xref: /linux/tools/perf/builtin-timechart.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * builtin-timechart.c - make an svg timechart of system activity
3  *
4  * (C) Copyright 2009 Intel Corporation
5  *
6  * Authors:
7  *     Arjan van de Ven <arjan@linux.intel.com>
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * as published by the Free Software Foundation; version 2
12  * of the License.
13  */
14 
15 #include <traceevent/event-parse.h>
16 
17 #include "builtin.h"
18 
19 #include "util/util.h"
20 
21 #include "util/color.h"
22 #include <linux/list.h>
23 #include "util/cache.h"
24 #include "util/evlist.h"
25 #include "util/evsel.h"
26 #include <linux/rbtree.h>
27 #include "util/symbol.h"
28 #include "util/callchain.h"
29 #include "util/strlist.h"
30 
31 #include "perf.h"
32 #include "util/header.h"
33 #include <subcmd/parse-options.h>
34 #include "util/parse-events.h"
35 #include "util/event.h"
36 #include "util/session.h"
37 #include "util/svghelper.h"
38 #include "util/tool.h"
39 #include "util/data.h"
40 #include "util/debug.h"
41 
42 #define SUPPORT_OLD_POWER_EVENTS 1
43 #define PWR_EVENT_EXIT -1
44 
45 struct per_pid;
46 struct power_event;
47 struct wake_event;
48 
49 struct timechart {
50 	struct perf_tool	tool;
51 	struct per_pid		*all_data;
52 	struct power_event	*power_events;
53 	struct wake_event	*wake_events;
54 	int			proc_num;
55 	unsigned int		numcpus;
56 	u64			min_freq,	/* Lowest CPU frequency seen */
57 				max_freq,	/* Highest CPU frequency seen */
58 				turbo_frequency,
59 				first_time, last_time;
60 	bool			power_only,
61 				tasks_only,
62 				with_backtrace,
63 				topology;
64 	bool			force;
65 	/* IO related settings */
66 	bool			io_only,
67 				skip_eagain;
68 	u64			io_events;
69 	u64			min_time,
70 				merge_dist;
71 };
72 
73 struct per_pidcomm;
74 struct cpu_sample;
75 struct io_sample;
76 
77 /*
78  * Datastructure layout:
79  * We keep an list of "pid"s, matching the kernels notion of a task struct.
80  * Each "pid" entry, has a list of "comm"s.
81  *	this is because we want to track different programs different, while
82  *	exec will reuse the original pid (by design).
83  * Each comm has a list of samples that will be used to draw
84  * final graph.
85  */
86 
87 struct per_pid {
88 	struct per_pid *next;
89 
90 	int		pid;
91 	int		ppid;
92 
93 	u64		start_time;
94 	u64		end_time;
95 	u64		total_time;
96 	u64		total_bytes;
97 	int		display;
98 
99 	struct per_pidcomm *all;
100 	struct per_pidcomm *current;
101 };
102 
103 
104 struct per_pidcomm {
105 	struct per_pidcomm *next;
106 
107 	u64		start_time;
108 	u64		end_time;
109 	u64		total_time;
110 	u64		max_bytes;
111 	u64		total_bytes;
112 
113 	int		Y;
114 	int		display;
115 
116 	long		state;
117 	u64		state_since;
118 
119 	char		*comm;
120 
121 	struct cpu_sample *samples;
122 	struct io_sample  *io_samples;
123 };
124 
125 struct sample_wrapper {
126 	struct sample_wrapper *next;
127 
128 	u64		timestamp;
129 	unsigned char	data[0];
130 };
131 
132 #define TYPE_NONE	0
133 #define TYPE_RUNNING	1
134 #define TYPE_WAITING	2
135 #define TYPE_BLOCKED	3
136 
137 struct cpu_sample {
138 	struct cpu_sample *next;
139 
140 	u64 start_time;
141 	u64 end_time;
142 	int type;
143 	int cpu;
144 	const char *backtrace;
145 };
146 
147 enum {
148 	IOTYPE_READ,
149 	IOTYPE_WRITE,
150 	IOTYPE_SYNC,
151 	IOTYPE_TX,
152 	IOTYPE_RX,
153 	IOTYPE_POLL,
154 };
155 
156 struct io_sample {
157 	struct io_sample *next;
158 
159 	u64 start_time;
160 	u64 end_time;
161 	u64 bytes;
162 	int type;
163 	int fd;
164 	int err;
165 	int merges;
166 };
167 
168 #define CSTATE 1
169 #define PSTATE 2
170 
171 struct power_event {
172 	struct power_event *next;
173 	int type;
174 	int state;
175 	u64 start_time;
176 	u64 end_time;
177 	int cpu;
178 };
179 
180 struct wake_event {
181 	struct wake_event *next;
182 	int waker;
183 	int wakee;
184 	u64 time;
185 	const char *backtrace;
186 };
187 
188 struct process_filter {
189 	char			*name;
190 	int			pid;
191 	struct process_filter	*next;
192 };
193 
194 static struct process_filter *process_filter;
195 
196 
197 static struct per_pid *find_create_pid(struct timechart *tchart, int pid)
198 {
199 	struct per_pid *cursor = tchart->all_data;
200 
201 	while (cursor) {
202 		if (cursor->pid == pid)
203 			return cursor;
204 		cursor = cursor->next;
205 	}
206 	cursor = zalloc(sizeof(*cursor));
207 	assert(cursor != NULL);
208 	cursor->pid = pid;
209 	cursor->next = tchart->all_data;
210 	tchart->all_data = cursor;
211 	return cursor;
212 }
213 
214 static void pid_set_comm(struct timechart *tchart, int pid, char *comm)
215 {
216 	struct per_pid *p;
217 	struct per_pidcomm *c;
218 	p = find_create_pid(tchart, pid);
219 	c = p->all;
220 	while (c) {
221 		if (c->comm && strcmp(c->comm, comm) == 0) {
222 			p->current = c;
223 			return;
224 		}
225 		if (!c->comm) {
226 			c->comm = strdup(comm);
227 			p->current = c;
228 			return;
229 		}
230 		c = c->next;
231 	}
232 	c = zalloc(sizeof(*c));
233 	assert(c != NULL);
234 	c->comm = strdup(comm);
235 	p->current = c;
236 	c->next = p->all;
237 	p->all = c;
238 }
239 
240 static void pid_fork(struct timechart *tchart, int pid, int ppid, u64 timestamp)
241 {
242 	struct per_pid *p, *pp;
243 	p = find_create_pid(tchart, pid);
244 	pp = find_create_pid(tchart, ppid);
245 	p->ppid = ppid;
246 	if (pp->current && pp->current->comm && !p->current)
247 		pid_set_comm(tchart, pid, pp->current->comm);
248 
249 	p->start_time = timestamp;
250 	if (p->current && !p->current->start_time) {
251 		p->current->start_time = timestamp;
252 		p->current->state_since = timestamp;
253 	}
254 }
255 
256 static void pid_exit(struct timechart *tchart, int pid, u64 timestamp)
257 {
258 	struct per_pid *p;
259 	p = find_create_pid(tchart, pid);
260 	p->end_time = timestamp;
261 	if (p->current)
262 		p->current->end_time = timestamp;
263 }
264 
265 static void pid_put_sample(struct timechart *tchart, int pid, int type,
266 			   unsigned int cpu, u64 start, u64 end,
267 			   const char *backtrace)
268 {
269 	struct per_pid *p;
270 	struct per_pidcomm *c;
271 	struct cpu_sample *sample;
272 
273 	p = find_create_pid(tchart, pid);
274 	c = p->current;
275 	if (!c) {
276 		c = zalloc(sizeof(*c));
277 		assert(c != NULL);
278 		p->current = c;
279 		c->next = p->all;
280 		p->all = c;
281 	}
282 
283 	sample = zalloc(sizeof(*sample));
284 	assert(sample != NULL);
285 	sample->start_time = start;
286 	sample->end_time = end;
287 	sample->type = type;
288 	sample->next = c->samples;
289 	sample->cpu = cpu;
290 	sample->backtrace = backtrace;
291 	c->samples = sample;
292 
293 	if (sample->type == TYPE_RUNNING && end > start && start > 0) {
294 		c->total_time += (end-start);
295 		p->total_time += (end-start);
296 	}
297 
298 	if (c->start_time == 0 || c->start_time > start)
299 		c->start_time = start;
300 	if (p->start_time == 0 || p->start_time > start)
301 		p->start_time = start;
302 }
303 
304 #define MAX_CPUS 4096
305 
306 static u64 cpus_cstate_start_times[MAX_CPUS];
307 static int cpus_cstate_state[MAX_CPUS];
308 static u64 cpus_pstate_start_times[MAX_CPUS];
309 static u64 cpus_pstate_state[MAX_CPUS];
310 
311 static int process_comm_event(struct perf_tool *tool,
312 			      union perf_event *event,
313 			      struct perf_sample *sample __maybe_unused,
314 			      struct machine *machine __maybe_unused)
315 {
316 	struct timechart *tchart = container_of(tool, struct timechart, tool);
317 	pid_set_comm(tchart, event->comm.tid, event->comm.comm);
318 	return 0;
319 }
320 
321 static int process_fork_event(struct perf_tool *tool,
322 			      union perf_event *event,
323 			      struct perf_sample *sample __maybe_unused,
324 			      struct machine *machine __maybe_unused)
325 {
326 	struct timechart *tchart = container_of(tool, struct timechart, tool);
327 	pid_fork(tchart, event->fork.pid, event->fork.ppid, event->fork.time);
328 	return 0;
329 }
330 
331 static int process_exit_event(struct perf_tool *tool,
332 			      union perf_event *event,
333 			      struct perf_sample *sample __maybe_unused,
334 			      struct machine *machine __maybe_unused)
335 {
336 	struct timechart *tchart = container_of(tool, struct timechart, tool);
337 	pid_exit(tchart, event->fork.pid, event->fork.time);
338 	return 0;
339 }
340 
341 #ifdef SUPPORT_OLD_POWER_EVENTS
342 static int use_old_power_events;
343 #endif
344 
345 static void c_state_start(int cpu, u64 timestamp, int state)
346 {
347 	cpus_cstate_start_times[cpu] = timestamp;
348 	cpus_cstate_state[cpu] = state;
349 }
350 
351 static void c_state_end(struct timechart *tchart, int cpu, u64 timestamp)
352 {
353 	struct power_event *pwr = zalloc(sizeof(*pwr));
354 
355 	if (!pwr)
356 		return;
357 
358 	pwr->state = cpus_cstate_state[cpu];
359 	pwr->start_time = cpus_cstate_start_times[cpu];
360 	pwr->end_time = timestamp;
361 	pwr->cpu = cpu;
362 	pwr->type = CSTATE;
363 	pwr->next = tchart->power_events;
364 
365 	tchart->power_events = pwr;
366 }
367 
368 static void p_state_change(struct timechart *tchart, int cpu, u64 timestamp, u64 new_freq)
369 {
370 	struct power_event *pwr;
371 
372 	if (new_freq > 8000000) /* detect invalid data */
373 		return;
374 
375 	pwr = zalloc(sizeof(*pwr));
376 	if (!pwr)
377 		return;
378 
379 	pwr->state = cpus_pstate_state[cpu];
380 	pwr->start_time = cpus_pstate_start_times[cpu];
381 	pwr->end_time = timestamp;
382 	pwr->cpu = cpu;
383 	pwr->type = PSTATE;
384 	pwr->next = tchart->power_events;
385 
386 	if (!pwr->start_time)
387 		pwr->start_time = tchart->first_time;
388 
389 	tchart->power_events = pwr;
390 
391 	cpus_pstate_state[cpu] = new_freq;
392 	cpus_pstate_start_times[cpu] = timestamp;
393 
394 	if ((u64)new_freq > tchart->max_freq)
395 		tchart->max_freq = new_freq;
396 
397 	if (new_freq < tchart->min_freq || tchart->min_freq == 0)
398 		tchart->min_freq = new_freq;
399 
400 	if (new_freq == tchart->max_freq - 1000)
401 		tchart->turbo_frequency = tchart->max_freq;
402 }
403 
404 static void sched_wakeup(struct timechart *tchart, int cpu, u64 timestamp,
405 			 int waker, int wakee, u8 flags, const char *backtrace)
406 {
407 	struct per_pid *p;
408 	struct wake_event *we = zalloc(sizeof(*we));
409 
410 	if (!we)
411 		return;
412 
413 	we->time = timestamp;
414 	we->waker = waker;
415 	we->backtrace = backtrace;
416 
417 	if ((flags & TRACE_FLAG_HARDIRQ) || (flags & TRACE_FLAG_SOFTIRQ))
418 		we->waker = -1;
419 
420 	we->wakee = wakee;
421 	we->next = tchart->wake_events;
422 	tchart->wake_events = we;
423 	p = find_create_pid(tchart, we->wakee);
424 
425 	if (p && p->current && p->current->state == TYPE_NONE) {
426 		p->current->state_since = timestamp;
427 		p->current->state = TYPE_WAITING;
428 	}
429 	if (p && p->current && p->current->state == TYPE_BLOCKED) {
430 		pid_put_sample(tchart, p->pid, p->current->state, cpu,
431 			       p->current->state_since, timestamp, NULL);
432 		p->current->state_since = timestamp;
433 		p->current->state = TYPE_WAITING;
434 	}
435 }
436 
437 static void sched_switch(struct timechart *tchart, int cpu, u64 timestamp,
438 			 int prev_pid, int next_pid, u64 prev_state,
439 			 const char *backtrace)
440 {
441 	struct per_pid *p = NULL, *prev_p;
442 
443 	prev_p = find_create_pid(tchart, prev_pid);
444 
445 	p = find_create_pid(tchart, next_pid);
446 
447 	if (prev_p->current && prev_p->current->state != TYPE_NONE)
448 		pid_put_sample(tchart, prev_pid, TYPE_RUNNING, cpu,
449 			       prev_p->current->state_since, timestamp,
450 			       backtrace);
451 	if (p && p->current) {
452 		if (p->current->state != TYPE_NONE)
453 			pid_put_sample(tchart, next_pid, p->current->state, cpu,
454 				       p->current->state_since, timestamp,
455 				       backtrace);
456 
457 		p->current->state_since = timestamp;
458 		p->current->state = TYPE_RUNNING;
459 	}
460 
461 	if (prev_p->current) {
462 		prev_p->current->state = TYPE_NONE;
463 		prev_p->current->state_since = timestamp;
464 		if (prev_state & 2)
465 			prev_p->current->state = TYPE_BLOCKED;
466 		if (prev_state == 0)
467 			prev_p->current->state = TYPE_WAITING;
468 	}
469 }
470 
471 static const char *cat_backtrace(union perf_event *event,
472 				 struct perf_sample *sample,
473 				 struct machine *machine)
474 {
475 	struct addr_location al;
476 	unsigned int i;
477 	char *p = NULL;
478 	size_t p_len;
479 	u8 cpumode = PERF_RECORD_MISC_USER;
480 	struct addr_location tal;
481 	struct ip_callchain *chain = sample->callchain;
482 	FILE *f = open_memstream(&p, &p_len);
483 
484 	if (!f) {
485 		perror("open_memstream error");
486 		return NULL;
487 	}
488 
489 	if (!chain)
490 		goto exit;
491 
492 	if (machine__resolve(machine, &al, sample) < 0) {
493 		fprintf(stderr, "problem processing %d event, skipping it.\n",
494 			event->header.type);
495 		goto exit;
496 	}
497 
498 	for (i = 0; i < chain->nr; i++) {
499 		u64 ip;
500 
501 		if (callchain_param.order == ORDER_CALLEE)
502 			ip = chain->ips[i];
503 		else
504 			ip = chain->ips[chain->nr - i - 1];
505 
506 		if (ip >= PERF_CONTEXT_MAX) {
507 			switch (ip) {
508 			case PERF_CONTEXT_HV:
509 				cpumode = PERF_RECORD_MISC_HYPERVISOR;
510 				break;
511 			case PERF_CONTEXT_KERNEL:
512 				cpumode = PERF_RECORD_MISC_KERNEL;
513 				break;
514 			case PERF_CONTEXT_USER:
515 				cpumode = PERF_RECORD_MISC_USER;
516 				break;
517 			default:
518 				pr_debug("invalid callchain context: "
519 					 "%"PRId64"\n", (s64) ip);
520 
521 				/*
522 				 * It seems the callchain is corrupted.
523 				 * Discard all.
524 				 */
525 				zfree(&p);
526 				goto exit_put;
527 			}
528 			continue;
529 		}
530 
531 		tal.filtered = 0;
532 		thread__find_addr_location(al.thread, cpumode,
533 					   MAP__FUNCTION, ip, &tal);
534 
535 		if (tal.sym)
536 			fprintf(f, "..... %016" PRIx64 " %s\n", ip,
537 				tal.sym->name);
538 		else
539 			fprintf(f, "..... %016" PRIx64 "\n", ip);
540 	}
541 exit_put:
542 	addr_location__put(&al);
543 exit:
544 	fclose(f);
545 
546 	return p;
547 }
548 
549 typedef int (*tracepoint_handler)(struct timechart *tchart,
550 				  struct perf_evsel *evsel,
551 				  struct perf_sample *sample,
552 				  const char *backtrace);
553 
554 static int process_sample_event(struct perf_tool *tool,
555 				union perf_event *event,
556 				struct perf_sample *sample,
557 				struct perf_evsel *evsel,
558 				struct machine *machine)
559 {
560 	struct timechart *tchart = container_of(tool, struct timechart, tool);
561 
562 	if (evsel->attr.sample_type & PERF_SAMPLE_TIME) {
563 		if (!tchart->first_time || tchart->first_time > sample->time)
564 			tchart->first_time = sample->time;
565 		if (tchart->last_time < sample->time)
566 			tchart->last_time = sample->time;
567 	}
568 
569 	if (evsel->handler != NULL) {
570 		tracepoint_handler f = evsel->handler;
571 		return f(tchart, evsel, sample,
572 			 cat_backtrace(event, sample, machine));
573 	}
574 
575 	return 0;
576 }
577 
578 static int
579 process_sample_cpu_idle(struct timechart *tchart __maybe_unused,
580 			struct perf_evsel *evsel,
581 			struct perf_sample *sample,
582 			const char *backtrace __maybe_unused)
583 {
584 	u32 state = perf_evsel__intval(evsel, sample, "state");
585 	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
586 
587 	if (state == (u32)PWR_EVENT_EXIT)
588 		c_state_end(tchart, cpu_id, sample->time);
589 	else
590 		c_state_start(cpu_id, sample->time, state);
591 	return 0;
592 }
593 
594 static int
595 process_sample_cpu_frequency(struct timechart *tchart,
596 			     struct perf_evsel *evsel,
597 			     struct perf_sample *sample,
598 			     const char *backtrace __maybe_unused)
599 {
600 	u32 state = perf_evsel__intval(evsel, sample, "state");
601 	u32 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
602 
603 	p_state_change(tchart, cpu_id, sample->time, state);
604 	return 0;
605 }
606 
607 static int
608 process_sample_sched_wakeup(struct timechart *tchart,
609 			    struct perf_evsel *evsel,
610 			    struct perf_sample *sample,
611 			    const char *backtrace)
612 {
613 	u8 flags = perf_evsel__intval(evsel, sample, "common_flags");
614 	int waker = perf_evsel__intval(evsel, sample, "common_pid");
615 	int wakee = perf_evsel__intval(evsel, sample, "pid");
616 
617 	sched_wakeup(tchart, sample->cpu, sample->time, waker, wakee, flags, backtrace);
618 	return 0;
619 }
620 
621 static int
622 process_sample_sched_switch(struct timechart *tchart,
623 			    struct perf_evsel *evsel,
624 			    struct perf_sample *sample,
625 			    const char *backtrace)
626 {
627 	int prev_pid = perf_evsel__intval(evsel, sample, "prev_pid");
628 	int next_pid = perf_evsel__intval(evsel, sample, "next_pid");
629 	u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
630 
631 	sched_switch(tchart, sample->cpu, sample->time, prev_pid, next_pid,
632 		     prev_state, backtrace);
633 	return 0;
634 }
635 
636 #ifdef SUPPORT_OLD_POWER_EVENTS
637 static int
638 process_sample_power_start(struct timechart *tchart __maybe_unused,
639 			   struct perf_evsel *evsel,
640 			   struct perf_sample *sample,
641 			   const char *backtrace __maybe_unused)
642 {
643 	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
644 	u64 value = perf_evsel__intval(evsel, sample, "value");
645 
646 	c_state_start(cpu_id, sample->time, value);
647 	return 0;
648 }
649 
650 static int
651 process_sample_power_end(struct timechart *tchart,
652 			 struct perf_evsel *evsel __maybe_unused,
653 			 struct perf_sample *sample,
654 			 const char *backtrace __maybe_unused)
655 {
656 	c_state_end(tchart, sample->cpu, sample->time);
657 	return 0;
658 }
659 
660 static int
661 process_sample_power_frequency(struct timechart *tchart,
662 			       struct perf_evsel *evsel,
663 			       struct perf_sample *sample,
664 			       const char *backtrace __maybe_unused)
665 {
666 	u64 cpu_id = perf_evsel__intval(evsel, sample, "cpu_id");
667 	u64 value = perf_evsel__intval(evsel, sample, "value");
668 
669 	p_state_change(tchart, cpu_id, sample->time, value);
670 	return 0;
671 }
672 #endif /* SUPPORT_OLD_POWER_EVENTS */
673 
674 /*
675  * After the last sample we need to wrap up the current C/P state
676  * and close out each CPU for these.
677  */
678 static void end_sample_processing(struct timechart *tchart)
679 {
680 	u64 cpu;
681 	struct power_event *pwr;
682 
683 	for (cpu = 0; cpu <= tchart->numcpus; cpu++) {
684 		/* C state */
685 #if 0
686 		pwr = zalloc(sizeof(*pwr));
687 		if (!pwr)
688 			return;
689 
690 		pwr->state = cpus_cstate_state[cpu];
691 		pwr->start_time = cpus_cstate_start_times[cpu];
692 		pwr->end_time = tchart->last_time;
693 		pwr->cpu = cpu;
694 		pwr->type = CSTATE;
695 		pwr->next = tchart->power_events;
696 
697 		tchart->power_events = pwr;
698 #endif
699 		/* P state */
700 
701 		pwr = zalloc(sizeof(*pwr));
702 		if (!pwr)
703 			return;
704 
705 		pwr->state = cpus_pstate_state[cpu];
706 		pwr->start_time = cpus_pstate_start_times[cpu];
707 		pwr->end_time = tchart->last_time;
708 		pwr->cpu = cpu;
709 		pwr->type = PSTATE;
710 		pwr->next = tchart->power_events;
711 
712 		if (!pwr->start_time)
713 			pwr->start_time = tchart->first_time;
714 		if (!pwr->state)
715 			pwr->state = tchart->min_freq;
716 		tchart->power_events = pwr;
717 	}
718 }
719 
720 static int pid_begin_io_sample(struct timechart *tchart, int pid, int type,
721 			       u64 start, int fd)
722 {
723 	struct per_pid *p = find_create_pid(tchart, pid);
724 	struct per_pidcomm *c = p->current;
725 	struct io_sample *sample;
726 	struct io_sample *prev;
727 
728 	if (!c) {
729 		c = zalloc(sizeof(*c));
730 		if (!c)
731 			return -ENOMEM;
732 		p->current = c;
733 		c->next = p->all;
734 		p->all = c;
735 	}
736 
737 	prev = c->io_samples;
738 
739 	if (prev && prev->start_time && !prev->end_time) {
740 		pr_warning("Skip invalid start event: "
741 			   "previous event already started!\n");
742 
743 		/* remove previous event that has been started,
744 		 * we are not sure we will ever get an end for it */
745 		c->io_samples = prev->next;
746 		free(prev);
747 		return 0;
748 	}
749 
750 	sample = zalloc(sizeof(*sample));
751 	if (!sample)
752 		return -ENOMEM;
753 	sample->start_time = start;
754 	sample->type = type;
755 	sample->fd = fd;
756 	sample->next = c->io_samples;
757 	c->io_samples = sample;
758 
759 	if (c->start_time == 0 || c->start_time > start)
760 		c->start_time = start;
761 
762 	return 0;
763 }
764 
765 static int pid_end_io_sample(struct timechart *tchart, int pid, int type,
766 			     u64 end, long ret)
767 {
768 	struct per_pid *p = find_create_pid(tchart, pid);
769 	struct per_pidcomm *c = p->current;
770 	struct io_sample *sample, *prev;
771 
772 	if (!c) {
773 		pr_warning("Invalid pidcomm!\n");
774 		return -1;
775 	}
776 
777 	sample = c->io_samples;
778 
779 	if (!sample) /* skip partially captured events */
780 		return 0;
781 
782 	if (sample->end_time) {
783 		pr_warning("Skip invalid end event: "
784 			   "previous event already ended!\n");
785 		return 0;
786 	}
787 
788 	if (sample->type != type) {
789 		pr_warning("Skip invalid end event: invalid event type!\n");
790 		return 0;
791 	}
792 
793 	sample->end_time = end;
794 	prev = sample->next;
795 
796 	/* we want to be able to see small and fast transfers, so make them
797 	 * at least min_time long, but don't overlap them */
798 	if (sample->end_time - sample->start_time < tchart->min_time)
799 		sample->end_time = sample->start_time + tchart->min_time;
800 	if (prev && sample->start_time < prev->end_time) {
801 		if (prev->err) /* try to make errors more visible */
802 			sample->start_time = prev->end_time;
803 		else
804 			prev->end_time = sample->start_time;
805 	}
806 
807 	if (ret < 0) {
808 		sample->err = ret;
809 	} else if (type == IOTYPE_READ || type == IOTYPE_WRITE ||
810 		   type == IOTYPE_TX || type == IOTYPE_RX) {
811 
812 		if ((u64)ret > c->max_bytes)
813 			c->max_bytes = ret;
814 
815 		c->total_bytes += ret;
816 		p->total_bytes += ret;
817 		sample->bytes = ret;
818 	}
819 
820 	/* merge two requests to make svg smaller and render-friendly */
821 	if (prev &&
822 	    prev->type == sample->type &&
823 	    prev->err == sample->err &&
824 	    prev->fd == sample->fd &&
825 	    prev->end_time + tchart->merge_dist >= sample->start_time) {
826 
827 		sample->bytes += prev->bytes;
828 		sample->merges += prev->merges + 1;
829 
830 		sample->start_time = prev->start_time;
831 		sample->next = prev->next;
832 		free(prev);
833 
834 		if (!sample->err && sample->bytes > c->max_bytes)
835 			c->max_bytes = sample->bytes;
836 	}
837 
838 	tchart->io_events++;
839 
840 	return 0;
841 }
842 
843 static int
844 process_enter_read(struct timechart *tchart,
845 		   struct perf_evsel *evsel,
846 		   struct perf_sample *sample)
847 {
848 	long fd = perf_evsel__intval(evsel, sample, "fd");
849 	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_READ,
850 				   sample->time, fd);
851 }
852 
853 static int
854 process_exit_read(struct timechart *tchart,
855 		  struct perf_evsel *evsel,
856 		  struct perf_sample *sample)
857 {
858 	long ret = perf_evsel__intval(evsel, sample, "ret");
859 	return pid_end_io_sample(tchart, sample->tid, IOTYPE_READ,
860 				 sample->time, ret);
861 }
862 
863 static int
864 process_enter_write(struct timechart *tchart,
865 		    struct perf_evsel *evsel,
866 		    struct perf_sample *sample)
867 {
868 	long fd = perf_evsel__intval(evsel, sample, "fd");
869 	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_WRITE,
870 				   sample->time, fd);
871 }
872 
873 static int
874 process_exit_write(struct timechart *tchart,
875 		   struct perf_evsel *evsel,
876 		   struct perf_sample *sample)
877 {
878 	long ret = perf_evsel__intval(evsel, sample, "ret");
879 	return pid_end_io_sample(tchart, sample->tid, IOTYPE_WRITE,
880 				 sample->time, ret);
881 }
882 
883 static int
884 process_enter_sync(struct timechart *tchart,
885 		   struct perf_evsel *evsel,
886 		   struct perf_sample *sample)
887 {
888 	long fd = perf_evsel__intval(evsel, sample, "fd");
889 	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_SYNC,
890 				   sample->time, fd);
891 }
892 
893 static int
894 process_exit_sync(struct timechart *tchart,
895 		  struct perf_evsel *evsel,
896 		  struct perf_sample *sample)
897 {
898 	long ret = perf_evsel__intval(evsel, sample, "ret");
899 	return pid_end_io_sample(tchart, sample->tid, IOTYPE_SYNC,
900 				 sample->time, ret);
901 }
902 
903 static int
904 process_enter_tx(struct timechart *tchart,
905 		 struct perf_evsel *evsel,
906 		 struct perf_sample *sample)
907 {
908 	long fd = perf_evsel__intval(evsel, sample, "fd");
909 	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_TX,
910 				   sample->time, fd);
911 }
912 
913 static int
914 process_exit_tx(struct timechart *tchart,
915 		struct perf_evsel *evsel,
916 		struct perf_sample *sample)
917 {
918 	long ret = perf_evsel__intval(evsel, sample, "ret");
919 	return pid_end_io_sample(tchart, sample->tid, IOTYPE_TX,
920 				 sample->time, ret);
921 }
922 
923 static int
924 process_enter_rx(struct timechart *tchart,
925 		 struct perf_evsel *evsel,
926 		 struct perf_sample *sample)
927 {
928 	long fd = perf_evsel__intval(evsel, sample, "fd");
929 	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_RX,
930 				   sample->time, fd);
931 }
932 
933 static int
934 process_exit_rx(struct timechart *tchart,
935 		struct perf_evsel *evsel,
936 		struct perf_sample *sample)
937 {
938 	long ret = perf_evsel__intval(evsel, sample, "ret");
939 	return pid_end_io_sample(tchart, sample->tid, IOTYPE_RX,
940 				 sample->time, ret);
941 }
942 
943 static int
944 process_enter_poll(struct timechart *tchart,
945 		   struct perf_evsel *evsel,
946 		   struct perf_sample *sample)
947 {
948 	long fd = perf_evsel__intval(evsel, sample, "fd");
949 	return pid_begin_io_sample(tchart, sample->tid, IOTYPE_POLL,
950 				   sample->time, fd);
951 }
952 
953 static int
954 process_exit_poll(struct timechart *tchart,
955 		  struct perf_evsel *evsel,
956 		  struct perf_sample *sample)
957 {
958 	long ret = perf_evsel__intval(evsel, sample, "ret");
959 	return pid_end_io_sample(tchart, sample->tid, IOTYPE_POLL,
960 				 sample->time, ret);
961 }
962 
963 /*
964  * Sort the pid datastructure
965  */
966 static void sort_pids(struct timechart *tchart)
967 {
968 	struct per_pid *new_list, *p, *cursor, *prev;
969 	/* sort by ppid first, then by pid, lowest to highest */
970 
971 	new_list = NULL;
972 
973 	while (tchart->all_data) {
974 		p = tchart->all_data;
975 		tchart->all_data = p->next;
976 		p->next = NULL;
977 
978 		if (new_list == NULL) {
979 			new_list = p;
980 			p->next = NULL;
981 			continue;
982 		}
983 		prev = NULL;
984 		cursor = new_list;
985 		while (cursor) {
986 			if (cursor->ppid > p->ppid ||
987 				(cursor->ppid == p->ppid && cursor->pid > p->pid)) {
988 				/* must insert before */
989 				if (prev) {
990 					p->next = prev->next;
991 					prev->next = p;
992 					cursor = NULL;
993 					continue;
994 				} else {
995 					p->next = new_list;
996 					new_list = p;
997 					cursor = NULL;
998 					continue;
999 				}
1000 			}
1001 
1002 			prev = cursor;
1003 			cursor = cursor->next;
1004 			if (!cursor)
1005 				prev->next = p;
1006 		}
1007 	}
1008 	tchart->all_data = new_list;
1009 }
1010 
1011 
1012 static void draw_c_p_states(struct timechart *tchart)
1013 {
1014 	struct power_event *pwr;
1015 	pwr = tchart->power_events;
1016 
1017 	/*
1018 	 * two pass drawing so that the P state bars are on top of the C state blocks
1019 	 */
1020 	while (pwr) {
1021 		if (pwr->type == CSTATE)
1022 			svg_cstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1023 		pwr = pwr->next;
1024 	}
1025 
1026 	pwr = tchart->power_events;
1027 	while (pwr) {
1028 		if (pwr->type == PSTATE) {
1029 			if (!pwr->state)
1030 				pwr->state = tchart->min_freq;
1031 			svg_pstate(pwr->cpu, pwr->start_time, pwr->end_time, pwr->state);
1032 		}
1033 		pwr = pwr->next;
1034 	}
1035 }
1036 
1037 static void draw_wakeups(struct timechart *tchart)
1038 {
1039 	struct wake_event *we;
1040 	struct per_pid *p;
1041 	struct per_pidcomm *c;
1042 
1043 	we = tchart->wake_events;
1044 	while (we) {
1045 		int from = 0, to = 0;
1046 		char *task_from = NULL, *task_to = NULL;
1047 
1048 		/* locate the column of the waker and wakee */
1049 		p = tchart->all_data;
1050 		while (p) {
1051 			if (p->pid == we->waker || p->pid == we->wakee) {
1052 				c = p->all;
1053 				while (c) {
1054 					if (c->Y && c->start_time <= we->time && c->end_time >= we->time) {
1055 						if (p->pid == we->waker && !from) {
1056 							from = c->Y;
1057 							task_from = strdup(c->comm);
1058 						}
1059 						if (p->pid == we->wakee && !to) {
1060 							to = c->Y;
1061 							task_to = strdup(c->comm);
1062 						}
1063 					}
1064 					c = c->next;
1065 				}
1066 				c = p->all;
1067 				while (c) {
1068 					if (p->pid == we->waker && !from) {
1069 						from = c->Y;
1070 						task_from = strdup(c->comm);
1071 					}
1072 					if (p->pid == we->wakee && !to) {
1073 						to = c->Y;
1074 						task_to = strdup(c->comm);
1075 					}
1076 					c = c->next;
1077 				}
1078 			}
1079 			p = p->next;
1080 		}
1081 
1082 		if (!task_from) {
1083 			task_from = malloc(40);
1084 			sprintf(task_from, "[%i]", we->waker);
1085 		}
1086 		if (!task_to) {
1087 			task_to = malloc(40);
1088 			sprintf(task_to, "[%i]", we->wakee);
1089 		}
1090 
1091 		if (we->waker == -1)
1092 			svg_interrupt(we->time, to, we->backtrace);
1093 		else if (from && to && abs(from - to) == 1)
1094 			svg_wakeline(we->time, from, to, we->backtrace);
1095 		else
1096 			svg_partial_wakeline(we->time, from, task_from, to,
1097 					     task_to, we->backtrace);
1098 		we = we->next;
1099 
1100 		free(task_from);
1101 		free(task_to);
1102 	}
1103 }
1104 
1105 static void draw_cpu_usage(struct timechart *tchart)
1106 {
1107 	struct per_pid *p;
1108 	struct per_pidcomm *c;
1109 	struct cpu_sample *sample;
1110 	p = tchart->all_data;
1111 	while (p) {
1112 		c = p->all;
1113 		while (c) {
1114 			sample = c->samples;
1115 			while (sample) {
1116 				if (sample->type == TYPE_RUNNING) {
1117 					svg_process(sample->cpu,
1118 						    sample->start_time,
1119 						    sample->end_time,
1120 						    p->pid,
1121 						    c->comm,
1122 						    sample->backtrace);
1123 				}
1124 
1125 				sample = sample->next;
1126 			}
1127 			c = c->next;
1128 		}
1129 		p = p->next;
1130 	}
1131 }
1132 
1133 static void draw_io_bars(struct timechart *tchart)
1134 {
1135 	const char *suf;
1136 	double bytes;
1137 	char comm[256];
1138 	struct per_pid *p;
1139 	struct per_pidcomm *c;
1140 	struct io_sample *sample;
1141 	int Y = 1;
1142 
1143 	p = tchart->all_data;
1144 	while (p) {
1145 		c = p->all;
1146 		while (c) {
1147 			if (!c->display) {
1148 				c->Y = 0;
1149 				c = c->next;
1150 				continue;
1151 			}
1152 
1153 			svg_box(Y, c->start_time, c->end_time, "process3");
1154 			sample = c->io_samples;
1155 			for (sample = c->io_samples; sample; sample = sample->next) {
1156 				double h = (double)sample->bytes / c->max_bytes;
1157 
1158 				if (tchart->skip_eagain &&
1159 				    sample->err == -EAGAIN)
1160 					continue;
1161 
1162 				if (sample->err)
1163 					h = 1;
1164 
1165 				if (sample->type == IOTYPE_SYNC)
1166 					svg_fbox(Y,
1167 						sample->start_time,
1168 						sample->end_time,
1169 						1,
1170 						sample->err ? "error" : "sync",
1171 						sample->fd,
1172 						sample->err,
1173 						sample->merges);
1174 				else if (sample->type == IOTYPE_POLL)
1175 					svg_fbox(Y,
1176 						sample->start_time,
1177 						sample->end_time,
1178 						1,
1179 						sample->err ? "error" : "poll",
1180 						sample->fd,
1181 						sample->err,
1182 						sample->merges);
1183 				else if (sample->type == IOTYPE_READ)
1184 					svg_ubox(Y,
1185 						sample->start_time,
1186 						sample->end_time,
1187 						h,
1188 						sample->err ? "error" : "disk",
1189 						sample->fd,
1190 						sample->err,
1191 						sample->merges);
1192 				else if (sample->type == IOTYPE_WRITE)
1193 					svg_lbox(Y,
1194 						sample->start_time,
1195 						sample->end_time,
1196 						h,
1197 						sample->err ? "error" : "disk",
1198 						sample->fd,
1199 						sample->err,
1200 						sample->merges);
1201 				else if (sample->type == IOTYPE_RX)
1202 					svg_ubox(Y,
1203 						sample->start_time,
1204 						sample->end_time,
1205 						h,
1206 						sample->err ? "error" : "net",
1207 						sample->fd,
1208 						sample->err,
1209 						sample->merges);
1210 				else if (sample->type == IOTYPE_TX)
1211 					svg_lbox(Y,
1212 						sample->start_time,
1213 						sample->end_time,
1214 						h,
1215 						sample->err ? "error" : "net",
1216 						sample->fd,
1217 						sample->err,
1218 						sample->merges);
1219 			}
1220 
1221 			suf = "";
1222 			bytes = c->total_bytes;
1223 			if (bytes > 1024) {
1224 				bytes = bytes / 1024;
1225 				suf = "K";
1226 			}
1227 			if (bytes > 1024) {
1228 				bytes = bytes / 1024;
1229 				suf = "M";
1230 			}
1231 			if (bytes > 1024) {
1232 				bytes = bytes / 1024;
1233 				suf = "G";
1234 			}
1235 
1236 
1237 			sprintf(comm, "%s:%i (%3.1f %sbytes)", c->comm ?: "", p->pid, bytes, suf);
1238 			svg_text(Y, c->start_time, comm);
1239 
1240 			c->Y = Y;
1241 			Y++;
1242 			c = c->next;
1243 		}
1244 		p = p->next;
1245 	}
1246 }
1247 
1248 static void draw_process_bars(struct timechart *tchart)
1249 {
1250 	struct per_pid *p;
1251 	struct per_pidcomm *c;
1252 	struct cpu_sample *sample;
1253 	int Y = 0;
1254 
1255 	Y = 2 * tchart->numcpus + 2;
1256 
1257 	p = tchart->all_data;
1258 	while (p) {
1259 		c = p->all;
1260 		while (c) {
1261 			if (!c->display) {
1262 				c->Y = 0;
1263 				c = c->next;
1264 				continue;
1265 			}
1266 
1267 			svg_box(Y, c->start_time, c->end_time, "process");
1268 			sample = c->samples;
1269 			while (sample) {
1270 				if (sample->type == TYPE_RUNNING)
1271 					svg_running(Y, sample->cpu,
1272 						    sample->start_time,
1273 						    sample->end_time,
1274 						    sample->backtrace);
1275 				if (sample->type == TYPE_BLOCKED)
1276 					svg_blocked(Y, sample->cpu,
1277 						    sample->start_time,
1278 						    sample->end_time,
1279 						    sample->backtrace);
1280 				if (sample->type == TYPE_WAITING)
1281 					svg_waiting(Y, sample->cpu,
1282 						    sample->start_time,
1283 						    sample->end_time,
1284 						    sample->backtrace);
1285 				sample = sample->next;
1286 			}
1287 
1288 			if (c->comm) {
1289 				char comm[256];
1290 				if (c->total_time > 5000000000) /* 5 seconds */
1291 					sprintf(comm, "%s:%i (%2.2fs)", c->comm, p->pid, c->total_time / 1000000000.0);
1292 				else
1293 					sprintf(comm, "%s:%i (%3.1fms)", c->comm, p->pid, c->total_time / 1000000.0);
1294 
1295 				svg_text(Y, c->start_time, comm);
1296 			}
1297 			c->Y = Y;
1298 			Y++;
1299 			c = c->next;
1300 		}
1301 		p = p->next;
1302 	}
1303 }
1304 
1305 static void add_process_filter(const char *string)
1306 {
1307 	int pid = strtoull(string, NULL, 10);
1308 	struct process_filter *filt = malloc(sizeof(*filt));
1309 
1310 	if (!filt)
1311 		return;
1312 
1313 	filt->name = strdup(string);
1314 	filt->pid  = pid;
1315 	filt->next = process_filter;
1316 
1317 	process_filter = filt;
1318 }
1319 
1320 static int passes_filter(struct per_pid *p, struct per_pidcomm *c)
1321 {
1322 	struct process_filter *filt;
1323 	if (!process_filter)
1324 		return 1;
1325 
1326 	filt = process_filter;
1327 	while (filt) {
1328 		if (filt->pid && p->pid == filt->pid)
1329 			return 1;
1330 		if (strcmp(filt->name, c->comm) == 0)
1331 			return 1;
1332 		filt = filt->next;
1333 	}
1334 	return 0;
1335 }
1336 
1337 static int determine_display_tasks_filtered(struct timechart *tchart)
1338 {
1339 	struct per_pid *p;
1340 	struct per_pidcomm *c;
1341 	int count = 0;
1342 
1343 	p = tchart->all_data;
1344 	while (p) {
1345 		p->display = 0;
1346 		if (p->start_time == 1)
1347 			p->start_time = tchart->first_time;
1348 
1349 		/* no exit marker, task kept running to the end */
1350 		if (p->end_time == 0)
1351 			p->end_time = tchart->last_time;
1352 
1353 		c = p->all;
1354 
1355 		while (c) {
1356 			c->display = 0;
1357 
1358 			if (c->start_time == 1)
1359 				c->start_time = tchart->first_time;
1360 
1361 			if (passes_filter(p, c)) {
1362 				c->display = 1;
1363 				p->display = 1;
1364 				count++;
1365 			}
1366 
1367 			if (c->end_time == 0)
1368 				c->end_time = tchart->last_time;
1369 
1370 			c = c->next;
1371 		}
1372 		p = p->next;
1373 	}
1374 	return count;
1375 }
1376 
1377 static int determine_display_tasks(struct timechart *tchart, u64 threshold)
1378 {
1379 	struct per_pid *p;
1380 	struct per_pidcomm *c;
1381 	int count = 0;
1382 
1383 	p = tchart->all_data;
1384 	while (p) {
1385 		p->display = 0;
1386 		if (p->start_time == 1)
1387 			p->start_time = tchart->first_time;
1388 
1389 		/* no exit marker, task kept running to the end */
1390 		if (p->end_time == 0)
1391 			p->end_time = tchart->last_time;
1392 		if (p->total_time >= threshold)
1393 			p->display = 1;
1394 
1395 		c = p->all;
1396 
1397 		while (c) {
1398 			c->display = 0;
1399 
1400 			if (c->start_time == 1)
1401 				c->start_time = tchart->first_time;
1402 
1403 			if (c->total_time >= threshold) {
1404 				c->display = 1;
1405 				count++;
1406 			}
1407 
1408 			if (c->end_time == 0)
1409 				c->end_time = tchart->last_time;
1410 
1411 			c = c->next;
1412 		}
1413 		p = p->next;
1414 	}
1415 	return count;
1416 }
1417 
1418 static int determine_display_io_tasks(struct timechart *timechart, u64 threshold)
1419 {
1420 	struct per_pid *p;
1421 	struct per_pidcomm *c;
1422 	int count = 0;
1423 
1424 	p = timechart->all_data;
1425 	while (p) {
1426 		/* no exit marker, task kept running to the end */
1427 		if (p->end_time == 0)
1428 			p->end_time = timechart->last_time;
1429 
1430 		c = p->all;
1431 
1432 		while (c) {
1433 			c->display = 0;
1434 
1435 			if (c->total_bytes >= threshold) {
1436 				c->display = 1;
1437 				count++;
1438 			}
1439 
1440 			if (c->end_time == 0)
1441 				c->end_time = timechart->last_time;
1442 
1443 			c = c->next;
1444 		}
1445 		p = p->next;
1446 	}
1447 	return count;
1448 }
1449 
1450 #define BYTES_THRESH (1 * 1024 * 1024)
1451 #define TIME_THRESH 10000000
1452 
1453 static void write_svg_file(struct timechart *tchart, const char *filename)
1454 {
1455 	u64 i;
1456 	int count;
1457 	int thresh = tchart->io_events ? BYTES_THRESH : TIME_THRESH;
1458 
1459 	if (tchart->power_only)
1460 		tchart->proc_num = 0;
1461 
1462 	/* We'd like to show at least proc_num tasks;
1463 	 * be less picky if we have fewer */
1464 	do {
1465 		if (process_filter)
1466 			count = determine_display_tasks_filtered(tchart);
1467 		else if (tchart->io_events)
1468 			count = determine_display_io_tasks(tchart, thresh);
1469 		else
1470 			count = determine_display_tasks(tchart, thresh);
1471 		thresh /= 10;
1472 	} while (!process_filter && thresh && count < tchart->proc_num);
1473 
1474 	if (!tchart->proc_num)
1475 		count = 0;
1476 
1477 	if (tchart->io_events) {
1478 		open_svg(filename, 0, count, tchart->first_time, tchart->last_time);
1479 
1480 		svg_time_grid(0.5);
1481 		svg_io_legenda();
1482 
1483 		draw_io_bars(tchart);
1484 	} else {
1485 		open_svg(filename, tchart->numcpus, count, tchart->first_time, tchart->last_time);
1486 
1487 		svg_time_grid(0);
1488 
1489 		svg_legenda();
1490 
1491 		for (i = 0; i < tchart->numcpus; i++)
1492 			svg_cpu_box(i, tchart->max_freq, tchart->turbo_frequency);
1493 
1494 		draw_cpu_usage(tchart);
1495 		if (tchart->proc_num)
1496 			draw_process_bars(tchart);
1497 		if (!tchart->tasks_only)
1498 			draw_c_p_states(tchart);
1499 		if (tchart->proc_num)
1500 			draw_wakeups(tchart);
1501 	}
1502 
1503 	svg_close();
1504 }
1505 
1506 static int process_header(struct perf_file_section *section __maybe_unused,
1507 			  struct perf_header *ph,
1508 			  int feat,
1509 			  int fd __maybe_unused,
1510 			  void *data)
1511 {
1512 	struct timechart *tchart = data;
1513 
1514 	switch (feat) {
1515 	case HEADER_NRCPUS:
1516 		tchart->numcpus = ph->env.nr_cpus_avail;
1517 		break;
1518 
1519 	case HEADER_CPU_TOPOLOGY:
1520 		if (!tchart->topology)
1521 			break;
1522 
1523 		if (svg_build_topology_map(ph->env.sibling_cores,
1524 					   ph->env.nr_sibling_cores,
1525 					   ph->env.sibling_threads,
1526 					   ph->env.nr_sibling_threads))
1527 			fprintf(stderr, "problem building topology\n");
1528 		break;
1529 
1530 	default:
1531 		break;
1532 	}
1533 
1534 	return 0;
1535 }
1536 
1537 static int __cmd_timechart(struct timechart *tchart, const char *output_name)
1538 {
1539 	const struct perf_evsel_str_handler power_tracepoints[] = {
1540 		{ "power:cpu_idle",		process_sample_cpu_idle },
1541 		{ "power:cpu_frequency",	process_sample_cpu_frequency },
1542 		{ "sched:sched_wakeup",		process_sample_sched_wakeup },
1543 		{ "sched:sched_switch",		process_sample_sched_switch },
1544 #ifdef SUPPORT_OLD_POWER_EVENTS
1545 		{ "power:power_start",		process_sample_power_start },
1546 		{ "power:power_end",		process_sample_power_end },
1547 		{ "power:power_frequency",	process_sample_power_frequency },
1548 #endif
1549 
1550 		{ "syscalls:sys_enter_read",		process_enter_read },
1551 		{ "syscalls:sys_enter_pread64",		process_enter_read },
1552 		{ "syscalls:sys_enter_readv",		process_enter_read },
1553 		{ "syscalls:sys_enter_preadv",		process_enter_read },
1554 		{ "syscalls:sys_enter_write",		process_enter_write },
1555 		{ "syscalls:sys_enter_pwrite64",	process_enter_write },
1556 		{ "syscalls:sys_enter_writev",		process_enter_write },
1557 		{ "syscalls:sys_enter_pwritev",		process_enter_write },
1558 		{ "syscalls:sys_enter_sync",		process_enter_sync },
1559 		{ "syscalls:sys_enter_sync_file_range",	process_enter_sync },
1560 		{ "syscalls:sys_enter_fsync",		process_enter_sync },
1561 		{ "syscalls:sys_enter_msync",		process_enter_sync },
1562 		{ "syscalls:sys_enter_recvfrom",	process_enter_rx },
1563 		{ "syscalls:sys_enter_recvmmsg",	process_enter_rx },
1564 		{ "syscalls:sys_enter_recvmsg",		process_enter_rx },
1565 		{ "syscalls:sys_enter_sendto",		process_enter_tx },
1566 		{ "syscalls:sys_enter_sendmsg",		process_enter_tx },
1567 		{ "syscalls:sys_enter_sendmmsg",	process_enter_tx },
1568 		{ "syscalls:sys_enter_epoll_pwait",	process_enter_poll },
1569 		{ "syscalls:sys_enter_epoll_wait",	process_enter_poll },
1570 		{ "syscalls:sys_enter_poll",		process_enter_poll },
1571 		{ "syscalls:sys_enter_ppoll",		process_enter_poll },
1572 		{ "syscalls:sys_enter_pselect6",	process_enter_poll },
1573 		{ "syscalls:sys_enter_select",		process_enter_poll },
1574 
1575 		{ "syscalls:sys_exit_read",		process_exit_read },
1576 		{ "syscalls:sys_exit_pread64",		process_exit_read },
1577 		{ "syscalls:sys_exit_readv",		process_exit_read },
1578 		{ "syscalls:sys_exit_preadv",		process_exit_read },
1579 		{ "syscalls:sys_exit_write",		process_exit_write },
1580 		{ "syscalls:sys_exit_pwrite64",		process_exit_write },
1581 		{ "syscalls:sys_exit_writev",		process_exit_write },
1582 		{ "syscalls:sys_exit_pwritev",		process_exit_write },
1583 		{ "syscalls:sys_exit_sync",		process_exit_sync },
1584 		{ "syscalls:sys_exit_sync_file_range",	process_exit_sync },
1585 		{ "syscalls:sys_exit_fsync",		process_exit_sync },
1586 		{ "syscalls:sys_exit_msync",		process_exit_sync },
1587 		{ "syscalls:sys_exit_recvfrom",		process_exit_rx },
1588 		{ "syscalls:sys_exit_recvmmsg",		process_exit_rx },
1589 		{ "syscalls:sys_exit_recvmsg",		process_exit_rx },
1590 		{ "syscalls:sys_exit_sendto",		process_exit_tx },
1591 		{ "syscalls:sys_exit_sendmsg",		process_exit_tx },
1592 		{ "syscalls:sys_exit_sendmmsg",		process_exit_tx },
1593 		{ "syscalls:sys_exit_epoll_pwait",	process_exit_poll },
1594 		{ "syscalls:sys_exit_epoll_wait",	process_exit_poll },
1595 		{ "syscalls:sys_exit_poll",		process_exit_poll },
1596 		{ "syscalls:sys_exit_ppoll",		process_exit_poll },
1597 		{ "syscalls:sys_exit_pselect6",		process_exit_poll },
1598 		{ "syscalls:sys_exit_select",		process_exit_poll },
1599 	};
1600 	struct perf_data_file file = {
1601 		.path = input_name,
1602 		.mode = PERF_DATA_MODE_READ,
1603 		.force = tchart->force,
1604 	};
1605 
1606 	struct perf_session *session = perf_session__new(&file, false,
1607 							 &tchart->tool);
1608 	int ret = -EINVAL;
1609 
1610 	if (session == NULL)
1611 		return -1;
1612 
1613 	symbol__init(&session->header.env);
1614 
1615 	(void)perf_header__process_sections(&session->header,
1616 					    perf_data_file__fd(session->file),
1617 					    tchart,
1618 					    process_header);
1619 
1620 	if (!perf_session__has_traces(session, "timechart record"))
1621 		goto out_delete;
1622 
1623 	if (perf_session__set_tracepoints_handlers(session,
1624 						   power_tracepoints)) {
1625 		pr_err("Initializing session tracepoint handlers failed\n");
1626 		goto out_delete;
1627 	}
1628 
1629 	ret = perf_session__process_events(session);
1630 	if (ret)
1631 		goto out_delete;
1632 
1633 	end_sample_processing(tchart);
1634 
1635 	sort_pids(tchart);
1636 
1637 	write_svg_file(tchart, output_name);
1638 
1639 	pr_info("Written %2.1f seconds of trace to %s.\n",
1640 		(tchart->last_time - tchart->first_time) / 1000000000.0, output_name);
1641 out_delete:
1642 	perf_session__delete(session);
1643 	return ret;
1644 }
1645 
1646 static int timechart__io_record(int argc, const char **argv)
1647 {
1648 	unsigned int rec_argc, i;
1649 	const char **rec_argv;
1650 	const char **p;
1651 	char *filter = NULL;
1652 
1653 	const char * const common_args[] = {
1654 		"record", "-a", "-R", "-c", "1",
1655 	};
1656 	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1657 
1658 	const char * const disk_events[] = {
1659 		"syscalls:sys_enter_read",
1660 		"syscalls:sys_enter_pread64",
1661 		"syscalls:sys_enter_readv",
1662 		"syscalls:sys_enter_preadv",
1663 		"syscalls:sys_enter_write",
1664 		"syscalls:sys_enter_pwrite64",
1665 		"syscalls:sys_enter_writev",
1666 		"syscalls:sys_enter_pwritev",
1667 		"syscalls:sys_enter_sync",
1668 		"syscalls:sys_enter_sync_file_range",
1669 		"syscalls:sys_enter_fsync",
1670 		"syscalls:sys_enter_msync",
1671 
1672 		"syscalls:sys_exit_read",
1673 		"syscalls:sys_exit_pread64",
1674 		"syscalls:sys_exit_readv",
1675 		"syscalls:sys_exit_preadv",
1676 		"syscalls:sys_exit_write",
1677 		"syscalls:sys_exit_pwrite64",
1678 		"syscalls:sys_exit_writev",
1679 		"syscalls:sys_exit_pwritev",
1680 		"syscalls:sys_exit_sync",
1681 		"syscalls:sys_exit_sync_file_range",
1682 		"syscalls:sys_exit_fsync",
1683 		"syscalls:sys_exit_msync",
1684 	};
1685 	unsigned int disk_events_nr = ARRAY_SIZE(disk_events);
1686 
1687 	const char * const net_events[] = {
1688 		"syscalls:sys_enter_recvfrom",
1689 		"syscalls:sys_enter_recvmmsg",
1690 		"syscalls:sys_enter_recvmsg",
1691 		"syscalls:sys_enter_sendto",
1692 		"syscalls:sys_enter_sendmsg",
1693 		"syscalls:sys_enter_sendmmsg",
1694 
1695 		"syscalls:sys_exit_recvfrom",
1696 		"syscalls:sys_exit_recvmmsg",
1697 		"syscalls:sys_exit_recvmsg",
1698 		"syscalls:sys_exit_sendto",
1699 		"syscalls:sys_exit_sendmsg",
1700 		"syscalls:sys_exit_sendmmsg",
1701 	};
1702 	unsigned int net_events_nr = ARRAY_SIZE(net_events);
1703 
1704 	const char * const poll_events[] = {
1705 		"syscalls:sys_enter_epoll_pwait",
1706 		"syscalls:sys_enter_epoll_wait",
1707 		"syscalls:sys_enter_poll",
1708 		"syscalls:sys_enter_ppoll",
1709 		"syscalls:sys_enter_pselect6",
1710 		"syscalls:sys_enter_select",
1711 
1712 		"syscalls:sys_exit_epoll_pwait",
1713 		"syscalls:sys_exit_epoll_wait",
1714 		"syscalls:sys_exit_poll",
1715 		"syscalls:sys_exit_ppoll",
1716 		"syscalls:sys_exit_pselect6",
1717 		"syscalls:sys_exit_select",
1718 	};
1719 	unsigned int poll_events_nr = ARRAY_SIZE(poll_events);
1720 
1721 	rec_argc = common_args_nr +
1722 		disk_events_nr * 4 +
1723 		net_events_nr * 4 +
1724 		poll_events_nr * 4 +
1725 		argc;
1726 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1727 
1728 	if (rec_argv == NULL)
1729 		return -ENOMEM;
1730 
1731 	if (asprintf(&filter, "common_pid != %d", getpid()) < 0)
1732 		return -ENOMEM;
1733 
1734 	p = rec_argv;
1735 	for (i = 0; i < common_args_nr; i++)
1736 		*p++ = strdup(common_args[i]);
1737 
1738 	for (i = 0; i < disk_events_nr; i++) {
1739 		if (!is_valid_tracepoint(disk_events[i])) {
1740 			rec_argc -= 4;
1741 			continue;
1742 		}
1743 
1744 		*p++ = "-e";
1745 		*p++ = strdup(disk_events[i]);
1746 		*p++ = "--filter";
1747 		*p++ = filter;
1748 	}
1749 	for (i = 0; i < net_events_nr; i++) {
1750 		if (!is_valid_tracepoint(net_events[i])) {
1751 			rec_argc -= 4;
1752 			continue;
1753 		}
1754 
1755 		*p++ = "-e";
1756 		*p++ = strdup(net_events[i]);
1757 		*p++ = "--filter";
1758 		*p++ = filter;
1759 	}
1760 	for (i = 0; i < poll_events_nr; i++) {
1761 		if (!is_valid_tracepoint(poll_events[i])) {
1762 			rec_argc -= 4;
1763 			continue;
1764 		}
1765 
1766 		*p++ = "-e";
1767 		*p++ = strdup(poll_events[i]);
1768 		*p++ = "--filter";
1769 		*p++ = filter;
1770 	}
1771 
1772 	for (i = 0; i < (unsigned int)argc; i++)
1773 		*p++ = argv[i];
1774 
1775 	return cmd_record(rec_argc, rec_argv, NULL);
1776 }
1777 
1778 
1779 static int timechart__record(struct timechart *tchart, int argc, const char **argv)
1780 {
1781 	unsigned int rec_argc, i, j;
1782 	const char **rec_argv;
1783 	const char **p;
1784 	unsigned int record_elems;
1785 
1786 	const char * const common_args[] = {
1787 		"record", "-a", "-R", "-c", "1",
1788 	};
1789 	unsigned int common_args_nr = ARRAY_SIZE(common_args);
1790 
1791 	const char * const backtrace_args[] = {
1792 		"-g",
1793 	};
1794 	unsigned int backtrace_args_no = ARRAY_SIZE(backtrace_args);
1795 
1796 	const char * const power_args[] = {
1797 		"-e", "power:cpu_frequency",
1798 		"-e", "power:cpu_idle",
1799 	};
1800 	unsigned int power_args_nr = ARRAY_SIZE(power_args);
1801 
1802 	const char * const old_power_args[] = {
1803 #ifdef SUPPORT_OLD_POWER_EVENTS
1804 		"-e", "power:power_start",
1805 		"-e", "power:power_end",
1806 		"-e", "power:power_frequency",
1807 #endif
1808 	};
1809 	unsigned int old_power_args_nr = ARRAY_SIZE(old_power_args);
1810 
1811 	const char * const tasks_args[] = {
1812 		"-e", "sched:sched_wakeup",
1813 		"-e", "sched:sched_switch",
1814 	};
1815 	unsigned int tasks_args_nr = ARRAY_SIZE(tasks_args);
1816 
1817 #ifdef SUPPORT_OLD_POWER_EVENTS
1818 	if (!is_valid_tracepoint("power:cpu_idle") &&
1819 	    is_valid_tracepoint("power:power_start")) {
1820 		use_old_power_events = 1;
1821 		power_args_nr = 0;
1822 	} else {
1823 		old_power_args_nr = 0;
1824 	}
1825 #endif
1826 
1827 	if (tchart->power_only)
1828 		tasks_args_nr = 0;
1829 
1830 	if (tchart->tasks_only) {
1831 		power_args_nr = 0;
1832 		old_power_args_nr = 0;
1833 	}
1834 
1835 	if (!tchart->with_backtrace)
1836 		backtrace_args_no = 0;
1837 
1838 	record_elems = common_args_nr + tasks_args_nr +
1839 		power_args_nr + old_power_args_nr + backtrace_args_no;
1840 
1841 	rec_argc = record_elems + argc;
1842 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1843 
1844 	if (rec_argv == NULL)
1845 		return -ENOMEM;
1846 
1847 	p = rec_argv;
1848 	for (i = 0; i < common_args_nr; i++)
1849 		*p++ = strdup(common_args[i]);
1850 
1851 	for (i = 0; i < backtrace_args_no; i++)
1852 		*p++ = strdup(backtrace_args[i]);
1853 
1854 	for (i = 0; i < tasks_args_nr; i++)
1855 		*p++ = strdup(tasks_args[i]);
1856 
1857 	for (i = 0; i < power_args_nr; i++)
1858 		*p++ = strdup(power_args[i]);
1859 
1860 	for (i = 0; i < old_power_args_nr; i++)
1861 		*p++ = strdup(old_power_args[i]);
1862 
1863 	for (j = 0; j < (unsigned int)argc; j++)
1864 		*p++ = argv[j];
1865 
1866 	return cmd_record(rec_argc, rec_argv, NULL);
1867 }
1868 
1869 static int
1870 parse_process(const struct option *opt __maybe_unused, const char *arg,
1871 	      int __maybe_unused unset)
1872 {
1873 	if (arg)
1874 		add_process_filter(arg);
1875 	return 0;
1876 }
1877 
1878 static int
1879 parse_highlight(const struct option *opt __maybe_unused, const char *arg,
1880 		int __maybe_unused unset)
1881 {
1882 	unsigned long duration = strtoul(arg, NULL, 0);
1883 
1884 	if (svg_highlight || svg_highlight_name)
1885 		return -1;
1886 
1887 	if (duration)
1888 		svg_highlight = duration;
1889 	else
1890 		svg_highlight_name = strdup(arg);
1891 
1892 	return 0;
1893 }
1894 
1895 static int
1896 parse_time(const struct option *opt, const char *arg, int __maybe_unused unset)
1897 {
1898 	char unit = 'n';
1899 	u64 *value = opt->value;
1900 
1901 	if (sscanf(arg, "%" PRIu64 "%cs", value, &unit) > 0) {
1902 		switch (unit) {
1903 		case 'm':
1904 			*value *= 1000000;
1905 			break;
1906 		case 'u':
1907 			*value *= 1000;
1908 			break;
1909 		case 'n':
1910 			break;
1911 		default:
1912 			return -1;
1913 		}
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 int cmd_timechart(int argc, const char **argv,
1920 		  const char *prefix __maybe_unused)
1921 {
1922 	struct timechart tchart = {
1923 		.tool = {
1924 			.comm		 = process_comm_event,
1925 			.fork		 = process_fork_event,
1926 			.exit		 = process_exit_event,
1927 			.sample		 = process_sample_event,
1928 			.ordered_events	 = true,
1929 		},
1930 		.proc_num = 15,
1931 		.min_time = 1000000,
1932 		.merge_dist = 1000,
1933 	};
1934 	const char *output_name = "output.svg";
1935 	const struct option timechart_options[] = {
1936 	OPT_STRING('i', "input", &input_name, "file", "input file name"),
1937 	OPT_STRING('o', "output", &output_name, "file", "output file name"),
1938 	OPT_INTEGER('w', "width", &svg_page_width, "page width"),
1939 	OPT_CALLBACK(0, "highlight", NULL, "duration or task name",
1940 		      "highlight tasks. Pass duration in ns or process name.",
1941 		       parse_highlight),
1942 	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1943 	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1944 		    "output processes data only"),
1945 	OPT_CALLBACK('p', "process", NULL, "process",
1946 		      "process selector. Pass a pid or process name.",
1947 		       parse_process),
1948 	OPT_CALLBACK(0, "symfs", NULL, "directory",
1949 		     "Look for files with symbols relative to this directory",
1950 		     symbol__config_symfs),
1951 	OPT_INTEGER('n', "proc-num", &tchart.proc_num,
1952 		    "min. number of tasks to print"),
1953 	OPT_BOOLEAN('t', "topology", &tchart.topology,
1954 		    "sort CPUs according to topology"),
1955 	OPT_BOOLEAN(0, "io-skip-eagain", &tchart.skip_eagain,
1956 		    "skip EAGAIN errors"),
1957 	OPT_CALLBACK(0, "io-min-time", &tchart.min_time, "time",
1958 		     "all IO faster than min-time will visually appear longer",
1959 		     parse_time),
1960 	OPT_CALLBACK(0, "io-merge-dist", &tchart.merge_dist, "time",
1961 		     "merge events that are merge-dist us apart",
1962 		     parse_time),
1963 	OPT_BOOLEAN('f', "force", &tchart.force, "don't complain, do it"),
1964 	OPT_END()
1965 	};
1966 	const char * const timechart_subcommands[] = { "record", NULL };
1967 	const char *timechart_usage[] = {
1968 		"perf timechart [<options>] {record}",
1969 		NULL
1970 	};
1971 
1972 	const struct option timechart_record_options[] = {
1973 	OPT_BOOLEAN('P', "power-only", &tchart.power_only, "output power data only"),
1974 	OPT_BOOLEAN('T', "tasks-only", &tchart.tasks_only,
1975 		    "output processes data only"),
1976 	OPT_BOOLEAN('I', "io-only", &tchart.io_only,
1977 		    "record only IO data"),
1978 	OPT_BOOLEAN('g', "callchain", &tchart.with_backtrace, "record callchain"),
1979 	OPT_END()
1980 	};
1981 	const char * const timechart_record_usage[] = {
1982 		"perf timechart record [<options>]",
1983 		NULL
1984 	};
1985 	argc = parse_options_subcommand(argc, argv, timechart_options, timechart_subcommands,
1986 			timechart_usage, PARSE_OPT_STOP_AT_NON_OPTION);
1987 
1988 	if (tchart.power_only && tchart.tasks_only) {
1989 		pr_err("-P and -T options cannot be used at the same time.\n");
1990 		return -1;
1991 	}
1992 
1993 	if (argc && !strncmp(argv[0], "rec", 3)) {
1994 		argc = parse_options(argc, argv, timechart_record_options,
1995 				     timechart_record_usage,
1996 				     PARSE_OPT_STOP_AT_NON_OPTION);
1997 
1998 		if (tchart.power_only && tchart.tasks_only) {
1999 			pr_err("-P and -T options cannot be used at the same time.\n");
2000 			return -1;
2001 		}
2002 
2003 		if (tchart.io_only)
2004 			return timechart__io_record(argc, argv);
2005 		else
2006 			return timechart__record(&tchart, argc, argv);
2007 	} else if (argc)
2008 		usage_with_options(timechart_usage, timechart_options);
2009 
2010 	setup_pager();
2011 
2012 	return __cmd_timechart(&tchart, output_name);
2013 }
2014