1 // SPDX-License-Identifier: GPL-2.0 2 #include "builtin.h" 3 #include "perf.h" 4 #include "perf-sys.h" 5 6 #include "util/cpumap.h" 7 #include "util/evlist.h" 8 #include "util/evsel.h" 9 #include "util/symbol.h" 10 #include "util/thread.h" 11 #include "util/header.h" 12 #include "util/session.h" 13 #include "util/tool.h" 14 #include "util/cloexec.h" 15 #include "util/thread_map.h" 16 #include "util/color.h" 17 #include "util/stat.h" 18 #include "util/string2.h" 19 #include "util/callchain.h" 20 #include "util/time-utils.h" 21 22 #include <subcmd/pager.h> 23 #include <subcmd/parse-options.h> 24 #include "util/trace-event.h" 25 26 #include "util/debug.h" 27 #include "util/event.h" 28 29 #include <linux/kernel.h> 30 #include <linux/log2.h> 31 #include <linux/zalloc.h> 32 #include <sys/prctl.h> 33 #include <sys/resource.h> 34 #include <inttypes.h> 35 36 #include <errno.h> 37 #include <semaphore.h> 38 #include <pthread.h> 39 #include <math.h> 40 #include <api/fs/fs.h> 41 #include <perf/cpumap.h> 42 #include <linux/time64.h> 43 #include <linux/err.h> 44 45 #include <linux/ctype.h> 46 47 #define PR_SET_NAME 15 /* Set process name */ 48 #define MAX_CPUS 4096 49 #define COMM_LEN 20 50 #define SYM_LEN 129 51 #define MAX_PID 1024000 52 53 struct sched_atom; 54 55 struct task_desc { 56 unsigned long nr; 57 unsigned long pid; 58 char comm[COMM_LEN]; 59 60 unsigned long nr_events; 61 unsigned long curr_event; 62 struct sched_atom **atoms; 63 64 pthread_t thread; 65 sem_t sleep_sem; 66 67 sem_t ready_for_work; 68 sem_t work_done_sem; 69 70 u64 cpu_usage; 71 }; 72 73 enum sched_event_type { 74 SCHED_EVENT_RUN, 75 SCHED_EVENT_SLEEP, 76 SCHED_EVENT_WAKEUP, 77 SCHED_EVENT_MIGRATION, 78 }; 79 80 struct sched_atom { 81 enum sched_event_type type; 82 int specific_wait; 83 u64 timestamp; 84 u64 duration; 85 unsigned long nr; 86 sem_t *wait_sem; 87 struct task_desc *wakee; 88 }; 89 90 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 91 92 /* task state bitmask, copied from include/linux/sched.h */ 93 #define TASK_RUNNING 0 94 #define TASK_INTERRUPTIBLE 1 95 #define TASK_UNINTERRUPTIBLE 2 96 #define __TASK_STOPPED 4 97 #define __TASK_TRACED 8 98 /* in tsk->exit_state */ 99 #define EXIT_DEAD 16 100 #define EXIT_ZOMBIE 32 101 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 102 /* in tsk->state again */ 103 #define TASK_DEAD 64 104 #define TASK_WAKEKILL 128 105 #define TASK_WAKING 256 106 #define TASK_PARKED 512 107 108 enum thread_state { 109 THREAD_SLEEPING = 0, 110 THREAD_WAIT_CPU, 111 THREAD_SCHED_IN, 112 THREAD_IGNORE 113 }; 114 115 struct work_atom { 116 struct list_head list; 117 enum thread_state state; 118 u64 sched_out_time; 119 u64 wake_up_time; 120 u64 sched_in_time; 121 u64 runtime; 122 }; 123 124 struct work_atoms { 125 struct list_head work_list; 126 struct thread *thread; 127 struct rb_node node; 128 u64 max_lat; 129 u64 max_lat_at; 130 u64 total_lat; 131 u64 nb_atoms; 132 u64 total_runtime; 133 int num_merged; 134 }; 135 136 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 137 138 struct perf_sched; 139 140 struct trace_sched_handler { 141 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel, 142 struct perf_sample *sample, struct machine *machine); 143 144 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel, 145 struct perf_sample *sample, struct machine *machine); 146 147 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel, 148 struct perf_sample *sample, struct machine *machine); 149 150 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 151 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 152 struct machine *machine); 153 154 int (*migrate_task_event)(struct perf_sched *sched, 155 struct evsel *evsel, 156 struct perf_sample *sample, 157 struct machine *machine); 158 }; 159 160 #define COLOR_PIDS PERF_COLOR_BLUE 161 #define COLOR_CPUS PERF_COLOR_BG_RED 162 163 struct perf_sched_map { 164 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); 165 int *comp_cpus; 166 bool comp; 167 struct perf_thread_map *color_pids; 168 const char *color_pids_str; 169 struct perf_cpu_map *color_cpus; 170 const char *color_cpus_str; 171 struct perf_cpu_map *cpus; 172 const char *cpus_str; 173 }; 174 175 struct perf_sched { 176 struct perf_tool tool; 177 const char *sort_order; 178 unsigned long nr_tasks; 179 struct task_desc **pid_to_task; 180 struct task_desc **tasks; 181 const struct trace_sched_handler *tp_handler; 182 pthread_mutex_t start_work_mutex; 183 pthread_mutex_t work_done_wait_mutex; 184 int profile_cpu; 185 /* 186 * Track the current task - that way we can know whether there's any 187 * weird events, such as a task being switched away that is not current. 188 */ 189 int max_cpu; 190 u32 curr_pid[MAX_CPUS]; 191 struct thread *curr_thread[MAX_CPUS]; 192 char next_shortname1; 193 char next_shortname2; 194 unsigned int replay_repeat; 195 unsigned long nr_run_events; 196 unsigned long nr_sleep_events; 197 unsigned long nr_wakeup_events; 198 unsigned long nr_sleep_corrections; 199 unsigned long nr_run_events_optimized; 200 unsigned long targetless_wakeups; 201 unsigned long multitarget_wakeups; 202 unsigned long nr_runs; 203 unsigned long nr_timestamps; 204 unsigned long nr_unordered_timestamps; 205 unsigned long nr_context_switch_bugs; 206 unsigned long nr_events; 207 unsigned long nr_lost_chunks; 208 unsigned long nr_lost_events; 209 u64 run_measurement_overhead; 210 u64 sleep_measurement_overhead; 211 u64 start_time; 212 u64 cpu_usage; 213 u64 runavg_cpu_usage; 214 u64 parent_cpu_usage; 215 u64 runavg_parent_cpu_usage; 216 u64 sum_runtime; 217 u64 sum_fluct; 218 u64 run_avg; 219 u64 all_runtime; 220 u64 all_count; 221 u64 cpu_last_switched[MAX_CPUS]; 222 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root; 223 struct list_head sort_list, cmp_pid; 224 bool force; 225 bool skip_merge; 226 struct perf_sched_map map; 227 228 /* options for timehist command */ 229 bool summary; 230 bool summary_only; 231 bool idle_hist; 232 bool show_callchain; 233 unsigned int max_stack; 234 bool show_cpu_visual; 235 bool show_wakeups; 236 bool show_next; 237 bool show_migrations; 238 bool show_state; 239 u64 skipped_samples; 240 const char *time_str; 241 struct perf_time_interval ptime; 242 struct perf_time_interval hist_time; 243 }; 244 245 /* per thread run time data */ 246 struct thread_runtime { 247 u64 last_time; /* time of previous sched in/out event */ 248 u64 dt_run; /* run time */ 249 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */ 250 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */ 251 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */ 252 u64 dt_delay; /* time between wakeup and sched-in */ 253 u64 ready_to_run; /* time of wakeup */ 254 255 struct stats run_stats; 256 u64 total_run_time; 257 u64 total_sleep_time; 258 u64 total_iowait_time; 259 u64 total_preempt_time; 260 u64 total_delay_time; 261 262 int last_state; 263 264 char shortname[3]; 265 bool comm_changed; 266 267 u64 migrations; 268 }; 269 270 /* per event run time data */ 271 struct evsel_runtime { 272 u64 *last_time; /* time this event was last seen per cpu */ 273 u32 ncpu; /* highest cpu slot allocated */ 274 }; 275 276 /* per cpu idle time data */ 277 struct idle_thread_runtime { 278 struct thread_runtime tr; 279 struct thread *last_thread; 280 struct rb_root_cached sorted_root; 281 struct callchain_root callchain; 282 struct callchain_cursor cursor; 283 }; 284 285 /* track idle times per cpu */ 286 static struct thread **idle_threads; 287 static int idle_max_cpu; 288 static char idle_comm[] = "<idle>"; 289 290 static u64 get_nsecs(void) 291 { 292 struct timespec ts; 293 294 clock_gettime(CLOCK_MONOTONIC, &ts); 295 296 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; 297 } 298 299 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 300 { 301 u64 T0 = get_nsecs(), T1; 302 303 do { 304 T1 = get_nsecs(); 305 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 306 } 307 308 static void sleep_nsecs(u64 nsecs) 309 { 310 struct timespec ts; 311 312 ts.tv_nsec = nsecs % 999999999; 313 ts.tv_sec = nsecs / 999999999; 314 315 nanosleep(&ts, NULL); 316 } 317 318 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 319 { 320 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 321 int i; 322 323 for (i = 0; i < 10; i++) { 324 T0 = get_nsecs(); 325 burn_nsecs(sched, 0); 326 T1 = get_nsecs(); 327 delta = T1-T0; 328 min_delta = min(min_delta, delta); 329 } 330 sched->run_measurement_overhead = min_delta; 331 332 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 333 } 334 335 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 336 { 337 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 338 int i; 339 340 for (i = 0; i < 10; i++) { 341 T0 = get_nsecs(); 342 sleep_nsecs(10000); 343 T1 = get_nsecs(); 344 delta = T1-T0; 345 min_delta = min(min_delta, delta); 346 } 347 min_delta -= 10000; 348 sched->sleep_measurement_overhead = min_delta; 349 350 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 351 } 352 353 static struct sched_atom * 354 get_new_event(struct task_desc *task, u64 timestamp) 355 { 356 struct sched_atom *event = zalloc(sizeof(*event)); 357 unsigned long idx = task->nr_events; 358 size_t size; 359 360 event->timestamp = timestamp; 361 event->nr = idx; 362 363 task->nr_events++; 364 size = sizeof(struct sched_atom *) * task->nr_events; 365 task->atoms = realloc(task->atoms, size); 366 BUG_ON(!task->atoms); 367 368 task->atoms[idx] = event; 369 370 return event; 371 } 372 373 static struct sched_atom *last_event(struct task_desc *task) 374 { 375 if (!task->nr_events) 376 return NULL; 377 378 return task->atoms[task->nr_events - 1]; 379 } 380 381 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 382 u64 timestamp, u64 duration) 383 { 384 struct sched_atom *event, *curr_event = last_event(task); 385 386 /* 387 * optimize an existing RUN event by merging this one 388 * to it: 389 */ 390 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 391 sched->nr_run_events_optimized++; 392 curr_event->duration += duration; 393 return; 394 } 395 396 event = get_new_event(task, timestamp); 397 398 event->type = SCHED_EVENT_RUN; 399 event->duration = duration; 400 401 sched->nr_run_events++; 402 } 403 404 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 405 u64 timestamp, struct task_desc *wakee) 406 { 407 struct sched_atom *event, *wakee_event; 408 409 event = get_new_event(task, timestamp); 410 event->type = SCHED_EVENT_WAKEUP; 411 event->wakee = wakee; 412 413 wakee_event = last_event(wakee); 414 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 415 sched->targetless_wakeups++; 416 return; 417 } 418 if (wakee_event->wait_sem) { 419 sched->multitarget_wakeups++; 420 return; 421 } 422 423 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 424 sem_init(wakee_event->wait_sem, 0, 0); 425 wakee_event->specific_wait = 1; 426 event->wait_sem = wakee_event->wait_sem; 427 428 sched->nr_wakeup_events++; 429 } 430 431 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 432 u64 timestamp, u64 task_state __maybe_unused) 433 { 434 struct sched_atom *event = get_new_event(task, timestamp); 435 436 event->type = SCHED_EVENT_SLEEP; 437 438 sched->nr_sleep_events++; 439 } 440 441 static struct task_desc *register_pid(struct perf_sched *sched, 442 unsigned long pid, const char *comm) 443 { 444 struct task_desc *task; 445 static int pid_max; 446 447 if (sched->pid_to_task == NULL) { 448 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) 449 pid_max = MAX_PID; 450 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); 451 } 452 if (pid >= (unsigned long)pid_max) { 453 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * 454 sizeof(struct task_desc *))) == NULL); 455 while (pid >= (unsigned long)pid_max) 456 sched->pid_to_task[pid_max++] = NULL; 457 } 458 459 task = sched->pid_to_task[pid]; 460 461 if (task) 462 return task; 463 464 task = zalloc(sizeof(*task)); 465 task->pid = pid; 466 task->nr = sched->nr_tasks; 467 strcpy(task->comm, comm); 468 /* 469 * every task starts in sleeping state - this gets ignored 470 * if there's no wakeup pointing to this sleep state: 471 */ 472 add_sched_event_sleep(sched, task, 0, 0); 473 474 sched->pid_to_task[pid] = task; 475 sched->nr_tasks++; 476 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); 477 BUG_ON(!sched->tasks); 478 sched->tasks[task->nr] = task; 479 480 if (verbose > 0) 481 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 482 483 return task; 484 } 485 486 487 static void print_task_traces(struct perf_sched *sched) 488 { 489 struct task_desc *task; 490 unsigned long i; 491 492 for (i = 0; i < sched->nr_tasks; i++) { 493 task = sched->tasks[i]; 494 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 495 task->nr, task->comm, task->pid, task->nr_events); 496 } 497 } 498 499 static void add_cross_task_wakeups(struct perf_sched *sched) 500 { 501 struct task_desc *task1, *task2; 502 unsigned long i, j; 503 504 for (i = 0; i < sched->nr_tasks; i++) { 505 task1 = sched->tasks[i]; 506 j = i + 1; 507 if (j == sched->nr_tasks) 508 j = 0; 509 task2 = sched->tasks[j]; 510 add_sched_event_wakeup(sched, task1, 0, task2); 511 } 512 } 513 514 static void perf_sched__process_event(struct perf_sched *sched, 515 struct sched_atom *atom) 516 { 517 int ret = 0; 518 519 switch (atom->type) { 520 case SCHED_EVENT_RUN: 521 burn_nsecs(sched, atom->duration); 522 break; 523 case SCHED_EVENT_SLEEP: 524 if (atom->wait_sem) 525 ret = sem_wait(atom->wait_sem); 526 BUG_ON(ret); 527 break; 528 case SCHED_EVENT_WAKEUP: 529 if (atom->wait_sem) 530 ret = sem_post(atom->wait_sem); 531 BUG_ON(ret); 532 break; 533 case SCHED_EVENT_MIGRATION: 534 break; 535 default: 536 BUG_ON(1); 537 } 538 } 539 540 static u64 get_cpu_usage_nsec_parent(void) 541 { 542 struct rusage ru; 543 u64 sum; 544 int err; 545 546 err = getrusage(RUSAGE_SELF, &ru); 547 BUG_ON(err); 548 549 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC; 550 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC; 551 552 return sum; 553 } 554 555 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) 556 { 557 struct perf_event_attr attr; 558 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; 559 int fd; 560 struct rlimit limit; 561 bool need_privilege = false; 562 563 memset(&attr, 0, sizeof(attr)); 564 565 attr.type = PERF_TYPE_SOFTWARE; 566 attr.config = PERF_COUNT_SW_TASK_CLOCK; 567 568 force_again: 569 fd = sys_perf_event_open(&attr, 0, -1, -1, 570 perf_event_open_cloexec_flag()); 571 572 if (fd < 0) { 573 if (errno == EMFILE) { 574 if (sched->force) { 575 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); 576 limit.rlim_cur += sched->nr_tasks - cur_task; 577 if (limit.rlim_cur > limit.rlim_max) { 578 limit.rlim_max = limit.rlim_cur; 579 need_privilege = true; 580 } 581 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { 582 if (need_privilege && errno == EPERM) 583 strcpy(info, "Need privilege\n"); 584 } else 585 goto force_again; 586 } else 587 strcpy(info, "Have a try with -f option\n"); 588 } 589 pr_err("Error: sys_perf_event_open() syscall returned " 590 "with %d (%s)\n%s", fd, 591 str_error_r(errno, sbuf, sizeof(sbuf)), info); 592 exit(EXIT_FAILURE); 593 } 594 return fd; 595 } 596 597 static u64 get_cpu_usage_nsec_self(int fd) 598 { 599 u64 runtime; 600 int ret; 601 602 ret = read(fd, &runtime, sizeof(runtime)); 603 BUG_ON(ret != sizeof(runtime)); 604 605 return runtime; 606 } 607 608 struct sched_thread_parms { 609 struct task_desc *task; 610 struct perf_sched *sched; 611 int fd; 612 }; 613 614 static void *thread_func(void *ctx) 615 { 616 struct sched_thread_parms *parms = ctx; 617 struct task_desc *this_task = parms->task; 618 struct perf_sched *sched = parms->sched; 619 u64 cpu_usage_0, cpu_usage_1; 620 unsigned long i, ret; 621 char comm2[22]; 622 int fd = parms->fd; 623 624 zfree(&parms); 625 626 sprintf(comm2, ":%s", this_task->comm); 627 prctl(PR_SET_NAME, comm2); 628 if (fd < 0) 629 return NULL; 630 again: 631 ret = sem_post(&this_task->ready_for_work); 632 BUG_ON(ret); 633 ret = pthread_mutex_lock(&sched->start_work_mutex); 634 BUG_ON(ret); 635 ret = pthread_mutex_unlock(&sched->start_work_mutex); 636 BUG_ON(ret); 637 638 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 639 640 for (i = 0; i < this_task->nr_events; i++) { 641 this_task->curr_event = i; 642 perf_sched__process_event(sched, this_task->atoms[i]); 643 } 644 645 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 646 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 647 ret = sem_post(&this_task->work_done_sem); 648 BUG_ON(ret); 649 650 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 651 BUG_ON(ret); 652 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex); 653 BUG_ON(ret); 654 655 goto again; 656 } 657 658 static void create_tasks(struct perf_sched *sched) 659 { 660 struct task_desc *task; 661 pthread_attr_t attr; 662 unsigned long i; 663 int err; 664 665 err = pthread_attr_init(&attr); 666 BUG_ON(err); 667 err = pthread_attr_setstacksize(&attr, 668 (size_t) max(16 * 1024, PTHREAD_STACK_MIN)); 669 BUG_ON(err); 670 err = pthread_mutex_lock(&sched->start_work_mutex); 671 BUG_ON(err); 672 err = pthread_mutex_lock(&sched->work_done_wait_mutex); 673 BUG_ON(err); 674 for (i = 0; i < sched->nr_tasks; i++) { 675 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 676 BUG_ON(parms == NULL); 677 parms->task = task = sched->tasks[i]; 678 parms->sched = sched; 679 parms->fd = self_open_counters(sched, i); 680 sem_init(&task->sleep_sem, 0, 0); 681 sem_init(&task->ready_for_work, 0, 0); 682 sem_init(&task->work_done_sem, 0, 0); 683 task->curr_event = 0; 684 err = pthread_create(&task->thread, &attr, thread_func, parms); 685 BUG_ON(err); 686 } 687 } 688 689 static void wait_for_tasks(struct perf_sched *sched) 690 { 691 u64 cpu_usage_0, cpu_usage_1; 692 struct task_desc *task; 693 unsigned long i, ret; 694 695 sched->start_time = get_nsecs(); 696 sched->cpu_usage = 0; 697 pthread_mutex_unlock(&sched->work_done_wait_mutex); 698 699 for (i = 0; i < sched->nr_tasks; i++) { 700 task = sched->tasks[i]; 701 ret = sem_wait(&task->ready_for_work); 702 BUG_ON(ret); 703 sem_init(&task->ready_for_work, 0, 0); 704 } 705 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 706 BUG_ON(ret); 707 708 cpu_usage_0 = get_cpu_usage_nsec_parent(); 709 710 pthread_mutex_unlock(&sched->start_work_mutex); 711 712 for (i = 0; i < sched->nr_tasks; i++) { 713 task = sched->tasks[i]; 714 ret = sem_wait(&task->work_done_sem); 715 BUG_ON(ret); 716 sem_init(&task->work_done_sem, 0, 0); 717 sched->cpu_usage += task->cpu_usage; 718 task->cpu_usage = 0; 719 } 720 721 cpu_usage_1 = get_cpu_usage_nsec_parent(); 722 if (!sched->runavg_cpu_usage) 723 sched->runavg_cpu_usage = sched->cpu_usage; 724 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; 725 726 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 727 if (!sched->runavg_parent_cpu_usage) 728 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 729 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + 730 sched->parent_cpu_usage)/sched->replay_repeat; 731 732 ret = pthread_mutex_lock(&sched->start_work_mutex); 733 BUG_ON(ret); 734 735 for (i = 0; i < sched->nr_tasks; i++) { 736 task = sched->tasks[i]; 737 sem_init(&task->sleep_sem, 0, 0); 738 task->curr_event = 0; 739 } 740 } 741 742 static void run_one_test(struct perf_sched *sched) 743 { 744 u64 T0, T1, delta, avg_delta, fluct; 745 746 T0 = get_nsecs(); 747 wait_for_tasks(sched); 748 T1 = get_nsecs(); 749 750 delta = T1 - T0; 751 sched->sum_runtime += delta; 752 sched->nr_runs++; 753 754 avg_delta = sched->sum_runtime / sched->nr_runs; 755 if (delta < avg_delta) 756 fluct = avg_delta - delta; 757 else 758 fluct = delta - avg_delta; 759 sched->sum_fluct += fluct; 760 if (!sched->run_avg) 761 sched->run_avg = delta; 762 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; 763 764 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC); 765 766 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC); 767 768 printf("cpu: %0.2f / %0.2f", 769 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC); 770 771 #if 0 772 /* 773 * rusage statistics done by the parent, these are less 774 * accurate than the sched->sum_exec_runtime based statistics: 775 */ 776 printf(" [%0.2f / %0.2f]", 777 (double)sched->parent_cpu_usage / NSEC_PER_MSEC, 778 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC); 779 #endif 780 781 printf("\n"); 782 783 if (sched->nr_sleep_corrections) 784 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 785 sched->nr_sleep_corrections = 0; 786 } 787 788 static void test_calibrations(struct perf_sched *sched) 789 { 790 u64 T0, T1; 791 792 T0 = get_nsecs(); 793 burn_nsecs(sched, NSEC_PER_MSEC); 794 T1 = get_nsecs(); 795 796 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 797 798 T0 = get_nsecs(); 799 sleep_nsecs(NSEC_PER_MSEC); 800 T1 = get_nsecs(); 801 802 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 803 } 804 805 static int 806 replay_wakeup_event(struct perf_sched *sched, 807 struct evsel *evsel, struct perf_sample *sample, 808 struct machine *machine __maybe_unused) 809 { 810 const char *comm = perf_evsel__strval(evsel, sample, "comm"); 811 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 812 struct task_desc *waker, *wakee; 813 814 if (verbose > 0) { 815 printf("sched_wakeup event %p\n", evsel); 816 817 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 818 } 819 820 waker = register_pid(sched, sample->tid, "<unknown>"); 821 wakee = register_pid(sched, pid, comm); 822 823 add_sched_event_wakeup(sched, waker, sample->time, wakee); 824 return 0; 825 } 826 827 static int replay_switch_event(struct perf_sched *sched, 828 struct evsel *evsel, 829 struct perf_sample *sample, 830 struct machine *machine __maybe_unused) 831 { 832 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"), 833 *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); 834 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 835 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 836 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 837 struct task_desc *prev, __maybe_unused *next; 838 u64 timestamp0, timestamp = sample->time; 839 int cpu = sample->cpu; 840 s64 delta; 841 842 if (verbose > 0) 843 printf("sched_switch event %p\n", evsel); 844 845 if (cpu >= MAX_CPUS || cpu < 0) 846 return 0; 847 848 timestamp0 = sched->cpu_last_switched[cpu]; 849 if (timestamp0) 850 delta = timestamp - timestamp0; 851 else 852 delta = 0; 853 854 if (delta < 0) { 855 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 856 return -1; 857 } 858 859 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 860 prev_comm, prev_pid, next_comm, next_pid, delta); 861 862 prev = register_pid(sched, prev_pid, prev_comm); 863 next = register_pid(sched, next_pid, next_comm); 864 865 sched->cpu_last_switched[cpu] = timestamp; 866 867 add_sched_event_run(sched, prev, timestamp, delta); 868 add_sched_event_sleep(sched, prev, timestamp, prev_state); 869 870 return 0; 871 } 872 873 static int replay_fork_event(struct perf_sched *sched, 874 union perf_event *event, 875 struct machine *machine) 876 { 877 struct thread *child, *parent; 878 879 child = machine__findnew_thread(machine, event->fork.pid, 880 event->fork.tid); 881 parent = machine__findnew_thread(machine, event->fork.ppid, 882 event->fork.ptid); 883 884 if (child == NULL || parent == NULL) { 885 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 886 child, parent); 887 goto out_put; 888 } 889 890 if (verbose > 0) { 891 printf("fork event\n"); 892 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid); 893 printf("... child: %s/%d\n", thread__comm_str(child), child->tid); 894 } 895 896 register_pid(sched, parent->tid, thread__comm_str(parent)); 897 register_pid(sched, child->tid, thread__comm_str(child)); 898 out_put: 899 thread__put(child); 900 thread__put(parent); 901 return 0; 902 } 903 904 struct sort_dimension { 905 const char *name; 906 sort_fn_t cmp; 907 struct list_head list; 908 }; 909 910 /* 911 * handle runtime stats saved per thread 912 */ 913 static struct thread_runtime *thread__init_runtime(struct thread *thread) 914 { 915 struct thread_runtime *r; 916 917 r = zalloc(sizeof(struct thread_runtime)); 918 if (!r) 919 return NULL; 920 921 init_stats(&r->run_stats); 922 thread__set_priv(thread, r); 923 924 return r; 925 } 926 927 static struct thread_runtime *thread__get_runtime(struct thread *thread) 928 { 929 struct thread_runtime *tr; 930 931 tr = thread__priv(thread); 932 if (tr == NULL) { 933 tr = thread__init_runtime(thread); 934 if (tr == NULL) 935 pr_debug("Failed to malloc memory for runtime data.\n"); 936 } 937 938 return tr; 939 } 940 941 static int 942 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 943 { 944 struct sort_dimension *sort; 945 int ret = 0; 946 947 BUG_ON(list_empty(list)); 948 949 list_for_each_entry(sort, list, list) { 950 ret = sort->cmp(l, r); 951 if (ret) 952 return ret; 953 } 954 955 return ret; 956 } 957 958 static struct work_atoms * 959 thread_atoms_search(struct rb_root_cached *root, struct thread *thread, 960 struct list_head *sort_list) 961 { 962 struct rb_node *node = root->rb_root.rb_node; 963 struct work_atoms key = { .thread = thread }; 964 965 while (node) { 966 struct work_atoms *atoms; 967 int cmp; 968 969 atoms = container_of(node, struct work_atoms, node); 970 971 cmp = thread_lat_cmp(sort_list, &key, atoms); 972 if (cmp > 0) 973 node = node->rb_left; 974 else if (cmp < 0) 975 node = node->rb_right; 976 else { 977 BUG_ON(thread != atoms->thread); 978 return atoms; 979 } 980 } 981 return NULL; 982 } 983 984 static void 985 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data, 986 struct list_head *sort_list) 987 { 988 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 989 bool leftmost = true; 990 991 while (*new) { 992 struct work_atoms *this; 993 int cmp; 994 995 this = container_of(*new, struct work_atoms, node); 996 parent = *new; 997 998 cmp = thread_lat_cmp(sort_list, data, this); 999 1000 if (cmp > 0) 1001 new = &((*new)->rb_left); 1002 else { 1003 new = &((*new)->rb_right); 1004 leftmost = false; 1005 } 1006 } 1007 1008 rb_link_node(&data->node, parent, new); 1009 rb_insert_color_cached(&data->node, root, leftmost); 1010 } 1011 1012 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 1013 { 1014 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 1015 if (!atoms) { 1016 pr_err("No memory at %s\n", __func__); 1017 return -1; 1018 } 1019 1020 atoms->thread = thread__get(thread); 1021 INIT_LIST_HEAD(&atoms->work_list); 1022 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 1023 return 0; 1024 } 1025 1026 static char sched_out_state(u64 prev_state) 1027 { 1028 const char *str = TASK_STATE_TO_CHAR_STR; 1029 1030 return str[prev_state]; 1031 } 1032 1033 static int 1034 add_sched_out_event(struct work_atoms *atoms, 1035 char run_state, 1036 u64 timestamp) 1037 { 1038 struct work_atom *atom = zalloc(sizeof(*atom)); 1039 if (!atom) { 1040 pr_err("Non memory at %s", __func__); 1041 return -1; 1042 } 1043 1044 atom->sched_out_time = timestamp; 1045 1046 if (run_state == 'R') { 1047 atom->state = THREAD_WAIT_CPU; 1048 atom->wake_up_time = atom->sched_out_time; 1049 } 1050 1051 list_add_tail(&atom->list, &atoms->work_list); 1052 return 0; 1053 } 1054 1055 static void 1056 add_runtime_event(struct work_atoms *atoms, u64 delta, 1057 u64 timestamp __maybe_unused) 1058 { 1059 struct work_atom *atom; 1060 1061 BUG_ON(list_empty(&atoms->work_list)); 1062 1063 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1064 1065 atom->runtime += delta; 1066 atoms->total_runtime += delta; 1067 } 1068 1069 static void 1070 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 1071 { 1072 struct work_atom *atom; 1073 u64 delta; 1074 1075 if (list_empty(&atoms->work_list)) 1076 return; 1077 1078 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1079 1080 if (atom->state != THREAD_WAIT_CPU) 1081 return; 1082 1083 if (timestamp < atom->wake_up_time) { 1084 atom->state = THREAD_IGNORE; 1085 return; 1086 } 1087 1088 atom->state = THREAD_SCHED_IN; 1089 atom->sched_in_time = timestamp; 1090 1091 delta = atom->sched_in_time - atom->wake_up_time; 1092 atoms->total_lat += delta; 1093 if (delta > atoms->max_lat) { 1094 atoms->max_lat = delta; 1095 atoms->max_lat_at = timestamp; 1096 } 1097 atoms->nb_atoms++; 1098 } 1099 1100 static int latency_switch_event(struct perf_sched *sched, 1101 struct evsel *evsel, 1102 struct perf_sample *sample, 1103 struct machine *machine) 1104 { 1105 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 1106 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1107 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 1108 struct work_atoms *out_events, *in_events; 1109 struct thread *sched_out, *sched_in; 1110 u64 timestamp0, timestamp = sample->time; 1111 int cpu = sample->cpu, err = -1; 1112 s64 delta; 1113 1114 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1115 1116 timestamp0 = sched->cpu_last_switched[cpu]; 1117 sched->cpu_last_switched[cpu] = timestamp; 1118 if (timestamp0) 1119 delta = timestamp - timestamp0; 1120 else 1121 delta = 0; 1122 1123 if (delta < 0) { 1124 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1125 return -1; 1126 } 1127 1128 sched_out = machine__findnew_thread(machine, -1, prev_pid); 1129 sched_in = machine__findnew_thread(machine, -1, next_pid); 1130 if (sched_out == NULL || sched_in == NULL) 1131 goto out_put; 1132 1133 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1134 if (!out_events) { 1135 if (thread_atoms_insert(sched, sched_out)) 1136 goto out_put; 1137 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1138 if (!out_events) { 1139 pr_err("out-event: Internal tree error"); 1140 goto out_put; 1141 } 1142 } 1143 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp)) 1144 return -1; 1145 1146 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1147 if (!in_events) { 1148 if (thread_atoms_insert(sched, sched_in)) 1149 goto out_put; 1150 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1151 if (!in_events) { 1152 pr_err("in-event: Internal tree error"); 1153 goto out_put; 1154 } 1155 /* 1156 * Take came in we have not heard about yet, 1157 * add in an initial atom in runnable state: 1158 */ 1159 if (add_sched_out_event(in_events, 'R', timestamp)) 1160 goto out_put; 1161 } 1162 add_sched_in_event(in_events, timestamp); 1163 err = 0; 1164 out_put: 1165 thread__put(sched_out); 1166 thread__put(sched_in); 1167 return err; 1168 } 1169 1170 static int latency_runtime_event(struct perf_sched *sched, 1171 struct evsel *evsel, 1172 struct perf_sample *sample, 1173 struct machine *machine) 1174 { 1175 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1176 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime"); 1177 struct thread *thread = machine__findnew_thread(machine, -1, pid); 1178 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1179 u64 timestamp = sample->time; 1180 int cpu = sample->cpu, err = -1; 1181 1182 if (thread == NULL) 1183 return -1; 1184 1185 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1186 if (!atoms) { 1187 if (thread_atoms_insert(sched, thread)) 1188 goto out_put; 1189 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1190 if (!atoms) { 1191 pr_err("in-event: Internal tree error"); 1192 goto out_put; 1193 } 1194 if (add_sched_out_event(atoms, 'R', timestamp)) 1195 goto out_put; 1196 } 1197 1198 add_runtime_event(atoms, runtime, timestamp); 1199 err = 0; 1200 out_put: 1201 thread__put(thread); 1202 return err; 1203 } 1204 1205 static int latency_wakeup_event(struct perf_sched *sched, 1206 struct evsel *evsel, 1207 struct perf_sample *sample, 1208 struct machine *machine) 1209 { 1210 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1211 struct work_atoms *atoms; 1212 struct work_atom *atom; 1213 struct thread *wakee; 1214 u64 timestamp = sample->time; 1215 int err = -1; 1216 1217 wakee = machine__findnew_thread(machine, -1, pid); 1218 if (wakee == NULL) 1219 return -1; 1220 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1221 if (!atoms) { 1222 if (thread_atoms_insert(sched, wakee)) 1223 goto out_put; 1224 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1225 if (!atoms) { 1226 pr_err("wakeup-event: Internal tree error"); 1227 goto out_put; 1228 } 1229 if (add_sched_out_event(atoms, 'S', timestamp)) 1230 goto out_put; 1231 } 1232 1233 BUG_ON(list_empty(&atoms->work_list)); 1234 1235 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1236 1237 /* 1238 * As we do not guarantee the wakeup event happens when 1239 * task is out of run queue, also may happen when task is 1240 * on run queue and wakeup only change ->state to TASK_RUNNING, 1241 * then we should not set the ->wake_up_time when wake up a 1242 * task which is on run queue. 1243 * 1244 * You WILL be missing events if you've recorded only 1245 * one CPU, or are only looking at only one, so don't 1246 * skip in this case. 1247 */ 1248 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1249 goto out_ok; 1250 1251 sched->nr_timestamps++; 1252 if (atom->sched_out_time > timestamp) { 1253 sched->nr_unordered_timestamps++; 1254 goto out_ok; 1255 } 1256 1257 atom->state = THREAD_WAIT_CPU; 1258 atom->wake_up_time = timestamp; 1259 out_ok: 1260 err = 0; 1261 out_put: 1262 thread__put(wakee); 1263 return err; 1264 } 1265 1266 static int latency_migrate_task_event(struct perf_sched *sched, 1267 struct evsel *evsel, 1268 struct perf_sample *sample, 1269 struct machine *machine) 1270 { 1271 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1272 u64 timestamp = sample->time; 1273 struct work_atoms *atoms; 1274 struct work_atom *atom; 1275 struct thread *migrant; 1276 int err = -1; 1277 1278 /* 1279 * Only need to worry about migration when profiling one CPU. 1280 */ 1281 if (sched->profile_cpu == -1) 1282 return 0; 1283 1284 migrant = machine__findnew_thread(machine, -1, pid); 1285 if (migrant == NULL) 1286 return -1; 1287 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1288 if (!atoms) { 1289 if (thread_atoms_insert(sched, migrant)) 1290 goto out_put; 1291 register_pid(sched, migrant->tid, thread__comm_str(migrant)); 1292 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1293 if (!atoms) { 1294 pr_err("migration-event: Internal tree error"); 1295 goto out_put; 1296 } 1297 if (add_sched_out_event(atoms, 'R', timestamp)) 1298 goto out_put; 1299 } 1300 1301 BUG_ON(list_empty(&atoms->work_list)); 1302 1303 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1304 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1305 1306 sched->nr_timestamps++; 1307 1308 if (atom->sched_out_time > timestamp) 1309 sched->nr_unordered_timestamps++; 1310 err = 0; 1311 out_put: 1312 thread__put(migrant); 1313 return err; 1314 } 1315 1316 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1317 { 1318 int i; 1319 int ret; 1320 u64 avg; 1321 char max_lat_at[32]; 1322 1323 if (!work_list->nb_atoms) 1324 return; 1325 /* 1326 * Ignore idle threads: 1327 */ 1328 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1329 return; 1330 1331 sched->all_runtime += work_list->total_runtime; 1332 sched->all_count += work_list->nb_atoms; 1333 1334 if (work_list->num_merged > 1) 1335 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged); 1336 else 1337 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid); 1338 1339 for (i = 0; i < 24 - ret; i++) 1340 printf(" "); 1341 1342 avg = work_list->total_lat / work_list->nb_atoms; 1343 timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at)); 1344 1345 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n", 1346 (double)work_list->total_runtime / NSEC_PER_MSEC, 1347 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC, 1348 (double)work_list->max_lat / NSEC_PER_MSEC, 1349 max_lat_at); 1350 } 1351 1352 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1353 { 1354 if (l->thread == r->thread) 1355 return 0; 1356 if (l->thread->tid < r->thread->tid) 1357 return -1; 1358 if (l->thread->tid > r->thread->tid) 1359 return 1; 1360 return (int)(l->thread - r->thread); 1361 } 1362 1363 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1364 { 1365 u64 avgl, avgr; 1366 1367 if (!l->nb_atoms) 1368 return -1; 1369 1370 if (!r->nb_atoms) 1371 return 1; 1372 1373 avgl = l->total_lat / l->nb_atoms; 1374 avgr = r->total_lat / r->nb_atoms; 1375 1376 if (avgl < avgr) 1377 return -1; 1378 if (avgl > avgr) 1379 return 1; 1380 1381 return 0; 1382 } 1383 1384 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1385 { 1386 if (l->max_lat < r->max_lat) 1387 return -1; 1388 if (l->max_lat > r->max_lat) 1389 return 1; 1390 1391 return 0; 1392 } 1393 1394 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1395 { 1396 if (l->nb_atoms < r->nb_atoms) 1397 return -1; 1398 if (l->nb_atoms > r->nb_atoms) 1399 return 1; 1400 1401 return 0; 1402 } 1403 1404 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1405 { 1406 if (l->total_runtime < r->total_runtime) 1407 return -1; 1408 if (l->total_runtime > r->total_runtime) 1409 return 1; 1410 1411 return 0; 1412 } 1413 1414 static int sort_dimension__add(const char *tok, struct list_head *list) 1415 { 1416 size_t i; 1417 static struct sort_dimension avg_sort_dimension = { 1418 .name = "avg", 1419 .cmp = avg_cmp, 1420 }; 1421 static struct sort_dimension max_sort_dimension = { 1422 .name = "max", 1423 .cmp = max_cmp, 1424 }; 1425 static struct sort_dimension pid_sort_dimension = { 1426 .name = "pid", 1427 .cmp = pid_cmp, 1428 }; 1429 static struct sort_dimension runtime_sort_dimension = { 1430 .name = "runtime", 1431 .cmp = runtime_cmp, 1432 }; 1433 static struct sort_dimension switch_sort_dimension = { 1434 .name = "switch", 1435 .cmp = switch_cmp, 1436 }; 1437 struct sort_dimension *available_sorts[] = { 1438 &pid_sort_dimension, 1439 &avg_sort_dimension, 1440 &max_sort_dimension, 1441 &switch_sort_dimension, 1442 &runtime_sort_dimension, 1443 }; 1444 1445 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1446 if (!strcmp(available_sorts[i]->name, tok)) { 1447 list_add_tail(&available_sorts[i]->list, list); 1448 1449 return 0; 1450 } 1451 } 1452 1453 return -1; 1454 } 1455 1456 static void perf_sched__sort_lat(struct perf_sched *sched) 1457 { 1458 struct rb_node *node; 1459 struct rb_root_cached *root = &sched->atom_root; 1460 again: 1461 for (;;) { 1462 struct work_atoms *data; 1463 node = rb_first_cached(root); 1464 if (!node) 1465 break; 1466 1467 rb_erase_cached(node, root); 1468 data = rb_entry(node, struct work_atoms, node); 1469 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1470 } 1471 if (root == &sched->atom_root) { 1472 root = &sched->merged_atom_root; 1473 goto again; 1474 } 1475 } 1476 1477 static int process_sched_wakeup_event(struct perf_tool *tool, 1478 struct evsel *evsel, 1479 struct perf_sample *sample, 1480 struct machine *machine) 1481 { 1482 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1483 1484 if (sched->tp_handler->wakeup_event) 1485 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1486 1487 return 0; 1488 } 1489 1490 union map_priv { 1491 void *ptr; 1492 bool color; 1493 }; 1494 1495 static bool thread__has_color(struct thread *thread) 1496 { 1497 union map_priv priv = { 1498 .ptr = thread__priv(thread), 1499 }; 1500 1501 return priv.color; 1502 } 1503 1504 static struct thread* 1505 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) 1506 { 1507 struct thread *thread = machine__findnew_thread(machine, pid, tid); 1508 union map_priv priv = { 1509 .color = false, 1510 }; 1511 1512 if (!sched->map.color_pids || !thread || thread__priv(thread)) 1513 return thread; 1514 1515 if (thread_map__has(sched->map.color_pids, tid)) 1516 priv.color = true; 1517 1518 thread__set_priv(thread, priv.ptr); 1519 return thread; 1520 } 1521 1522 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel, 1523 struct perf_sample *sample, struct machine *machine) 1524 { 1525 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1526 struct thread *sched_in; 1527 struct thread_runtime *tr; 1528 int new_shortname; 1529 u64 timestamp0, timestamp = sample->time; 1530 s64 delta; 1531 int i, this_cpu = sample->cpu; 1532 int cpus_nr; 1533 bool new_cpu = false; 1534 const char *color = PERF_COLOR_NORMAL; 1535 char stimestamp[32]; 1536 1537 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0); 1538 1539 if (this_cpu > sched->max_cpu) 1540 sched->max_cpu = this_cpu; 1541 1542 if (sched->map.comp) { 1543 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); 1544 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) { 1545 sched->map.comp_cpus[cpus_nr++] = this_cpu; 1546 new_cpu = true; 1547 } 1548 } else 1549 cpus_nr = sched->max_cpu; 1550 1551 timestamp0 = sched->cpu_last_switched[this_cpu]; 1552 sched->cpu_last_switched[this_cpu] = timestamp; 1553 if (timestamp0) 1554 delta = timestamp - timestamp0; 1555 else 1556 delta = 0; 1557 1558 if (delta < 0) { 1559 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1560 return -1; 1561 } 1562 1563 sched_in = map__findnew_thread(sched, machine, -1, next_pid); 1564 if (sched_in == NULL) 1565 return -1; 1566 1567 tr = thread__get_runtime(sched_in); 1568 if (tr == NULL) { 1569 thread__put(sched_in); 1570 return -1; 1571 } 1572 1573 sched->curr_thread[this_cpu] = thread__get(sched_in); 1574 1575 printf(" "); 1576 1577 new_shortname = 0; 1578 if (!tr->shortname[0]) { 1579 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1580 /* 1581 * Don't allocate a letter-number for swapper:0 1582 * as a shortname. Instead, we use '.' for it. 1583 */ 1584 tr->shortname[0] = '.'; 1585 tr->shortname[1] = ' '; 1586 } else { 1587 tr->shortname[0] = sched->next_shortname1; 1588 tr->shortname[1] = sched->next_shortname2; 1589 1590 if (sched->next_shortname1 < 'Z') { 1591 sched->next_shortname1++; 1592 } else { 1593 sched->next_shortname1 = 'A'; 1594 if (sched->next_shortname2 < '9') 1595 sched->next_shortname2++; 1596 else 1597 sched->next_shortname2 = '0'; 1598 } 1599 } 1600 new_shortname = 1; 1601 } 1602 1603 for (i = 0; i < cpus_nr; i++) { 1604 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i; 1605 struct thread *curr_thread = sched->curr_thread[cpu]; 1606 struct thread_runtime *curr_tr; 1607 const char *pid_color = color; 1608 const char *cpu_color = color; 1609 1610 if (curr_thread && thread__has_color(curr_thread)) 1611 pid_color = COLOR_PIDS; 1612 1613 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu)) 1614 continue; 1615 1616 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu)) 1617 cpu_color = COLOR_CPUS; 1618 1619 if (cpu != this_cpu) 1620 color_fprintf(stdout, color, " "); 1621 else 1622 color_fprintf(stdout, cpu_color, "*"); 1623 1624 if (sched->curr_thread[cpu]) { 1625 curr_tr = thread__get_runtime(sched->curr_thread[cpu]); 1626 if (curr_tr == NULL) { 1627 thread__put(sched_in); 1628 return -1; 1629 } 1630 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname); 1631 } else 1632 color_fprintf(stdout, color, " "); 1633 } 1634 1635 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu)) 1636 goto out; 1637 1638 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1639 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1640 if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) { 1641 const char *pid_color = color; 1642 1643 if (thread__has_color(sched_in)) 1644 pid_color = COLOR_PIDS; 1645 1646 color_fprintf(stdout, pid_color, "%s => %s:%d", 1647 tr->shortname, thread__comm_str(sched_in), sched_in->tid); 1648 tr->comm_changed = false; 1649 } 1650 1651 if (sched->map.comp && new_cpu) 1652 color_fprintf(stdout, color, " (CPU %d)", this_cpu); 1653 1654 out: 1655 color_fprintf(stdout, color, "\n"); 1656 1657 thread__put(sched_in); 1658 1659 return 0; 1660 } 1661 1662 static int process_sched_switch_event(struct perf_tool *tool, 1663 struct evsel *evsel, 1664 struct perf_sample *sample, 1665 struct machine *machine) 1666 { 1667 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1668 int this_cpu = sample->cpu, err = 0; 1669 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 1670 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1671 1672 if (sched->curr_pid[this_cpu] != (u32)-1) { 1673 /* 1674 * Are we trying to switch away a PID that is 1675 * not current? 1676 */ 1677 if (sched->curr_pid[this_cpu] != prev_pid) 1678 sched->nr_context_switch_bugs++; 1679 } 1680 1681 if (sched->tp_handler->switch_event) 1682 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1683 1684 sched->curr_pid[this_cpu] = next_pid; 1685 return err; 1686 } 1687 1688 static int process_sched_runtime_event(struct perf_tool *tool, 1689 struct evsel *evsel, 1690 struct perf_sample *sample, 1691 struct machine *machine) 1692 { 1693 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1694 1695 if (sched->tp_handler->runtime_event) 1696 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1697 1698 return 0; 1699 } 1700 1701 static int perf_sched__process_fork_event(struct perf_tool *tool, 1702 union perf_event *event, 1703 struct perf_sample *sample, 1704 struct machine *machine) 1705 { 1706 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1707 1708 /* run the fork event through the perf machineruy */ 1709 perf_event__process_fork(tool, event, sample, machine); 1710 1711 /* and then run additional processing needed for this command */ 1712 if (sched->tp_handler->fork_event) 1713 return sched->tp_handler->fork_event(sched, event, machine); 1714 1715 return 0; 1716 } 1717 1718 static int process_sched_migrate_task_event(struct perf_tool *tool, 1719 struct evsel *evsel, 1720 struct perf_sample *sample, 1721 struct machine *machine) 1722 { 1723 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1724 1725 if (sched->tp_handler->migrate_task_event) 1726 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1727 1728 return 0; 1729 } 1730 1731 typedef int (*tracepoint_handler)(struct perf_tool *tool, 1732 struct evsel *evsel, 1733 struct perf_sample *sample, 1734 struct machine *machine); 1735 1736 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, 1737 union perf_event *event __maybe_unused, 1738 struct perf_sample *sample, 1739 struct evsel *evsel, 1740 struct machine *machine) 1741 { 1742 int err = 0; 1743 1744 if (evsel->handler != NULL) { 1745 tracepoint_handler f = evsel->handler; 1746 err = f(tool, evsel, sample, machine); 1747 } 1748 1749 return err; 1750 } 1751 1752 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused, 1753 union perf_event *event, 1754 struct perf_sample *sample, 1755 struct machine *machine) 1756 { 1757 struct thread *thread; 1758 struct thread_runtime *tr; 1759 int err; 1760 1761 err = perf_event__process_comm(tool, event, sample, machine); 1762 if (err) 1763 return err; 1764 1765 thread = machine__find_thread(machine, sample->pid, sample->tid); 1766 if (!thread) { 1767 pr_err("Internal error: can't find thread\n"); 1768 return -1; 1769 } 1770 1771 tr = thread__get_runtime(thread); 1772 if (tr == NULL) { 1773 thread__put(thread); 1774 return -1; 1775 } 1776 1777 tr->comm_changed = true; 1778 thread__put(thread); 1779 1780 return 0; 1781 } 1782 1783 static int perf_sched__read_events(struct perf_sched *sched) 1784 { 1785 const struct evsel_str_handler handlers[] = { 1786 { "sched:sched_switch", process_sched_switch_event, }, 1787 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1788 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1789 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1790 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1791 }; 1792 struct perf_session *session; 1793 struct perf_data data = { 1794 .path = input_name, 1795 .mode = PERF_DATA_MODE_READ, 1796 .force = sched->force, 1797 }; 1798 int rc = -1; 1799 1800 session = perf_session__new(&data, false, &sched->tool); 1801 if (IS_ERR(session)) { 1802 pr_debug("Error creating perf session"); 1803 return PTR_ERR(session); 1804 } 1805 1806 symbol__init(&session->header.env); 1807 1808 if (perf_session__set_tracepoints_handlers(session, handlers)) 1809 goto out_delete; 1810 1811 if (perf_session__has_traces(session, "record -R")) { 1812 int err = perf_session__process_events(session); 1813 if (err) { 1814 pr_err("Failed to process events, error %d", err); 1815 goto out_delete; 1816 } 1817 1818 sched->nr_events = session->evlist->stats.nr_events[0]; 1819 sched->nr_lost_events = session->evlist->stats.total_lost; 1820 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; 1821 } 1822 1823 rc = 0; 1824 out_delete: 1825 perf_session__delete(session); 1826 return rc; 1827 } 1828 1829 /* 1830 * scheduling times are printed as msec.usec 1831 */ 1832 static inline void print_sched_time(unsigned long long nsecs, int width) 1833 { 1834 unsigned long msecs; 1835 unsigned long usecs; 1836 1837 msecs = nsecs / NSEC_PER_MSEC; 1838 nsecs -= msecs * NSEC_PER_MSEC; 1839 usecs = nsecs / NSEC_PER_USEC; 1840 printf("%*lu.%03lu ", width, msecs, usecs); 1841 } 1842 1843 /* 1844 * returns runtime data for event, allocating memory for it the 1845 * first time it is used. 1846 */ 1847 static struct evsel_runtime *perf_evsel__get_runtime(struct evsel *evsel) 1848 { 1849 struct evsel_runtime *r = evsel->priv; 1850 1851 if (r == NULL) { 1852 r = zalloc(sizeof(struct evsel_runtime)); 1853 evsel->priv = r; 1854 } 1855 1856 return r; 1857 } 1858 1859 /* 1860 * save last time event was seen per cpu 1861 */ 1862 static void perf_evsel__save_time(struct evsel *evsel, 1863 u64 timestamp, u32 cpu) 1864 { 1865 struct evsel_runtime *r = perf_evsel__get_runtime(evsel); 1866 1867 if (r == NULL) 1868 return; 1869 1870 if ((cpu >= r->ncpu) || (r->last_time == NULL)) { 1871 int i, n = __roundup_pow_of_two(cpu+1); 1872 void *p = r->last_time; 1873 1874 p = realloc(r->last_time, n * sizeof(u64)); 1875 if (!p) 1876 return; 1877 1878 r->last_time = p; 1879 for (i = r->ncpu; i < n; ++i) 1880 r->last_time[i] = (u64) 0; 1881 1882 r->ncpu = n; 1883 } 1884 1885 r->last_time[cpu] = timestamp; 1886 } 1887 1888 /* returns last time this event was seen on the given cpu */ 1889 static u64 perf_evsel__get_time(struct evsel *evsel, u32 cpu) 1890 { 1891 struct evsel_runtime *r = perf_evsel__get_runtime(evsel); 1892 1893 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu)) 1894 return 0; 1895 1896 return r->last_time[cpu]; 1897 } 1898 1899 static int comm_width = 30; 1900 1901 static char *timehist_get_commstr(struct thread *thread) 1902 { 1903 static char str[32]; 1904 const char *comm = thread__comm_str(thread); 1905 pid_t tid = thread->tid; 1906 pid_t pid = thread->pid_; 1907 int n; 1908 1909 if (pid == 0) 1910 n = scnprintf(str, sizeof(str), "%s", comm); 1911 1912 else if (tid != pid) 1913 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid); 1914 1915 else 1916 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid); 1917 1918 if (n > comm_width) 1919 comm_width = n; 1920 1921 return str; 1922 } 1923 1924 static void timehist_header(struct perf_sched *sched) 1925 { 1926 u32 ncpus = sched->max_cpu + 1; 1927 u32 i, j; 1928 1929 printf("%15s %6s ", "time", "cpu"); 1930 1931 if (sched->show_cpu_visual) { 1932 printf(" "); 1933 for (i = 0, j = 0; i < ncpus; ++i) { 1934 printf("%x", j++); 1935 if (j > 15) 1936 j = 0; 1937 } 1938 printf(" "); 1939 } 1940 1941 printf(" %-*s %9s %9s %9s", comm_width, 1942 "task name", "wait time", "sch delay", "run time"); 1943 1944 if (sched->show_state) 1945 printf(" %s", "state"); 1946 1947 printf("\n"); 1948 1949 /* 1950 * units row 1951 */ 1952 printf("%15s %-6s ", "", ""); 1953 1954 if (sched->show_cpu_visual) 1955 printf(" %*s ", ncpus, ""); 1956 1957 printf(" %-*s %9s %9s %9s", comm_width, 1958 "[tid/pid]", "(msec)", "(msec)", "(msec)"); 1959 1960 if (sched->show_state) 1961 printf(" %5s", ""); 1962 1963 printf("\n"); 1964 1965 /* 1966 * separator 1967 */ 1968 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line); 1969 1970 if (sched->show_cpu_visual) 1971 printf(" %.*s ", ncpus, graph_dotted_line); 1972 1973 printf(" %.*s %.9s %.9s %.9s", comm_width, 1974 graph_dotted_line, graph_dotted_line, graph_dotted_line, 1975 graph_dotted_line); 1976 1977 if (sched->show_state) 1978 printf(" %.5s", graph_dotted_line); 1979 1980 printf("\n"); 1981 } 1982 1983 static char task_state_char(struct thread *thread, int state) 1984 { 1985 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR; 1986 unsigned bit = state ? ffs(state) : 0; 1987 1988 /* 'I' for idle */ 1989 if (thread->tid == 0) 1990 return 'I'; 1991 1992 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?'; 1993 } 1994 1995 static void timehist_print_sample(struct perf_sched *sched, 1996 struct evsel *evsel, 1997 struct perf_sample *sample, 1998 struct addr_location *al, 1999 struct thread *thread, 2000 u64 t, int state) 2001 { 2002 struct thread_runtime *tr = thread__priv(thread); 2003 const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); 2004 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 2005 u32 max_cpus = sched->max_cpu + 1; 2006 char tstr[64]; 2007 char nstr[30]; 2008 u64 wait_time; 2009 2010 timestamp__scnprintf_usec(t, tstr, sizeof(tstr)); 2011 printf("%15s [%04d] ", tstr, sample->cpu); 2012 2013 if (sched->show_cpu_visual) { 2014 u32 i; 2015 char c; 2016 2017 printf(" "); 2018 for (i = 0; i < max_cpus; ++i) { 2019 /* flag idle times with 'i'; others are sched events */ 2020 if (i == sample->cpu) 2021 c = (thread->tid == 0) ? 'i' : 's'; 2022 else 2023 c = ' '; 2024 printf("%c", c); 2025 } 2026 printf(" "); 2027 } 2028 2029 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2030 2031 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt; 2032 print_sched_time(wait_time, 6); 2033 2034 print_sched_time(tr->dt_delay, 6); 2035 print_sched_time(tr->dt_run, 6); 2036 2037 if (sched->show_state) 2038 printf(" %5c ", task_state_char(thread, state)); 2039 2040 if (sched->show_next) { 2041 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid); 2042 printf(" %-*s", comm_width, nstr); 2043 } 2044 2045 if (sched->show_wakeups && !sched->show_next) 2046 printf(" %-*s", comm_width, ""); 2047 2048 if (thread->tid == 0) 2049 goto out; 2050 2051 if (sched->show_callchain) 2052 printf(" "); 2053 2054 sample__fprintf_sym(sample, al, 0, 2055 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE | 2056 EVSEL__PRINT_CALLCHAIN_ARROW | 2057 EVSEL__PRINT_SKIP_IGNORED, 2058 &callchain_cursor, stdout); 2059 2060 out: 2061 printf("\n"); 2062 } 2063 2064 /* 2065 * Explanation of delta-time stats: 2066 * 2067 * t = time of current schedule out event 2068 * tprev = time of previous sched out event 2069 * also time of schedule-in event for current task 2070 * last_time = time of last sched change event for current task 2071 * (i.e, time process was last scheduled out) 2072 * ready_to_run = time of wakeup for current task 2073 * 2074 * -----|------------|------------|------------|------ 2075 * last ready tprev t 2076 * time to run 2077 * 2078 * |-------- dt_wait --------| 2079 * |- dt_delay -|-- dt_run --| 2080 * 2081 * dt_run = run time of current task 2082 * dt_wait = time between last schedule out event for task and tprev 2083 * represents time spent off the cpu 2084 * dt_delay = time between wakeup and schedule-in of task 2085 */ 2086 2087 static void timehist_update_runtime_stats(struct thread_runtime *r, 2088 u64 t, u64 tprev) 2089 { 2090 r->dt_delay = 0; 2091 r->dt_sleep = 0; 2092 r->dt_iowait = 0; 2093 r->dt_preempt = 0; 2094 r->dt_run = 0; 2095 2096 if (tprev) { 2097 r->dt_run = t - tprev; 2098 if (r->ready_to_run) { 2099 if (r->ready_to_run > tprev) 2100 pr_debug("time travel: wakeup time for task > previous sched_switch event\n"); 2101 else 2102 r->dt_delay = tprev - r->ready_to_run; 2103 } 2104 2105 if (r->last_time > tprev) 2106 pr_debug("time travel: last sched out time for task > previous sched_switch event\n"); 2107 else if (r->last_time) { 2108 u64 dt_wait = tprev - r->last_time; 2109 2110 if (r->last_state == TASK_RUNNING) 2111 r->dt_preempt = dt_wait; 2112 else if (r->last_state == TASK_UNINTERRUPTIBLE) 2113 r->dt_iowait = dt_wait; 2114 else 2115 r->dt_sleep = dt_wait; 2116 } 2117 } 2118 2119 update_stats(&r->run_stats, r->dt_run); 2120 2121 r->total_run_time += r->dt_run; 2122 r->total_delay_time += r->dt_delay; 2123 r->total_sleep_time += r->dt_sleep; 2124 r->total_iowait_time += r->dt_iowait; 2125 r->total_preempt_time += r->dt_preempt; 2126 } 2127 2128 static bool is_idle_sample(struct perf_sample *sample, 2129 struct evsel *evsel) 2130 { 2131 /* pid 0 == swapper == idle task */ 2132 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0) 2133 return perf_evsel__intval(evsel, sample, "prev_pid") == 0; 2134 2135 return sample->pid == 0; 2136 } 2137 2138 static void save_task_callchain(struct perf_sched *sched, 2139 struct perf_sample *sample, 2140 struct evsel *evsel, 2141 struct machine *machine) 2142 { 2143 struct callchain_cursor *cursor = &callchain_cursor; 2144 struct thread *thread; 2145 2146 /* want main thread for process - has maps */ 2147 thread = machine__findnew_thread(machine, sample->pid, sample->pid); 2148 if (thread == NULL) { 2149 pr_debug("Failed to get thread for pid %d.\n", sample->pid); 2150 return; 2151 } 2152 2153 if (!sched->show_callchain || sample->callchain == NULL) 2154 return; 2155 2156 if (thread__resolve_callchain(thread, cursor, evsel, sample, 2157 NULL, NULL, sched->max_stack + 2) != 0) { 2158 if (verbose > 0) 2159 pr_err("Failed to resolve callchain. Skipping\n"); 2160 2161 return; 2162 } 2163 2164 callchain_cursor_commit(cursor); 2165 2166 while (true) { 2167 struct callchain_cursor_node *node; 2168 struct symbol *sym; 2169 2170 node = callchain_cursor_current(cursor); 2171 if (node == NULL) 2172 break; 2173 2174 sym = node->sym; 2175 if (sym) { 2176 if (!strcmp(sym->name, "schedule") || 2177 !strcmp(sym->name, "__schedule") || 2178 !strcmp(sym->name, "preempt_schedule")) 2179 sym->ignore = 1; 2180 } 2181 2182 callchain_cursor_advance(cursor); 2183 } 2184 } 2185 2186 static int init_idle_thread(struct thread *thread) 2187 { 2188 struct idle_thread_runtime *itr; 2189 2190 thread__set_comm(thread, idle_comm, 0); 2191 2192 itr = zalloc(sizeof(*itr)); 2193 if (itr == NULL) 2194 return -ENOMEM; 2195 2196 init_stats(&itr->tr.run_stats); 2197 callchain_init(&itr->callchain); 2198 callchain_cursor_reset(&itr->cursor); 2199 thread__set_priv(thread, itr); 2200 2201 return 0; 2202 } 2203 2204 /* 2205 * Track idle stats per cpu by maintaining a local thread 2206 * struct for the idle task on each cpu. 2207 */ 2208 static int init_idle_threads(int ncpu) 2209 { 2210 int i, ret; 2211 2212 idle_threads = zalloc(ncpu * sizeof(struct thread *)); 2213 if (!idle_threads) 2214 return -ENOMEM; 2215 2216 idle_max_cpu = ncpu; 2217 2218 /* allocate the actual thread struct if needed */ 2219 for (i = 0; i < ncpu; ++i) { 2220 idle_threads[i] = thread__new(0, 0); 2221 if (idle_threads[i] == NULL) 2222 return -ENOMEM; 2223 2224 ret = init_idle_thread(idle_threads[i]); 2225 if (ret < 0) 2226 return ret; 2227 } 2228 2229 return 0; 2230 } 2231 2232 static void free_idle_threads(void) 2233 { 2234 int i; 2235 2236 if (idle_threads == NULL) 2237 return; 2238 2239 for (i = 0; i < idle_max_cpu; ++i) { 2240 if ((idle_threads[i])) 2241 thread__delete(idle_threads[i]); 2242 } 2243 2244 free(idle_threads); 2245 } 2246 2247 static struct thread *get_idle_thread(int cpu) 2248 { 2249 /* 2250 * expand/allocate array of pointers to local thread 2251 * structs if needed 2252 */ 2253 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) { 2254 int i, j = __roundup_pow_of_two(cpu+1); 2255 void *p; 2256 2257 p = realloc(idle_threads, j * sizeof(struct thread *)); 2258 if (!p) 2259 return NULL; 2260 2261 idle_threads = (struct thread **) p; 2262 for (i = idle_max_cpu; i < j; ++i) 2263 idle_threads[i] = NULL; 2264 2265 idle_max_cpu = j; 2266 } 2267 2268 /* allocate a new thread struct if needed */ 2269 if (idle_threads[cpu] == NULL) { 2270 idle_threads[cpu] = thread__new(0, 0); 2271 2272 if (idle_threads[cpu]) { 2273 if (init_idle_thread(idle_threads[cpu]) < 0) 2274 return NULL; 2275 } 2276 } 2277 2278 return idle_threads[cpu]; 2279 } 2280 2281 static void save_idle_callchain(struct perf_sched *sched, 2282 struct idle_thread_runtime *itr, 2283 struct perf_sample *sample) 2284 { 2285 if (!sched->show_callchain || sample->callchain == NULL) 2286 return; 2287 2288 callchain_cursor__copy(&itr->cursor, &callchain_cursor); 2289 } 2290 2291 static struct thread *timehist_get_thread(struct perf_sched *sched, 2292 struct perf_sample *sample, 2293 struct machine *machine, 2294 struct evsel *evsel) 2295 { 2296 struct thread *thread; 2297 2298 if (is_idle_sample(sample, evsel)) { 2299 thread = get_idle_thread(sample->cpu); 2300 if (thread == NULL) 2301 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2302 2303 } else { 2304 /* there were samples with tid 0 but non-zero pid */ 2305 thread = machine__findnew_thread(machine, sample->pid, 2306 sample->tid ?: sample->pid); 2307 if (thread == NULL) { 2308 pr_debug("Failed to get thread for tid %d. skipping sample.\n", 2309 sample->tid); 2310 } 2311 2312 save_task_callchain(sched, sample, evsel, machine); 2313 if (sched->idle_hist) { 2314 struct thread *idle; 2315 struct idle_thread_runtime *itr; 2316 2317 idle = get_idle_thread(sample->cpu); 2318 if (idle == NULL) { 2319 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2320 return NULL; 2321 } 2322 2323 itr = thread__priv(idle); 2324 if (itr == NULL) 2325 return NULL; 2326 2327 itr->last_thread = thread; 2328 2329 /* copy task callchain when entering to idle */ 2330 if (perf_evsel__intval(evsel, sample, "next_pid") == 0) 2331 save_idle_callchain(sched, itr, sample); 2332 } 2333 } 2334 2335 return thread; 2336 } 2337 2338 static bool timehist_skip_sample(struct perf_sched *sched, 2339 struct thread *thread, 2340 struct evsel *evsel, 2341 struct perf_sample *sample) 2342 { 2343 bool rc = false; 2344 2345 if (thread__is_filtered(thread)) { 2346 rc = true; 2347 sched->skipped_samples++; 2348 } 2349 2350 if (sched->idle_hist) { 2351 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch")) 2352 rc = true; 2353 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 && 2354 perf_evsel__intval(evsel, sample, "next_pid") != 0) 2355 rc = true; 2356 } 2357 2358 return rc; 2359 } 2360 2361 static void timehist_print_wakeup_event(struct perf_sched *sched, 2362 struct evsel *evsel, 2363 struct perf_sample *sample, 2364 struct machine *machine, 2365 struct thread *awakened) 2366 { 2367 struct thread *thread; 2368 char tstr[64]; 2369 2370 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2371 if (thread == NULL) 2372 return; 2373 2374 /* show wakeup unless both awakee and awaker are filtered */ 2375 if (timehist_skip_sample(sched, thread, evsel, sample) && 2376 timehist_skip_sample(sched, awakened, evsel, sample)) { 2377 return; 2378 } 2379 2380 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2381 printf("%15s [%04d] ", tstr, sample->cpu); 2382 if (sched->show_cpu_visual) 2383 printf(" %*s ", sched->max_cpu + 1, ""); 2384 2385 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2386 2387 /* dt spacer */ 2388 printf(" %9s %9s %9s ", "", "", ""); 2389 2390 printf("awakened: %s", timehist_get_commstr(awakened)); 2391 2392 printf("\n"); 2393 } 2394 2395 static int timehist_sched_wakeup_event(struct perf_tool *tool, 2396 union perf_event *event __maybe_unused, 2397 struct evsel *evsel, 2398 struct perf_sample *sample, 2399 struct machine *machine) 2400 { 2401 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2402 struct thread *thread; 2403 struct thread_runtime *tr = NULL; 2404 /* want pid of awakened task not pid in sample */ 2405 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 2406 2407 thread = machine__findnew_thread(machine, 0, pid); 2408 if (thread == NULL) 2409 return -1; 2410 2411 tr = thread__get_runtime(thread); 2412 if (tr == NULL) 2413 return -1; 2414 2415 if (tr->ready_to_run == 0) 2416 tr->ready_to_run = sample->time; 2417 2418 /* show wakeups if requested */ 2419 if (sched->show_wakeups && 2420 !perf_time__skip_sample(&sched->ptime, sample->time)) 2421 timehist_print_wakeup_event(sched, evsel, sample, machine, thread); 2422 2423 return 0; 2424 } 2425 2426 static void timehist_print_migration_event(struct perf_sched *sched, 2427 struct evsel *evsel, 2428 struct perf_sample *sample, 2429 struct machine *machine, 2430 struct thread *migrated) 2431 { 2432 struct thread *thread; 2433 char tstr[64]; 2434 u32 max_cpus = sched->max_cpu + 1; 2435 u32 ocpu, dcpu; 2436 2437 if (sched->summary_only) 2438 return; 2439 2440 max_cpus = sched->max_cpu + 1; 2441 ocpu = perf_evsel__intval(evsel, sample, "orig_cpu"); 2442 dcpu = perf_evsel__intval(evsel, sample, "dest_cpu"); 2443 2444 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2445 if (thread == NULL) 2446 return; 2447 2448 if (timehist_skip_sample(sched, thread, evsel, sample) && 2449 timehist_skip_sample(sched, migrated, evsel, sample)) { 2450 return; 2451 } 2452 2453 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2454 printf("%15s [%04d] ", tstr, sample->cpu); 2455 2456 if (sched->show_cpu_visual) { 2457 u32 i; 2458 char c; 2459 2460 printf(" "); 2461 for (i = 0; i < max_cpus; ++i) { 2462 c = (i == sample->cpu) ? 'm' : ' '; 2463 printf("%c", c); 2464 } 2465 printf(" "); 2466 } 2467 2468 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2469 2470 /* dt spacer */ 2471 printf(" %9s %9s %9s ", "", "", ""); 2472 2473 printf("migrated: %s", timehist_get_commstr(migrated)); 2474 printf(" cpu %d => %d", ocpu, dcpu); 2475 2476 printf("\n"); 2477 } 2478 2479 static int timehist_migrate_task_event(struct perf_tool *tool, 2480 union perf_event *event __maybe_unused, 2481 struct evsel *evsel, 2482 struct perf_sample *sample, 2483 struct machine *machine) 2484 { 2485 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2486 struct thread *thread; 2487 struct thread_runtime *tr = NULL; 2488 /* want pid of migrated task not pid in sample */ 2489 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 2490 2491 thread = machine__findnew_thread(machine, 0, pid); 2492 if (thread == NULL) 2493 return -1; 2494 2495 tr = thread__get_runtime(thread); 2496 if (tr == NULL) 2497 return -1; 2498 2499 tr->migrations++; 2500 2501 /* show migrations if requested */ 2502 timehist_print_migration_event(sched, evsel, sample, machine, thread); 2503 2504 return 0; 2505 } 2506 2507 static int timehist_sched_change_event(struct perf_tool *tool, 2508 union perf_event *event, 2509 struct evsel *evsel, 2510 struct perf_sample *sample, 2511 struct machine *machine) 2512 { 2513 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2514 struct perf_time_interval *ptime = &sched->ptime; 2515 struct addr_location al; 2516 struct thread *thread; 2517 struct thread_runtime *tr = NULL; 2518 u64 tprev, t = sample->time; 2519 int rc = 0; 2520 int state = perf_evsel__intval(evsel, sample, "prev_state"); 2521 2522 2523 if (machine__resolve(machine, &al, sample) < 0) { 2524 pr_err("problem processing %d event. skipping it\n", 2525 event->header.type); 2526 rc = -1; 2527 goto out; 2528 } 2529 2530 thread = timehist_get_thread(sched, sample, machine, evsel); 2531 if (thread == NULL) { 2532 rc = -1; 2533 goto out; 2534 } 2535 2536 if (timehist_skip_sample(sched, thread, evsel, sample)) 2537 goto out; 2538 2539 tr = thread__get_runtime(thread); 2540 if (tr == NULL) { 2541 rc = -1; 2542 goto out; 2543 } 2544 2545 tprev = perf_evsel__get_time(evsel, sample->cpu); 2546 2547 /* 2548 * If start time given: 2549 * - sample time is under window user cares about - skip sample 2550 * - tprev is under window user cares about - reset to start of window 2551 */ 2552 if (ptime->start && ptime->start > t) 2553 goto out; 2554 2555 if (tprev && ptime->start > tprev) 2556 tprev = ptime->start; 2557 2558 /* 2559 * If end time given: 2560 * - previous sched event is out of window - we are done 2561 * - sample time is beyond window user cares about - reset it 2562 * to close out stats for time window interest 2563 */ 2564 if (ptime->end) { 2565 if (tprev > ptime->end) 2566 goto out; 2567 2568 if (t > ptime->end) 2569 t = ptime->end; 2570 } 2571 2572 if (!sched->idle_hist || thread->tid == 0) { 2573 timehist_update_runtime_stats(tr, t, tprev); 2574 2575 if (sched->idle_hist) { 2576 struct idle_thread_runtime *itr = (void *)tr; 2577 struct thread_runtime *last_tr; 2578 2579 BUG_ON(thread->tid != 0); 2580 2581 if (itr->last_thread == NULL) 2582 goto out; 2583 2584 /* add current idle time as last thread's runtime */ 2585 last_tr = thread__get_runtime(itr->last_thread); 2586 if (last_tr == NULL) 2587 goto out; 2588 2589 timehist_update_runtime_stats(last_tr, t, tprev); 2590 /* 2591 * remove delta time of last thread as it's not updated 2592 * and otherwise it will show an invalid value next 2593 * time. we only care total run time and run stat. 2594 */ 2595 last_tr->dt_run = 0; 2596 last_tr->dt_delay = 0; 2597 last_tr->dt_sleep = 0; 2598 last_tr->dt_iowait = 0; 2599 last_tr->dt_preempt = 0; 2600 2601 if (itr->cursor.nr) 2602 callchain_append(&itr->callchain, &itr->cursor, t - tprev); 2603 2604 itr->last_thread = NULL; 2605 } 2606 } 2607 2608 if (!sched->summary_only) 2609 timehist_print_sample(sched, evsel, sample, &al, thread, t, state); 2610 2611 out: 2612 if (sched->hist_time.start == 0 && t >= ptime->start) 2613 sched->hist_time.start = t; 2614 if (ptime->end == 0 || t <= ptime->end) 2615 sched->hist_time.end = t; 2616 2617 if (tr) { 2618 /* time of this sched_switch event becomes last time task seen */ 2619 tr->last_time = sample->time; 2620 2621 /* last state is used to determine where to account wait time */ 2622 tr->last_state = state; 2623 2624 /* sched out event for task so reset ready to run time */ 2625 tr->ready_to_run = 0; 2626 } 2627 2628 perf_evsel__save_time(evsel, sample->time, sample->cpu); 2629 2630 return rc; 2631 } 2632 2633 static int timehist_sched_switch_event(struct perf_tool *tool, 2634 union perf_event *event, 2635 struct evsel *evsel, 2636 struct perf_sample *sample, 2637 struct machine *machine __maybe_unused) 2638 { 2639 return timehist_sched_change_event(tool, event, evsel, sample, machine); 2640 } 2641 2642 static int process_lost(struct perf_tool *tool __maybe_unused, 2643 union perf_event *event, 2644 struct perf_sample *sample, 2645 struct machine *machine __maybe_unused) 2646 { 2647 char tstr[64]; 2648 2649 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2650 printf("%15s ", tstr); 2651 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu); 2652 2653 return 0; 2654 } 2655 2656 2657 static void print_thread_runtime(struct thread *t, 2658 struct thread_runtime *r) 2659 { 2660 double mean = avg_stats(&r->run_stats); 2661 float stddev; 2662 2663 printf("%*s %5d %9" PRIu64 " ", 2664 comm_width, timehist_get_commstr(t), t->ppid, 2665 (u64) r->run_stats.n); 2666 2667 print_sched_time(r->total_run_time, 8); 2668 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean); 2669 print_sched_time(r->run_stats.min, 6); 2670 printf(" "); 2671 print_sched_time((u64) mean, 6); 2672 printf(" "); 2673 print_sched_time(r->run_stats.max, 6); 2674 printf(" "); 2675 printf("%5.2f", stddev); 2676 printf(" %5" PRIu64, r->migrations); 2677 printf("\n"); 2678 } 2679 2680 static void print_thread_waittime(struct thread *t, 2681 struct thread_runtime *r) 2682 { 2683 printf("%*s %5d %9" PRIu64 " ", 2684 comm_width, timehist_get_commstr(t), t->ppid, 2685 (u64) r->run_stats.n); 2686 2687 print_sched_time(r->total_run_time, 8); 2688 print_sched_time(r->total_sleep_time, 6); 2689 printf(" "); 2690 print_sched_time(r->total_iowait_time, 6); 2691 printf(" "); 2692 print_sched_time(r->total_preempt_time, 6); 2693 printf(" "); 2694 print_sched_time(r->total_delay_time, 6); 2695 printf("\n"); 2696 } 2697 2698 struct total_run_stats { 2699 struct perf_sched *sched; 2700 u64 sched_count; 2701 u64 task_count; 2702 u64 total_run_time; 2703 }; 2704 2705 static int __show_thread_runtime(struct thread *t, void *priv) 2706 { 2707 struct total_run_stats *stats = priv; 2708 struct thread_runtime *r; 2709 2710 if (thread__is_filtered(t)) 2711 return 0; 2712 2713 r = thread__priv(t); 2714 if (r && r->run_stats.n) { 2715 stats->task_count++; 2716 stats->sched_count += r->run_stats.n; 2717 stats->total_run_time += r->total_run_time; 2718 2719 if (stats->sched->show_state) 2720 print_thread_waittime(t, r); 2721 else 2722 print_thread_runtime(t, r); 2723 } 2724 2725 return 0; 2726 } 2727 2728 static int show_thread_runtime(struct thread *t, void *priv) 2729 { 2730 if (t->dead) 2731 return 0; 2732 2733 return __show_thread_runtime(t, priv); 2734 } 2735 2736 static int show_deadthread_runtime(struct thread *t, void *priv) 2737 { 2738 if (!t->dead) 2739 return 0; 2740 2741 return __show_thread_runtime(t, priv); 2742 } 2743 2744 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node) 2745 { 2746 const char *sep = " <- "; 2747 struct callchain_list *chain; 2748 size_t ret = 0; 2749 char bf[1024]; 2750 bool first; 2751 2752 if (node == NULL) 2753 return 0; 2754 2755 ret = callchain__fprintf_folded(fp, node->parent); 2756 first = (ret == 0); 2757 2758 list_for_each_entry(chain, &node->val, list) { 2759 if (chain->ip >= PERF_CONTEXT_MAX) 2760 continue; 2761 if (chain->ms.sym && chain->ms.sym->ignore) 2762 continue; 2763 ret += fprintf(fp, "%s%s", first ? "" : sep, 2764 callchain_list__sym_name(chain, bf, sizeof(bf), 2765 false)); 2766 first = false; 2767 } 2768 2769 return ret; 2770 } 2771 2772 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root) 2773 { 2774 size_t ret = 0; 2775 FILE *fp = stdout; 2776 struct callchain_node *chain; 2777 struct rb_node *rb_node = rb_first_cached(root); 2778 2779 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains"); 2780 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line, 2781 graph_dotted_line); 2782 2783 while (rb_node) { 2784 chain = rb_entry(rb_node, struct callchain_node, rb_node); 2785 rb_node = rb_next(rb_node); 2786 2787 ret += fprintf(fp, " "); 2788 print_sched_time(chain->hit, 12); 2789 ret += 16; /* print_sched_time returns 2nd arg + 4 */ 2790 ret += fprintf(fp, " %8d ", chain->count); 2791 ret += callchain__fprintf_folded(fp, chain); 2792 ret += fprintf(fp, "\n"); 2793 } 2794 2795 return ret; 2796 } 2797 2798 static void timehist_print_summary(struct perf_sched *sched, 2799 struct perf_session *session) 2800 { 2801 struct machine *m = &session->machines.host; 2802 struct total_run_stats totals; 2803 u64 task_count; 2804 struct thread *t; 2805 struct thread_runtime *r; 2806 int i; 2807 u64 hist_time = sched->hist_time.end - sched->hist_time.start; 2808 2809 memset(&totals, 0, sizeof(totals)); 2810 totals.sched = sched; 2811 2812 if (sched->idle_hist) { 2813 printf("\nIdle-time summary\n"); 2814 printf("%*s parent sched-out ", comm_width, "comm"); 2815 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n"); 2816 } else if (sched->show_state) { 2817 printf("\nWait-time summary\n"); 2818 printf("%*s parent sched-in ", comm_width, "comm"); 2819 printf(" run-time sleep iowait preempt delay\n"); 2820 } else { 2821 printf("\nRuntime summary\n"); 2822 printf("%*s parent sched-in ", comm_width, "comm"); 2823 printf(" run-time min-run avg-run max-run stddev migrations\n"); 2824 } 2825 printf("%*s (count) ", comm_width, ""); 2826 printf(" (msec) (msec) (msec) (msec) %s\n", 2827 sched->show_state ? "(msec)" : "%"); 2828 printf("%.117s\n", graph_dotted_line); 2829 2830 machine__for_each_thread(m, show_thread_runtime, &totals); 2831 task_count = totals.task_count; 2832 if (!task_count) 2833 printf("<no still running tasks>\n"); 2834 2835 printf("\nTerminated tasks:\n"); 2836 machine__for_each_thread(m, show_deadthread_runtime, &totals); 2837 if (task_count == totals.task_count) 2838 printf("<no terminated tasks>\n"); 2839 2840 /* CPU idle stats not tracked when samples were skipped */ 2841 if (sched->skipped_samples && !sched->idle_hist) 2842 return; 2843 2844 printf("\nIdle stats:\n"); 2845 for (i = 0; i < idle_max_cpu; ++i) { 2846 t = idle_threads[i]; 2847 if (!t) 2848 continue; 2849 2850 r = thread__priv(t); 2851 if (r && r->run_stats.n) { 2852 totals.sched_count += r->run_stats.n; 2853 printf(" CPU %2d idle for ", i); 2854 print_sched_time(r->total_run_time, 6); 2855 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time); 2856 } else 2857 printf(" CPU %2d idle entire time window\n", i); 2858 } 2859 2860 if (sched->idle_hist && sched->show_callchain) { 2861 callchain_param.mode = CHAIN_FOLDED; 2862 callchain_param.value = CCVAL_PERIOD; 2863 2864 callchain_register_param(&callchain_param); 2865 2866 printf("\nIdle stats by callchain:\n"); 2867 for (i = 0; i < idle_max_cpu; ++i) { 2868 struct idle_thread_runtime *itr; 2869 2870 t = idle_threads[i]; 2871 if (!t) 2872 continue; 2873 2874 itr = thread__priv(t); 2875 if (itr == NULL) 2876 continue; 2877 2878 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain, 2879 0, &callchain_param); 2880 2881 printf(" CPU %2d:", i); 2882 print_sched_time(itr->tr.total_run_time, 6); 2883 printf(" msec\n"); 2884 timehist_print_idlehist_callchain(&itr->sorted_root); 2885 printf("\n"); 2886 } 2887 } 2888 2889 printf("\n" 2890 " Total number of unique tasks: %" PRIu64 "\n" 2891 "Total number of context switches: %" PRIu64 "\n", 2892 totals.task_count, totals.sched_count); 2893 2894 printf(" Total run time (msec): "); 2895 print_sched_time(totals.total_run_time, 2); 2896 printf("\n"); 2897 2898 printf(" Total scheduling time (msec): "); 2899 print_sched_time(hist_time, 2); 2900 printf(" (x %d)\n", sched->max_cpu); 2901 } 2902 2903 typedef int (*sched_handler)(struct perf_tool *tool, 2904 union perf_event *event, 2905 struct evsel *evsel, 2906 struct perf_sample *sample, 2907 struct machine *machine); 2908 2909 static int perf_timehist__process_sample(struct perf_tool *tool, 2910 union perf_event *event, 2911 struct perf_sample *sample, 2912 struct evsel *evsel, 2913 struct machine *machine) 2914 { 2915 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2916 int err = 0; 2917 int this_cpu = sample->cpu; 2918 2919 if (this_cpu > sched->max_cpu) 2920 sched->max_cpu = this_cpu; 2921 2922 if (evsel->handler != NULL) { 2923 sched_handler f = evsel->handler; 2924 2925 err = f(tool, event, evsel, sample, machine); 2926 } 2927 2928 return err; 2929 } 2930 2931 static int timehist_check_attr(struct perf_sched *sched, 2932 struct evlist *evlist) 2933 { 2934 struct evsel *evsel; 2935 struct evsel_runtime *er; 2936 2937 list_for_each_entry(evsel, &evlist->core.entries, core.node) { 2938 er = perf_evsel__get_runtime(evsel); 2939 if (er == NULL) { 2940 pr_err("Failed to allocate memory for evsel runtime data\n"); 2941 return -1; 2942 } 2943 2944 if (sched->show_callchain && !evsel__has_callchain(evsel)) { 2945 pr_info("Samples do not have callchains.\n"); 2946 sched->show_callchain = 0; 2947 symbol_conf.use_callchain = 0; 2948 } 2949 } 2950 2951 return 0; 2952 } 2953 2954 static int perf_sched__timehist(struct perf_sched *sched) 2955 { 2956 const struct evsel_str_handler handlers[] = { 2957 { "sched:sched_switch", timehist_sched_switch_event, }, 2958 { "sched:sched_wakeup", timehist_sched_wakeup_event, }, 2959 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, }, 2960 }; 2961 const struct evsel_str_handler migrate_handlers[] = { 2962 { "sched:sched_migrate_task", timehist_migrate_task_event, }, 2963 }; 2964 struct perf_data data = { 2965 .path = input_name, 2966 .mode = PERF_DATA_MODE_READ, 2967 .force = sched->force, 2968 }; 2969 2970 struct perf_session *session; 2971 struct evlist *evlist; 2972 int err = -1; 2973 2974 /* 2975 * event handlers for timehist option 2976 */ 2977 sched->tool.sample = perf_timehist__process_sample; 2978 sched->tool.mmap = perf_event__process_mmap; 2979 sched->tool.comm = perf_event__process_comm; 2980 sched->tool.exit = perf_event__process_exit; 2981 sched->tool.fork = perf_event__process_fork; 2982 sched->tool.lost = process_lost; 2983 sched->tool.attr = perf_event__process_attr; 2984 sched->tool.tracing_data = perf_event__process_tracing_data; 2985 sched->tool.build_id = perf_event__process_build_id; 2986 2987 sched->tool.ordered_events = true; 2988 sched->tool.ordering_requires_timestamps = true; 2989 2990 symbol_conf.use_callchain = sched->show_callchain; 2991 2992 session = perf_session__new(&data, false, &sched->tool); 2993 if (IS_ERR(session)) 2994 return PTR_ERR(session); 2995 2996 evlist = session->evlist; 2997 2998 symbol__init(&session->header.env); 2999 3000 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) { 3001 pr_err("Invalid time string\n"); 3002 return -EINVAL; 3003 } 3004 3005 if (timehist_check_attr(sched, evlist) != 0) 3006 goto out; 3007 3008 setup_pager(); 3009 3010 /* setup per-evsel handlers */ 3011 if (perf_session__set_tracepoints_handlers(session, handlers)) 3012 goto out; 3013 3014 /* sched_switch event at a minimum needs to exist */ 3015 if (!perf_evlist__find_tracepoint_by_name(session->evlist, 3016 "sched:sched_switch")) { 3017 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n"); 3018 goto out; 3019 } 3020 3021 if (sched->show_migrations && 3022 perf_session__set_tracepoints_handlers(session, migrate_handlers)) 3023 goto out; 3024 3025 /* pre-allocate struct for per-CPU idle stats */ 3026 sched->max_cpu = session->header.env.nr_cpus_online; 3027 if (sched->max_cpu == 0) 3028 sched->max_cpu = 4; 3029 if (init_idle_threads(sched->max_cpu)) 3030 goto out; 3031 3032 /* summary_only implies summary option, but don't overwrite summary if set */ 3033 if (sched->summary_only) 3034 sched->summary = sched->summary_only; 3035 3036 if (!sched->summary_only) 3037 timehist_header(sched); 3038 3039 err = perf_session__process_events(session); 3040 if (err) { 3041 pr_err("Failed to process events, error %d", err); 3042 goto out; 3043 } 3044 3045 sched->nr_events = evlist->stats.nr_events[0]; 3046 sched->nr_lost_events = evlist->stats.total_lost; 3047 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST]; 3048 3049 if (sched->summary) 3050 timehist_print_summary(sched, session); 3051 3052 out: 3053 free_idle_threads(); 3054 perf_session__delete(session); 3055 3056 return err; 3057 } 3058 3059 3060 static void print_bad_events(struct perf_sched *sched) 3061 { 3062 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 3063 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 3064 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 3065 sched->nr_unordered_timestamps, sched->nr_timestamps); 3066 } 3067 if (sched->nr_lost_events && sched->nr_events) { 3068 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 3069 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 3070 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 3071 } 3072 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 3073 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 3074 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 3075 sched->nr_context_switch_bugs, sched->nr_timestamps); 3076 if (sched->nr_lost_events) 3077 printf(" (due to lost events?)"); 3078 printf("\n"); 3079 } 3080 } 3081 3082 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data) 3083 { 3084 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 3085 struct work_atoms *this; 3086 const char *comm = thread__comm_str(data->thread), *this_comm; 3087 bool leftmost = true; 3088 3089 while (*new) { 3090 int cmp; 3091 3092 this = container_of(*new, struct work_atoms, node); 3093 parent = *new; 3094 3095 this_comm = thread__comm_str(this->thread); 3096 cmp = strcmp(comm, this_comm); 3097 if (cmp > 0) { 3098 new = &((*new)->rb_left); 3099 } else if (cmp < 0) { 3100 new = &((*new)->rb_right); 3101 leftmost = false; 3102 } else { 3103 this->num_merged++; 3104 this->total_runtime += data->total_runtime; 3105 this->nb_atoms += data->nb_atoms; 3106 this->total_lat += data->total_lat; 3107 list_splice(&data->work_list, &this->work_list); 3108 if (this->max_lat < data->max_lat) { 3109 this->max_lat = data->max_lat; 3110 this->max_lat_at = data->max_lat_at; 3111 } 3112 zfree(&data); 3113 return; 3114 } 3115 } 3116 3117 data->num_merged++; 3118 rb_link_node(&data->node, parent, new); 3119 rb_insert_color_cached(&data->node, root, leftmost); 3120 } 3121 3122 static void perf_sched__merge_lat(struct perf_sched *sched) 3123 { 3124 struct work_atoms *data; 3125 struct rb_node *node; 3126 3127 if (sched->skip_merge) 3128 return; 3129 3130 while ((node = rb_first_cached(&sched->atom_root))) { 3131 rb_erase_cached(node, &sched->atom_root); 3132 data = rb_entry(node, struct work_atoms, node); 3133 __merge_work_atoms(&sched->merged_atom_root, data); 3134 } 3135 } 3136 3137 static int perf_sched__lat(struct perf_sched *sched) 3138 { 3139 struct rb_node *next; 3140 3141 setup_pager(); 3142 3143 if (perf_sched__read_events(sched)) 3144 return -1; 3145 3146 perf_sched__merge_lat(sched); 3147 perf_sched__sort_lat(sched); 3148 3149 printf("\n -----------------------------------------------------------------------------------------------------------------\n"); 3150 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n"); 3151 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3152 3153 next = rb_first_cached(&sched->sorted_atom_root); 3154 3155 while (next) { 3156 struct work_atoms *work_list; 3157 3158 work_list = rb_entry(next, struct work_atoms, node); 3159 output_lat_thread(sched, work_list); 3160 next = rb_next(next); 3161 thread__zput(work_list->thread); 3162 } 3163 3164 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3165 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 3166 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count); 3167 3168 printf(" ---------------------------------------------------\n"); 3169 3170 print_bad_events(sched); 3171 printf("\n"); 3172 3173 return 0; 3174 } 3175 3176 static int setup_map_cpus(struct perf_sched *sched) 3177 { 3178 struct perf_cpu_map *map; 3179 3180 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF); 3181 3182 if (sched->map.comp) { 3183 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int)); 3184 if (!sched->map.comp_cpus) 3185 return -1; 3186 } 3187 3188 if (!sched->map.cpus_str) 3189 return 0; 3190 3191 map = perf_cpu_map__new(sched->map.cpus_str); 3192 if (!map) { 3193 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str); 3194 return -1; 3195 } 3196 3197 sched->map.cpus = map; 3198 return 0; 3199 } 3200 3201 static int setup_color_pids(struct perf_sched *sched) 3202 { 3203 struct perf_thread_map *map; 3204 3205 if (!sched->map.color_pids_str) 3206 return 0; 3207 3208 map = thread_map__new_by_tid_str(sched->map.color_pids_str); 3209 if (!map) { 3210 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str); 3211 return -1; 3212 } 3213 3214 sched->map.color_pids = map; 3215 return 0; 3216 } 3217 3218 static int setup_color_cpus(struct perf_sched *sched) 3219 { 3220 struct perf_cpu_map *map; 3221 3222 if (!sched->map.color_cpus_str) 3223 return 0; 3224 3225 map = perf_cpu_map__new(sched->map.color_cpus_str); 3226 if (!map) { 3227 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str); 3228 return -1; 3229 } 3230 3231 sched->map.color_cpus = map; 3232 return 0; 3233 } 3234 3235 static int perf_sched__map(struct perf_sched *sched) 3236 { 3237 if (setup_map_cpus(sched)) 3238 return -1; 3239 3240 if (setup_color_pids(sched)) 3241 return -1; 3242 3243 if (setup_color_cpus(sched)) 3244 return -1; 3245 3246 setup_pager(); 3247 if (perf_sched__read_events(sched)) 3248 return -1; 3249 print_bad_events(sched); 3250 return 0; 3251 } 3252 3253 static int perf_sched__replay(struct perf_sched *sched) 3254 { 3255 unsigned long i; 3256 3257 calibrate_run_measurement_overhead(sched); 3258 calibrate_sleep_measurement_overhead(sched); 3259 3260 test_calibrations(sched); 3261 3262 if (perf_sched__read_events(sched)) 3263 return -1; 3264 3265 printf("nr_run_events: %ld\n", sched->nr_run_events); 3266 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 3267 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 3268 3269 if (sched->targetless_wakeups) 3270 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 3271 if (sched->multitarget_wakeups) 3272 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 3273 if (sched->nr_run_events_optimized) 3274 printf("run atoms optimized: %ld\n", 3275 sched->nr_run_events_optimized); 3276 3277 print_task_traces(sched); 3278 add_cross_task_wakeups(sched); 3279 3280 create_tasks(sched); 3281 printf("------------------------------------------------------------\n"); 3282 for (i = 0; i < sched->replay_repeat; i++) 3283 run_one_test(sched); 3284 3285 return 0; 3286 } 3287 3288 static void setup_sorting(struct perf_sched *sched, const struct option *options, 3289 const char * const usage_msg[]) 3290 { 3291 char *tmp, *tok, *str = strdup(sched->sort_order); 3292 3293 for (tok = strtok_r(str, ", ", &tmp); 3294 tok; tok = strtok_r(NULL, ", ", &tmp)) { 3295 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 3296 usage_with_options_msg(usage_msg, options, 3297 "Unknown --sort key: `%s'", tok); 3298 } 3299 } 3300 3301 free(str); 3302 3303 sort_dimension__add("pid", &sched->cmp_pid); 3304 } 3305 3306 static int __cmd_record(int argc, const char **argv) 3307 { 3308 unsigned int rec_argc, i, j; 3309 const char **rec_argv; 3310 const char * const record_args[] = { 3311 "record", 3312 "-a", 3313 "-R", 3314 "-m", "1024", 3315 "-c", "1", 3316 "-e", "sched:sched_switch", 3317 "-e", "sched:sched_stat_wait", 3318 "-e", "sched:sched_stat_sleep", 3319 "-e", "sched:sched_stat_iowait", 3320 "-e", "sched:sched_stat_runtime", 3321 "-e", "sched:sched_process_fork", 3322 "-e", "sched:sched_wakeup", 3323 "-e", "sched:sched_wakeup_new", 3324 "-e", "sched:sched_migrate_task", 3325 }; 3326 3327 rec_argc = ARRAY_SIZE(record_args) + argc - 1; 3328 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 3329 3330 if (rec_argv == NULL) 3331 return -ENOMEM; 3332 3333 for (i = 0; i < ARRAY_SIZE(record_args); i++) 3334 rec_argv[i] = strdup(record_args[i]); 3335 3336 for (j = 1; j < (unsigned int)argc; j++, i++) 3337 rec_argv[i] = argv[j]; 3338 3339 BUG_ON(i != rec_argc); 3340 3341 return cmd_record(i, rec_argv); 3342 } 3343 3344 int cmd_sched(int argc, const char **argv) 3345 { 3346 static const char default_sort_order[] = "avg, max, switch, runtime"; 3347 struct perf_sched sched = { 3348 .tool = { 3349 .sample = perf_sched__process_tracepoint_sample, 3350 .comm = perf_sched__process_comm, 3351 .namespaces = perf_event__process_namespaces, 3352 .lost = perf_event__process_lost, 3353 .fork = perf_sched__process_fork_event, 3354 .ordered_events = true, 3355 }, 3356 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 3357 .sort_list = LIST_HEAD_INIT(sched.sort_list), 3358 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER, 3359 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER, 3360 .sort_order = default_sort_order, 3361 .replay_repeat = 10, 3362 .profile_cpu = -1, 3363 .next_shortname1 = 'A', 3364 .next_shortname2 = '0', 3365 .skip_merge = 0, 3366 .show_callchain = 1, 3367 .max_stack = 5, 3368 }; 3369 const struct option sched_options[] = { 3370 OPT_STRING('i', "input", &input_name, "file", 3371 "input file name"), 3372 OPT_INCR('v', "verbose", &verbose, 3373 "be more verbose (show symbol address, etc)"), 3374 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 3375 "dump raw trace in ASCII"), 3376 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), 3377 OPT_END() 3378 }; 3379 const struct option latency_options[] = { 3380 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 3381 "sort by key(s): runtime, switch, avg, max"), 3382 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 3383 "CPU to profile on"), 3384 OPT_BOOLEAN('p', "pids", &sched.skip_merge, 3385 "latency stats per pid instead of per comm"), 3386 OPT_PARENT(sched_options) 3387 }; 3388 const struct option replay_options[] = { 3389 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 3390 "repeat the workload replay N times (-1: infinite)"), 3391 OPT_PARENT(sched_options) 3392 }; 3393 const struct option map_options[] = { 3394 OPT_BOOLEAN(0, "compact", &sched.map.comp, 3395 "map output in compact mode"), 3396 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids", 3397 "highlight given pids in map"), 3398 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus", 3399 "highlight given CPUs in map"), 3400 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus", 3401 "display given CPUs in map"), 3402 OPT_PARENT(sched_options) 3403 }; 3404 const struct option timehist_options[] = { 3405 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name, 3406 "file", "vmlinux pathname"), 3407 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name, 3408 "file", "kallsyms pathname"), 3409 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain, 3410 "Display call chains if present (default on)"), 3411 OPT_UINTEGER(0, "max-stack", &sched.max_stack, 3412 "Maximum number of functions to display backtrace."), 3413 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", 3414 "Look for files with symbols relative to this directory"), 3415 OPT_BOOLEAN('s', "summary", &sched.summary_only, 3416 "Show only syscall summary with statistics"), 3417 OPT_BOOLEAN('S', "with-summary", &sched.summary, 3418 "Show all syscalls and summary with statistics"), 3419 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"), 3420 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"), 3421 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"), 3422 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"), 3423 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"), 3424 OPT_STRING(0, "time", &sched.time_str, "str", 3425 "Time span for analysis (start,stop)"), 3426 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"), 3427 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]", 3428 "analyze events only for given process id(s)"), 3429 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]", 3430 "analyze events only for given thread id(s)"), 3431 OPT_PARENT(sched_options) 3432 }; 3433 3434 const char * const latency_usage[] = { 3435 "perf sched latency [<options>]", 3436 NULL 3437 }; 3438 const char * const replay_usage[] = { 3439 "perf sched replay [<options>]", 3440 NULL 3441 }; 3442 const char * const map_usage[] = { 3443 "perf sched map [<options>]", 3444 NULL 3445 }; 3446 const char * const timehist_usage[] = { 3447 "perf sched timehist [<options>]", 3448 NULL 3449 }; 3450 const char *const sched_subcommands[] = { "record", "latency", "map", 3451 "replay", "script", 3452 "timehist", NULL }; 3453 const char *sched_usage[] = { 3454 NULL, 3455 NULL 3456 }; 3457 struct trace_sched_handler lat_ops = { 3458 .wakeup_event = latency_wakeup_event, 3459 .switch_event = latency_switch_event, 3460 .runtime_event = latency_runtime_event, 3461 .migrate_task_event = latency_migrate_task_event, 3462 }; 3463 struct trace_sched_handler map_ops = { 3464 .switch_event = map_switch_event, 3465 }; 3466 struct trace_sched_handler replay_ops = { 3467 .wakeup_event = replay_wakeup_event, 3468 .switch_event = replay_switch_event, 3469 .fork_event = replay_fork_event, 3470 }; 3471 unsigned int i; 3472 3473 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++) 3474 sched.curr_pid[i] = -1; 3475 3476 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 3477 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 3478 if (!argc) 3479 usage_with_options(sched_usage, sched_options); 3480 3481 /* 3482 * Aliased to 'perf script' for now: 3483 */ 3484 if (!strcmp(argv[0], "script")) 3485 return cmd_script(argc, argv); 3486 3487 if (!strncmp(argv[0], "rec", 3)) { 3488 return __cmd_record(argc, argv); 3489 } else if (!strncmp(argv[0], "lat", 3)) { 3490 sched.tp_handler = &lat_ops; 3491 if (argc > 1) { 3492 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 3493 if (argc) 3494 usage_with_options(latency_usage, latency_options); 3495 } 3496 setup_sorting(&sched, latency_options, latency_usage); 3497 return perf_sched__lat(&sched); 3498 } else if (!strcmp(argv[0], "map")) { 3499 if (argc) { 3500 argc = parse_options(argc, argv, map_options, map_usage, 0); 3501 if (argc) 3502 usage_with_options(map_usage, map_options); 3503 } 3504 sched.tp_handler = &map_ops; 3505 setup_sorting(&sched, latency_options, latency_usage); 3506 return perf_sched__map(&sched); 3507 } else if (!strncmp(argv[0], "rep", 3)) { 3508 sched.tp_handler = &replay_ops; 3509 if (argc) { 3510 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 3511 if (argc) 3512 usage_with_options(replay_usage, replay_options); 3513 } 3514 return perf_sched__replay(&sched); 3515 } else if (!strcmp(argv[0], "timehist")) { 3516 if (argc) { 3517 argc = parse_options(argc, argv, timehist_options, 3518 timehist_usage, 0); 3519 if (argc) 3520 usage_with_options(timehist_usage, timehist_options); 3521 } 3522 if ((sched.show_wakeups || sched.show_next) && 3523 sched.summary_only) { 3524 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n"); 3525 parse_options_usage(timehist_usage, timehist_options, "s", true); 3526 if (sched.show_wakeups) 3527 parse_options_usage(NULL, timehist_options, "w", true); 3528 if (sched.show_next) 3529 parse_options_usage(NULL, timehist_options, "n", true); 3530 return -EINVAL; 3531 } 3532 3533 return perf_sched__timehist(&sched); 3534 } else { 3535 usage_with_options(sched_usage, sched_options); 3536 } 3537 3538 return 0; 3539 } 3540