104 
1105 static int __cmd_record(int argc, const char **argv)
1106 {
1107 	unsigned int rec_argc, i, j;
1108 	const char **rec_argv;
1109 
1110 	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1111 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1112 
1113 	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1114 		rec_argv[i] = strdup(record_args[i]);
1115 
1116 	for (j = 1; j < (unsigned int)argc; j++, i++)
1117 		rec_argv[i] = argv[j];
1118 
1119 	return cmd_record(i, rec_argv, NULL);
1120 }
1121 
1122 static int
1123 parse_process(const struct option *opt __used, const char *arg, int __used unset)
1124 {
1125 	if (arg)
1126 		add_process_filter(arg);
1127 	return 0;
1128 }
1129 
1130 static const struct option options[] = {
1131 	OPT_STRING('i', "input", &input_name, "file",
1132 		    "input file name"),
1133 	OPT_STRING('o', "output", &output_name, "file",
1134 		    "output file name"),
1135 	OPT_INTEGER('w', "width", &svg_page_width,
1136 		    "page width"),
1137 	OPT_BOOLEAN('P', "power-only", &power_only,
1138 		    "output power data only"),
1139 	OPT_CALLBACK('p', "process", NULL, "process",
1140 		      "process selector. Pass a pid or process name.",
1141 		       parse_process),
1142 	OPT_END()
1143 };
1144 
1145 
1146 int cmd_timechart(int argc, const char **argv, const char *prefix __used)
1147 {
1148 	symbol__init(0);
1149 
1150 	argc = parse_options(argc, argv, options, timechart_usage,
1151 			PARSE_OPT_STOP_AT_NON_OPTION);
1152 
1153 	if (argc && !strncmp(argv[0], "rec", 3))
1154 		return __cmd_record(argc, argv);
1155 	else if (argc)
1156 		usage_with_options(timechart_usage, options);
1157 
1158 	setup_pager();
1159 
1160 	return __cmd_timechart();
1161 }
1162