1 // SPDX-License-Identifier: GPL-2.0 2 #include "builtin.h" 3 #include "perf-sys.h" 4 5 #include "util/cpumap.h" 6 #include "util/evlist.h" 7 #include "util/evsel.h" 8 #include "util/evsel_fprintf.h" 9 #include "util/mutex.h" 10 #include "util/symbol.h" 11 #include "util/thread.h" 12 #include "util/header.h" 13 #include "util/session.h" 14 #include "util/tool.h" 15 #include "util/cloexec.h" 16 #include "util/thread_map.h" 17 #include "util/color.h" 18 #include "util/stat.h" 19 #include "util/string2.h" 20 #include "util/callchain.h" 21 #include "util/time-utils.h" 22 23 #include <subcmd/pager.h> 24 #include <subcmd/parse-options.h> 25 #include "util/trace-event.h" 26 27 #include "util/debug.h" 28 #include "util/event.h" 29 #include "util/util.h" 30 31 #include <linux/kernel.h> 32 #include <linux/log2.h> 33 #include <linux/zalloc.h> 34 #include <sys/prctl.h> 35 #include <sys/resource.h> 36 #include <inttypes.h> 37 38 #include <errno.h> 39 #include <semaphore.h> 40 #include <pthread.h> 41 #include <math.h> 42 #include <api/fs/fs.h> 43 #include <perf/cpumap.h> 44 #include <linux/time64.h> 45 #include <linux/err.h> 46 47 #include <linux/ctype.h> 48 49 #define PR_SET_NAME 15 /* Set process name */ 50 #define MAX_CPUS 4096 51 #define COMM_LEN 20 52 #define SYM_LEN 129 53 #define MAX_PID 1024000 54 55 static const char *cpu_list; 56 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS); 57 58 struct sched_atom; 59 60 struct task_desc { 61 unsigned long nr; 62 unsigned long pid; 63 char comm[COMM_LEN]; 64 65 unsigned long nr_events; 66 unsigned long curr_event; 67 struct sched_atom **atoms; 68 69 pthread_t thread; 70 sem_t sleep_sem; 71 72 sem_t ready_for_work; 73 sem_t work_done_sem; 74 75 u64 cpu_usage; 76 }; 77 78 enum sched_event_type { 79 SCHED_EVENT_RUN, 80 SCHED_EVENT_SLEEP, 81 SCHED_EVENT_WAKEUP, 82 SCHED_EVENT_MIGRATION, 83 }; 84 85 struct sched_atom { 86 enum sched_event_type type; 87 int specific_wait; 88 u64 timestamp; 89 u64 duration; 90 unsigned long nr; 91 sem_t *wait_sem; 92 struct task_desc *wakee; 93 }; 94 95 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 96 97 /* task state bitmask, copied from include/linux/sched.h */ 98 #define TASK_RUNNING 0 99 #define TASK_INTERRUPTIBLE 1 100 #define TASK_UNINTERRUPTIBLE 2 101 #define __TASK_STOPPED 4 102 #define __TASK_TRACED 8 103 /* in tsk->exit_state */ 104 #define EXIT_DEAD 16 105 #define EXIT_ZOMBIE 32 106 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) 107 /* in tsk->state again */ 108 #define TASK_DEAD 64 109 #define TASK_WAKEKILL 128 110 #define TASK_WAKING 256 111 #define TASK_PARKED 512 112 113 enum thread_state { 114 THREAD_SLEEPING = 0, 115 THREAD_WAIT_CPU, 116 THREAD_SCHED_IN, 117 THREAD_IGNORE 118 }; 119 120 struct work_atom { 121 struct list_head list; 122 enum thread_state state; 123 u64 sched_out_time; 124 u64 wake_up_time; 125 u64 sched_in_time; 126 u64 runtime; 127 }; 128 129 struct work_atoms { 130 struct list_head work_list; 131 struct thread *thread; 132 struct rb_node node; 133 u64 max_lat; 134 u64 max_lat_start; 135 u64 max_lat_end; 136 u64 total_lat; 137 u64 nb_atoms; 138 u64 total_runtime; 139 int num_merged; 140 }; 141 142 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 143 144 struct perf_sched; 145 146 struct trace_sched_handler { 147 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel, 148 struct perf_sample *sample, struct machine *machine); 149 150 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel, 151 struct perf_sample *sample, struct machine *machine); 152 153 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel, 154 struct perf_sample *sample, struct machine *machine); 155 156 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 157 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 158 struct machine *machine); 159 160 int (*migrate_task_event)(struct perf_sched *sched, 161 struct evsel *evsel, 162 struct perf_sample *sample, 163 struct machine *machine); 164 }; 165 166 #define COLOR_PIDS PERF_COLOR_BLUE 167 #define COLOR_CPUS PERF_COLOR_BG_RED 168 169 struct perf_sched_map { 170 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); 171 struct perf_cpu *comp_cpus; 172 bool comp; 173 struct perf_thread_map *color_pids; 174 const char *color_pids_str; 175 struct perf_cpu_map *color_cpus; 176 const char *color_cpus_str; 177 struct perf_cpu_map *cpus; 178 const char *cpus_str; 179 }; 180 181 struct perf_sched { 182 struct perf_tool tool; 183 const char *sort_order; 184 unsigned long nr_tasks; 185 struct task_desc **pid_to_task; 186 struct task_desc **tasks; 187 const struct trace_sched_handler *tp_handler; 188 struct mutex start_work_mutex; 189 struct mutex work_done_wait_mutex; 190 int profile_cpu; 191 /* 192 * Track the current task - that way we can know whether there's any 193 * weird events, such as a task being switched away that is not current. 194 */ 195 struct perf_cpu max_cpu; 196 u32 *curr_pid; 197 struct thread **curr_thread; 198 char next_shortname1; 199 char next_shortname2; 200 unsigned int replay_repeat; 201 unsigned long nr_run_events; 202 unsigned long nr_sleep_events; 203 unsigned long nr_wakeup_events; 204 unsigned long nr_sleep_corrections; 205 unsigned long nr_run_events_optimized; 206 unsigned long targetless_wakeups; 207 unsigned long multitarget_wakeups; 208 unsigned long nr_runs; 209 unsigned long nr_timestamps; 210 unsigned long nr_unordered_timestamps; 211 unsigned long nr_context_switch_bugs; 212 unsigned long nr_events; 213 unsigned long nr_lost_chunks; 214 unsigned long nr_lost_events; 215 u64 run_measurement_overhead; 216 u64 sleep_measurement_overhead; 217 u64 start_time; 218 u64 cpu_usage; 219 u64 runavg_cpu_usage; 220 u64 parent_cpu_usage; 221 u64 runavg_parent_cpu_usage; 222 u64 sum_runtime; 223 u64 sum_fluct; 224 u64 run_avg; 225 u64 all_runtime; 226 u64 all_count; 227 u64 *cpu_last_switched; 228 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root; 229 struct list_head sort_list, cmp_pid; 230 bool force; 231 bool skip_merge; 232 struct perf_sched_map map; 233 234 /* options for timehist command */ 235 bool summary; 236 bool summary_only; 237 bool idle_hist; 238 bool show_callchain; 239 unsigned int max_stack; 240 bool show_cpu_visual; 241 bool show_wakeups; 242 bool show_next; 243 bool show_migrations; 244 bool show_state; 245 u64 skipped_samples; 246 const char *time_str; 247 struct perf_time_interval ptime; 248 struct perf_time_interval hist_time; 249 volatile bool thread_funcs_exit; 250 }; 251 252 /* per thread run time data */ 253 struct thread_runtime { 254 u64 last_time; /* time of previous sched in/out event */ 255 u64 dt_run; /* run time */ 256 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */ 257 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */ 258 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */ 259 u64 dt_delay; /* time between wakeup and sched-in */ 260 u64 ready_to_run; /* time of wakeup */ 261 262 struct stats run_stats; 263 u64 total_run_time; 264 u64 total_sleep_time; 265 u64 total_iowait_time; 266 u64 total_preempt_time; 267 u64 total_delay_time; 268 269 int last_state; 270 271 char shortname[3]; 272 bool comm_changed; 273 274 u64 migrations; 275 }; 276 277 /* per event run time data */ 278 struct evsel_runtime { 279 u64 *last_time; /* time this event was last seen per cpu */ 280 u32 ncpu; /* highest cpu slot allocated */ 281 }; 282 283 /* per cpu idle time data */ 284 struct idle_thread_runtime { 285 struct thread_runtime tr; 286 struct thread *last_thread; 287 struct rb_root_cached sorted_root; 288 struct callchain_root callchain; 289 struct callchain_cursor cursor; 290 }; 291 292 /* track idle times per cpu */ 293 static struct thread **idle_threads; 294 static int idle_max_cpu; 295 static char idle_comm[] = "<idle>"; 296 297 static u64 get_nsecs(void) 298 { 299 struct timespec ts; 300 301 clock_gettime(CLOCK_MONOTONIC, &ts); 302 303 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; 304 } 305 306 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 307 { 308 u64 T0 = get_nsecs(), T1; 309 310 do { 311 T1 = get_nsecs(); 312 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 313 } 314 315 static void sleep_nsecs(u64 nsecs) 316 { 317 struct timespec ts; 318 319 ts.tv_nsec = nsecs % 999999999; 320 ts.tv_sec = nsecs / 999999999; 321 322 nanosleep(&ts, NULL); 323 } 324 325 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 326 { 327 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 328 int i; 329 330 for (i = 0; i < 10; i++) { 331 T0 = get_nsecs(); 332 burn_nsecs(sched, 0); 333 T1 = get_nsecs(); 334 delta = T1-T0; 335 min_delta = min(min_delta, delta); 336 } 337 sched->run_measurement_overhead = min_delta; 338 339 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 340 } 341 342 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 343 { 344 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 345 int i; 346 347 for (i = 0; i < 10; i++) { 348 T0 = get_nsecs(); 349 sleep_nsecs(10000); 350 T1 = get_nsecs(); 351 delta = T1-T0; 352 min_delta = min(min_delta, delta); 353 } 354 min_delta -= 10000; 355 sched->sleep_measurement_overhead = min_delta; 356 357 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 358 } 359 360 static struct sched_atom * 361 get_new_event(struct task_desc *task, u64 timestamp) 362 { 363 struct sched_atom *event = zalloc(sizeof(*event)); 364 unsigned long idx = task->nr_events; 365 size_t size; 366 367 event->timestamp = timestamp; 368 event->nr = idx; 369 370 task->nr_events++; 371 size = sizeof(struct sched_atom *) * task->nr_events; 372 task->atoms = realloc(task->atoms, size); 373 BUG_ON(!task->atoms); 374 375 task->atoms[idx] = event; 376 377 return event; 378 } 379 380 static struct sched_atom *last_event(struct task_desc *task) 381 { 382 if (!task->nr_events) 383 return NULL; 384 385 return task->atoms[task->nr_events - 1]; 386 } 387 388 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 389 u64 timestamp, u64 duration) 390 { 391 struct sched_atom *event, *curr_event = last_event(task); 392 393 /* 394 * optimize an existing RUN event by merging this one 395 * to it: 396 */ 397 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 398 sched->nr_run_events_optimized++; 399 curr_event->duration += duration; 400 return; 401 } 402 403 event = get_new_event(task, timestamp); 404 405 event->type = SCHED_EVENT_RUN; 406 event->duration = duration; 407 408 sched->nr_run_events++; 409 } 410 411 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 412 u64 timestamp, struct task_desc *wakee) 413 { 414 struct sched_atom *event, *wakee_event; 415 416 event = get_new_event(task, timestamp); 417 event->type = SCHED_EVENT_WAKEUP; 418 event->wakee = wakee; 419 420 wakee_event = last_event(wakee); 421 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 422 sched->targetless_wakeups++; 423 return; 424 } 425 if (wakee_event->wait_sem) { 426 sched->multitarget_wakeups++; 427 return; 428 } 429 430 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 431 sem_init(wakee_event->wait_sem, 0, 0); 432 wakee_event->specific_wait = 1; 433 event->wait_sem = wakee_event->wait_sem; 434 435 sched->nr_wakeup_events++; 436 } 437 438 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 439 u64 timestamp, u64 task_state __maybe_unused) 440 { 441 struct sched_atom *event = get_new_event(task, timestamp); 442 443 event->type = SCHED_EVENT_SLEEP; 444 445 sched->nr_sleep_events++; 446 } 447 448 static struct task_desc *register_pid(struct perf_sched *sched, 449 unsigned long pid, const char *comm) 450 { 451 struct task_desc *task; 452 static int pid_max; 453 454 if (sched->pid_to_task == NULL) { 455 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) 456 pid_max = MAX_PID; 457 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); 458 } 459 if (pid >= (unsigned long)pid_max) { 460 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * 461 sizeof(struct task_desc *))) == NULL); 462 while (pid >= (unsigned long)pid_max) 463 sched->pid_to_task[pid_max++] = NULL; 464 } 465 466 task = sched->pid_to_task[pid]; 467 468 if (task) 469 return task; 470 471 task = zalloc(sizeof(*task)); 472 task->pid = pid; 473 task->nr = sched->nr_tasks; 474 strcpy(task->comm, comm); 475 /* 476 * every task starts in sleeping state - this gets ignored 477 * if there's no wakeup pointing to this sleep state: 478 */ 479 add_sched_event_sleep(sched, task, 0, 0); 480 481 sched->pid_to_task[pid] = task; 482 sched->nr_tasks++; 483 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); 484 BUG_ON(!sched->tasks); 485 sched->tasks[task->nr] = task; 486 487 if (verbose > 0) 488 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 489 490 return task; 491 } 492 493 494 static void print_task_traces(struct perf_sched *sched) 495 { 496 struct task_desc *task; 497 unsigned long i; 498 499 for (i = 0; i < sched->nr_tasks; i++) { 500 task = sched->tasks[i]; 501 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 502 task->nr, task->comm, task->pid, task->nr_events); 503 } 504 } 505 506 static void add_cross_task_wakeups(struct perf_sched *sched) 507 { 508 struct task_desc *task1, *task2; 509 unsigned long i, j; 510 511 for (i = 0; i < sched->nr_tasks; i++) { 512 task1 = sched->tasks[i]; 513 j = i + 1; 514 if (j == sched->nr_tasks) 515 j = 0; 516 task2 = sched->tasks[j]; 517 add_sched_event_wakeup(sched, task1, 0, task2); 518 } 519 } 520 521 static void perf_sched__process_event(struct perf_sched *sched, 522 struct sched_atom *atom) 523 { 524 int ret = 0; 525 526 switch (atom->type) { 527 case SCHED_EVENT_RUN: 528 burn_nsecs(sched, atom->duration); 529 break; 530 case SCHED_EVENT_SLEEP: 531 if (atom->wait_sem) 532 ret = sem_wait(atom->wait_sem); 533 BUG_ON(ret); 534 break; 535 case SCHED_EVENT_WAKEUP: 536 if (atom->wait_sem) 537 ret = sem_post(atom->wait_sem); 538 BUG_ON(ret); 539 break; 540 case SCHED_EVENT_MIGRATION: 541 break; 542 default: 543 BUG_ON(1); 544 } 545 } 546 547 static u64 get_cpu_usage_nsec_parent(void) 548 { 549 struct rusage ru; 550 u64 sum; 551 int err; 552 553 err = getrusage(RUSAGE_SELF, &ru); 554 BUG_ON(err); 555 556 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC; 557 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC; 558 559 return sum; 560 } 561 562 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) 563 { 564 struct perf_event_attr attr; 565 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; 566 int fd; 567 struct rlimit limit; 568 bool need_privilege = false; 569 570 memset(&attr, 0, sizeof(attr)); 571 572 attr.type = PERF_TYPE_SOFTWARE; 573 attr.config = PERF_COUNT_SW_TASK_CLOCK; 574 575 force_again: 576 fd = sys_perf_event_open(&attr, 0, -1, -1, 577 perf_event_open_cloexec_flag()); 578 579 if (fd < 0) { 580 if (errno == EMFILE) { 581 if (sched->force) { 582 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); 583 limit.rlim_cur += sched->nr_tasks - cur_task; 584 if (limit.rlim_cur > limit.rlim_max) { 585 limit.rlim_max = limit.rlim_cur; 586 need_privilege = true; 587 } 588 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { 589 if (need_privilege && errno == EPERM) 590 strcpy(info, "Need privilege\n"); 591 } else 592 goto force_again; 593 } else 594 strcpy(info, "Have a try with -f option\n"); 595 } 596 pr_err("Error: sys_perf_event_open() syscall returned " 597 "with %d (%s)\n%s", fd, 598 str_error_r(errno, sbuf, sizeof(sbuf)), info); 599 exit(EXIT_FAILURE); 600 } 601 return fd; 602 } 603 604 static u64 get_cpu_usage_nsec_self(int fd) 605 { 606 u64 runtime; 607 int ret; 608 609 ret = read(fd, &runtime, sizeof(runtime)); 610 BUG_ON(ret != sizeof(runtime)); 611 612 return runtime; 613 } 614 615 struct sched_thread_parms { 616 struct task_desc *task; 617 struct perf_sched *sched; 618 int fd; 619 }; 620 621 static void *thread_func(void *ctx) 622 { 623 struct sched_thread_parms *parms = ctx; 624 struct task_desc *this_task = parms->task; 625 struct perf_sched *sched = parms->sched; 626 u64 cpu_usage_0, cpu_usage_1; 627 unsigned long i, ret; 628 char comm2[22]; 629 int fd = parms->fd; 630 631 zfree(&parms); 632 633 sprintf(comm2, ":%s", this_task->comm); 634 prctl(PR_SET_NAME, comm2); 635 if (fd < 0) 636 return NULL; 637 638 while (!sched->thread_funcs_exit) { 639 ret = sem_post(&this_task->ready_for_work); 640 BUG_ON(ret); 641 mutex_lock(&sched->start_work_mutex); 642 mutex_unlock(&sched->start_work_mutex); 643 644 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 645 646 for (i = 0; i < this_task->nr_events; i++) { 647 this_task->curr_event = i; 648 perf_sched__process_event(sched, this_task->atoms[i]); 649 } 650 651 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 652 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 653 ret = sem_post(&this_task->work_done_sem); 654 BUG_ON(ret); 655 656 mutex_lock(&sched->work_done_wait_mutex); 657 mutex_unlock(&sched->work_done_wait_mutex); 658 } 659 return NULL; 660 } 661 662 static void create_tasks(struct perf_sched *sched) 663 EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex) 664 EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex) 665 { 666 struct task_desc *task; 667 pthread_attr_t attr; 668 unsigned long i; 669 int err; 670 671 err = pthread_attr_init(&attr); 672 BUG_ON(err); 673 err = pthread_attr_setstacksize(&attr, 674 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN)); 675 BUG_ON(err); 676 mutex_lock(&sched->start_work_mutex); 677 mutex_lock(&sched->work_done_wait_mutex); 678 for (i = 0; i < sched->nr_tasks; i++) { 679 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 680 BUG_ON(parms == NULL); 681 parms->task = task = sched->tasks[i]; 682 parms->sched = sched; 683 parms->fd = self_open_counters(sched, i); 684 sem_init(&task->sleep_sem, 0, 0); 685 sem_init(&task->ready_for_work, 0, 0); 686 sem_init(&task->work_done_sem, 0, 0); 687 task->curr_event = 0; 688 err = pthread_create(&task->thread, &attr, thread_func, parms); 689 BUG_ON(err); 690 } 691 } 692 693 static void destroy_tasks(struct perf_sched *sched) 694 UNLOCK_FUNCTION(sched->start_work_mutex) 695 UNLOCK_FUNCTION(sched->work_done_wait_mutex) 696 { 697 struct task_desc *task; 698 unsigned long i; 699 int err; 700 701 mutex_unlock(&sched->start_work_mutex); 702 mutex_unlock(&sched->work_done_wait_mutex); 703 /* Get rid of threads so they won't be upset by mutex destrunction */ 704 for (i = 0; i < sched->nr_tasks; i++) { 705 task = sched->tasks[i]; 706 err = pthread_join(task->thread, NULL); 707 BUG_ON(err); 708 sem_destroy(&task->sleep_sem); 709 sem_destroy(&task->ready_for_work); 710 sem_destroy(&task->work_done_sem); 711 } 712 } 713 714 static void wait_for_tasks(struct perf_sched *sched) 715 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) 716 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) 717 { 718 u64 cpu_usage_0, cpu_usage_1; 719 struct task_desc *task; 720 unsigned long i, ret; 721 722 sched->start_time = get_nsecs(); 723 sched->cpu_usage = 0; 724 mutex_unlock(&sched->work_done_wait_mutex); 725 726 for (i = 0; i < sched->nr_tasks; i++) { 727 task = sched->tasks[i]; 728 ret = sem_wait(&task->ready_for_work); 729 BUG_ON(ret); 730 sem_init(&task->ready_for_work, 0, 0); 731 } 732 mutex_lock(&sched->work_done_wait_mutex); 733 734 cpu_usage_0 = get_cpu_usage_nsec_parent(); 735 736 mutex_unlock(&sched->start_work_mutex); 737 738 for (i = 0; i < sched->nr_tasks; i++) { 739 task = sched->tasks[i]; 740 ret = sem_wait(&task->work_done_sem); 741 BUG_ON(ret); 742 sem_init(&task->work_done_sem, 0, 0); 743 sched->cpu_usage += task->cpu_usage; 744 task->cpu_usage = 0; 745 } 746 747 cpu_usage_1 = get_cpu_usage_nsec_parent(); 748 if (!sched->runavg_cpu_usage) 749 sched->runavg_cpu_usage = sched->cpu_usage; 750 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; 751 752 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 753 if (!sched->runavg_parent_cpu_usage) 754 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 755 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + 756 sched->parent_cpu_usage)/sched->replay_repeat; 757 758 mutex_lock(&sched->start_work_mutex); 759 760 for (i = 0; i < sched->nr_tasks; i++) { 761 task = sched->tasks[i]; 762 sem_init(&task->sleep_sem, 0, 0); 763 task->curr_event = 0; 764 } 765 } 766 767 static void run_one_test(struct perf_sched *sched) 768 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) 769 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) 770 { 771 u64 T0, T1, delta, avg_delta, fluct; 772 773 T0 = get_nsecs(); 774 wait_for_tasks(sched); 775 T1 = get_nsecs(); 776 777 delta = T1 - T0; 778 sched->sum_runtime += delta; 779 sched->nr_runs++; 780 781 avg_delta = sched->sum_runtime / sched->nr_runs; 782 if (delta < avg_delta) 783 fluct = avg_delta - delta; 784 else 785 fluct = delta - avg_delta; 786 sched->sum_fluct += fluct; 787 if (!sched->run_avg) 788 sched->run_avg = delta; 789 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; 790 791 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC); 792 793 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC); 794 795 printf("cpu: %0.2f / %0.2f", 796 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC); 797 798 #if 0 799 /* 800 * rusage statistics done by the parent, these are less 801 * accurate than the sched->sum_exec_runtime based statistics: 802 */ 803 printf(" [%0.2f / %0.2f]", 804 (double)sched->parent_cpu_usage / NSEC_PER_MSEC, 805 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC); 806 #endif 807 808 printf("\n"); 809 810 if (sched->nr_sleep_corrections) 811 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 812 sched->nr_sleep_corrections = 0; 813 } 814 815 static void test_calibrations(struct perf_sched *sched) 816 { 817 u64 T0, T1; 818 819 T0 = get_nsecs(); 820 burn_nsecs(sched, NSEC_PER_MSEC); 821 T1 = get_nsecs(); 822 823 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 824 825 T0 = get_nsecs(); 826 sleep_nsecs(NSEC_PER_MSEC); 827 T1 = get_nsecs(); 828 829 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 830 } 831 832 static int 833 replay_wakeup_event(struct perf_sched *sched, 834 struct evsel *evsel, struct perf_sample *sample, 835 struct machine *machine __maybe_unused) 836 { 837 const char *comm = evsel__strval(evsel, sample, "comm"); 838 const u32 pid = evsel__intval(evsel, sample, "pid"); 839 struct task_desc *waker, *wakee; 840 841 if (verbose > 0) { 842 printf("sched_wakeup event %p\n", evsel); 843 844 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 845 } 846 847 waker = register_pid(sched, sample->tid, "<unknown>"); 848 wakee = register_pid(sched, pid, comm); 849 850 add_sched_event_wakeup(sched, waker, sample->time, wakee); 851 return 0; 852 } 853 854 static int replay_switch_event(struct perf_sched *sched, 855 struct evsel *evsel, 856 struct perf_sample *sample, 857 struct machine *machine __maybe_unused) 858 { 859 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"), 860 *next_comm = evsel__strval(evsel, sample, "next_comm"); 861 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 862 next_pid = evsel__intval(evsel, sample, "next_pid"); 863 const u64 prev_state = evsel__intval(evsel, sample, "prev_state"); 864 struct task_desc *prev, __maybe_unused *next; 865 u64 timestamp0, timestamp = sample->time; 866 int cpu = sample->cpu; 867 s64 delta; 868 869 if (verbose > 0) 870 printf("sched_switch event %p\n", evsel); 871 872 if (cpu >= MAX_CPUS || cpu < 0) 873 return 0; 874 875 timestamp0 = sched->cpu_last_switched[cpu]; 876 if (timestamp0) 877 delta = timestamp - timestamp0; 878 else 879 delta = 0; 880 881 if (delta < 0) { 882 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 883 return -1; 884 } 885 886 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 887 prev_comm, prev_pid, next_comm, next_pid, delta); 888 889 prev = register_pid(sched, prev_pid, prev_comm); 890 next = register_pid(sched, next_pid, next_comm); 891 892 sched->cpu_last_switched[cpu] = timestamp; 893 894 add_sched_event_run(sched, prev, timestamp, delta); 895 add_sched_event_sleep(sched, prev, timestamp, prev_state); 896 897 return 0; 898 } 899 900 static int replay_fork_event(struct perf_sched *sched, 901 union perf_event *event, 902 struct machine *machine) 903 { 904 struct thread *child, *parent; 905 906 child = machine__findnew_thread(machine, event->fork.pid, 907 event->fork.tid); 908 parent = machine__findnew_thread(machine, event->fork.ppid, 909 event->fork.ptid); 910 911 if (child == NULL || parent == NULL) { 912 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 913 child, parent); 914 goto out_put; 915 } 916 917 if (verbose > 0) { 918 printf("fork event\n"); 919 printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent)); 920 printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child)); 921 } 922 923 register_pid(sched, thread__tid(parent), thread__comm_str(parent)); 924 register_pid(sched, thread__tid(child), thread__comm_str(child)); 925 out_put: 926 thread__put(child); 927 thread__put(parent); 928 return 0; 929 } 930 931 struct sort_dimension { 932 const char *name; 933 sort_fn_t cmp; 934 struct list_head list; 935 }; 936 937 /* 938 * handle runtime stats saved per thread 939 */ 940 static struct thread_runtime *thread__init_runtime(struct thread *thread) 941 { 942 struct thread_runtime *r; 943 944 r = zalloc(sizeof(struct thread_runtime)); 945 if (!r) 946 return NULL; 947 948 init_stats(&r->run_stats); 949 thread__set_priv(thread, r); 950 951 return r; 952 } 953 954 static struct thread_runtime *thread__get_runtime(struct thread *thread) 955 { 956 struct thread_runtime *tr; 957 958 tr = thread__priv(thread); 959 if (tr == NULL) { 960 tr = thread__init_runtime(thread); 961 if (tr == NULL) 962 pr_debug("Failed to malloc memory for runtime data.\n"); 963 } 964 965 return tr; 966 } 967 968 static int 969 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 970 { 971 struct sort_dimension *sort; 972 int ret = 0; 973 974 BUG_ON(list_empty(list)); 975 976 list_for_each_entry(sort, list, list) { 977 ret = sort->cmp(l, r); 978 if (ret) 979 return ret; 980 } 981 982 return ret; 983 } 984 985 static struct work_atoms * 986 thread_atoms_search(struct rb_root_cached *root, struct thread *thread, 987 struct list_head *sort_list) 988 { 989 struct rb_node *node = root->rb_root.rb_node; 990 struct work_atoms key = { .thread = thread }; 991 992 while (node) { 993 struct work_atoms *atoms; 994 int cmp; 995 996 atoms = container_of(node, struct work_atoms, node); 997 998 cmp = thread_lat_cmp(sort_list, &key, atoms); 999 if (cmp > 0) 1000 node = node->rb_left; 1001 else if (cmp < 0) 1002 node = node->rb_right; 1003 else { 1004 BUG_ON(thread != atoms->thread); 1005 return atoms; 1006 } 1007 } 1008 return NULL; 1009 } 1010 1011 static void 1012 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data, 1013 struct list_head *sort_list) 1014 { 1015 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 1016 bool leftmost = true; 1017 1018 while (*new) { 1019 struct work_atoms *this; 1020 int cmp; 1021 1022 this = container_of(*new, struct work_atoms, node); 1023 parent = *new; 1024 1025 cmp = thread_lat_cmp(sort_list, data, this); 1026 1027 if (cmp > 0) 1028 new = &((*new)->rb_left); 1029 else { 1030 new = &((*new)->rb_right); 1031 leftmost = false; 1032 } 1033 } 1034 1035 rb_link_node(&data->node, parent, new); 1036 rb_insert_color_cached(&data->node, root, leftmost); 1037 } 1038 1039 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 1040 { 1041 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 1042 if (!atoms) { 1043 pr_err("No memory at %s\n", __func__); 1044 return -1; 1045 } 1046 1047 atoms->thread = thread__get(thread); 1048 INIT_LIST_HEAD(&atoms->work_list); 1049 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 1050 return 0; 1051 } 1052 1053 static char sched_out_state(u64 prev_state) 1054 { 1055 const char *str = TASK_STATE_TO_CHAR_STR; 1056 1057 return str[prev_state]; 1058 } 1059 1060 static int 1061 add_sched_out_event(struct work_atoms *atoms, 1062 char run_state, 1063 u64 timestamp) 1064 { 1065 struct work_atom *atom = zalloc(sizeof(*atom)); 1066 if (!atom) { 1067 pr_err("Non memory at %s", __func__); 1068 return -1; 1069 } 1070 1071 atom->sched_out_time = timestamp; 1072 1073 if (run_state == 'R') { 1074 atom->state = THREAD_WAIT_CPU; 1075 atom->wake_up_time = atom->sched_out_time; 1076 } 1077 1078 list_add_tail(&atom->list, &atoms->work_list); 1079 return 0; 1080 } 1081 1082 static void 1083 add_runtime_event(struct work_atoms *atoms, u64 delta, 1084 u64 timestamp __maybe_unused) 1085 { 1086 struct work_atom *atom; 1087 1088 BUG_ON(list_empty(&atoms->work_list)); 1089 1090 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1091 1092 atom->runtime += delta; 1093 atoms->total_runtime += delta; 1094 } 1095 1096 static void 1097 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 1098 { 1099 struct work_atom *atom; 1100 u64 delta; 1101 1102 if (list_empty(&atoms->work_list)) 1103 return; 1104 1105 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1106 1107 if (atom->state != THREAD_WAIT_CPU) 1108 return; 1109 1110 if (timestamp < atom->wake_up_time) { 1111 atom->state = THREAD_IGNORE; 1112 return; 1113 } 1114 1115 atom->state = THREAD_SCHED_IN; 1116 atom->sched_in_time = timestamp; 1117 1118 delta = atom->sched_in_time - atom->wake_up_time; 1119 atoms->total_lat += delta; 1120 if (delta > atoms->max_lat) { 1121 atoms->max_lat = delta; 1122 atoms->max_lat_start = atom->wake_up_time; 1123 atoms->max_lat_end = timestamp; 1124 } 1125 atoms->nb_atoms++; 1126 } 1127 1128 static int latency_switch_event(struct perf_sched *sched, 1129 struct evsel *evsel, 1130 struct perf_sample *sample, 1131 struct machine *machine) 1132 { 1133 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 1134 next_pid = evsel__intval(evsel, sample, "next_pid"); 1135 const u64 prev_state = evsel__intval(evsel, sample, "prev_state"); 1136 struct work_atoms *out_events, *in_events; 1137 struct thread *sched_out, *sched_in; 1138 u64 timestamp0, timestamp = sample->time; 1139 int cpu = sample->cpu, err = -1; 1140 s64 delta; 1141 1142 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1143 1144 timestamp0 = sched->cpu_last_switched[cpu]; 1145 sched->cpu_last_switched[cpu] = timestamp; 1146 if (timestamp0) 1147 delta = timestamp - timestamp0; 1148 else 1149 delta = 0; 1150 1151 if (delta < 0) { 1152 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1153 return -1; 1154 } 1155 1156 sched_out = machine__findnew_thread(machine, -1, prev_pid); 1157 sched_in = machine__findnew_thread(machine, -1, next_pid); 1158 if (sched_out == NULL || sched_in == NULL) 1159 goto out_put; 1160 1161 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1162 if (!out_events) { 1163 if (thread_atoms_insert(sched, sched_out)) 1164 goto out_put; 1165 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1166 if (!out_events) { 1167 pr_err("out-event: Internal tree error"); 1168 goto out_put; 1169 } 1170 } 1171 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp)) 1172 return -1; 1173 1174 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1175 if (!in_events) { 1176 if (thread_atoms_insert(sched, sched_in)) 1177 goto out_put; 1178 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1179 if (!in_events) { 1180 pr_err("in-event: Internal tree error"); 1181 goto out_put; 1182 } 1183 /* 1184 * Take came in we have not heard about yet, 1185 * add in an initial atom in runnable state: 1186 */ 1187 if (add_sched_out_event(in_events, 'R', timestamp)) 1188 goto out_put; 1189 } 1190 add_sched_in_event(in_events, timestamp); 1191 err = 0; 1192 out_put: 1193 thread__put(sched_out); 1194 thread__put(sched_in); 1195 return err; 1196 } 1197 1198 static int latency_runtime_event(struct perf_sched *sched, 1199 struct evsel *evsel, 1200 struct perf_sample *sample, 1201 struct machine *machine) 1202 { 1203 const u32 pid = evsel__intval(evsel, sample, "pid"); 1204 const u64 runtime = evsel__intval(evsel, sample, "runtime"); 1205 struct thread *thread = machine__findnew_thread(machine, -1, pid); 1206 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1207 u64 timestamp = sample->time; 1208 int cpu = sample->cpu, err = -1; 1209 1210 if (thread == NULL) 1211 return -1; 1212 1213 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1214 if (!atoms) { 1215 if (thread_atoms_insert(sched, thread)) 1216 goto out_put; 1217 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1218 if (!atoms) { 1219 pr_err("in-event: Internal tree error"); 1220 goto out_put; 1221 } 1222 if (add_sched_out_event(atoms, 'R', timestamp)) 1223 goto out_put; 1224 } 1225 1226 add_runtime_event(atoms, runtime, timestamp); 1227 err = 0; 1228 out_put: 1229 thread__put(thread); 1230 return err; 1231 } 1232 1233 static int latency_wakeup_event(struct perf_sched *sched, 1234 struct evsel *evsel, 1235 struct perf_sample *sample, 1236 struct machine *machine) 1237 { 1238 const u32 pid = evsel__intval(evsel, sample, "pid"); 1239 struct work_atoms *atoms; 1240 struct work_atom *atom; 1241 struct thread *wakee; 1242 u64 timestamp = sample->time; 1243 int err = -1; 1244 1245 wakee = machine__findnew_thread(machine, -1, pid); 1246 if (wakee == NULL) 1247 return -1; 1248 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1249 if (!atoms) { 1250 if (thread_atoms_insert(sched, wakee)) 1251 goto out_put; 1252 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1253 if (!atoms) { 1254 pr_err("wakeup-event: Internal tree error"); 1255 goto out_put; 1256 } 1257 if (add_sched_out_event(atoms, 'S', timestamp)) 1258 goto out_put; 1259 } 1260 1261 BUG_ON(list_empty(&atoms->work_list)); 1262 1263 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1264 1265 /* 1266 * As we do not guarantee the wakeup event happens when 1267 * task is out of run queue, also may happen when task is 1268 * on run queue and wakeup only change ->state to TASK_RUNNING, 1269 * then we should not set the ->wake_up_time when wake up a 1270 * task which is on run queue. 1271 * 1272 * You WILL be missing events if you've recorded only 1273 * one CPU, or are only looking at only one, so don't 1274 * skip in this case. 1275 */ 1276 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1277 goto out_ok; 1278 1279 sched->nr_timestamps++; 1280 if (atom->sched_out_time > timestamp) { 1281 sched->nr_unordered_timestamps++; 1282 goto out_ok; 1283 } 1284 1285 atom->state = THREAD_WAIT_CPU; 1286 atom->wake_up_time = timestamp; 1287 out_ok: 1288 err = 0; 1289 out_put: 1290 thread__put(wakee); 1291 return err; 1292 } 1293 1294 static int latency_migrate_task_event(struct perf_sched *sched, 1295 struct evsel *evsel, 1296 struct perf_sample *sample, 1297 struct machine *machine) 1298 { 1299 const u32 pid = evsel__intval(evsel, sample, "pid"); 1300 u64 timestamp = sample->time; 1301 struct work_atoms *atoms; 1302 struct work_atom *atom; 1303 struct thread *migrant; 1304 int err = -1; 1305 1306 /* 1307 * Only need to worry about migration when profiling one CPU. 1308 */ 1309 if (sched->profile_cpu == -1) 1310 return 0; 1311 1312 migrant = machine__findnew_thread(machine, -1, pid); 1313 if (migrant == NULL) 1314 return -1; 1315 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1316 if (!atoms) { 1317 if (thread_atoms_insert(sched, migrant)) 1318 goto out_put; 1319 register_pid(sched, thread__tid(migrant), thread__comm_str(migrant)); 1320 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1321 if (!atoms) { 1322 pr_err("migration-event: Internal tree error"); 1323 goto out_put; 1324 } 1325 if (add_sched_out_event(atoms, 'R', timestamp)) 1326 goto out_put; 1327 } 1328 1329 BUG_ON(list_empty(&atoms->work_list)); 1330 1331 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1332 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1333 1334 sched->nr_timestamps++; 1335 1336 if (atom->sched_out_time > timestamp) 1337 sched->nr_unordered_timestamps++; 1338 err = 0; 1339 out_put: 1340 thread__put(migrant); 1341 return err; 1342 } 1343 1344 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1345 { 1346 int i; 1347 int ret; 1348 u64 avg; 1349 char max_lat_start[32], max_lat_end[32]; 1350 1351 if (!work_list->nb_atoms) 1352 return; 1353 /* 1354 * Ignore idle threads: 1355 */ 1356 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1357 return; 1358 1359 sched->all_runtime += work_list->total_runtime; 1360 sched->all_count += work_list->nb_atoms; 1361 1362 if (work_list->num_merged > 1) { 1363 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), 1364 work_list->num_merged); 1365 } else { 1366 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), 1367 thread__tid(work_list->thread)); 1368 } 1369 1370 for (i = 0; i < 24 - ret; i++) 1371 printf(" "); 1372 1373 avg = work_list->total_lat / work_list->nb_atoms; 1374 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start)); 1375 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end)); 1376 1377 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n", 1378 (double)work_list->total_runtime / NSEC_PER_MSEC, 1379 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC, 1380 (double)work_list->max_lat / NSEC_PER_MSEC, 1381 max_lat_start, max_lat_end); 1382 } 1383 1384 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1385 { 1386 pid_t l_tid, r_tid; 1387 1388 if (RC_CHK_EQUAL(l->thread, r->thread)) 1389 return 0; 1390 l_tid = thread__tid(l->thread); 1391 r_tid = thread__tid(r->thread); 1392 if (l_tid < r_tid) 1393 return -1; 1394 if (l_tid > r_tid) 1395 return 1; 1396 return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread)); 1397 } 1398 1399 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1400 { 1401 u64 avgl, avgr; 1402 1403 if (!l->nb_atoms) 1404 return -1; 1405 1406 if (!r->nb_atoms) 1407 return 1; 1408 1409 avgl = l->total_lat / l->nb_atoms; 1410 avgr = r->total_lat / r->nb_atoms; 1411 1412 if (avgl < avgr) 1413 return -1; 1414 if (avgl > avgr) 1415 return 1; 1416 1417 return 0; 1418 } 1419 1420 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1421 { 1422 if (l->max_lat < r->max_lat) 1423 return -1; 1424 if (l->max_lat > r->max_lat) 1425 return 1; 1426 1427 return 0; 1428 } 1429 1430 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1431 { 1432 if (l->nb_atoms < r->nb_atoms) 1433 return -1; 1434 if (l->nb_atoms > r->nb_atoms) 1435 return 1; 1436 1437 return 0; 1438 } 1439 1440 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1441 { 1442 if (l->total_runtime < r->total_runtime) 1443 return -1; 1444 if (l->total_runtime > r->total_runtime) 1445 return 1; 1446 1447 return 0; 1448 } 1449 1450 static int sort_dimension__add(const char *tok, struct list_head *list) 1451 { 1452 size_t i; 1453 static struct sort_dimension avg_sort_dimension = { 1454 .name = "avg", 1455 .cmp = avg_cmp, 1456 }; 1457 static struct sort_dimension max_sort_dimension = { 1458 .name = "max", 1459 .cmp = max_cmp, 1460 }; 1461 static struct sort_dimension pid_sort_dimension = { 1462 .name = "pid", 1463 .cmp = pid_cmp, 1464 }; 1465 static struct sort_dimension runtime_sort_dimension = { 1466 .name = "runtime", 1467 .cmp = runtime_cmp, 1468 }; 1469 static struct sort_dimension switch_sort_dimension = { 1470 .name = "switch", 1471 .cmp = switch_cmp, 1472 }; 1473 struct sort_dimension *available_sorts[] = { 1474 &pid_sort_dimension, 1475 &avg_sort_dimension, 1476 &max_sort_dimension, 1477 &switch_sort_dimension, 1478 &runtime_sort_dimension, 1479 }; 1480 1481 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1482 if (!strcmp(available_sorts[i]->name, tok)) { 1483 list_add_tail(&available_sorts[i]->list, list); 1484 1485 return 0; 1486 } 1487 } 1488 1489 return -1; 1490 } 1491 1492 static void perf_sched__sort_lat(struct perf_sched *sched) 1493 { 1494 struct rb_node *node; 1495 struct rb_root_cached *root = &sched->atom_root; 1496 again: 1497 for (;;) { 1498 struct work_atoms *data; 1499 node = rb_first_cached(root); 1500 if (!node) 1501 break; 1502 1503 rb_erase_cached(node, root); 1504 data = rb_entry(node, struct work_atoms, node); 1505 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1506 } 1507 if (root == &sched->atom_root) { 1508 root = &sched->merged_atom_root; 1509 goto again; 1510 } 1511 } 1512 1513 static int process_sched_wakeup_event(struct perf_tool *tool, 1514 struct evsel *evsel, 1515 struct perf_sample *sample, 1516 struct machine *machine) 1517 { 1518 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1519 1520 if (sched->tp_handler->wakeup_event) 1521 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1522 1523 return 0; 1524 } 1525 1526 static int process_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused, 1527 struct evsel *evsel __maybe_unused, 1528 struct perf_sample *sample __maybe_unused, 1529 struct machine *machine __maybe_unused) 1530 { 1531 return 0; 1532 } 1533 1534 union map_priv { 1535 void *ptr; 1536 bool color; 1537 }; 1538 1539 static bool thread__has_color(struct thread *thread) 1540 { 1541 union map_priv priv = { 1542 .ptr = thread__priv(thread), 1543 }; 1544 1545 return priv.color; 1546 } 1547 1548 static struct thread* 1549 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) 1550 { 1551 struct thread *thread = machine__findnew_thread(machine, pid, tid); 1552 union map_priv priv = { 1553 .color = false, 1554 }; 1555 1556 if (!sched->map.color_pids || !thread || thread__priv(thread)) 1557 return thread; 1558 1559 if (thread_map__has(sched->map.color_pids, tid)) 1560 priv.color = true; 1561 1562 thread__set_priv(thread, priv.ptr); 1563 return thread; 1564 } 1565 1566 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel, 1567 struct perf_sample *sample, struct machine *machine) 1568 { 1569 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 1570 struct thread *sched_in; 1571 struct thread_runtime *tr; 1572 int new_shortname; 1573 u64 timestamp0, timestamp = sample->time; 1574 s64 delta; 1575 int i; 1576 struct perf_cpu this_cpu = { 1577 .cpu = sample->cpu, 1578 }; 1579 int cpus_nr; 1580 bool new_cpu = false; 1581 const char *color = PERF_COLOR_NORMAL; 1582 char stimestamp[32]; 1583 1584 BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0); 1585 1586 if (this_cpu.cpu > sched->max_cpu.cpu) 1587 sched->max_cpu = this_cpu; 1588 1589 if (sched->map.comp) { 1590 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); 1591 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) { 1592 sched->map.comp_cpus[cpus_nr++] = this_cpu; 1593 new_cpu = true; 1594 } 1595 } else 1596 cpus_nr = sched->max_cpu.cpu; 1597 1598 timestamp0 = sched->cpu_last_switched[this_cpu.cpu]; 1599 sched->cpu_last_switched[this_cpu.cpu] = timestamp; 1600 if (timestamp0) 1601 delta = timestamp - timestamp0; 1602 else 1603 delta = 0; 1604 1605 if (delta < 0) { 1606 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1607 return -1; 1608 } 1609 1610 sched_in = map__findnew_thread(sched, machine, -1, next_pid); 1611 if (sched_in == NULL) 1612 return -1; 1613 1614 tr = thread__get_runtime(sched_in); 1615 if (tr == NULL) { 1616 thread__put(sched_in); 1617 return -1; 1618 } 1619 1620 sched->curr_thread[this_cpu.cpu] = thread__get(sched_in); 1621 1622 printf(" "); 1623 1624 new_shortname = 0; 1625 if (!tr->shortname[0]) { 1626 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1627 /* 1628 * Don't allocate a letter-number for swapper:0 1629 * as a shortname. Instead, we use '.' for it. 1630 */ 1631 tr->shortname[0] = '.'; 1632 tr->shortname[1] = ' '; 1633 } else { 1634 tr->shortname[0] = sched->next_shortname1; 1635 tr->shortname[1] = sched->next_shortname2; 1636 1637 if (sched->next_shortname1 < 'Z') { 1638 sched->next_shortname1++; 1639 } else { 1640 sched->next_shortname1 = 'A'; 1641 if (sched->next_shortname2 < '9') 1642 sched->next_shortname2++; 1643 else 1644 sched->next_shortname2 = '0'; 1645 } 1646 } 1647 new_shortname = 1; 1648 } 1649 1650 for (i = 0; i < cpus_nr; i++) { 1651 struct perf_cpu cpu = { 1652 .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i, 1653 }; 1654 struct thread *curr_thread = sched->curr_thread[cpu.cpu]; 1655 struct thread_runtime *curr_tr; 1656 const char *pid_color = color; 1657 const char *cpu_color = color; 1658 1659 if (curr_thread && thread__has_color(curr_thread)) 1660 pid_color = COLOR_PIDS; 1661 1662 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu)) 1663 continue; 1664 1665 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu)) 1666 cpu_color = COLOR_CPUS; 1667 1668 if (cpu.cpu != this_cpu.cpu) 1669 color_fprintf(stdout, color, " "); 1670 else 1671 color_fprintf(stdout, cpu_color, "*"); 1672 1673 if (sched->curr_thread[cpu.cpu]) { 1674 curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]); 1675 if (curr_tr == NULL) { 1676 thread__put(sched_in); 1677 return -1; 1678 } 1679 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname); 1680 } else 1681 color_fprintf(stdout, color, " "); 1682 } 1683 1684 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu)) 1685 goto out; 1686 1687 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1688 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1689 if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) { 1690 const char *pid_color = color; 1691 1692 if (thread__has_color(sched_in)) 1693 pid_color = COLOR_PIDS; 1694 1695 color_fprintf(stdout, pid_color, "%s => %s:%d", 1696 tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in)); 1697 tr->comm_changed = false; 1698 } 1699 1700 if (sched->map.comp && new_cpu) 1701 color_fprintf(stdout, color, " (CPU %d)", this_cpu); 1702 1703 out: 1704 color_fprintf(stdout, color, "\n"); 1705 1706 thread__put(sched_in); 1707 1708 return 0; 1709 } 1710 1711 static int process_sched_switch_event(struct perf_tool *tool, 1712 struct evsel *evsel, 1713 struct perf_sample *sample, 1714 struct machine *machine) 1715 { 1716 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1717 int this_cpu = sample->cpu, err = 0; 1718 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 1719 next_pid = evsel__intval(evsel, sample, "next_pid"); 1720 1721 if (sched->curr_pid[this_cpu] != (u32)-1) { 1722 /* 1723 * Are we trying to switch away a PID that is 1724 * not current? 1725 */ 1726 if (sched->curr_pid[this_cpu] != prev_pid) 1727 sched->nr_context_switch_bugs++; 1728 } 1729 1730 if (sched->tp_handler->switch_event) 1731 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1732 1733 sched->curr_pid[this_cpu] = next_pid; 1734 return err; 1735 } 1736 1737 static int process_sched_runtime_event(struct perf_tool *tool, 1738 struct evsel *evsel, 1739 struct perf_sample *sample, 1740 struct machine *machine) 1741 { 1742 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1743 1744 if (sched->tp_handler->runtime_event) 1745 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1746 1747 return 0; 1748 } 1749 1750 static int perf_sched__process_fork_event(struct perf_tool *tool, 1751 union perf_event *event, 1752 struct perf_sample *sample, 1753 struct machine *machine) 1754 { 1755 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1756 1757 /* run the fork event through the perf machinery */ 1758 perf_event__process_fork(tool, event, sample, machine); 1759 1760 /* and then run additional processing needed for this command */ 1761 if (sched->tp_handler->fork_event) 1762 return sched->tp_handler->fork_event(sched, event, machine); 1763 1764 return 0; 1765 } 1766 1767 static int process_sched_migrate_task_event(struct perf_tool *tool, 1768 struct evsel *evsel, 1769 struct perf_sample *sample, 1770 struct machine *machine) 1771 { 1772 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1773 1774 if (sched->tp_handler->migrate_task_event) 1775 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1776 1777 return 0; 1778 } 1779 1780 typedef int (*tracepoint_handler)(struct perf_tool *tool, 1781 struct evsel *evsel, 1782 struct perf_sample *sample, 1783 struct machine *machine); 1784 1785 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, 1786 union perf_event *event __maybe_unused, 1787 struct perf_sample *sample, 1788 struct evsel *evsel, 1789 struct machine *machine) 1790 { 1791 int err = 0; 1792 1793 if (evsel->handler != NULL) { 1794 tracepoint_handler f = evsel->handler; 1795 err = f(tool, evsel, sample, machine); 1796 } 1797 1798 return err; 1799 } 1800 1801 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused, 1802 union perf_event *event, 1803 struct perf_sample *sample, 1804 struct machine *machine) 1805 { 1806 struct thread *thread; 1807 struct thread_runtime *tr; 1808 int err; 1809 1810 err = perf_event__process_comm(tool, event, sample, machine); 1811 if (err) 1812 return err; 1813 1814 thread = machine__find_thread(machine, sample->pid, sample->tid); 1815 if (!thread) { 1816 pr_err("Internal error: can't find thread\n"); 1817 return -1; 1818 } 1819 1820 tr = thread__get_runtime(thread); 1821 if (tr == NULL) { 1822 thread__put(thread); 1823 return -1; 1824 } 1825 1826 tr->comm_changed = true; 1827 thread__put(thread); 1828 1829 return 0; 1830 } 1831 1832 static int perf_sched__read_events(struct perf_sched *sched) 1833 { 1834 struct evsel_str_handler handlers[] = { 1835 { "sched:sched_switch", process_sched_switch_event, }, 1836 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1837 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1838 { "sched:sched_waking", process_sched_wakeup_event, }, 1839 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1840 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1841 }; 1842 struct perf_session *session; 1843 struct perf_data data = { 1844 .path = input_name, 1845 .mode = PERF_DATA_MODE_READ, 1846 .force = sched->force, 1847 }; 1848 int rc = -1; 1849 1850 session = perf_session__new(&data, &sched->tool); 1851 if (IS_ERR(session)) { 1852 pr_debug("Error creating perf session"); 1853 return PTR_ERR(session); 1854 } 1855 1856 symbol__init(&session->header.env); 1857 1858 /* prefer sched_waking if it is captured */ 1859 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) 1860 handlers[2].handler = process_sched_wakeup_ignore; 1861 1862 if (perf_session__set_tracepoints_handlers(session, handlers)) 1863 goto out_delete; 1864 1865 if (perf_session__has_traces(session, "record -R")) { 1866 int err = perf_session__process_events(session); 1867 if (err) { 1868 pr_err("Failed to process events, error %d", err); 1869 goto out_delete; 1870 } 1871 1872 sched->nr_events = session->evlist->stats.nr_events[0]; 1873 sched->nr_lost_events = session->evlist->stats.total_lost; 1874 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; 1875 } 1876 1877 rc = 0; 1878 out_delete: 1879 perf_session__delete(session); 1880 return rc; 1881 } 1882 1883 /* 1884 * scheduling times are printed as msec.usec 1885 */ 1886 static inline void print_sched_time(unsigned long long nsecs, int width) 1887 { 1888 unsigned long msecs; 1889 unsigned long usecs; 1890 1891 msecs = nsecs / NSEC_PER_MSEC; 1892 nsecs -= msecs * NSEC_PER_MSEC; 1893 usecs = nsecs / NSEC_PER_USEC; 1894 printf("%*lu.%03lu ", width, msecs, usecs); 1895 } 1896 1897 /* 1898 * returns runtime data for event, allocating memory for it the 1899 * first time it is used. 1900 */ 1901 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel) 1902 { 1903 struct evsel_runtime *r = evsel->priv; 1904 1905 if (r == NULL) { 1906 r = zalloc(sizeof(struct evsel_runtime)); 1907 evsel->priv = r; 1908 } 1909 1910 return r; 1911 } 1912 1913 /* 1914 * save last time event was seen per cpu 1915 */ 1916 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu) 1917 { 1918 struct evsel_runtime *r = evsel__get_runtime(evsel); 1919 1920 if (r == NULL) 1921 return; 1922 1923 if ((cpu >= r->ncpu) || (r->last_time == NULL)) { 1924 int i, n = __roundup_pow_of_two(cpu+1); 1925 void *p = r->last_time; 1926 1927 p = realloc(r->last_time, n * sizeof(u64)); 1928 if (!p) 1929 return; 1930 1931 r->last_time = p; 1932 for (i = r->ncpu; i < n; ++i) 1933 r->last_time[i] = (u64) 0; 1934 1935 r->ncpu = n; 1936 } 1937 1938 r->last_time[cpu] = timestamp; 1939 } 1940 1941 /* returns last time this event was seen on the given cpu */ 1942 static u64 evsel__get_time(struct evsel *evsel, u32 cpu) 1943 { 1944 struct evsel_runtime *r = evsel__get_runtime(evsel); 1945 1946 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu)) 1947 return 0; 1948 1949 return r->last_time[cpu]; 1950 } 1951 1952 static int comm_width = 30; 1953 1954 static char *timehist_get_commstr(struct thread *thread) 1955 { 1956 static char str[32]; 1957 const char *comm = thread__comm_str(thread); 1958 pid_t tid = thread__tid(thread); 1959 pid_t pid = thread__pid(thread); 1960 int n; 1961 1962 if (pid == 0) 1963 n = scnprintf(str, sizeof(str), "%s", comm); 1964 1965 else if (tid != pid) 1966 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid); 1967 1968 else 1969 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid); 1970 1971 if (n > comm_width) 1972 comm_width = n; 1973 1974 return str; 1975 } 1976 1977 static void timehist_header(struct perf_sched *sched) 1978 { 1979 u32 ncpus = sched->max_cpu.cpu + 1; 1980 u32 i, j; 1981 1982 printf("%15s %6s ", "time", "cpu"); 1983 1984 if (sched->show_cpu_visual) { 1985 printf(" "); 1986 for (i = 0, j = 0; i < ncpus; ++i) { 1987 printf("%x", j++); 1988 if (j > 15) 1989 j = 0; 1990 } 1991 printf(" "); 1992 } 1993 1994 printf(" %-*s %9s %9s %9s", comm_width, 1995 "task name", "wait time", "sch delay", "run time"); 1996 1997 if (sched->show_state) 1998 printf(" %s", "state"); 1999 2000 printf("\n"); 2001 2002 /* 2003 * units row 2004 */ 2005 printf("%15s %-6s ", "", ""); 2006 2007 if (sched->show_cpu_visual) 2008 printf(" %*s ", ncpus, ""); 2009 2010 printf(" %-*s %9s %9s %9s", comm_width, 2011 "[tid/pid]", "(msec)", "(msec)", "(msec)"); 2012 2013 if (sched->show_state) 2014 printf(" %5s", ""); 2015 2016 printf("\n"); 2017 2018 /* 2019 * separator 2020 */ 2021 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line); 2022 2023 if (sched->show_cpu_visual) 2024 printf(" %.*s ", ncpus, graph_dotted_line); 2025 2026 printf(" %.*s %.9s %.9s %.9s", comm_width, 2027 graph_dotted_line, graph_dotted_line, graph_dotted_line, 2028 graph_dotted_line); 2029 2030 if (sched->show_state) 2031 printf(" %.5s", graph_dotted_line); 2032 2033 printf("\n"); 2034 } 2035 2036 static char task_state_char(struct thread *thread, int state) 2037 { 2038 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR; 2039 unsigned bit = state ? ffs(state) : 0; 2040 2041 /* 'I' for idle */ 2042 if (thread__tid(thread) == 0) 2043 return 'I'; 2044 2045 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?'; 2046 } 2047 2048 static void timehist_print_sample(struct perf_sched *sched, 2049 struct evsel *evsel, 2050 struct perf_sample *sample, 2051 struct addr_location *al, 2052 struct thread *thread, 2053 u64 t, int state) 2054 { 2055 struct thread_runtime *tr = thread__priv(thread); 2056 const char *next_comm = evsel__strval(evsel, sample, "next_comm"); 2057 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 2058 u32 max_cpus = sched->max_cpu.cpu + 1; 2059 char tstr[64]; 2060 char nstr[30]; 2061 u64 wait_time; 2062 2063 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap)) 2064 return; 2065 2066 timestamp__scnprintf_usec(t, tstr, sizeof(tstr)); 2067 printf("%15s [%04d] ", tstr, sample->cpu); 2068 2069 if (sched->show_cpu_visual) { 2070 u32 i; 2071 char c; 2072 2073 printf(" "); 2074 for (i = 0; i < max_cpus; ++i) { 2075 /* flag idle times with 'i'; others are sched events */ 2076 if (i == sample->cpu) 2077 c = (thread__tid(thread) == 0) ? 'i' : 's'; 2078 else 2079 c = ' '; 2080 printf("%c", c); 2081 } 2082 printf(" "); 2083 } 2084 2085 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2086 2087 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt; 2088 print_sched_time(wait_time, 6); 2089 2090 print_sched_time(tr->dt_delay, 6); 2091 print_sched_time(tr->dt_run, 6); 2092 2093 if (sched->show_state) 2094 printf(" %5c ", task_state_char(thread, state)); 2095 2096 if (sched->show_next) { 2097 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid); 2098 printf(" %-*s", comm_width, nstr); 2099 } 2100 2101 if (sched->show_wakeups && !sched->show_next) 2102 printf(" %-*s", comm_width, ""); 2103 2104 if (thread__tid(thread) == 0) 2105 goto out; 2106 2107 if (sched->show_callchain) 2108 printf(" "); 2109 2110 sample__fprintf_sym(sample, al, 0, 2111 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE | 2112 EVSEL__PRINT_CALLCHAIN_ARROW | 2113 EVSEL__PRINT_SKIP_IGNORED, 2114 get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout); 2115 2116 out: 2117 printf("\n"); 2118 } 2119 2120 /* 2121 * Explanation of delta-time stats: 2122 * 2123 * t = time of current schedule out event 2124 * tprev = time of previous sched out event 2125 * also time of schedule-in event for current task 2126 * last_time = time of last sched change event for current task 2127 * (i.e, time process was last scheduled out) 2128 * ready_to_run = time of wakeup for current task 2129 * 2130 * -----|------------|------------|------------|------ 2131 * last ready tprev t 2132 * time to run 2133 * 2134 * |-------- dt_wait --------| 2135 * |- dt_delay -|-- dt_run --| 2136 * 2137 * dt_run = run time of current task 2138 * dt_wait = time between last schedule out event for task and tprev 2139 * represents time spent off the cpu 2140 * dt_delay = time between wakeup and schedule-in of task 2141 */ 2142 2143 static void timehist_update_runtime_stats(struct thread_runtime *r, 2144 u64 t, u64 tprev) 2145 { 2146 r->dt_delay = 0; 2147 r->dt_sleep = 0; 2148 r->dt_iowait = 0; 2149 r->dt_preempt = 0; 2150 r->dt_run = 0; 2151 2152 if (tprev) { 2153 r->dt_run = t - tprev; 2154 if (r->ready_to_run) { 2155 if (r->ready_to_run > tprev) 2156 pr_debug("time travel: wakeup time for task > previous sched_switch event\n"); 2157 else 2158 r->dt_delay = tprev - r->ready_to_run; 2159 } 2160 2161 if (r->last_time > tprev) 2162 pr_debug("time travel: last sched out time for task > previous sched_switch event\n"); 2163 else if (r->last_time) { 2164 u64 dt_wait = tprev - r->last_time; 2165 2166 if (r->last_state == TASK_RUNNING) 2167 r->dt_preempt = dt_wait; 2168 else if (r->last_state == TASK_UNINTERRUPTIBLE) 2169 r->dt_iowait = dt_wait; 2170 else 2171 r->dt_sleep = dt_wait; 2172 } 2173 } 2174 2175 update_stats(&r->run_stats, r->dt_run); 2176 2177 r->total_run_time += r->dt_run; 2178 r->total_delay_time += r->dt_delay; 2179 r->total_sleep_time += r->dt_sleep; 2180 r->total_iowait_time += r->dt_iowait; 2181 r->total_preempt_time += r->dt_preempt; 2182 } 2183 2184 static bool is_idle_sample(struct perf_sample *sample, 2185 struct evsel *evsel) 2186 { 2187 /* pid 0 == swapper == idle task */ 2188 if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0) 2189 return evsel__intval(evsel, sample, "prev_pid") == 0; 2190 2191 return sample->pid == 0; 2192 } 2193 2194 static void save_task_callchain(struct perf_sched *sched, 2195 struct perf_sample *sample, 2196 struct evsel *evsel, 2197 struct machine *machine) 2198 { 2199 struct callchain_cursor *cursor; 2200 struct thread *thread; 2201 2202 /* want main thread for process - has maps */ 2203 thread = machine__findnew_thread(machine, sample->pid, sample->pid); 2204 if (thread == NULL) { 2205 pr_debug("Failed to get thread for pid %d.\n", sample->pid); 2206 return; 2207 } 2208 2209 if (!sched->show_callchain || sample->callchain == NULL) 2210 return; 2211 2212 cursor = get_tls_callchain_cursor(); 2213 2214 if (thread__resolve_callchain(thread, cursor, evsel, sample, 2215 NULL, NULL, sched->max_stack + 2) != 0) { 2216 if (verbose > 0) 2217 pr_err("Failed to resolve callchain. Skipping\n"); 2218 2219 return; 2220 } 2221 2222 callchain_cursor_commit(cursor); 2223 2224 while (true) { 2225 struct callchain_cursor_node *node; 2226 struct symbol *sym; 2227 2228 node = callchain_cursor_current(cursor); 2229 if (node == NULL) 2230 break; 2231 2232 sym = node->ms.sym; 2233 if (sym) { 2234 if (!strcmp(sym->name, "schedule") || 2235 !strcmp(sym->name, "__schedule") || 2236 !strcmp(sym->name, "preempt_schedule")) 2237 sym->ignore = 1; 2238 } 2239 2240 callchain_cursor_advance(cursor); 2241 } 2242 } 2243 2244 static int init_idle_thread(struct thread *thread) 2245 { 2246 struct idle_thread_runtime *itr; 2247 2248 thread__set_comm(thread, idle_comm, 0); 2249 2250 itr = zalloc(sizeof(*itr)); 2251 if (itr == NULL) 2252 return -ENOMEM; 2253 2254 init_stats(&itr->tr.run_stats); 2255 callchain_init(&itr->callchain); 2256 callchain_cursor_reset(&itr->cursor); 2257 thread__set_priv(thread, itr); 2258 2259 return 0; 2260 } 2261 2262 /* 2263 * Track idle stats per cpu by maintaining a local thread 2264 * struct for the idle task on each cpu. 2265 */ 2266 static int init_idle_threads(int ncpu) 2267 { 2268 int i, ret; 2269 2270 idle_threads = zalloc(ncpu * sizeof(struct thread *)); 2271 if (!idle_threads) 2272 return -ENOMEM; 2273 2274 idle_max_cpu = ncpu; 2275 2276 /* allocate the actual thread struct if needed */ 2277 for (i = 0; i < ncpu; ++i) { 2278 idle_threads[i] = thread__new(0, 0); 2279 if (idle_threads[i] == NULL) 2280 return -ENOMEM; 2281 2282 ret = init_idle_thread(idle_threads[i]); 2283 if (ret < 0) 2284 return ret; 2285 } 2286 2287 return 0; 2288 } 2289 2290 static void free_idle_threads(void) 2291 { 2292 int i; 2293 2294 if (idle_threads == NULL) 2295 return; 2296 2297 for (i = 0; i < idle_max_cpu; ++i) { 2298 if ((idle_threads[i])) 2299 thread__delete(idle_threads[i]); 2300 } 2301 2302 free(idle_threads); 2303 } 2304 2305 static struct thread *get_idle_thread(int cpu) 2306 { 2307 /* 2308 * expand/allocate array of pointers to local thread 2309 * structs if needed 2310 */ 2311 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) { 2312 int i, j = __roundup_pow_of_two(cpu+1); 2313 void *p; 2314 2315 p = realloc(idle_threads, j * sizeof(struct thread *)); 2316 if (!p) 2317 return NULL; 2318 2319 idle_threads = (struct thread **) p; 2320 for (i = idle_max_cpu; i < j; ++i) 2321 idle_threads[i] = NULL; 2322 2323 idle_max_cpu = j; 2324 } 2325 2326 /* allocate a new thread struct if needed */ 2327 if (idle_threads[cpu] == NULL) { 2328 idle_threads[cpu] = thread__new(0, 0); 2329 2330 if (idle_threads[cpu]) { 2331 if (init_idle_thread(idle_threads[cpu]) < 0) 2332 return NULL; 2333 } 2334 } 2335 2336 return idle_threads[cpu]; 2337 } 2338 2339 static void save_idle_callchain(struct perf_sched *sched, 2340 struct idle_thread_runtime *itr, 2341 struct perf_sample *sample) 2342 { 2343 struct callchain_cursor *cursor; 2344 2345 if (!sched->show_callchain || sample->callchain == NULL) 2346 return; 2347 2348 cursor = get_tls_callchain_cursor(); 2349 if (cursor == NULL) 2350 return; 2351 2352 callchain_cursor__copy(&itr->cursor, cursor); 2353 } 2354 2355 static struct thread *timehist_get_thread(struct perf_sched *sched, 2356 struct perf_sample *sample, 2357 struct machine *machine, 2358 struct evsel *evsel) 2359 { 2360 struct thread *thread; 2361 2362 if (is_idle_sample(sample, evsel)) { 2363 thread = get_idle_thread(sample->cpu); 2364 if (thread == NULL) 2365 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2366 2367 } else { 2368 /* there were samples with tid 0 but non-zero pid */ 2369 thread = machine__findnew_thread(machine, sample->pid, 2370 sample->tid ?: sample->pid); 2371 if (thread == NULL) { 2372 pr_debug("Failed to get thread for tid %d. skipping sample.\n", 2373 sample->tid); 2374 } 2375 2376 save_task_callchain(sched, sample, evsel, machine); 2377 if (sched->idle_hist) { 2378 struct thread *idle; 2379 struct idle_thread_runtime *itr; 2380 2381 idle = get_idle_thread(sample->cpu); 2382 if (idle == NULL) { 2383 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2384 return NULL; 2385 } 2386 2387 itr = thread__priv(idle); 2388 if (itr == NULL) 2389 return NULL; 2390 2391 itr->last_thread = thread; 2392 2393 /* copy task callchain when entering to idle */ 2394 if (evsel__intval(evsel, sample, "next_pid") == 0) 2395 save_idle_callchain(sched, itr, sample); 2396 } 2397 } 2398 2399 return thread; 2400 } 2401 2402 static bool timehist_skip_sample(struct perf_sched *sched, 2403 struct thread *thread, 2404 struct evsel *evsel, 2405 struct perf_sample *sample) 2406 { 2407 bool rc = false; 2408 2409 if (thread__is_filtered(thread)) { 2410 rc = true; 2411 sched->skipped_samples++; 2412 } 2413 2414 if (sched->idle_hist) { 2415 if (strcmp(evsel__name(evsel), "sched:sched_switch")) 2416 rc = true; 2417 else if (evsel__intval(evsel, sample, "prev_pid") != 0 && 2418 evsel__intval(evsel, sample, "next_pid") != 0) 2419 rc = true; 2420 } 2421 2422 return rc; 2423 } 2424 2425 static void timehist_print_wakeup_event(struct perf_sched *sched, 2426 struct evsel *evsel, 2427 struct perf_sample *sample, 2428 struct machine *machine, 2429 struct thread *awakened) 2430 { 2431 struct thread *thread; 2432 char tstr[64]; 2433 2434 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2435 if (thread == NULL) 2436 return; 2437 2438 /* show wakeup unless both awakee and awaker are filtered */ 2439 if (timehist_skip_sample(sched, thread, evsel, sample) && 2440 timehist_skip_sample(sched, awakened, evsel, sample)) { 2441 return; 2442 } 2443 2444 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2445 printf("%15s [%04d] ", tstr, sample->cpu); 2446 if (sched->show_cpu_visual) 2447 printf(" %*s ", sched->max_cpu.cpu + 1, ""); 2448 2449 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2450 2451 /* dt spacer */ 2452 printf(" %9s %9s %9s ", "", "", ""); 2453 2454 printf("awakened: %s", timehist_get_commstr(awakened)); 2455 2456 printf("\n"); 2457 } 2458 2459 static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused, 2460 union perf_event *event __maybe_unused, 2461 struct evsel *evsel __maybe_unused, 2462 struct perf_sample *sample __maybe_unused, 2463 struct machine *machine __maybe_unused) 2464 { 2465 return 0; 2466 } 2467 2468 static int timehist_sched_wakeup_event(struct perf_tool *tool, 2469 union perf_event *event __maybe_unused, 2470 struct evsel *evsel, 2471 struct perf_sample *sample, 2472 struct machine *machine) 2473 { 2474 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2475 struct thread *thread; 2476 struct thread_runtime *tr = NULL; 2477 /* want pid of awakened task not pid in sample */ 2478 const u32 pid = evsel__intval(evsel, sample, "pid"); 2479 2480 thread = machine__findnew_thread(machine, 0, pid); 2481 if (thread == NULL) 2482 return -1; 2483 2484 tr = thread__get_runtime(thread); 2485 if (tr == NULL) 2486 return -1; 2487 2488 if (tr->ready_to_run == 0) 2489 tr->ready_to_run = sample->time; 2490 2491 /* show wakeups if requested */ 2492 if (sched->show_wakeups && 2493 !perf_time__skip_sample(&sched->ptime, sample->time)) 2494 timehist_print_wakeup_event(sched, evsel, sample, machine, thread); 2495 2496 return 0; 2497 } 2498 2499 static void timehist_print_migration_event(struct perf_sched *sched, 2500 struct evsel *evsel, 2501 struct perf_sample *sample, 2502 struct machine *machine, 2503 struct thread *migrated) 2504 { 2505 struct thread *thread; 2506 char tstr[64]; 2507 u32 max_cpus; 2508 u32 ocpu, dcpu; 2509 2510 if (sched->summary_only) 2511 return; 2512 2513 max_cpus = sched->max_cpu.cpu + 1; 2514 ocpu = evsel__intval(evsel, sample, "orig_cpu"); 2515 dcpu = evsel__intval(evsel, sample, "dest_cpu"); 2516 2517 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2518 if (thread == NULL) 2519 return; 2520 2521 if (timehist_skip_sample(sched, thread, evsel, sample) && 2522 timehist_skip_sample(sched, migrated, evsel, sample)) { 2523 return; 2524 } 2525 2526 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2527 printf("%15s [%04d] ", tstr, sample->cpu); 2528 2529 if (sched->show_cpu_visual) { 2530 u32 i; 2531 char c; 2532 2533 printf(" "); 2534 for (i = 0; i < max_cpus; ++i) { 2535 c = (i == sample->cpu) ? 'm' : ' '; 2536 printf("%c", c); 2537 } 2538 printf(" "); 2539 } 2540 2541 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2542 2543 /* dt spacer */ 2544 printf(" %9s %9s %9s ", "", "", ""); 2545 2546 printf("migrated: %s", timehist_get_commstr(migrated)); 2547 printf(" cpu %d => %d", ocpu, dcpu); 2548 2549 printf("\n"); 2550 } 2551 2552 static int timehist_migrate_task_event(struct perf_tool *tool, 2553 union perf_event *event __maybe_unused, 2554 struct evsel *evsel, 2555 struct perf_sample *sample, 2556 struct machine *machine) 2557 { 2558 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2559 struct thread *thread; 2560 struct thread_runtime *tr = NULL; 2561 /* want pid of migrated task not pid in sample */ 2562 const u32 pid = evsel__intval(evsel, sample, "pid"); 2563 2564 thread = machine__findnew_thread(machine, 0, pid); 2565 if (thread == NULL) 2566 return -1; 2567 2568 tr = thread__get_runtime(thread); 2569 if (tr == NULL) 2570 return -1; 2571 2572 tr->migrations++; 2573 2574 /* show migrations if requested */ 2575 timehist_print_migration_event(sched, evsel, sample, machine, thread); 2576 2577 return 0; 2578 } 2579 2580 static int timehist_sched_change_event(struct perf_tool *tool, 2581 union perf_event *event, 2582 struct evsel *evsel, 2583 struct perf_sample *sample, 2584 struct machine *machine) 2585 { 2586 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2587 struct perf_time_interval *ptime = &sched->ptime; 2588 struct addr_location al; 2589 struct thread *thread; 2590 struct thread_runtime *tr = NULL; 2591 u64 tprev, t = sample->time; 2592 int rc = 0; 2593 int state = evsel__intval(evsel, sample, "prev_state"); 2594 2595 addr_location__init(&al); 2596 if (machine__resolve(machine, &al, sample) < 0) { 2597 pr_err("problem processing %d event. skipping it\n", 2598 event->header.type); 2599 rc = -1; 2600 goto out; 2601 } 2602 2603 thread = timehist_get_thread(sched, sample, machine, evsel); 2604 if (thread == NULL) { 2605 rc = -1; 2606 goto out; 2607 } 2608 2609 if (timehist_skip_sample(sched, thread, evsel, sample)) 2610 goto out; 2611 2612 tr = thread__get_runtime(thread); 2613 if (tr == NULL) { 2614 rc = -1; 2615 goto out; 2616 } 2617 2618 tprev = evsel__get_time(evsel, sample->cpu); 2619 2620 /* 2621 * If start time given: 2622 * - sample time is under window user cares about - skip sample 2623 * - tprev is under window user cares about - reset to start of window 2624 */ 2625 if (ptime->start && ptime->start > t) 2626 goto out; 2627 2628 if (tprev && ptime->start > tprev) 2629 tprev = ptime->start; 2630 2631 /* 2632 * If end time given: 2633 * - previous sched event is out of window - we are done 2634 * - sample time is beyond window user cares about - reset it 2635 * to close out stats for time window interest 2636 */ 2637 if (ptime->end) { 2638 if (tprev > ptime->end) 2639 goto out; 2640 2641 if (t > ptime->end) 2642 t = ptime->end; 2643 } 2644 2645 if (!sched->idle_hist || thread__tid(thread) == 0) { 2646 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap)) 2647 timehist_update_runtime_stats(tr, t, tprev); 2648 2649 if (sched->idle_hist) { 2650 struct idle_thread_runtime *itr = (void *)tr; 2651 struct thread_runtime *last_tr; 2652 2653 BUG_ON(thread__tid(thread) != 0); 2654 2655 if (itr->last_thread == NULL) 2656 goto out; 2657 2658 /* add current idle time as last thread's runtime */ 2659 last_tr = thread__get_runtime(itr->last_thread); 2660 if (last_tr == NULL) 2661 goto out; 2662 2663 timehist_update_runtime_stats(last_tr, t, tprev); 2664 /* 2665 * remove delta time of last thread as it's not updated 2666 * and otherwise it will show an invalid value next 2667 * time. we only care total run time and run stat. 2668 */ 2669 last_tr->dt_run = 0; 2670 last_tr->dt_delay = 0; 2671 last_tr->dt_sleep = 0; 2672 last_tr->dt_iowait = 0; 2673 last_tr->dt_preempt = 0; 2674 2675 if (itr->cursor.nr) 2676 callchain_append(&itr->callchain, &itr->cursor, t - tprev); 2677 2678 itr->last_thread = NULL; 2679 } 2680 } 2681 2682 if (!sched->summary_only) 2683 timehist_print_sample(sched, evsel, sample, &al, thread, t, state); 2684 2685 out: 2686 if (sched->hist_time.start == 0 && t >= ptime->start) 2687 sched->hist_time.start = t; 2688 if (ptime->end == 0 || t <= ptime->end) 2689 sched->hist_time.end = t; 2690 2691 if (tr) { 2692 /* time of this sched_switch event becomes last time task seen */ 2693 tr->last_time = sample->time; 2694 2695 /* last state is used to determine where to account wait time */ 2696 tr->last_state = state; 2697 2698 /* sched out event for task so reset ready to run time */ 2699 tr->ready_to_run = 0; 2700 } 2701 2702 evsel__save_time(evsel, sample->time, sample->cpu); 2703 2704 addr_location__exit(&al); 2705 return rc; 2706 } 2707 2708 static int timehist_sched_switch_event(struct perf_tool *tool, 2709 union perf_event *event, 2710 struct evsel *evsel, 2711 struct perf_sample *sample, 2712 struct machine *machine __maybe_unused) 2713 { 2714 return timehist_sched_change_event(tool, event, evsel, sample, machine); 2715 } 2716 2717 static int process_lost(struct perf_tool *tool __maybe_unused, 2718 union perf_event *event, 2719 struct perf_sample *sample, 2720 struct machine *machine __maybe_unused) 2721 { 2722 char tstr[64]; 2723 2724 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2725 printf("%15s ", tstr); 2726 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu); 2727 2728 return 0; 2729 } 2730 2731 2732 static void print_thread_runtime(struct thread *t, 2733 struct thread_runtime *r) 2734 { 2735 double mean = avg_stats(&r->run_stats); 2736 float stddev; 2737 2738 printf("%*s %5d %9" PRIu64 " ", 2739 comm_width, timehist_get_commstr(t), thread__ppid(t), 2740 (u64) r->run_stats.n); 2741 2742 print_sched_time(r->total_run_time, 8); 2743 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean); 2744 print_sched_time(r->run_stats.min, 6); 2745 printf(" "); 2746 print_sched_time((u64) mean, 6); 2747 printf(" "); 2748 print_sched_time(r->run_stats.max, 6); 2749 printf(" "); 2750 printf("%5.2f", stddev); 2751 printf(" %5" PRIu64, r->migrations); 2752 printf("\n"); 2753 } 2754 2755 static void print_thread_waittime(struct thread *t, 2756 struct thread_runtime *r) 2757 { 2758 printf("%*s %5d %9" PRIu64 " ", 2759 comm_width, timehist_get_commstr(t), thread__ppid(t), 2760 (u64) r->run_stats.n); 2761 2762 print_sched_time(r->total_run_time, 8); 2763 print_sched_time(r->total_sleep_time, 6); 2764 printf(" "); 2765 print_sched_time(r->total_iowait_time, 6); 2766 printf(" "); 2767 print_sched_time(r->total_preempt_time, 6); 2768 printf(" "); 2769 print_sched_time(r->total_delay_time, 6); 2770 printf("\n"); 2771 } 2772 2773 struct total_run_stats { 2774 struct perf_sched *sched; 2775 u64 sched_count; 2776 u64 task_count; 2777 u64 total_run_time; 2778 }; 2779 2780 static int show_thread_runtime(struct thread *t, void *priv) 2781 { 2782 struct total_run_stats *stats = priv; 2783 struct thread_runtime *r; 2784 2785 if (thread__is_filtered(t)) 2786 return 0; 2787 2788 r = thread__priv(t); 2789 if (r && r->run_stats.n) { 2790 stats->task_count++; 2791 stats->sched_count += r->run_stats.n; 2792 stats->total_run_time += r->total_run_time; 2793 2794 if (stats->sched->show_state) 2795 print_thread_waittime(t, r); 2796 else 2797 print_thread_runtime(t, r); 2798 } 2799 2800 return 0; 2801 } 2802 2803 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node) 2804 { 2805 const char *sep = " <- "; 2806 struct callchain_list *chain; 2807 size_t ret = 0; 2808 char bf[1024]; 2809 bool first; 2810 2811 if (node == NULL) 2812 return 0; 2813 2814 ret = callchain__fprintf_folded(fp, node->parent); 2815 first = (ret == 0); 2816 2817 list_for_each_entry(chain, &node->val, list) { 2818 if (chain->ip >= PERF_CONTEXT_MAX) 2819 continue; 2820 if (chain->ms.sym && chain->ms.sym->ignore) 2821 continue; 2822 ret += fprintf(fp, "%s%s", first ? "" : sep, 2823 callchain_list__sym_name(chain, bf, sizeof(bf), 2824 false)); 2825 first = false; 2826 } 2827 2828 return ret; 2829 } 2830 2831 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root) 2832 { 2833 size_t ret = 0; 2834 FILE *fp = stdout; 2835 struct callchain_node *chain; 2836 struct rb_node *rb_node = rb_first_cached(root); 2837 2838 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains"); 2839 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line, 2840 graph_dotted_line); 2841 2842 while (rb_node) { 2843 chain = rb_entry(rb_node, struct callchain_node, rb_node); 2844 rb_node = rb_next(rb_node); 2845 2846 ret += fprintf(fp, " "); 2847 print_sched_time(chain->hit, 12); 2848 ret += 16; /* print_sched_time returns 2nd arg + 4 */ 2849 ret += fprintf(fp, " %8d ", chain->count); 2850 ret += callchain__fprintf_folded(fp, chain); 2851 ret += fprintf(fp, "\n"); 2852 } 2853 2854 return ret; 2855 } 2856 2857 static void timehist_print_summary(struct perf_sched *sched, 2858 struct perf_session *session) 2859 { 2860 struct machine *m = &session->machines.host; 2861 struct total_run_stats totals; 2862 u64 task_count; 2863 struct thread *t; 2864 struct thread_runtime *r; 2865 int i; 2866 u64 hist_time = sched->hist_time.end - sched->hist_time.start; 2867 2868 memset(&totals, 0, sizeof(totals)); 2869 totals.sched = sched; 2870 2871 if (sched->idle_hist) { 2872 printf("\nIdle-time summary\n"); 2873 printf("%*s parent sched-out ", comm_width, "comm"); 2874 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n"); 2875 } else if (sched->show_state) { 2876 printf("\nWait-time summary\n"); 2877 printf("%*s parent sched-in ", comm_width, "comm"); 2878 printf(" run-time sleep iowait preempt delay\n"); 2879 } else { 2880 printf("\nRuntime summary\n"); 2881 printf("%*s parent sched-in ", comm_width, "comm"); 2882 printf(" run-time min-run avg-run max-run stddev migrations\n"); 2883 } 2884 printf("%*s (count) ", comm_width, ""); 2885 printf(" (msec) (msec) (msec) (msec) %s\n", 2886 sched->show_state ? "(msec)" : "%"); 2887 printf("%.117s\n", graph_dotted_line); 2888 2889 machine__for_each_thread(m, show_thread_runtime, &totals); 2890 task_count = totals.task_count; 2891 if (!task_count) 2892 printf("<no still running tasks>\n"); 2893 2894 /* CPU idle stats not tracked when samples were skipped */ 2895 if (sched->skipped_samples && !sched->idle_hist) 2896 return; 2897 2898 printf("\nIdle stats:\n"); 2899 for (i = 0; i < idle_max_cpu; ++i) { 2900 if (cpu_list && !test_bit(i, cpu_bitmap)) 2901 continue; 2902 2903 t = idle_threads[i]; 2904 if (!t) 2905 continue; 2906 2907 r = thread__priv(t); 2908 if (r && r->run_stats.n) { 2909 totals.sched_count += r->run_stats.n; 2910 printf(" CPU %2d idle for ", i); 2911 print_sched_time(r->total_run_time, 6); 2912 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time); 2913 } else 2914 printf(" CPU %2d idle entire time window\n", i); 2915 } 2916 2917 if (sched->idle_hist && sched->show_callchain) { 2918 callchain_param.mode = CHAIN_FOLDED; 2919 callchain_param.value = CCVAL_PERIOD; 2920 2921 callchain_register_param(&callchain_param); 2922 2923 printf("\nIdle stats by callchain:\n"); 2924 for (i = 0; i < idle_max_cpu; ++i) { 2925 struct idle_thread_runtime *itr; 2926 2927 t = idle_threads[i]; 2928 if (!t) 2929 continue; 2930 2931 itr = thread__priv(t); 2932 if (itr == NULL) 2933 continue; 2934 2935 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain, 2936 0, &callchain_param); 2937 2938 printf(" CPU %2d:", i); 2939 print_sched_time(itr->tr.total_run_time, 6); 2940 printf(" msec\n"); 2941 timehist_print_idlehist_callchain(&itr->sorted_root); 2942 printf("\n"); 2943 } 2944 } 2945 2946 printf("\n" 2947 " Total number of unique tasks: %" PRIu64 "\n" 2948 "Total number of context switches: %" PRIu64 "\n", 2949 totals.task_count, totals.sched_count); 2950 2951 printf(" Total run time (msec): "); 2952 print_sched_time(totals.total_run_time, 2); 2953 printf("\n"); 2954 2955 printf(" Total scheduling time (msec): "); 2956 print_sched_time(hist_time, 2); 2957 printf(" (x %d)\n", sched->max_cpu.cpu); 2958 } 2959 2960 typedef int (*sched_handler)(struct perf_tool *tool, 2961 union perf_event *event, 2962 struct evsel *evsel, 2963 struct perf_sample *sample, 2964 struct machine *machine); 2965 2966 static int perf_timehist__process_sample(struct perf_tool *tool, 2967 union perf_event *event, 2968 struct perf_sample *sample, 2969 struct evsel *evsel, 2970 struct machine *machine) 2971 { 2972 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2973 int err = 0; 2974 struct perf_cpu this_cpu = { 2975 .cpu = sample->cpu, 2976 }; 2977 2978 if (this_cpu.cpu > sched->max_cpu.cpu) 2979 sched->max_cpu = this_cpu; 2980 2981 if (evsel->handler != NULL) { 2982 sched_handler f = evsel->handler; 2983 2984 err = f(tool, event, evsel, sample, machine); 2985 } 2986 2987 return err; 2988 } 2989 2990 static int timehist_check_attr(struct perf_sched *sched, 2991 struct evlist *evlist) 2992 { 2993 struct evsel *evsel; 2994 struct evsel_runtime *er; 2995 2996 list_for_each_entry(evsel, &evlist->core.entries, core.node) { 2997 er = evsel__get_runtime(evsel); 2998 if (er == NULL) { 2999 pr_err("Failed to allocate memory for evsel runtime data\n"); 3000 return -1; 3001 } 3002 3003 if (sched->show_callchain && !evsel__has_callchain(evsel)) { 3004 pr_info("Samples do not have callchains.\n"); 3005 sched->show_callchain = 0; 3006 symbol_conf.use_callchain = 0; 3007 } 3008 } 3009 3010 return 0; 3011 } 3012 3013 static int perf_sched__timehist(struct perf_sched *sched) 3014 { 3015 struct evsel_str_handler handlers[] = { 3016 { "sched:sched_switch", timehist_sched_switch_event, }, 3017 { "sched:sched_wakeup", timehist_sched_wakeup_event, }, 3018 { "sched:sched_waking", timehist_sched_wakeup_event, }, 3019 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, }, 3020 }; 3021 const struct evsel_str_handler migrate_handlers[] = { 3022 { "sched:sched_migrate_task", timehist_migrate_task_event, }, 3023 }; 3024 struct perf_data data = { 3025 .path = input_name, 3026 .mode = PERF_DATA_MODE_READ, 3027 .force = sched->force, 3028 }; 3029 3030 struct perf_session *session; 3031 struct evlist *evlist; 3032 int err = -1; 3033 3034 /* 3035 * event handlers for timehist option 3036 */ 3037 sched->tool.sample = perf_timehist__process_sample; 3038 sched->tool.mmap = perf_event__process_mmap; 3039 sched->tool.comm = perf_event__process_comm; 3040 sched->tool.exit = perf_event__process_exit; 3041 sched->tool.fork = perf_event__process_fork; 3042 sched->tool.lost = process_lost; 3043 sched->tool.attr = perf_event__process_attr; 3044 sched->tool.tracing_data = perf_event__process_tracing_data; 3045 sched->tool.build_id = perf_event__process_build_id; 3046 3047 sched->tool.ordered_events = true; 3048 sched->tool.ordering_requires_timestamps = true; 3049 3050 symbol_conf.use_callchain = sched->show_callchain; 3051 3052 session = perf_session__new(&data, &sched->tool); 3053 if (IS_ERR(session)) 3054 return PTR_ERR(session); 3055 3056 if (cpu_list) { 3057 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap); 3058 if (err < 0) 3059 goto out; 3060 } 3061 3062 evlist = session->evlist; 3063 3064 symbol__init(&session->header.env); 3065 3066 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) { 3067 pr_err("Invalid time string\n"); 3068 return -EINVAL; 3069 } 3070 3071 if (timehist_check_attr(sched, evlist) != 0) 3072 goto out; 3073 3074 setup_pager(); 3075 3076 /* prefer sched_waking if it is captured */ 3077 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) 3078 handlers[1].handler = timehist_sched_wakeup_ignore; 3079 3080 /* setup per-evsel handlers */ 3081 if (perf_session__set_tracepoints_handlers(session, handlers)) 3082 goto out; 3083 3084 /* sched_switch event at a minimum needs to exist */ 3085 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) { 3086 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n"); 3087 goto out; 3088 } 3089 3090 if (sched->show_migrations && 3091 perf_session__set_tracepoints_handlers(session, migrate_handlers)) 3092 goto out; 3093 3094 /* pre-allocate struct for per-CPU idle stats */ 3095 sched->max_cpu.cpu = session->header.env.nr_cpus_online; 3096 if (sched->max_cpu.cpu == 0) 3097 sched->max_cpu.cpu = 4; 3098 if (init_idle_threads(sched->max_cpu.cpu)) 3099 goto out; 3100 3101 /* summary_only implies summary option, but don't overwrite summary if set */ 3102 if (sched->summary_only) 3103 sched->summary = sched->summary_only; 3104 3105 if (!sched->summary_only) 3106 timehist_header(sched); 3107 3108 err = perf_session__process_events(session); 3109 if (err) { 3110 pr_err("Failed to process events, error %d", err); 3111 goto out; 3112 } 3113 3114 sched->nr_events = evlist->stats.nr_events[0]; 3115 sched->nr_lost_events = evlist->stats.total_lost; 3116 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST]; 3117 3118 if (sched->summary) 3119 timehist_print_summary(sched, session); 3120 3121 out: 3122 free_idle_threads(); 3123 perf_session__delete(session); 3124 3125 return err; 3126 } 3127 3128 3129 static void print_bad_events(struct perf_sched *sched) 3130 { 3131 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 3132 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 3133 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 3134 sched->nr_unordered_timestamps, sched->nr_timestamps); 3135 } 3136 if (sched->nr_lost_events && sched->nr_events) { 3137 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 3138 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 3139 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 3140 } 3141 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 3142 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 3143 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 3144 sched->nr_context_switch_bugs, sched->nr_timestamps); 3145 if (sched->nr_lost_events) 3146 printf(" (due to lost events?)"); 3147 printf("\n"); 3148 } 3149 } 3150 3151 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data) 3152 { 3153 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 3154 struct work_atoms *this; 3155 const char *comm = thread__comm_str(data->thread), *this_comm; 3156 bool leftmost = true; 3157 3158 while (*new) { 3159 int cmp; 3160 3161 this = container_of(*new, struct work_atoms, node); 3162 parent = *new; 3163 3164 this_comm = thread__comm_str(this->thread); 3165 cmp = strcmp(comm, this_comm); 3166 if (cmp > 0) { 3167 new = &((*new)->rb_left); 3168 } else if (cmp < 0) { 3169 new = &((*new)->rb_right); 3170 leftmost = false; 3171 } else { 3172 this->num_merged++; 3173 this->total_runtime += data->total_runtime; 3174 this->nb_atoms += data->nb_atoms; 3175 this->total_lat += data->total_lat; 3176 list_splice(&data->work_list, &this->work_list); 3177 if (this->max_lat < data->max_lat) { 3178 this->max_lat = data->max_lat; 3179 this->max_lat_start = data->max_lat_start; 3180 this->max_lat_end = data->max_lat_end; 3181 } 3182 zfree(&data); 3183 return; 3184 } 3185 } 3186 3187 data->num_merged++; 3188 rb_link_node(&data->node, parent, new); 3189 rb_insert_color_cached(&data->node, root, leftmost); 3190 } 3191 3192 static void perf_sched__merge_lat(struct perf_sched *sched) 3193 { 3194 struct work_atoms *data; 3195 struct rb_node *node; 3196 3197 if (sched->skip_merge) 3198 return; 3199 3200 while ((node = rb_first_cached(&sched->atom_root))) { 3201 rb_erase_cached(node, &sched->atom_root); 3202 data = rb_entry(node, struct work_atoms, node); 3203 __merge_work_atoms(&sched->merged_atom_root, data); 3204 } 3205 } 3206 3207 static int perf_sched__lat(struct perf_sched *sched) 3208 { 3209 struct rb_node *next; 3210 3211 setup_pager(); 3212 3213 if (perf_sched__read_events(sched)) 3214 return -1; 3215 3216 perf_sched__merge_lat(sched); 3217 perf_sched__sort_lat(sched); 3218 3219 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n"); 3220 printf(" Task | Runtime ms | Switches | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n"); 3221 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n"); 3222 3223 next = rb_first_cached(&sched->sorted_atom_root); 3224 3225 while (next) { 3226 struct work_atoms *work_list; 3227 3228 work_list = rb_entry(next, struct work_atoms, node); 3229 output_lat_thread(sched, work_list); 3230 next = rb_next(next); 3231 thread__zput(work_list->thread); 3232 } 3233 3234 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3235 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 3236 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count); 3237 3238 printf(" ---------------------------------------------------\n"); 3239 3240 print_bad_events(sched); 3241 printf("\n"); 3242 3243 return 0; 3244 } 3245 3246 static int setup_map_cpus(struct perf_sched *sched) 3247 { 3248 struct perf_cpu_map *map; 3249 3250 sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF); 3251 3252 if (sched->map.comp) { 3253 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int)); 3254 if (!sched->map.comp_cpus) 3255 return -1; 3256 } 3257 3258 if (!sched->map.cpus_str) 3259 return 0; 3260 3261 map = perf_cpu_map__new(sched->map.cpus_str); 3262 if (!map) { 3263 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str); 3264 return -1; 3265 } 3266 3267 sched->map.cpus = map; 3268 return 0; 3269 } 3270 3271 static int setup_color_pids(struct perf_sched *sched) 3272 { 3273 struct perf_thread_map *map; 3274 3275 if (!sched->map.color_pids_str) 3276 return 0; 3277 3278 map = thread_map__new_by_tid_str(sched->map.color_pids_str); 3279 if (!map) { 3280 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str); 3281 return -1; 3282 } 3283 3284 sched->map.color_pids = map; 3285 return 0; 3286 } 3287 3288 static int setup_color_cpus(struct perf_sched *sched) 3289 { 3290 struct perf_cpu_map *map; 3291 3292 if (!sched->map.color_cpus_str) 3293 return 0; 3294 3295 map = perf_cpu_map__new(sched->map.color_cpus_str); 3296 if (!map) { 3297 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str); 3298 return -1; 3299 } 3300 3301 sched->map.color_cpus = map; 3302 return 0; 3303 } 3304 3305 static int perf_sched__map(struct perf_sched *sched) 3306 { 3307 if (setup_map_cpus(sched)) 3308 return -1; 3309 3310 if (setup_color_pids(sched)) 3311 return -1; 3312 3313 if (setup_color_cpus(sched)) 3314 return -1; 3315 3316 setup_pager(); 3317 if (perf_sched__read_events(sched)) 3318 return -1; 3319 print_bad_events(sched); 3320 return 0; 3321 } 3322 3323 static int perf_sched__replay(struct perf_sched *sched) 3324 { 3325 unsigned long i; 3326 3327 calibrate_run_measurement_overhead(sched); 3328 calibrate_sleep_measurement_overhead(sched); 3329 3330 test_calibrations(sched); 3331 3332 if (perf_sched__read_events(sched)) 3333 return -1; 3334 3335 printf("nr_run_events: %ld\n", sched->nr_run_events); 3336 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 3337 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 3338 3339 if (sched->targetless_wakeups) 3340 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 3341 if (sched->multitarget_wakeups) 3342 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 3343 if (sched->nr_run_events_optimized) 3344 printf("run atoms optimized: %ld\n", 3345 sched->nr_run_events_optimized); 3346 3347 print_task_traces(sched); 3348 add_cross_task_wakeups(sched); 3349 3350 sched->thread_funcs_exit = false; 3351 create_tasks(sched); 3352 printf("------------------------------------------------------------\n"); 3353 for (i = 0; i < sched->replay_repeat; i++) 3354 run_one_test(sched); 3355 3356 sched->thread_funcs_exit = true; 3357 destroy_tasks(sched); 3358 return 0; 3359 } 3360 3361 static void setup_sorting(struct perf_sched *sched, const struct option *options, 3362 const char * const usage_msg[]) 3363 { 3364 char *tmp, *tok, *str = strdup(sched->sort_order); 3365 3366 for (tok = strtok_r(str, ", ", &tmp); 3367 tok; tok = strtok_r(NULL, ", ", &tmp)) { 3368 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 3369 usage_with_options_msg(usage_msg, options, 3370 "Unknown --sort key: `%s'", tok); 3371 } 3372 } 3373 3374 free(str); 3375 3376 sort_dimension__add("pid", &sched->cmp_pid); 3377 } 3378 3379 static bool schedstat_events_exposed(void) 3380 { 3381 /* 3382 * Select "sched:sched_stat_wait" event to check 3383 * whether schedstat tracepoints are exposed. 3384 */ 3385 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ? 3386 false : true; 3387 } 3388 3389 static int __cmd_record(int argc, const char **argv) 3390 { 3391 unsigned int rec_argc, i, j; 3392 char **rec_argv; 3393 const char **rec_argv_copy; 3394 const char * const record_args[] = { 3395 "record", 3396 "-a", 3397 "-R", 3398 "-m", "1024", 3399 "-c", "1", 3400 "-e", "sched:sched_switch", 3401 "-e", "sched:sched_stat_runtime", 3402 "-e", "sched:sched_process_fork", 3403 "-e", "sched:sched_wakeup_new", 3404 "-e", "sched:sched_migrate_task", 3405 }; 3406 3407 /* 3408 * The tracepoints trace_sched_stat_{wait, sleep, iowait} 3409 * are not exposed to user if CONFIG_SCHEDSTATS is not set, 3410 * to prevent "perf sched record" execution failure, determine 3411 * whether to record schedstat events according to actual situation. 3412 */ 3413 const char * const schedstat_args[] = { 3414 "-e", "sched:sched_stat_wait", 3415 "-e", "sched:sched_stat_sleep", 3416 "-e", "sched:sched_stat_iowait", 3417 }; 3418 unsigned int schedstat_argc = schedstat_events_exposed() ? 3419 ARRAY_SIZE(schedstat_args) : 0; 3420 3421 struct tep_event *waking_event; 3422 int ret; 3423 3424 /* 3425 * +2 for either "-e", "sched:sched_wakeup" or 3426 * "-e", "sched:sched_waking" 3427 */ 3428 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1; 3429 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 3430 if (rec_argv == NULL) 3431 return -ENOMEM; 3432 rec_argv_copy = calloc(rec_argc + 1, sizeof(char *)); 3433 if (rec_argv_copy == NULL) { 3434 free(rec_argv); 3435 return -ENOMEM; 3436 } 3437 3438 for (i = 0; i < ARRAY_SIZE(record_args); i++) 3439 rec_argv[i] = strdup(record_args[i]); 3440 3441 rec_argv[i++] = strdup("-e"); 3442 waking_event = trace_event__tp_format("sched", "sched_waking"); 3443 if (!IS_ERR(waking_event)) 3444 rec_argv[i++] = strdup("sched:sched_waking"); 3445 else 3446 rec_argv[i++] = strdup("sched:sched_wakeup"); 3447 3448 for (j = 0; j < schedstat_argc; j++) 3449 rec_argv[i++] = strdup(schedstat_args[j]); 3450 3451 for (j = 1; j < (unsigned int)argc; j++, i++) 3452 rec_argv[i] = strdup(argv[j]); 3453 3454 BUG_ON(i != rec_argc); 3455 3456 memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc); 3457 ret = cmd_record(rec_argc, rec_argv_copy); 3458 3459 for (i = 0; i < rec_argc; i++) 3460 free(rec_argv[i]); 3461 free(rec_argv); 3462 free(rec_argv_copy); 3463 3464 return ret; 3465 } 3466 3467 int cmd_sched(int argc, const char **argv) 3468 { 3469 static const char default_sort_order[] = "avg, max, switch, runtime"; 3470 struct perf_sched sched = { 3471 .tool = { 3472 .sample = perf_sched__process_tracepoint_sample, 3473 .comm = perf_sched__process_comm, 3474 .namespaces = perf_event__process_namespaces, 3475 .lost = perf_event__process_lost, 3476 .fork = perf_sched__process_fork_event, 3477 .ordered_events = true, 3478 }, 3479 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 3480 .sort_list = LIST_HEAD_INIT(sched.sort_list), 3481 .sort_order = default_sort_order, 3482 .replay_repeat = 10, 3483 .profile_cpu = -1, 3484 .next_shortname1 = 'A', 3485 .next_shortname2 = '0', 3486 .skip_merge = 0, 3487 .show_callchain = 1, 3488 .max_stack = 5, 3489 }; 3490 const struct option sched_options[] = { 3491 OPT_STRING('i', "input", &input_name, "file", 3492 "input file name"), 3493 OPT_INCR('v', "verbose", &verbose, 3494 "be more verbose (show symbol address, etc)"), 3495 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 3496 "dump raw trace in ASCII"), 3497 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), 3498 OPT_END() 3499 }; 3500 const struct option latency_options[] = { 3501 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 3502 "sort by key(s): runtime, switch, avg, max"), 3503 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 3504 "CPU to profile on"), 3505 OPT_BOOLEAN('p', "pids", &sched.skip_merge, 3506 "latency stats per pid instead of per comm"), 3507 OPT_PARENT(sched_options) 3508 }; 3509 const struct option replay_options[] = { 3510 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 3511 "repeat the workload replay N times (-1: infinite)"), 3512 OPT_PARENT(sched_options) 3513 }; 3514 const struct option map_options[] = { 3515 OPT_BOOLEAN(0, "compact", &sched.map.comp, 3516 "map output in compact mode"), 3517 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids", 3518 "highlight given pids in map"), 3519 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus", 3520 "highlight given CPUs in map"), 3521 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus", 3522 "display given CPUs in map"), 3523 OPT_PARENT(sched_options) 3524 }; 3525 const struct option timehist_options[] = { 3526 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name, 3527 "file", "vmlinux pathname"), 3528 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name, 3529 "file", "kallsyms pathname"), 3530 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain, 3531 "Display call chains if present (default on)"), 3532 OPT_UINTEGER(0, "max-stack", &sched.max_stack, 3533 "Maximum number of functions to display backtrace."), 3534 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", 3535 "Look for files with symbols relative to this directory"), 3536 OPT_BOOLEAN('s', "summary", &sched.summary_only, 3537 "Show only syscall summary with statistics"), 3538 OPT_BOOLEAN('S', "with-summary", &sched.summary, 3539 "Show all syscalls and summary with statistics"), 3540 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"), 3541 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"), 3542 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"), 3543 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"), 3544 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"), 3545 OPT_STRING(0, "time", &sched.time_str, "str", 3546 "Time span for analysis (start,stop)"), 3547 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"), 3548 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]", 3549 "analyze events only for given process id(s)"), 3550 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]", 3551 "analyze events only for given thread id(s)"), 3552 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"), 3553 OPT_PARENT(sched_options) 3554 }; 3555 3556 const char * const latency_usage[] = { 3557 "perf sched latency [<options>]", 3558 NULL 3559 }; 3560 const char * const replay_usage[] = { 3561 "perf sched replay [<options>]", 3562 NULL 3563 }; 3564 const char * const map_usage[] = { 3565 "perf sched map [<options>]", 3566 NULL 3567 }; 3568 const char * const timehist_usage[] = { 3569 "perf sched timehist [<options>]", 3570 NULL 3571 }; 3572 const char *const sched_subcommands[] = { "record", "latency", "map", 3573 "replay", "script", 3574 "timehist", NULL }; 3575 const char *sched_usage[] = { 3576 NULL, 3577 NULL 3578 }; 3579 struct trace_sched_handler lat_ops = { 3580 .wakeup_event = latency_wakeup_event, 3581 .switch_event = latency_switch_event, 3582 .runtime_event = latency_runtime_event, 3583 .migrate_task_event = latency_migrate_task_event, 3584 }; 3585 struct trace_sched_handler map_ops = { 3586 .switch_event = map_switch_event, 3587 }; 3588 struct trace_sched_handler replay_ops = { 3589 .wakeup_event = replay_wakeup_event, 3590 .switch_event = replay_switch_event, 3591 .fork_event = replay_fork_event, 3592 }; 3593 unsigned int i; 3594 int ret = 0; 3595 3596 mutex_init(&sched.start_work_mutex); 3597 mutex_init(&sched.work_done_wait_mutex); 3598 sched.curr_thread = calloc(MAX_CPUS, sizeof(*sched.curr_thread)); 3599 if (!sched.curr_thread) { 3600 ret = -ENOMEM; 3601 goto out; 3602 } 3603 sched.cpu_last_switched = calloc(MAX_CPUS, sizeof(*sched.cpu_last_switched)); 3604 if (!sched.cpu_last_switched) { 3605 ret = -ENOMEM; 3606 goto out; 3607 } 3608 sched.curr_pid = malloc(MAX_CPUS * sizeof(*sched.curr_pid)); 3609 if (!sched.curr_pid) { 3610 ret = -ENOMEM; 3611 goto out; 3612 } 3613 for (i = 0; i < MAX_CPUS; i++) 3614 sched.curr_pid[i] = -1; 3615 3616 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 3617 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 3618 if (!argc) 3619 usage_with_options(sched_usage, sched_options); 3620 3621 /* 3622 * Aliased to 'perf script' for now: 3623 */ 3624 if (!strcmp(argv[0], "script")) { 3625 ret = cmd_script(argc, argv); 3626 } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 3627 ret = __cmd_record(argc, argv); 3628 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) { 3629 sched.tp_handler = &lat_ops; 3630 if (argc > 1) { 3631 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 3632 if (argc) 3633 usage_with_options(latency_usage, latency_options); 3634 } 3635 setup_sorting(&sched, latency_options, latency_usage); 3636 ret = perf_sched__lat(&sched); 3637 } else if (!strcmp(argv[0], "map")) { 3638 if (argc) { 3639 argc = parse_options(argc, argv, map_options, map_usage, 0); 3640 if (argc) 3641 usage_with_options(map_usage, map_options); 3642 } 3643 sched.tp_handler = &map_ops; 3644 setup_sorting(&sched, latency_options, latency_usage); 3645 ret = perf_sched__map(&sched); 3646 } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) { 3647 sched.tp_handler = &replay_ops; 3648 if (argc) { 3649 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 3650 if (argc) 3651 usage_with_options(replay_usage, replay_options); 3652 } 3653 ret = perf_sched__replay(&sched); 3654 } else if (!strcmp(argv[0], "timehist")) { 3655 if (argc) { 3656 argc = parse_options(argc, argv, timehist_options, 3657 timehist_usage, 0); 3658 if (argc) 3659 usage_with_options(timehist_usage, timehist_options); 3660 } 3661 if ((sched.show_wakeups || sched.show_next) && 3662 sched.summary_only) { 3663 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n"); 3664 parse_options_usage(timehist_usage, timehist_options, "s", true); 3665 if (sched.show_wakeups) 3666 parse_options_usage(NULL, timehist_options, "w", true); 3667 if (sched.show_next) 3668 parse_options_usage(NULL, timehist_options, "n", true); 3669 ret = -EINVAL; 3670 goto out; 3671 } 3672 ret = symbol__validate_sym_arguments(); 3673 if (ret) 3674 goto out; 3675 3676 ret = perf_sched__timehist(&sched); 3677 } else { 3678 usage_with_options(sched_usage, sched_options); 3679 } 3680 3681 out: 3682 free(sched.curr_pid); 3683 free(sched.cpu_last_switched); 3684 free(sched.curr_thread); 3685 mutex_destroy(&sched.start_work_mutex); 3686 mutex_destroy(&sched.work_done_wait_mutex); 3687 3688 return ret; 3689 } 3690