1 // SPDX-License-Identifier: GPL-2.0 2 #include "builtin.h" 3 #include "perf-sys.h" 4 5 #include "util/cpumap.h" 6 #include "util/evlist.h" 7 #include "util/evsel.h" 8 #include "util/evsel_fprintf.h" 9 #include "util/mutex.h" 10 #include "util/symbol.h" 11 #include "util/thread.h" 12 #include "util/header.h" 13 #include "util/session.h" 14 #include "util/tool.h" 15 #include "util/cloexec.h" 16 #include "util/thread_map.h" 17 #include "util/color.h" 18 #include "util/stat.h" 19 #include "util/string2.h" 20 #include "util/callchain.h" 21 #include "util/time-utils.h" 22 23 #include <subcmd/pager.h> 24 #include <subcmd/parse-options.h> 25 #include "util/trace-event.h" 26 27 #include "util/debug.h" 28 #include "util/event.h" 29 #include "util/util.h" 30 31 #include <linux/kernel.h> 32 #include <linux/log2.h> 33 #include <linux/zalloc.h> 34 #include <sys/prctl.h> 35 #include <sys/resource.h> 36 #include <inttypes.h> 37 38 #include <errno.h> 39 #include <semaphore.h> 40 #include <pthread.h> 41 #include <math.h> 42 #include <api/fs/fs.h> 43 #include <perf/cpumap.h> 44 #include <linux/time64.h> 45 #include <linux/err.h> 46 47 #include <linux/ctype.h> 48 49 #define PR_SET_NAME 15 /* Set process name */ 50 #define MAX_CPUS 4096 51 #define COMM_LEN 20 52 #define SYM_LEN 129 53 #define MAX_PID 1024000 54 #define MAX_PRIO 140 55 56 static const char *cpu_list; 57 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS); 58 59 struct sched_atom; 60 61 struct task_desc { 62 unsigned long nr; 63 unsigned long pid; 64 char comm[COMM_LEN]; 65 66 unsigned long nr_events; 67 unsigned long curr_event; 68 struct sched_atom **atoms; 69 70 pthread_t thread; 71 sem_t sleep_sem; 72 73 sem_t ready_for_work; 74 sem_t work_done_sem; 75 76 u64 cpu_usage; 77 }; 78 79 enum sched_event_type { 80 SCHED_EVENT_RUN, 81 SCHED_EVENT_SLEEP, 82 SCHED_EVENT_WAKEUP, 83 SCHED_EVENT_MIGRATION, 84 }; 85 86 struct sched_atom { 87 enum sched_event_type type; 88 int specific_wait; 89 u64 timestamp; 90 u64 duration; 91 unsigned long nr; 92 sem_t *wait_sem; 93 struct task_desc *wakee; 94 }; 95 96 enum thread_state { 97 THREAD_SLEEPING = 0, 98 THREAD_WAIT_CPU, 99 THREAD_SCHED_IN, 100 THREAD_IGNORE 101 }; 102 103 struct work_atom { 104 struct list_head list; 105 enum thread_state state; 106 u64 sched_out_time; 107 u64 wake_up_time; 108 u64 sched_in_time; 109 u64 runtime; 110 }; 111 112 struct work_atoms { 113 struct list_head work_list; 114 struct thread *thread; 115 struct rb_node node; 116 u64 max_lat; 117 u64 max_lat_start; 118 u64 max_lat_end; 119 u64 total_lat; 120 u64 nb_atoms; 121 u64 total_runtime; 122 int num_merged; 123 }; 124 125 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 126 127 struct perf_sched; 128 129 struct trace_sched_handler { 130 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel, 131 struct perf_sample *sample, struct machine *machine); 132 133 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel, 134 struct perf_sample *sample, struct machine *machine); 135 136 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel, 137 struct perf_sample *sample, struct machine *machine); 138 139 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 140 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 141 struct machine *machine); 142 143 int (*migrate_task_event)(struct perf_sched *sched, 144 struct evsel *evsel, 145 struct perf_sample *sample, 146 struct machine *machine); 147 }; 148 149 #define COLOR_PIDS PERF_COLOR_BLUE 150 #define COLOR_CPUS PERF_COLOR_BG_RED 151 152 struct perf_sched_map { 153 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); 154 struct perf_cpu *comp_cpus; 155 bool comp; 156 struct perf_thread_map *color_pids; 157 const char *color_pids_str; 158 struct perf_cpu_map *color_cpus; 159 const char *color_cpus_str; 160 const char *task_name; 161 struct strlist *task_names; 162 bool fuzzy; 163 struct perf_cpu_map *cpus; 164 const char *cpus_str; 165 }; 166 167 struct perf_sched { 168 struct perf_tool tool; 169 const char *sort_order; 170 unsigned long nr_tasks; 171 struct task_desc **pid_to_task; 172 struct task_desc **tasks; 173 const struct trace_sched_handler *tp_handler; 174 struct mutex start_work_mutex; 175 struct mutex work_done_wait_mutex; 176 int profile_cpu; 177 /* 178 * Track the current task - that way we can know whether there's any 179 * weird events, such as a task being switched away that is not current. 180 */ 181 struct perf_cpu max_cpu; 182 u32 *curr_pid; 183 struct thread **curr_thread; 184 struct thread **curr_out_thread; 185 char next_shortname1; 186 char next_shortname2; 187 unsigned int replay_repeat; 188 unsigned long nr_run_events; 189 unsigned long nr_sleep_events; 190 unsigned long nr_wakeup_events; 191 unsigned long nr_sleep_corrections; 192 unsigned long nr_run_events_optimized; 193 unsigned long targetless_wakeups; 194 unsigned long multitarget_wakeups; 195 unsigned long nr_runs; 196 unsigned long nr_timestamps; 197 unsigned long nr_unordered_timestamps; 198 unsigned long nr_context_switch_bugs; 199 unsigned long nr_events; 200 unsigned long nr_lost_chunks; 201 unsigned long nr_lost_events; 202 u64 run_measurement_overhead; 203 u64 sleep_measurement_overhead; 204 u64 start_time; 205 u64 cpu_usage; 206 u64 runavg_cpu_usage; 207 u64 parent_cpu_usage; 208 u64 runavg_parent_cpu_usage; 209 u64 sum_runtime; 210 u64 sum_fluct; 211 u64 run_avg; 212 u64 all_runtime; 213 u64 all_count; 214 u64 *cpu_last_switched; 215 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root; 216 struct list_head sort_list, cmp_pid; 217 bool force; 218 bool skip_merge; 219 struct perf_sched_map map; 220 221 /* options for timehist command */ 222 bool summary; 223 bool summary_only; 224 bool idle_hist; 225 bool show_callchain; 226 unsigned int max_stack; 227 bool show_cpu_visual; 228 bool show_wakeups; 229 bool show_next; 230 bool show_migrations; 231 bool show_state; 232 bool show_prio; 233 u64 skipped_samples; 234 const char *time_str; 235 struct perf_time_interval ptime; 236 struct perf_time_interval hist_time; 237 volatile bool thread_funcs_exit; 238 const char *prio_str; 239 DECLARE_BITMAP(prio_bitmap, MAX_PRIO); 240 }; 241 242 /* per thread run time data */ 243 struct thread_runtime { 244 u64 last_time; /* time of previous sched in/out event */ 245 u64 dt_run; /* run time */ 246 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */ 247 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */ 248 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */ 249 u64 dt_delay; /* time between wakeup and sched-in */ 250 u64 ready_to_run; /* time of wakeup */ 251 252 struct stats run_stats; 253 u64 total_run_time; 254 u64 total_sleep_time; 255 u64 total_iowait_time; 256 u64 total_preempt_time; 257 u64 total_delay_time; 258 259 char last_state; 260 261 char shortname[3]; 262 bool comm_changed; 263 264 u64 migrations; 265 266 int prio; 267 }; 268 269 /* per event run time data */ 270 struct evsel_runtime { 271 u64 *last_time; /* time this event was last seen per cpu */ 272 u32 ncpu; /* highest cpu slot allocated */ 273 }; 274 275 /* per cpu idle time data */ 276 struct idle_thread_runtime { 277 struct thread_runtime tr; 278 struct thread *last_thread; 279 struct rb_root_cached sorted_root; 280 struct callchain_root callchain; 281 struct callchain_cursor cursor; 282 }; 283 284 /* track idle times per cpu */ 285 static struct thread **idle_threads; 286 static int idle_max_cpu; 287 static char idle_comm[] = "<idle>"; 288 289 static u64 get_nsecs(void) 290 { 291 struct timespec ts; 292 293 clock_gettime(CLOCK_MONOTONIC, &ts); 294 295 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; 296 } 297 298 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 299 { 300 u64 T0 = get_nsecs(), T1; 301 302 do { 303 T1 = get_nsecs(); 304 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 305 } 306 307 static void sleep_nsecs(u64 nsecs) 308 { 309 struct timespec ts; 310 311 ts.tv_nsec = nsecs % 999999999; 312 ts.tv_sec = nsecs / 999999999; 313 314 nanosleep(&ts, NULL); 315 } 316 317 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 318 { 319 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 320 int i; 321 322 for (i = 0; i < 10; i++) { 323 T0 = get_nsecs(); 324 burn_nsecs(sched, 0); 325 T1 = get_nsecs(); 326 delta = T1-T0; 327 min_delta = min(min_delta, delta); 328 } 329 sched->run_measurement_overhead = min_delta; 330 331 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 332 } 333 334 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 335 { 336 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 337 int i; 338 339 for (i = 0; i < 10; i++) { 340 T0 = get_nsecs(); 341 sleep_nsecs(10000); 342 T1 = get_nsecs(); 343 delta = T1-T0; 344 min_delta = min(min_delta, delta); 345 } 346 min_delta -= 10000; 347 sched->sleep_measurement_overhead = min_delta; 348 349 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 350 } 351 352 static struct sched_atom * 353 get_new_event(struct task_desc *task, u64 timestamp) 354 { 355 struct sched_atom *event = zalloc(sizeof(*event)); 356 unsigned long idx = task->nr_events; 357 size_t size; 358 359 event->timestamp = timestamp; 360 event->nr = idx; 361 362 task->nr_events++; 363 size = sizeof(struct sched_atom *) * task->nr_events; 364 task->atoms = realloc(task->atoms, size); 365 BUG_ON(!task->atoms); 366 367 task->atoms[idx] = event; 368 369 return event; 370 } 371 372 static struct sched_atom *last_event(struct task_desc *task) 373 { 374 if (!task->nr_events) 375 return NULL; 376 377 return task->atoms[task->nr_events - 1]; 378 } 379 380 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 381 u64 timestamp, u64 duration) 382 { 383 struct sched_atom *event, *curr_event = last_event(task); 384 385 /* 386 * optimize an existing RUN event by merging this one 387 * to it: 388 */ 389 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 390 sched->nr_run_events_optimized++; 391 curr_event->duration += duration; 392 return; 393 } 394 395 event = get_new_event(task, timestamp); 396 397 event->type = SCHED_EVENT_RUN; 398 event->duration = duration; 399 400 sched->nr_run_events++; 401 } 402 403 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 404 u64 timestamp, struct task_desc *wakee) 405 { 406 struct sched_atom *event, *wakee_event; 407 408 event = get_new_event(task, timestamp); 409 event->type = SCHED_EVENT_WAKEUP; 410 event->wakee = wakee; 411 412 wakee_event = last_event(wakee); 413 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 414 sched->targetless_wakeups++; 415 return; 416 } 417 if (wakee_event->wait_sem) { 418 sched->multitarget_wakeups++; 419 return; 420 } 421 422 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 423 sem_init(wakee_event->wait_sem, 0, 0); 424 wakee_event->specific_wait = 1; 425 event->wait_sem = wakee_event->wait_sem; 426 427 sched->nr_wakeup_events++; 428 } 429 430 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 431 u64 timestamp, const char task_state __maybe_unused) 432 { 433 struct sched_atom *event = get_new_event(task, timestamp); 434 435 event->type = SCHED_EVENT_SLEEP; 436 437 sched->nr_sleep_events++; 438 } 439 440 static struct task_desc *register_pid(struct perf_sched *sched, 441 unsigned long pid, const char *comm) 442 { 443 struct task_desc *task; 444 static int pid_max; 445 446 if (sched->pid_to_task == NULL) { 447 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) 448 pid_max = MAX_PID; 449 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); 450 } 451 if (pid >= (unsigned long)pid_max) { 452 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * 453 sizeof(struct task_desc *))) == NULL); 454 while (pid >= (unsigned long)pid_max) 455 sched->pid_to_task[pid_max++] = NULL; 456 } 457 458 task = sched->pid_to_task[pid]; 459 460 if (task) 461 return task; 462 463 task = zalloc(sizeof(*task)); 464 task->pid = pid; 465 task->nr = sched->nr_tasks; 466 strcpy(task->comm, comm); 467 /* 468 * every task starts in sleeping state - this gets ignored 469 * if there's no wakeup pointing to this sleep state: 470 */ 471 add_sched_event_sleep(sched, task, 0, 0); 472 473 sched->pid_to_task[pid] = task; 474 sched->nr_tasks++; 475 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); 476 BUG_ON(!sched->tasks); 477 sched->tasks[task->nr] = task; 478 479 if (verbose > 0) 480 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 481 482 return task; 483 } 484 485 486 static void print_task_traces(struct perf_sched *sched) 487 { 488 struct task_desc *task; 489 unsigned long i; 490 491 for (i = 0; i < sched->nr_tasks; i++) { 492 task = sched->tasks[i]; 493 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 494 task->nr, task->comm, task->pid, task->nr_events); 495 } 496 } 497 498 static void add_cross_task_wakeups(struct perf_sched *sched) 499 { 500 struct task_desc *task1, *task2; 501 unsigned long i, j; 502 503 for (i = 0; i < sched->nr_tasks; i++) { 504 task1 = sched->tasks[i]; 505 j = i + 1; 506 if (j == sched->nr_tasks) 507 j = 0; 508 task2 = sched->tasks[j]; 509 add_sched_event_wakeup(sched, task1, 0, task2); 510 } 511 } 512 513 static void perf_sched__process_event(struct perf_sched *sched, 514 struct sched_atom *atom) 515 { 516 int ret = 0; 517 518 switch (atom->type) { 519 case SCHED_EVENT_RUN: 520 burn_nsecs(sched, atom->duration); 521 break; 522 case SCHED_EVENT_SLEEP: 523 if (atom->wait_sem) 524 ret = sem_wait(atom->wait_sem); 525 BUG_ON(ret); 526 break; 527 case SCHED_EVENT_WAKEUP: 528 if (atom->wait_sem) 529 ret = sem_post(atom->wait_sem); 530 BUG_ON(ret); 531 break; 532 case SCHED_EVENT_MIGRATION: 533 break; 534 default: 535 BUG_ON(1); 536 } 537 } 538 539 static u64 get_cpu_usage_nsec_parent(void) 540 { 541 struct rusage ru; 542 u64 sum; 543 int err; 544 545 err = getrusage(RUSAGE_SELF, &ru); 546 BUG_ON(err); 547 548 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC; 549 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC; 550 551 return sum; 552 } 553 554 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) 555 { 556 struct perf_event_attr attr; 557 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; 558 int fd; 559 struct rlimit limit; 560 bool need_privilege = false; 561 562 memset(&attr, 0, sizeof(attr)); 563 564 attr.type = PERF_TYPE_SOFTWARE; 565 attr.config = PERF_COUNT_SW_TASK_CLOCK; 566 567 force_again: 568 fd = sys_perf_event_open(&attr, 0, -1, -1, 569 perf_event_open_cloexec_flag()); 570 571 if (fd < 0) { 572 if (errno == EMFILE) { 573 if (sched->force) { 574 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); 575 limit.rlim_cur += sched->nr_tasks - cur_task; 576 if (limit.rlim_cur > limit.rlim_max) { 577 limit.rlim_max = limit.rlim_cur; 578 need_privilege = true; 579 } 580 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { 581 if (need_privilege && errno == EPERM) 582 strcpy(info, "Need privilege\n"); 583 } else 584 goto force_again; 585 } else 586 strcpy(info, "Have a try with -f option\n"); 587 } 588 pr_err("Error: sys_perf_event_open() syscall returned " 589 "with %d (%s)\n%s", fd, 590 str_error_r(errno, sbuf, sizeof(sbuf)), info); 591 exit(EXIT_FAILURE); 592 } 593 return fd; 594 } 595 596 static u64 get_cpu_usage_nsec_self(int fd) 597 { 598 u64 runtime; 599 int ret; 600 601 ret = read(fd, &runtime, sizeof(runtime)); 602 BUG_ON(ret != sizeof(runtime)); 603 604 return runtime; 605 } 606 607 struct sched_thread_parms { 608 struct task_desc *task; 609 struct perf_sched *sched; 610 int fd; 611 }; 612 613 static void *thread_func(void *ctx) 614 { 615 struct sched_thread_parms *parms = ctx; 616 struct task_desc *this_task = parms->task; 617 struct perf_sched *sched = parms->sched; 618 u64 cpu_usage_0, cpu_usage_1; 619 unsigned long i, ret; 620 char comm2[22]; 621 int fd = parms->fd; 622 623 zfree(&parms); 624 625 sprintf(comm2, ":%s", this_task->comm); 626 prctl(PR_SET_NAME, comm2); 627 if (fd < 0) 628 return NULL; 629 630 while (!sched->thread_funcs_exit) { 631 ret = sem_post(&this_task->ready_for_work); 632 BUG_ON(ret); 633 mutex_lock(&sched->start_work_mutex); 634 mutex_unlock(&sched->start_work_mutex); 635 636 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 637 638 for (i = 0; i < this_task->nr_events; i++) { 639 this_task->curr_event = i; 640 perf_sched__process_event(sched, this_task->atoms[i]); 641 } 642 643 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 644 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 645 ret = sem_post(&this_task->work_done_sem); 646 BUG_ON(ret); 647 648 mutex_lock(&sched->work_done_wait_mutex); 649 mutex_unlock(&sched->work_done_wait_mutex); 650 } 651 return NULL; 652 } 653 654 static void create_tasks(struct perf_sched *sched) 655 EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex) 656 EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex) 657 { 658 struct task_desc *task; 659 pthread_attr_t attr; 660 unsigned long i; 661 int err; 662 663 err = pthread_attr_init(&attr); 664 BUG_ON(err); 665 err = pthread_attr_setstacksize(&attr, 666 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN)); 667 BUG_ON(err); 668 mutex_lock(&sched->start_work_mutex); 669 mutex_lock(&sched->work_done_wait_mutex); 670 for (i = 0; i < sched->nr_tasks; i++) { 671 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 672 BUG_ON(parms == NULL); 673 parms->task = task = sched->tasks[i]; 674 parms->sched = sched; 675 parms->fd = self_open_counters(sched, i); 676 sem_init(&task->sleep_sem, 0, 0); 677 sem_init(&task->ready_for_work, 0, 0); 678 sem_init(&task->work_done_sem, 0, 0); 679 task->curr_event = 0; 680 err = pthread_create(&task->thread, &attr, thread_func, parms); 681 BUG_ON(err); 682 } 683 } 684 685 static void destroy_tasks(struct perf_sched *sched) 686 UNLOCK_FUNCTION(sched->start_work_mutex) 687 UNLOCK_FUNCTION(sched->work_done_wait_mutex) 688 { 689 struct task_desc *task; 690 unsigned long i; 691 int err; 692 693 mutex_unlock(&sched->start_work_mutex); 694 mutex_unlock(&sched->work_done_wait_mutex); 695 /* Get rid of threads so they won't be upset by mutex destrunction */ 696 for (i = 0; i < sched->nr_tasks; i++) { 697 task = sched->tasks[i]; 698 err = pthread_join(task->thread, NULL); 699 BUG_ON(err); 700 sem_destroy(&task->sleep_sem); 701 sem_destroy(&task->ready_for_work); 702 sem_destroy(&task->work_done_sem); 703 } 704 } 705 706 static void wait_for_tasks(struct perf_sched *sched) 707 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) 708 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) 709 { 710 u64 cpu_usage_0, cpu_usage_1; 711 struct task_desc *task; 712 unsigned long i, ret; 713 714 sched->start_time = get_nsecs(); 715 sched->cpu_usage = 0; 716 mutex_unlock(&sched->work_done_wait_mutex); 717 718 for (i = 0; i < sched->nr_tasks; i++) { 719 task = sched->tasks[i]; 720 ret = sem_wait(&task->ready_for_work); 721 BUG_ON(ret); 722 sem_init(&task->ready_for_work, 0, 0); 723 } 724 mutex_lock(&sched->work_done_wait_mutex); 725 726 cpu_usage_0 = get_cpu_usage_nsec_parent(); 727 728 mutex_unlock(&sched->start_work_mutex); 729 730 for (i = 0; i < sched->nr_tasks; i++) { 731 task = sched->tasks[i]; 732 ret = sem_wait(&task->work_done_sem); 733 BUG_ON(ret); 734 sem_init(&task->work_done_sem, 0, 0); 735 sched->cpu_usage += task->cpu_usage; 736 task->cpu_usage = 0; 737 } 738 739 cpu_usage_1 = get_cpu_usage_nsec_parent(); 740 if (!sched->runavg_cpu_usage) 741 sched->runavg_cpu_usage = sched->cpu_usage; 742 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; 743 744 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 745 if (!sched->runavg_parent_cpu_usage) 746 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 747 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + 748 sched->parent_cpu_usage)/sched->replay_repeat; 749 750 mutex_lock(&sched->start_work_mutex); 751 752 for (i = 0; i < sched->nr_tasks; i++) { 753 task = sched->tasks[i]; 754 sem_init(&task->sleep_sem, 0, 0); 755 task->curr_event = 0; 756 } 757 } 758 759 static void run_one_test(struct perf_sched *sched) 760 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) 761 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) 762 { 763 u64 T0, T1, delta, avg_delta, fluct; 764 765 T0 = get_nsecs(); 766 wait_for_tasks(sched); 767 T1 = get_nsecs(); 768 769 delta = T1 - T0; 770 sched->sum_runtime += delta; 771 sched->nr_runs++; 772 773 avg_delta = sched->sum_runtime / sched->nr_runs; 774 if (delta < avg_delta) 775 fluct = avg_delta - delta; 776 else 777 fluct = delta - avg_delta; 778 sched->sum_fluct += fluct; 779 if (!sched->run_avg) 780 sched->run_avg = delta; 781 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; 782 783 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC); 784 785 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC); 786 787 printf("cpu: %0.2f / %0.2f", 788 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC); 789 790 #if 0 791 /* 792 * rusage statistics done by the parent, these are less 793 * accurate than the sched->sum_exec_runtime based statistics: 794 */ 795 printf(" [%0.2f / %0.2f]", 796 (double)sched->parent_cpu_usage / NSEC_PER_MSEC, 797 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC); 798 #endif 799 800 printf("\n"); 801 802 if (sched->nr_sleep_corrections) 803 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 804 sched->nr_sleep_corrections = 0; 805 } 806 807 static void test_calibrations(struct perf_sched *sched) 808 { 809 u64 T0, T1; 810 811 T0 = get_nsecs(); 812 burn_nsecs(sched, NSEC_PER_MSEC); 813 T1 = get_nsecs(); 814 815 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 816 817 T0 = get_nsecs(); 818 sleep_nsecs(NSEC_PER_MSEC); 819 T1 = get_nsecs(); 820 821 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 822 } 823 824 static int 825 replay_wakeup_event(struct perf_sched *sched, 826 struct evsel *evsel, struct perf_sample *sample, 827 struct machine *machine __maybe_unused) 828 { 829 const char *comm = evsel__strval(evsel, sample, "comm"); 830 const u32 pid = evsel__intval(evsel, sample, "pid"); 831 struct task_desc *waker, *wakee; 832 833 if (verbose > 0) { 834 printf("sched_wakeup event %p\n", evsel); 835 836 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 837 } 838 839 waker = register_pid(sched, sample->tid, "<unknown>"); 840 wakee = register_pid(sched, pid, comm); 841 842 add_sched_event_wakeup(sched, waker, sample->time, wakee); 843 return 0; 844 } 845 846 static int replay_switch_event(struct perf_sched *sched, 847 struct evsel *evsel, 848 struct perf_sample *sample, 849 struct machine *machine __maybe_unused) 850 { 851 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"), 852 *next_comm = evsel__strval(evsel, sample, "next_comm"); 853 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 854 next_pid = evsel__intval(evsel, sample, "next_pid"); 855 const char prev_state = evsel__taskstate(evsel, sample, "prev_state"); 856 struct task_desc *prev, __maybe_unused *next; 857 u64 timestamp0, timestamp = sample->time; 858 int cpu = sample->cpu; 859 s64 delta; 860 861 if (verbose > 0) 862 printf("sched_switch event %p\n", evsel); 863 864 if (cpu >= MAX_CPUS || cpu < 0) 865 return 0; 866 867 timestamp0 = sched->cpu_last_switched[cpu]; 868 if (timestamp0) 869 delta = timestamp - timestamp0; 870 else 871 delta = 0; 872 873 if (delta < 0) { 874 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 875 return -1; 876 } 877 878 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 879 prev_comm, prev_pid, next_comm, next_pid, delta); 880 881 prev = register_pid(sched, prev_pid, prev_comm); 882 next = register_pid(sched, next_pid, next_comm); 883 884 sched->cpu_last_switched[cpu] = timestamp; 885 886 add_sched_event_run(sched, prev, timestamp, delta); 887 add_sched_event_sleep(sched, prev, timestamp, prev_state); 888 889 return 0; 890 } 891 892 static int replay_fork_event(struct perf_sched *sched, 893 union perf_event *event, 894 struct machine *machine) 895 { 896 struct thread *child, *parent; 897 898 child = machine__findnew_thread(machine, event->fork.pid, 899 event->fork.tid); 900 parent = machine__findnew_thread(machine, event->fork.ppid, 901 event->fork.ptid); 902 903 if (child == NULL || parent == NULL) { 904 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 905 child, parent); 906 goto out_put; 907 } 908 909 if (verbose > 0) { 910 printf("fork event\n"); 911 printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent)); 912 printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child)); 913 } 914 915 register_pid(sched, thread__tid(parent), thread__comm_str(parent)); 916 register_pid(sched, thread__tid(child), thread__comm_str(child)); 917 out_put: 918 thread__put(child); 919 thread__put(parent); 920 return 0; 921 } 922 923 struct sort_dimension { 924 const char *name; 925 sort_fn_t cmp; 926 struct list_head list; 927 }; 928 929 static inline void init_prio(struct thread_runtime *r) 930 { 931 r->prio = -1; 932 } 933 934 /* 935 * handle runtime stats saved per thread 936 */ 937 static struct thread_runtime *thread__init_runtime(struct thread *thread) 938 { 939 struct thread_runtime *r; 940 941 r = zalloc(sizeof(struct thread_runtime)); 942 if (!r) 943 return NULL; 944 945 init_stats(&r->run_stats); 946 init_prio(r); 947 thread__set_priv(thread, r); 948 949 return r; 950 } 951 952 static struct thread_runtime *thread__get_runtime(struct thread *thread) 953 { 954 struct thread_runtime *tr; 955 956 tr = thread__priv(thread); 957 if (tr == NULL) { 958 tr = thread__init_runtime(thread); 959 if (tr == NULL) 960 pr_debug("Failed to malloc memory for runtime data.\n"); 961 } 962 963 return tr; 964 } 965 966 static int 967 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 968 { 969 struct sort_dimension *sort; 970 int ret = 0; 971 972 BUG_ON(list_empty(list)); 973 974 list_for_each_entry(sort, list, list) { 975 ret = sort->cmp(l, r); 976 if (ret) 977 return ret; 978 } 979 980 return ret; 981 } 982 983 static struct work_atoms * 984 thread_atoms_search(struct rb_root_cached *root, struct thread *thread, 985 struct list_head *sort_list) 986 { 987 struct rb_node *node = root->rb_root.rb_node; 988 struct work_atoms key = { .thread = thread }; 989 990 while (node) { 991 struct work_atoms *atoms; 992 int cmp; 993 994 atoms = container_of(node, struct work_atoms, node); 995 996 cmp = thread_lat_cmp(sort_list, &key, atoms); 997 if (cmp > 0) 998 node = node->rb_left; 999 else if (cmp < 0) 1000 node = node->rb_right; 1001 else { 1002 BUG_ON(thread != atoms->thread); 1003 return atoms; 1004 } 1005 } 1006 return NULL; 1007 } 1008 1009 static void 1010 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data, 1011 struct list_head *sort_list) 1012 { 1013 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 1014 bool leftmost = true; 1015 1016 while (*new) { 1017 struct work_atoms *this; 1018 int cmp; 1019 1020 this = container_of(*new, struct work_atoms, node); 1021 parent = *new; 1022 1023 cmp = thread_lat_cmp(sort_list, data, this); 1024 1025 if (cmp > 0) 1026 new = &((*new)->rb_left); 1027 else { 1028 new = &((*new)->rb_right); 1029 leftmost = false; 1030 } 1031 } 1032 1033 rb_link_node(&data->node, parent, new); 1034 rb_insert_color_cached(&data->node, root, leftmost); 1035 } 1036 1037 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 1038 { 1039 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 1040 if (!atoms) { 1041 pr_err("No memory at %s\n", __func__); 1042 return -1; 1043 } 1044 1045 atoms->thread = thread__get(thread); 1046 INIT_LIST_HEAD(&atoms->work_list); 1047 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 1048 return 0; 1049 } 1050 1051 static int 1052 add_sched_out_event(struct work_atoms *atoms, 1053 char run_state, 1054 u64 timestamp) 1055 { 1056 struct work_atom *atom = zalloc(sizeof(*atom)); 1057 if (!atom) { 1058 pr_err("Non memory at %s", __func__); 1059 return -1; 1060 } 1061 1062 atom->sched_out_time = timestamp; 1063 1064 if (run_state == 'R') { 1065 atom->state = THREAD_WAIT_CPU; 1066 atom->wake_up_time = atom->sched_out_time; 1067 } 1068 1069 list_add_tail(&atom->list, &atoms->work_list); 1070 return 0; 1071 } 1072 1073 static void 1074 add_runtime_event(struct work_atoms *atoms, u64 delta, 1075 u64 timestamp __maybe_unused) 1076 { 1077 struct work_atom *atom; 1078 1079 BUG_ON(list_empty(&atoms->work_list)); 1080 1081 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1082 1083 atom->runtime += delta; 1084 atoms->total_runtime += delta; 1085 } 1086 1087 static void 1088 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 1089 { 1090 struct work_atom *atom; 1091 u64 delta; 1092 1093 if (list_empty(&atoms->work_list)) 1094 return; 1095 1096 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1097 1098 if (atom->state != THREAD_WAIT_CPU) 1099 return; 1100 1101 if (timestamp < atom->wake_up_time) { 1102 atom->state = THREAD_IGNORE; 1103 return; 1104 } 1105 1106 atom->state = THREAD_SCHED_IN; 1107 atom->sched_in_time = timestamp; 1108 1109 delta = atom->sched_in_time - atom->wake_up_time; 1110 atoms->total_lat += delta; 1111 if (delta > atoms->max_lat) { 1112 atoms->max_lat = delta; 1113 atoms->max_lat_start = atom->wake_up_time; 1114 atoms->max_lat_end = timestamp; 1115 } 1116 atoms->nb_atoms++; 1117 } 1118 1119 static int latency_switch_event(struct perf_sched *sched, 1120 struct evsel *evsel, 1121 struct perf_sample *sample, 1122 struct machine *machine) 1123 { 1124 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 1125 next_pid = evsel__intval(evsel, sample, "next_pid"); 1126 const char prev_state = evsel__taskstate(evsel, sample, "prev_state"); 1127 struct work_atoms *out_events, *in_events; 1128 struct thread *sched_out, *sched_in; 1129 u64 timestamp0, timestamp = sample->time; 1130 int cpu = sample->cpu, err = -1; 1131 s64 delta; 1132 1133 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1134 1135 timestamp0 = sched->cpu_last_switched[cpu]; 1136 sched->cpu_last_switched[cpu] = timestamp; 1137 if (timestamp0) 1138 delta = timestamp - timestamp0; 1139 else 1140 delta = 0; 1141 1142 if (delta < 0) { 1143 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1144 return -1; 1145 } 1146 1147 sched_out = machine__findnew_thread(machine, -1, prev_pid); 1148 sched_in = machine__findnew_thread(machine, -1, next_pid); 1149 if (sched_out == NULL || sched_in == NULL) 1150 goto out_put; 1151 1152 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1153 if (!out_events) { 1154 if (thread_atoms_insert(sched, sched_out)) 1155 goto out_put; 1156 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1157 if (!out_events) { 1158 pr_err("out-event: Internal tree error"); 1159 goto out_put; 1160 } 1161 } 1162 if (add_sched_out_event(out_events, prev_state, timestamp)) 1163 return -1; 1164 1165 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1166 if (!in_events) { 1167 if (thread_atoms_insert(sched, sched_in)) 1168 goto out_put; 1169 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1170 if (!in_events) { 1171 pr_err("in-event: Internal tree error"); 1172 goto out_put; 1173 } 1174 /* 1175 * Take came in we have not heard about yet, 1176 * add in an initial atom in runnable state: 1177 */ 1178 if (add_sched_out_event(in_events, 'R', timestamp)) 1179 goto out_put; 1180 } 1181 add_sched_in_event(in_events, timestamp); 1182 err = 0; 1183 out_put: 1184 thread__put(sched_out); 1185 thread__put(sched_in); 1186 return err; 1187 } 1188 1189 static int latency_runtime_event(struct perf_sched *sched, 1190 struct evsel *evsel, 1191 struct perf_sample *sample, 1192 struct machine *machine) 1193 { 1194 const u32 pid = evsel__intval(evsel, sample, "pid"); 1195 const u64 runtime = evsel__intval(evsel, sample, "runtime"); 1196 struct thread *thread = machine__findnew_thread(machine, -1, pid); 1197 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1198 u64 timestamp = sample->time; 1199 int cpu = sample->cpu, err = -1; 1200 1201 if (thread == NULL) 1202 return -1; 1203 1204 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1205 if (!atoms) { 1206 if (thread_atoms_insert(sched, thread)) 1207 goto out_put; 1208 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1209 if (!atoms) { 1210 pr_err("in-event: Internal tree error"); 1211 goto out_put; 1212 } 1213 if (add_sched_out_event(atoms, 'R', timestamp)) 1214 goto out_put; 1215 } 1216 1217 add_runtime_event(atoms, runtime, timestamp); 1218 err = 0; 1219 out_put: 1220 thread__put(thread); 1221 return err; 1222 } 1223 1224 static int latency_wakeup_event(struct perf_sched *sched, 1225 struct evsel *evsel, 1226 struct perf_sample *sample, 1227 struct machine *machine) 1228 { 1229 const u32 pid = evsel__intval(evsel, sample, "pid"); 1230 struct work_atoms *atoms; 1231 struct work_atom *atom; 1232 struct thread *wakee; 1233 u64 timestamp = sample->time; 1234 int err = -1; 1235 1236 wakee = machine__findnew_thread(machine, -1, pid); 1237 if (wakee == NULL) 1238 return -1; 1239 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1240 if (!atoms) { 1241 if (thread_atoms_insert(sched, wakee)) 1242 goto out_put; 1243 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1244 if (!atoms) { 1245 pr_err("wakeup-event: Internal tree error"); 1246 goto out_put; 1247 } 1248 if (add_sched_out_event(atoms, 'S', timestamp)) 1249 goto out_put; 1250 } 1251 1252 BUG_ON(list_empty(&atoms->work_list)); 1253 1254 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1255 1256 /* 1257 * As we do not guarantee the wakeup event happens when 1258 * task is out of run queue, also may happen when task is 1259 * on run queue and wakeup only change ->state to TASK_RUNNING, 1260 * then we should not set the ->wake_up_time when wake up a 1261 * task which is on run queue. 1262 * 1263 * You WILL be missing events if you've recorded only 1264 * one CPU, or are only looking at only one, so don't 1265 * skip in this case. 1266 */ 1267 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1268 goto out_ok; 1269 1270 sched->nr_timestamps++; 1271 if (atom->sched_out_time > timestamp) { 1272 sched->nr_unordered_timestamps++; 1273 goto out_ok; 1274 } 1275 1276 atom->state = THREAD_WAIT_CPU; 1277 atom->wake_up_time = timestamp; 1278 out_ok: 1279 err = 0; 1280 out_put: 1281 thread__put(wakee); 1282 return err; 1283 } 1284 1285 static int latency_migrate_task_event(struct perf_sched *sched, 1286 struct evsel *evsel, 1287 struct perf_sample *sample, 1288 struct machine *machine) 1289 { 1290 const u32 pid = evsel__intval(evsel, sample, "pid"); 1291 u64 timestamp = sample->time; 1292 struct work_atoms *atoms; 1293 struct work_atom *atom; 1294 struct thread *migrant; 1295 int err = -1; 1296 1297 /* 1298 * Only need to worry about migration when profiling one CPU. 1299 */ 1300 if (sched->profile_cpu == -1) 1301 return 0; 1302 1303 migrant = machine__findnew_thread(machine, -1, pid); 1304 if (migrant == NULL) 1305 return -1; 1306 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1307 if (!atoms) { 1308 if (thread_atoms_insert(sched, migrant)) 1309 goto out_put; 1310 register_pid(sched, thread__tid(migrant), thread__comm_str(migrant)); 1311 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1312 if (!atoms) { 1313 pr_err("migration-event: Internal tree error"); 1314 goto out_put; 1315 } 1316 if (add_sched_out_event(atoms, 'R', timestamp)) 1317 goto out_put; 1318 } 1319 1320 BUG_ON(list_empty(&atoms->work_list)); 1321 1322 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1323 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1324 1325 sched->nr_timestamps++; 1326 1327 if (atom->sched_out_time > timestamp) 1328 sched->nr_unordered_timestamps++; 1329 err = 0; 1330 out_put: 1331 thread__put(migrant); 1332 return err; 1333 } 1334 1335 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1336 { 1337 int i; 1338 int ret; 1339 u64 avg; 1340 char max_lat_start[32], max_lat_end[32]; 1341 1342 if (!work_list->nb_atoms) 1343 return; 1344 /* 1345 * Ignore idle threads: 1346 */ 1347 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1348 return; 1349 1350 sched->all_runtime += work_list->total_runtime; 1351 sched->all_count += work_list->nb_atoms; 1352 1353 if (work_list->num_merged > 1) { 1354 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), 1355 work_list->num_merged); 1356 } else { 1357 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), 1358 thread__tid(work_list->thread)); 1359 } 1360 1361 for (i = 0; i < 24 - ret; i++) 1362 printf(" "); 1363 1364 avg = work_list->total_lat / work_list->nb_atoms; 1365 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start)); 1366 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end)); 1367 1368 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n", 1369 (double)work_list->total_runtime / NSEC_PER_MSEC, 1370 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC, 1371 (double)work_list->max_lat / NSEC_PER_MSEC, 1372 max_lat_start, max_lat_end); 1373 } 1374 1375 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1376 { 1377 pid_t l_tid, r_tid; 1378 1379 if (RC_CHK_EQUAL(l->thread, r->thread)) 1380 return 0; 1381 l_tid = thread__tid(l->thread); 1382 r_tid = thread__tid(r->thread); 1383 if (l_tid < r_tid) 1384 return -1; 1385 if (l_tid > r_tid) 1386 return 1; 1387 return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread)); 1388 } 1389 1390 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1391 { 1392 u64 avgl, avgr; 1393 1394 if (!l->nb_atoms) 1395 return -1; 1396 1397 if (!r->nb_atoms) 1398 return 1; 1399 1400 avgl = l->total_lat / l->nb_atoms; 1401 avgr = r->total_lat / r->nb_atoms; 1402 1403 if (avgl < avgr) 1404 return -1; 1405 if (avgl > avgr) 1406 return 1; 1407 1408 return 0; 1409 } 1410 1411 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1412 { 1413 if (l->max_lat < r->max_lat) 1414 return -1; 1415 if (l->max_lat > r->max_lat) 1416 return 1; 1417 1418 return 0; 1419 } 1420 1421 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1422 { 1423 if (l->nb_atoms < r->nb_atoms) 1424 return -1; 1425 if (l->nb_atoms > r->nb_atoms) 1426 return 1; 1427 1428 return 0; 1429 } 1430 1431 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1432 { 1433 if (l->total_runtime < r->total_runtime) 1434 return -1; 1435 if (l->total_runtime > r->total_runtime) 1436 return 1; 1437 1438 return 0; 1439 } 1440 1441 static int sort_dimension__add(const char *tok, struct list_head *list) 1442 { 1443 size_t i; 1444 static struct sort_dimension avg_sort_dimension = { 1445 .name = "avg", 1446 .cmp = avg_cmp, 1447 }; 1448 static struct sort_dimension max_sort_dimension = { 1449 .name = "max", 1450 .cmp = max_cmp, 1451 }; 1452 static struct sort_dimension pid_sort_dimension = { 1453 .name = "pid", 1454 .cmp = pid_cmp, 1455 }; 1456 static struct sort_dimension runtime_sort_dimension = { 1457 .name = "runtime", 1458 .cmp = runtime_cmp, 1459 }; 1460 static struct sort_dimension switch_sort_dimension = { 1461 .name = "switch", 1462 .cmp = switch_cmp, 1463 }; 1464 struct sort_dimension *available_sorts[] = { 1465 &pid_sort_dimension, 1466 &avg_sort_dimension, 1467 &max_sort_dimension, 1468 &switch_sort_dimension, 1469 &runtime_sort_dimension, 1470 }; 1471 1472 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1473 if (!strcmp(available_sorts[i]->name, tok)) { 1474 list_add_tail(&available_sorts[i]->list, list); 1475 1476 return 0; 1477 } 1478 } 1479 1480 return -1; 1481 } 1482 1483 static void perf_sched__sort_lat(struct perf_sched *sched) 1484 { 1485 struct rb_node *node; 1486 struct rb_root_cached *root = &sched->atom_root; 1487 again: 1488 for (;;) { 1489 struct work_atoms *data; 1490 node = rb_first_cached(root); 1491 if (!node) 1492 break; 1493 1494 rb_erase_cached(node, root); 1495 data = rb_entry(node, struct work_atoms, node); 1496 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1497 } 1498 if (root == &sched->atom_root) { 1499 root = &sched->merged_atom_root; 1500 goto again; 1501 } 1502 } 1503 1504 static int process_sched_wakeup_event(const struct perf_tool *tool, 1505 struct evsel *evsel, 1506 struct perf_sample *sample, 1507 struct machine *machine) 1508 { 1509 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1510 1511 if (sched->tp_handler->wakeup_event) 1512 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1513 1514 return 0; 1515 } 1516 1517 static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused, 1518 struct evsel *evsel __maybe_unused, 1519 struct perf_sample *sample __maybe_unused, 1520 struct machine *machine __maybe_unused) 1521 { 1522 return 0; 1523 } 1524 1525 union map_priv { 1526 void *ptr; 1527 bool color; 1528 }; 1529 1530 static bool thread__has_color(struct thread *thread) 1531 { 1532 union map_priv priv = { 1533 .ptr = thread__priv(thread), 1534 }; 1535 1536 return priv.color; 1537 } 1538 1539 static struct thread* 1540 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) 1541 { 1542 struct thread *thread = machine__findnew_thread(machine, pid, tid); 1543 union map_priv priv = { 1544 .color = false, 1545 }; 1546 1547 if (!sched->map.color_pids || !thread || thread__priv(thread)) 1548 return thread; 1549 1550 if (thread_map__has(sched->map.color_pids, tid)) 1551 priv.color = true; 1552 1553 thread__set_priv(thread, priv.ptr); 1554 return thread; 1555 } 1556 1557 static bool sched_match_task(struct perf_sched *sched, const char *comm_str) 1558 { 1559 bool fuzzy_match = sched->map.fuzzy; 1560 struct strlist *task_names = sched->map.task_names; 1561 struct str_node *node; 1562 1563 strlist__for_each_entry(node, task_names) { 1564 bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) : 1565 !strcmp(comm_str, node->s); 1566 if (match_found) 1567 return true; 1568 } 1569 1570 return false; 1571 } 1572 1573 static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr, 1574 const char *color, bool sched_out) 1575 { 1576 for (int i = 0; i < cpus_nr; i++) { 1577 struct perf_cpu cpu = { 1578 .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i, 1579 }; 1580 struct thread *curr_thread = sched->curr_thread[cpu.cpu]; 1581 struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu]; 1582 struct thread_runtime *curr_tr; 1583 const char *pid_color = color; 1584 const char *cpu_color = color; 1585 char symbol = ' '; 1586 struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread; 1587 1588 if (thread_to_check && thread__has_color(thread_to_check)) 1589 pid_color = COLOR_PIDS; 1590 1591 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu)) 1592 cpu_color = COLOR_CPUS; 1593 1594 if (cpu.cpu == this_cpu.cpu) 1595 symbol = '*'; 1596 1597 color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol); 1598 1599 thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] : 1600 sched->curr_thread[cpu.cpu]; 1601 1602 if (thread_to_check) { 1603 curr_tr = thread__get_runtime(thread_to_check); 1604 if (curr_tr == NULL) 1605 return; 1606 1607 if (sched_out) { 1608 if (cpu.cpu == this_cpu.cpu) 1609 color_fprintf(stdout, color, "- "); 1610 else { 1611 curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]); 1612 if (curr_tr != NULL) 1613 color_fprintf(stdout, pid_color, "%2s ", 1614 curr_tr->shortname); 1615 } 1616 } else 1617 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname); 1618 } else 1619 color_fprintf(stdout, color, " "); 1620 } 1621 } 1622 1623 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel, 1624 struct perf_sample *sample, struct machine *machine) 1625 { 1626 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 1627 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"); 1628 struct thread *sched_in, *sched_out; 1629 struct thread_runtime *tr; 1630 int new_shortname; 1631 u64 timestamp0, timestamp = sample->time; 1632 s64 delta; 1633 struct perf_cpu this_cpu = { 1634 .cpu = sample->cpu, 1635 }; 1636 int cpus_nr; 1637 int proceed; 1638 bool new_cpu = false; 1639 const char *color = PERF_COLOR_NORMAL; 1640 char stimestamp[32]; 1641 const char *str; 1642 1643 BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0); 1644 1645 if (this_cpu.cpu > sched->max_cpu.cpu) 1646 sched->max_cpu = this_cpu; 1647 1648 if (sched->map.comp) { 1649 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); 1650 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) { 1651 sched->map.comp_cpus[cpus_nr++] = this_cpu; 1652 new_cpu = true; 1653 } 1654 } else 1655 cpus_nr = sched->max_cpu.cpu; 1656 1657 timestamp0 = sched->cpu_last_switched[this_cpu.cpu]; 1658 sched->cpu_last_switched[this_cpu.cpu] = timestamp; 1659 if (timestamp0) 1660 delta = timestamp - timestamp0; 1661 else 1662 delta = 0; 1663 1664 if (delta < 0) { 1665 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1666 return -1; 1667 } 1668 1669 sched_in = map__findnew_thread(sched, machine, -1, next_pid); 1670 sched_out = map__findnew_thread(sched, machine, -1, prev_pid); 1671 if (sched_in == NULL || sched_out == NULL) 1672 return -1; 1673 1674 tr = thread__get_runtime(sched_in); 1675 if (tr == NULL) { 1676 thread__put(sched_in); 1677 return -1; 1678 } 1679 1680 sched->curr_thread[this_cpu.cpu] = thread__get(sched_in); 1681 sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out); 1682 1683 str = thread__comm_str(sched_in); 1684 new_shortname = 0; 1685 if (!tr->shortname[0]) { 1686 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1687 /* 1688 * Don't allocate a letter-number for swapper:0 1689 * as a shortname. Instead, we use '.' for it. 1690 */ 1691 tr->shortname[0] = '.'; 1692 tr->shortname[1] = ' '; 1693 } else if (!sched->map.task_name || sched_match_task(sched, str)) { 1694 tr->shortname[0] = sched->next_shortname1; 1695 tr->shortname[1] = sched->next_shortname2; 1696 1697 if (sched->next_shortname1 < 'Z') { 1698 sched->next_shortname1++; 1699 } else { 1700 sched->next_shortname1 = 'A'; 1701 if (sched->next_shortname2 < '9') 1702 sched->next_shortname2++; 1703 else 1704 sched->next_shortname2 = '0'; 1705 } 1706 } else { 1707 tr->shortname[0] = '-'; 1708 tr->shortname[1] = ' '; 1709 } 1710 new_shortname = 1; 1711 } 1712 1713 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu)) 1714 goto out; 1715 1716 proceed = 0; 1717 str = thread__comm_str(sched_in); 1718 /* 1719 * Check which of sched_in and sched_out matches the passed --task-name 1720 * arguments and call the corresponding print_sched_map. 1721 */ 1722 if (sched->map.task_name && !sched_match_task(sched, str)) { 1723 if (!sched_match_task(sched, thread__comm_str(sched_out))) 1724 goto out; 1725 else 1726 goto sched_out; 1727 1728 } else { 1729 str = thread__comm_str(sched_out); 1730 if (!(sched->map.task_name && !sched_match_task(sched, str))) 1731 proceed = 1; 1732 } 1733 1734 printf(" "); 1735 1736 print_sched_map(sched, this_cpu, cpus_nr, color, false); 1737 1738 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1739 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1740 if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) { 1741 const char *pid_color = color; 1742 1743 if (thread__has_color(sched_in)) 1744 pid_color = COLOR_PIDS; 1745 1746 color_fprintf(stdout, pid_color, "%s => %s:%d", 1747 tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in)); 1748 tr->comm_changed = false; 1749 } 1750 1751 if (sched->map.comp && new_cpu) 1752 color_fprintf(stdout, color, " (CPU %d)", this_cpu); 1753 1754 if (proceed != 1) { 1755 color_fprintf(stdout, color, "\n"); 1756 goto out; 1757 } 1758 1759 sched_out: 1760 if (sched->map.task_name) { 1761 tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]); 1762 if (strcmp(tr->shortname, "") == 0) 1763 goto out; 1764 1765 if (proceed == 1) 1766 color_fprintf(stdout, color, "\n"); 1767 1768 printf(" "); 1769 print_sched_map(sched, this_cpu, cpus_nr, color, true); 1770 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1771 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1772 } 1773 1774 color_fprintf(stdout, color, "\n"); 1775 1776 out: 1777 if (sched->map.task_name) 1778 thread__put(sched_out); 1779 1780 thread__put(sched_in); 1781 1782 return 0; 1783 } 1784 1785 static int process_sched_switch_event(const struct perf_tool *tool, 1786 struct evsel *evsel, 1787 struct perf_sample *sample, 1788 struct machine *machine) 1789 { 1790 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1791 int this_cpu = sample->cpu, err = 0; 1792 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 1793 next_pid = evsel__intval(evsel, sample, "next_pid"); 1794 1795 if (sched->curr_pid[this_cpu] != (u32)-1) { 1796 /* 1797 * Are we trying to switch away a PID that is 1798 * not current? 1799 */ 1800 if (sched->curr_pid[this_cpu] != prev_pid) 1801 sched->nr_context_switch_bugs++; 1802 } 1803 1804 if (sched->tp_handler->switch_event) 1805 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1806 1807 sched->curr_pid[this_cpu] = next_pid; 1808 return err; 1809 } 1810 1811 static int process_sched_runtime_event(const struct perf_tool *tool, 1812 struct evsel *evsel, 1813 struct perf_sample *sample, 1814 struct machine *machine) 1815 { 1816 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1817 1818 if (sched->tp_handler->runtime_event) 1819 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1820 1821 return 0; 1822 } 1823 1824 static int perf_sched__process_fork_event(const struct perf_tool *tool, 1825 union perf_event *event, 1826 struct perf_sample *sample, 1827 struct machine *machine) 1828 { 1829 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1830 1831 /* run the fork event through the perf machinery */ 1832 perf_event__process_fork(tool, event, sample, machine); 1833 1834 /* and then run additional processing needed for this command */ 1835 if (sched->tp_handler->fork_event) 1836 return sched->tp_handler->fork_event(sched, event, machine); 1837 1838 return 0; 1839 } 1840 1841 static int process_sched_migrate_task_event(const struct perf_tool *tool, 1842 struct evsel *evsel, 1843 struct perf_sample *sample, 1844 struct machine *machine) 1845 { 1846 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1847 1848 if (sched->tp_handler->migrate_task_event) 1849 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1850 1851 return 0; 1852 } 1853 1854 typedef int (*tracepoint_handler)(const struct perf_tool *tool, 1855 struct evsel *evsel, 1856 struct perf_sample *sample, 1857 struct machine *machine); 1858 1859 static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused, 1860 union perf_event *event __maybe_unused, 1861 struct perf_sample *sample, 1862 struct evsel *evsel, 1863 struct machine *machine) 1864 { 1865 int err = 0; 1866 1867 if (evsel->handler != NULL) { 1868 tracepoint_handler f = evsel->handler; 1869 err = f(tool, evsel, sample, machine); 1870 } 1871 1872 return err; 1873 } 1874 1875 static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused, 1876 union perf_event *event, 1877 struct perf_sample *sample, 1878 struct machine *machine) 1879 { 1880 struct thread *thread; 1881 struct thread_runtime *tr; 1882 int err; 1883 1884 err = perf_event__process_comm(tool, event, sample, machine); 1885 if (err) 1886 return err; 1887 1888 thread = machine__find_thread(machine, sample->pid, sample->tid); 1889 if (!thread) { 1890 pr_err("Internal error: can't find thread\n"); 1891 return -1; 1892 } 1893 1894 tr = thread__get_runtime(thread); 1895 if (tr == NULL) { 1896 thread__put(thread); 1897 return -1; 1898 } 1899 1900 tr->comm_changed = true; 1901 thread__put(thread); 1902 1903 return 0; 1904 } 1905 1906 static int perf_sched__read_events(struct perf_sched *sched) 1907 { 1908 struct evsel_str_handler handlers[] = { 1909 { "sched:sched_switch", process_sched_switch_event, }, 1910 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1911 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1912 { "sched:sched_waking", process_sched_wakeup_event, }, 1913 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1914 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1915 }; 1916 struct perf_session *session; 1917 struct perf_data data = { 1918 .path = input_name, 1919 .mode = PERF_DATA_MODE_READ, 1920 .force = sched->force, 1921 }; 1922 int rc = -1; 1923 1924 session = perf_session__new(&data, &sched->tool); 1925 if (IS_ERR(session)) { 1926 pr_debug("Error creating perf session"); 1927 return PTR_ERR(session); 1928 } 1929 1930 symbol__init(&session->header.env); 1931 1932 /* prefer sched_waking if it is captured */ 1933 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) 1934 handlers[2].handler = process_sched_wakeup_ignore; 1935 1936 if (perf_session__set_tracepoints_handlers(session, handlers)) 1937 goto out_delete; 1938 1939 if (perf_session__has_traces(session, "record -R")) { 1940 int err = perf_session__process_events(session); 1941 if (err) { 1942 pr_err("Failed to process events, error %d", err); 1943 goto out_delete; 1944 } 1945 1946 sched->nr_events = session->evlist->stats.nr_events[0]; 1947 sched->nr_lost_events = session->evlist->stats.total_lost; 1948 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; 1949 } 1950 1951 rc = 0; 1952 out_delete: 1953 perf_session__delete(session); 1954 return rc; 1955 } 1956 1957 /* 1958 * scheduling times are printed as msec.usec 1959 */ 1960 static inline void print_sched_time(unsigned long long nsecs, int width) 1961 { 1962 unsigned long msecs; 1963 unsigned long usecs; 1964 1965 msecs = nsecs / NSEC_PER_MSEC; 1966 nsecs -= msecs * NSEC_PER_MSEC; 1967 usecs = nsecs / NSEC_PER_USEC; 1968 printf("%*lu.%03lu ", width, msecs, usecs); 1969 } 1970 1971 /* 1972 * returns runtime data for event, allocating memory for it the 1973 * first time it is used. 1974 */ 1975 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel) 1976 { 1977 struct evsel_runtime *r = evsel->priv; 1978 1979 if (r == NULL) { 1980 r = zalloc(sizeof(struct evsel_runtime)); 1981 evsel->priv = r; 1982 } 1983 1984 return r; 1985 } 1986 1987 /* 1988 * save last time event was seen per cpu 1989 */ 1990 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu) 1991 { 1992 struct evsel_runtime *r = evsel__get_runtime(evsel); 1993 1994 if (r == NULL) 1995 return; 1996 1997 if ((cpu >= r->ncpu) || (r->last_time == NULL)) { 1998 int i, n = __roundup_pow_of_two(cpu+1); 1999 void *p = r->last_time; 2000 2001 p = realloc(r->last_time, n * sizeof(u64)); 2002 if (!p) 2003 return; 2004 2005 r->last_time = p; 2006 for (i = r->ncpu; i < n; ++i) 2007 r->last_time[i] = (u64) 0; 2008 2009 r->ncpu = n; 2010 } 2011 2012 r->last_time[cpu] = timestamp; 2013 } 2014 2015 /* returns last time this event was seen on the given cpu */ 2016 static u64 evsel__get_time(struct evsel *evsel, u32 cpu) 2017 { 2018 struct evsel_runtime *r = evsel__get_runtime(evsel); 2019 2020 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu)) 2021 return 0; 2022 2023 return r->last_time[cpu]; 2024 } 2025 2026 static int comm_width = 30; 2027 2028 static char *timehist_get_commstr(struct thread *thread) 2029 { 2030 static char str[32]; 2031 const char *comm = thread__comm_str(thread); 2032 pid_t tid = thread__tid(thread); 2033 pid_t pid = thread__pid(thread); 2034 int n; 2035 2036 if (pid == 0) 2037 n = scnprintf(str, sizeof(str), "%s", comm); 2038 2039 else if (tid != pid) 2040 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid); 2041 2042 else 2043 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid); 2044 2045 if (n > comm_width) 2046 comm_width = n; 2047 2048 return str; 2049 } 2050 2051 /* prio field format: xxx or xxx->yyy */ 2052 #define MAX_PRIO_STR_LEN 8 2053 static char *timehist_get_priostr(struct evsel *evsel, 2054 struct thread *thread, 2055 struct perf_sample *sample) 2056 { 2057 static char prio_str[16]; 2058 int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio"); 2059 struct thread_runtime *tr = thread__priv(thread); 2060 2061 if (tr->prio != prev_prio && tr->prio != -1) 2062 scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio); 2063 else 2064 scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio); 2065 2066 return prio_str; 2067 } 2068 2069 static void timehist_header(struct perf_sched *sched) 2070 { 2071 u32 ncpus = sched->max_cpu.cpu + 1; 2072 u32 i, j; 2073 2074 printf("%15s %6s ", "time", "cpu"); 2075 2076 if (sched->show_cpu_visual) { 2077 printf(" "); 2078 for (i = 0, j = 0; i < ncpus; ++i) { 2079 printf("%x", j++); 2080 if (j > 15) 2081 j = 0; 2082 } 2083 printf(" "); 2084 } 2085 2086 if (sched->show_prio) { 2087 printf(" %-*s %-*s %9s %9s %9s", 2088 comm_width, "task name", MAX_PRIO_STR_LEN, "prio", 2089 "wait time", "sch delay", "run time"); 2090 } else { 2091 printf(" %-*s %9s %9s %9s", comm_width, 2092 "task name", "wait time", "sch delay", "run time"); 2093 } 2094 2095 if (sched->show_state) 2096 printf(" %s", "state"); 2097 2098 printf("\n"); 2099 2100 /* 2101 * units row 2102 */ 2103 printf("%15s %-6s ", "", ""); 2104 2105 if (sched->show_cpu_visual) 2106 printf(" %*s ", ncpus, ""); 2107 2108 if (sched->show_prio) { 2109 printf(" %-*s %-*s %9s %9s %9s", 2110 comm_width, "[tid/pid]", MAX_PRIO_STR_LEN, "", 2111 "(msec)", "(msec)", "(msec)"); 2112 } else { 2113 printf(" %-*s %9s %9s %9s", comm_width, 2114 "[tid/pid]", "(msec)", "(msec)", "(msec)"); 2115 } 2116 2117 if (sched->show_state) 2118 printf(" %5s", ""); 2119 2120 printf("\n"); 2121 2122 /* 2123 * separator 2124 */ 2125 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line); 2126 2127 if (sched->show_cpu_visual) 2128 printf(" %.*s ", ncpus, graph_dotted_line); 2129 2130 if (sched->show_prio) { 2131 printf(" %.*s %.*s %.9s %.9s %.9s", 2132 comm_width, graph_dotted_line, MAX_PRIO_STR_LEN, graph_dotted_line, 2133 graph_dotted_line, graph_dotted_line, graph_dotted_line); 2134 } else { 2135 printf(" %.*s %.9s %.9s %.9s", comm_width, 2136 graph_dotted_line, graph_dotted_line, graph_dotted_line, 2137 graph_dotted_line); 2138 } 2139 2140 if (sched->show_state) 2141 printf(" %.5s", graph_dotted_line); 2142 2143 printf("\n"); 2144 } 2145 2146 static void timehist_print_sample(struct perf_sched *sched, 2147 struct evsel *evsel, 2148 struct perf_sample *sample, 2149 struct addr_location *al, 2150 struct thread *thread, 2151 u64 t, const char state) 2152 { 2153 struct thread_runtime *tr = thread__priv(thread); 2154 const char *next_comm = evsel__strval(evsel, sample, "next_comm"); 2155 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 2156 u32 max_cpus = sched->max_cpu.cpu + 1; 2157 char tstr[64]; 2158 char nstr[30]; 2159 u64 wait_time; 2160 2161 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap)) 2162 return; 2163 2164 timestamp__scnprintf_usec(t, tstr, sizeof(tstr)); 2165 printf("%15s [%04d] ", tstr, sample->cpu); 2166 2167 if (sched->show_cpu_visual) { 2168 u32 i; 2169 char c; 2170 2171 printf(" "); 2172 for (i = 0; i < max_cpus; ++i) { 2173 /* flag idle times with 'i'; others are sched events */ 2174 if (i == sample->cpu) 2175 c = (thread__tid(thread) == 0) ? 'i' : 's'; 2176 else 2177 c = ' '; 2178 printf("%c", c); 2179 } 2180 printf(" "); 2181 } 2182 2183 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2184 2185 if (sched->show_prio) 2186 printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample)); 2187 2188 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt; 2189 print_sched_time(wait_time, 6); 2190 2191 print_sched_time(tr->dt_delay, 6); 2192 print_sched_time(tr->dt_run, 6); 2193 2194 if (sched->show_state) 2195 printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state); 2196 2197 if (sched->show_next) { 2198 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid); 2199 printf(" %-*s", comm_width, nstr); 2200 } 2201 2202 if (sched->show_wakeups && !sched->show_next) 2203 printf(" %-*s", comm_width, ""); 2204 2205 if (thread__tid(thread) == 0) 2206 goto out; 2207 2208 if (sched->show_callchain) 2209 printf(" "); 2210 2211 sample__fprintf_sym(sample, al, 0, 2212 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE | 2213 EVSEL__PRINT_CALLCHAIN_ARROW | 2214 EVSEL__PRINT_SKIP_IGNORED, 2215 get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout); 2216 2217 out: 2218 printf("\n"); 2219 } 2220 2221 /* 2222 * Explanation of delta-time stats: 2223 * 2224 * t = time of current schedule out event 2225 * tprev = time of previous sched out event 2226 * also time of schedule-in event for current task 2227 * last_time = time of last sched change event for current task 2228 * (i.e, time process was last scheduled out) 2229 * ready_to_run = time of wakeup for current task 2230 * 2231 * -----|------------|------------|------------|------ 2232 * last ready tprev t 2233 * time to run 2234 * 2235 * |-------- dt_wait --------| 2236 * |- dt_delay -|-- dt_run --| 2237 * 2238 * dt_run = run time of current task 2239 * dt_wait = time between last schedule out event for task and tprev 2240 * represents time spent off the cpu 2241 * dt_delay = time between wakeup and schedule-in of task 2242 */ 2243 2244 static void timehist_update_runtime_stats(struct thread_runtime *r, 2245 u64 t, u64 tprev) 2246 { 2247 r->dt_delay = 0; 2248 r->dt_sleep = 0; 2249 r->dt_iowait = 0; 2250 r->dt_preempt = 0; 2251 r->dt_run = 0; 2252 2253 if (tprev) { 2254 r->dt_run = t - tprev; 2255 if (r->ready_to_run) { 2256 if (r->ready_to_run > tprev) 2257 pr_debug("time travel: wakeup time for task > previous sched_switch event\n"); 2258 else 2259 r->dt_delay = tprev - r->ready_to_run; 2260 } 2261 2262 if (r->last_time > tprev) 2263 pr_debug("time travel: last sched out time for task > previous sched_switch event\n"); 2264 else if (r->last_time) { 2265 u64 dt_wait = tprev - r->last_time; 2266 2267 if (r->last_state == 'R') 2268 r->dt_preempt = dt_wait; 2269 else if (r->last_state == 'D') 2270 r->dt_iowait = dt_wait; 2271 else 2272 r->dt_sleep = dt_wait; 2273 } 2274 } 2275 2276 update_stats(&r->run_stats, r->dt_run); 2277 2278 r->total_run_time += r->dt_run; 2279 r->total_delay_time += r->dt_delay; 2280 r->total_sleep_time += r->dt_sleep; 2281 r->total_iowait_time += r->dt_iowait; 2282 r->total_preempt_time += r->dt_preempt; 2283 } 2284 2285 static bool is_idle_sample(struct perf_sample *sample, 2286 struct evsel *evsel) 2287 { 2288 /* pid 0 == swapper == idle task */ 2289 if (evsel__name_is(evsel, "sched:sched_switch")) 2290 return evsel__intval(evsel, sample, "prev_pid") == 0; 2291 2292 return sample->pid == 0; 2293 } 2294 2295 static void save_task_callchain(struct perf_sched *sched, 2296 struct perf_sample *sample, 2297 struct evsel *evsel, 2298 struct machine *machine) 2299 { 2300 struct callchain_cursor *cursor; 2301 struct thread *thread; 2302 2303 /* want main thread for process - has maps */ 2304 thread = machine__findnew_thread(machine, sample->pid, sample->pid); 2305 if (thread == NULL) { 2306 pr_debug("Failed to get thread for pid %d.\n", sample->pid); 2307 return; 2308 } 2309 2310 if (!sched->show_callchain || sample->callchain == NULL) 2311 return; 2312 2313 cursor = get_tls_callchain_cursor(); 2314 2315 if (thread__resolve_callchain(thread, cursor, evsel, sample, 2316 NULL, NULL, sched->max_stack + 2) != 0) { 2317 if (verbose > 0) 2318 pr_err("Failed to resolve callchain. Skipping\n"); 2319 2320 return; 2321 } 2322 2323 callchain_cursor_commit(cursor); 2324 2325 while (true) { 2326 struct callchain_cursor_node *node; 2327 struct symbol *sym; 2328 2329 node = callchain_cursor_current(cursor); 2330 if (node == NULL) 2331 break; 2332 2333 sym = node->ms.sym; 2334 if (sym) { 2335 if (!strcmp(sym->name, "schedule") || 2336 !strcmp(sym->name, "__schedule") || 2337 !strcmp(sym->name, "preempt_schedule")) 2338 sym->ignore = 1; 2339 } 2340 2341 callchain_cursor_advance(cursor); 2342 } 2343 } 2344 2345 static int init_idle_thread(struct thread *thread) 2346 { 2347 struct idle_thread_runtime *itr; 2348 2349 thread__set_comm(thread, idle_comm, 0); 2350 2351 itr = zalloc(sizeof(*itr)); 2352 if (itr == NULL) 2353 return -ENOMEM; 2354 2355 init_prio(&itr->tr); 2356 init_stats(&itr->tr.run_stats); 2357 callchain_init(&itr->callchain); 2358 callchain_cursor_reset(&itr->cursor); 2359 thread__set_priv(thread, itr); 2360 2361 return 0; 2362 } 2363 2364 /* 2365 * Track idle stats per cpu by maintaining a local thread 2366 * struct for the idle task on each cpu. 2367 */ 2368 static int init_idle_threads(int ncpu) 2369 { 2370 int i, ret; 2371 2372 idle_threads = zalloc(ncpu * sizeof(struct thread *)); 2373 if (!idle_threads) 2374 return -ENOMEM; 2375 2376 idle_max_cpu = ncpu; 2377 2378 /* allocate the actual thread struct if needed */ 2379 for (i = 0; i < ncpu; ++i) { 2380 idle_threads[i] = thread__new(0, 0); 2381 if (idle_threads[i] == NULL) 2382 return -ENOMEM; 2383 2384 ret = init_idle_thread(idle_threads[i]); 2385 if (ret < 0) 2386 return ret; 2387 } 2388 2389 return 0; 2390 } 2391 2392 static void free_idle_threads(void) 2393 { 2394 int i; 2395 2396 if (idle_threads == NULL) 2397 return; 2398 2399 for (i = 0; i < idle_max_cpu; ++i) { 2400 if ((idle_threads[i])) 2401 thread__delete(idle_threads[i]); 2402 } 2403 2404 free(idle_threads); 2405 } 2406 2407 static struct thread *get_idle_thread(int cpu) 2408 { 2409 /* 2410 * expand/allocate array of pointers to local thread 2411 * structs if needed 2412 */ 2413 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) { 2414 int i, j = __roundup_pow_of_two(cpu+1); 2415 void *p; 2416 2417 p = realloc(idle_threads, j * sizeof(struct thread *)); 2418 if (!p) 2419 return NULL; 2420 2421 idle_threads = (struct thread **) p; 2422 for (i = idle_max_cpu; i < j; ++i) 2423 idle_threads[i] = NULL; 2424 2425 idle_max_cpu = j; 2426 } 2427 2428 /* allocate a new thread struct if needed */ 2429 if (idle_threads[cpu] == NULL) { 2430 idle_threads[cpu] = thread__new(0, 0); 2431 2432 if (idle_threads[cpu]) { 2433 if (init_idle_thread(idle_threads[cpu]) < 0) 2434 return NULL; 2435 } 2436 } 2437 2438 return idle_threads[cpu]; 2439 } 2440 2441 static void save_idle_callchain(struct perf_sched *sched, 2442 struct idle_thread_runtime *itr, 2443 struct perf_sample *sample) 2444 { 2445 struct callchain_cursor *cursor; 2446 2447 if (!sched->show_callchain || sample->callchain == NULL) 2448 return; 2449 2450 cursor = get_tls_callchain_cursor(); 2451 if (cursor == NULL) 2452 return; 2453 2454 callchain_cursor__copy(&itr->cursor, cursor); 2455 } 2456 2457 static struct thread *timehist_get_thread(struct perf_sched *sched, 2458 struct perf_sample *sample, 2459 struct machine *machine, 2460 struct evsel *evsel) 2461 { 2462 struct thread *thread; 2463 2464 if (is_idle_sample(sample, evsel)) { 2465 thread = get_idle_thread(sample->cpu); 2466 if (thread == NULL) 2467 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2468 2469 } else { 2470 /* there were samples with tid 0 but non-zero pid */ 2471 thread = machine__findnew_thread(machine, sample->pid, 2472 sample->tid ?: sample->pid); 2473 if (thread == NULL) { 2474 pr_debug("Failed to get thread for tid %d. skipping sample.\n", 2475 sample->tid); 2476 } 2477 2478 save_task_callchain(sched, sample, evsel, machine); 2479 if (sched->idle_hist) { 2480 struct thread *idle; 2481 struct idle_thread_runtime *itr; 2482 2483 idle = get_idle_thread(sample->cpu); 2484 if (idle == NULL) { 2485 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2486 return NULL; 2487 } 2488 2489 itr = thread__priv(idle); 2490 if (itr == NULL) 2491 return NULL; 2492 2493 itr->last_thread = thread; 2494 2495 /* copy task callchain when entering to idle */ 2496 if (evsel__intval(evsel, sample, "next_pid") == 0) 2497 save_idle_callchain(sched, itr, sample); 2498 } 2499 } 2500 2501 return thread; 2502 } 2503 2504 static bool timehist_skip_sample(struct perf_sched *sched, 2505 struct thread *thread, 2506 struct evsel *evsel, 2507 struct perf_sample *sample) 2508 { 2509 bool rc = false; 2510 int prio = -1; 2511 struct thread_runtime *tr = NULL; 2512 2513 if (thread__is_filtered(thread)) { 2514 rc = true; 2515 sched->skipped_samples++; 2516 } 2517 2518 if (sched->prio_str) { 2519 /* 2520 * Because priority may be changed during task execution, 2521 * first read priority from prev sched_in event for current task. 2522 * If prev sched_in event is not saved, then read priority from 2523 * current task sched_out event. 2524 */ 2525 tr = thread__get_runtime(thread); 2526 if (tr && tr->prio != -1) 2527 prio = tr->prio; 2528 else if (evsel__name_is(evsel, "sched:sched_switch")) 2529 prio = evsel__intval(evsel, sample, "prev_prio"); 2530 2531 if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) { 2532 rc = true; 2533 sched->skipped_samples++; 2534 } 2535 } 2536 2537 if (sched->idle_hist) { 2538 if (!evsel__name_is(evsel, "sched:sched_switch")) 2539 rc = true; 2540 else if (evsel__intval(evsel, sample, "prev_pid") != 0 && 2541 evsel__intval(evsel, sample, "next_pid") != 0) 2542 rc = true; 2543 } 2544 2545 return rc; 2546 } 2547 2548 static void timehist_print_wakeup_event(struct perf_sched *sched, 2549 struct evsel *evsel, 2550 struct perf_sample *sample, 2551 struct machine *machine, 2552 struct thread *awakened) 2553 { 2554 struct thread *thread; 2555 char tstr[64]; 2556 2557 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2558 if (thread == NULL) 2559 return; 2560 2561 /* show wakeup unless both awakee and awaker are filtered */ 2562 if (timehist_skip_sample(sched, thread, evsel, sample) && 2563 timehist_skip_sample(sched, awakened, evsel, sample)) { 2564 return; 2565 } 2566 2567 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2568 printf("%15s [%04d] ", tstr, sample->cpu); 2569 if (sched->show_cpu_visual) 2570 printf(" %*s ", sched->max_cpu.cpu + 1, ""); 2571 2572 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2573 2574 /* dt spacer */ 2575 printf(" %9s %9s %9s ", "", "", ""); 2576 2577 printf("awakened: %s", timehist_get_commstr(awakened)); 2578 2579 printf("\n"); 2580 } 2581 2582 static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused, 2583 union perf_event *event __maybe_unused, 2584 struct evsel *evsel __maybe_unused, 2585 struct perf_sample *sample __maybe_unused, 2586 struct machine *machine __maybe_unused) 2587 { 2588 return 0; 2589 } 2590 2591 static int timehist_sched_wakeup_event(const struct perf_tool *tool, 2592 union perf_event *event __maybe_unused, 2593 struct evsel *evsel, 2594 struct perf_sample *sample, 2595 struct machine *machine) 2596 { 2597 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2598 struct thread *thread; 2599 struct thread_runtime *tr = NULL; 2600 /* want pid of awakened task not pid in sample */ 2601 const u32 pid = evsel__intval(evsel, sample, "pid"); 2602 2603 thread = machine__findnew_thread(machine, 0, pid); 2604 if (thread == NULL) 2605 return -1; 2606 2607 tr = thread__get_runtime(thread); 2608 if (tr == NULL) 2609 return -1; 2610 2611 if (tr->ready_to_run == 0) 2612 tr->ready_to_run = sample->time; 2613 2614 /* show wakeups if requested */ 2615 if (sched->show_wakeups && 2616 !perf_time__skip_sample(&sched->ptime, sample->time)) 2617 timehist_print_wakeup_event(sched, evsel, sample, machine, thread); 2618 2619 return 0; 2620 } 2621 2622 static void timehist_print_migration_event(struct perf_sched *sched, 2623 struct evsel *evsel, 2624 struct perf_sample *sample, 2625 struct machine *machine, 2626 struct thread *migrated) 2627 { 2628 struct thread *thread; 2629 char tstr[64]; 2630 u32 max_cpus; 2631 u32 ocpu, dcpu; 2632 2633 if (sched->summary_only) 2634 return; 2635 2636 max_cpus = sched->max_cpu.cpu + 1; 2637 ocpu = evsel__intval(evsel, sample, "orig_cpu"); 2638 dcpu = evsel__intval(evsel, sample, "dest_cpu"); 2639 2640 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2641 if (thread == NULL) 2642 return; 2643 2644 if (timehist_skip_sample(sched, thread, evsel, sample) && 2645 timehist_skip_sample(sched, migrated, evsel, sample)) { 2646 return; 2647 } 2648 2649 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2650 printf("%15s [%04d] ", tstr, sample->cpu); 2651 2652 if (sched->show_cpu_visual) { 2653 u32 i; 2654 char c; 2655 2656 printf(" "); 2657 for (i = 0; i < max_cpus; ++i) { 2658 c = (i == sample->cpu) ? 'm' : ' '; 2659 printf("%c", c); 2660 } 2661 printf(" "); 2662 } 2663 2664 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2665 2666 /* dt spacer */ 2667 printf(" %9s %9s %9s ", "", "", ""); 2668 2669 printf("migrated: %s", timehist_get_commstr(migrated)); 2670 printf(" cpu %d => %d", ocpu, dcpu); 2671 2672 printf("\n"); 2673 } 2674 2675 static int timehist_migrate_task_event(const struct perf_tool *tool, 2676 union perf_event *event __maybe_unused, 2677 struct evsel *evsel, 2678 struct perf_sample *sample, 2679 struct machine *machine) 2680 { 2681 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2682 struct thread *thread; 2683 struct thread_runtime *tr = NULL; 2684 /* want pid of migrated task not pid in sample */ 2685 const u32 pid = evsel__intval(evsel, sample, "pid"); 2686 2687 thread = machine__findnew_thread(machine, 0, pid); 2688 if (thread == NULL) 2689 return -1; 2690 2691 tr = thread__get_runtime(thread); 2692 if (tr == NULL) 2693 return -1; 2694 2695 tr->migrations++; 2696 2697 /* show migrations if requested */ 2698 timehist_print_migration_event(sched, evsel, sample, machine, thread); 2699 2700 return 0; 2701 } 2702 2703 static void timehist_update_task_prio(struct evsel *evsel, 2704 struct perf_sample *sample, 2705 struct machine *machine) 2706 { 2707 struct thread *thread; 2708 struct thread_runtime *tr = NULL; 2709 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 2710 const u32 next_prio = evsel__intval(evsel, sample, "next_prio"); 2711 2712 if (next_pid == 0) 2713 thread = get_idle_thread(sample->cpu); 2714 else 2715 thread = machine__findnew_thread(machine, -1, next_pid); 2716 2717 if (thread == NULL) 2718 return; 2719 2720 tr = thread__get_runtime(thread); 2721 if (tr == NULL) 2722 return; 2723 2724 tr->prio = next_prio; 2725 } 2726 2727 static int timehist_sched_change_event(const struct perf_tool *tool, 2728 union perf_event *event, 2729 struct evsel *evsel, 2730 struct perf_sample *sample, 2731 struct machine *machine) 2732 { 2733 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2734 struct perf_time_interval *ptime = &sched->ptime; 2735 struct addr_location al; 2736 struct thread *thread; 2737 struct thread_runtime *tr = NULL; 2738 u64 tprev, t = sample->time; 2739 int rc = 0; 2740 const char state = evsel__taskstate(evsel, sample, "prev_state"); 2741 2742 addr_location__init(&al); 2743 if (machine__resolve(machine, &al, sample) < 0) { 2744 pr_err("problem processing %d event. skipping it\n", 2745 event->header.type); 2746 rc = -1; 2747 goto out; 2748 } 2749 2750 if (sched->show_prio || sched->prio_str) 2751 timehist_update_task_prio(evsel, sample, machine); 2752 2753 thread = timehist_get_thread(sched, sample, machine, evsel); 2754 if (thread == NULL) { 2755 rc = -1; 2756 goto out; 2757 } 2758 2759 if (timehist_skip_sample(sched, thread, evsel, sample)) 2760 goto out; 2761 2762 tr = thread__get_runtime(thread); 2763 if (tr == NULL) { 2764 rc = -1; 2765 goto out; 2766 } 2767 2768 tprev = evsel__get_time(evsel, sample->cpu); 2769 2770 /* 2771 * If start time given: 2772 * - sample time is under window user cares about - skip sample 2773 * - tprev is under window user cares about - reset to start of window 2774 */ 2775 if (ptime->start && ptime->start > t) 2776 goto out; 2777 2778 if (tprev && ptime->start > tprev) 2779 tprev = ptime->start; 2780 2781 /* 2782 * If end time given: 2783 * - previous sched event is out of window - we are done 2784 * - sample time is beyond window user cares about - reset it 2785 * to close out stats for time window interest 2786 * - If tprev is 0, that is, sched_in event for current task is 2787 * not recorded, cannot determine whether sched_in event is 2788 * within time window interest - ignore it 2789 */ 2790 if (ptime->end) { 2791 if (!tprev || tprev > ptime->end) 2792 goto out; 2793 2794 if (t > ptime->end) 2795 t = ptime->end; 2796 } 2797 2798 if (!sched->idle_hist || thread__tid(thread) == 0) { 2799 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap)) 2800 timehist_update_runtime_stats(tr, t, tprev); 2801 2802 if (sched->idle_hist) { 2803 struct idle_thread_runtime *itr = (void *)tr; 2804 struct thread_runtime *last_tr; 2805 2806 if (itr->last_thread == NULL) 2807 goto out; 2808 2809 /* add current idle time as last thread's runtime */ 2810 last_tr = thread__get_runtime(itr->last_thread); 2811 if (last_tr == NULL) 2812 goto out; 2813 2814 timehist_update_runtime_stats(last_tr, t, tprev); 2815 /* 2816 * remove delta time of last thread as it's not updated 2817 * and otherwise it will show an invalid value next 2818 * time. we only care total run time and run stat. 2819 */ 2820 last_tr->dt_run = 0; 2821 last_tr->dt_delay = 0; 2822 last_tr->dt_sleep = 0; 2823 last_tr->dt_iowait = 0; 2824 last_tr->dt_preempt = 0; 2825 2826 if (itr->cursor.nr) 2827 callchain_append(&itr->callchain, &itr->cursor, t - tprev); 2828 2829 itr->last_thread = NULL; 2830 } 2831 2832 if (!sched->summary_only) 2833 timehist_print_sample(sched, evsel, sample, &al, thread, t, state); 2834 } 2835 2836 out: 2837 if (sched->hist_time.start == 0 && t >= ptime->start) 2838 sched->hist_time.start = t; 2839 if (ptime->end == 0 || t <= ptime->end) 2840 sched->hist_time.end = t; 2841 2842 if (tr) { 2843 /* time of this sched_switch event becomes last time task seen */ 2844 tr->last_time = sample->time; 2845 2846 /* last state is used to determine where to account wait time */ 2847 tr->last_state = state; 2848 2849 /* sched out event for task so reset ready to run time */ 2850 if (state == 'R') 2851 tr->ready_to_run = t; 2852 else 2853 tr->ready_to_run = 0; 2854 } 2855 2856 evsel__save_time(evsel, sample->time, sample->cpu); 2857 2858 addr_location__exit(&al); 2859 return rc; 2860 } 2861 2862 static int timehist_sched_switch_event(const struct perf_tool *tool, 2863 union perf_event *event, 2864 struct evsel *evsel, 2865 struct perf_sample *sample, 2866 struct machine *machine __maybe_unused) 2867 { 2868 return timehist_sched_change_event(tool, event, evsel, sample, machine); 2869 } 2870 2871 static int process_lost(const struct perf_tool *tool __maybe_unused, 2872 union perf_event *event, 2873 struct perf_sample *sample, 2874 struct machine *machine __maybe_unused) 2875 { 2876 char tstr[64]; 2877 2878 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2879 printf("%15s ", tstr); 2880 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu); 2881 2882 return 0; 2883 } 2884 2885 2886 static void print_thread_runtime(struct thread *t, 2887 struct thread_runtime *r) 2888 { 2889 double mean = avg_stats(&r->run_stats); 2890 float stddev; 2891 2892 printf("%*s %5d %9" PRIu64 " ", 2893 comm_width, timehist_get_commstr(t), thread__ppid(t), 2894 (u64) r->run_stats.n); 2895 2896 print_sched_time(r->total_run_time, 8); 2897 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean); 2898 print_sched_time(r->run_stats.min, 6); 2899 printf(" "); 2900 print_sched_time((u64) mean, 6); 2901 printf(" "); 2902 print_sched_time(r->run_stats.max, 6); 2903 printf(" "); 2904 printf("%5.2f", stddev); 2905 printf(" %5" PRIu64, r->migrations); 2906 printf("\n"); 2907 } 2908 2909 static void print_thread_waittime(struct thread *t, 2910 struct thread_runtime *r) 2911 { 2912 printf("%*s %5d %9" PRIu64 " ", 2913 comm_width, timehist_get_commstr(t), thread__ppid(t), 2914 (u64) r->run_stats.n); 2915 2916 print_sched_time(r->total_run_time, 8); 2917 print_sched_time(r->total_sleep_time, 6); 2918 printf(" "); 2919 print_sched_time(r->total_iowait_time, 6); 2920 printf(" "); 2921 print_sched_time(r->total_preempt_time, 6); 2922 printf(" "); 2923 print_sched_time(r->total_delay_time, 6); 2924 printf("\n"); 2925 } 2926 2927 struct total_run_stats { 2928 struct perf_sched *sched; 2929 u64 sched_count; 2930 u64 task_count; 2931 u64 total_run_time; 2932 }; 2933 2934 static int show_thread_runtime(struct thread *t, void *priv) 2935 { 2936 struct total_run_stats *stats = priv; 2937 struct thread_runtime *r; 2938 2939 if (thread__is_filtered(t)) 2940 return 0; 2941 2942 r = thread__priv(t); 2943 if (r && r->run_stats.n) { 2944 stats->task_count++; 2945 stats->sched_count += r->run_stats.n; 2946 stats->total_run_time += r->total_run_time; 2947 2948 if (stats->sched->show_state) 2949 print_thread_waittime(t, r); 2950 else 2951 print_thread_runtime(t, r); 2952 } 2953 2954 return 0; 2955 } 2956 2957 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node) 2958 { 2959 const char *sep = " <- "; 2960 struct callchain_list *chain; 2961 size_t ret = 0; 2962 char bf[1024]; 2963 bool first; 2964 2965 if (node == NULL) 2966 return 0; 2967 2968 ret = callchain__fprintf_folded(fp, node->parent); 2969 first = (ret == 0); 2970 2971 list_for_each_entry(chain, &node->val, list) { 2972 if (chain->ip >= PERF_CONTEXT_MAX) 2973 continue; 2974 if (chain->ms.sym && chain->ms.sym->ignore) 2975 continue; 2976 ret += fprintf(fp, "%s%s", first ? "" : sep, 2977 callchain_list__sym_name(chain, bf, sizeof(bf), 2978 false)); 2979 first = false; 2980 } 2981 2982 return ret; 2983 } 2984 2985 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root) 2986 { 2987 size_t ret = 0; 2988 FILE *fp = stdout; 2989 struct callchain_node *chain; 2990 struct rb_node *rb_node = rb_first_cached(root); 2991 2992 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains"); 2993 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line, 2994 graph_dotted_line); 2995 2996 while (rb_node) { 2997 chain = rb_entry(rb_node, struct callchain_node, rb_node); 2998 rb_node = rb_next(rb_node); 2999 3000 ret += fprintf(fp, " "); 3001 print_sched_time(chain->hit, 12); 3002 ret += 16; /* print_sched_time returns 2nd arg + 4 */ 3003 ret += fprintf(fp, " %8d ", chain->count); 3004 ret += callchain__fprintf_folded(fp, chain); 3005 ret += fprintf(fp, "\n"); 3006 } 3007 3008 return ret; 3009 } 3010 3011 static void timehist_print_summary(struct perf_sched *sched, 3012 struct perf_session *session) 3013 { 3014 struct machine *m = &session->machines.host; 3015 struct total_run_stats totals; 3016 u64 task_count; 3017 struct thread *t; 3018 struct thread_runtime *r; 3019 int i; 3020 u64 hist_time = sched->hist_time.end - sched->hist_time.start; 3021 3022 memset(&totals, 0, sizeof(totals)); 3023 totals.sched = sched; 3024 3025 if (sched->idle_hist) { 3026 printf("\nIdle-time summary\n"); 3027 printf("%*s parent sched-out ", comm_width, "comm"); 3028 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n"); 3029 } else if (sched->show_state) { 3030 printf("\nWait-time summary\n"); 3031 printf("%*s parent sched-in ", comm_width, "comm"); 3032 printf(" run-time sleep iowait preempt delay\n"); 3033 } else { 3034 printf("\nRuntime summary\n"); 3035 printf("%*s parent sched-in ", comm_width, "comm"); 3036 printf(" run-time min-run avg-run max-run stddev migrations\n"); 3037 } 3038 printf("%*s (count) ", comm_width, ""); 3039 printf(" (msec) (msec) (msec) (msec) %s\n", 3040 sched->show_state ? "(msec)" : "%"); 3041 printf("%.117s\n", graph_dotted_line); 3042 3043 machine__for_each_thread(m, show_thread_runtime, &totals); 3044 task_count = totals.task_count; 3045 if (!task_count) 3046 printf("<no still running tasks>\n"); 3047 3048 /* CPU idle stats not tracked when samples were skipped */ 3049 if (sched->skipped_samples && !sched->idle_hist) 3050 return; 3051 3052 printf("\nIdle stats:\n"); 3053 for (i = 0; i < idle_max_cpu; ++i) { 3054 if (cpu_list && !test_bit(i, cpu_bitmap)) 3055 continue; 3056 3057 t = idle_threads[i]; 3058 if (!t) 3059 continue; 3060 3061 r = thread__priv(t); 3062 if (r && r->run_stats.n) { 3063 totals.sched_count += r->run_stats.n; 3064 printf(" CPU %2d idle for ", i); 3065 print_sched_time(r->total_run_time, 6); 3066 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time); 3067 } else 3068 printf(" CPU %2d idle entire time window\n", i); 3069 } 3070 3071 if (sched->idle_hist && sched->show_callchain) { 3072 callchain_param.mode = CHAIN_FOLDED; 3073 callchain_param.value = CCVAL_PERIOD; 3074 3075 callchain_register_param(&callchain_param); 3076 3077 printf("\nIdle stats by callchain:\n"); 3078 for (i = 0; i < idle_max_cpu; ++i) { 3079 struct idle_thread_runtime *itr; 3080 3081 t = idle_threads[i]; 3082 if (!t) 3083 continue; 3084 3085 itr = thread__priv(t); 3086 if (itr == NULL) 3087 continue; 3088 3089 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain, 3090 0, &callchain_param); 3091 3092 printf(" CPU %2d:", i); 3093 print_sched_time(itr->tr.total_run_time, 6); 3094 printf(" msec\n"); 3095 timehist_print_idlehist_callchain(&itr->sorted_root); 3096 printf("\n"); 3097 } 3098 } 3099 3100 printf("\n" 3101 " Total number of unique tasks: %" PRIu64 "\n" 3102 "Total number of context switches: %" PRIu64 "\n", 3103 totals.task_count, totals.sched_count); 3104 3105 printf(" Total run time (msec): "); 3106 print_sched_time(totals.total_run_time, 2); 3107 printf("\n"); 3108 3109 printf(" Total scheduling time (msec): "); 3110 print_sched_time(hist_time, 2); 3111 printf(" (x %d)\n", sched->max_cpu.cpu); 3112 } 3113 3114 typedef int (*sched_handler)(const struct perf_tool *tool, 3115 union perf_event *event, 3116 struct evsel *evsel, 3117 struct perf_sample *sample, 3118 struct machine *machine); 3119 3120 static int perf_timehist__process_sample(const struct perf_tool *tool, 3121 union perf_event *event, 3122 struct perf_sample *sample, 3123 struct evsel *evsel, 3124 struct machine *machine) 3125 { 3126 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 3127 int err = 0; 3128 struct perf_cpu this_cpu = { 3129 .cpu = sample->cpu, 3130 }; 3131 3132 if (this_cpu.cpu > sched->max_cpu.cpu) 3133 sched->max_cpu = this_cpu; 3134 3135 if (evsel->handler != NULL) { 3136 sched_handler f = evsel->handler; 3137 3138 err = f(tool, event, evsel, sample, machine); 3139 } 3140 3141 return err; 3142 } 3143 3144 static int timehist_check_attr(struct perf_sched *sched, 3145 struct evlist *evlist) 3146 { 3147 struct evsel *evsel; 3148 struct evsel_runtime *er; 3149 3150 list_for_each_entry(evsel, &evlist->core.entries, core.node) { 3151 er = evsel__get_runtime(evsel); 3152 if (er == NULL) { 3153 pr_err("Failed to allocate memory for evsel runtime data\n"); 3154 return -1; 3155 } 3156 3157 /* only need to save callchain related to sched_switch event */ 3158 if (sched->show_callchain && 3159 evsel__name_is(evsel, "sched:sched_switch") && 3160 !evsel__has_callchain(evsel)) { 3161 pr_info("Samples of sched_switch event do not have callchains.\n"); 3162 sched->show_callchain = 0; 3163 symbol_conf.use_callchain = 0; 3164 } 3165 } 3166 3167 return 0; 3168 } 3169 3170 static int timehist_parse_prio_str(struct perf_sched *sched) 3171 { 3172 char *p; 3173 unsigned long start_prio, end_prio; 3174 const char *str = sched->prio_str; 3175 3176 if (!str) 3177 return 0; 3178 3179 while (isdigit(*str)) { 3180 p = NULL; 3181 start_prio = strtoul(str, &p, 0); 3182 if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-')) 3183 return -1; 3184 3185 if (*p == '-') { 3186 str = ++p; 3187 p = NULL; 3188 end_prio = strtoul(str, &p, 0); 3189 3190 if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ',')) 3191 return -1; 3192 3193 if (end_prio < start_prio) 3194 return -1; 3195 } else { 3196 end_prio = start_prio; 3197 } 3198 3199 for (; start_prio <= end_prio; start_prio++) 3200 __set_bit(start_prio, sched->prio_bitmap); 3201 3202 if (*p) 3203 ++p; 3204 3205 str = p; 3206 } 3207 3208 return 0; 3209 } 3210 3211 static int perf_sched__timehist(struct perf_sched *sched) 3212 { 3213 struct evsel_str_handler handlers[] = { 3214 { "sched:sched_switch", timehist_sched_switch_event, }, 3215 { "sched:sched_wakeup", timehist_sched_wakeup_event, }, 3216 { "sched:sched_waking", timehist_sched_wakeup_event, }, 3217 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, }, 3218 }; 3219 const struct evsel_str_handler migrate_handlers[] = { 3220 { "sched:sched_migrate_task", timehist_migrate_task_event, }, 3221 }; 3222 struct perf_data data = { 3223 .path = input_name, 3224 .mode = PERF_DATA_MODE_READ, 3225 .force = sched->force, 3226 }; 3227 3228 struct perf_session *session; 3229 struct evlist *evlist; 3230 int err = -1; 3231 3232 /* 3233 * event handlers for timehist option 3234 */ 3235 sched->tool.sample = perf_timehist__process_sample; 3236 sched->tool.mmap = perf_event__process_mmap; 3237 sched->tool.comm = perf_event__process_comm; 3238 sched->tool.exit = perf_event__process_exit; 3239 sched->tool.fork = perf_event__process_fork; 3240 sched->tool.lost = process_lost; 3241 sched->tool.attr = perf_event__process_attr; 3242 sched->tool.tracing_data = perf_event__process_tracing_data; 3243 sched->tool.build_id = perf_event__process_build_id; 3244 3245 sched->tool.ordering_requires_timestamps = true; 3246 3247 symbol_conf.use_callchain = sched->show_callchain; 3248 3249 session = perf_session__new(&data, &sched->tool); 3250 if (IS_ERR(session)) 3251 return PTR_ERR(session); 3252 3253 if (cpu_list) { 3254 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap); 3255 if (err < 0) 3256 goto out; 3257 } 3258 3259 evlist = session->evlist; 3260 3261 symbol__init(&session->header.env); 3262 3263 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) { 3264 pr_err("Invalid time string\n"); 3265 err = -EINVAL; 3266 goto out; 3267 } 3268 3269 if (timehist_check_attr(sched, evlist) != 0) 3270 goto out; 3271 3272 if (timehist_parse_prio_str(sched) != 0) { 3273 pr_err("Invalid prio string\n"); 3274 goto out; 3275 } 3276 3277 setup_pager(); 3278 3279 /* prefer sched_waking if it is captured */ 3280 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) 3281 handlers[1].handler = timehist_sched_wakeup_ignore; 3282 3283 /* setup per-evsel handlers */ 3284 if (perf_session__set_tracepoints_handlers(session, handlers)) 3285 goto out; 3286 3287 /* sched_switch event at a minimum needs to exist */ 3288 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) { 3289 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n"); 3290 goto out; 3291 } 3292 3293 if (sched->show_migrations && 3294 perf_session__set_tracepoints_handlers(session, migrate_handlers)) 3295 goto out; 3296 3297 /* pre-allocate struct for per-CPU idle stats */ 3298 sched->max_cpu.cpu = session->header.env.nr_cpus_online; 3299 if (sched->max_cpu.cpu == 0) 3300 sched->max_cpu.cpu = 4; 3301 if (init_idle_threads(sched->max_cpu.cpu)) 3302 goto out; 3303 3304 /* summary_only implies summary option, but don't overwrite summary if set */ 3305 if (sched->summary_only) 3306 sched->summary = sched->summary_only; 3307 3308 if (!sched->summary_only) 3309 timehist_header(sched); 3310 3311 err = perf_session__process_events(session); 3312 if (err) { 3313 pr_err("Failed to process events, error %d", err); 3314 goto out; 3315 } 3316 3317 sched->nr_events = evlist->stats.nr_events[0]; 3318 sched->nr_lost_events = evlist->stats.total_lost; 3319 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST]; 3320 3321 if (sched->summary) 3322 timehist_print_summary(sched, session); 3323 3324 out: 3325 free_idle_threads(); 3326 perf_session__delete(session); 3327 3328 return err; 3329 } 3330 3331 3332 static void print_bad_events(struct perf_sched *sched) 3333 { 3334 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 3335 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 3336 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 3337 sched->nr_unordered_timestamps, sched->nr_timestamps); 3338 } 3339 if (sched->nr_lost_events && sched->nr_events) { 3340 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 3341 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 3342 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 3343 } 3344 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 3345 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 3346 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 3347 sched->nr_context_switch_bugs, sched->nr_timestamps); 3348 if (sched->nr_lost_events) 3349 printf(" (due to lost events?)"); 3350 printf("\n"); 3351 } 3352 } 3353 3354 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data) 3355 { 3356 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 3357 struct work_atoms *this; 3358 const char *comm = thread__comm_str(data->thread), *this_comm; 3359 bool leftmost = true; 3360 3361 while (*new) { 3362 int cmp; 3363 3364 this = container_of(*new, struct work_atoms, node); 3365 parent = *new; 3366 3367 this_comm = thread__comm_str(this->thread); 3368 cmp = strcmp(comm, this_comm); 3369 if (cmp > 0) { 3370 new = &((*new)->rb_left); 3371 } else if (cmp < 0) { 3372 new = &((*new)->rb_right); 3373 leftmost = false; 3374 } else { 3375 this->num_merged++; 3376 this->total_runtime += data->total_runtime; 3377 this->nb_atoms += data->nb_atoms; 3378 this->total_lat += data->total_lat; 3379 list_splice(&data->work_list, &this->work_list); 3380 if (this->max_lat < data->max_lat) { 3381 this->max_lat = data->max_lat; 3382 this->max_lat_start = data->max_lat_start; 3383 this->max_lat_end = data->max_lat_end; 3384 } 3385 zfree(&data); 3386 return; 3387 } 3388 } 3389 3390 data->num_merged++; 3391 rb_link_node(&data->node, parent, new); 3392 rb_insert_color_cached(&data->node, root, leftmost); 3393 } 3394 3395 static void perf_sched__merge_lat(struct perf_sched *sched) 3396 { 3397 struct work_atoms *data; 3398 struct rb_node *node; 3399 3400 if (sched->skip_merge) 3401 return; 3402 3403 while ((node = rb_first_cached(&sched->atom_root))) { 3404 rb_erase_cached(node, &sched->atom_root); 3405 data = rb_entry(node, struct work_atoms, node); 3406 __merge_work_atoms(&sched->merged_atom_root, data); 3407 } 3408 } 3409 3410 static int setup_cpus_switch_event(struct perf_sched *sched) 3411 { 3412 unsigned int i; 3413 3414 sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched))); 3415 if (!sched->cpu_last_switched) 3416 return -1; 3417 3418 sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid))); 3419 if (!sched->curr_pid) { 3420 zfree(&sched->cpu_last_switched); 3421 return -1; 3422 } 3423 3424 for (i = 0; i < MAX_CPUS; i++) 3425 sched->curr_pid[i] = -1; 3426 3427 return 0; 3428 } 3429 3430 static void free_cpus_switch_event(struct perf_sched *sched) 3431 { 3432 zfree(&sched->curr_pid); 3433 zfree(&sched->cpu_last_switched); 3434 } 3435 3436 static int perf_sched__lat(struct perf_sched *sched) 3437 { 3438 int rc = -1; 3439 struct rb_node *next; 3440 3441 setup_pager(); 3442 3443 if (setup_cpus_switch_event(sched)) 3444 return rc; 3445 3446 if (perf_sched__read_events(sched)) 3447 goto out_free_cpus_switch_event; 3448 3449 perf_sched__merge_lat(sched); 3450 perf_sched__sort_lat(sched); 3451 3452 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n"); 3453 printf(" Task | Runtime ms | Count | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n"); 3454 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n"); 3455 3456 next = rb_first_cached(&sched->sorted_atom_root); 3457 3458 while (next) { 3459 struct work_atoms *work_list; 3460 3461 work_list = rb_entry(next, struct work_atoms, node); 3462 output_lat_thread(sched, work_list); 3463 next = rb_next(next); 3464 thread__zput(work_list->thread); 3465 } 3466 3467 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3468 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 3469 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count); 3470 3471 printf(" ---------------------------------------------------\n"); 3472 3473 print_bad_events(sched); 3474 printf("\n"); 3475 3476 rc = 0; 3477 3478 out_free_cpus_switch_event: 3479 free_cpus_switch_event(sched); 3480 return rc; 3481 } 3482 3483 static int setup_map_cpus(struct perf_sched *sched) 3484 { 3485 sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF); 3486 3487 if (sched->map.comp) { 3488 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int)); 3489 if (!sched->map.comp_cpus) 3490 return -1; 3491 } 3492 3493 if (sched->map.cpus_str) { 3494 sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str); 3495 if (!sched->map.cpus) { 3496 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str); 3497 zfree(&sched->map.comp_cpus); 3498 return -1; 3499 } 3500 } 3501 3502 return 0; 3503 } 3504 3505 static int setup_color_pids(struct perf_sched *sched) 3506 { 3507 struct perf_thread_map *map; 3508 3509 if (!sched->map.color_pids_str) 3510 return 0; 3511 3512 map = thread_map__new_by_tid_str(sched->map.color_pids_str); 3513 if (!map) { 3514 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str); 3515 return -1; 3516 } 3517 3518 sched->map.color_pids = map; 3519 return 0; 3520 } 3521 3522 static int setup_color_cpus(struct perf_sched *sched) 3523 { 3524 struct perf_cpu_map *map; 3525 3526 if (!sched->map.color_cpus_str) 3527 return 0; 3528 3529 map = perf_cpu_map__new(sched->map.color_cpus_str); 3530 if (!map) { 3531 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str); 3532 return -1; 3533 } 3534 3535 sched->map.color_cpus = map; 3536 return 0; 3537 } 3538 3539 static int perf_sched__map(struct perf_sched *sched) 3540 { 3541 int rc = -1; 3542 3543 sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread))); 3544 if (!sched->curr_thread) 3545 return rc; 3546 3547 sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread))); 3548 if (!sched->curr_out_thread) 3549 return rc; 3550 3551 if (setup_cpus_switch_event(sched)) 3552 goto out_free_curr_thread; 3553 3554 if (setup_map_cpus(sched)) 3555 goto out_free_cpus_switch_event; 3556 3557 if (setup_color_pids(sched)) 3558 goto out_put_map_cpus; 3559 3560 if (setup_color_cpus(sched)) 3561 goto out_put_color_pids; 3562 3563 setup_pager(); 3564 if (perf_sched__read_events(sched)) 3565 goto out_put_color_cpus; 3566 3567 rc = 0; 3568 print_bad_events(sched); 3569 3570 out_put_color_cpus: 3571 perf_cpu_map__put(sched->map.color_cpus); 3572 3573 out_put_color_pids: 3574 perf_thread_map__put(sched->map.color_pids); 3575 3576 out_put_map_cpus: 3577 zfree(&sched->map.comp_cpus); 3578 perf_cpu_map__put(sched->map.cpus); 3579 3580 out_free_cpus_switch_event: 3581 free_cpus_switch_event(sched); 3582 3583 out_free_curr_thread: 3584 zfree(&sched->curr_thread); 3585 return rc; 3586 } 3587 3588 static int perf_sched__replay(struct perf_sched *sched) 3589 { 3590 int ret; 3591 unsigned long i; 3592 3593 mutex_init(&sched->start_work_mutex); 3594 mutex_init(&sched->work_done_wait_mutex); 3595 3596 ret = setup_cpus_switch_event(sched); 3597 if (ret) 3598 goto out_mutex_destroy; 3599 3600 calibrate_run_measurement_overhead(sched); 3601 calibrate_sleep_measurement_overhead(sched); 3602 3603 test_calibrations(sched); 3604 3605 ret = perf_sched__read_events(sched); 3606 if (ret) 3607 goto out_free_cpus_switch_event; 3608 3609 printf("nr_run_events: %ld\n", sched->nr_run_events); 3610 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 3611 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 3612 3613 if (sched->targetless_wakeups) 3614 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 3615 if (sched->multitarget_wakeups) 3616 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 3617 if (sched->nr_run_events_optimized) 3618 printf("run atoms optimized: %ld\n", 3619 sched->nr_run_events_optimized); 3620 3621 print_task_traces(sched); 3622 add_cross_task_wakeups(sched); 3623 3624 sched->thread_funcs_exit = false; 3625 create_tasks(sched); 3626 printf("------------------------------------------------------------\n"); 3627 if (sched->replay_repeat == 0) 3628 sched->replay_repeat = UINT_MAX; 3629 3630 for (i = 0; i < sched->replay_repeat; i++) 3631 run_one_test(sched); 3632 3633 sched->thread_funcs_exit = true; 3634 destroy_tasks(sched); 3635 3636 out_free_cpus_switch_event: 3637 free_cpus_switch_event(sched); 3638 3639 out_mutex_destroy: 3640 mutex_destroy(&sched->start_work_mutex); 3641 mutex_destroy(&sched->work_done_wait_mutex); 3642 return ret; 3643 } 3644 3645 static void setup_sorting(struct perf_sched *sched, const struct option *options, 3646 const char * const usage_msg[]) 3647 { 3648 char *tmp, *tok, *str = strdup(sched->sort_order); 3649 3650 for (tok = strtok_r(str, ", ", &tmp); 3651 tok; tok = strtok_r(NULL, ", ", &tmp)) { 3652 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 3653 usage_with_options_msg(usage_msg, options, 3654 "Unknown --sort key: `%s'", tok); 3655 } 3656 } 3657 3658 free(str); 3659 3660 sort_dimension__add("pid", &sched->cmp_pid); 3661 } 3662 3663 static bool schedstat_events_exposed(void) 3664 { 3665 /* 3666 * Select "sched:sched_stat_wait" event to check 3667 * whether schedstat tracepoints are exposed. 3668 */ 3669 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ? 3670 false : true; 3671 } 3672 3673 static int __cmd_record(int argc, const char **argv) 3674 { 3675 unsigned int rec_argc, i, j; 3676 char **rec_argv; 3677 const char **rec_argv_copy; 3678 const char * const record_args[] = { 3679 "record", 3680 "-a", 3681 "-R", 3682 "-m", "1024", 3683 "-c", "1", 3684 "-e", "sched:sched_switch", 3685 "-e", "sched:sched_stat_runtime", 3686 "-e", "sched:sched_process_fork", 3687 "-e", "sched:sched_wakeup_new", 3688 "-e", "sched:sched_migrate_task", 3689 }; 3690 3691 /* 3692 * The tracepoints trace_sched_stat_{wait, sleep, iowait} 3693 * are not exposed to user if CONFIG_SCHEDSTATS is not set, 3694 * to prevent "perf sched record" execution failure, determine 3695 * whether to record schedstat events according to actual situation. 3696 */ 3697 const char * const schedstat_args[] = { 3698 "-e", "sched:sched_stat_wait", 3699 "-e", "sched:sched_stat_sleep", 3700 "-e", "sched:sched_stat_iowait", 3701 }; 3702 unsigned int schedstat_argc = schedstat_events_exposed() ? 3703 ARRAY_SIZE(schedstat_args) : 0; 3704 3705 struct tep_event *waking_event; 3706 int ret; 3707 3708 /* 3709 * +2 for either "-e", "sched:sched_wakeup" or 3710 * "-e", "sched:sched_waking" 3711 */ 3712 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1; 3713 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 3714 if (rec_argv == NULL) 3715 return -ENOMEM; 3716 rec_argv_copy = calloc(rec_argc + 1, sizeof(char *)); 3717 if (rec_argv_copy == NULL) { 3718 free(rec_argv); 3719 return -ENOMEM; 3720 } 3721 3722 for (i = 0; i < ARRAY_SIZE(record_args); i++) 3723 rec_argv[i] = strdup(record_args[i]); 3724 3725 rec_argv[i++] = strdup("-e"); 3726 waking_event = trace_event__tp_format("sched", "sched_waking"); 3727 if (!IS_ERR(waking_event)) 3728 rec_argv[i++] = strdup("sched:sched_waking"); 3729 else 3730 rec_argv[i++] = strdup("sched:sched_wakeup"); 3731 3732 for (j = 0; j < schedstat_argc; j++) 3733 rec_argv[i++] = strdup(schedstat_args[j]); 3734 3735 for (j = 1; j < (unsigned int)argc; j++, i++) 3736 rec_argv[i] = strdup(argv[j]); 3737 3738 BUG_ON(i != rec_argc); 3739 3740 memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc); 3741 ret = cmd_record(rec_argc, rec_argv_copy); 3742 3743 for (i = 0; i < rec_argc; i++) 3744 free(rec_argv[i]); 3745 free(rec_argv); 3746 free(rec_argv_copy); 3747 3748 return ret; 3749 } 3750 3751 int cmd_sched(int argc, const char **argv) 3752 { 3753 static const char default_sort_order[] = "avg, max, switch, runtime"; 3754 struct perf_sched sched = { 3755 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 3756 .sort_list = LIST_HEAD_INIT(sched.sort_list), 3757 .sort_order = default_sort_order, 3758 .replay_repeat = 10, 3759 .profile_cpu = -1, 3760 .next_shortname1 = 'A', 3761 .next_shortname2 = '0', 3762 .skip_merge = 0, 3763 .show_callchain = 1, 3764 .max_stack = 5, 3765 }; 3766 const struct option sched_options[] = { 3767 OPT_STRING('i', "input", &input_name, "file", 3768 "input file name"), 3769 OPT_INCR('v', "verbose", &verbose, 3770 "be more verbose (show symbol address, etc)"), 3771 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 3772 "dump raw trace in ASCII"), 3773 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), 3774 OPT_END() 3775 }; 3776 const struct option latency_options[] = { 3777 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 3778 "sort by key(s): runtime, switch, avg, max"), 3779 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 3780 "CPU to profile on"), 3781 OPT_BOOLEAN('p', "pids", &sched.skip_merge, 3782 "latency stats per pid instead of per comm"), 3783 OPT_PARENT(sched_options) 3784 }; 3785 const struct option replay_options[] = { 3786 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 3787 "repeat the workload replay N times (0: infinite)"), 3788 OPT_PARENT(sched_options) 3789 }; 3790 const struct option map_options[] = { 3791 OPT_BOOLEAN(0, "compact", &sched.map.comp, 3792 "map output in compact mode"), 3793 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids", 3794 "highlight given pids in map"), 3795 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus", 3796 "highlight given CPUs in map"), 3797 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus", 3798 "display given CPUs in map"), 3799 OPT_STRING(0, "task-name", &sched.map.task_name, "task", 3800 "map output only for the given task name(s)."), 3801 OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy, 3802 "given command name can be partially matched (fuzzy matching)"), 3803 OPT_PARENT(sched_options) 3804 }; 3805 const struct option timehist_options[] = { 3806 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name, 3807 "file", "vmlinux pathname"), 3808 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name, 3809 "file", "kallsyms pathname"), 3810 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain, 3811 "Display call chains if present (default on)"), 3812 OPT_UINTEGER(0, "max-stack", &sched.max_stack, 3813 "Maximum number of functions to display backtrace."), 3814 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", 3815 "Look for files with symbols relative to this directory"), 3816 OPT_BOOLEAN('s', "summary", &sched.summary_only, 3817 "Show only syscall summary with statistics"), 3818 OPT_BOOLEAN('S', "with-summary", &sched.summary, 3819 "Show all syscalls and summary with statistics"), 3820 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"), 3821 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"), 3822 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"), 3823 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"), 3824 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"), 3825 OPT_STRING(0, "time", &sched.time_str, "str", 3826 "Time span for analysis (start,stop)"), 3827 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"), 3828 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]", 3829 "analyze events only for given process id(s)"), 3830 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]", 3831 "analyze events only for given thread id(s)"), 3832 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"), 3833 OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"), 3834 OPT_STRING(0, "prio", &sched.prio_str, "prio", 3835 "analyze events only for given task priority(ies)"), 3836 OPT_PARENT(sched_options) 3837 }; 3838 3839 const char * const latency_usage[] = { 3840 "perf sched latency [<options>]", 3841 NULL 3842 }; 3843 const char * const replay_usage[] = { 3844 "perf sched replay [<options>]", 3845 NULL 3846 }; 3847 const char * const map_usage[] = { 3848 "perf sched map [<options>]", 3849 NULL 3850 }; 3851 const char * const timehist_usage[] = { 3852 "perf sched timehist [<options>]", 3853 NULL 3854 }; 3855 const char *const sched_subcommands[] = { "record", "latency", "map", 3856 "replay", "script", 3857 "timehist", NULL }; 3858 const char *sched_usage[] = { 3859 NULL, 3860 NULL 3861 }; 3862 struct trace_sched_handler lat_ops = { 3863 .wakeup_event = latency_wakeup_event, 3864 .switch_event = latency_switch_event, 3865 .runtime_event = latency_runtime_event, 3866 .migrate_task_event = latency_migrate_task_event, 3867 }; 3868 struct trace_sched_handler map_ops = { 3869 .switch_event = map_switch_event, 3870 }; 3871 struct trace_sched_handler replay_ops = { 3872 .wakeup_event = replay_wakeup_event, 3873 .switch_event = replay_switch_event, 3874 .fork_event = replay_fork_event, 3875 }; 3876 int ret; 3877 3878 perf_tool__init(&sched.tool, /*ordered_events=*/true); 3879 sched.tool.sample = perf_sched__process_tracepoint_sample; 3880 sched.tool.comm = perf_sched__process_comm; 3881 sched.tool.namespaces = perf_event__process_namespaces; 3882 sched.tool.lost = perf_event__process_lost; 3883 sched.tool.fork = perf_sched__process_fork_event; 3884 3885 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 3886 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 3887 if (!argc) 3888 usage_with_options(sched_usage, sched_options); 3889 3890 /* 3891 * Aliased to 'perf script' for now: 3892 */ 3893 if (!strcmp(argv[0], "script")) { 3894 return cmd_script(argc, argv); 3895 } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 3896 return __cmd_record(argc, argv); 3897 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) { 3898 sched.tp_handler = &lat_ops; 3899 if (argc > 1) { 3900 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 3901 if (argc) 3902 usage_with_options(latency_usage, latency_options); 3903 } 3904 setup_sorting(&sched, latency_options, latency_usage); 3905 return perf_sched__lat(&sched); 3906 } else if (!strcmp(argv[0], "map")) { 3907 if (argc) { 3908 argc = parse_options(argc, argv, map_options, map_usage, 0); 3909 if (argc) 3910 usage_with_options(map_usage, map_options); 3911 3912 if (sched.map.task_name) { 3913 sched.map.task_names = strlist__new(sched.map.task_name, NULL); 3914 if (sched.map.task_names == NULL) { 3915 fprintf(stderr, "Failed to parse task names\n"); 3916 return -1; 3917 } 3918 } 3919 } 3920 sched.tp_handler = &map_ops; 3921 setup_sorting(&sched, latency_options, latency_usage); 3922 return perf_sched__map(&sched); 3923 } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) { 3924 sched.tp_handler = &replay_ops; 3925 if (argc) { 3926 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 3927 if (argc) 3928 usage_with_options(replay_usage, replay_options); 3929 } 3930 return perf_sched__replay(&sched); 3931 } else if (!strcmp(argv[0], "timehist")) { 3932 if (argc) { 3933 argc = parse_options(argc, argv, timehist_options, 3934 timehist_usage, 0); 3935 if (argc) 3936 usage_with_options(timehist_usage, timehist_options); 3937 } 3938 if ((sched.show_wakeups || sched.show_next) && 3939 sched.summary_only) { 3940 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n"); 3941 parse_options_usage(timehist_usage, timehist_options, "s", true); 3942 if (sched.show_wakeups) 3943 parse_options_usage(NULL, timehist_options, "w", true); 3944 if (sched.show_next) 3945 parse_options_usage(NULL, timehist_options, "n", true); 3946 return -EINVAL; 3947 } 3948 ret = symbol__validate_sym_arguments(); 3949 if (ret) 3950 return ret; 3951 3952 return perf_sched__timehist(&sched); 3953 } else { 3954 usage_with_options(sched_usage, sched_options); 3955 } 3956 3957 /* free usage string allocated by parse_options_subcommand */ 3958 free((void *)sched_usage[0]); 3959 3960 return 0; 3961 } 3962