1 // SPDX-License-Identifier: GPL-2.0 2 #include "builtin.h" 3 #include "perf.h" 4 5 #include "util/util.h" 6 #include "util/evlist.h" 7 #include "util/cache.h" 8 #include "util/evsel.h" 9 #include "util/symbol.h" 10 #include "util/thread.h" 11 #include "util/header.h" 12 #include "util/session.h" 13 #include "util/tool.h" 14 #include "util/cloexec.h" 15 #include "util/thread_map.h" 16 #include "util/color.h" 17 #include "util/stat.h" 18 #include "util/callchain.h" 19 #include "util/time-utils.h" 20 21 #include <subcmd/parse-options.h> 22 #include "util/trace-event.h" 23 24 #include "util/debug.h" 25 26 #include <linux/kernel.h> 27 #include <linux/log2.h> 28 #include <sys/prctl.h> 29 #include <sys/resource.h> 30 #include <inttypes.h> 31 32 #include <errno.h> 33 #include <semaphore.h> 34 #include <pthread.h> 35 #include <math.h> 36 #include <api/fs/fs.h> 37 #include <linux/time64.h> 38 39 #include "sane_ctype.h" 40 41 #define PR_SET_NAME 15 /* Set process name */ 42 #define MAX_CPUS 4096 43 #define COMM_LEN 20 44 #define SYM_LEN 129 45 #define MAX_PID 1024000 46 47 struct sched_atom; 48 49 struct task_desc { 50 unsigned long nr; 51 unsigned long pid; 52 char comm[COMM_LEN]; 53 54 unsigned long nr_events; 55 unsigned long curr_event; 56 struct sched_atom **atoms; 57 58 pthread_t thread; 59 sem_t sleep_sem; 60 61 sem_t ready_for_work; 62 sem_t work_done_sem; 63 64 u64 cpu_usage; 65 }; 66 67 enum sched_event_type { 68 SCHED_EVENT_RUN, 69 SCHED_EVENT_SLEEP, 70 SCHED_EVENT_WAKEUP, 71 SCHED_EVENT_MIGRATION, 72 }; 73 74 struct sched_atom { 75 enum sched_event_type type; 76 int specific_wait; 77 u64 timestamp; 78 u64 duration; 79 unsigned long nr; 80 sem_t *wait_sem; 81 struct task_desc *wakee; 82 }; 83 84 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 85 86 /* task state bitmask, copied from include/linux/sched.h */ 87 #define TASK_RUNNING 0 88 #define TASK_INTERRUPTIBLE 1 89 #define TASK_UNINTERRUPTIBLE 2 90 #define __TASK_STOPPED 4 91 #define __TASK_TRACED 8 92 /* in tsk->exit_state */ 93 #define EXIT_DEAD 16 94 #define EXIT_ZOMBIE 32 95 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 96 /* in tsk->state again */ 97 #define TASK_DEAD 64 98 #define TASK_WAKEKILL 128 99 #define TASK_WAKING 256 100 #define TASK_PARKED 512 101 102 enum thread_state { 103 THREAD_SLEEPING = 0, 104 THREAD_WAIT_CPU, 105 THREAD_SCHED_IN, 106 THREAD_IGNORE 107 }; 108 109 struct work_atom { 110 struct list_head list; 111 enum thread_state state; 112 u64 sched_out_time; 113 u64 wake_up_time; 114 u64 sched_in_time; 115 u64 runtime; 116 }; 117 118 struct work_atoms { 119 struct list_head work_list; 120 struct thread *thread; 121 struct rb_node node; 122 u64 max_lat; 123 u64 max_lat_at; 124 u64 total_lat; 125 u64 nb_atoms; 126 u64 total_runtime; 127 int num_merged; 128 }; 129 130 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 131 132 struct perf_sched; 133 134 struct trace_sched_handler { 135 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel, 136 struct perf_sample *sample, struct machine *machine); 137 138 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel, 139 struct perf_sample *sample, struct machine *machine); 140 141 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel, 142 struct perf_sample *sample, struct machine *machine); 143 144 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 145 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 146 struct machine *machine); 147 148 int (*migrate_task_event)(struct perf_sched *sched, 149 struct perf_evsel *evsel, 150 struct perf_sample *sample, 151 struct machine *machine); 152 }; 153 154 #define COLOR_PIDS PERF_COLOR_BLUE 155 #define COLOR_CPUS PERF_COLOR_BG_RED 156 157 struct perf_sched_map { 158 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); 159 int *comp_cpus; 160 bool comp; 161 struct thread_map *color_pids; 162 const char *color_pids_str; 163 struct cpu_map *color_cpus; 164 const char *color_cpus_str; 165 struct cpu_map *cpus; 166 const char *cpus_str; 167 }; 168 169 struct perf_sched { 170 struct perf_tool tool; 171 const char *sort_order; 172 unsigned long nr_tasks; 173 struct task_desc **pid_to_task; 174 struct task_desc **tasks; 175 const struct trace_sched_handler *tp_handler; 176 pthread_mutex_t start_work_mutex; 177 pthread_mutex_t work_done_wait_mutex; 178 int profile_cpu; 179 /* 180 * Track the current task - that way we can know whether there's any 181 * weird events, such as a task being switched away that is not current. 182 */ 183 int max_cpu; 184 u32 curr_pid[MAX_CPUS]; 185 struct thread *curr_thread[MAX_CPUS]; 186 char next_shortname1; 187 char next_shortname2; 188 unsigned int replay_repeat; 189 unsigned long nr_run_events; 190 unsigned long nr_sleep_events; 191 unsigned long nr_wakeup_events; 192 unsigned long nr_sleep_corrections; 193 unsigned long nr_run_events_optimized; 194 unsigned long targetless_wakeups; 195 unsigned long multitarget_wakeups; 196 unsigned long nr_runs; 197 unsigned long nr_timestamps; 198 unsigned long nr_unordered_timestamps; 199 unsigned long nr_context_switch_bugs; 200 unsigned long nr_events; 201 unsigned long nr_lost_chunks; 202 unsigned long nr_lost_events; 203 u64 run_measurement_overhead; 204 u64 sleep_measurement_overhead; 205 u64 start_time; 206 u64 cpu_usage; 207 u64 runavg_cpu_usage; 208 u64 parent_cpu_usage; 209 u64 runavg_parent_cpu_usage; 210 u64 sum_runtime; 211 u64 sum_fluct; 212 u64 run_avg; 213 u64 all_runtime; 214 u64 all_count; 215 u64 cpu_last_switched[MAX_CPUS]; 216 struct rb_root atom_root, sorted_atom_root, merged_atom_root; 217 struct list_head sort_list, cmp_pid; 218 bool force; 219 bool skip_merge; 220 struct perf_sched_map map; 221 222 /* options for timehist command */ 223 bool summary; 224 bool summary_only; 225 bool idle_hist; 226 bool show_callchain; 227 unsigned int max_stack; 228 bool show_cpu_visual; 229 bool show_wakeups; 230 bool show_next; 231 bool show_migrations; 232 bool show_state; 233 u64 skipped_samples; 234 const char *time_str; 235 struct perf_time_interval ptime; 236 struct perf_time_interval hist_time; 237 }; 238 239 /* per thread run time data */ 240 struct thread_runtime { 241 u64 last_time; /* time of previous sched in/out event */ 242 u64 dt_run; /* run time */ 243 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */ 244 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */ 245 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */ 246 u64 dt_delay; /* time between wakeup and sched-in */ 247 u64 ready_to_run; /* time of wakeup */ 248 249 struct stats run_stats; 250 u64 total_run_time; 251 u64 total_sleep_time; 252 u64 total_iowait_time; 253 u64 total_preempt_time; 254 u64 total_delay_time; 255 256 int last_state; 257 u64 migrations; 258 }; 259 260 /* per event run time data */ 261 struct evsel_runtime { 262 u64 *last_time; /* time this event was last seen per cpu */ 263 u32 ncpu; /* highest cpu slot allocated */ 264 }; 265 266 /* per cpu idle time data */ 267 struct idle_thread_runtime { 268 struct thread_runtime tr; 269 struct thread *last_thread; 270 struct rb_root sorted_root; 271 struct callchain_root callchain; 272 struct callchain_cursor cursor; 273 }; 274 275 /* track idle times per cpu */ 276 static struct thread **idle_threads; 277 static int idle_max_cpu; 278 static char idle_comm[] = "<idle>"; 279 280 static u64 get_nsecs(void) 281 { 282 struct timespec ts; 283 284 clock_gettime(CLOCK_MONOTONIC, &ts); 285 286 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; 287 } 288 289 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 290 { 291 u64 T0 = get_nsecs(), T1; 292 293 do { 294 T1 = get_nsecs(); 295 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 296 } 297 298 static void sleep_nsecs(u64 nsecs) 299 { 300 struct timespec ts; 301 302 ts.tv_nsec = nsecs % 999999999; 303 ts.tv_sec = nsecs / 999999999; 304 305 nanosleep(&ts, NULL); 306 } 307 308 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 309 { 310 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 311 int i; 312 313 for (i = 0; i < 10; i++) { 314 T0 = get_nsecs(); 315 burn_nsecs(sched, 0); 316 T1 = get_nsecs(); 317 delta = T1-T0; 318 min_delta = min(min_delta, delta); 319 } 320 sched->run_measurement_overhead = min_delta; 321 322 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 323 } 324 325 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 326 { 327 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 328 int i; 329 330 for (i = 0; i < 10; i++) { 331 T0 = get_nsecs(); 332 sleep_nsecs(10000); 333 T1 = get_nsecs(); 334 delta = T1-T0; 335 min_delta = min(min_delta, delta); 336 } 337 min_delta -= 10000; 338 sched->sleep_measurement_overhead = min_delta; 339 340 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 341 } 342 343 static struct sched_atom * 344 get_new_event(struct task_desc *task, u64 timestamp) 345 { 346 struct sched_atom *event = zalloc(sizeof(*event)); 347 unsigned long idx = task->nr_events; 348 size_t size; 349 350 event->timestamp = timestamp; 351 event->nr = idx; 352 353 task->nr_events++; 354 size = sizeof(struct sched_atom *) * task->nr_events; 355 task->atoms = realloc(task->atoms, size); 356 BUG_ON(!task->atoms); 357 358 task->atoms[idx] = event; 359 360 return event; 361 } 362 363 static struct sched_atom *last_event(struct task_desc *task) 364 { 365 if (!task->nr_events) 366 return NULL; 367 368 return task->atoms[task->nr_events - 1]; 369 } 370 371 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 372 u64 timestamp, u64 duration) 373 { 374 struct sched_atom *event, *curr_event = last_event(task); 375 376 /* 377 * optimize an existing RUN event by merging this one 378 * to it: 379 */ 380 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 381 sched->nr_run_events_optimized++; 382 curr_event->duration += duration; 383 return; 384 } 385 386 event = get_new_event(task, timestamp); 387 388 event->type = SCHED_EVENT_RUN; 389 event->duration = duration; 390 391 sched->nr_run_events++; 392 } 393 394 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 395 u64 timestamp, struct task_desc *wakee) 396 { 397 struct sched_atom *event, *wakee_event; 398 399 event = get_new_event(task, timestamp); 400 event->type = SCHED_EVENT_WAKEUP; 401 event->wakee = wakee; 402 403 wakee_event = last_event(wakee); 404 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 405 sched->targetless_wakeups++; 406 return; 407 } 408 if (wakee_event->wait_sem) { 409 sched->multitarget_wakeups++; 410 return; 411 } 412 413 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 414 sem_init(wakee_event->wait_sem, 0, 0); 415 wakee_event->specific_wait = 1; 416 event->wait_sem = wakee_event->wait_sem; 417 418 sched->nr_wakeup_events++; 419 } 420 421 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 422 u64 timestamp, u64 task_state __maybe_unused) 423 { 424 struct sched_atom *event = get_new_event(task, timestamp); 425 426 event->type = SCHED_EVENT_SLEEP; 427 428 sched->nr_sleep_events++; 429 } 430 431 static struct task_desc *register_pid(struct perf_sched *sched, 432 unsigned long pid, const char *comm) 433 { 434 struct task_desc *task; 435 static int pid_max; 436 437 if (sched->pid_to_task == NULL) { 438 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) 439 pid_max = MAX_PID; 440 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); 441 } 442 if (pid >= (unsigned long)pid_max) { 443 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * 444 sizeof(struct task_desc *))) == NULL); 445 while (pid >= (unsigned long)pid_max) 446 sched->pid_to_task[pid_max++] = NULL; 447 } 448 449 task = sched->pid_to_task[pid]; 450 451 if (task) 452 return task; 453 454 task = zalloc(sizeof(*task)); 455 task->pid = pid; 456 task->nr = sched->nr_tasks; 457 strcpy(task->comm, comm); 458 /* 459 * every task starts in sleeping state - this gets ignored 460 * if there's no wakeup pointing to this sleep state: 461 */ 462 add_sched_event_sleep(sched, task, 0, 0); 463 464 sched->pid_to_task[pid] = task; 465 sched->nr_tasks++; 466 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); 467 BUG_ON(!sched->tasks); 468 sched->tasks[task->nr] = task; 469 470 if (verbose > 0) 471 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 472 473 return task; 474 } 475 476 477 static void print_task_traces(struct perf_sched *sched) 478 { 479 struct task_desc *task; 480 unsigned long i; 481 482 for (i = 0; i < sched->nr_tasks; i++) { 483 task = sched->tasks[i]; 484 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 485 task->nr, task->comm, task->pid, task->nr_events); 486 } 487 } 488 489 static void add_cross_task_wakeups(struct perf_sched *sched) 490 { 491 struct task_desc *task1, *task2; 492 unsigned long i, j; 493 494 for (i = 0; i < sched->nr_tasks; i++) { 495 task1 = sched->tasks[i]; 496 j = i + 1; 497 if (j == sched->nr_tasks) 498 j = 0; 499 task2 = sched->tasks[j]; 500 add_sched_event_wakeup(sched, task1, 0, task2); 501 } 502 } 503 504 static void perf_sched__process_event(struct perf_sched *sched, 505 struct sched_atom *atom) 506 { 507 int ret = 0; 508 509 switch (atom->type) { 510 case SCHED_EVENT_RUN: 511 burn_nsecs(sched, atom->duration); 512 break; 513 case SCHED_EVENT_SLEEP: 514 if (atom->wait_sem) 515 ret = sem_wait(atom->wait_sem); 516 BUG_ON(ret); 517 break; 518 case SCHED_EVENT_WAKEUP: 519 if (atom->wait_sem) 520 ret = sem_post(atom->wait_sem); 521 BUG_ON(ret); 522 break; 523 case SCHED_EVENT_MIGRATION: 524 break; 525 default: 526 BUG_ON(1); 527 } 528 } 529 530 static u64 get_cpu_usage_nsec_parent(void) 531 { 532 struct rusage ru; 533 u64 sum; 534 int err; 535 536 err = getrusage(RUSAGE_SELF, &ru); 537 BUG_ON(err); 538 539 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC; 540 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC; 541 542 return sum; 543 } 544 545 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) 546 { 547 struct perf_event_attr attr; 548 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; 549 int fd; 550 struct rlimit limit; 551 bool need_privilege = false; 552 553 memset(&attr, 0, sizeof(attr)); 554 555 attr.type = PERF_TYPE_SOFTWARE; 556 attr.config = PERF_COUNT_SW_TASK_CLOCK; 557 558 force_again: 559 fd = sys_perf_event_open(&attr, 0, -1, -1, 560 perf_event_open_cloexec_flag()); 561 562 if (fd < 0) { 563 if (errno == EMFILE) { 564 if (sched->force) { 565 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); 566 limit.rlim_cur += sched->nr_tasks - cur_task; 567 if (limit.rlim_cur > limit.rlim_max) { 568 limit.rlim_max = limit.rlim_cur; 569 need_privilege = true; 570 } 571 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { 572 if (need_privilege && errno == EPERM) 573 strcpy(info, "Need privilege\n"); 574 } else 575 goto force_again; 576 } else 577 strcpy(info, "Have a try with -f option\n"); 578 } 579 pr_err("Error: sys_perf_event_open() syscall returned " 580 "with %d (%s)\n%s", fd, 581 str_error_r(errno, sbuf, sizeof(sbuf)), info); 582 exit(EXIT_FAILURE); 583 } 584 return fd; 585 } 586 587 static u64 get_cpu_usage_nsec_self(int fd) 588 { 589 u64 runtime; 590 int ret; 591 592 ret = read(fd, &runtime, sizeof(runtime)); 593 BUG_ON(ret != sizeof(runtime)); 594 595 return runtime; 596 } 597 598 struct sched_thread_parms { 599 struct task_desc *task; 600 struct perf_sched *sched; 601 int fd; 602 }; 603 604 static void *thread_func(void *ctx) 605 { 606 struct sched_thread_parms *parms = ctx; 607 struct task_desc *this_task = parms->task; 608 struct perf_sched *sched = parms->sched; 609 u64 cpu_usage_0, cpu_usage_1; 610 unsigned long i, ret; 611 char comm2[22]; 612 int fd = parms->fd; 613 614 zfree(&parms); 615 616 sprintf(comm2, ":%s", this_task->comm); 617 prctl(PR_SET_NAME, comm2); 618 if (fd < 0) 619 return NULL; 620 again: 621 ret = sem_post(&this_task->ready_for_work); 622 BUG_ON(ret); 623 ret = pthread_mutex_lock(&sched->start_work_mutex); 624 BUG_ON(ret); 625 ret = pthread_mutex_unlock(&sched->start_work_mutex); 626 BUG_ON(ret); 627 628 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 629 630 for (i = 0; i < this_task->nr_events; i++) { 631 this_task->curr_event = i; 632 perf_sched__process_event(sched, this_task->atoms[i]); 633 } 634 635 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 636 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 637 ret = sem_post(&this_task->work_done_sem); 638 BUG_ON(ret); 639 640 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 641 BUG_ON(ret); 642 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex); 643 BUG_ON(ret); 644 645 goto again; 646 } 647 648 static void create_tasks(struct perf_sched *sched) 649 { 650 struct task_desc *task; 651 pthread_attr_t attr; 652 unsigned long i; 653 int err; 654 655 err = pthread_attr_init(&attr); 656 BUG_ON(err); 657 err = pthread_attr_setstacksize(&attr, 658 (size_t) max(16 * 1024, PTHREAD_STACK_MIN)); 659 BUG_ON(err); 660 err = pthread_mutex_lock(&sched->start_work_mutex); 661 BUG_ON(err); 662 err = pthread_mutex_lock(&sched->work_done_wait_mutex); 663 BUG_ON(err); 664 for (i = 0; i < sched->nr_tasks; i++) { 665 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 666 BUG_ON(parms == NULL); 667 parms->task = task = sched->tasks[i]; 668 parms->sched = sched; 669 parms->fd = self_open_counters(sched, i); 670 sem_init(&task->sleep_sem, 0, 0); 671 sem_init(&task->ready_for_work, 0, 0); 672 sem_init(&task->work_done_sem, 0, 0); 673 task->curr_event = 0; 674 err = pthread_create(&task->thread, &attr, thread_func, parms); 675 BUG_ON(err); 676 } 677 } 678 679 static void wait_for_tasks(struct perf_sched *sched) 680 { 681 u64 cpu_usage_0, cpu_usage_1; 682 struct task_desc *task; 683 unsigned long i, ret; 684 685 sched->start_time = get_nsecs(); 686 sched->cpu_usage = 0; 687 pthread_mutex_unlock(&sched->work_done_wait_mutex); 688 689 for (i = 0; i < sched->nr_tasks; i++) { 690 task = sched->tasks[i]; 691 ret = sem_wait(&task->ready_for_work); 692 BUG_ON(ret); 693 sem_init(&task->ready_for_work, 0, 0); 694 } 695 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 696 BUG_ON(ret); 697 698 cpu_usage_0 = get_cpu_usage_nsec_parent(); 699 700 pthread_mutex_unlock(&sched->start_work_mutex); 701 702 for (i = 0; i < sched->nr_tasks; i++) { 703 task = sched->tasks[i]; 704 ret = sem_wait(&task->work_done_sem); 705 BUG_ON(ret); 706 sem_init(&task->work_done_sem, 0, 0); 707 sched->cpu_usage += task->cpu_usage; 708 task->cpu_usage = 0; 709 } 710 711 cpu_usage_1 = get_cpu_usage_nsec_parent(); 712 if (!sched->runavg_cpu_usage) 713 sched->runavg_cpu_usage = sched->cpu_usage; 714 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; 715 716 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 717 if (!sched->runavg_parent_cpu_usage) 718 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 719 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + 720 sched->parent_cpu_usage)/sched->replay_repeat; 721 722 ret = pthread_mutex_lock(&sched->start_work_mutex); 723 BUG_ON(ret); 724 725 for (i = 0; i < sched->nr_tasks; i++) { 726 task = sched->tasks[i]; 727 sem_init(&task->sleep_sem, 0, 0); 728 task->curr_event = 0; 729 } 730 } 731 732 static void run_one_test(struct perf_sched *sched) 733 { 734 u64 T0, T1, delta, avg_delta, fluct; 735 736 T0 = get_nsecs(); 737 wait_for_tasks(sched); 738 T1 = get_nsecs(); 739 740 delta = T1 - T0; 741 sched->sum_runtime += delta; 742 sched->nr_runs++; 743 744 avg_delta = sched->sum_runtime / sched->nr_runs; 745 if (delta < avg_delta) 746 fluct = avg_delta - delta; 747 else 748 fluct = delta - avg_delta; 749 sched->sum_fluct += fluct; 750 if (!sched->run_avg) 751 sched->run_avg = delta; 752 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; 753 754 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC); 755 756 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC); 757 758 printf("cpu: %0.2f / %0.2f", 759 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC); 760 761 #if 0 762 /* 763 * rusage statistics done by the parent, these are less 764 * accurate than the sched->sum_exec_runtime based statistics: 765 */ 766 printf(" [%0.2f / %0.2f]", 767 (double)sched->parent_cpu_usage / NSEC_PER_MSEC, 768 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC); 769 #endif 770 771 printf("\n"); 772 773 if (sched->nr_sleep_corrections) 774 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 775 sched->nr_sleep_corrections = 0; 776 } 777 778 static void test_calibrations(struct perf_sched *sched) 779 { 780 u64 T0, T1; 781 782 T0 = get_nsecs(); 783 burn_nsecs(sched, NSEC_PER_MSEC); 784 T1 = get_nsecs(); 785 786 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 787 788 T0 = get_nsecs(); 789 sleep_nsecs(NSEC_PER_MSEC); 790 T1 = get_nsecs(); 791 792 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 793 } 794 795 static int 796 replay_wakeup_event(struct perf_sched *sched, 797 struct perf_evsel *evsel, struct perf_sample *sample, 798 struct machine *machine __maybe_unused) 799 { 800 const char *comm = perf_evsel__strval(evsel, sample, "comm"); 801 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 802 struct task_desc *waker, *wakee; 803 804 if (verbose > 0) { 805 printf("sched_wakeup event %p\n", evsel); 806 807 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 808 } 809 810 waker = register_pid(sched, sample->tid, "<unknown>"); 811 wakee = register_pid(sched, pid, comm); 812 813 add_sched_event_wakeup(sched, waker, sample->time, wakee); 814 return 0; 815 } 816 817 static int replay_switch_event(struct perf_sched *sched, 818 struct perf_evsel *evsel, 819 struct perf_sample *sample, 820 struct machine *machine __maybe_unused) 821 { 822 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"), 823 *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); 824 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 825 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 826 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 827 struct task_desc *prev, __maybe_unused *next; 828 u64 timestamp0, timestamp = sample->time; 829 int cpu = sample->cpu; 830 s64 delta; 831 832 if (verbose > 0) 833 printf("sched_switch event %p\n", evsel); 834 835 if (cpu >= MAX_CPUS || cpu < 0) 836 return 0; 837 838 timestamp0 = sched->cpu_last_switched[cpu]; 839 if (timestamp0) 840 delta = timestamp - timestamp0; 841 else 842 delta = 0; 843 844 if (delta < 0) { 845 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 846 return -1; 847 } 848 849 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 850 prev_comm, prev_pid, next_comm, next_pid, delta); 851 852 prev = register_pid(sched, prev_pid, prev_comm); 853 next = register_pid(sched, next_pid, next_comm); 854 855 sched->cpu_last_switched[cpu] = timestamp; 856 857 add_sched_event_run(sched, prev, timestamp, delta); 858 add_sched_event_sleep(sched, prev, timestamp, prev_state); 859 860 return 0; 861 } 862 863 static int replay_fork_event(struct perf_sched *sched, 864 union perf_event *event, 865 struct machine *machine) 866 { 867 struct thread *child, *parent; 868 869 child = machine__findnew_thread(machine, event->fork.pid, 870 event->fork.tid); 871 parent = machine__findnew_thread(machine, event->fork.ppid, 872 event->fork.ptid); 873 874 if (child == NULL || parent == NULL) { 875 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 876 child, parent); 877 goto out_put; 878 } 879 880 if (verbose > 0) { 881 printf("fork event\n"); 882 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid); 883 printf("... child: %s/%d\n", thread__comm_str(child), child->tid); 884 } 885 886 register_pid(sched, parent->tid, thread__comm_str(parent)); 887 register_pid(sched, child->tid, thread__comm_str(child)); 888 out_put: 889 thread__put(child); 890 thread__put(parent); 891 return 0; 892 } 893 894 struct sort_dimension { 895 const char *name; 896 sort_fn_t cmp; 897 struct list_head list; 898 }; 899 900 static int 901 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 902 { 903 struct sort_dimension *sort; 904 int ret = 0; 905 906 BUG_ON(list_empty(list)); 907 908 list_for_each_entry(sort, list, list) { 909 ret = sort->cmp(l, r); 910 if (ret) 911 return ret; 912 } 913 914 return ret; 915 } 916 917 static struct work_atoms * 918 thread_atoms_search(struct rb_root *root, struct thread *thread, 919 struct list_head *sort_list) 920 { 921 struct rb_node *node = root->rb_node; 922 struct work_atoms key = { .thread = thread }; 923 924 while (node) { 925 struct work_atoms *atoms; 926 int cmp; 927 928 atoms = container_of(node, struct work_atoms, node); 929 930 cmp = thread_lat_cmp(sort_list, &key, atoms); 931 if (cmp > 0) 932 node = node->rb_left; 933 else if (cmp < 0) 934 node = node->rb_right; 935 else { 936 BUG_ON(thread != atoms->thread); 937 return atoms; 938 } 939 } 940 return NULL; 941 } 942 943 static void 944 __thread_latency_insert(struct rb_root *root, struct work_atoms *data, 945 struct list_head *sort_list) 946 { 947 struct rb_node **new = &(root->rb_node), *parent = NULL; 948 949 while (*new) { 950 struct work_atoms *this; 951 int cmp; 952 953 this = container_of(*new, struct work_atoms, node); 954 parent = *new; 955 956 cmp = thread_lat_cmp(sort_list, data, this); 957 958 if (cmp > 0) 959 new = &((*new)->rb_left); 960 else 961 new = &((*new)->rb_right); 962 } 963 964 rb_link_node(&data->node, parent, new); 965 rb_insert_color(&data->node, root); 966 } 967 968 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 969 { 970 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 971 if (!atoms) { 972 pr_err("No memory at %s\n", __func__); 973 return -1; 974 } 975 976 atoms->thread = thread__get(thread); 977 INIT_LIST_HEAD(&atoms->work_list); 978 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 979 return 0; 980 } 981 982 static char sched_out_state(u64 prev_state) 983 { 984 const char *str = TASK_STATE_TO_CHAR_STR; 985 986 return str[prev_state]; 987 } 988 989 static int 990 add_sched_out_event(struct work_atoms *atoms, 991 char run_state, 992 u64 timestamp) 993 { 994 struct work_atom *atom = zalloc(sizeof(*atom)); 995 if (!atom) { 996 pr_err("Non memory at %s", __func__); 997 return -1; 998 } 999 1000 atom->sched_out_time = timestamp; 1001 1002 if (run_state == 'R') { 1003 atom->state = THREAD_WAIT_CPU; 1004 atom->wake_up_time = atom->sched_out_time; 1005 } 1006 1007 list_add_tail(&atom->list, &atoms->work_list); 1008 return 0; 1009 } 1010 1011 static void 1012 add_runtime_event(struct work_atoms *atoms, u64 delta, 1013 u64 timestamp __maybe_unused) 1014 { 1015 struct work_atom *atom; 1016 1017 BUG_ON(list_empty(&atoms->work_list)); 1018 1019 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1020 1021 atom->runtime += delta; 1022 atoms->total_runtime += delta; 1023 } 1024 1025 static void 1026 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 1027 { 1028 struct work_atom *atom; 1029 u64 delta; 1030 1031 if (list_empty(&atoms->work_list)) 1032 return; 1033 1034 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1035 1036 if (atom->state != THREAD_WAIT_CPU) 1037 return; 1038 1039 if (timestamp < atom->wake_up_time) { 1040 atom->state = THREAD_IGNORE; 1041 return; 1042 } 1043 1044 atom->state = THREAD_SCHED_IN; 1045 atom->sched_in_time = timestamp; 1046 1047 delta = atom->sched_in_time - atom->wake_up_time; 1048 atoms->total_lat += delta; 1049 if (delta > atoms->max_lat) { 1050 atoms->max_lat = delta; 1051 atoms->max_lat_at = timestamp; 1052 } 1053 atoms->nb_atoms++; 1054 } 1055 1056 static int latency_switch_event(struct perf_sched *sched, 1057 struct perf_evsel *evsel, 1058 struct perf_sample *sample, 1059 struct machine *machine) 1060 { 1061 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 1062 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1063 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 1064 struct work_atoms *out_events, *in_events; 1065 struct thread *sched_out, *sched_in; 1066 u64 timestamp0, timestamp = sample->time; 1067 int cpu = sample->cpu, err = -1; 1068 s64 delta; 1069 1070 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1071 1072 timestamp0 = sched->cpu_last_switched[cpu]; 1073 sched->cpu_last_switched[cpu] = timestamp; 1074 if (timestamp0) 1075 delta = timestamp - timestamp0; 1076 else 1077 delta = 0; 1078 1079 if (delta < 0) { 1080 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1081 return -1; 1082 } 1083 1084 sched_out = machine__findnew_thread(machine, -1, prev_pid); 1085 sched_in = machine__findnew_thread(machine, -1, next_pid); 1086 if (sched_out == NULL || sched_in == NULL) 1087 goto out_put; 1088 1089 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1090 if (!out_events) { 1091 if (thread_atoms_insert(sched, sched_out)) 1092 goto out_put; 1093 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1094 if (!out_events) { 1095 pr_err("out-event: Internal tree error"); 1096 goto out_put; 1097 } 1098 } 1099 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp)) 1100 return -1; 1101 1102 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1103 if (!in_events) { 1104 if (thread_atoms_insert(sched, sched_in)) 1105 goto out_put; 1106 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1107 if (!in_events) { 1108 pr_err("in-event: Internal tree error"); 1109 goto out_put; 1110 } 1111 /* 1112 * Take came in we have not heard about yet, 1113 * add in an initial atom in runnable state: 1114 */ 1115 if (add_sched_out_event(in_events, 'R', timestamp)) 1116 goto out_put; 1117 } 1118 add_sched_in_event(in_events, timestamp); 1119 err = 0; 1120 out_put: 1121 thread__put(sched_out); 1122 thread__put(sched_in); 1123 return err; 1124 } 1125 1126 static int latency_runtime_event(struct perf_sched *sched, 1127 struct perf_evsel *evsel, 1128 struct perf_sample *sample, 1129 struct machine *machine) 1130 { 1131 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1132 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime"); 1133 struct thread *thread = machine__findnew_thread(machine, -1, pid); 1134 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1135 u64 timestamp = sample->time; 1136 int cpu = sample->cpu, err = -1; 1137 1138 if (thread == NULL) 1139 return -1; 1140 1141 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1142 if (!atoms) { 1143 if (thread_atoms_insert(sched, thread)) 1144 goto out_put; 1145 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1146 if (!atoms) { 1147 pr_err("in-event: Internal tree error"); 1148 goto out_put; 1149 } 1150 if (add_sched_out_event(atoms, 'R', timestamp)) 1151 goto out_put; 1152 } 1153 1154 add_runtime_event(atoms, runtime, timestamp); 1155 err = 0; 1156 out_put: 1157 thread__put(thread); 1158 return err; 1159 } 1160 1161 static int latency_wakeup_event(struct perf_sched *sched, 1162 struct perf_evsel *evsel, 1163 struct perf_sample *sample, 1164 struct machine *machine) 1165 { 1166 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1167 struct work_atoms *atoms; 1168 struct work_atom *atom; 1169 struct thread *wakee; 1170 u64 timestamp = sample->time; 1171 int err = -1; 1172 1173 wakee = machine__findnew_thread(machine, -1, pid); 1174 if (wakee == NULL) 1175 return -1; 1176 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1177 if (!atoms) { 1178 if (thread_atoms_insert(sched, wakee)) 1179 goto out_put; 1180 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1181 if (!atoms) { 1182 pr_err("wakeup-event: Internal tree error"); 1183 goto out_put; 1184 } 1185 if (add_sched_out_event(atoms, 'S', timestamp)) 1186 goto out_put; 1187 } 1188 1189 BUG_ON(list_empty(&atoms->work_list)); 1190 1191 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1192 1193 /* 1194 * As we do not guarantee the wakeup event happens when 1195 * task is out of run queue, also may happen when task is 1196 * on run queue and wakeup only change ->state to TASK_RUNNING, 1197 * then we should not set the ->wake_up_time when wake up a 1198 * task which is on run queue. 1199 * 1200 * You WILL be missing events if you've recorded only 1201 * one CPU, or are only looking at only one, so don't 1202 * skip in this case. 1203 */ 1204 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1205 goto out_ok; 1206 1207 sched->nr_timestamps++; 1208 if (atom->sched_out_time > timestamp) { 1209 sched->nr_unordered_timestamps++; 1210 goto out_ok; 1211 } 1212 1213 atom->state = THREAD_WAIT_CPU; 1214 atom->wake_up_time = timestamp; 1215 out_ok: 1216 err = 0; 1217 out_put: 1218 thread__put(wakee); 1219 return err; 1220 } 1221 1222 static int latency_migrate_task_event(struct perf_sched *sched, 1223 struct perf_evsel *evsel, 1224 struct perf_sample *sample, 1225 struct machine *machine) 1226 { 1227 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1228 u64 timestamp = sample->time; 1229 struct work_atoms *atoms; 1230 struct work_atom *atom; 1231 struct thread *migrant; 1232 int err = -1; 1233 1234 /* 1235 * Only need to worry about migration when profiling one CPU. 1236 */ 1237 if (sched->profile_cpu == -1) 1238 return 0; 1239 1240 migrant = machine__findnew_thread(machine, -1, pid); 1241 if (migrant == NULL) 1242 return -1; 1243 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1244 if (!atoms) { 1245 if (thread_atoms_insert(sched, migrant)) 1246 goto out_put; 1247 register_pid(sched, migrant->tid, thread__comm_str(migrant)); 1248 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1249 if (!atoms) { 1250 pr_err("migration-event: Internal tree error"); 1251 goto out_put; 1252 } 1253 if (add_sched_out_event(atoms, 'R', timestamp)) 1254 goto out_put; 1255 } 1256 1257 BUG_ON(list_empty(&atoms->work_list)); 1258 1259 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1260 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1261 1262 sched->nr_timestamps++; 1263 1264 if (atom->sched_out_time > timestamp) 1265 sched->nr_unordered_timestamps++; 1266 err = 0; 1267 out_put: 1268 thread__put(migrant); 1269 return err; 1270 } 1271 1272 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1273 { 1274 int i; 1275 int ret; 1276 u64 avg; 1277 char max_lat_at[32]; 1278 1279 if (!work_list->nb_atoms) 1280 return; 1281 /* 1282 * Ignore idle threads: 1283 */ 1284 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1285 return; 1286 1287 sched->all_runtime += work_list->total_runtime; 1288 sched->all_count += work_list->nb_atoms; 1289 1290 if (work_list->num_merged > 1) 1291 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged); 1292 else 1293 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid); 1294 1295 for (i = 0; i < 24 - ret; i++) 1296 printf(" "); 1297 1298 avg = work_list->total_lat / work_list->nb_atoms; 1299 timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at)); 1300 1301 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n", 1302 (double)work_list->total_runtime / NSEC_PER_MSEC, 1303 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC, 1304 (double)work_list->max_lat / NSEC_PER_MSEC, 1305 max_lat_at); 1306 } 1307 1308 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1309 { 1310 if (l->thread == r->thread) 1311 return 0; 1312 if (l->thread->tid < r->thread->tid) 1313 return -1; 1314 if (l->thread->tid > r->thread->tid) 1315 return 1; 1316 return (int)(l->thread - r->thread); 1317 } 1318 1319 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1320 { 1321 u64 avgl, avgr; 1322 1323 if (!l->nb_atoms) 1324 return -1; 1325 1326 if (!r->nb_atoms) 1327 return 1; 1328 1329 avgl = l->total_lat / l->nb_atoms; 1330 avgr = r->total_lat / r->nb_atoms; 1331 1332 if (avgl < avgr) 1333 return -1; 1334 if (avgl > avgr) 1335 return 1; 1336 1337 return 0; 1338 } 1339 1340 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1341 { 1342 if (l->max_lat < r->max_lat) 1343 return -1; 1344 if (l->max_lat > r->max_lat) 1345 return 1; 1346 1347 return 0; 1348 } 1349 1350 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1351 { 1352 if (l->nb_atoms < r->nb_atoms) 1353 return -1; 1354 if (l->nb_atoms > r->nb_atoms) 1355 return 1; 1356 1357 return 0; 1358 } 1359 1360 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1361 { 1362 if (l->total_runtime < r->total_runtime) 1363 return -1; 1364 if (l->total_runtime > r->total_runtime) 1365 return 1; 1366 1367 return 0; 1368 } 1369 1370 static int sort_dimension__add(const char *tok, struct list_head *list) 1371 { 1372 size_t i; 1373 static struct sort_dimension avg_sort_dimension = { 1374 .name = "avg", 1375 .cmp = avg_cmp, 1376 }; 1377 static struct sort_dimension max_sort_dimension = { 1378 .name = "max", 1379 .cmp = max_cmp, 1380 }; 1381 static struct sort_dimension pid_sort_dimension = { 1382 .name = "pid", 1383 .cmp = pid_cmp, 1384 }; 1385 static struct sort_dimension runtime_sort_dimension = { 1386 .name = "runtime", 1387 .cmp = runtime_cmp, 1388 }; 1389 static struct sort_dimension switch_sort_dimension = { 1390 .name = "switch", 1391 .cmp = switch_cmp, 1392 }; 1393 struct sort_dimension *available_sorts[] = { 1394 &pid_sort_dimension, 1395 &avg_sort_dimension, 1396 &max_sort_dimension, 1397 &switch_sort_dimension, 1398 &runtime_sort_dimension, 1399 }; 1400 1401 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1402 if (!strcmp(available_sorts[i]->name, tok)) { 1403 list_add_tail(&available_sorts[i]->list, list); 1404 1405 return 0; 1406 } 1407 } 1408 1409 return -1; 1410 } 1411 1412 static void perf_sched__sort_lat(struct perf_sched *sched) 1413 { 1414 struct rb_node *node; 1415 struct rb_root *root = &sched->atom_root; 1416 again: 1417 for (;;) { 1418 struct work_atoms *data; 1419 node = rb_first(root); 1420 if (!node) 1421 break; 1422 1423 rb_erase(node, root); 1424 data = rb_entry(node, struct work_atoms, node); 1425 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1426 } 1427 if (root == &sched->atom_root) { 1428 root = &sched->merged_atom_root; 1429 goto again; 1430 } 1431 } 1432 1433 static int process_sched_wakeup_event(struct perf_tool *tool, 1434 struct perf_evsel *evsel, 1435 struct perf_sample *sample, 1436 struct machine *machine) 1437 { 1438 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1439 1440 if (sched->tp_handler->wakeup_event) 1441 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1442 1443 return 0; 1444 } 1445 1446 union map_priv { 1447 void *ptr; 1448 bool color; 1449 }; 1450 1451 static bool thread__has_color(struct thread *thread) 1452 { 1453 union map_priv priv = { 1454 .ptr = thread__priv(thread), 1455 }; 1456 1457 return priv.color; 1458 } 1459 1460 static struct thread* 1461 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) 1462 { 1463 struct thread *thread = machine__findnew_thread(machine, pid, tid); 1464 union map_priv priv = { 1465 .color = false, 1466 }; 1467 1468 if (!sched->map.color_pids || !thread || thread__priv(thread)) 1469 return thread; 1470 1471 if (thread_map__has(sched->map.color_pids, tid)) 1472 priv.color = true; 1473 1474 thread__set_priv(thread, priv.ptr); 1475 return thread; 1476 } 1477 1478 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel, 1479 struct perf_sample *sample, struct machine *machine) 1480 { 1481 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1482 struct thread *sched_in; 1483 int new_shortname; 1484 u64 timestamp0, timestamp = sample->time; 1485 s64 delta; 1486 int i, this_cpu = sample->cpu; 1487 int cpus_nr; 1488 bool new_cpu = false; 1489 const char *color = PERF_COLOR_NORMAL; 1490 char stimestamp[32]; 1491 1492 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0); 1493 1494 if (this_cpu > sched->max_cpu) 1495 sched->max_cpu = this_cpu; 1496 1497 if (sched->map.comp) { 1498 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); 1499 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) { 1500 sched->map.comp_cpus[cpus_nr++] = this_cpu; 1501 new_cpu = true; 1502 } 1503 } else 1504 cpus_nr = sched->max_cpu; 1505 1506 timestamp0 = sched->cpu_last_switched[this_cpu]; 1507 sched->cpu_last_switched[this_cpu] = timestamp; 1508 if (timestamp0) 1509 delta = timestamp - timestamp0; 1510 else 1511 delta = 0; 1512 1513 if (delta < 0) { 1514 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1515 return -1; 1516 } 1517 1518 sched_in = map__findnew_thread(sched, machine, -1, next_pid); 1519 if (sched_in == NULL) 1520 return -1; 1521 1522 sched->curr_thread[this_cpu] = thread__get(sched_in); 1523 1524 printf(" "); 1525 1526 new_shortname = 0; 1527 if (!sched_in->shortname[0]) { 1528 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1529 /* 1530 * Don't allocate a letter-number for swapper:0 1531 * as a shortname. Instead, we use '.' for it. 1532 */ 1533 sched_in->shortname[0] = '.'; 1534 sched_in->shortname[1] = ' '; 1535 } else { 1536 sched_in->shortname[0] = sched->next_shortname1; 1537 sched_in->shortname[1] = sched->next_shortname2; 1538 1539 if (sched->next_shortname1 < 'Z') { 1540 sched->next_shortname1++; 1541 } else { 1542 sched->next_shortname1 = 'A'; 1543 if (sched->next_shortname2 < '9') 1544 sched->next_shortname2++; 1545 else 1546 sched->next_shortname2 = '0'; 1547 } 1548 } 1549 new_shortname = 1; 1550 } 1551 1552 for (i = 0; i < cpus_nr; i++) { 1553 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i; 1554 struct thread *curr_thread = sched->curr_thread[cpu]; 1555 const char *pid_color = color; 1556 const char *cpu_color = color; 1557 1558 if (curr_thread && thread__has_color(curr_thread)) 1559 pid_color = COLOR_PIDS; 1560 1561 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu)) 1562 continue; 1563 1564 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu)) 1565 cpu_color = COLOR_CPUS; 1566 1567 if (cpu != this_cpu) 1568 color_fprintf(stdout, color, " "); 1569 else 1570 color_fprintf(stdout, cpu_color, "*"); 1571 1572 if (sched->curr_thread[cpu]) 1573 color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname); 1574 else 1575 color_fprintf(stdout, color, " "); 1576 } 1577 1578 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu)) 1579 goto out; 1580 1581 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1582 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1583 if (new_shortname || (verbose > 0 && sched_in->tid)) { 1584 const char *pid_color = color; 1585 1586 if (thread__has_color(sched_in)) 1587 pid_color = COLOR_PIDS; 1588 1589 color_fprintf(stdout, pid_color, "%s => %s:%d", 1590 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid); 1591 } 1592 1593 if (sched->map.comp && new_cpu) 1594 color_fprintf(stdout, color, " (CPU %d)", this_cpu); 1595 1596 out: 1597 color_fprintf(stdout, color, "\n"); 1598 1599 thread__put(sched_in); 1600 1601 return 0; 1602 } 1603 1604 static int process_sched_switch_event(struct perf_tool *tool, 1605 struct perf_evsel *evsel, 1606 struct perf_sample *sample, 1607 struct machine *machine) 1608 { 1609 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1610 int this_cpu = sample->cpu, err = 0; 1611 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 1612 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1613 1614 if (sched->curr_pid[this_cpu] != (u32)-1) { 1615 /* 1616 * Are we trying to switch away a PID that is 1617 * not current? 1618 */ 1619 if (sched->curr_pid[this_cpu] != prev_pid) 1620 sched->nr_context_switch_bugs++; 1621 } 1622 1623 if (sched->tp_handler->switch_event) 1624 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1625 1626 sched->curr_pid[this_cpu] = next_pid; 1627 return err; 1628 } 1629 1630 static int process_sched_runtime_event(struct perf_tool *tool, 1631 struct perf_evsel *evsel, 1632 struct perf_sample *sample, 1633 struct machine *machine) 1634 { 1635 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1636 1637 if (sched->tp_handler->runtime_event) 1638 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1639 1640 return 0; 1641 } 1642 1643 static int perf_sched__process_fork_event(struct perf_tool *tool, 1644 union perf_event *event, 1645 struct perf_sample *sample, 1646 struct machine *machine) 1647 { 1648 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1649 1650 /* run the fork event through the perf machineruy */ 1651 perf_event__process_fork(tool, event, sample, machine); 1652 1653 /* and then run additional processing needed for this command */ 1654 if (sched->tp_handler->fork_event) 1655 return sched->tp_handler->fork_event(sched, event, machine); 1656 1657 return 0; 1658 } 1659 1660 static int process_sched_migrate_task_event(struct perf_tool *tool, 1661 struct perf_evsel *evsel, 1662 struct perf_sample *sample, 1663 struct machine *machine) 1664 { 1665 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1666 1667 if (sched->tp_handler->migrate_task_event) 1668 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1669 1670 return 0; 1671 } 1672 1673 typedef int (*tracepoint_handler)(struct perf_tool *tool, 1674 struct perf_evsel *evsel, 1675 struct perf_sample *sample, 1676 struct machine *machine); 1677 1678 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, 1679 union perf_event *event __maybe_unused, 1680 struct perf_sample *sample, 1681 struct perf_evsel *evsel, 1682 struct machine *machine) 1683 { 1684 int err = 0; 1685 1686 if (evsel->handler != NULL) { 1687 tracepoint_handler f = evsel->handler; 1688 err = f(tool, evsel, sample, machine); 1689 } 1690 1691 return err; 1692 } 1693 1694 static int perf_sched__read_events(struct perf_sched *sched) 1695 { 1696 const struct perf_evsel_str_handler handlers[] = { 1697 { "sched:sched_switch", process_sched_switch_event, }, 1698 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1699 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1700 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1701 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1702 }; 1703 struct perf_session *session; 1704 struct perf_data_file file = { 1705 .path = input_name, 1706 .mode = PERF_DATA_MODE_READ, 1707 .force = sched->force, 1708 }; 1709 int rc = -1; 1710 1711 session = perf_session__new(&file, false, &sched->tool); 1712 if (session == NULL) { 1713 pr_debug("No Memory for session\n"); 1714 return -1; 1715 } 1716 1717 symbol__init(&session->header.env); 1718 1719 if (perf_session__set_tracepoints_handlers(session, handlers)) 1720 goto out_delete; 1721 1722 if (perf_session__has_traces(session, "record -R")) { 1723 int err = perf_session__process_events(session); 1724 if (err) { 1725 pr_err("Failed to process events, error %d", err); 1726 goto out_delete; 1727 } 1728 1729 sched->nr_events = session->evlist->stats.nr_events[0]; 1730 sched->nr_lost_events = session->evlist->stats.total_lost; 1731 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; 1732 } 1733 1734 rc = 0; 1735 out_delete: 1736 perf_session__delete(session); 1737 return rc; 1738 } 1739 1740 /* 1741 * scheduling times are printed as msec.usec 1742 */ 1743 static inline void print_sched_time(unsigned long long nsecs, int width) 1744 { 1745 unsigned long msecs; 1746 unsigned long usecs; 1747 1748 msecs = nsecs / NSEC_PER_MSEC; 1749 nsecs -= msecs * NSEC_PER_MSEC; 1750 usecs = nsecs / NSEC_PER_USEC; 1751 printf("%*lu.%03lu ", width, msecs, usecs); 1752 } 1753 1754 /* 1755 * returns runtime data for event, allocating memory for it the 1756 * first time it is used. 1757 */ 1758 static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel) 1759 { 1760 struct evsel_runtime *r = evsel->priv; 1761 1762 if (r == NULL) { 1763 r = zalloc(sizeof(struct evsel_runtime)); 1764 evsel->priv = r; 1765 } 1766 1767 return r; 1768 } 1769 1770 /* 1771 * save last time event was seen per cpu 1772 */ 1773 static void perf_evsel__save_time(struct perf_evsel *evsel, 1774 u64 timestamp, u32 cpu) 1775 { 1776 struct evsel_runtime *r = perf_evsel__get_runtime(evsel); 1777 1778 if (r == NULL) 1779 return; 1780 1781 if ((cpu >= r->ncpu) || (r->last_time == NULL)) { 1782 int i, n = __roundup_pow_of_two(cpu+1); 1783 void *p = r->last_time; 1784 1785 p = realloc(r->last_time, n * sizeof(u64)); 1786 if (!p) 1787 return; 1788 1789 r->last_time = p; 1790 for (i = r->ncpu; i < n; ++i) 1791 r->last_time[i] = (u64) 0; 1792 1793 r->ncpu = n; 1794 } 1795 1796 r->last_time[cpu] = timestamp; 1797 } 1798 1799 /* returns last time this event was seen on the given cpu */ 1800 static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu) 1801 { 1802 struct evsel_runtime *r = perf_evsel__get_runtime(evsel); 1803 1804 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu)) 1805 return 0; 1806 1807 return r->last_time[cpu]; 1808 } 1809 1810 static int comm_width = 30; 1811 1812 static char *timehist_get_commstr(struct thread *thread) 1813 { 1814 static char str[32]; 1815 const char *comm = thread__comm_str(thread); 1816 pid_t tid = thread->tid; 1817 pid_t pid = thread->pid_; 1818 int n; 1819 1820 if (pid == 0) 1821 n = scnprintf(str, sizeof(str), "%s", comm); 1822 1823 else if (tid != pid) 1824 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid); 1825 1826 else 1827 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid); 1828 1829 if (n > comm_width) 1830 comm_width = n; 1831 1832 return str; 1833 } 1834 1835 static void timehist_header(struct perf_sched *sched) 1836 { 1837 u32 ncpus = sched->max_cpu + 1; 1838 u32 i, j; 1839 1840 printf("%15s %6s ", "time", "cpu"); 1841 1842 if (sched->show_cpu_visual) { 1843 printf(" "); 1844 for (i = 0, j = 0; i < ncpus; ++i) { 1845 printf("%x", j++); 1846 if (j > 15) 1847 j = 0; 1848 } 1849 printf(" "); 1850 } 1851 1852 printf(" %-*s %9s %9s %9s", comm_width, 1853 "task name", "wait time", "sch delay", "run time"); 1854 1855 if (sched->show_state) 1856 printf(" %s", "state"); 1857 1858 printf("\n"); 1859 1860 /* 1861 * units row 1862 */ 1863 printf("%15s %-6s ", "", ""); 1864 1865 if (sched->show_cpu_visual) 1866 printf(" %*s ", ncpus, ""); 1867 1868 printf(" %-*s %9s %9s %9s", comm_width, 1869 "[tid/pid]", "(msec)", "(msec)", "(msec)"); 1870 1871 if (sched->show_state) 1872 printf(" %5s", ""); 1873 1874 printf("\n"); 1875 1876 /* 1877 * separator 1878 */ 1879 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line); 1880 1881 if (sched->show_cpu_visual) 1882 printf(" %.*s ", ncpus, graph_dotted_line); 1883 1884 printf(" %.*s %.9s %.9s %.9s", comm_width, 1885 graph_dotted_line, graph_dotted_line, graph_dotted_line, 1886 graph_dotted_line); 1887 1888 if (sched->show_state) 1889 printf(" %.5s", graph_dotted_line); 1890 1891 printf("\n"); 1892 } 1893 1894 static char task_state_char(struct thread *thread, int state) 1895 { 1896 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR; 1897 unsigned bit = state ? ffs(state) : 0; 1898 1899 /* 'I' for idle */ 1900 if (thread->tid == 0) 1901 return 'I'; 1902 1903 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?'; 1904 } 1905 1906 static void timehist_print_sample(struct perf_sched *sched, 1907 struct perf_evsel *evsel, 1908 struct perf_sample *sample, 1909 struct addr_location *al, 1910 struct thread *thread, 1911 u64 t, int state) 1912 { 1913 struct thread_runtime *tr = thread__priv(thread); 1914 const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); 1915 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1916 u32 max_cpus = sched->max_cpu + 1; 1917 char tstr[64]; 1918 char nstr[30]; 1919 u64 wait_time; 1920 1921 timestamp__scnprintf_usec(t, tstr, sizeof(tstr)); 1922 printf("%15s [%04d] ", tstr, sample->cpu); 1923 1924 if (sched->show_cpu_visual) { 1925 u32 i; 1926 char c; 1927 1928 printf(" "); 1929 for (i = 0; i < max_cpus; ++i) { 1930 /* flag idle times with 'i'; others are sched events */ 1931 if (i == sample->cpu) 1932 c = (thread->tid == 0) ? 'i' : 's'; 1933 else 1934 c = ' '; 1935 printf("%c", c); 1936 } 1937 printf(" "); 1938 } 1939 1940 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 1941 1942 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt; 1943 print_sched_time(wait_time, 6); 1944 1945 print_sched_time(tr->dt_delay, 6); 1946 print_sched_time(tr->dt_run, 6); 1947 1948 if (sched->show_state) 1949 printf(" %5c ", task_state_char(thread, state)); 1950 1951 if (sched->show_next) { 1952 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid); 1953 printf(" %-*s", comm_width, nstr); 1954 } 1955 1956 if (sched->show_wakeups && !sched->show_next) 1957 printf(" %-*s", comm_width, ""); 1958 1959 if (thread->tid == 0) 1960 goto out; 1961 1962 if (sched->show_callchain) 1963 printf(" "); 1964 1965 sample__fprintf_sym(sample, al, 0, 1966 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE | 1967 EVSEL__PRINT_CALLCHAIN_ARROW | 1968 EVSEL__PRINT_SKIP_IGNORED, 1969 &callchain_cursor, stdout); 1970 1971 out: 1972 printf("\n"); 1973 } 1974 1975 /* 1976 * Explanation of delta-time stats: 1977 * 1978 * t = time of current schedule out event 1979 * tprev = time of previous sched out event 1980 * also time of schedule-in event for current task 1981 * last_time = time of last sched change event for current task 1982 * (i.e, time process was last scheduled out) 1983 * ready_to_run = time of wakeup for current task 1984 * 1985 * -----|------------|------------|------------|------ 1986 * last ready tprev t 1987 * time to run 1988 * 1989 * |-------- dt_wait --------| 1990 * |- dt_delay -|-- dt_run --| 1991 * 1992 * dt_run = run time of current task 1993 * dt_wait = time between last schedule out event for task and tprev 1994 * represents time spent off the cpu 1995 * dt_delay = time between wakeup and schedule-in of task 1996 */ 1997 1998 static void timehist_update_runtime_stats(struct thread_runtime *r, 1999 u64 t, u64 tprev) 2000 { 2001 r->dt_delay = 0; 2002 r->dt_sleep = 0; 2003 r->dt_iowait = 0; 2004 r->dt_preempt = 0; 2005 r->dt_run = 0; 2006 2007 if (tprev) { 2008 r->dt_run = t - tprev; 2009 if (r->ready_to_run) { 2010 if (r->ready_to_run > tprev) 2011 pr_debug("time travel: wakeup time for task > previous sched_switch event\n"); 2012 else 2013 r->dt_delay = tprev - r->ready_to_run; 2014 } 2015 2016 if (r->last_time > tprev) 2017 pr_debug("time travel: last sched out time for task > previous sched_switch event\n"); 2018 else if (r->last_time) { 2019 u64 dt_wait = tprev - r->last_time; 2020 2021 if (r->last_state == TASK_RUNNING) 2022 r->dt_preempt = dt_wait; 2023 else if (r->last_state == TASK_UNINTERRUPTIBLE) 2024 r->dt_iowait = dt_wait; 2025 else 2026 r->dt_sleep = dt_wait; 2027 } 2028 } 2029 2030 update_stats(&r->run_stats, r->dt_run); 2031 2032 r->total_run_time += r->dt_run; 2033 r->total_delay_time += r->dt_delay; 2034 r->total_sleep_time += r->dt_sleep; 2035 r->total_iowait_time += r->dt_iowait; 2036 r->total_preempt_time += r->dt_preempt; 2037 } 2038 2039 static bool is_idle_sample(struct perf_sample *sample, 2040 struct perf_evsel *evsel) 2041 { 2042 /* pid 0 == swapper == idle task */ 2043 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0) 2044 return perf_evsel__intval(evsel, sample, "prev_pid") == 0; 2045 2046 return sample->pid == 0; 2047 } 2048 2049 static void save_task_callchain(struct perf_sched *sched, 2050 struct perf_sample *sample, 2051 struct perf_evsel *evsel, 2052 struct machine *machine) 2053 { 2054 struct callchain_cursor *cursor = &callchain_cursor; 2055 struct thread *thread; 2056 2057 /* want main thread for process - has maps */ 2058 thread = machine__findnew_thread(machine, sample->pid, sample->pid); 2059 if (thread == NULL) { 2060 pr_debug("Failed to get thread for pid %d.\n", sample->pid); 2061 return; 2062 } 2063 2064 if (!symbol_conf.use_callchain || sample->callchain == NULL) 2065 return; 2066 2067 if (thread__resolve_callchain(thread, cursor, evsel, sample, 2068 NULL, NULL, sched->max_stack + 2) != 0) { 2069 if (verbose > 0) 2070 pr_err("Failed to resolve callchain. Skipping\n"); 2071 2072 return; 2073 } 2074 2075 callchain_cursor_commit(cursor); 2076 2077 while (true) { 2078 struct callchain_cursor_node *node; 2079 struct symbol *sym; 2080 2081 node = callchain_cursor_current(cursor); 2082 if (node == NULL) 2083 break; 2084 2085 sym = node->sym; 2086 if (sym) { 2087 if (!strcmp(sym->name, "schedule") || 2088 !strcmp(sym->name, "__schedule") || 2089 !strcmp(sym->name, "preempt_schedule")) 2090 sym->ignore = 1; 2091 } 2092 2093 callchain_cursor_advance(cursor); 2094 } 2095 } 2096 2097 static int init_idle_thread(struct thread *thread) 2098 { 2099 struct idle_thread_runtime *itr; 2100 2101 thread__set_comm(thread, idle_comm, 0); 2102 2103 itr = zalloc(sizeof(*itr)); 2104 if (itr == NULL) 2105 return -ENOMEM; 2106 2107 init_stats(&itr->tr.run_stats); 2108 callchain_init(&itr->callchain); 2109 callchain_cursor_reset(&itr->cursor); 2110 thread__set_priv(thread, itr); 2111 2112 return 0; 2113 } 2114 2115 /* 2116 * Track idle stats per cpu by maintaining a local thread 2117 * struct for the idle task on each cpu. 2118 */ 2119 static int init_idle_threads(int ncpu) 2120 { 2121 int i, ret; 2122 2123 idle_threads = zalloc(ncpu * sizeof(struct thread *)); 2124 if (!idle_threads) 2125 return -ENOMEM; 2126 2127 idle_max_cpu = ncpu; 2128 2129 /* allocate the actual thread struct if needed */ 2130 for (i = 0; i < ncpu; ++i) { 2131 idle_threads[i] = thread__new(0, 0); 2132 if (idle_threads[i] == NULL) 2133 return -ENOMEM; 2134 2135 ret = init_idle_thread(idle_threads[i]); 2136 if (ret < 0) 2137 return ret; 2138 } 2139 2140 return 0; 2141 } 2142 2143 static void free_idle_threads(void) 2144 { 2145 int i; 2146 2147 if (idle_threads == NULL) 2148 return; 2149 2150 for (i = 0; i < idle_max_cpu; ++i) { 2151 if ((idle_threads[i])) 2152 thread__delete(idle_threads[i]); 2153 } 2154 2155 free(idle_threads); 2156 } 2157 2158 static struct thread *get_idle_thread(int cpu) 2159 { 2160 /* 2161 * expand/allocate array of pointers to local thread 2162 * structs if needed 2163 */ 2164 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) { 2165 int i, j = __roundup_pow_of_two(cpu+1); 2166 void *p; 2167 2168 p = realloc(idle_threads, j * sizeof(struct thread *)); 2169 if (!p) 2170 return NULL; 2171 2172 idle_threads = (struct thread **) p; 2173 for (i = idle_max_cpu; i < j; ++i) 2174 idle_threads[i] = NULL; 2175 2176 idle_max_cpu = j; 2177 } 2178 2179 /* allocate a new thread struct if needed */ 2180 if (idle_threads[cpu] == NULL) { 2181 idle_threads[cpu] = thread__new(0, 0); 2182 2183 if (idle_threads[cpu]) { 2184 if (init_idle_thread(idle_threads[cpu]) < 0) 2185 return NULL; 2186 } 2187 } 2188 2189 return idle_threads[cpu]; 2190 } 2191 2192 static void save_idle_callchain(struct idle_thread_runtime *itr, 2193 struct perf_sample *sample) 2194 { 2195 if (!symbol_conf.use_callchain || sample->callchain == NULL) 2196 return; 2197 2198 callchain_cursor__copy(&itr->cursor, &callchain_cursor); 2199 } 2200 2201 /* 2202 * handle runtime stats saved per thread 2203 */ 2204 static struct thread_runtime *thread__init_runtime(struct thread *thread) 2205 { 2206 struct thread_runtime *r; 2207 2208 r = zalloc(sizeof(struct thread_runtime)); 2209 if (!r) 2210 return NULL; 2211 2212 init_stats(&r->run_stats); 2213 thread__set_priv(thread, r); 2214 2215 return r; 2216 } 2217 2218 static struct thread_runtime *thread__get_runtime(struct thread *thread) 2219 { 2220 struct thread_runtime *tr; 2221 2222 tr = thread__priv(thread); 2223 if (tr == NULL) { 2224 tr = thread__init_runtime(thread); 2225 if (tr == NULL) 2226 pr_debug("Failed to malloc memory for runtime data.\n"); 2227 } 2228 2229 return tr; 2230 } 2231 2232 static struct thread *timehist_get_thread(struct perf_sched *sched, 2233 struct perf_sample *sample, 2234 struct machine *machine, 2235 struct perf_evsel *evsel) 2236 { 2237 struct thread *thread; 2238 2239 if (is_idle_sample(sample, evsel)) { 2240 thread = get_idle_thread(sample->cpu); 2241 if (thread == NULL) 2242 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2243 2244 } else { 2245 /* there were samples with tid 0 but non-zero pid */ 2246 thread = machine__findnew_thread(machine, sample->pid, 2247 sample->tid ?: sample->pid); 2248 if (thread == NULL) { 2249 pr_debug("Failed to get thread for tid %d. skipping sample.\n", 2250 sample->tid); 2251 } 2252 2253 save_task_callchain(sched, sample, evsel, machine); 2254 if (sched->idle_hist) { 2255 struct thread *idle; 2256 struct idle_thread_runtime *itr; 2257 2258 idle = get_idle_thread(sample->cpu); 2259 if (idle == NULL) { 2260 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2261 return NULL; 2262 } 2263 2264 itr = thread__priv(idle); 2265 if (itr == NULL) 2266 return NULL; 2267 2268 itr->last_thread = thread; 2269 2270 /* copy task callchain when entering to idle */ 2271 if (perf_evsel__intval(evsel, sample, "next_pid") == 0) 2272 save_idle_callchain(itr, sample); 2273 } 2274 } 2275 2276 return thread; 2277 } 2278 2279 static bool timehist_skip_sample(struct perf_sched *sched, 2280 struct thread *thread, 2281 struct perf_evsel *evsel, 2282 struct perf_sample *sample) 2283 { 2284 bool rc = false; 2285 2286 if (thread__is_filtered(thread)) { 2287 rc = true; 2288 sched->skipped_samples++; 2289 } 2290 2291 if (sched->idle_hist) { 2292 if (strcmp(perf_evsel__name(evsel), "sched:sched_switch")) 2293 rc = true; 2294 else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 && 2295 perf_evsel__intval(evsel, sample, "next_pid") != 0) 2296 rc = true; 2297 } 2298 2299 return rc; 2300 } 2301 2302 static void timehist_print_wakeup_event(struct perf_sched *sched, 2303 struct perf_evsel *evsel, 2304 struct perf_sample *sample, 2305 struct machine *machine, 2306 struct thread *awakened) 2307 { 2308 struct thread *thread; 2309 char tstr[64]; 2310 2311 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2312 if (thread == NULL) 2313 return; 2314 2315 /* show wakeup unless both awakee and awaker are filtered */ 2316 if (timehist_skip_sample(sched, thread, evsel, sample) && 2317 timehist_skip_sample(sched, awakened, evsel, sample)) { 2318 return; 2319 } 2320 2321 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2322 printf("%15s [%04d] ", tstr, sample->cpu); 2323 if (sched->show_cpu_visual) 2324 printf(" %*s ", sched->max_cpu + 1, ""); 2325 2326 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2327 2328 /* dt spacer */ 2329 printf(" %9s %9s %9s ", "", "", ""); 2330 2331 printf("awakened: %s", timehist_get_commstr(awakened)); 2332 2333 printf("\n"); 2334 } 2335 2336 static int timehist_sched_wakeup_event(struct perf_tool *tool, 2337 union perf_event *event __maybe_unused, 2338 struct perf_evsel *evsel, 2339 struct perf_sample *sample, 2340 struct machine *machine) 2341 { 2342 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2343 struct thread *thread; 2344 struct thread_runtime *tr = NULL; 2345 /* want pid of awakened task not pid in sample */ 2346 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 2347 2348 thread = machine__findnew_thread(machine, 0, pid); 2349 if (thread == NULL) 2350 return -1; 2351 2352 tr = thread__get_runtime(thread); 2353 if (tr == NULL) 2354 return -1; 2355 2356 if (tr->ready_to_run == 0) 2357 tr->ready_to_run = sample->time; 2358 2359 /* show wakeups if requested */ 2360 if (sched->show_wakeups && 2361 !perf_time__skip_sample(&sched->ptime, sample->time)) 2362 timehist_print_wakeup_event(sched, evsel, sample, machine, thread); 2363 2364 return 0; 2365 } 2366 2367 static void timehist_print_migration_event(struct perf_sched *sched, 2368 struct perf_evsel *evsel, 2369 struct perf_sample *sample, 2370 struct machine *machine, 2371 struct thread *migrated) 2372 { 2373 struct thread *thread; 2374 char tstr[64]; 2375 u32 max_cpus = sched->max_cpu + 1; 2376 u32 ocpu, dcpu; 2377 2378 if (sched->summary_only) 2379 return; 2380 2381 max_cpus = sched->max_cpu + 1; 2382 ocpu = perf_evsel__intval(evsel, sample, "orig_cpu"); 2383 dcpu = perf_evsel__intval(evsel, sample, "dest_cpu"); 2384 2385 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2386 if (thread == NULL) 2387 return; 2388 2389 if (timehist_skip_sample(sched, thread, evsel, sample) && 2390 timehist_skip_sample(sched, migrated, evsel, sample)) { 2391 return; 2392 } 2393 2394 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2395 printf("%15s [%04d] ", tstr, sample->cpu); 2396 2397 if (sched->show_cpu_visual) { 2398 u32 i; 2399 char c; 2400 2401 printf(" "); 2402 for (i = 0; i < max_cpus; ++i) { 2403 c = (i == sample->cpu) ? 'm' : ' '; 2404 printf("%c", c); 2405 } 2406 printf(" "); 2407 } 2408 2409 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2410 2411 /* dt spacer */ 2412 printf(" %9s %9s %9s ", "", "", ""); 2413 2414 printf("migrated: %s", timehist_get_commstr(migrated)); 2415 printf(" cpu %d => %d", ocpu, dcpu); 2416 2417 printf("\n"); 2418 } 2419 2420 static int timehist_migrate_task_event(struct perf_tool *tool, 2421 union perf_event *event __maybe_unused, 2422 struct perf_evsel *evsel, 2423 struct perf_sample *sample, 2424 struct machine *machine) 2425 { 2426 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2427 struct thread *thread; 2428 struct thread_runtime *tr = NULL; 2429 /* want pid of migrated task not pid in sample */ 2430 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 2431 2432 thread = machine__findnew_thread(machine, 0, pid); 2433 if (thread == NULL) 2434 return -1; 2435 2436 tr = thread__get_runtime(thread); 2437 if (tr == NULL) 2438 return -1; 2439 2440 tr->migrations++; 2441 2442 /* show migrations if requested */ 2443 timehist_print_migration_event(sched, evsel, sample, machine, thread); 2444 2445 return 0; 2446 } 2447 2448 static int timehist_sched_change_event(struct perf_tool *tool, 2449 union perf_event *event, 2450 struct perf_evsel *evsel, 2451 struct perf_sample *sample, 2452 struct machine *machine) 2453 { 2454 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2455 struct perf_time_interval *ptime = &sched->ptime; 2456 struct addr_location al; 2457 struct thread *thread; 2458 struct thread_runtime *tr = NULL; 2459 u64 tprev, t = sample->time; 2460 int rc = 0; 2461 int state = perf_evsel__intval(evsel, sample, "prev_state"); 2462 2463 2464 if (machine__resolve(machine, &al, sample) < 0) { 2465 pr_err("problem processing %d event. skipping it\n", 2466 event->header.type); 2467 rc = -1; 2468 goto out; 2469 } 2470 2471 thread = timehist_get_thread(sched, sample, machine, evsel); 2472 if (thread == NULL) { 2473 rc = -1; 2474 goto out; 2475 } 2476 2477 if (timehist_skip_sample(sched, thread, evsel, sample)) 2478 goto out; 2479 2480 tr = thread__get_runtime(thread); 2481 if (tr == NULL) { 2482 rc = -1; 2483 goto out; 2484 } 2485 2486 tprev = perf_evsel__get_time(evsel, sample->cpu); 2487 2488 /* 2489 * If start time given: 2490 * - sample time is under window user cares about - skip sample 2491 * - tprev is under window user cares about - reset to start of window 2492 */ 2493 if (ptime->start && ptime->start > t) 2494 goto out; 2495 2496 if (tprev && ptime->start > tprev) 2497 tprev = ptime->start; 2498 2499 /* 2500 * If end time given: 2501 * - previous sched event is out of window - we are done 2502 * - sample time is beyond window user cares about - reset it 2503 * to close out stats for time window interest 2504 */ 2505 if (ptime->end) { 2506 if (tprev > ptime->end) 2507 goto out; 2508 2509 if (t > ptime->end) 2510 t = ptime->end; 2511 } 2512 2513 if (!sched->idle_hist || thread->tid == 0) { 2514 timehist_update_runtime_stats(tr, t, tprev); 2515 2516 if (sched->idle_hist) { 2517 struct idle_thread_runtime *itr = (void *)tr; 2518 struct thread_runtime *last_tr; 2519 2520 BUG_ON(thread->tid != 0); 2521 2522 if (itr->last_thread == NULL) 2523 goto out; 2524 2525 /* add current idle time as last thread's runtime */ 2526 last_tr = thread__get_runtime(itr->last_thread); 2527 if (last_tr == NULL) 2528 goto out; 2529 2530 timehist_update_runtime_stats(last_tr, t, tprev); 2531 /* 2532 * remove delta time of last thread as it's not updated 2533 * and otherwise it will show an invalid value next 2534 * time. we only care total run time and run stat. 2535 */ 2536 last_tr->dt_run = 0; 2537 last_tr->dt_delay = 0; 2538 last_tr->dt_sleep = 0; 2539 last_tr->dt_iowait = 0; 2540 last_tr->dt_preempt = 0; 2541 2542 if (itr->cursor.nr) 2543 callchain_append(&itr->callchain, &itr->cursor, t - tprev); 2544 2545 itr->last_thread = NULL; 2546 } 2547 } 2548 2549 if (!sched->summary_only) 2550 timehist_print_sample(sched, evsel, sample, &al, thread, t, state); 2551 2552 out: 2553 if (sched->hist_time.start == 0 && t >= ptime->start) 2554 sched->hist_time.start = t; 2555 if (ptime->end == 0 || t <= ptime->end) 2556 sched->hist_time.end = t; 2557 2558 if (tr) { 2559 /* time of this sched_switch event becomes last time task seen */ 2560 tr->last_time = sample->time; 2561 2562 /* last state is used to determine where to account wait time */ 2563 tr->last_state = state; 2564 2565 /* sched out event for task so reset ready to run time */ 2566 tr->ready_to_run = 0; 2567 } 2568 2569 perf_evsel__save_time(evsel, sample->time, sample->cpu); 2570 2571 return rc; 2572 } 2573 2574 static int timehist_sched_switch_event(struct perf_tool *tool, 2575 union perf_event *event, 2576 struct perf_evsel *evsel, 2577 struct perf_sample *sample, 2578 struct machine *machine __maybe_unused) 2579 { 2580 return timehist_sched_change_event(tool, event, evsel, sample, machine); 2581 } 2582 2583 static int process_lost(struct perf_tool *tool __maybe_unused, 2584 union perf_event *event, 2585 struct perf_sample *sample, 2586 struct machine *machine __maybe_unused) 2587 { 2588 char tstr[64]; 2589 2590 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2591 printf("%15s ", tstr); 2592 printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu); 2593 2594 return 0; 2595 } 2596 2597 2598 static void print_thread_runtime(struct thread *t, 2599 struct thread_runtime *r) 2600 { 2601 double mean = avg_stats(&r->run_stats); 2602 float stddev; 2603 2604 printf("%*s %5d %9" PRIu64 " ", 2605 comm_width, timehist_get_commstr(t), t->ppid, 2606 (u64) r->run_stats.n); 2607 2608 print_sched_time(r->total_run_time, 8); 2609 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean); 2610 print_sched_time(r->run_stats.min, 6); 2611 printf(" "); 2612 print_sched_time((u64) mean, 6); 2613 printf(" "); 2614 print_sched_time(r->run_stats.max, 6); 2615 printf(" "); 2616 printf("%5.2f", stddev); 2617 printf(" %5" PRIu64, r->migrations); 2618 printf("\n"); 2619 } 2620 2621 static void print_thread_waittime(struct thread *t, 2622 struct thread_runtime *r) 2623 { 2624 printf("%*s %5d %9" PRIu64 " ", 2625 comm_width, timehist_get_commstr(t), t->ppid, 2626 (u64) r->run_stats.n); 2627 2628 print_sched_time(r->total_run_time, 8); 2629 print_sched_time(r->total_sleep_time, 6); 2630 printf(" "); 2631 print_sched_time(r->total_iowait_time, 6); 2632 printf(" "); 2633 print_sched_time(r->total_preempt_time, 6); 2634 printf(" "); 2635 print_sched_time(r->total_delay_time, 6); 2636 printf("\n"); 2637 } 2638 2639 struct total_run_stats { 2640 struct perf_sched *sched; 2641 u64 sched_count; 2642 u64 task_count; 2643 u64 total_run_time; 2644 }; 2645 2646 static int __show_thread_runtime(struct thread *t, void *priv) 2647 { 2648 struct total_run_stats *stats = priv; 2649 struct thread_runtime *r; 2650 2651 if (thread__is_filtered(t)) 2652 return 0; 2653 2654 r = thread__priv(t); 2655 if (r && r->run_stats.n) { 2656 stats->task_count++; 2657 stats->sched_count += r->run_stats.n; 2658 stats->total_run_time += r->total_run_time; 2659 2660 if (stats->sched->show_state) 2661 print_thread_waittime(t, r); 2662 else 2663 print_thread_runtime(t, r); 2664 } 2665 2666 return 0; 2667 } 2668 2669 static int show_thread_runtime(struct thread *t, void *priv) 2670 { 2671 if (t->dead) 2672 return 0; 2673 2674 return __show_thread_runtime(t, priv); 2675 } 2676 2677 static int show_deadthread_runtime(struct thread *t, void *priv) 2678 { 2679 if (!t->dead) 2680 return 0; 2681 2682 return __show_thread_runtime(t, priv); 2683 } 2684 2685 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node) 2686 { 2687 const char *sep = " <- "; 2688 struct callchain_list *chain; 2689 size_t ret = 0; 2690 char bf[1024]; 2691 bool first; 2692 2693 if (node == NULL) 2694 return 0; 2695 2696 ret = callchain__fprintf_folded(fp, node->parent); 2697 first = (ret == 0); 2698 2699 list_for_each_entry(chain, &node->val, list) { 2700 if (chain->ip >= PERF_CONTEXT_MAX) 2701 continue; 2702 if (chain->ms.sym && chain->ms.sym->ignore) 2703 continue; 2704 ret += fprintf(fp, "%s%s", first ? "" : sep, 2705 callchain_list__sym_name(chain, bf, sizeof(bf), 2706 false)); 2707 first = false; 2708 } 2709 2710 return ret; 2711 } 2712 2713 static size_t timehist_print_idlehist_callchain(struct rb_root *root) 2714 { 2715 size_t ret = 0; 2716 FILE *fp = stdout; 2717 struct callchain_node *chain; 2718 struct rb_node *rb_node = rb_first(root); 2719 2720 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains"); 2721 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line, 2722 graph_dotted_line); 2723 2724 while (rb_node) { 2725 chain = rb_entry(rb_node, struct callchain_node, rb_node); 2726 rb_node = rb_next(rb_node); 2727 2728 ret += fprintf(fp, " "); 2729 print_sched_time(chain->hit, 12); 2730 ret += 16; /* print_sched_time returns 2nd arg + 4 */ 2731 ret += fprintf(fp, " %8d ", chain->count); 2732 ret += callchain__fprintf_folded(fp, chain); 2733 ret += fprintf(fp, "\n"); 2734 } 2735 2736 return ret; 2737 } 2738 2739 static void timehist_print_summary(struct perf_sched *sched, 2740 struct perf_session *session) 2741 { 2742 struct machine *m = &session->machines.host; 2743 struct total_run_stats totals; 2744 u64 task_count; 2745 struct thread *t; 2746 struct thread_runtime *r; 2747 int i; 2748 u64 hist_time = sched->hist_time.end - sched->hist_time.start; 2749 2750 memset(&totals, 0, sizeof(totals)); 2751 totals.sched = sched; 2752 2753 if (sched->idle_hist) { 2754 printf("\nIdle-time summary\n"); 2755 printf("%*s parent sched-out ", comm_width, "comm"); 2756 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n"); 2757 } else if (sched->show_state) { 2758 printf("\nWait-time summary\n"); 2759 printf("%*s parent sched-in ", comm_width, "comm"); 2760 printf(" run-time sleep iowait preempt delay\n"); 2761 } else { 2762 printf("\nRuntime summary\n"); 2763 printf("%*s parent sched-in ", comm_width, "comm"); 2764 printf(" run-time min-run avg-run max-run stddev migrations\n"); 2765 } 2766 printf("%*s (count) ", comm_width, ""); 2767 printf(" (msec) (msec) (msec) (msec) %s\n", 2768 sched->show_state ? "(msec)" : "%"); 2769 printf("%.117s\n", graph_dotted_line); 2770 2771 machine__for_each_thread(m, show_thread_runtime, &totals); 2772 task_count = totals.task_count; 2773 if (!task_count) 2774 printf("<no still running tasks>\n"); 2775 2776 printf("\nTerminated tasks:\n"); 2777 machine__for_each_thread(m, show_deadthread_runtime, &totals); 2778 if (task_count == totals.task_count) 2779 printf("<no terminated tasks>\n"); 2780 2781 /* CPU idle stats not tracked when samples were skipped */ 2782 if (sched->skipped_samples && !sched->idle_hist) 2783 return; 2784 2785 printf("\nIdle stats:\n"); 2786 for (i = 0; i < idle_max_cpu; ++i) { 2787 t = idle_threads[i]; 2788 if (!t) 2789 continue; 2790 2791 r = thread__priv(t); 2792 if (r && r->run_stats.n) { 2793 totals.sched_count += r->run_stats.n; 2794 printf(" CPU %2d idle for ", i); 2795 print_sched_time(r->total_run_time, 6); 2796 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time); 2797 } else 2798 printf(" CPU %2d idle entire time window\n", i); 2799 } 2800 2801 if (sched->idle_hist && symbol_conf.use_callchain) { 2802 callchain_param.mode = CHAIN_FOLDED; 2803 callchain_param.value = CCVAL_PERIOD; 2804 2805 callchain_register_param(&callchain_param); 2806 2807 printf("\nIdle stats by callchain:\n"); 2808 for (i = 0; i < idle_max_cpu; ++i) { 2809 struct idle_thread_runtime *itr; 2810 2811 t = idle_threads[i]; 2812 if (!t) 2813 continue; 2814 2815 itr = thread__priv(t); 2816 if (itr == NULL) 2817 continue; 2818 2819 callchain_param.sort(&itr->sorted_root, &itr->callchain, 2820 0, &callchain_param); 2821 2822 printf(" CPU %2d:", i); 2823 print_sched_time(itr->tr.total_run_time, 6); 2824 printf(" msec\n"); 2825 timehist_print_idlehist_callchain(&itr->sorted_root); 2826 printf("\n"); 2827 } 2828 } 2829 2830 printf("\n" 2831 " Total number of unique tasks: %" PRIu64 "\n" 2832 "Total number of context switches: %" PRIu64 "\n", 2833 totals.task_count, totals.sched_count); 2834 2835 printf(" Total run time (msec): "); 2836 print_sched_time(totals.total_run_time, 2); 2837 printf("\n"); 2838 2839 printf(" Total scheduling time (msec): "); 2840 print_sched_time(hist_time, 2); 2841 printf(" (x %d)\n", sched->max_cpu); 2842 } 2843 2844 typedef int (*sched_handler)(struct perf_tool *tool, 2845 union perf_event *event, 2846 struct perf_evsel *evsel, 2847 struct perf_sample *sample, 2848 struct machine *machine); 2849 2850 static int perf_timehist__process_sample(struct perf_tool *tool, 2851 union perf_event *event, 2852 struct perf_sample *sample, 2853 struct perf_evsel *evsel, 2854 struct machine *machine) 2855 { 2856 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2857 int err = 0; 2858 int this_cpu = sample->cpu; 2859 2860 if (this_cpu > sched->max_cpu) 2861 sched->max_cpu = this_cpu; 2862 2863 if (evsel->handler != NULL) { 2864 sched_handler f = evsel->handler; 2865 2866 err = f(tool, event, evsel, sample, machine); 2867 } 2868 2869 return err; 2870 } 2871 2872 static int timehist_check_attr(struct perf_sched *sched, 2873 struct perf_evlist *evlist) 2874 { 2875 struct perf_evsel *evsel; 2876 struct evsel_runtime *er; 2877 2878 list_for_each_entry(evsel, &evlist->entries, node) { 2879 er = perf_evsel__get_runtime(evsel); 2880 if (er == NULL) { 2881 pr_err("Failed to allocate memory for evsel runtime data\n"); 2882 return -1; 2883 } 2884 2885 if (sched->show_callchain && 2886 !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) { 2887 pr_info("Samples do not have callchains.\n"); 2888 sched->show_callchain = 0; 2889 symbol_conf.use_callchain = 0; 2890 } 2891 } 2892 2893 return 0; 2894 } 2895 2896 static int perf_sched__timehist(struct perf_sched *sched) 2897 { 2898 const struct perf_evsel_str_handler handlers[] = { 2899 { "sched:sched_switch", timehist_sched_switch_event, }, 2900 { "sched:sched_wakeup", timehist_sched_wakeup_event, }, 2901 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, }, 2902 }; 2903 const struct perf_evsel_str_handler migrate_handlers[] = { 2904 { "sched:sched_migrate_task", timehist_migrate_task_event, }, 2905 }; 2906 struct perf_data_file file = { 2907 .path = input_name, 2908 .mode = PERF_DATA_MODE_READ, 2909 .force = sched->force, 2910 }; 2911 2912 struct perf_session *session; 2913 struct perf_evlist *evlist; 2914 int err = -1; 2915 2916 /* 2917 * event handlers for timehist option 2918 */ 2919 sched->tool.sample = perf_timehist__process_sample; 2920 sched->tool.mmap = perf_event__process_mmap; 2921 sched->tool.comm = perf_event__process_comm; 2922 sched->tool.exit = perf_event__process_exit; 2923 sched->tool.fork = perf_event__process_fork; 2924 sched->tool.lost = process_lost; 2925 sched->tool.attr = perf_event__process_attr; 2926 sched->tool.tracing_data = perf_event__process_tracing_data; 2927 sched->tool.build_id = perf_event__process_build_id; 2928 2929 sched->tool.ordered_events = true; 2930 sched->tool.ordering_requires_timestamps = true; 2931 2932 symbol_conf.use_callchain = sched->show_callchain; 2933 2934 session = perf_session__new(&file, false, &sched->tool); 2935 if (session == NULL) 2936 return -ENOMEM; 2937 2938 evlist = session->evlist; 2939 2940 symbol__init(&session->header.env); 2941 2942 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) { 2943 pr_err("Invalid time string\n"); 2944 return -EINVAL; 2945 } 2946 2947 if (timehist_check_attr(sched, evlist) != 0) 2948 goto out; 2949 2950 setup_pager(); 2951 2952 /* setup per-evsel handlers */ 2953 if (perf_session__set_tracepoints_handlers(session, handlers)) 2954 goto out; 2955 2956 /* sched_switch event at a minimum needs to exist */ 2957 if (!perf_evlist__find_tracepoint_by_name(session->evlist, 2958 "sched:sched_switch")) { 2959 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n"); 2960 goto out; 2961 } 2962 2963 if (sched->show_migrations && 2964 perf_session__set_tracepoints_handlers(session, migrate_handlers)) 2965 goto out; 2966 2967 /* pre-allocate struct for per-CPU idle stats */ 2968 sched->max_cpu = session->header.env.nr_cpus_online; 2969 if (sched->max_cpu == 0) 2970 sched->max_cpu = 4; 2971 if (init_idle_threads(sched->max_cpu)) 2972 goto out; 2973 2974 /* summary_only implies summary option, but don't overwrite summary if set */ 2975 if (sched->summary_only) 2976 sched->summary = sched->summary_only; 2977 2978 if (!sched->summary_only) 2979 timehist_header(sched); 2980 2981 err = perf_session__process_events(session); 2982 if (err) { 2983 pr_err("Failed to process events, error %d", err); 2984 goto out; 2985 } 2986 2987 sched->nr_events = evlist->stats.nr_events[0]; 2988 sched->nr_lost_events = evlist->stats.total_lost; 2989 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST]; 2990 2991 if (sched->summary) 2992 timehist_print_summary(sched, session); 2993 2994 out: 2995 free_idle_threads(); 2996 perf_session__delete(session); 2997 2998 return err; 2999 } 3000 3001 3002 static void print_bad_events(struct perf_sched *sched) 3003 { 3004 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 3005 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 3006 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 3007 sched->nr_unordered_timestamps, sched->nr_timestamps); 3008 } 3009 if (sched->nr_lost_events && sched->nr_events) { 3010 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 3011 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 3012 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 3013 } 3014 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 3015 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 3016 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 3017 sched->nr_context_switch_bugs, sched->nr_timestamps); 3018 if (sched->nr_lost_events) 3019 printf(" (due to lost events?)"); 3020 printf("\n"); 3021 } 3022 } 3023 3024 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data) 3025 { 3026 struct rb_node **new = &(root->rb_node), *parent = NULL; 3027 struct work_atoms *this; 3028 const char *comm = thread__comm_str(data->thread), *this_comm; 3029 3030 while (*new) { 3031 int cmp; 3032 3033 this = container_of(*new, struct work_atoms, node); 3034 parent = *new; 3035 3036 this_comm = thread__comm_str(this->thread); 3037 cmp = strcmp(comm, this_comm); 3038 if (cmp > 0) { 3039 new = &((*new)->rb_left); 3040 } else if (cmp < 0) { 3041 new = &((*new)->rb_right); 3042 } else { 3043 this->num_merged++; 3044 this->total_runtime += data->total_runtime; 3045 this->nb_atoms += data->nb_atoms; 3046 this->total_lat += data->total_lat; 3047 list_splice(&data->work_list, &this->work_list); 3048 if (this->max_lat < data->max_lat) { 3049 this->max_lat = data->max_lat; 3050 this->max_lat_at = data->max_lat_at; 3051 } 3052 zfree(&data); 3053 return; 3054 } 3055 } 3056 3057 data->num_merged++; 3058 rb_link_node(&data->node, parent, new); 3059 rb_insert_color(&data->node, root); 3060 } 3061 3062 static void perf_sched__merge_lat(struct perf_sched *sched) 3063 { 3064 struct work_atoms *data; 3065 struct rb_node *node; 3066 3067 if (sched->skip_merge) 3068 return; 3069 3070 while ((node = rb_first(&sched->atom_root))) { 3071 rb_erase(node, &sched->atom_root); 3072 data = rb_entry(node, struct work_atoms, node); 3073 __merge_work_atoms(&sched->merged_atom_root, data); 3074 } 3075 } 3076 3077 static int perf_sched__lat(struct perf_sched *sched) 3078 { 3079 struct rb_node *next; 3080 3081 setup_pager(); 3082 3083 if (perf_sched__read_events(sched)) 3084 return -1; 3085 3086 perf_sched__merge_lat(sched); 3087 perf_sched__sort_lat(sched); 3088 3089 printf("\n -----------------------------------------------------------------------------------------------------------------\n"); 3090 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n"); 3091 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3092 3093 next = rb_first(&sched->sorted_atom_root); 3094 3095 while (next) { 3096 struct work_atoms *work_list; 3097 3098 work_list = rb_entry(next, struct work_atoms, node); 3099 output_lat_thread(sched, work_list); 3100 next = rb_next(next); 3101 thread__zput(work_list->thread); 3102 } 3103 3104 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3105 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 3106 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count); 3107 3108 printf(" ---------------------------------------------------\n"); 3109 3110 print_bad_events(sched); 3111 printf("\n"); 3112 3113 return 0; 3114 } 3115 3116 static int setup_map_cpus(struct perf_sched *sched) 3117 { 3118 struct cpu_map *map; 3119 3120 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF); 3121 3122 if (sched->map.comp) { 3123 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int)); 3124 if (!sched->map.comp_cpus) 3125 return -1; 3126 } 3127 3128 if (!sched->map.cpus_str) 3129 return 0; 3130 3131 map = cpu_map__new(sched->map.cpus_str); 3132 if (!map) { 3133 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str); 3134 return -1; 3135 } 3136 3137 sched->map.cpus = map; 3138 return 0; 3139 } 3140 3141 static int setup_color_pids(struct perf_sched *sched) 3142 { 3143 struct thread_map *map; 3144 3145 if (!sched->map.color_pids_str) 3146 return 0; 3147 3148 map = thread_map__new_by_tid_str(sched->map.color_pids_str); 3149 if (!map) { 3150 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str); 3151 return -1; 3152 } 3153 3154 sched->map.color_pids = map; 3155 return 0; 3156 } 3157 3158 static int setup_color_cpus(struct perf_sched *sched) 3159 { 3160 struct cpu_map *map; 3161 3162 if (!sched->map.color_cpus_str) 3163 return 0; 3164 3165 map = cpu_map__new(sched->map.color_cpus_str); 3166 if (!map) { 3167 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str); 3168 return -1; 3169 } 3170 3171 sched->map.color_cpus = map; 3172 return 0; 3173 } 3174 3175 static int perf_sched__map(struct perf_sched *sched) 3176 { 3177 if (setup_map_cpus(sched)) 3178 return -1; 3179 3180 if (setup_color_pids(sched)) 3181 return -1; 3182 3183 if (setup_color_cpus(sched)) 3184 return -1; 3185 3186 setup_pager(); 3187 if (perf_sched__read_events(sched)) 3188 return -1; 3189 print_bad_events(sched); 3190 return 0; 3191 } 3192 3193 static int perf_sched__replay(struct perf_sched *sched) 3194 { 3195 unsigned long i; 3196 3197 calibrate_run_measurement_overhead(sched); 3198 calibrate_sleep_measurement_overhead(sched); 3199 3200 test_calibrations(sched); 3201 3202 if (perf_sched__read_events(sched)) 3203 return -1; 3204 3205 printf("nr_run_events: %ld\n", sched->nr_run_events); 3206 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 3207 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 3208 3209 if (sched->targetless_wakeups) 3210 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 3211 if (sched->multitarget_wakeups) 3212 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 3213 if (sched->nr_run_events_optimized) 3214 printf("run atoms optimized: %ld\n", 3215 sched->nr_run_events_optimized); 3216 3217 print_task_traces(sched); 3218 add_cross_task_wakeups(sched); 3219 3220 create_tasks(sched); 3221 printf("------------------------------------------------------------\n"); 3222 for (i = 0; i < sched->replay_repeat; i++) 3223 run_one_test(sched); 3224 3225 return 0; 3226 } 3227 3228 static void setup_sorting(struct perf_sched *sched, const struct option *options, 3229 const char * const usage_msg[]) 3230 { 3231 char *tmp, *tok, *str = strdup(sched->sort_order); 3232 3233 for (tok = strtok_r(str, ", ", &tmp); 3234 tok; tok = strtok_r(NULL, ", ", &tmp)) { 3235 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 3236 usage_with_options_msg(usage_msg, options, 3237 "Unknown --sort key: `%s'", tok); 3238 } 3239 } 3240 3241 free(str); 3242 3243 sort_dimension__add("pid", &sched->cmp_pid); 3244 } 3245 3246 static int __cmd_record(int argc, const char **argv) 3247 { 3248 unsigned int rec_argc, i, j; 3249 const char **rec_argv; 3250 const char * const record_args[] = { 3251 "record", 3252 "-a", 3253 "-R", 3254 "-m", "1024", 3255 "-c", "1", 3256 "-e", "sched:sched_switch", 3257 "-e", "sched:sched_stat_wait", 3258 "-e", "sched:sched_stat_sleep", 3259 "-e", "sched:sched_stat_iowait", 3260 "-e", "sched:sched_stat_runtime", 3261 "-e", "sched:sched_process_fork", 3262 "-e", "sched:sched_wakeup", 3263 "-e", "sched:sched_wakeup_new", 3264 "-e", "sched:sched_migrate_task", 3265 }; 3266 3267 rec_argc = ARRAY_SIZE(record_args) + argc - 1; 3268 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 3269 3270 if (rec_argv == NULL) 3271 return -ENOMEM; 3272 3273 for (i = 0; i < ARRAY_SIZE(record_args); i++) 3274 rec_argv[i] = strdup(record_args[i]); 3275 3276 for (j = 1; j < (unsigned int)argc; j++, i++) 3277 rec_argv[i] = argv[j]; 3278 3279 BUG_ON(i != rec_argc); 3280 3281 return cmd_record(i, rec_argv); 3282 } 3283 3284 int cmd_sched(int argc, const char **argv) 3285 { 3286 const char default_sort_order[] = "avg, max, switch, runtime"; 3287 struct perf_sched sched = { 3288 .tool = { 3289 .sample = perf_sched__process_tracepoint_sample, 3290 .comm = perf_event__process_comm, 3291 .namespaces = perf_event__process_namespaces, 3292 .lost = perf_event__process_lost, 3293 .fork = perf_sched__process_fork_event, 3294 .ordered_events = true, 3295 }, 3296 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 3297 .sort_list = LIST_HEAD_INIT(sched.sort_list), 3298 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER, 3299 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER, 3300 .sort_order = default_sort_order, 3301 .replay_repeat = 10, 3302 .profile_cpu = -1, 3303 .next_shortname1 = 'A', 3304 .next_shortname2 = '0', 3305 .skip_merge = 0, 3306 .show_callchain = 1, 3307 .max_stack = 5, 3308 }; 3309 const struct option sched_options[] = { 3310 OPT_STRING('i', "input", &input_name, "file", 3311 "input file name"), 3312 OPT_INCR('v', "verbose", &verbose, 3313 "be more verbose (show symbol address, etc)"), 3314 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 3315 "dump raw trace in ASCII"), 3316 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), 3317 OPT_END() 3318 }; 3319 const struct option latency_options[] = { 3320 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 3321 "sort by key(s): runtime, switch, avg, max"), 3322 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 3323 "CPU to profile on"), 3324 OPT_BOOLEAN('p', "pids", &sched.skip_merge, 3325 "latency stats per pid instead of per comm"), 3326 OPT_PARENT(sched_options) 3327 }; 3328 const struct option replay_options[] = { 3329 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 3330 "repeat the workload replay N times (-1: infinite)"), 3331 OPT_PARENT(sched_options) 3332 }; 3333 const struct option map_options[] = { 3334 OPT_BOOLEAN(0, "compact", &sched.map.comp, 3335 "map output in compact mode"), 3336 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids", 3337 "highlight given pids in map"), 3338 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus", 3339 "highlight given CPUs in map"), 3340 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus", 3341 "display given CPUs in map"), 3342 OPT_PARENT(sched_options) 3343 }; 3344 const struct option timehist_options[] = { 3345 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name, 3346 "file", "vmlinux pathname"), 3347 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name, 3348 "file", "kallsyms pathname"), 3349 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain, 3350 "Display call chains if present (default on)"), 3351 OPT_UINTEGER(0, "max-stack", &sched.max_stack, 3352 "Maximum number of functions to display backtrace."), 3353 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", 3354 "Look for files with symbols relative to this directory"), 3355 OPT_BOOLEAN('s', "summary", &sched.summary_only, 3356 "Show only syscall summary with statistics"), 3357 OPT_BOOLEAN('S', "with-summary", &sched.summary, 3358 "Show all syscalls and summary with statistics"), 3359 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"), 3360 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"), 3361 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"), 3362 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"), 3363 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"), 3364 OPT_STRING(0, "time", &sched.time_str, "str", 3365 "Time span for analysis (start,stop)"), 3366 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"), 3367 OPT_PARENT(sched_options) 3368 }; 3369 3370 const char * const latency_usage[] = { 3371 "perf sched latency [<options>]", 3372 NULL 3373 }; 3374 const char * const replay_usage[] = { 3375 "perf sched replay [<options>]", 3376 NULL 3377 }; 3378 const char * const map_usage[] = { 3379 "perf sched map [<options>]", 3380 NULL 3381 }; 3382 const char * const timehist_usage[] = { 3383 "perf sched timehist [<options>]", 3384 NULL 3385 }; 3386 const char *const sched_subcommands[] = { "record", "latency", "map", 3387 "replay", "script", 3388 "timehist", NULL }; 3389 const char *sched_usage[] = { 3390 NULL, 3391 NULL 3392 }; 3393 struct trace_sched_handler lat_ops = { 3394 .wakeup_event = latency_wakeup_event, 3395 .switch_event = latency_switch_event, 3396 .runtime_event = latency_runtime_event, 3397 .migrate_task_event = latency_migrate_task_event, 3398 }; 3399 struct trace_sched_handler map_ops = { 3400 .switch_event = map_switch_event, 3401 }; 3402 struct trace_sched_handler replay_ops = { 3403 .wakeup_event = replay_wakeup_event, 3404 .switch_event = replay_switch_event, 3405 .fork_event = replay_fork_event, 3406 }; 3407 unsigned int i; 3408 3409 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++) 3410 sched.curr_pid[i] = -1; 3411 3412 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 3413 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 3414 if (!argc) 3415 usage_with_options(sched_usage, sched_options); 3416 3417 /* 3418 * Aliased to 'perf script' for now: 3419 */ 3420 if (!strcmp(argv[0], "script")) 3421 return cmd_script(argc, argv); 3422 3423 if (!strncmp(argv[0], "rec", 3)) { 3424 return __cmd_record(argc, argv); 3425 } else if (!strncmp(argv[0], "lat", 3)) { 3426 sched.tp_handler = &lat_ops; 3427 if (argc > 1) { 3428 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 3429 if (argc) 3430 usage_with_options(latency_usage, latency_options); 3431 } 3432 setup_sorting(&sched, latency_options, latency_usage); 3433 return perf_sched__lat(&sched); 3434 } else if (!strcmp(argv[0], "map")) { 3435 if (argc) { 3436 argc = parse_options(argc, argv, map_options, map_usage, 0); 3437 if (argc) 3438 usage_with_options(map_usage, map_options); 3439 } 3440 sched.tp_handler = &map_ops; 3441 setup_sorting(&sched, latency_options, latency_usage); 3442 return perf_sched__map(&sched); 3443 } else if (!strncmp(argv[0], "rep", 3)) { 3444 sched.tp_handler = &replay_ops; 3445 if (argc) { 3446 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 3447 if (argc) 3448 usage_with_options(replay_usage, replay_options); 3449 } 3450 return perf_sched__replay(&sched); 3451 } else if (!strcmp(argv[0], "timehist")) { 3452 if (argc) { 3453 argc = parse_options(argc, argv, timehist_options, 3454 timehist_usage, 0); 3455 if (argc) 3456 usage_with_options(timehist_usage, timehist_options); 3457 } 3458 if ((sched.show_wakeups || sched.show_next) && 3459 sched.summary_only) { 3460 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n"); 3461 parse_options_usage(timehist_usage, timehist_options, "s", true); 3462 if (sched.show_wakeups) 3463 parse_options_usage(NULL, timehist_options, "w", true); 3464 if (sched.show_next) 3465 parse_options_usage(NULL, timehist_options, "n", true); 3466 return -EINVAL; 3467 } 3468 3469 return perf_sched__timehist(&sched); 3470 } else { 3471 usage_with_options(sched_usage, sched_options); 3472 } 3473 3474 return 0; 3475 } 3476