xref: /linux/tools/perf/builtin-sched.c (revision 98838d95075a5295f3478ceba18bcccf472e30f4)
1 #include "builtin.h"
2 #include "perf.h"
3 
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 #include "util/cloexec.h"
14 #include "util/thread_map.h"
15 #include "util/color.h"
16 
17 #include <subcmd/parse-options.h>
18 #include "util/trace-event.h"
19 
20 #include "util/debug.h"
21 
22 #include <sys/prctl.h>
23 #include <sys/resource.h>
24 
25 #include <semaphore.h>
26 #include <pthread.h>
27 #include <math.h>
28 #include <api/fs/fs.h>
29 #include <linux/time64.h>
30 
31 #define PR_SET_NAME		15               /* Set process name */
32 #define MAX_CPUS		4096
33 #define COMM_LEN		20
34 #define SYM_LEN			129
35 #define MAX_PID			1024000
36 
37 struct sched_atom;
38 
39 struct task_desc {
40 	unsigned long		nr;
41 	unsigned long		pid;
42 	char			comm[COMM_LEN];
43 
44 	unsigned long		nr_events;
45 	unsigned long		curr_event;
46 	struct sched_atom	**atoms;
47 
48 	pthread_t		thread;
49 	sem_t			sleep_sem;
50 
51 	sem_t			ready_for_work;
52 	sem_t			work_done_sem;
53 
54 	u64			cpu_usage;
55 };
56 
57 enum sched_event_type {
58 	SCHED_EVENT_RUN,
59 	SCHED_EVENT_SLEEP,
60 	SCHED_EVENT_WAKEUP,
61 	SCHED_EVENT_MIGRATION,
62 };
63 
64 struct sched_atom {
65 	enum sched_event_type	type;
66 	int			specific_wait;
67 	u64			timestamp;
68 	u64			duration;
69 	unsigned long		nr;
70 	sem_t			*wait_sem;
71 	struct task_desc	*wakee;
72 };
73 
74 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
75 
76 enum thread_state {
77 	THREAD_SLEEPING = 0,
78 	THREAD_WAIT_CPU,
79 	THREAD_SCHED_IN,
80 	THREAD_IGNORE
81 };
82 
83 struct work_atom {
84 	struct list_head	list;
85 	enum thread_state	state;
86 	u64			sched_out_time;
87 	u64			wake_up_time;
88 	u64			sched_in_time;
89 	u64			runtime;
90 };
91 
92 struct work_atoms {
93 	struct list_head	work_list;
94 	struct thread		*thread;
95 	struct rb_node		node;
96 	u64			max_lat;
97 	u64			max_lat_at;
98 	u64			total_lat;
99 	u64			nb_atoms;
100 	u64			total_runtime;
101 	int			num_merged;
102 };
103 
104 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
105 
106 struct perf_sched;
107 
108 struct trace_sched_handler {
109 	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
110 			    struct perf_sample *sample, struct machine *machine);
111 
112 	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
113 			     struct perf_sample *sample, struct machine *machine);
114 
115 	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
116 			    struct perf_sample *sample, struct machine *machine);
117 
118 	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
119 	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
120 			  struct machine *machine);
121 
122 	int (*migrate_task_event)(struct perf_sched *sched,
123 				  struct perf_evsel *evsel,
124 				  struct perf_sample *sample,
125 				  struct machine *machine);
126 };
127 
128 #define COLOR_PIDS PERF_COLOR_BLUE
129 #define COLOR_CPUS PERF_COLOR_BG_RED
130 
131 struct perf_sched_map {
132 	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
133 	int			*comp_cpus;
134 	bool			 comp;
135 	struct thread_map	*color_pids;
136 	const char		*color_pids_str;
137 	struct cpu_map		*color_cpus;
138 	const char		*color_cpus_str;
139 	struct cpu_map		*cpus;
140 	const char		*cpus_str;
141 };
142 
143 struct perf_sched {
144 	struct perf_tool tool;
145 	const char	 *sort_order;
146 	unsigned long	 nr_tasks;
147 	struct task_desc **pid_to_task;
148 	struct task_desc **tasks;
149 	const struct trace_sched_handler *tp_handler;
150 	pthread_mutex_t	 start_work_mutex;
151 	pthread_mutex_t	 work_done_wait_mutex;
152 	int		 profile_cpu;
153 /*
154  * Track the current task - that way we can know whether there's any
155  * weird events, such as a task being switched away that is not current.
156  */
157 	int		 max_cpu;
158 	u32		 curr_pid[MAX_CPUS];
159 	struct thread	 *curr_thread[MAX_CPUS];
160 	char		 next_shortname1;
161 	char		 next_shortname2;
162 	unsigned int	 replay_repeat;
163 	unsigned long	 nr_run_events;
164 	unsigned long	 nr_sleep_events;
165 	unsigned long	 nr_wakeup_events;
166 	unsigned long	 nr_sleep_corrections;
167 	unsigned long	 nr_run_events_optimized;
168 	unsigned long	 targetless_wakeups;
169 	unsigned long	 multitarget_wakeups;
170 	unsigned long	 nr_runs;
171 	unsigned long	 nr_timestamps;
172 	unsigned long	 nr_unordered_timestamps;
173 	unsigned long	 nr_context_switch_bugs;
174 	unsigned long	 nr_events;
175 	unsigned long	 nr_lost_chunks;
176 	unsigned long	 nr_lost_events;
177 	u64		 run_measurement_overhead;
178 	u64		 sleep_measurement_overhead;
179 	u64		 start_time;
180 	u64		 cpu_usage;
181 	u64		 runavg_cpu_usage;
182 	u64		 parent_cpu_usage;
183 	u64		 runavg_parent_cpu_usage;
184 	u64		 sum_runtime;
185 	u64		 sum_fluct;
186 	u64		 run_avg;
187 	u64		 all_runtime;
188 	u64		 all_count;
189 	u64		 cpu_last_switched[MAX_CPUS];
190 	struct rb_root	 atom_root, sorted_atom_root, merged_atom_root;
191 	struct list_head sort_list, cmp_pid;
192 	bool force;
193 	bool skip_merge;
194 	struct perf_sched_map map;
195 };
196 
197 static u64 get_nsecs(void)
198 {
199 	struct timespec ts;
200 
201 	clock_gettime(CLOCK_MONOTONIC, &ts);
202 
203 	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
204 }
205 
206 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
207 {
208 	u64 T0 = get_nsecs(), T1;
209 
210 	do {
211 		T1 = get_nsecs();
212 	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
213 }
214 
215 static void sleep_nsecs(u64 nsecs)
216 {
217 	struct timespec ts;
218 
219 	ts.tv_nsec = nsecs % 999999999;
220 	ts.tv_sec = nsecs / 999999999;
221 
222 	nanosleep(&ts, NULL);
223 }
224 
225 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
226 {
227 	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
228 	int i;
229 
230 	for (i = 0; i < 10; i++) {
231 		T0 = get_nsecs();
232 		burn_nsecs(sched, 0);
233 		T1 = get_nsecs();
234 		delta = T1-T0;
235 		min_delta = min(min_delta, delta);
236 	}
237 	sched->run_measurement_overhead = min_delta;
238 
239 	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
240 }
241 
242 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
243 {
244 	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
245 	int i;
246 
247 	for (i = 0; i < 10; i++) {
248 		T0 = get_nsecs();
249 		sleep_nsecs(10000);
250 		T1 = get_nsecs();
251 		delta = T1-T0;
252 		min_delta = min(min_delta, delta);
253 	}
254 	min_delta -= 10000;
255 	sched->sleep_measurement_overhead = min_delta;
256 
257 	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
258 }
259 
260 static struct sched_atom *
261 get_new_event(struct task_desc *task, u64 timestamp)
262 {
263 	struct sched_atom *event = zalloc(sizeof(*event));
264 	unsigned long idx = task->nr_events;
265 	size_t size;
266 
267 	event->timestamp = timestamp;
268 	event->nr = idx;
269 
270 	task->nr_events++;
271 	size = sizeof(struct sched_atom *) * task->nr_events;
272 	task->atoms = realloc(task->atoms, size);
273 	BUG_ON(!task->atoms);
274 
275 	task->atoms[idx] = event;
276 
277 	return event;
278 }
279 
280 static struct sched_atom *last_event(struct task_desc *task)
281 {
282 	if (!task->nr_events)
283 		return NULL;
284 
285 	return task->atoms[task->nr_events - 1];
286 }
287 
288 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
289 				u64 timestamp, u64 duration)
290 {
291 	struct sched_atom *event, *curr_event = last_event(task);
292 
293 	/*
294 	 * optimize an existing RUN event by merging this one
295 	 * to it:
296 	 */
297 	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
298 		sched->nr_run_events_optimized++;
299 		curr_event->duration += duration;
300 		return;
301 	}
302 
303 	event = get_new_event(task, timestamp);
304 
305 	event->type = SCHED_EVENT_RUN;
306 	event->duration = duration;
307 
308 	sched->nr_run_events++;
309 }
310 
311 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
312 				   u64 timestamp, struct task_desc *wakee)
313 {
314 	struct sched_atom *event, *wakee_event;
315 
316 	event = get_new_event(task, timestamp);
317 	event->type = SCHED_EVENT_WAKEUP;
318 	event->wakee = wakee;
319 
320 	wakee_event = last_event(wakee);
321 	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
322 		sched->targetless_wakeups++;
323 		return;
324 	}
325 	if (wakee_event->wait_sem) {
326 		sched->multitarget_wakeups++;
327 		return;
328 	}
329 
330 	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
331 	sem_init(wakee_event->wait_sem, 0, 0);
332 	wakee_event->specific_wait = 1;
333 	event->wait_sem = wakee_event->wait_sem;
334 
335 	sched->nr_wakeup_events++;
336 }
337 
338 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
339 				  u64 timestamp, u64 task_state __maybe_unused)
340 {
341 	struct sched_atom *event = get_new_event(task, timestamp);
342 
343 	event->type = SCHED_EVENT_SLEEP;
344 
345 	sched->nr_sleep_events++;
346 }
347 
348 static struct task_desc *register_pid(struct perf_sched *sched,
349 				      unsigned long pid, const char *comm)
350 {
351 	struct task_desc *task;
352 	static int pid_max;
353 
354 	if (sched->pid_to_task == NULL) {
355 		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
356 			pid_max = MAX_PID;
357 		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
358 	}
359 	if (pid >= (unsigned long)pid_max) {
360 		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
361 			sizeof(struct task_desc *))) == NULL);
362 		while (pid >= (unsigned long)pid_max)
363 			sched->pid_to_task[pid_max++] = NULL;
364 	}
365 
366 	task = sched->pid_to_task[pid];
367 
368 	if (task)
369 		return task;
370 
371 	task = zalloc(sizeof(*task));
372 	task->pid = pid;
373 	task->nr = sched->nr_tasks;
374 	strcpy(task->comm, comm);
375 	/*
376 	 * every task starts in sleeping state - this gets ignored
377 	 * if there's no wakeup pointing to this sleep state:
378 	 */
379 	add_sched_event_sleep(sched, task, 0, 0);
380 
381 	sched->pid_to_task[pid] = task;
382 	sched->nr_tasks++;
383 	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
384 	BUG_ON(!sched->tasks);
385 	sched->tasks[task->nr] = task;
386 
387 	if (verbose)
388 		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
389 
390 	return task;
391 }
392 
393 
394 static void print_task_traces(struct perf_sched *sched)
395 {
396 	struct task_desc *task;
397 	unsigned long i;
398 
399 	for (i = 0; i < sched->nr_tasks; i++) {
400 		task = sched->tasks[i];
401 		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
402 			task->nr, task->comm, task->pid, task->nr_events);
403 	}
404 }
405 
406 static void add_cross_task_wakeups(struct perf_sched *sched)
407 {
408 	struct task_desc *task1, *task2;
409 	unsigned long i, j;
410 
411 	for (i = 0; i < sched->nr_tasks; i++) {
412 		task1 = sched->tasks[i];
413 		j = i + 1;
414 		if (j == sched->nr_tasks)
415 			j = 0;
416 		task2 = sched->tasks[j];
417 		add_sched_event_wakeup(sched, task1, 0, task2);
418 	}
419 }
420 
421 static void perf_sched__process_event(struct perf_sched *sched,
422 				      struct sched_atom *atom)
423 {
424 	int ret = 0;
425 
426 	switch (atom->type) {
427 		case SCHED_EVENT_RUN:
428 			burn_nsecs(sched, atom->duration);
429 			break;
430 		case SCHED_EVENT_SLEEP:
431 			if (atom->wait_sem)
432 				ret = sem_wait(atom->wait_sem);
433 			BUG_ON(ret);
434 			break;
435 		case SCHED_EVENT_WAKEUP:
436 			if (atom->wait_sem)
437 				ret = sem_post(atom->wait_sem);
438 			BUG_ON(ret);
439 			break;
440 		case SCHED_EVENT_MIGRATION:
441 			break;
442 		default:
443 			BUG_ON(1);
444 	}
445 }
446 
447 static u64 get_cpu_usage_nsec_parent(void)
448 {
449 	struct rusage ru;
450 	u64 sum;
451 	int err;
452 
453 	err = getrusage(RUSAGE_SELF, &ru);
454 	BUG_ON(err);
455 
456 	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
457 	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
458 
459 	return sum;
460 }
461 
462 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
463 {
464 	struct perf_event_attr attr;
465 	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
466 	int fd;
467 	struct rlimit limit;
468 	bool need_privilege = false;
469 
470 	memset(&attr, 0, sizeof(attr));
471 
472 	attr.type = PERF_TYPE_SOFTWARE;
473 	attr.config = PERF_COUNT_SW_TASK_CLOCK;
474 
475 force_again:
476 	fd = sys_perf_event_open(&attr, 0, -1, -1,
477 				 perf_event_open_cloexec_flag());
478 
479 	if (fd < 0) {
480 		if (errno == EMFILE) {
481 			if (sched->force) {
482 				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
483 				limit.rlim_cur += sched->nr_tasks - cur_task;
484 				if (limit.rlim_cur > limit.rlim_max) {
485 					limit.rlim_max = limit.rlim_cur;
486 					need_privilege = true;
487 				}
488 				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
489 					if (need_privilege && errno == EPERM)
490 						strcpy(info, "Need privilege\n");
491 				} else
492 					goto force_again;
493 			} else
494 				strcpy(info, "Have a try with -f option\n");
495 		}
496 		pr_err("Error: sys_perf_event_open() syscall returned "
497 		       "with %d (%s)\n%s", fd,
498 		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
499 		exit(EXIT_FAILURE);
500 	}
501 	return fd;
502 }
503 
504 static u64 get_cpu_usage_nsec_self(int fd)
505 {
506 	u64 runtime;
507 	int ret;
508 
509 	ret = read(fd, &runtime, sizeof(runtime));
510 	BUG_ON(ret != sizeof(runtime));
511 
512 	return runtime;
513 }
514 
515 struct sched_thread_parms {
516 	struct task_desc  *task;
517 	struct perf_sched *sched;
518 	int fd;
519 };
520 
521 static void *thread_func(void *ctx)
522 {
523 	struct sched_thread_parms *parms = ctx;
524 	struct task_desc *this_task = parms->task;
525 	struct perf_sched *sched = parms->sched;
526 	u64 cpu_usage_0, cpu_usage_1;
527 	unsigned long i, ret;
528 	char comm2[22];
529 	int fd = parms->fd;
530 
531 	zfree(&parms);
532 
533 	sprintf(comm2, ":%s", this_task->comm);
534 	prctl(PR_SET_NAME, comm2);
535 	if (fd < 0)
536 		return NULL;
537 again:
538 	ret = sem_post(&this_task->ready_for_work);
539 	BUG_ON(ret);
540 	ret = pthread_mutex_lock(&sched->start_work_mutex);
541 	BUG_ON(ret);
542 	ret = pthread_mutex_unlock(&sched->start_work_mutex);
543 	BUG_ON(ret);
544 
545 	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
546 
547 	for (i = 0; i < this_task->nr_events; i++) {
548 		this_task->curr_event = i;
549 		perf_sched__process_event(sched, this_task->atoms[i]);
550 	}
551 
552 	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
553 	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
554 	ret = sem_post(&this_task->work_done_sem);
555 	BUG_ON(ret);
556 
557 	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
558 	BUG_ON(ret);
559 	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
560 	BUG_ON(ret);
561 
562 	goto again;
563 }
564 
565 static void create_tasks(struct perf_sched *sched)
566 {
567 	struct task_desc *task;
568 	pthread_attr_t attr;
569 	unsigned long i;
570 	int err;
571 
572 	err = pthread_attr_init(&attr);
573 	BUG_ON(err);
574 	err = pthread_attr_setstacksize(&attr,
575 			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
576 	BUG_ON(err);
577 	err = pthread_mutex_lock(&sched->start_work_mutex);
578 	BUG_ON(err);
579 	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
580 	BUG_ON(err);
581 	for (i = 0; i < sched->nr_tasks; i++) {
582 		struct sched_thread_parms *parms = malloc(sizeof(*parms));
583 		BUG_ON(parms == NULL);
584 		parms->task = task = sched->tasks[i];
585 		parms->sched = sched;
586 		parms->fd = self_open_counters(sched, i);
587 		sem_init(&task->sleep_sem, 0, 0);
588 		sem_init(&task->ready_for_work, 0, 0);
589 		sem_init(&task->work_done_sem, 0, 0);
590 		task->curr_event = 0;
591 		err = pthread_create(&task->thread, &attr, thread_func, parms);
592 		BUG_ON(err);
593 	}
594 }
595 
596 static void wait_for_tasks(struct perf_sched *sched)
597 {
598 	u64 cpu_usage_0, cpu_usage_1;
599 	struct task_desc *task;
600 	unsigned long i, ret;
601 
602 	sched->start_time = get_nsecs();
603 	sched->cpu_usage = 0;
604 	pthread_mutex_unlock(&sched->work_done_wait_mutex);
605 
606 	for (i = 0; i < sched->nr_tasks; i++) {
607 		task = sched->tasks[i];
608 		ret = sem_wait(&task->ready_for_work);
609 		BUG_ON(ret);
610 		sem_init(&task->ready_for_work, 0, 0);
611 	}
612 	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
613 	BUG_ON(ret);
614 
615 	cpu_usage_0 = get_cpu_usage_nsec_parent();
616 
617 	pthread_mutex_unlock(&sched->start_work_mutex);
618 
619 	for (i = 0; i < sched->nr_tasks; i++) {
620 		task = sched->tasks[i];
621 		ret = sem_wait(&task->work_done_sem);
622 		BUG_ON(ret);
623 		sem_init(&task->work_done_sem, 0, 0);
624 		sched->cpu_usage += task->cpu_usage;
625 		task->cpu_usage = 0;
626 	}
627 
628 	cpu_usage_1 = get_cpu_usage_nsec_parent();
629 	if (!sched->runavg_cpu_usage)
630 		sched->runavg_cpu_usage = sched->cpu_usage;
631 	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
632 
633 	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
634 	if (!sched->runavg_parent_cpu_usage)
635 		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
636 	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
637 					 sched->parent_cpu_usage)/sched->replay_repeat;
638 
639 	ret = pthread_mutex_lock(&sched->start_work_mutex);
640 	BUG_ON(ret);
641 
642 	for (i = 0; i < sched->nr_tasks; i++) {
643 		task = sched->tasks[i];
644 		sem_init(&task->sleep_sem, 0, 0);
645 		task->curr_event = 0;
646 	}
647 }
648 
649 static void run_one_test(struct perf_sched *sched)
650 {
651 	u64 T0, T1, delta, avg_delta, fluct;
652 
653 	T0 = get_nsecs();
654 	wait_for_tasks(sched);
655 	T1 = get_nsecs();
656 
657 	delta = T1 - T0;
658 	sched->sum_runtime += delta;
659 	sched->nr_runs++;
660 
661 	avg_delta = sched->sum_runtime / sched->nr_runs;
662 	if (delta < avg_delta)
663 		fluct = avg_delta - delta;
664 	else
665 		fluct = delta - avg_delta;
666 	sched->sum_fluct += fluct;
667 	if (!sched->run_avg)
668 		sched->run_avg = delta;
669 	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
670 
671 	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
672 
673 	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
674 
675 	printf("cpu: %0.2f / %0.2f",
676 		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
677 
678 #if 0
679 	/*
680 	 * rusage statistics done by the parent, these are less
681 	 * accurate than the sched->sum_exec_runtime based statistics:
682 	 */
683 	printf(" [%0.2f / %0.2f]",
684 		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
685 		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
686 #endif
687 
688 	printf("\n");
689 
690 	if (sched->nr_sleep_corrections)
691 		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
692 	sched->nr_sleep_corrections = 0;
693 }
694 
695 static void test_calibrations(struct perf_sched *sched)
696 {
697 	u64 T0, T1;
698 
699 	T0 = get_nsecs();
700 	burn_nsecs(sched, NSEC_PER_MSEC);
701 	T1 = get_nsecs();
702 
703 	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
704 
705 	T0 = get_nsecs();
706 	sleep_nsecs(NSEC_PER_MSEC);
707 	T1 = get_nsecs();
708 
709 	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
710 }
711 
712 static int
713 replay_wakeup_event(struct perf_sched *sched,
714 		    struct perf_evsel *evsel, struct perf_sample *sample,
715 		    struct machine *machine __maybe_unused)
716 {
717 	const char *comm = perf_evsel__strval(evsel, sample, "comm");
718 	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
719 	struct task_desc *waker, *wakee;
720 
721 	if (verbose) {
722 		printf("sched_wakeup event %p\n", evsel);
723 
724 		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
725 	}
726 
727 	waker = register_pid(sched, sample->tid, "<unknown>");
728 	wakee = register_pid(sched, pid, comm);
729 
730 	add_sched_event_wakeup(sched, waker, sample->time, wakee);
731 	return 0;
732 }
733 
734 static int replay_switch_event(struct perf_sched *sched,
735 			       struct perf_evsel *evsel,
736 			       struct perf_sample *sample,
737 			       struct machine *machine __maybe_unused)
738 {
739 	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
740 		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
741 	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
742 		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
743 	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
744 	struct task_desc *prev, __maybe_unused *next;
745 	u64 timestamp0, timestamp = sample->time;
746 	int cpu = sample->cpu;
747 	s64 delta;
748 
749 	if (verbose)
750 		printf("sched_switch event %p\n", evsel);
751 
752 	if (cpu >= MAX_CPUS || cpu < 0)
753 		return 0;
754 
755 	timestamp0 = sched->cpu_last_switched[cpu];
756 	if (timestamp0)
757 		delta = timestamp - timestamp0;
758 	else
759 		delta = 0;
760 
761 	if (delta < 0) {
762 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
763 		return -1;
764 	}
765 
766 	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
767 		 prev_comm, prev_pid, next_comm, next_pid, delta);
768 
769 	prev = register_pid(sched, prev_pid, prev_comm);
770 	next = register_pid(sched, next_pid, next_comm);
771 
772 	sched->cpu_last_switched[cpu] = timestamp;
773 
774 	add_sched_event_run(sched, prev, timestamp, delta);
775 	add_sched_event_sleep(sched, prev, timestamp, prev_state);
776 
777 	return 0;
778 }
779 
780 static int replay_fork_event(struct perf_sched *sched,
781 			     union perf_event *event,
782 			     struct machine *machine)
783 {
784 	struct thread *child, *parent;
785 
786 	child = machine__findnew_thread(machine, event->fork.pid,
787 					event->fork.tid);
788 	parent = machine__findnew_thread(machine, event->fork.ppid,
789 					 event->fork.ptid);
790 
791 	if (child == NULL || parent == NULL) {
792 		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
793 				 child, parent);
794 		goto out_put;
795 	}
796 
797 	if (verbose) {
798 		printf("fork event\n");
799 		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
800 		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
801 	}
802 
803 	register_pid(sched, parent->tid, thread__comm_str(parent));
804 	register_pid(sched, child->tid, thread__comm_str(child));
805 out_put:
806 	thread__put(child);
807 	thread__put(parent);
808 	return 0;
809 }
810 
811 struct sort_dimension {
812 	const char		*name;
813 	sort_fn_t		cmp;
814 	struct list_head	list;
815 };
816 
817 static int
818 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
819 {
820 	struct sort_dimension *sort;
821 	int ret = 0;
822 
823 	BUG_ON(list_empty(list));
824 
825 	list_for_each_entry(sort, list, list) {
826 		ret = sort->cmp(l, r);
827 		if (ret)
828 			return ret;
829 	}
830 
831 	return ret;
832 }
833 
834 static struct work_atoms *
835 thread_atoms_search(struct rb_root *root, struct thread *thread,
836 			 struct list_head *sort_list)
837 {
838 	struct rb_node *node = root->rb_node;
839 	struct work_atoms key = { .thread = thread };
840 
841 	while (node) {
842 		struct work_atoms *atoms;
843 		int cmp;
844 
845 		atoms = container_of(node, struct work_atoms, node);
846 
847 		cmp = thread_lat_cmp(sort_list, &key, atoms);
848 		if (cmp > 0)
849 			node = node->rb_left;
850 		else if (cmp < 0)
851 			node = node->rb_right;
852 		else {
853 			BUG_ON(thread != atoms->thread);
854 			return atoms;
855 		}
856 	}
857 	return NULL;
858 }
859 
860 static void
861 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
862 			 struct list_head *sort_list)
863 {
864 	struct rb_node **new = &(root->rb_node), *parent = NULL;
865 
866 	while (*new) {
867 		struct work_atoms *this;
868 		int cmp;
869 
870 		this = container_of(*new, struct work_atoms, node);
871 		parent = *new;
872 
873 		cmp = thread_lat_cmp(sort_list, data, this);
874 
875 		if (cmp > 0)
876 			new = &((*new)->rb_left);
877 		else
878 			new = &((*new)->rb_right);
879 	}
880 
881 	rb_link_node(&data->node, parent, new);
882 	rb_insert_color(&data->node, root);
883 }
884 
885 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
886 {
887 	struct work_atoms *atoms = zalloc(sizeof(*atoms));
888 	if (!atoms) {
889 		pr_err("No memory at %s\n", __func__);
890 		return -1;
891 	}
892 
893 	atoms->thread = thread__get(thread);
894 	INIT_LIST_HEAD(&atoms->work_list);
895 	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
896 	return 0;
897 }
898 
899 static char sched_out_state(u64 prev_state)
900 {
901 	const char *str = TASK_STATE_TO_CHAR_STR;
902 
903 	return str[prev_state];
904 }
905 
906 static int
907 add_sched_out_event(struct work_atoms *atoms,
908 		    char run_state,
909 		    u64 timestamp)
910 {
911 	struct work_atom *atom = zalloc(sizeof(*atom));
912 	if (!atom) {
913 		pr_err("Non memory at %s", __func__);
914 		return -1;
915 	}
916 
917 	atom->sched_out_time = timestamp;
918 
919 	if (run_state == 'R') {
920 		atom->state = THREAD_WAIT_CPU;
921 		atom->wake_up_time = atom->sched_out_time;
922 	}
923 
924 	list_add_tail(&atom->list, &atoms->work_list);
925 	return 0;
926 }
927 
928 static void
929 add_runtime_event(struct work_atoms *atoms, u64 delta,
930 		  u64 timestamp __maybe_unused)
931 {
932 	struct work_atom *atom;
933 
934 	BUG_ON(list_empty(&atoms->work_list));
935 
936 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
937 
938 	atom->runtime += delta;
939 	atoms->total_runtime += delta;
940 }
941 
942 static void
943 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
944 {
945 	struct work_atom *atom;
946 	u64 delta;
947 
948 	if (list_empty(&atoms->work_list))
949 		return;
950 
951 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
952 
953 	if (atom->state != THREAD_WAIT_CPU)
954 		return;
955 
956 	if (timestamp < atom->wake_up_time) {
957 		atom->state = THREAD_IGNORE;
958 		return;
959 	}
960 
961 	atom->state = THREAD_SCHED_IN;
962 	atom->sched_in_time = timestamp;
963 
964 	delta = atom->sched_in_time - atom->wake_up_time;
965 	atoms->total_lat += delta;
966 	if (delta > atoms->max_lat) {
967 		atoms->max_lat = delta;
968 		atoms->max_lat_at = timestamp;
969 	}
970 	atoms->nb_atoms++;
971 }
972 
973 static int latency_switch_event(struct perf_sched *sched,
974 				struct perf_evsel *evsel,
975 				struct perf_sample *sample,
976 				struct machine *machine)
977 {
978 	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
979 		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
980 	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
981 	struct work_atoms *out_events, *in_events;
982 	struct thread *sched_out, *sched_in;
983 	u64 timestamp0, timestamp = sample->time;
984 	int cpu = sample->cpu, err = -1;
985 	s64 delta;
986 
987 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
988 
989 	timestamp0 = sched->cpu_last_switched[cpu];
990 	sched->cpu_last_switched[cpu] = timestamp;
991 	if (timestamp0)
992 		delta = timestamp - timestamp0;
993 	else
994 		delta = 0;
995 
996 	if (delta < 0) {
997 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
998 		return -1;
999 	}
1000 
1001 	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1002 	sched_in = machine__findnew_thread(machine, -1, next_pid);
1003 	if (sched_out == NULL || sched_in == NULL)
1004 		goto out_put;
1005 
1006 	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1007 	if (!out_events) {
1008 		if (thread_atoms_insert(sched, sched_out))
1009 			goto out_put;
1010 		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1011 		if (!out_events) {
1012 			pr_err("out-event: Internal tree error");
1013 			goto out_put;
1014 		}
1015 	}
1016 	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1017 		return -1;
1018 
1019 	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1020 	if (!in_events) {
1021 		if (thread_atoms_insert(sched, sched_in))
1022 			goto out_put;
1023 		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1024 		if (!in_events) {
1025 			pr_err("in-event: Internal tree error");
1026 			goto out_put;
1027 		}
1028 		/*
1029 		 * Take came in we have not heard about yet,
1030 		 * add in an initial atom in runnable state:
1031 		 */
1032 		if (add_sched_out_event(in_events, 'R', timestamp))
1033 			goto out_put;
1034 	}
1035 	add_sched_in_event(in_events, timestamp);
1036 	err = 0;
1037 out_put:
1038 	thread__put(sched_out);
1039 	thread__put(sched_in);
1040 	return err;
1041 }
1042 
1043 static int latency_runtime_event(struct perf_sched *sched,
1044 				 struct perf_evsel *evsel,
1045 				 struct perf_sample *sample,
1046 				 struct machine *machine)
1047 {
1048 	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
1049 	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1050 	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1051 	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1052 	u64 timestamp = sample->time;
1053 	int cpu = sample->cpu, err = -1;
1054 
1055 	if (thread == NULL)
1056 		return -1;
1057 
1058 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1059 	if (!atoms) {
1060 		if (thread_atoms_insert(sched, thread))
1061 			goto out_put;
1062 		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1063 		if (!atoms) {
1064 			pr_err("in-event: Internal tree error");
1065 			goto out_put;
1066 		}
1067 		if (add_sched_out_event(atoms, 'R', timestamp))
1068 			goto out_put;
1069 	}
1070 
1071 	add_runtime_event(atoms, runtime, timestamp);
1072 	err = 0;
1073 out_put:
1074 	thread__put(thread);
1075 	return err;
1076 }
1077 
1078 static int latency_wakeup_event(struct perf_sched *sched,
1079 				struct perf_evsel *evsel,
1080 				struct perf_sample *sample,
1081 				struct machine *machine)
1082 {
1083 	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
1084 	struct work_atoms *atoms;
1085 	struct work_atom *atom;
1086 	struct thread *wakee;
1087 	u64 timestamp = sample->time;
1088 	int err = -1;
1089 
1090 	wakee = machine__findnew_thread(machine, -1, pid);
1091 	if (wakee == NULL)
1092 		return -1;
1093 	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1094 	if (!atoms) {
1095 		if (thread_atoms_insert(sched, wakee))
1096 			goto out_put;
1097 		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1098 		if (!atoms) {
1099 			pr_err("wakeup-event: Internal tree error");
1100 			goto out_put;
1101 		}
1102 		if (add_sched_out_event(atoms, 'S', timestamp))
1103 			goto out_put;
1104 	}
1105 
1106 	BUG_ON(list_empty(&atoms->work_list));
1107 
1108 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1109 
1110 	/*
1111 	 * As we do not guarantee the wakeup event happens when
1112 	 * task is out of run queue, also may happen when task is
1113 	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1114 	 * then we should not set the ->wake_up_time when wake up a
1115 	 * task which is on run queue.
1116 	 *
1117 	 * You WILL be missing events if you've recorded only
1118 	 * one CPU, or are only looking at only one, so don't
1119 	 * skip in this case.
1120 	 */
1121 	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1122 		goto out_ok;
1123 
1124 	sched->nr_timestamps++;
1125 	if (atom->sched_out_time > timestamp) {
1126 		sched->nr_unordered_timestamps++;
1127 		goto out_ok;
1128 	}
1129 
1130 	atom->state = THREAD_WAIT_CPU;
1131 	atom->wake_up_time = timestamp;
1132 out_ok:
1133 	err = 0;
1134 out_put:
1135 	thread__put(wakee);
1136 	return err;
1137 }
1138 
1139 static int latency_migrate_task_event(struct perf_sched *sched,
1140 				      struct perf_evsel *evsel,
1141 				      struct perf_sample *sample,
1142 				      struct machine *machine)
1143 {
1144 	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1145 	u64 timestamp = sample->time;
1146 	struct work_atoms *atoms;
1147 	struct work_atom *atom;
1148 	struct thread *migrant;
1149 	int err = -1;
1150 
1151 	/*
1152 	 * Only need to worry about migration when profiling one CPU.
1153 	 */
1154 	if (sched->profile_cpu == -1)
1155 		return 0;
1156 
1157 	migrant = machine__findnew_thread(machine, -1, pid);
1158 	if (migrant == NULL)
1159 		return -1;
1160 	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1161 	if (!atoms) {
1162 		if (thread_atoms_insert(sched, migrant))
1163 			goto out_put;
1164 		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1165 		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1166 		if (!atoms) {
1167 			pr_err("migration-event: Internal tree error");
1168 			goto out_put;
1169 		}
1170 		if (add_sched_out_event(atoms, 'R', timestamp))
1171 			goto out_put;
1172 	}
1173 
1174 	BUG_ON(list_empty(&atoms->work_list));
1175 
1176 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1177 	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1178 
1179 	sched->nr_timestamps++;
1180 
1181 	if (atom->sched_out_time > timestamp)
1182 		sched->nr_unordered_timestamps++;
1183 	err = 0;
1184 out_put:
1185 	thread__put(migrant);
1186 	return err;
1187 }
1188 
1189 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1190 {
1191 	int i;
1192 	int ret;
1193 	u64 avg;
1194 
1195 	if (!work_list->nb_atoms)
1196 		return;
1197 	/*
1198 	 * Ignore idle threads:
1199 	 */
1200 	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1201 		return;
1202 
1203 	sched->all_runtime += work_list->total_runtime;
1204 	sched->all_count   += work_list->nb_atoms;
1205 
1206 	if (work_list->num_merged > 1)
1207 		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1208 	else
1209 		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1210 
1211 	for (i = 0; i < 24 - ret; i++)
1212 		printf(" ");
1213 
1214 	avg = work_list->total_lat / work_list->nb_atoms;
1215 
1216 	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n",
1217 	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1218 		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1219 		 (double)work_list->max_lat / NSEC_PER_MSEC,
1220 		 (double)work_list->max_lat_at / NSEC_PER_SEC);
1221 }
1222 
1223 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1224 {
1225 	if (l->thread == r->thread)
1226 		return 0;
1227 	if (l->thread->tid < r->thread->tid)
1228 		return -1;
1229 	if (l->thread->tid > r->thread->tid)
1230 		return 1;
1231 	return (int)(l->thread - r->thread);
1232 }
1233 
1234 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1235 {
1236 	u64 avgl, avgr;
1237 
1238 	if (!l->nb_atoms)
1239 		return -1;
1240 
1241 	if (!r->nb_atoms)
1242 		return 1;
1243 
1244 	avgl = l->total_lat / l->nb_atoms;
1245 	avgr = r->total_lat / r->nb_atoms;
1246 
1247 	if (avgl < avgr)
1248 		return -1;
1249 	if (avgl > avgr)
1250 		return 1;
1251 
1252 	return 0;
1253 }
1254 
1255 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1256 {
1257 	if (l->max_lat < r->max_lat)
1258 		return -1;
1259 	if (l->max_lat > r->max_lat)
1260 		return 1;
1261 
1262 	return 0;
1263 }
1264 
1265 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1266 {
1267 	if (l->nb_atoms < r->nb_atoms)
1268 		return -1;
1269 	if (l->nb_atoms > r->nb_atoms)
1270 		return 1;
1271 
1272 	return 0;
1273 }
1274 
1275 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1276 {
1277 	if (l->total_runtime < r->total_runtime)
1278 		return -1;
1279 	if (l->total_runtime > r->total_runtime)
1280 		return 1;
1281 
1282 	return 0;
1283 }
1284 
1285 static int sort_dimension__add(const char *tok, struct list_head *list)
1286 {
1287 	size_t i;
1288 	static struct sort_dimension avg_sort_dimension = {
1289 		.name = "avg",
1290 		.cmp  = avg_cmp,
1291 	};
1292 	static struct sort_dimension max_sort_dimension = {
1293 		.name = "max",
1294 		.cmp  = max_cmp,
1295 	};
1296 	static struct sort_dimension pid_sort_dimension = {
1297 		.name = "pid",
1298 		.cmp  = pid_cmp,
1299 	};
1300 	static struct sort_dimension runtime_sort_dimension = {
1301 		.name = "runtime",
1302 		.cmp  = runtime_cmp,
1303 	};
1304 	static struct sort_dimension switch_sort_dimension = {
1305 		.name = "switch",
1306 		.cmp  = switch_cmp,
1307 	};
1308 	struct sort_dimension *available_sorts[] = {
1309 		&pid_sort_dimension,
1310 		&avg_sort_dimension,
1311 		&max_sort_dimension,
1312 		&switch_sort_dimension,
1313 		&runtime_sort_dimension,
1314 	};
1315 
1316 	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1317 		if (!strcmp(available_sorts[i]->name, tok)) {
1318 			list_add_tail(&available_sorts[i]->list, list);
1319 
1320 			return 0;
1321 		}
1322 	}
1323 
1324 	return -1;
1325 }
1326 
1327 static void perf_sched__sort_lat(struct perf_sched *sched)
1328 {
1329 	struct rb_node *node;
1330 	struct rb_root *root = &sched->atom_root;
1331 again:
1332 	for (;;) {
1333 		struct work_atoms *data;
1334 		node = rb_first(root);
1335 		if (!node)
1336 			break;
1337 
1338 		rb_erase(node, root);
1339 		data = rb_entry(node, struct work_atoms, node);
1340 		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1341 	}
1342 	if (root == &sched->atom_root) {
1343 		root = &sched->merged_atom_root;
1344 		goto again;
1345 	}
1346 }
1347 
1348 static int process_sched_wakeup_event(struct perf_tool *tool,
1349 				      struct perf_evsel *evsel,
1350 				      struct perf_sample *sample,
1351 				      struct machine *machine)
1352 {
1353 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1354 
1355 	if (sched->tp_handler->wakeup_event)
1356 		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1357 
1358 	return 0;
1359 }
1360 
1361 union map_priv {
1362 	void	*ptr;
1363 	bool	 color;
1364 };
1365 
1366 static bool thread__has_color(struct thread *thread)
1367 {
1368 	union map_priv priv = {
1369 		.ptr = thread__priv(thread),
1370 	};
1371 
1372 	return priv.color;
1373 }
1374 
1375 static struct thread*
1376 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1377 {
1378 	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1379 	union map_priv priv = {
1380 		.color = false,
1381 	};
1382 
1383 	if (!sched->map.color_pids || !thread || thread__priv(thread))
1384 		return thread;
1385 
1386 	if (thread_map__has(sched->map.color_pids, tid))
1387 		priv.color = true;
1388 
1389 	thread__set_priv(thread, priv.ptr);
1390 	return thread;
1391 }
1392 
1393 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1394 			    struct perf_sample *sample, struct machine *machine)
1395 {
1396 	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1397 	struct thread *sched_in;
1398 	int new_shortname;
1399 	u64 timestamp0, timestamp = sample->time;
1400 	s64 delta;
1401 	int i, this_cpu = sample->cpu;
1402 	int cpus_nr;
1403 	bool new_cpu = false;
1404 	const char *color = PERF_COLOR_NORMAL;
1405 
1406 	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1407 
1408 	if (this_cpu > sched->max_cpu)
1409 		sched->max_cpu = this_cpu;
1410 
1411 	if (sched->map.comp) {
1412 		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1413 		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1414 			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1415 			new_cpu = true;
1416 		}
1417 	} else
1418 		cpus_nr = sched->max_cpu;
1419 
1420 	timestamp0 = sched->cpu_last_switched[this_cpu];
1421 	sched->cpu_last_switched[this_cpu] = timestamp;
1422 	if (timestamp0)
1423 		delta = timestamp - timestamp0;
1424 	else
1425 		delta = 0;
1426 
1427 	if (delta < 0) {
1428 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1429 		return -1;
1430 	}
1431 
1432 	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1433 	if (sched_in == NULL)
1434 		return -1;
1435 
1436 	sched->curr_thread[this_cpu] = thread__get(sched_in);
1437 
1438 	printf("  ");
1439 
1440 	new_shortname = 0;
1441 	if (!sched_in->shortname[0]) {
1442 		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1443 			/*
1444 			 * Don't allocate a letter-number for swapper:0
1445 			 * as a shortname. Instead, we use '.' for it.
1446 			 */
1447 			sched_in->shortname[0] = '.';
1448 			sched_in->shortname[1] = ' ';
1449 		} else {
1450 			sched_in->shortname[0] = sched->next_shortname1;
1451 			sched_in->shortname[1] = sched->next_shortname2;
1452 
1453 			if (sched->next_shortname1 < 'Z') {
1454 				sched->next_shortname1++;
1455 			} else {
1456 				sched->next_shortname1 = 'A';
1457 				if (sched->next_shortname2 < '9')
1458 					sched->next_shortname2++;
1459 				else
1460 					sched->next_shortname2 = '0';
1461 			}
1462 		}
1463 		new_shortname = 1;
1464 	}
1465 
1466 	for (i = 0; i < cpus_nr; i++) {
1467 		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1468 		struct thread *curr_thread = sched->curr_thread[cpu];
1469 		const char *pid_color = color;
1470 		const char *cpu_color = color;
1471 
1472 		if (curr_thread && thread__has_color(curr_thread))
1473 			pid_color = COLOR_PIDS;
1474 
1475 		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1476 			continue;
1477 
1478 		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1479 			cpu_color = COLOR_CPUS;
1480 
1481 		if (cpu != this_cpu)
1482 			color_fprintf(stdout, cpu_color, " ");
1483 		else
1484 			color_fprintf(stdout, cpu_color, "*");
1485 
1486 		if (sched->curr_thread[cpu])
1487 			color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1488 		else
1489 			color_fprintf(stdout, color, "   ");
1490 	}
1491 
1492 	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1493 		goto out;
1494 
1495 	color_fprintf(stdout, color, "  %12.6f secs ", (double)timestamp / NSEC_PER_SEC);
1496 	if (new_shortname) {
1497 		const char *pid_color = color;
1498 
1499 		if (thread__has_color(sched_in))
1500 			pid_color = COLOR_PIDS;
1501 
1502 		color_fprintf(stdout, pid_color, "%s => %s:%d",
1503 		       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1504 	}
1505 
1506 	if (sched->map.comp && new_cpu)
1507 		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1508 
1509 out:
1510 	color_fprintf(stdout, color, "\n");
1511 
1512 	thread__put(sched_in);
1513 
1514 	return 0;
1515 }
1516 
1517 static int process_sched_switch_event(struct perf_tool *tool,
1518 				      struct perf_evsel *evsel,
1519 				      struct perf_sample *sample,
1520 				      struct machine *machine)
1521 {
1522 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1523 	int this_cpu = sample->cpu, err = 0;
1524 	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1525 	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1526 
1527 	if (sched->curr_pid[this_cpu] != (u32)-1) {
1528 		/*
1529 		 * Are we trying to switch away a PID that is
1530 		 * not current?
1531 		 */
1532 		if (sched->curr_pid[this_cpu] != prev_pid)
1533 			sched->nr_context_switch_bugs++;
1534 	}
1535 
1536 	if (sched->tp_handler->switch_event)
1537 		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1538 
1539 	sched->curr_pid[this_cpu] = next_pid;
1540 	return err;
1541 }
1542 
1543 static int process_sched_runtime_event(struct perf_tool *tool,
1544 				       struct perf_evsel *evsel,
1545 				       struct perf_sample *sample,
1546 				       struct machine *machine)
1547 {
1548 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1549 
1550 	if (sched->tp_handler->runtime_event)
1551 		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1552 
1553 	return 0;
1554 }
1555 
1556 static int perf_sched__process_fork_event(struct perf_tool *tool,
1557 					  union perf_event *event,
1558 					  struct perf_sample *sample,
1559 					  struct machine *machine)
1560 {
1561 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1562 
1563 	/* run the fork event through the perf machineruy */
1564 	perf_event__process_fork(tool, event, sample, machine);
1565 
1566 	/* and then run additional processing needed for this command */
1567 	if (sched->tp_handler->fork_event)
1568 		return sched->tp_handler->fork_event(sched, event, machine);
1569 
1570 	return 0;
1571 }
1572 
1573 static int process_sched_migrate_task_event(struct perf_tool *tool,
1574 					    struct perf_evsel *evsel,
1575 					    struct perf_sample *sample,
1576 					    struct machine *machine)
1577 {
1578 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1579 
1580 	if (sched->tp_handler->migrate_task_event)
1581 		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1582 
1583 	return 0;
1584 }
1585 
1586 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1587 				  struct perf_evsel *evsel,
1588 				  struct perf_sample *sample,
1589 				  struct machine *machine);
1590 
1591 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1592 						 union perf_event *event __maybe_unused,
1593 						 struct perf_sample *sample,
1594 						 struct perf_evsel *evsel,
1595 						 struct machine *machine)
1596 {
1597 	int err = 0;
1598 
1599 	if (evsel->handler != NULL) {
1600 		tracepoint_handler f = evsel->handler;
1601 		err = f(tool, evsel, sample, machine);
1602 	}
1603 
1604 	return err;
1605 }
1606 
1607 static int perf_sched__read_events(struct perf_sched *sched)
1608 {
1609 	const struct perf_evsel_str_handler handlers[] = {
1610 		{ "sched:sched_switch",	      process_sched_switch_event, },
1611 		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1612 		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1613 		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1614 		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1615 	};
1616 	struct perf_session *session;
1617 	struct perf_data_file file = {
1618 		.path = input_name,
1619 		.mode = PERF_DATA_MODE_READ,
1620 		.force = sched->force,
1621 	};
1622 	int rc = -1;
1623 
1624 	session = perf_session__new(&file, false, &sched->tool);
1625 	if (session == NULL) {
1626 		pr_debug("No Memory for session\n");
1627 		return -1;
1628 	}
1629 
1630 	symbol__init(&session->header.env);
1631 
1632 	if (perf_session__set_tracepoints_handlers(session, handlers))
1633 		goto out_delete;
1634 
1635 	if (perf_session__has_traces(session, "record -R")) {
1636 		int err = perf_session__process_events(session);
1637 		if (err) {
1638 			pr_err("Failed to process events, error %d", err);
1639 			goto out_delete;
1640 		}
1641 
1642 		sched->nr_events      = session->evlist->stats.nr_events[0];
1643 		sched->nr_lost_events = session->evlist->stats.total_lost;
1644 		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1645 	}
1646 
1647 	rc = 0;
1648 out_delete:
1649 	perf_session__delete(session);
1650 	return rc;
1651 }
1652 
1653 static void print_bad_events(struct perf_sched *sched)
1654 {
1655 	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
1656 		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
1657 			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
1658 			sched->nr_unordered_timestamps, sched->nr_timestamps);
1659 	}
1660 	if (sched->nr_lost_events && sched->nr_events) {
1661 		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
1662 			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
1663 			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
1664 	}
1665 	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
1666 		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
1667 			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
1668 			sched->nr_context_switch_bugs, sched->nr_timestamps);
1669 		if (sched->nr_lost_events)
1670 			printf(" (due to lost events?)");
1671 		printf("\n");
1672 	}
1673 }
1674 
1675 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
1676 {
1677 	struct rb_node **new = &(root->rb_node), *parent = NULL;
1678 	struct work_atoms *this;
1679 	const char *comm = thread__comm_str(data->thread), *this_comm;
1680 
1681 	while (*new) {
1682 		int cmp;
1683 
1684 		this = container_of(*new, struct work_atoms, node);
1685 		parent = *new;
1686 
1687 		this_comm = thread__comm_str(this->thread);
1688 		cmp = strcmp(comm, this_comm);
1689 		if (cmp > 0) {
1690 			new = &((*new)->rb_left);
1691 		} else if (cmp < 0) {
1692 			new = &((*new)->rb_right);
1693 		} else {
1694 			this->num_merged++;
1695 			this->total_runtime += data->total_runtime;
1696 			this->nb_atoms += data->nb_atoms;
1697 			this->total_lat += data->total_lat;
1698 			list_splice(&data->work_list, &this->work_list);
1699 			if (this->max_lat < data->max_lat) {
1700 				this->max_lat = data->max_lat;
1701 				this->max_lat_at = data->max_lat_at;
1702 			}
1703 			zfree(&data);
1704 			return;
1705 		}
1706 	}
1707 
1708 	data->num_merged++;
1709 	rb_link_node(&data->node, parent, new);
1710 	rb_insert_color(&data->node, root);
1711 }
1712 
1713 static void perf_sched__merge_lat(struct perf_sched *sched)
1714 {
1715 	struct work_atoms *data;
1716 	struct rb_node *node;
1717 
1718 	if (sched->skip_merge)
1719 		return;
1720 
1721 	while ((node = rb_first(&sched->atom_root))) {
1722 		rb_erase(node, &sched->atom_root);
1723 		data = rb_entry(node, struct work_atoms, node);
1724 		__merge_work_atoms(&sched->merged_atom_root, data);
1725 	}
1726 }
1727 
1728 static int perf_sched__lat(struct perf_sched *sched)
1729 {
1730 	struct rb_node *next;
1731 
1732 	setup_pager();
1733 
1734 	if (perf_sched__read_events(sched))
1735 		return -1;
1736 
1737 	perf_sched__merge_lat(sched);
1738 	perf_sched__sort_lat(sched);
1739 
1740 	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
1741 	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
1742 	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1743 
1744 	next = rb_first(&sched->sorted_atom_root);
1745 
1746 	while (next) {
1747 		struct work_atoms *work_list;
1748 
1749 		work_list = rb_entry(next, struct work_atoms, node);
1750 		output_lat_thread(sched, work_list);
1751 		next = rb_next(next);
1752 		thread__zput(work_list->thread);
1753 	}
1754 
1755 	printf(" -----------------------------------------------------------------------------------------------------------------\n");
1756 	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
1757 		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
1758 
1759 	printf(" ---------------------------------------------------\n");
1760 
1761 	print_bad_events(sched);
1762 	printf("\n");
1763 
1764 	return 0;
1765 }
1766 
1767 static int setup_map_cpus(struct perf_sched *sched)
1768 {
1769 	struct cpu_map *map;
1770 
1771 	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
1772 
1773 	if (sched->map.comp) {
1774 		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
1775 		if (!sched->map.comp_cpus)
1776 			return -1;
1777 	}
1778 
1779 	if (!sched->map.cpus_str)
1780 		return 0;
1781 
1782 	map = cpu_map__new(sched->map.cpus_str);
1783 	if (!map) {
1784 		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
1785 		return -1;
1786 	}
1787 
1788 	sched->map.cpus = map;
1789 	return 0;
1790 }
1791 
1792 static int setup_color_pids(struct perf_sched *sched)
1793 {
1794 	struct thread_map *map;
1795 
1796 	if (!sched->map.color_pids_str)
1797 		return 0;
1798 
1799 	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
1800 	if (!map) {
1801 		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
1802 		return -1;
1803 	}
1804 
1805 	sched->map.color_pids = map;
1806 	return 0;
1807 }
1808 
1809 static int setup_color_cpus(struct perf_sched *sched)
1810 {
1811 	struct cpu_map *map;
1812 
1813 	if (!sched->map.color_cpus_str)
1814 		return 0;
1815 
1816 	map = cpu_map__new(sched->map.color_cpus_str);
1817 	if (!map) {
1818 		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
1819 		return -1;
1820 	}
1821 
1822 	sched->map.color_cpus = map;
1823 	return 0;
1824 }
1825 
1826 static int perf_sched__map(struct perf_sched *sched)
1827 {
1828 	if (setup_map_cpus(sched))
1829 		return -1;
1830 
1831 	if (setup_color_pids(sched))
1832 		return -1;
1833 
1834 	if (setup_color_cpus(sched))
1835 		return -1;
1836 
1837 	setup_pager();
1838 	if (perf_sched__read_events(sched))
1839 		return -1;
1840 	print_bad_events(sched);
1841 	return 0;
1842 }
1843 
1844 static int perf_sched__replay(struct perf_sched *sched)
1845 {
1846 	unsigned long i;
1847 
1848 	calibrate_run_measurement_overhead(sched);
1849 	calibrate_sleep_measurement_overhead(sched);
1850 
1851 	test_calibrations(sched);
1852 
1853 	if (perf_sched__read_events(sched))
1854 		return -1;
1855 
1856 	printf("nr_run_events:        %ld\n", sched->nr_run_events);
1857 	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
1858 	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
1859 
1860 	if (sched->targetless_wakeups)
1861 		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
1862 	if (sched->multitarget_wakeups)
1863 		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
1864 	if (sched->nr_run_events_optimized)
1865 		printf("run atoms optimized: %ld\n",
1866 			sched->nr_run_events_optimized);
1867 
1868 	print_task_traces(sched);
1869 	add_cross_task_wakeups(sched);
1870 
1871 	create_tasks(sched);
1872 	printf("------------------------------------------------------------\n");
1873 	for (i = 0; i < sched->replay_repeat; i++)
1874 		run_one_test(sched);
1875 
1876 	return 0;
1877 }
1878 
1879 static void setup_sorting(struct perf_sched *sched, const struct option *options,
1880 			  const char * const usage_msg[])
1881 {
1882 	char *tmp, *tok, *str = strdup(sched->sort_order);
1883 
1884 	for (tok = strtok_r(str, ", ", &tmp);
1885 			tok; tok = strtok_r(NULL, ", ", &tmp)) {
1886 		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
1887 			usage_with_options_msg(usage_msg, options,
1888 					"Unknown --sort key: `%s'", tok);
1889 		}
1890 	}
1891 
1892 	free(str);
1893 
1894 	sort_dimension__add("pid", &sched->cmp_pid);
1895 }
1896 
1897 static int __cmd_record(int argc, const char **argv)
1898 {
1899 	unsigned int rec_argc, i, j;
1900 	const char **rec_argv;
1901 	const char * const record_args[] = {
1902 		"record",
1903 		"-a",
1904 		"-R",
1905 		"-m", "1024",
1906 		"-c", "1",
1907 		"-e", "sched:sched_switch",
1908 		"-e", "sched:sched_stat_wait",
1909 		"-e", "sched:sched_stat_sleep",
1910 		"-e", "sched:sched_stat_iowait",
1911 		"-e", "sched:sched_stat_runtime",
1912 		"-e", "sched:sched_process_fork",
1913 		"-e", "sched:sched_wakeup",
1914 		"-e", "sched:sched_wakeup_new",
1915 		"-e", "sched:sched_migrate_task",
1916 	};
1917 
1918 	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
1919 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
1920 
1921 	if (rec_argv == NULL)
1922 		return -ENOMEM;
1923 
1924 	for (i = 0; i < ARRAY_SIZE(record_args); i++)
1925 		rec_argv[i] = strdup(record_args[i]);
1926 
1927 	for (j = 1; j < (unsigned int)argc; j++, i++)
1928 		rec_argv[i] = argv[j];
1929 
1930 	BUG_ON(i != rec_argc);
1931 
1932 	return cmd_record(i, rec_argv, NULL);
1933 }
1934 
1935 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
1936 {
1937 	const char default_sort_order[] = "avg, max, switch, runtime";
1938 	struct perf_sched sched = {
1939 		.tool = {
1940 			.sample		 = perf_sched__process_tracepoint_sample,
1941 			.comm		 = perf_event__process_comm,
1942 			.lost		 = perf_event__process_lost,
1943 			.fork		 = perf_sched__process_fork_event,
1944 			.ordered_events = true,
1945 		},
1946 		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
1947 		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
1948 		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
1949 		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
1950 		.sort_order	      = default_sort_order,
1951 		.replay_repeat	      = 10,
1952 		.profile_cpu	      = -1,
1953 		.next_shortname1      = 'A',
1954 		.next_shortname2      = '0',
1955 		.skip_merge           = 0,
1956 	};
1957 	const struct option latency_options[] = {
1958 	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
1959 		   "sort by key(s): runtime, switch, avg, max"),
1960 	OPT_INCR('v', "verbose", &verbose,
1961 		    "be more verbose (show symbol address, etc)"),
1962 	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
1963 		    "CPU to profile on"),
1964 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1965 		    "dump raw trace in ASCII"),
1966 	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
1967 		    "latency stats per pid instead of per comm"),
1968 	OPT_END()
1969 	};
1970 	const struct option replay_options[] = {
1971 	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
1972 		     "repeat the workload replay N times (-1: infinite)"),
1973 	OPT_INCR('v', "verbose", &verbose,
1974 		    "be more verbose (show symbol address, etc)"),
1975 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1976 		    "dump raw trace in ASCII"),
1977 	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
1978 	OPT_END()
1979 	};
1980 	const struct option sched_options[] = {
1981 	OPT_STRING('i', "input", &input_name, "file",
1982 		    "input file name"),
1983 	OPT_INCR('v', "verbose", &verbose,
1984 		    "be more verbose (show symbol address, etc)"),
1985 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
1986 		    "dump raw trace in ASCII"),
1987 	OPT_END()
1988 	};
1989 	const struct option map_options[] = {
1990 	OPT_BOOLEAN(0, "compact", &sched.map.comp,
1991 		    "map output in compact mode"),
1992 	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
1993 		   "highlight given pids in map"),
1994 	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
1995                     "highlight given CPUs in map"),
1996 	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
1997                     "display given CPUs in map"),
1998 	OPT_END()
1999 	};
2000 	const char * const latency_usage[] = {
2001 		"perf sched latency [<options>]",
2002 		NULL
2003 	};
2004 	const char * const replay_usage[] = {
2005 		"perf sched replay [<options>]",
2006 		NULL
2007 	};
2008 	const char * const map_usage[] = {
2009 		"perf sched map [<options>]",
2010 		NULL
2011 	};
2012 	const char *const sched_subcommands[] = { "record", "latency", "map",
2013 						  "replay", "script", NULL };
2014 	const char *sched_usage[] = {
2015 		NULL,
2016 		NULL
2017 	};
2018 	struct trace_sched_handler lat_ops  = {
2019 		.wakeup_event	    = latency_wakeup_event,
2020 		.switch_event	    = latency_switch_event,
2021 		.runtime_event	    = latency_runtime_event,
2022 		.migrate_task_event = latency_migrate_task_event,
2023 	};
2024 	struct trace_sched_handler map_ops  = {
2025 		.switch_event	    = map_switch_event,
2026 	};
2027 	struct trace_sched_handler replay_ops  = {
2028 		.wakeup_event	    = replay_wakeup_event,
2029 		.switch_event	    = replay_switch_event,
2030 		.fork_event	    = replay_fork_event,
2031 	};
2032 	unsigned int i;
2033 
2034 	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
2035 		sched.curr_pid[i] = -1;
2036 
2037 	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
2038 					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
2039 	if (!argc)
2040 		usage_with_options(sched_usage, sched_options);
2041 
2042 	/*
2043 	 * Aliased to 'perf script' for now:
2044 	 */
2045 	if (!strcmp(argv[0], "script"))
2046 		return cmd_script(argc, argv, prefix);
2047 
2048 	if (!strncmp(argv[0], "rec", 3)) {
2049 		return __cmd_record(argc, argv);
2050 	} else if (!strncmp(argv[0], "lat", 3)) {
2051 		sched.tp_handler = &lat_ops;
2052 		if (argc > 1) {
2053 			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
2054 			if (argc)
2055 				usage_with_options(latency_usage, latency_options);
2056 		}
2057 		setup_sorting(&sched, latency_options, latency_usage);
2058 		return perf_sched__lat(&sched);
2059 	} else if (!strcmp(argv[0], "map")) {
2060 		if (argc) {
2061 			argc = parse_options(argc, argv, map_options, map_usage, 0);
2062 			if (argc)
2063 				usage_with_options(map_usage, map_options);
2064 		}
2065 		sched.tp_handler = &map_ops;
2066 		setup_sorting(&sched, latency_options, latency_usage);
2067 		return perf_sched__map(&sched);
2068 	} else if (!strncmp(argv[0], "rep", 3)) {
2069 		sched.tp_handler = &replay_ops;
2070 		if (argc) {
2071 			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
2072 			if (argc)
2073 				usage_with_options(replay_usage, replay_options);
2074 		}
2075 		return perf_sched__replay(&sched);
2076 	} else {
2077 		usage_with_options(sched_usage, sched_options);
2078 	}
2079 
2080 	return 0;
2081 }
2082