1 // SPDX-License-Identifier: GPL-2.0 2 #include "builtin.h" 3 #include "perf-sys.h" 4 5 #include "util/cpumap.h" 6 #include "util/evlist.h" 7 #include "util/evsel.h" 8 #include "util/evsel_fprintf.h" 9 #include "util/mutex.h" 10 #include "util/symbol.h" 11 #include "util/thread.h" 12 #include "util/header.h" 13 #include "util/session.h" 14 #include "util/tool.h" 15 #include "util/cloexec.h" 16 #include "util/thread_map.h" 17 #include "util/color.h" 18 #include "util/stat.h" 19 #include "util/string2.h" 20 #include "util/callchain.h" 21 #include "util/time-utils.h" 22 23 #include <subcmd/pager.h> 24 #include <subcmd/parse-options.h> 25 #include "util/trace-event.h" 26 27 #include "util/debug.h" 28 #include "util/event.h" 29 #include "util/util.h" 30 31 #include <linux/kernel.h> 32 #include <linux/log2.h> 33 #include <linux/zalloc.h> 34 #include <sys/prctl.h> 35 #include <sys/resource.h> 36 #include <inttypes.h> 37 38 #include <errno.h> 39 #include <semaphore.h> 40 #include <pthread.h> 41 #include <math.h> 42 #include <api/fs/fs.h> 43 #include <perf/cpumap.h> 44 #include <linux/time64.h> 45 #include <linux/err.h> 46 47 #include <linux/ctype.h> 48 49 #define PR_SET_NAME 15 /* Set process name */ 50 #define MAX_CPUS 4096 51 #define COMM_LEN 20 52 #define SYM_LEN 129 53 #define MAX_PID 1024000 54 55 static const char *cpu_list; 56 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS); 57 58 struct sched_atom; 59 60 struct task_desc { 61 unsigned long nr; 62 unsigned long pid; 63 char comm[COMM_LEN]; 64 65 unsigned long nr_events; 66 unsigned long curr_event; 67 struct sched_atom **atoms; 68 69 pthread_t thread; 70 sem_t sleep_sem; 71 72 sem_t ready_for_work; 73 sem_t work_done_sem; 74 75 u64 cpu_usage; 76 }; 77 78 enum sched_event_type { 79 SCHED_EVENT_RUN, 80 SCHED_EVENT_SLEEP, 81 SCHED_EVENT_WAKEUP, 82 SCHED_EVENT_MIGRATION, 83 }; 84 85 struct sched_atom { 86 enum sched_event_type type; 87 int specific_wait; 88 u64 timestamp; 89 u64 duration; 90 unsigned long nr; 91 sem_t *wait_sem; 92 struct task_desc *wakee; 93 }; 94 95 enum thread_state { 96 THREAD_SLEEPING = 0, 97 THREAD_WAIT_CPU, 98 THREAD_SCHED_IN, 99 THREAD_IGNORE 100 }; 101 102 struct work_atom { 103 struct list_head list; 104 enum thread_state state; 105 u64 sched_out_time; 106 u64 wake_up_time; 107 u64 sched_in_time; 108 u64 runtime; 109 }; 110 111 struct work_atoms { 112 struct list_head work_list; 113 struct thread *thread; 114 struct rb_node node; 115 u64 max_lat; 116 u64 max_lat_start; 117 u64 max_lat_end; 118 u64 total_lat; 119 u64 nb_atoms; 120 u64 total_runtime; 121 int num_merged; 122 }; 123 124 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 125 126 struct perf_sched; 127 128 struct trace_sched_handler { 129 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel, 130 struct perf_sample *sample, struct machine *machine); 131 132 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel, 133 struct perf_sample *sample, struct machine *machine); 134 135 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel, 136 struct perf_sample *sample, struct machine *machine); 137 138 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 139 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 140 struct machine *machine); 141 142 int (*migrate_task_event)(struct perf_sched *sched, 143 struct evsel *evsel, 144 struct perf_sample *sample, 145 struct machine *machine); 146 }; 147 148 #define COLOR_PIDS PERF_COLOR_BLUE 149 #define COLOR_CPUS PERF_COLOR_BG_RED 150 151 struct perf_sched_map { 152 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); 153 struct perf_cpu *comp_cpus; 154 bool comp; 155 struct perf_thread_map *color_pids; 156 const char *color_pids_str; 157 struct perf_cpu_map *color_cpus; 158 const char *color_cpus_str; 159 const char *task_name; 160 struct strlist *task_names; 161 bool fuzzy; 162 struct perf_cpu_map *cpus; 163 const char *cpus_str; 164 }; 165 166 struct perf_sched { 167 struct perf_tool tool; 168 const char *sort_order; 169 unsigned long nr_tasks; 170 struct task_desc **pid_to_task; 171 struct task_desc **tasks; 172 const struct trace_sched_handler *tp_handler; 173 struct mutex start_work_mutex; 174 struct mutex work_done_wait_mutex; 175 int profile_cpu; 176 /* 177 * Track the current task - that way we can know whether there's any 178 * weird events, such as a task being switched away that is not current. 179 */ 180 struct perf_cpu max_cpu; 181 u32 *curr_pid; 182 struct thread **curr_thread; 183 struct thread **curr_out_thread; 184 char next_shortname1; 185 char next_shortname2; 186 unsigned int replay_repeat; 187 unsigned long nr_run_events; 188 unsigned long nr_sleep_events; 189 unsigned long nr_wakeup_events; 190 unsigned long nr_sleep_corrections; 191 unsigned long nr_run_events_optimized; 192 unsigned long targetless_wakeups; 193 unsigned long multitarget_wakeups; 194 unsigned long nr_runs; 195 unsigned long nr_timestamps; 196 unsigned long nr_unordered_timestamps; 197 unsigned long nr_context_switch_bugs; 198 unsigned long nr_events; 199 unsigned long nr_lost_chunks; 200 unsigned long nr_lost_events; 201 u64 run_measurement_overhead; 202 u64 sleep_measurement_overhead; 203 u64 start_time; 204 u64 cpu_usage; 205 u64 runavg_cpu_usage; 206 u64 parent_cpu_usage; 207 u64 runavg_parent_cpu_usage; 208 u64 sum_runtime; 209 u64 sum_fluct; 210 u64 run_avg; 211 u64 all_runtime; 212 u64 all_count; 213 u64 *cpu_last_switched; 214 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root; 215 struct list_head sort_list, cmp_pid; 216 bool force; 217 bool skip_merge; 218 struct perf_sched_map map; 219 220 /* options for timehist command */ 221 bool summary; 222 bool summary_only; 223 bool idle_hist; 224 bool show_callchain; 225 unsigned int max_stack; 226 bool show_cpu_visual; 227 bool show_wakeups; 228 bool show_next; 229 bool show_migrations; 230 bool show_state; 231 u64 skipped_samples; 232 const char *time_str; 233 struct perf_time_interval ptime; 234 struct perf_time_interval hist_time; 235 volatile bool thread_funcs_exit; 236 }; 237 238 /* per thread run time data */ 239 struct thread_runtime { 240 u64 last_time; /* time of previous sched in/out event */ 241 u64 dt_run; /* run time */ 242 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */ 243 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */ 244 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */ 245 u64 dt_delay; /* time between wakeup and sched-in */ 246 u64 ready_to_run; /* time of wakeup */ 247 248 struct stats run_stats; 249 u64 total_run_time; 250 u64 total_sleep_time; 251 u64 total_iowait_time; 252 u64 total_preempt_time; 253 u64 total_delay_time; 254 255 char last_state; 256 257 char shortname[3]; 258 bool comm_changed; 259 260 u64 migrations; 261 }; 262 263 /* per event run time data */ 264 struct evsel_runtime { 265 u64 *last_time; /* time this event was last seen per cpu */ 266 u32 ncpu; /* highest cpu slot allocated */ 267 }; 268 269 /* per cpu idle time data */ 270 struct idle_thread_runtime { 271 struct thread_runtime tr; 272 struct thread *last_thread; 273 struct rb_root_cached sorted_root; 274 struct callchain_root callchain; 275 struct callchain_cursor cursor; 276 }; 277 278 /* track idle times per cpu */ 279 static struct thread **idle_threads; 280 static int idle_max_cpu; 281 static char idle_comm[] = "<idle>"; 282 283 static u64 get_nsecs(void) 284 { 285 struct timespec ts; 286 287 clock_gettime(CLOCK_MONOTONIC, &ts); 288 289 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; 290 } 291 292 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 293 { 294 u64 T0 = get_nsecs(), T1; 295 296 do { 297 T1 = get_nsecs(); 298 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 299 } 300 301 static void sleep_nsecs(u64 nsecs) 302 { 303 struct timespec ts; 304 305 ts.tv_nsec = nsecs % 999999999; 306 ts.tv_sec = nsecs / 999999999; 307 308 nanosleep(&ts, NULL); 309 } 310 311 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 312 { 313 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 314 int i; 315 316 for (i = 0; i < 10; i++) { 317 T0 = get_nsecs(); 318 burn_nsecs(sched, 0); 319 T1 = get_nsecs(); 320 delta = T1-T0; 321 min_delta = min(min_delta, delta); 322 } 323 sched->run_measurement_overhead = min_delta; 324 325 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 326 } 327 328 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 329 { 330 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 331 int i; 332 333 for (i = 0; i < 10; i++) { 334 T0 = get_nsecs(); 335 sleep_nsecs(10000); 336 T1 = get_nsecs(); 337 delta = T1-T0; 338 min_delta = min(min_delta, delta); 339 } 340 min_delta -= 10000; 341 sched->sleep_measurement_overhead = min_delta; 342 343 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 344 } 345 346 static struct sched_atom * 347 get_new_event(struct task_desc *task, u64 timestamp) 348 { 349 struct sched_atom *event = zalloc(sizeof(*event)); 350 unsigned long idx = task->nr_events; 351 size_t size; 352 353 event->timestamp = timestamp; 354 event->nr = idx; 355 356 task->nr_events++; 357 size = sizeof(struct sched_atom *) * task->nr_events; 358 task->atoms = realloc(task->atoms, size); 359 BUG_ON(!task->atoms); 360 361 task->atoms[idx] = event; 362 363 return event; 364 } 365 366 static struct sched_atom *last_event(struct task_desc *task) 367 { 368 if (!task->nr_events) 369 return NULL; 370 371 return task->atoms[task->nr_events - 1]; 372 } 373 374 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 375 u64 timestamp, u64 duration) 376 { 377 struct sched_atom *event, *curr_event = last_event(task); 378 379 /* 380 * optimize an existing RUN event by merging this one 381 * to it: 382 */ 383 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 384 sched->nr_run_events_optimized++; 385 curr_event->duration += duration; 386 return; 387 } 388 389 event = get_new_event(task, timestamp); 390 391 event->type = SCHED_EVENT_RUN; 392 event->duration = duration; 393 394 sched->nr_run_events++; 395 } 396 397 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 398 u64 timestamp, struct task_desc *wakee) 399 { 400 struct sched_atom *event, *wakee_event; 401 402 event = get_new_event(task, timestamp); 403 event->type = SCHED_EVENT_WAKEUP; 404 event->wakee = wakee; 405 406 wakee_event = last_event(wakee); 407 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 408 sched->targetless_wakeups++; 409 return; 410 } 411 if (wakee_event->wait_sem) { 412 sched->multitarget_wakeups++; 413 return; 414 } 415 416 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 417 sem_init(wakee_event->wait_sem, 0, 0); 418 wakee_event->specific_wait = 1; 419 event->wait_sem = wakee_event->wait_sem; 420 421 sched->nr_wakeup_events++; 422 } 423 424 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 425 u64 timestamp, const char task_state __maybe_unused) 426 { 427 struct sched_atom *event = get_new_event(task, timestamp); 428 429 event->type = SCHED_EVENT_SLEEP; 430 431 sched->nr_sleep_events++; 432 } 433 434 static struct task_desc *register_pid(struct perf_sched *sched, 435 unsigned long pid, const char *comm) 436 { 437 struct task_desc *task; 438 static int pid_max; 439 440 if (sched->pid_to_task == NULL) { 441 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) 442 pid_max = MAX_PID; 443 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); 444 } 445 if (pid >= (unsigned long)pid_max) { 446 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * 447 sizeof(struct task_desc *))) == NULL); 448 while (pid >= (unsigned long)pid_max) 449 sched->pid_to_task[pid_max++] = NULL; 450 } 451 452 task = sched->pid_to_task[pid]; 453 454 if (task) 455 return task; 456 457 task = zalloc(sizeof(*task)); 458 task->pid = pid; 459 task->nr = sched->nr_tasks; 460 strcpy(task->comm, comm); 461 /* 462 * every task starts in sleeping state - this gets ignored 463 * if there's no wakeup pointing to this sleep state: 464 */ 465 add_sched_event_sleep(sched, task, 0, 0); 466 467 sched->pid_to_task[pid] = task; 468 sched->nr_tasks++; 469 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); 470 BUG_ON(!sched->tasks); 471 sched->tasks[task->nr] = task; 472 473 if (verbose > 0) 474 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 475 476 return task; 477 } 478 479 480 static void print_task_traces(struct perf_sched *sched) 481 { 482 struct task_desc *task; 483 unsigned long i; 484 485 for (i = 0; i < sched->nr_tasks; i++) { 486 task = sched->tasks[i]; 487 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 488 task->nr, task->comm, task->pid, task->nr_events); 489 } 490 } 491 492 static void add_cross_task_wakeups(struct perf_sched *sched) 493 { 494 struct task_desc *task1, *task2; 495 unsigned long i, j; 496 497 for (i = 0; i < sched->nr_tasks; i++) { 498 task1 = sched->tasks[i]; 499 j = i + 1; 500 if (j == sched->nr_tasks) 501 j = 0; 502 task2 = sched->tasks[j]; 503 add_sched_event_wakeup(sched, task1, 0, task2); 504 } 505 } 506 507 static void perf_sched__process_event(struct perf_sched *sched, 508 struct sched_atom *atom) 509 { 510 int ret = 0; 511 512 switch (atom->type) { 513 case SCHED_EVENT_RUN: 514 burn_nsecs(sched, atom->duration); 515 break; 516 case SCHED_EVENT_SLEEP: 517 if (atom->wait_sem) 518 ret = sem_wait(atom->wait_sem); 519 BUG_ON(ret); 520 break; 521 case SCHED_EVENT_WAKEUP: 522 if (atom->wait_sem) 523 ret = sem_post(atom->wait_sem); 524 BUG_ON(ret); 525 break; 526 case SCHED_EVENT_MIGRATION: 527 break; 528 default: 529 BUG_ON(1); 530 } 531 } 532 533 static u64 get_cpu_usage_nsec_parent(void) 534 { 535 struct rusage ru; 536 u64 sum; 537 int err; 538 539 err = getrusage(RUSAGE_SELF, &ru); 540 BUG_ON(err); 541 542 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC; 543 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC; 544 545 return sum; 546 } 547 548 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) 549 { 550 struct perf_event_attr attr; 551 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; 552 int fd; 553 struct rlimit limit; 554 bool need_privilege = false; 555 556 memset(&attr, 0, sizeof(attr)); 557 558 attr.type = PERF_TYPE_SOFTWARE; 559 attr.config = PERF_COUNT_SW_TASK_CLOCK; 560 561 force_again: 562 fd = sys_perf_event_open(&attr, 0, -1, -1, 563 perf_event_open_cloexec_flag()); 564 565 if (fd < 0) { 566 if (errno == EMFILE) { 567 if (sched->force) { 568 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); 569 limit.rlim_cur += sched->nr_tasks - cur_task; 570 if (limit.rlim_cur > limit.rlim_max) { 571 limit.rlim_max = limit.rlim_cur; 572 need_privilege = true; 573 } 574 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { 575 if (need_privilege && errno == EPERM) 576 strcpy(info, "Need privilege\n"); 577 } else 578 goto force_again; 579 } else 580 strcpy(info, "Have a try with -f option\n"); 581 } 582 pr_err("Error: sys_perf_event_open() syscall returned " 583 "with %d (%s)\n%s", fd, 584 str_error_r(errno, sbuf, sizeof(sbuf)), info); 585 exit(EXIT_FAILURE); 586 } 587 return fd; 588 } 589 590 static u64 get_cpu_usage_nsec_self(int fd) 591 { 592 u64 runtime; 593 int ret; 594 595 ret = read(fd, &runtime, sizeof(runtime)); 596 BUG_ON(ret != sizeof(runtime)); 597 598 return runtime; 599 } 600 601 struct sched_thread_parms { 602 struct task_desc *task; 603 struct perf_sched *sched; 604 int fd; 605 }; 606 607 static void *thread_func(void *ctx) 608 { 609 struct sched_thread_parms *parms = ctx; 610 struct task_desc *this_task = parms->task; 611 struct perf_sched *sched = parms->sched; 612 u64 cpu_usage_0, cpu_usage_1; 613 unsigned long i, ret; 614 char comm2[22]; 615 int fd = parms->fd; 616 617 zfree(&parms); 618 619 sprintf(comm2, ":%s", this_task->comm); 620 prctl(PR_SET_NAME, comm2); 621 if (fd < 0) 622 return NULL; 623 624 while (!sched->thread_funcs_exit) { 625 ret = sem_post(&this_task->ready_for_work); 626 BUG_ON(ret); 627 mutex_lock(&sched->start_work_mutex); 628 mutex_unlock(&sched->start_work_mutex); 629 630 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 631 632 for (i = 0; i < this_task->nr_events; i++) { 633 this_task->curr_event = i; 634 perf_sched__process_event(sched, this_task->atoms[i]); 635 } 636 637 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 638 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 639 ret = sem_post(&this_task->work_done_sem); 640 BUG_ON(ret); 641 642 mutex_lock(&sched->work_done_wait_mutex); 643 mutex_unlock(&sched->work_done_wait_mutex); 644 } 645 return NULL; 646 } 647 648 static void create_tasks(struct perf_sched *sched) 649 EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex) 650 EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex) 651 { 652 struct task_desc *task; 653 pthread_attr_t attr; 654 unsigned long i; 655 int err; 656 657 err = pthread_attr_init(&attr); 658 BUG_ON(err); 659 err = pthread_attr_setstacksize(&attr, 660 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN)); 661 BUG_ON(err); 662 mutex_lock(&sched->start_work_mutex); 663 mutex_lock(&sched->work_done_wait_mutex); 664 for (i = 0; i < sched->nr_tasks; i++) { 665 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 666 BUG_ON(parms == NULL); 667 parms->task = task = sched->tasks[i]; 668 parms->sched = sched; 669 parms->fd = self_open_counters(sched, i); 670 sem_init(&task->sleep_sem, 0, 0); 671 sem_init(&task->ready_for_work, 0, 0); 672 sem_init(&task->work_done_sem, 0, 0); 673 task->curr_event = 0; 674 err = pthread_create(&task->thread, &attr, thread_func, parms); 675 BUG_ON(err); 676 } 677 } 678 679 static void destroy_tasks(struct perf_sched *sched) 680 UNLOCK_FUNCTION(sched->start_work_mutex) 681 UNLOCK_FUNCTION(sched->work_done_wait_mutex) 682 { 683 struct task_desc *task; 684 unsigned long i; 685 int err; 686 687 mutex_unlock(&sched->start_work_mutex); 688 mutex_unlock(&sched->work_done_wait_mutex); 689 /* Get rid of threads so they won't be upset by mutex destrunction */ 690 for (i = 0; i < sched->nr_tasks; i++) { 691 task = sched->tasks[i]; 692 err = pthread_join(task->thread, NULL); 693 BUG_ON(err); 694 sem_destroy(&task->sleep_sem); 695 sem_destroy(&task->ready_for_work); 696 sem_destroy(&task->work_done_sem); 697 } 698 } 699 700 static void wait_for_tasks(struct perf_sched *sched) 701 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) 702 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) 703 { 704 u64 cpu_usage_0, cpu_usage_1; 705 struct task_desc *task; 706 unsigned long i, ret; 707 708 sched->start_time = get_nsecs(); 709 sched->cpu_usage = 0; 710 mutex_unlock(&sched->work_done_wait_mutex); 711 712 for (i = 0; i < sched->nr_tasks; i++) { 713 task = sched->tasks[i]; 714 ret = sem_wait(&task->ready_for_work); 715 BUG_ON(ret); 716 sem_init(&task->ready_for_work, 0, 0); 717 } 718 mutex_lock(&sched->work_done_wait_mutex); 719 720 cpu_usage_0 = get_cpu_usage_nsec_parent(); 721 722 mutex_unlock(&sched->start_work_mutex); 723 724 for (i = 0; i < sched->nr_tasks; i++) { 725 task = sched->tasks[i]; 726 ret = sem_wait(&task->work_done_sem); 727 BUG_ON(ret); 728 sem_init(&task->work_done_sem, 0, 0); 729 sched->cpu_usage += task->cpu_usage; 730 task->cpu_usage = 0; 731 } 732 733 cpu_usage_1 = get_cpu_usage_nsec_parent(); 734 if (!sched->runavg_cpu_usage) 735 sched->runavg_cpu_usage = sched->cpu_usage; 736 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; 737 738 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 739 if (!sched->runavg_parent_cpu_usage) 740 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 741 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + 742 sched->parent_cpu_usage)/sched->replay_repeat; 743 744 mutex_lock(&sched->start_work_mutex); 745 746 for (i = 0; i < sched->nr_tasks; i++) { 747 task = sched->tasks[i]; 748 sem_init(&task->sleep_sem, 0, 0); 749 task->curr_event = 0; 750 } 751 } 752 753 static void run_one_test(struct perf_sched *sched) 754 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) 755 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) 756 { 757 u64 T0, T1, delta, avg_delta, fluct; 758 759 T0 = get_nsecs(); 760 wait_for_tasks(sched); 761 T1 = get_nsecs(); 762 763 delta = T1 - T0; 764 sched->sum_runtime += delta; 765 sched->nr_runs++; 766 767 avg_delta = sched->sum_runtime / sched->nr_runs; 768 if (delta < avg_delta) 769 fluct = avg_delta - delta; 770 else 771 fluct = delta - avg_delta; 772 sched->sum_fluct += fluct; 773 if (!sched->run_avg) 774 sched->run_avg = delta; 775 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; 776 777 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC); 778 779 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC); 780 781 printf("cpu: %0.2f / %0.2f", 782 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC); 783 784 #if 0 785 /* 786 * rusage statistics done by the parent, these are less 787 * accurate than the sched->sum_exec_runtime based statistics: 788 */ 789 printf(" [%0.2f / %0.2f]", 790 (double)sched->parent_cpu_usage / NSEC_PER_MSEC, 791 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC); 792 #endif 793 794 printf("\n"); 795 796 if (sched->nr_sleep_corrections) 797 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 798 sched->nr_sleep_corrections = 0; 799 } 800 801 static void test_calibrations(struct perf_sched *sched) 802 { 803 u64 T0, T1; 804 805 T0 = get_nsecs(); 806 burn_nsecs(sched, NSEC_PER_MSEC); 807 T1 = get_nsecs(); 808 809 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 810 811 T0 = get_nsecs(); 812 sleep_nsecs(NSEC_PER_MSEC); 813 T1 = get_nsecs(); 814 815 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 816 } 817 818 static int 819 replay_wakeup_event(struct perf_sched *sched, 820 struct evsel *evsel, struct perf_sample *sample, 821 struct machine *machine __maybe_unused) 822 { 823 const char *comm = evsel__strval(evsel, sample, "comm"); 824 const u32 pid = evsel__intval(evsel, sample, "pid"); 825 struct task_desc *waker, *wakee; 826 827 if (verbose > 0) { 828 printf("sched_wakeup event %p\n", evsel); 829 830 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 831 } 832 833 waker = register_pid(sched, sample->tid, "<unknown>"); 834 wakee = register_pid(sched, pid, comm); 835 836 add_sched_event_wakeup(sched, waker, sample->time, wakee); 837 return 0; 838 } 839 840 static int replay_switch_event(struct perf_sched *sched, 841 struct evsel *evsel, 842 struct perf_sample *sample, 843 struct machine *machine __maybe_unused) 844 { 845 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"), 846 *next_comm = evsel__strval(evsel, sample, "next_comm"); 847 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 848 next_pid = evsel__intval(evsel, sample, "next_pid"); 849 const char prev_state = evsel__taskstate(evsel, sample, "prev_state"); 850 struct task_desc *prev, __maybe_unused *next; 851 u64 timestamp0, timestamp = sample->time; 852 int cpu = sample->cpu; 853 s64 delta; 854 855 if (verbose > 0) 856 printf("sched_switch event %p\n", evsel); 857 858 if (cpu >= MAX_CPUS || cpu < 0) 859 return 0; 860 861 timestamp0 = sched->cpu_last_switched[cpu]; 862 if (timestamp0) 863 delta = timestamp - timestamp0; 864 else 865 delta = 0; 866 867 if (delta < 0) { 868 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 869 return -1; 870 } 871 872 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 873 prev_comm, prev_pid, next_comm, next_pid, delta); 874 875 prev = register_pid(sched, prev_pid, prev_comm); 876 next = register_pid(sched, next_pid, next_comm); 877 878 sched->cpu_last_switched[cpu] = timestamp; 879 880 add_sched_event_run(sched, prev, timestamp, delta); 881 add_sched_event_sleep(sched, prev, timestamp, prev_state); 882 883 return 0; 884 } 885 886 static int replay_fork_event(struct perf_sched *sched, 887 union perf_event *event, 888 struct machine *machine) 889 { 890 struct thread *child, *parent; 891 892 child = machine__findnew_thread(machine, event->fork.pid, 893 event->fork.tid); 894 parent = machine__findnew_thread(machine, event->fork.ppid, 895 event->fork.ptid); 896 897 if (child == NULL || parent == NULL) { 898 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 899 child, parent); 900 goto out_put; 901 } 902 903 if (verbose > 0) { 904 printf("fork event\n"); 905 printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent)); 906 printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child)); 907 } 908 909 register_pid(sched, thread__tid(parent), thread__comm_str(parent)); 910 register_pid(sched, thread__tid(child), thread__comm_str(child)); 911 out_put: 912 thread__put(child); 913 thread__put(parent); 914 return 0; 915 } 916 917 struct sort_dimension { 918 const char *name; 919 sort_fn_t cmp; 920 struct list_head list; 921 }; 922 923 /* 924 * handle runtime stats saved per thread 925 */ 926 static struct thread_runtime *thread__init_runtime(struct thread *thread) 927 { 928 struct thread_runtime *r; 929 930 r = zalloc(sizeof(struct thread_runtime)); 931 if (!r) 932 return NULL; 933 934 init_stats(&r->run_stats); 935 thread__set_priv(thread, r); 936 937 return r; 938 } 939 940 static struct thread_runtime *thread__get_runtime(struct thread *thread) 941 { 942 struct thread_runtime *tr; 943 944 tr = thread__priv(thread); 945 if (tr == NULL) { 946 tr = thread__init_runtime(thread); 947 if (tr == NULL) 948 pr_debug("Failed to malloc memory for runtime data.\n"); 949 } 950 951 return tr; 952 } 953 954 static int 955 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 956 { 957 struct sort_dimension *sort; 958 int ret = 0; 959 960 BUG_ON(list_empty(list)); 961 962 list_for_each_entry(sort, list, list) { 963 ret = sort->cmp(l, r); 964 if (ret) 965 return ret; 966 } 967 968 return ret; 969 } 970 971 static struct work_atoms * 972 thread_atoms_search(struct rb_root_cached *root, struct thread *thread, 973 struct list_head *sort_list) 974 { 975 struct rb_node *node = root->rb_root.rb_node; 976 struct work_atoms key = { .thread = thread }; 977 978 while (node) { 979 struct work_atoms *atoms; 980 int cmp; 981 982 atoms = container_of(node, struct work_atoms, node); 983 984 cmp = thread_lat_cmp(sort_list, &key, atoms); 985 if (cmp > 0) 986 node = node->rb_left; 987 else if (cmp < 0) 988 node = node->rb_right; 989 else { 990 BUG_ON(thread != atoms->thread); 991 return atoms; 992 } 993 } 994 return NULL; 995 } 996 997 static void 998 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data, 999 struct list_head *sort_list) 1000 { 1001 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 1002 bool leftmost = true; 1003 1004 while (*new) { 1005 struct work_atoms *this; 1006 int cmp; 1007 1008 this = container_of(*new, struct work_atoms, node); 1009 parent = *new; 1010 1011 cmp = thread_lat_cmp(sort_list, data, this); 1012 1013 if (cmp > 0) 1014 new = &((*new)->rb_left); 1015 else { 1016 new = &((*new)->rb_right); 1017 leftmost = false; 1018 } 1019 } 1020 1021 rb_link_node(&data->node, parent, new); 1022 rb_insert_color_cached(&data->node, root, leftmost); 1023 } 1024 1025 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 1026 { 1027 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 1028 if (!atoms) { 1029 pr_err("No memory at %s\n", __func__); 1030 return -1; 1031 } 1032 1033 atoms->thread = thread__get(thread); 1034 INIT_LIST_HEAD(&atoms->work_list); 1035 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 1036 return 0; 1037 } 1038 1039 static int 1040 add_sched_out_event(struct work_atoms *atoms, 1041 char run_state, 1042 u64 timestamp) 1043 { 1044 struct work_atom *atom = zalloc(sizeof(*atom)); 1045 if (!atom) { 1046 pr_err("Non memory at %s", __func__); 1047 return -1; 1048 } 1049 1050 atom->sched_out_time = timestamp; 1051 1052 if (run_state == 'R') { 1053 atom->state = THREAD_WAIT_CPU; 1054 atom->wake_up_time = atom->sched_out_time; 1055 } 1056 1057 list_add_tail(&atom->list, &atoms->work_list); 1058 return 0; 1059 } 1060 1061 static void 1062 add_runtime_event(struct work_atoms *atoms, u64 delta, 1063 u64 timestamp __maybe_unused) 1064 { 1065 struct work_atom *atom; 1066 1067 BUG_ON(list_empty(&atoms->work_list)); 1068 1069 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1070 1071 atom->runtime += delta; 1072 atoms->total_runtime += delta; 1073 } 1074 1075 static void 1076 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 1077 { 1078 struct work_atom *atom; 1079 u64 delta; 1080 1081 if (list_empty(&atoms->work_list)) 1082 return; 1083 1084 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1085 1086 if (atom->state != THREAD_WAIT_CPU) 1087 return; 1088 1089 if (timestamp < atom->wake_up_time) { 1090 atom->state = THREAD_IGNORE; 1091 return; 1092 } 1093 1094 atom->state = THREAD_SCHED_IN; 1095 atom->sched_in_time = timestamp; 1096 1097 delta = atom->sched_in_time - atom->wake_up_time; 1098 atoms->total_lat += delta; 1099 if (delta > atoms->max_lat) { 1100 atoms->max_lat = delta; 1101 atoms->max_lat_start = atom->wake_up_time; 1102 atoms->max_lat_end = timestamp; 1103 } 1104 atoms->nb_atoms++; 1105 } 1106 1107 static int latency_switch_event(struct perf_sched *sched, 1108 struct evsel *evsel, 1109 struct perf_sample *sample, 1110 struct machine *machine) 1111 { 1112 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 1113 next_pid = evsel__intval(evsel, sample, "next_pid"); 1114 const char prev_state = evsel__taskstate(evsel, sample, "prev_state"); 1115 struct work_atoms *out_events, *in_events; 1116 struct thread *sched_out, *sched_in; 1117 u64 timestamp0, timestamp = sample->time; 1118 int cpu = sample->cpu, err = -1; 1119 s64 delta; 1120 1121 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1122 1123 timestamp0 = sched->cpu_last_switched[cpu]; 1124 sched->cpu_last_switched[cpu] = timestamp; 1125 if (timestamp0) 1126 delta = timestamp - timestamp0; 1127 else 1128 delta = 0; 1129 1130 if (delta < 0) { 1131 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1132 return -1; 1133 } 1134 1135 sched_out = machine__findnew_thread(machine, -1, prev_pid); 1136 sched_in = machine__findnew_thread(machine, -1, next_pid); 1137 if (sched_out == NULL || sched_in == NULL) 1138 goto out_put; 1139 1140 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1141 if (!out_events) { 1142 if (thread_atoms_insert(sched, sched_out)) 1143 goto out_put; 1144 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1145 if (!out_events) { 1146 pr_err("out-event: Internal tree error"); 1147 goto out_put; 1148 } 1149 } 1150 if (add_sched_out_event(out_events, prev_state, timestamp)) 1151 return -1; 1152 1153 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1154 if (!in_events) { 1155 if (thread_atoms_insert(sched, sched_in)) 1156 goto out_put; 1157 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1158 if (!in_events) { 1159 pr_err("in-event: Internal tree error"); 1160 goto out_put; 1161 } 1162 /* 1163 * Take came in we have not heard about yet, 1164 * add in an initial atom in runnable state: 1165 */ 1166 if (add_sched_out_event(in_events, 'R', timestamp)) 1167 goto out_put; 1168 } 1169 add_sched_in_event(in_events, timestamp); 1170 err = 0; 1171 out_put: 1172 thread__put(sched_out); 1173 thread__put(sched_in); 1174 return err; 1175 } 1176 1177 static int latency_runtime_event(struct perf_sched *sched, 1178 struct evsel *evsel, 1179 struct perf_sample *sample, 1180 struct machine *machine) 1181 { 1182 const u32 pid = evsel__intval(evsel, sample, "pid"); 1183 const u64 runtime = evsel__intval(evsel, sample, "runtime"); 1184 struct thread *thread = machine__findnew_thread(machine, -1, pid); 1185 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1186 u64 timestamp = sample->time; 1187 int cpu = sample->cpu, err = -1; 1188 1189 if (thread == NULL) 1190 return -1; 1191 1192 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1193 if (!atoms) { 1194 if (thread_atoms_insert(sched, thread)) 1195 goto out_put; 1196 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1197 if (!atoms) { 1198 pr_err("in-event: Internal tree error"); 1199 goto out_put; 1200 } 1201 if (add_sched_out_event(atoms, 'R', timestamp)) 1202 goto out_put; 1203 } 1204 1205 add_runtime_event(atoms, runtime, timestamp); 1206 err = 0; 1207 out_put: 1208 thread__put(thread); 1209 return err; 1210 } 1211 1212 static int latency_wakeup_event(struct perf_sched *sched, 1213 struct evsel *evsel, 1214 struct perf_sample *sample, 1215 struct machine *machine) 1216 { 1217 const u32 pid = evsel__intval(evsel, sample, "pid"); 1218 struct work_atoms *atoms; 1219 struct work_atom *atom; 1220 struct thread *wakee; 1221 u64 timestamp = sample->time; 1222 int err = -1; 1223 1224 wakee = machine__findnew_thread(machine, -1, pid); 1225 if (wakee == NULL) 1226 return -1; 1227 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1228 if (!atoms) { 1229 if (thread_atoms_insert(sched, wakee)) 1230 goto out_put; 1231 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1232 if (!atoms) { 1233 pr_err("wakeup-event: Internal tree error"); 1234 goto out_put; 1235 } 1236 if (add_sched_out_event(atoms, 'S', timestamp)) 1237 goto out_put; 1238 } 1239 1240 BUG_ON(list_empty(&atoms->work_list)); 1241 1242 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1243 1244 /* 1245 * As we do not guarantee the wakeup event happens when 1246 * task is out of run queue, also may happen when task is 1247 * on run queue and wakeup only change ->state to TASK_RUNNING, 1248 * then we should not set the ->wake_up_time when wake up a 1249 * task which is on run queue. 1250 * 1251 * You WILL be missing events if you've recorded only 1252 * one CPU, or are only looking at only one, so don't 1253 * skip in this case. 1254 */ 1255 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1256 goto out_ok; 1257 1258 sched->nr_timestamps++; 1259 if (atom->sched_out_time > timestamp) { 1260 sched->nr_unordered_timestamps++; 1261 goto out_ok; 1262 } 1263 1264 atom->state = THREAD_WAIT_CPU; 1265 atom->wake_up_time = timestamp; 1266 out_ok: 1267 err = 0; 1268 out_put: 1269 thread__put(wakee); 1270 return err; 1271 } 1272 1273 static int latency_migrate_task_event(struct perf_sched *sched, 1274 struct evsel *evsel, 1275 struct perf_sample *sample, 1276 struct machine *machine) 1277 { 1278 const u32 pid = evsel__intval(evsel, sample, "pid"); 1279 u64 timestamp = sample->time; 1280 struct work_atoms *atoms; 1281 struct work_atom *atom; 1282 struct thread *migrant; 1283 int err = -1; 1284 1285 /* 1286 * Only need to worry about migration when profiling one CPU. 1287 */ 1288 if (sched->profile_cpu == -1) 1289 return 0; 1290 1291 migrant = machine__findnew_thread(machine, -1, pid); 1292 if (migrant == NULL) 1293 return -1; 1294 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1295 if (!atoms) { 1296 if (thread_atoms_insert(sched, migrant)) 1297 goto out_put; 1298 register_pid(sched, thread__tid(migrant), thread__comm_str(migrant)); 1299 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1300 if (!atoms) { 1301 pr_err("migration-event: Internal tree error"); 1302 goto out_put; 1303 } 1304 if (add_sched_out_event(atoms, 'R', timestamp)) 1305 goto out_put; 1306 } 1307 1308 BUG_ON(list_empty(&atoms->work_list)); 1309 1310 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1311 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1312 1313 sched->nr_timestamps++; 1314 1315 if (atom->sched_out_time > timestamp) 1316 sched->nr_unordered_timestamps++; 1317 err = 0; 1318 out_put: 1319 thread__put(migrant); 1320 return err; 1321 } 1322 1323 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1324 { 1325 int i; 1326 int ret; 1327 u64 avg; 1328 char max_lat_start[32], max_lat_end[32]; 1329 1330 if (!work_list->nb_atoms) 1331 return; 1332 /* 1333 * Ignore idle threads: 1334 */ 1335 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1336 return; 1337 1338 sched->all_runtime += work_list->total_runtime; 1339 sched->all_count += work_list->nb_atoms; 1340 1341 if (work_list->num_merged > 1) { 1342 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), 1343 work_list->num_merged); 1344 } else { 1345 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), 1346 thread__tid(work_list->thread)); 1347 } 1348 1349 for (i = 0; i < 24 - ret; i++) 1350 printf(" "); 1351 1352 avg = work_list->total_lat / work_list->nb_atoms; 1353 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start)); 1354 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end)); 1355 1356 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n", 1357 (double)work_list->total_runtime / NSEC_PER_MSEC, 1358 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC, 1359 (double)work_list->max_lat / NSEC_PER_MSEC, 1360 max_lat_start, max_lat_end); 1361 } 1362 1363 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1364 { 1365 pid_t l_tid, r_tid; 1366 1367 if (RC_CHK_EQUAL(l->thread, r->thread)) 1368 return 0; 1369 l_tid = thread__tid(l->thread); 1370 r_tid = thread__tid(r->thread); 1371 if (l_tid < r_tid) 1372 return -1; 1373 if (l_tid > r_tid) 1374 return 1; 1375 return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread)); 1376 } 1377 1378 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1379 { 1380 u64 avgl, avgr; 1381 1382 if (!l->nb_atoms) 1383 return -1; 1384 1385 if (!r->nb_atoms) 1386 return 1; 1387 1388 avgl = l->total_lat / l->nb_atoms; 1389 avgr = r->total_lat / r->nb_atoms; 1390 1391 if (avgl < avgr) 1392 return -1; 1393 if (avgl > avgr) 1394 return 1; 1395 1396 return 0; 1397 } 1398 1399 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1400 { 1401 if (l->max_lat < r->max_lat) 1402 return -1; 1403 if (l->max_lat > r->max_lat) 1404 return 1; 1405 1406 return 0; 1407 } 1408 1409 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1410 { 1411 if (l->nb_atoms < r->nb_atoms) 1412 return -1; 1413 if (l->nb_atoms > r->nb_atoms) 1414 return 1; 1415 1416 return 0; 1417 } 1418 1419 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1420 { 1421 if (l->total_runtime < r->total_runtime) 1422 return -1; 1423 if (l->total_runtime > r->total_runtime) 1424 return 1; 1425 1426 return 0; 1427 } 1428 1429 static int sort_dimension__add(const char *tok, struct list_head *list) 1430 { 1431 size_t i; 1432 static struct sort_dimension avg_sort_dimension = { 1433 .name = "avg", 1434 .cmp = avg_cmp, 1435 }; 1436 static struct sort_dimension max_sort_dimension = { 1437 .name = "max", 1438 .cmp = max_cmp, 1439 }; 1440 static struct sort_dimension pid_sort_dimension = { 1441 .name = "pid", 1442 .cmp = pid_cmp, 1443 }; 1444 static struct sort_dimension runtime_sort_dimension = { 1445 .name = "runtime", 1446 .cmp = runtime_cmp, 1447 }; 1448 static struct sort_dimension switch_sort_dimension = { 1449 .name = "switch", 1450 .cmp = switch_cmp, 1451 }; 1452 struct sort_dimension *available_sorts[] = { 1453 &pid_sort_dimension, 1454 &avg_sort_dimension, 1455 &max_sort_dimension, 1456 &switch_sort_dimension, 1457 &runtime_sort_dimension, 1458 }; 1459 1460 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1461 if (!strcmp(available_sorts[i]->name, tok)) { 1462 list_add_tail(&available_sorts[i]->list, list); 1463 1464 return 0; 1465 } 1466 } 1467 1468 return -1; 1469 } 1470 1471 static void perf_sched__sort_lat(struct perf_sched *sched) 1472 { 1473 struct rb_node *node; 1474 struct rb_root_cached *root = &sched->atom_root; 1475 again: 1476 for (;;) { 1477 struct work_atoms *data; 1478 node = rb_first_cached(root); 1479 if (!node) 1480 break; 1481 1482 rb_erase_cached(node, root); 1483 data = rb_entry(node, struct work_atoms, node); 1484 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1485 } 1486 if (root == &sched->atom_root) { 1487 root = &sched->merged_atom_root; 1488 goto again; 1489 } 1490 } 1491 1492 static int process_sched_wakeup_event(const struct perf_tool *tool, 1493 struct evsel *evsel, 1494 struct perf_sample *sample, 1495 struct machine *machine) 1496 { 1497 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1498 1499 if (sched->tp_handler->wakeup_event) 1500 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1501 1502 return 0; 1503 } 1504 1505 static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused, 1506 struct evsel *evsel __maybe_unused, 1507 struct perf_sample *sample __maybe_unused, 1508 struct machine *machine __maybe_unused) 1509 { 1510 return 0; 1511 } 1512 1513 union map_priv { 1514 void *ptr; 1515 bool color; 1516 }; 1517 1518 static bool thread__has_color(struct thread *thread) 1519 { 1520 union map_priv priv = { 1521 .ptr = thread__priv(thread), 1522 }; 1523 1524 return priv.color; 1525 } 1526 1527 static struct thread* 1528 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) 1529 { 1530 struct thread *thread = machine__findnew_thread(machine, pid, tid); 1531 union map_priv priv = { 1532 .color = false, 1533 }; 1534 1535 if (!sched->map.color_pids || !thread || thread__priv(thread)) 1536 return thread; 1537 1538 if (thread_map__has(sched->map.color_pids, tid)) 1539 priv.color = true; 1540 1541 thread__set_priv(thread, priv.ptr); 1542 return thread; 1543 } 1544 1545 static bool sched_match_task(struct perf_sched *sched, const char *comm_str) 1546 { 1547 bool fuzzy_match = sched->map.fuzzy; 1548 struct strlist *task_names = sched->map.task_names; 1549 struct str_node *node; 1550 1551 strlist__for_each_entry(node, task_names) { 1552 bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) : 1553 !strcmp(comm_str, node->s); 1554 if (match_found) 1555 return true; 1556 } 1557 1558 return false; 1559 } 1560 1561 static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr, 1562 const char *color, bool sched_out) 1563 { 1564 for (int i = 0; i < cpus_nr; i++) { 1565 struct perf_cpu cpu = { 1566 .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i, 1567 }; 1568 struct thread *curr_thread = sched->curr_thread[cpu.cpu]; 1569 struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu]; 1570 struct thread_runtime *curr_tr; 1571 const char *pid_color = color; 1572 const char *cpu_color = color; 1573 char symbol = ' '; 1574 struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread; 1575 1576 if (thread_to_check && thread__has_color(thread_to_check)) 1577 pid_color = COLOR_PIDS; 1578 1579 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu)) 1580 cpu_color = COLOR_CPUS; 1581 1582 if (cpu.cpu == this_cpu.cpu) 1583 symbol = '*'; 1584 1585 color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol); 1586 1587 thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] : 1588 sched->curr_thread[cpu.cpu]; 1589 1590 if (thread_to_check) { 1591 curr_tr = thread__get_runtime(thread_to_check); 1592 if (curr_tr == NULL) 1593 return; 1594 1595 if (sched_out) { 1596 if (cpu.cpu == this_cpu.cpu) 1597 color_fprintf(stdout, color, "- "); 1598 else { 1599 curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]); 1600 if (curr_tr != NULL) 1601 color_fprintf(stdout, pid_color, "%2s ", 1602 curr_tr->shortname); 1603 } 1604 } else 1605 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname); 1606 } else 1607 color_fprintf(stdout, color, " "); 1608 } 1609 } 1610 1611 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel, 1612 struct perf_sample *sample, struct machine *machine) 1613 { 1614 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 1615 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"); 1616 struct thread *sched_in, *sched_out; 1617 struct thread_runtime *tr; 1618 int new_shortname; 1619 u64 timestamp0, timestamp = sample->time; 1620 s64 delta; 1621 struct perf_cpu this_cpu = { 1622 .cpu = sample->cpu, 1623 }; 1624 int cpus_nr; 1625 int proceed; 1626 bool new_cpu = false; 1627 const char *color = PERF_COLOR_NORMAL; 1628 char stimestamp[32]; 1629 const char *str; 1630 1631 BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0); 1632 1633 if (this_cpu.cpu > sched->max_cpu.cpu) 1634 sched->max_cpu = this_cpu; 1635 1636 if (sched->map.comp) { 1637 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); 1638 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) { 1639 sched->map.comp_cpus[cpus_nr++] = this_cpu; 1640 new_cpu = true; 1641 } 1642 } else 1643 cpus_nr = sched->max_cpu.cpu; 1644 1645 timestamp0 = sched->cpu_last_switched[this_cpu.cpu]; 1646 sched->cpu_last_switched[this_cpu.cpu] = timestamp; 1647 if (timestamp0) 1648 delta = timestamp - timestamp0; 1649 else 1650 delta = 0; 1651 1652 if (delta < 0) { 1653 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1654 return -1; 1655 } 1656 1657 sched_in = map__findnew_thread(sched, machine, -1, next_pid); 1658 sched_out = map__findnew_thread(sched, machine, -1, prev_pid); 1659 if (sched_in == NULL || sched_out == NULL) 1660 return -1; 1661 1662 tr = thread__get_runtime(sched_in); 1663 if (tr == NULL) { 1664 thread__put(sched_in); 1665 return -1; 1666 } 1667 1668 sched->curr_thread[this_cpu.cpu] = thread__get(sched_in); 1669 sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out); 1670 1671 str = thread__comm_str(sched_in); 1672 new_shortname = 0; 1673 if (!tr->shortname[0]) { 1674 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1675 /* 1676 * Don't allocate a letter-number for swapper:0 1677 * as a shortname. Instead, we use '.' for it. 1678 */ 1679 tr->shortname[0] = '.'; 1680 tr->shortname[1] = ' '; 1681 } else if (!sched->map.task_name || sched_match_task(sched, str)) { 1682 tr->shortname[0] = sched->next_shortname1; 1683 tr->shortname[1] = sched->next_shortname2; 1684 1685 if (sched->next_shortname1 < 'Z') { 1686 sched->next_shortname1++; 1687 } else { 1688 sched->next_shortname1 = 'A'; 1689 if (sched->next_shortname2 < '9') 1690 sched->next_shortname2++; 1691 else 1692 sched->next_shortname2 = '0'; 1693 } 1694 } else { 1695 tr->shortname[0] = '-'; 1696 tr->shortname[1] = ' '; 1697 } 1698 new_shortname = 1; 1699 } 1700 1701 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu)) 1702 goto out; 1703 1704 proceed = 0; 1705 str = thread__comm_str(sched_in); 1706 /* 1707 * Check which of sched_in and sched_out matches the passed --task-name 1708 * arguments and call the corresponding print_sched_map. 1709 */ 1710 if (sched->map.task_name && !sched_match_task(sched, str)) { 1711 if (!sched_match_task(sched, thread__comm_str(sched_out))) 1712 goto out; 1713 else 1714 goto sched_out; 1715 1716 } else { 1717 str = thread__comm_str(sched_out); 1718 if (!(sched->map.task_name && !sched_match_task(sched, str))) 1719 proceed = 1; 1720 } 1721 1722 printf(" "); 1723 1724 print_sched_map(sched, this_cpu, cpus_nr, color, false); 1725 1726 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1727 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1728 if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) { 1729 const char *pid_color = color; 1730 1731 if (thread__has_color(sched_in)) 1732 pid_color = COLOR_PIDS; 1733 1734 color_fprintf(stdout, pid_color, "%s => %s:%d", 1735 tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in)); 1736 tr->comm_changed = false; 1737 } 1738 1739 if (sched->map.comp && new_cpu) 1740 color_fprintf(stdout, color, " (CPU %d)", this_cpu); 1741 1742 if (proceed != 1) { 1743 color_fprintf(stdout, color, "\n"); 1744 goto out; 1745 } 1746 1747 sched_out: 1748 if (sched->map.task_name) { 1749 tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]); 1750 if (strcmp(tr->shortname, "") == 0) 1751 goto out; 1752 1753 if (proceed == 1) 1754 color_fprintf(stdout, color, "\n"); 1755 1756 printf(" "); 1757 print_sched_map(sched, this_cpu, cpus_nr, color, true); 1758 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1759 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1760 } 1761 1762 color_fprintf(stdout, color, "\n"); 1763 1764 out: 1765 if (sched->map.task_name) 1766 thread__put(sched_out); 1767 1768 thread__put(sched_in); 1769 1770 return 0; 1771 } 1772 1773 static int process_sched_switch_event(const struct perf_tool *tool, 1774 struct evsel *evsel, 1775 struct perf_sample *sample, 1776 struct machine *machine) 1777 { 1778 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1779 int this_cpu = sample->cpu, err = 0; 1780 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 1781 next_pid = evsel__intval(evsel, sample, "next_pid"); 1782 1783 if (sched->curr_pid[this_cpu] != (u32)-1) { 1784 /* 1785 * Are we trying to switch away a PID that is 1786 * not current? 1787 */ 1788 if (sched->curr_pid[this_cpu] != prev_pid) 1789 sched->nr_context_switch_bugs++; 1790 } 1791 1792 if (sched->tp_handler->switch_event) 1793 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1794 1795 sched->curr_pid[this_cpu] = next_pid; 1796 return err; 1797 } 1798 1799 static int process_sched_runtime_event(const struct perf_tool *tool, 1800 struct evsel *evsel, 1801 struct perf_sample *sample, 1802 struct machine *machine) 1803 { 1804 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1805 1806 if (sched->tp_handler->runtime_event) 1807 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1808 1809 return 0; 1810 } 1811 1812 static int perf_sched__process_fork_event(const struct perf_tool *tool, 1813 union perf_event *event, 1814 struct perf_sample *sample, 1815 struct machine *machine) 1816 { 1817 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1818 1819 /* run the fork event through the perf machinery */ 1820 perf_event__process_fork(tool, event, sample, machine); 1821 1822 /* and then run additional processing needed for this command */ 1823 if (sched->tp_handler->fork_event) 1824 return sched->tp_handler->fork_event(sched, event, machine); 1825 1826 return 0; 1827 } 1828 1829 static int process_sched_migrate_task_event(const struct perf_tool *tool, 1830 struct evsel *evsel, 1831 struct perf_sample *sample, 1832 struct machine *machine) 1833 { 1834 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1835 1836 if (sched->tp_handler->migrate_task_event) 1837 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1838 1839 return 0; 1840 } 1841 1842 typedef int (*tracepoint_handler)(const struct perf_tool *tool, 1843 struct evsel *evsel, 1844 struct perf_sample *sample, 1845 struct machine *machine); 1846 1847 static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused, 1848 union perf_event *event __maybe_unused, 1849 struct perf_sample *sample, 1850 struct evsel *evsel, 1851 struct machine *machine) 1852 { 1853 int err = 0; 1854 1855 if (evsel->handler != NULL) { 1856 tracepoint_handler f = evsel->handler; 1857 err = f(tool, evsel, sample, machine); 1858 } 1859 1860 return err; 1861 } 1862 1863 static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused, 1864 union perf_event *event, 1865 struct perf_sample *sample, 1866 struct machine *machine) 1867 { 1868 struct thread *thread; 1869 struct thread_runtime *tr; 1870 int err; 1871 1872 err = perf_event__process_comm(tool, event, sample, machine); 1873 if (err) 1874 return err; 1875 1876 thread = machine__find_thread(machine, sample->pid, sample->tid); 1877 if (!thread) { 1878 pr_err("Internal error: can't find thread\n"); 1879 return -1; 1880 } 1881 1882 tr = thread__get_runtime(thread); 1883 if (tr == NULL) { 1884 thread__put(thread); 1885 return -1; 1886 } 1887 1888 tr->comm_changed = true; 1889 thread__put(thread); 1890 1891 return 0; 1892 } 1893 1894 static int perf_sched__read_events(struct perf_sched *sched) 1895 { 1896 struct evsel_str_handler handlers[] = { 1897 { "sched:sched_switch", process_sched_switch_event, }, 1898 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1899 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1900 { "sched:sched_waking", process_sched_wakeup_event, }, 1901 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1902 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1903 }; 1904 struct perf_session *session; 1905 struct perf_data data = { 1906 .path = input_name, 1907 .mode = PERF_DATA_MODE_READ, 1908 .force = sched->force, 1909 }; 1910 int rc = -1; 1911 1912 session = perf_session__new(&data, &sched->tool); 1913 if (IS_ERR(session)) { 1914 pr_debug("Error creating perf session"); 1915 return PTR_ERR(session); 1916 } 1917 1918 symbol__init(&session->header.env); 1919 1920 /* prefer sched_waking if it is captured */ 1921 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) 1922 handlers[2].handler = process_sched_wakeup_ignore; 1923 1924 if (perf_session__set_tracepoints_handlers(session, handlers)) 1925 goto out_delete; 1926 1927 if (perf_session__has_traces(session, "record -R")) { 1928 int err = perf_session__process_events(session); 1929 if (err) { 1930 pr_err("Failed to process events, error %d", err); 1931 goto out_delete; 1932 } 1933 1934 sched->nr_events = session->evlist->stats.nr_events[0]; 1935 sched->nr_lost_events = session->evlist->stats.total_lost; 1936 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; 1937 } 1938 1939 rc = 0; 1940 out_delete: 1941 perf_session__delete(session); 1942 return rc; 1943 } 1944 1945 /* 1946 * scheduling times are printed as msec.usec 1947 */ 1948 static inline void print_sched_time(unsigned long long nsecs, int width) 1949 { 1950 unsigned long msecs; 1951 unsigned long usecs; 1952 1953 msecs = nsecs / NSEC_PER_MSEC; 1954 nsecs -= msecs * NSEC_PER_MSEC; 1955 usecs = nsecs / NSEC_PER_USEC; 1956 printf("%*lu.%03lu ", width, msecs, usecs); 1957 } 1958 1959 /* 1960 * returns runtime data for event, allocating memory for it the 1961 * first time it is used. 1962 */ 1963 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel) 1964 { 1965 struct evsel_runtime *r = evsel->priv; 1966 1967 if (r == NULL) { 1968 r = zalloc(sizeof(struct evsel_runtime)); 1969 evsel->priv = r; 1970 } 1971 1972 return r; 1973 } 1974 1975 /* 1976 * save last time event was seen per cpu 1977 */ 1978 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu) 1979 { 1980 struct evsel_runtime *r = evsel__get_runtime(evsel); 1981 1982 if (r == NULL) 1983 return; 1984 1985 if ((cpu >= r->ncpu) || (r->last_time == NULL)) { 1986 int i, n = __roundup_pow_of_two(cpu+1); 1987 void *p = r->last_time; 1988 1989 p = realloc(r->last_time, n * sizeof(u64)); 1990 if (!p) 1991 return; 1992 1993 r->last_time = p; 1994 for (i = r->ncpu; i < n; ++i) 1995 r->last_time[i] = (u64) 0; 1996 1997 r->ncpu = n; 1998 } 1999 2000 r->last_time[cpu] = timestamp; 2001 } 2002 2003 /* returns last time this event was seen on the given cpu */ 2004 static u64 evsel__get_time(struct evsel *evsel, u32 cpu) 2005 { 2006 struct evsel_runtime *r = evsel__get_runtime(evsel); 2007 2008 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu)) 2009 return 0; 2010 2011 return r->last_time[cpu]; 2012 } 2013 2014 static int comm_width = 30; 2015 2016 static char *timehist_get_commstr(struct thread *thread) 2017 { 2018 static char str[32]; 2019 const char *comm = thread__comm_str(thread); 2020 pid_t tid = thread__tid(thread); 2021 pid_t pid = thread__pid(thread); 2022 int n; 2023 2024 if (pid == 0) 2025 n = scnprintf(str, sizeof(str), "%s", comm); 2026 2027 else if (tid != pid) 2028 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid); 2029 2030 else 2031 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid); 2032 2033 if (n > comm_width) 2034 comm_width = n; 2035 2036 return str; 2037 } 2038 2039 static void timehist_header(struct perf_sched *sched) 2040 { 2041 u32 ncpus = sched->max_cpu.cpu + 1; 2042 u32 i, j; 2043 2044 printf("%15s %6s ", "time", "cpu"); 2045 2046 if (sched->show_cpu_visual) { 2047 printf(" "); 2048 for (i = 0, j = 0; i < ncpus; ++i) { 2049 printf("%x", j++); 2050 if (j > 15) 2051 j = 0; 2052 } 2053 printf(" "); 2054 } 2055 2056 printf(" %-*s %9s %9s %9s", comm_width, 2057 "task name", "wait time", "sch delay", "run time"); 2058 2059 if (sched->show_state) 2060 printf(" %s", "state"); 2061 2062 printf("\n"); 2063 2064 /* 2065 * units row 2066 */ 2067 printf("%15s %-6s ", "", ""); 2068 2069 if (sched->show_cpu_visual) 2070 printf(" %*s ", ncpus, ""); 2071 2072 printf(" %-*s %9s %9s %9s", comm_width, 2073 "[tid/pid]", "(msec)", "(msec)", "(msec)"); 2074 2075 if (sched->show_state) 2076 printf(" %5s", ""); 2077 2078 printf("\n"); 2079 2080 /* 2081 * separator 2082 */ 2083 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line); 2084 2085 if (sched->show_cpu_visual) 2086 printf(" %.*s ", ncpus, graph_dotted_line); 2087 2088 printf(" %.*s %.9s %.9s %.9s", comm_width, 2089 graph_dotted_line, graph_dotted_line, graph_dotted_line, 2090 graph_dotted_line); 2091 2092 if (sched->show_state) 2093 printf(" %.5s", graph_dotted_line); 2094 2095 printf("\n"); 2096 } 2097 2098 static void timehist_print_sample(struct perf_sched *sched, 2099 struct evsel *evsel, 2100 struct perf_sample *sample, 2101 struct addr_location *al, 2102 struct thread *thread, 2103 u64 t, const char state) 2104 { 2105 struct thread_runtime *tr = thread__priv(thread); 2106 const char *next_comm = evsel__strval(evsel, sample, "next_comm"); 2107 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 2108 u32 max_cpus = sched->max_cpu.cpu + 1; 2109 char tstr[64]; 2110 char nstr[30]; 2111 u64 wait_time; 2112 2113 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap)) 2114 return; 2115 2116 timestamp__scnprintf_usec(t, tstr, sizeof(tstr)); 2117 printf("%15s [%04d] ", tstr, sample->cpu); 2118 2119 if (sched->show_cpu_visual) { 2120 u32 i; 2121 char c; 2122 2123 printf(" "); 2124 for (i = 0; i < max_cpus; ++i) { 2125 /* flag idle times with 'i'; others are sched events */ 2126 if (i == sample->cpu) 2127 c = (thread__tid(thread) == 0) ? 'i' : 's'; 2128 else 2129 c = ' '; 2130 printf("%c", c); 2131 } 2132 printf(" "); 2133 } 2134 2135 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2136 2137 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt; 2138 print_sched_time(wait_time, 6); 2139 2140 print_sched_time(tr->dt_delay, 6); 2141 print_sched_time(tr->dt_run, 6); 2142 2143 if (sched->show_state) 2144 printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state); 2145 2146 if (sched->show_next) { 2147 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid); 2148 printf(" %-*s", comm_width, nstr); 2149 } 2150 2151 if (sched->show_wakeups && !sched->show_next) 2152 printf(" %-*s", comm_width, ""); 2153 2154 if (thread__tid(thread) == 0) 2155 goto out; 2156 2157 if (sched->show_callchain) 2158 printf(" "); 2159 2160 sample__fprintf_sym(sample, al, 0, 2161 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE | 2162 EVSEL__PRINT_CALLCHAIN_ARROW | 2163 EVSEL__PRINT_SKIP_IGNORED, 2164 get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout); 2165 2166 out: 2167 printf("\n"); 2168 } 2169 2170 /* 2171 * Explanation of delta-time stats: 2172 * 2173 * t = time of current schedule out event 2174 * tprev = time of previous sched out event 2175 * also time of schedule-in event for current task 2176 * last_time = time of last sched change event for current task 2177 * (i.e, time process was last scheduled out) 2178 * ready_to_run = time of wakeup for current task 2179 * 2180 * -----|------------|------------|------------|------ 2181 * last ready tprev t 2182 * time to run 2183 * 2184 * |-------- dt_wait --------| 2185 * |- dt_delay -|-- dt_run --| 2186 * 2187 * dt_run = run time of current task 2188 * dt_wait = time between last schedule out event for task and tprev 2189 * represents time spent off the cpu 2190 * dt_delay = time between wakeup and schedule-in of task 2191 */ 2192 2193 static void timehist_update_runtime_stats(struct thread_runtime *r, 2194 u64 t, u64 tprev) 2195 { 2196 r->dt_delay = 0; 2197 r->dt_sleep = 0; 2198 r->dt_iowait = 0; 2199 r->dt_preempt = 0; 2200 r->dt_run = 0; 2201 2202 if (tprev) { 2203 r->dt_run = t - tprev; 2204 if (r->ready_to_run) { 2205 if (r->ready_to_run > tprev) 2206 pr_debug("time travel: wakeup time for task > previous sched_switch event\n"); 2207 else 2208 r->dt_delay = tprev - r->ready_to_run; 2209 } 2210 2211 if (r->last_time > tprev) 2212 pr_debug("time travel: last sched out time for task > previous sched_switch event\n"); 2213 else if (r->last_time) { 2214 u64 dt_wait = tprev - r->last_time; 2215 2216 if (r->last_state == 'R') 2217 r->dt_preempt = dt_wait; 2218 else if (r->last_state == 'D') 2219 r->dt_iowait = dt_wait; 2220 else 2221 r->dt_sleep = dt_wait; 2222 } 2223 } 2224 2225 update_stats(&r->run_stats, r->dt_run); 2226 2227 r->total_run_time += r->dt_run; 2228 r->total_delay_time += r->dt_delay; 2229 r->total_sleep_time += r->dt_sleep; 2230 r->total_iowait_time += r->dt_iowait; 2231 r->total_preempt_time += r->dt_preempt; 2232 } 2233 2234 static bool is_idle_sample(struct perf_sample *sample, 2235 struct evsel *evsel) 2236 { 2237 /* pid 0 == swapper == idle task */ 2238 if (evsel__name_is(evsel, "sched:sched_switch")) 2239 return evsel__intval(evsel, sample, "prev_pid") == 0; 2240 2241 return sample->pid == 0; 2242 } 2243 2244 static void save_task_callchain(struct perf_sched *sched, 2245 struct perf_sample *sample, 2246 struct evsel *evsel, 2247 struct machine *machine) 2248 { 2249 struct callchain_cursor *cursor; 2250 struct thread *thread; 2251 2252 /* want main thread for process - has maps */ 2253 thread = machine__findnew_thread(machine, sample->pid, sample->pid); 2254 if (thread == NULL) { 2255 pr_debug("Failed to get thread for pid %d.\n", sample->pid); 2256 return; 2257 } 2258 2259 if (!sched->show_callchain || sample->callchain == NULL) 2260 return; 2261 2262 cursor = get_tls_callchain_cursor(); 2263 2264 if (thread__resolve_callchain(thread, cursor, evsel, sample, 2265 NULL, NULL, sched->max_stack + 2) != 0) { 2266 if (verbose > 0) 2267 pr_err("Failed to resolve callchain. Skipping\n"); 2268 2269 return; 2270 } 2271 2272 callchain_cursor_commit(cursor); 2273 2274 while (true) { 2275 struct callchain_cursor_node *node; 2276 struct symbol *sym; 2277 2278 node = callchain_cursor_current(cursor); 2279 if (node == NULL) 2280 break; 2281 2282 sym = node->ms.sym; 2283 if (sym) { 2284 if (!strcmp(sym->name, "schedule") || 2285 !strcmp(sym->name, "__schedule") || 2286 !strcmp(sym->name, "preempt_schedule")) 2287 sym->ignore = 1; 2288 } 2289 2290 callchain_cursor_advance(cursor); 2291 } 2292 } 2293 2294 static int init_idle_thread(struct thread *thread) 2295 { 2296 struct idle_thread_runtime *itr; 2297 2298 thread__set_comm(thread, idle_comm, 0); 2299 2300 itr = zalloc(sizeof(*itr)); 2301 if (itr == NULL) 2302 return -ENOMEM; 2303 2304 init_stats(&itr->tr.run_stats); 2305 callchain_init(&itr->callchain); 2306 callchain_cursor_reset(&itr->cursor); 2307 thread__set_priv(thread, itr); 2308 2309 return 0; 2310 } 2311 2312 /* 2313 * Track idle stats per cpu by maintaining a local thread 2314 * struct for the idle task on each cpu. 2315 */ 2316 static int init_idle_threads(int ncpu) 2317 { 2318 int i, ret; 2319 2320 idle_threads = zalloc(ncpu * sizeof(struct thread *)); 2321 if (!idle_threads) 2322 return -ENOMEM; 2323 2324 idle_max_cpu = ncpu; 2325 2326 /* allocate the actual thread struct if needed */ 2327 for (i = 0; i < ncpu; ++i) { 2328 idle_threads[i] = thread__new(0, 0); 2329 if (idle_threads[i] == NULL) 2330 return -ENOMEM; 2331 2332 ret = init_idle_thread(idle_threads[i]); 2333 if (ret < 0) 2334 return ret; 2335 } 2336 2337 return 0; 2338 } 2339 2340 static void free_idle_threads(void) 2341 { 2342 int i; 2343 2344 if (idle_threads == NULL) 2345 return; 2346 2347 for (i = 0; i < idle_max_cpu; ++i) { 2348 if ((idle_threads[i])) 2349 thread__delete(idle_threads[i]); 2350 } 2351 2352 free(idle_threads); 2353 } 2354 2355 static struct thread *get_idle_thread(int cpu) 2356 { 2357 /* 2358 * expand/allocate array of pointers to local thread 2359 * structs if needed 2360 */ 2361 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) { 2362 int i, j = __roundup_pow_of_two(cpu+1); 2363 void *p; 2364 2365 p = realloc(idle_threads, j * sizeof(struct thread *)); 2366 if (!p) 2367 return NULL; 2368 2369 idle_threads = (struct thread **) p; 2370 for (i = idle_max_cpu; i < j; ++i) 2371 idle_threads[i] = NULL; 2372 2373 idle_max_cpu = j; 2374 } 2375 2376 /* allocate a new thread struct if needed */ 2377 if (idle_threads[cpu] == NULL) { 2378 idle_threads[cpu] = thread__new(0, 0); 2379 2380 if (idle_threads[cpu]) { 2381 if (init_idle_thread(idle_threads[cpu]) < 0) 2382 return NULL; 2383 } 2384 } 2385 2386 return idle_threads[cpu]; 2387 } 2388 2389 static void save_idle_callchain(struct perf_sched *sched, 2390 struct idle_thread_runtime *itr, 2391 struct perf_sample *sample) 2392 { 2393 struct callchain_cursor *cursor; 2394 2395 if (!sched->show_callchain || sample->callchain == NULL) 2396 return; 2397 2398 cursor = get_tls_callchain_cursor(); 2399 if (cursor == NULL) 2400 return; 2401 2402 callchain_cursor__copy(&itr->cursor, cursor); 2403 } 2404 2405 static struct thread *timehist_get_thread(struct perf_sched *sched, 2406 struct perf_sample *sample, 2407 struct machine *machine, 2408 struct evsel *evsel) 2409 { 2410 struct thread *thread; 2411 2412 if (is_idle_sample(sample, evsel)) { 2413 thread = get_idle_thread(sample->cpu); 2414 if (thread == NULL) 2415 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2416 2417 } else { 2418 /* there were samples with tid 0 but non-zero pid */ 2419 thread = machine__findnew_thread(machine, sample->pid, 2420 sample->tid ?: sample->pid); 2421 if (thread == NULL) { 2422 pr_debug("Failed to get thread for tid %d. skipping sample.\n", 2423 sample->tid); 2424 } 2425 2426 save_task_callchain(sched, sample, evsel, machine); 2427 if (sched->idle_hist) { 2428 struct thread *idle; 2429 struct idle_thread_runtime *itr; 2430 2431 idle = get_idle_thread(sample->cpu); 2432 if (idle == NULL) { 2433 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2434 return NULL; 2435 } 2436 2437 itr = thread__priv(idle); 2438 if (itr == NULL) 2439 return NULL; 2440 2441 itr->last_thread = thread; 2442 2443 /* copy task callchain when entering to idle */ 2444 if (evsel__intval(evsel, sample, "next_pid") == 0) 2445 save_idle_callchain(sched, itr, sample); 2446 } 2447 } 2448 2449 return thread; 2450 } 2451 2452 static bool timehist_skip_sample(struct perf_sched *sched, 2453 struct thread *thread, 2454 struct evsel *evsel, 2455 struct perf_sample *sample) 2456 { 2457 bool rc = false; 2458 2459 if (thread__is_filtered(thread)) { 2460 rc = true; 2461 sched->skipped_samples++; 2462 } 2463 2464 if (sched->idle_hist) { 2465 if (!evsel__name_is(evsel, "sched:sched_switch")) 2466 rc = true; 2467 else if (evsel__intval(evsel, sample, "prev_pid") != 0 && 2468 evsel__intval(evsel, sample, "next_pid") != 0) 2469 rc = true; 2470 } 2471 2472 return rc; 2473 } 2474 2475 static void timehist_print_wakeup_event(struct perf_sched *sched, 2476 struct evsel *evsel, 2477 struct perf_sample *sample, 2478 struct machine *machine, 2479 struct thread *awakened) 2480 { 2481 struct thread *thread; 2482 char tstr[64]; 2483 2484 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2485 if (thread == NULL) 2486 return; 2487 2488 /* show wakeup unless both awakee and awaker are filtered */ 2489 if (timehist_skip_sample(sched, thread, evsel, sample) && 2490 timehist_skip_sample(sched, awakened, evsel, sample)) { 2491 return; 2492 } 2493 2494 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2495 printf("%15s [%04d] ", tstr, sample->cpu); 2496 if (sched->show_cpu_visual) 2497 printf(" %*s ", sched->max_cpu.cpu + 1, ""); 2498 2499 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2500 2501 /* dt spacer */ 2502 printf(" %9s %9s %9s ", "", "", ""); 2503 2504 printf("awakened: %s", timehist_get_commstr(awakened)); 2505 2506 printf("\n"); 2507 } 2508 2509 static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused, 2510 union perf_event *event __maybe_unused, 2511 struct evsel *evsel __maybe_unused, 2512 struct perf_sample *sample __maybe_unused, 2513 struct machine *machine __maybe_unused) 2514 { 2515 return 0; 2516 } 2517 2518 static int timehist_sched_wakeup_event(const struct perf_tool *tool, 2519 union perf_event *event __maybe_unused, 2520 struct evsel *evsel, 2521 struct perf_sample *sample, 2522 struct machine *machine) 2523 { 2524 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2525 struct thread *thread; 2526 struct thread_runtime *tr = NULL; 2527 /* want pid of awakened task not pid in sample */ 2528 const u32 pid = evsel__intval(evsel, sample, "pid"); 2529 2530 thread = machine__findnew_thread(machine, 0, pid); 2531 if (thread == NULL) 2532 return -1; 2533 2534 tr = thread__get_runtime(thread); 2535 if (tr == NULL) 2536 return -1; 2537 2538 if (tr->ready_to_run == 0) 2539 tr->ready_to_run = sample->time; 2540 2541 /* show wakeups if requested */ 2542 if (sched->show_wakeups && 2543 !perf_time__skip_sample(&sched->ptime, sample->time)) 2544 timehist_print_wakeup_event(sched, evsel, sample, machine, thread); 2545 2546 return 0; 2547 } 2548 2549 static void timehist_print_migration_event(struct perf_sched *sched, 2550 struct evsel *evsel, 2551 struct perf_sample *sample, 2552 struct machine *machine, 2553 struct thread *migrated) 2554 { 2555 struct thread *thread; 2556 char tstr[64]; 2557 u32 max_cpus; 2558 u32 ocpu, dcpu; 2559 2560 if (sched->summary_only) 2561 return; 2562 2563 max_cpus = sched->max_cpu.cpu + 1; 2564 ocpu = evsel__intval(evsel, sample, "orig_cpu"); 2565 dcpu = evsel__intval(evsel, sample, "dest_cpu"); 2566 2567 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2568 if (thread == NULL) 2569 return; 2570 2571 if (timehist_skip_sample(sched, thread, evsel, sample) && 2572 timehist_skip_sample(sched, migrated, evsel, sample)) { 2573 return; 2574 } 2575 2576 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2577 printf("%15s [%04d] ", tstr, sample->cpu); 2578 2579 if (sched->show_cpu_visual) { 2580 u32 i; 2581 char c; 2582 2583 printf(" "); 2584 for (i = 0; i < max_cpus; ++i) { 2585 c = (i == sample->cpu) ? 'm' : ' '; 2586 printf("%c", c); 2587 } 2588 printf(" "); 2589 } 2590 2591 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2592 2593 /* dt spacer */ 2594 printf(" %9s %9s %9s ", "", "", ""); 2595 2596 printf("migrated: %s", timehist_get_commstr(migrated)); 2597 printf(" cpu %d => %d", ocpu, dcpu); 2598 2599 printf("\n"); 2600 } 2601 2602 static int timehist_migrate_task_event(const struct perf_tool *tool, 2603 union perf_event *event __maybe_unused, 2604 struct evsel *evsel, 2605 struct perf_sample *sample, 2606 struct machine *machine) 2607 { 2608 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2609 struct thread *thread; 2610 struct thread_runtime *tr = NULL; 2611 /* want pid of migrated task not pid in sample */ 2612 const u32 pid = evsel__intval(evsel, sample, "pid"); 2613 2614 thread = machine__findnew_thread(machine, 0, pid); 2615 if (thread == NULL) 2616 return -1; 2617 2618 tr = thread__get_runtime(thread); 2619 if (tr == NULL) 2620 return -1; 2621 2622 tr->migrations++; 2623 2624 /* show migrations if requested */ 2625 timehist_print_migration_event(sched, evsel, sample, machine, thread); 2626 2627 return 0; 2628 } 2629 2630 static int timehist_sched_change_event(const struct perf_tool *tool, 2631 union perf_event *event, 2632 struct evsel *evsel, 2633 struct perf_sample *sample, 2634 struct machine *machine) 2635 { 2636 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2637 struct perf_time_interval *ptime = &sched->ptime; 2638 struct addr_location al; 2639 struct thread *thread; 2640 struct thread_runtime *tr = NULL; 2641 u64 tprev, t = sample->time; 2642 int rc = 0; 2643 const char state = evsel__taskstate(evsel, sample, "prev_state"); 2644 2645 addr_location__init(&al); 2646 if (machine__resolve(machine, &al, sample) < 0) { 2647 pr_err("problem processing %d event. skipping it\n", 2648 event->header.type); 2649 rc = -1; 2650 goto out; 2651 } 2652 2653 thread = timehist_get_thread(sched, sample, machine, evsel); 2654 if (thread == NULL) { 2655 rc = -1; 2656 goto out; 2657 } 2658 2659 if (timehist_skip_sample(sched, thread, evsel, sample)) 2660 goto out; 2661 2662 tr = thread__get_runtime(thread); 2663 if (tr == NULL) { 2664 rc = -1; 2665 goto out; 2666 } 2667 2668 tprev = evsel__get_time(evsel, sample->cpu); 2669 2670 /* 2671 * If start time given: 2672 * - sample time is under window user cares about - skip sample 2673 * - tprev is under window user cares about - reset to start of window 2674 */ 2675 if (ptime->start && ptime->start > t) 2676 goto out; 2677 2678 if (tprev && ptime->start > tprev) 2679 tprev = ptime->start; 2680 2681 /* 2682 * If end time given: 2683 * - previous sched event is out of window - we are done 2684 * - sample time is beyond window user cares about - reset it 2685 * to close out stats for time window interest 2686 * - If tprev is 0, that is, sched_in event for current task is 2687 * not recorded, cannot determine whether sched_in event is 2688 * within time window interest - ignore it 2689 */ 2690 if (ptime->end) { 2691 if (!tprev || tprev > ptime->end) 2692 goto out; 2693 2694 if (t > ptime->end) 2695 t = ptime->end; 2696 } 2697 2698 if (!sched->idle_hist || thread__tid(thread) == 0) { 2699 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap)) 2700 timehist_update_runtime_stats(tr, t, tprev); 2701 2702 if (sched->idle_hist) { 2703 struct idle_thread_runtime *itr = (void *)tr; 2704 struct thread_runtime *last_tr; 2705 2706 if (itr->last_thread == NULL) 2707 goto out; 2708 2709 /* add current idle time as last thread's runtime */ 2710 last_tr = thread__get_runtime(itr->last_thread); 2711 if (last_tr == NULL) 2712 goto out; 2713 2714 timehist_update_runtime_stats(last_tr, t, tprev); 2715 /* 2716 * remove delta time of last thread as it's not updated 2717 * and otherwise it will show an invalid value next 2718 * time. we only care total run time and run stat. 2719 */ 2720 last_tr->dt_run = 0; 2721 last_tr->dt_delay = 0; 2722 last_tr->dt_sleep = 0; 2723 last_tr->dt_iowait = 0; 2724 last_tr->dt_preempt = 0; 2725 2726 if (itr->cursor.nr) 2727 callchain_append(&itr->callchain, &itr->cursor, t - tprev); 2728 2729 itr->last_thread = NULL; 2730 } 2731 2732 if (!sched->summary_only) 2733 timehist_print_sample(sched, evsel, sample, &al, thread, t, state); 2734 } 2735 2736 out: 2737 if (sched->hist_time.start == 0 && t >= ptime->start) 2738 sched->hist_time.start = t; 2739 if (ptime->end == 0 || t <= ptime->end) 2740 sched->hist_time.end = t; 2741 2742 if (tr) { 2743 /* time of this sched_switch event becomes last time task seen */ 2744 tr->last_time = sample->time; 2745 2746 /* last state is used to determine where to account wait time */ 2747 tr->last_state = state; 2748 2749 /* sched out event for task so reset ready to run time */ 2750 if (state == 'R') 2751 tr->ready_to_run = t; 2752 else 2753 tr->ready_to_run = 0; 2754 } 2755 2756 evsel__save_time(evsel, sample->time, sample->cpu); 2757 2758 addr_location__exit(&al); 2759 return rc; 2760 } 2761 2762 static int timehist_sched_switch_event(const struct perf_tool *tool, 2763 union perf_event *event, 2764 struct evsel *evsel, 2765 struct perf_sample *sample, 2766 struct machine *machine __maybe_unused) 2767 { 2768 return timehist_sched_change_event(tool, event, evsel, sample, machine); 2769 } 2770 2771 static int process_lost(const struct perf_tool *tool __maybe_unused, 2772 union perf_event *event, 2773 struct perf_sample *sample, 2774 struct machine *machine __maybe_unused) 2775 { 2776 char tstr[64]; 2777 2778 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2779 printf("%15s ", tstr); 2780 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu); 2781 2782 return 0; 2783 } 2784 2785 2786 static void print_thread_runtime(struct thread *t, 2787 struct thread_runtime *r) 2788 { 2789 double mean = avg_stats(&r->run_stats); 2790 float stddev; 2791 2792 printf("%*s %5d %9" PRIu64 " ", 2793 comm_width, timehist_get_commstr(t), thread__ppid(t), 2794 (u64) r->run_stats.n); 2795 2796 print_sched_time(r->total_run_time, 8); 2797 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean); 2798 print_sched_time(r->run_stats.min, 6); 2799 printf(" "); 2800 print_sched_time((u64) mean, 6); 2801 printf(" "); 2802 print_sched_time(r->run_stats.max, 6); 2803 printf(" "); 2804 printf("%5.2f", stddev); 2805 printf(" %5" PRIu64, r->migrations); 2806 printf("\n"); 2807 } 2808 2809 static void print_thread_waittime(struct thread *t, 2810 struct thread_runtime *r) 2811 { 2812 printf("%*s %5d %9" PRIu64 " ", 2813 comm_width, timehist_get_commstr(t), thread__ppid(t), 2814 (u64) r->run_stats.n); 2815 2816 print_sched_time(r->total_run_time, 8); 2817 print_sched_time(r->total_sleep_time, 6); 2818 printf(" "); 2819 print_sched_time(r->total_iowait_time, 6); 2820 printf(" "); 2821 print_sched_time(r->total_preempt_time, 6); 2822 printf(" "); 2823 print_sched_time(r->total_delay_time, 6); 2824 printf("\n"); 2825 } 2826 2827 struct total_run_stats { 2828 struct perf_sched *sched; 2829 u64 sched_count; 2830 u64 task_count; 2831 u64 total_run_time; 2832 }; 2833 2834 static int show_thread_runtime(struct thread *t, void *priv) 2835 { 2836 struct total_run_stats *stats = priv; 2837 struct thread_runtime *r; 2838 2839 if (thread__is_filtered(t)) 2840 return 0; 2841 2842 r = thread__priv(t); 2843 if (r && r->run_stats.n) { 2844 stats->task_count++; 2845 stats->sched_count += r->run_stats.n; 2846 stats->total_run_time += r->total_run_time; 2847 2848 if (stats->sched->show_state) 2849 print_thread_waittime(t, r); 2850 else 2851 print_thread_runtime(t, r); 2852 } 2853 2854 return 0; 2855 } 2856 2857 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node) 2858 { 2859 const char *sep = " <- "; 2860 struct callchain_list *chain; 2861 size_t ret = 0; 2862 char bf[1024]; 2863 bool first; 2864 2865 if (node == NULL) 2866 return 0; 2867 2868 ret = callchain__fprintf_folded(fp, node->parent); 2869 first = (ret == 0); 2870 2871 list_for_each_entry(chain, &node->val, list) { 2872 if (chain->ip >= PERF_CONTEXT_MAX) 2873 continue; 2874 if (chain->ms.sym && chain->ms.sym->ignore) 2875 continue; 2876 ret += fprintf(fp, "%s%s", first ? "" : sep, 2877 callchain_list__sym_name(chain, bf, sizeof(bf), 2878 false)); 2879 first = false; 2880 } 2881 2882 return ret; 2883 } 2884 2885 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root) 2886 { 2887 size_t ret = 0; 2888 FILE *fp = stdout; 2889 struct callchain_node *chain; 2890 struct rb_node *rb_node = rb_first_cached(root); 2891 2892 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains"); 2893 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line, 2894 graph_dotted_line); 2895 2896 while (rb_node) { 2897 chain = rb_entry(rb_node, struct callchain_node, rb_node); 2898 rb_node = rb_next(rb_node); 2899 2900 ret += fprintf(fp, " "); 2901 print_sched_time(chain->hit, 12); 2902 ret += 16; /* print_sched_time returns 2nd arg + 4 */ 2903 ret += fprintf(fp, " %8d ", chain->count); 2904 ret += callchain__fprintf_folded(fp, chain); 2905 ret += fprintf(fp, "\n"); 2906 } 2907 2908 return ret; 2909 } 2910 2911 static void timehist_print_summary(struct perf_sched *sched, 2912 struct perf_session *session) 2913 { 2914 struct machine *m = &session->machines.host; 2915 struct total_run_stats totals; 2916 u64 task_count; 2917 struct thread *t; 2918 struct thread_runtime *r; 2919 int i; 2920 u64 hist_time = sched->hist_time.end - sched->hist_time.start; 2921 2922 memset(&totals, 0, sizeof(totals)); 2923 totals.sched = sched; 2924 2925 if (sched->idle_hist) { 2926 printf("\nIdle-time summary\n"); 2927 printf("%*s parent sched-out ", comm_width, "comm"); 2928 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n"); 2929 } else if (sched->show_state) { 2930 printf("\nWait-time summary\n"); 2931 printf("%*s parent sched-in ", comm_width, "comm"); 2932 printf(" run-time sleep iowait preempt delay\n"); 2933 } else { 2934 printf("\nRuntime summary\n"); 2935 printf("%*s parent sched-in ", comm_width, "comm"); 2936 printf(" run-time min-run avg-run max-run stddev migrations\n"); 2937 } 2938 printf("%*s (count) ", comm_width, ""); 2939 printf(" (msec) (msec) (msec) (msec) %s\n", 2940 sched->show_state ? "(msec)" : "%"); 2941 printf("%.117s\n", graph_dotted_line); 2942 2943 machine__for_each_thread(m, show_thread_runtime, &totals); 2944 task_count = totals.task_count; 2945 if (!task_count) 2946 printf("<no still running tasks>\n"); 2947 2948 /* CPU idle stats not tracked when samples were skipped */ 2949 if (sched->skipped_samples && !sched->idle_hist) 2950 return; 2951 2952 printf("\nIdle stats:\n"); 2953 for (i = 0; i < idle_max_cpu; ++i) { 2954 if (cpu_list && !test_bit(i, cpu_bitmap)) 2955 continue; 2956 2957 t = idle_threads[i]; 2958 if (!t) 2959 continue; 2960 2961 r = thread__priv(t); 2962 if (r && r->run_stats.n) { 2963 totals.sched_count += r->run_stats.n; 2964 printf(" CPU %2d idle for ", i); 2965 print_sched_time(r->total_run_time, 6); 2966 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time); 2967 } else 2968 printf(" CPU %2d idle entire time window\n", i); 2969 } 2970 2971 if (sched->idle_hist && sched->show_callchain) { 2972 callchain_param.mode = CHAIN_FOLDED; 2973 callchain_param.value = CCVAL_PERIOD; 2974 2975 callchain_register_param(&callchain_param); 2976 2977 printf("\nIdle stats by callchain:\n"); 2978 for (i = 0; i < idle_max_cpu; ++i) { 2979 struct idle_thread_runtime *itr; 2980 2981 t = idle_threads[i]; 2982 if (!t) 2983 continue; 2984 2985 itr = thread__priv(t); 2986 if (itr == NULL) 2987 continue; 2988 2989 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain, 2990 0, &callchain_param); 2991 2992 printf(" CPU %2d:", i); 2993 print_sched_time(itr->tr.total_run_time, 6); 2994 printf(" msec\n"); 2995 timehist_print_idlehist_callchain(&itr->sorted_root); 2996 printf("\n"); 2997 } 2998 } 2999 3000 printf("\n" 3001 " Total number of unique tasks: %" PRIu64 "\n" 3002 "Total number of context switches: %" PRIu64 "\n", 3003 totals.task_count, totals.sched_count); 3004 3005 printf(" Total run time (msec): "); 3006 print_sched_time(totals.total_run_time, 2); 3007 printf("\n"); 3008 3009 printf(" Total scheduling time (msec): "); 3010 print_sched_time(hist_time, 2); 3011 printf(" (x %d)\n", sched->max_cpu.cpu); 3012 } 3013 3014 typedef int (*sched_handler)(const struct perf_tool *tool, 3015 union perf_event *event, 3016 struct evsel *evsel, 3017 struct perf_sample *sample, 3018 struct machine *machine); 3019 3020 static int perf_timehist__process_sample(const struct perf_tool *tool, 3021 union perf_event *event, 3022 struct perf_sample *sample, 3023 struct evsel *evsel, 3024 struct machine *machine) 3025 { 3026 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 3027 int err = 0; 3028 struct perf_cpu this_cpu = { 3029 .cpu = sample->cpu, 3030 }; 3031 3032 if (this_cpu.cpu > sched->max_cpu.cpu) 3033 sched->max_cpu = this_cpu; 3034 3035 if (evsel->handler != NULL) { 3036 sched_handler f = evsel->handler; 3037 3038 err = f(tool, event, evsel, sample, machine); 3039 } 3040 3041 return err; 3042 } 3043 3044 static int timehist_check_attr(struct perf_sched *sched, 3045 struct evlist *evlist) 3046 { 3047 struct evsel *evsel; 3048 struct evsel_runtime *er; 3049 3050 list_for_each_entry(evsel, &evlist->core.entries, core.node) { 3051 er = evsel__get_runtime(evsel); 3052 if (er == NULL) { 3053 pr_err("Failed to allocate memory for evsel runtime data\n"); 3054 return -1; 3055 } 3056 3057 /* only need to save callchain related to sched_switch event */ 3058 if (sched->show_callchain && 3059 evsel__name_is(evsel, "sched:sched_switch") && 3060 !evsel__has_callchain(evsel)) { 3061 pr_info("Samples of sched_switch event do not have callchains.\n"); 3062 sched->show_callchain = 0; 3063 symbol_conf.use_callchain = 0; 3064 } 3065 } 3066 3067 return 0; 3068 } 3069 3070 static int perf_sched__timehist(struct perf_sched *sched) 3071 { 3072 struct evsel_str_handler handlers[] = { 3073 { "sched:sched_switch", timehist_sched_switch_event, }, 3074 { "sched:sched_wakeup", timehist_sched_wakeup_event, }, 3075 { "sched:sched_waking", timehist_sched_wakeup_event, }, 3076 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, }, 3077 }; 3078 const struct evsel_str_handler migrate_handlers[] = { 3079 { "sched:sched_migrate_task", timehist_migrate_task_event, }, 3080 }; 3081 struct perf_data data = { 3082 .path = input_name, 3083 .mode = PERF_DATA_MODE_READ, 3084 .force = sched->force, 3085 }; 3086 3087 struct perf_session *session; 3088 struct evlist *evlist; 3089 int err = -1; 3090 3091 /* 3092 * event handlers for timehist option 3093 */ 3094 sched->tool.sample = perf_timehist__process_sample; 3095 sched->tool.mmap = perf_event__process_mmap; 3096 sched->tool.comm = perf_event__process_comm; 3097 sched->tool.exit = perf_event__process_exit; 3098 sched->tool.fork = perf_event__process_fork; 3099 sched->tool.lost = process_lost; 3100 sched->tool.attr = perf_event__process_attr; 3101 sched->tool.tracing_data = perf_event__process_tracing_data; 3102 sched->tool.build_id = perf_event__process_build_id; 3103 3104 sched->tool.ordering_requires_timestamps = true; 3105 3106 symbol_conf.use_callchain = sched->show_callchain; 3107 3108 session = perf_session__new(&data, &sched->tool); 3109 if (IS_ERR(session)) 3110 return PTR_ERR(session); 3111 3112 if (cpu_list) { 3113 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap); 3114 if (err < 0) 3115 goto out; 3116 } 3117 3118 evlist = session->evlist; 3119 3120 symbol__init(&session->header.env); 3121 3122 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) { 3123 pr_err("Invalid time string\n"); 3124 err = -EINVAL; 3125 goto out; 3126 } 3127 3128 if (timehist_check_attr(sched, evlist) != 0) 3129 goto out; 3130 3131 setup_pager(); 3132 3133 /* prefer sched_waking if it is captured */ 3134 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) 3135 handlers[1].handler = timehist_sched_wakeup_ignore; 3136 3137 /* setup per-evsel handlers */ 3138 if (perf_session__set_tracepoints_handlers(session, handlers)) 3139 goto out; 3140 3141 /* sched_switch event at a minimum needs to exist */ 3142 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) { 3143 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n"); 3144 goto out; 3145 } 3146 3147 if (sched->show_migrations && 3148 perf_session__set_tracepoints_handlers(session, migrate_handlers)) 3149 goto out; 3150 3151 /* pre-allocate struct for per-CPU idle stats */ 3152 sched->max_cpu.cpu = session->header.env.nr_cpus_online; 3153 if (sched->max_cpu.cpu == 0) 3154 sched->max_cpu.cpu = 4; 3155 if (init_idle_threads(sched->max_cpu.cpu)) 3156 goto out; 3157 3158 /* summary_only implies summary option, but don't overwrite summary if set */ 3159 if (sched->summary_only) 3160 sched->summary = sched->summary_only; 3161 3162 if (!sched->summary_only) 3163 timehist_header(sched); 3164 3165 err = perf_session__process_events(session); 3166 if (err) { 3167 pr_err("Failed to process events, error %d", err); 3168 goto out; 3169 } 3170 3171 sched->nr_events = evlist->stats.nr_events[0]; 3172 sched->nr_lost_events = evlist->stats.total_lost; 3173 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST]; 3174 3175 if (sched->summary) 3176 timehist_print_summary(sched, session); 3177 3178 out: 3179 free_idle_threads(); 3180 perf_session__delete(session); 3181 3182 return err; 3183 } 3184 3185 3186 static void print_bad_events(struct perf_sched *sched) 3187 { 3188 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 3189 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 3190 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 3191 sched->nr_unordered_timestamps, sched->nr_timestamps); 3192 } 3193 if (sched->nr_lost_events && sched->nr_events) { 3194 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 3195 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 3196 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 3197 } 3198 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 3199 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 3200 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 3201 sched->nr_context_switch_bugs, sched->nr_timestamps); 3202 if (sched->nr_lost_events) 3203 printf(" (due to lost events?)"); 3204 printf("\n"); 3205 } 3206 } 3207 3208 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data) 3209 { 3210 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 3211 struct work_atoms *this; 3212 const char *comm = thread__comm_str(data->thread), *this_comm; 3213 bool leftmost = true; 3214 3215 while (*new) { 3216 int cmp; 3217 3218 this = container_of(*new, struct work_atoms, node); 3219 parent = *new; 3220 3221 this_comm = thread__comm_str(this->thread); 3222 cmp = strcmp(comm, this_comm); 3223 if (cmp > 0) { 3224 new = &((*new)->rb_left); 3225 } else if (cmp < 0) { 3226 new = &((*new)->rb_right); 3227 leftmost = false; 3228 } else { 3229 this->num_merged++; 3230 this->total_runtime += data->total_runtime; 3231 this->nb_atoms += data->nb_atoms; 3232 this->total_lat += data->total_lat; 3233 list_splice(&data->work_list, &this->work_list); 3234 if (this->max_lat < data->max_lat) { 3235 this->max_lat = data->max_lat; 3236 this->max_lat_start = data->max_lat_start; 3237 this->max_lat_end = data->max_lat_end; 3238 } 3239 zfree(&data); 3240 return; 3241 } 3242 } 3243 3244 data->num_merged++; 3245 rb_link_node(&data->node, parent, new); 3246 rb_insert_color_cached(&data->node, root, leftmost); 3247 } 3248 3249 static void perf_sched__merge_lat(struct perf_sched *sched) 3250 { 3251 struct work_atoms *data; 3252 struct rb_node *node; 3253 3254 if (sched->skip_merge) 3255 return; 3256 3257 while ((node = rb_first_cached(&sched->atom_root))) { 3258 rb_erase_cached(node, &sched->atom_root); 3259 data = rb_entry(node, struct work_atoms, node); 3260 __merge_work_atoms(&sched->merged_atom_root, data); 3261 } 3262 } 3263 3264 static int setup_cpus_switch_event(struct perf_sched *sched) 3265 { 3266 unsigned int i; 3267 3268 sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched))); 3269 if (!sched->cpu_last_switched) 3270 return -1; 3271 3272 sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid))); 3273 if (!sched->curr_pid) { 3274 zfree(&sched->cpu_last_switched); 3275 return -1; 3276 } 3277 3278 for (i = 0; i < MAX_CPUS; i++) 3279 sched->curr_pid[i] = -1; 3280 3281 return 0; 3282 } 3283 3284 static void free_cpus_switch_event(struct perf_sched *sched) 3285 { 3286 zfree(&sched->curr_pid); 3287 zfree(&sched->cpu_last_switched); 3288 } 3289 3290 static int perf_sched__lat(struct perf_sched *sched) 3291 { 3292 int rc = -1; 3293 struct rb_node *next; 3294 3295 setup_pager(); 3296 3297 if (setup_cpus_switch_event(sched)) 3298 return rc; 3299 3300 if (perf_sched__read_events(sched)) 3301 goto out_free_cpus_switch_event; 3302 3303 perf_sched__merge_lat(sched); 3304 perf_sched__sort_lat(sched); 3305 3306 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n"); 3307 printf(" Task | Runtime ms | Count | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n"); 3308 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n"); 3309 3310 next = rb_first_cached(&sched->sorted_atom_root); 3311 3312 while (next) { 3313 struct work_atoms *work_list; 3314 3315 work_list = rb_entry(next, struct work_atoms, node); 3316 output_lat_thread(sched, work_list); 3317 next = rb_next(next); 3318 thread__zput(work_list->thread); 3319 } 3320 3321 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3322 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 3323 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count); 3324 3325 printf(" ---------------------------------------------------\n"); 3326 3327 print_bad_events(sched); 3328 printf("\n"); 3329 3330 rc = 0; 3331 3332 out_free_cpus_switch_event: 3333 free_cpus_switch_event(sched); 3334 return rc; 3335 } 3336 3337 static int setup_map_cpus(struct perf_sched *sched) 3338 { 3339 sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF); 3340 3341 if (sched->map.comp) { 3342 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int)); 3343 if (!sched->map.comp_cpus) 3344 return -1; 3345 } 3346 3347 if (sched->map.cpus_str) { 3348 sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str); 3349 if (!sched->map.cpus) { 3350 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str); 3351 zfree(&sched->map.comp_cpus); 3352 return -1; 3353 } 3354 } 3355 3356 return 0; 3357 } 3358 3359 static int setup_color_pids(struct perf_sched *sched) 3360 { 3361 struct perf_thread_map *map; 3362 3363 if (!sched->map.color_pids_str) 3364 return 0; 3365 3366 map = thread_map__new_by_tid_str(sched->map.color_pids_str); 3367 if (!map) { 3368 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str); 3369 return -1; 3370 } 3371 3372 sched->map.color_pids = map; 3373 return 0; 3374 } 3375 3376 static int setup_color_cpus(struct perf_sched *sched) 3377 { 3378 struct perf_cpu_map *map; 3379 3380 if (!sched->map.color_cpus_str) 3381 return 0; 3382 3383 map = perf_cpu_map__new(sched->map.color_cpus_str); 3384 if (!map) { 3385 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str); 3386 return -1; 3387 } 3388 3389 sched->map.color_cpus = map; 3390 return 0; 3391 } 3392 3393 static int perf_sched__map(struct perf_sched *sched) 3394 { 3395 int rc = -1; 3396 3397 sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread))); 3398 if (!sched->curr_thread) 3399 return rc; 3400 3401 sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread))); 3402 if (!sched->curr_out_thread) 3403 return rc; 3404 3405 if (setup_cpus_switch_event(sched)) 3406 goto out_free_curr_thread; 3407 3408 if (setup_map_cpus(sched)) 3409 goto out_free_cpus_switch_event; 3410 3411 if (setup_color_pids(sched)) 3412 goto out_put_map_cpus; 3413 3414 if (setup_color_cpus(sched)) 3415 goto out_put_color_pids; 3416 3417 setup_pager(); 3418 if (perf_sched__read_events(sched)) 3419 goto out_put_color_cpus; 3420 3421 rc = 0; 3422 print_bad_events(sched); 3423 3424 out_put_color_cpus: 3425 perf_cpu_map__put(sched->map.color_cpus); 3426 3427 out_put_color_pids: 3428 perf_thread_map__put(sched->map.color_pids); 3429 3430 out_put_map_cpus: 3431 zfree(&sched->map.comp_cpus); 3432 perf_cpu_map__put(sched->map.cpus); 3433 3434 out_free_cpus_switch_event: 3435 free_cpus_switch_event(sched); 3436 3437 out_free_curr_thread: 3438 zfree(&sched->curr_thread); 3439 return rc; 3440 } 3441 3442 static int perf_sched__replay(struct perf_sched *sched) 3443 { 3444 int ret; 3445 unsigned long i; 3446 3447 mutex_init(&sched->start_work_mutex); 3448 mutex_init(&sched->work_done_wait_mutex); 3449 3450 ret = setup_cpus_switch_event(sched); 3451 if (ret) 3452 goto out_mutex_destroy; 3453 3454 calibrate_run_measurement_overhead(sched); 3455 calibrate_sleep_measurement_overhead(sched); 3456 3457 test_calibrations(sched); 3458 3459 ret = perf_sched__read_events(sched); 3460 if (ret) 3461 goto out_free_cpus_switch_event; 3462 3463 printf("nr_run_events: %ld\n", sched->nr_run_events); 3464 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 3465 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 3466 3467 if (sched->targetless_wakeups) 3468 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 3469 if (sched->multitarget_wakeups) 3470 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 3471 if (sched->nr_run_events_optimized) 3472 printf("run atoms optimized: %ld\n", 3473 sched->nr_run_events_optimized); 3474 3475 print_task_traces(sched); 3476 add_cross_task_wakeups(sched); 3477 3478 sched->thread_funcs_exit = false; 3479 create_tasks(sched); 3480 printf("------------------------------------------------------------\n"); 3481 if (sched->replay_repeat == 0) 3482 sched->replay_repeat = UINT_MAX; 3483 3484 for (i = 0; i < sched->replay_repeat; i++) 3485 run_one_test(sched); 3486 3487 sched->thread_funcs_exit = true; 3488 destroy_tasks(sched); 3489 3490 out_free_cpus_switch_event: 3491 free_cpus_switch_event(sched); 3492 3493 out_mutex_destroy: 3494 mutex_destroy(&sched->start_work_mutex); 3495 mutex_destroy(&sched->work_done_wait_mutex); 3496 return ret; 3497 } 3498 3499 static void setup_sorting(struct perf_sched *sched, const struct option *options, 3500 const char * const usage_msg[]) 3501 { 3502 char *tmp, *tok, *str = strdup(sched->sort_order); 3503 3504 for (tok = strtok_r(str, ", ", &tmp); 3505 tok; tok = strtok_r(NULL, ", ", &tmp)) { 3506 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 3507 usage_with_options_msg(usage_msg, options, 3508 "Unknown --sort key: `%s'", tok); 3509 } 3510 } 3511 3512 free(str); 3513 3514 sort_dimension__add("pid", &sched->cmp_pid); 3515 } 3516 3517 static bool schedstat_events_exposed(void) 3518 { 3519 /* 3520 * Select "sched:sched_stat_wait" event to check 3521 * whether schedstat tracepoints are exposed. 3522 */ 3523 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ? 3524 false : true; 3525 } 3526 3527 static int __cmd_record(int argc, const char **argv) 3528 { 3529 unsigned int rec_argc, i, j; 3530 char **rec_argv; 3531 const char **rec_argv_copy; 3532 const char * const record_args[] = { 3533 "record", 3534 "-a", 3535 "-R", 3536 "-m", "1024", 3537 "-c", "1", 3538 "-e", "sched:sched_switch", 3539 "-e", "sched:sched_stat_runtime", 3540 "-e", "sched:sched_process_fork", 3541 "-e", "sched:sched_wakeup_new", 3542 "-e", "sched:sched_migrate_task", 3543 }; 3544 3545 /* 3546 * The tracepoints trace_sched_stat_{wait, sleep, iowait} 3547 * are not exposed to user if CONFIG_SCHEDSTATS is not set, 3548 * to prevent "perf sched record" execution failure, determine 3549 * whether to record schedstat events according to actual situation. 3550 */ 3551 const char * const schedstat_args[] = { 3552 "-e", "sched:sched_stat_wait", 3553 "-e", "sched:sched_stat_sleep", 3554 "-e", "sched:sched_stat_iowait", 3555 }; 3556 unsigned int schedstat_argc = schedstat_events_exposed() ? 3557 ARRAY_SIZE(schedstat_args) : 0; 3558 3559 struct tep_event *waking_event; 3560 int ret; 3561 3562 /* 3563 * +2 for either "-e", "sched:sched_wakeup" or 3564 * "-e", "sched:sched_waking" 3565 */ 3566 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1; 3567 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 3568 if (rec_argv == NULL) 3569 return -ENOMEM; 3570 rec_argv_copy = calloc(rec_argc + 1, sizeof(char *)); 3571 if (rec_argv_copy == NULL) { 3572 free(rec_argv); 3573 return -ENOMEM; 3574 } 3575 3576 for (i = 0; i < ARRAY_SIZE(record_args); i++) 3577 rec_argv[i] = strdup(record_args[i]); 3578 3579 rec_argv[i++] = strdup("-e"); 3580 waking_event = trace_event__tp_format("sched", "sched_waking"); 3581 if (!IS_ERR(waking_event)) 3582 rec_argv[i++] = strdup("sched:sched_waking"); 3583 else 3584 rec_argv[i++] = strdup("sched:sched_wakeup"); 3585 3586 for (j = 0; j < schedstat_argc; j++) 3587 rec_argv[i++] = strdup(schedstat_args[j]); 3588 3589 for (j = 1; j < (unsigned int)argc; j++, i++) 3590 rec_argv[i] = strdup(argv[j]); 3591 3592 BUG_ON(i != rec_argc); 3593 3594 memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc); 3595 ret = cmd_record(rec_argc, rec_argv_copy); 3596 3597 for (i = 0; i < rec_argc; i++) 3598 free(rec_argv[i]); 3599 free(rec_argv); 3600 free(rec_argv_copy); 3601 3602 return ret; 3603 } 3604 3605 int cmd_sched(int argc, const char **argv) 3606 { 3607 static const char default_sort_order[] = "avg, max, switch, runtime"; 3608 struct perf_sched sched = { 3609 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 3610 .sort_list = LIST_HEAD_INIT(sched.sort_list), 3611 .sort_order = default_sort_order, 3612 .replay_repeat = 10, 3613 .profile_cpu = -1, 3614 .next_shortname1 = 'A', 3615 .next_shortname2 = '0', 3616 .skip_merge = 0, 3617 .show_callchain = 1, 3618 .max_stack = 5, 3619 }; 3620 const struct option sched_options[] = { 3621 OPT_STRING('i', "input", &input_name, "file", 3622 "input file name"), 3623 OPT_INCR('v', "verbose", &verbose, 3624 "be more verbose (show symbol address, etc)"), 3625 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 3626 "dump raw trace in ASCII"), 3627 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), 3628 OPT_END() 3629 }; 3630 const struct option latency_options[] = { 3631 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 3632 "sort by key(s): runtime, switch, avg, max"), 3633 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 3634 "CPU to profile on"), 3635 OPT_BOOLEAN('p', "pids", &sched.skip_merge, 3636 "latency stats per pid instead of per comm"), 3637 OPT_PARENT(sched_options) 3638 }; 3639 const struct option replay_options[] = { 3640 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 3641 "repeat the workload replay N times (0: infinite)"), 3642 OPT_PARENT(sched_options) 3643 }; 3644 const struct option map_options[] = { 3645 OPT_BOOLEAN(0, "compact", &sched.map.comp, 3646 "map output in compact mode"), 3647 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids", 3648 "highlight given pids in map"), 3649 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus", 3650 "highlight given CPUs in map"), 3651 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus", 3652 "display given CPUs in map"), 3653 OPT_STRING(0, "task-name", &sched.map.task_name, "task", 3654 "map output only for the given task name(s)."), 3655 OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy, 3656 "given command name can be partially matched (fuzzy matching)"), 3657 OPT_PARENT(sched_options) 3658 }; 3659 const struct option timehist_options[] = { 3660 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name, 3661 "file", "vmlinux pathname"), 3662 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name, 3663 "file", "kallsyms pathname"), 3664 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain, 3665 "Display call chains if present (default on)"), 3666 OPT_UINTEGER(0, "max-stack", &sched.max_stack, 3667 "Maximum number of functions to display backtrace."), 3668 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", 3669 "Look for files with symbols relative to this directory"), 3670 OPT_BOOLEAN('s', "summary", &sched.summary_only, 3671 "Show only syscall summary with statistics"), 3672 OPT_BOOLEAN('S', "with-summary", &sched.summary, 3673 "Show all syscalls and summary with statistics"), 3674 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"), 3675 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"), 3676 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"), 3677 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"), 3678 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"), 3679 OPT_STRING(0, "time", &sched.time_str, "str", 3680 "Time span for analysis (start,stop)"), 3681 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"), 3682 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]", 3683 "analyze events only for given process id(s)"), 3684 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]", 3685 "analyze events only for given thread id(s)"), 3686 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"), 3687 OPT_PARENT(sched_options) 3688 }; 3689 3690 const char * const latency_usage[] = { 3691 "perf sched latency [<options>]", 3692 NULL 3693 }; 3694 const char * const replay_usage[] = { 3695 "perf sched replay [<options>]", 3696 NULL 3697 }; 3698 const char * const map_usage[] = { 3699 "perf sched map [<options>]", 3700 NULL 3701 }; 3702 const char * const timehist_usage[] = { 3703 "perf sched timehist [<options>]", 3704 NULL 3705 }; 3706 const char *const sched_subcommands[] = { "record", "latency", "map", 3707 "replay", "script", 3708 "timehist", NULL }; 3709 const char *sched_usage[] = { 3710 NULL, 3711 NULL 3712 }; 3713 struct trace_sched_handler lat_ops = { 3714 .wakeup_event = latency_wakeup_event, 3715 .switch_event = latency_switch_event, 3716 .runtime_event = latency_runtime_event, 3717 .migrate_task_event = latency_migrate_task_event, 3718 }; 3719 struct trace_sched_handler map_ops = { 3720 .switch_event = map_switch_event, 3721 }; 3722 struct trace_sched_handler replay_ops = { 3723 .wakeup_event = replay_wakeup_event, 3724 .switch_event = replay_switch_event, 3725 .fork_event = replay_fork_event, 3726 }; 3727 int ret; 3728 3729 perf_tool__init(&sched.tool, /*ordered_events=*/true); 3730 sched.tool.sample = perf_sched__process_tracepoint_sample; 3731 sched.tool.comm = perf_sched__process_comm; 3732 sched.tool.namespaces = perf_event__process_namespaces; 3733 sched.tool.lost = perf_event__process_lost; 3734 sched.tool.fork = perf_sched__process_fork_event; 3735 3736 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 3737 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 3738 if (!argc) 3739 usage_with_options(sched_usage, sched_options); 3740 3741 /* 3742 * Aliased to 'perf script' for now: 3743 */ 3744 if (!strcmp(argv[0], "script")) { 3745 return cmd_script(argc, argv); 3746 } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 3747 return __cmd_record(argc, argv); 3748 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) { 3749 sched.tp_handler = &lat_ops; 3750 if (argc > 1) { 3751 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 3752 if (argc) 3753 usage_with_options(latency_usage, latency_options); 3754 } 3755 setup_sorting(&sched, latency_options, latency_usage); 3756 return perf_sched__lat(&sched); 3757 } else if (!strcmp(argv[0], "map")) { 3758 if (argc) { 3759 argc = parse_options(argc, argv, map_options, map_usage, 0); 3760 if (argc) 3761 usage_with_options(map_usage, map_options); 3762 3763 if (sched.map.task_name) { 3764 sched.map.task_names = strlist__new(sched.map.task_name, NULL); 3765 if (sched.map.task_names == NULL) { 3766 fprintf(stderr, "Failed to parse task names\n"); 3767 return -1; 3768 } 3769 } 3770 } 3771 sched.tp_handler = &map_ops; 3772 setup_sorting(&sched, latency_options, latency_usage); 3773 return perf_sched__map(&sched); 3774 } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) { 3775 sched.tp_handler = &replay_ops; 3776 if (argc) { 3777 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 3778 if (argc) 3779 usage_with_options(replay_usage, replay_options); 3780 } 3781 return perf_sched__replay(&sched); 3782 } else if (!strcmp(argv[0], "timehist")) { 3783 if (argc) { 3784 argc = parse_options(argc, argv, timehist_options, 3785 timehist_usage, 0); 3786 if (argc) 3787 usage_with_options(timehist_usage, timehist_options); 3788 } 3789 if ((sched.show_wakeups || sched.show_next) && 3790 sched.summary_only) { 3791 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n"); 3792 parse_options_usage(timehist_usage, timehist_options, "s", true); 3793 if (sched.show_wakeups) 3794 parse_options_usage(NULL, timehist_options, "w", true); 3795 if (sched.show_next) 3796 parse_options_usage(NULL, timehist_options, "n", true); 3797 return -EINVAL; 3798 } 3799 ret = symbol__validate_sym_arguments(); 3800 if (ret) 3801 return ret; 3802 3803 return perf_sched__timehist(&sched); 3804 } else { 3805 usage_with_options(sched_usage, sched_options); 3806 } 3807 3808 return 0; 3809 } 3810