1 // SPDX-License-Identifier: GPL-2.0 2 #include "builtin.h" 3 #include "perf.h" 4 #include "perf-sys.h" 5 6 #include "util/cpumap.h" 7 #include "util/evlist.h" 8 #include "util/evsel.h" 9 #include "util/evsel_fprintf.h" 10 #include "util/mutex.h" 11 #include "util/symbol.h" 12 #include "util/thread.h" 13 #include "util/header.h" 14 #include "util/session.h" 15 #include "util/tool.h" 16 #include "util/cloexec.h" 17 #include "util/thread_map.h" 18 #include "util/color.h" 19 #include "util/stat.h" 20 #include "util/string2.h" 21 #include "util/callchain.h" 22 #include "util/time-utils.h" 23 24 #include <subcmd/pager.h> 25 #include <subcmd/parse-options.h> 26 #include "util/trace-event.h" 27 28 #include "util/debug.h" 29 #include "util/event.h" 30 #include "util/util.h" 31 32 #include <linux/kernel.h> 33 #include <linux/log2.h> 34 #include <linux/zalloc.h> 35 #include <sys/prctl.h> 36 #include <sys/resource.h> 37 #include <inttypes.h> 38 39 #include <errno.h> 40 #include <semaphore.h> 41 #include <pthread.h> 42 #include <math.h> 43 #include <api/fs/fs.h> 44 #include <perf/cpumap.h> 45 #include <linux/time64.h> 46 #include <linux/err.h> 47 48 #include <linux/ctype.h> 49 50 #define PR_SET_NAME 15 /* Set process name */ 51 #define MAX_CPUS 4096 52 #define COMM_LEN 20 53 #define SYM_LEN 129 54 #define MAX_PID 1024000 55 #define MAX_PRIO 140 56 57 static const char *cpu_list; 58 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS); 59 60 struct sched_atom; 61 62 struct task_desc { 63 unsigned long nr; 64 unsigned long pid; 65 char comm[COMM_LEN]; 66 67 unsigned long nr_events; 68 unsigned long curr_event; 69 struct sched_atom **atoms; 70 71 pthread_t thread; 72 73 sem_t ready_for_work; 74 sem_t work_done_sem; 75 76 u64 cpu_usage; 77 }; 78 79 enum sched_event_type { 80 SCHED_EVENT_RUN, 81 SCHED_EVENT_SLEEP, 82 SCHED_EVENT_WAKEUP, 83 }; 84 85 struct sched_atom { 86 enum sched_event_type type; 87 u64 timestamp; 88 u64 duration; 89 unsigned long nr; 90 sem_t *wait_sem; 91 struct task_desc *wakee; 92 }; 93 94 enum thread_state { 95 THREAD_SLEEPING = 0, 96 THREAD_WAIT_CPU, 97 THREAD_SCHED_IN, 98 THREAD_IGNORE 99 }; 100 101 struct work_atom { 102 struct list_head list; 103 enum thread_state state; 104 u64 sched_out_time; 105 u64 wake_up_time; 106 u64 sched_in_time; 107 u64 runtime; 108 }; 109 110 struct work_atoms { 111 struct list_head work_list; 112 struct thread *thread; 113 struct rb_node node; 114 u64 max_lat; 115 u64 max_lat_start; 116 u64 max_lat_end; 117 u64 total_lat; 118 u64 nb_atoms; 119 u64 total_runtime; 120 int num_merged; 121 }; 122 123 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 124 125 struct perf_sched; 126 127 struct trace_sched_handler { 128 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel, 129 struct perf_sample *sample, struct machine *machine); 130 131 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel, 132 struct perf_sample *sample, struct machine *machine); 133 134 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel, 135 struct perf_sample *sample, struct machine *machine); 136 137 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 138 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 139 struct machine *machine); 140 141 int (*migrate_task_event)(struct perf_sched *sched, 142 struct evsel *evsel, 143 struct perf_sample *sample, 144 struct machine *machine); 145 }; 146 147 #define COLOR_PIDS PERF_COLOR_BLUE 148 #define COLOR_CPUS PERF_COLOR_BG_RED 149 150 struct perf_sched_map { 151 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); 152 struct perf_cpu *comp_cpus; 153 bool comp; 154 struct perf_thread_map *color_pids; 155 const char *color_pids_str; 156 struct perf_cpu_map *color_cpus; 157 const char *color_cpus_str; 158 const char *task_name; 159 struct strlist *task_names; 160 bool fuzzy; 161 struct perf_cpu_map *cpus; 162 const char *cpus_str; 163 }; 164 165 struct perf_sched { 166 struct perf_tool tool; 167 const char *sort_order; 168 unsigned long nr_tasks; 169 struct task_desc **pid_to_task; 170 struct task_desc **tasks; 171 const struct trace_sched_handler *tp_handler; 172 struct mutex start_work_mutex; 173 struct mutex work_done_wait_mutex; 174 int profile_cpu; 175 /* 176 * Track the current task - that way we can know whether there's any 177 * weird events, such as a task being switched away that is not current. 178 */ 179 struct perf_cpu max_cpu; 180 u32 *curr_pid; 181 struct thread **curr_thread; 182 struct thread **curr_out_thread; 183 char next_shortname1; 184 char next_shortname2; 185 unsigned int replay_repeat; 186 unsigned long nr_run_events; 187 unsigned long nr_sleep_events; 188 unsigned long nr_wakeup_events; 189 unsigned long nr_sleep_corrections; 190 unsigned long nr_run_events_optimized; 191 unsigned long targetless_wakeups; 192 unsigned long multitarget_wakeups; 193 unsigned long nr_runs; 194 unsigned long nr_timestamps; 195 unsigned long nr_unordered_timestamps; 196 unsigned long nr_context_switch_bugs; 197 unsigned long nr_events; 198 unsigned long nr_lost_chunks; 199 unsigned long nr_lost_events; 200 u64 run_measurement_overhead; 201 u64 sleep_measurement_overhead; 202 u64 start_time; 203 u64 cpu_usage; 204 u64 runavg_cpu_usage; 205 u64 parent_cpu_usage; 206 u64 runavg_parent_cpu_usage; 207 u64 sum_runtime; 208 u64 sum_fluct; 209 u64 run_avg; 210 u64 all_runtime; 211 u64 all_count; 212 u64 *cpu_last_switched; 213 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root; 214 struct list_head sort_list, cmp_pid; 215 bool force; 216 bool skip_merge; 217 struct perf_sched_map map; 218 219 /* options for timehist command */ 220 bool summary; 221 bool summary_only; 222 bool idle_hist; 223 bool show_callchain; 224 unsigned int max_stack; 225 bool show_cpu_visual; 226 bool show_wakeups; 227 bool show_next; 228 bool show_migrations; 229 bool pre_migrations; 230 bool show_state; 231 bool show_prio; 232 u64 skipped_samples; 233 const char *time_str; 234 struct perf_time_interval ptime; 235 struct perf_time_interval hist_time; 236 volatile bool thread_funcs_exit; 237 const char *prio_str; 238 DECLARE_BITMAP(prio_bitmap, MAX_PRIO); 239 }; 240 241 /* per thread run time data */ 242 struct thread_runtime { 243 u64 last_time; /* time of previous sched in/out event */ 244 u64 dt_run; /* run time */ 245 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */ 246 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */ 247 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */ 248 u64 dt_delay; /* time between wakeup and sched-in */ 249 u64 dt_pre_mig; /* time between migration and wakeup */ 250 u64 ready_to_run; /* time of wakeup */ 251 u64 migrated; /* time when a thread is migrated */ 252 253 struct stats run_stats; 254 u64 total_run_time; 255 u64 total_sleep_time; 256 u64 total_iowait_time; 257 u64 total_preempt_time; 258 u64 total_delay_time; 259 u64 total_pre_mig_time; 260 261 char last_state; 262 263 char shortname[3]; 264 bool comm_changed; 265 266 u64 migrations; 267 268 int prio; 269 }; 270 271 /* per event run time data */ 272 struct evsel_runtime { 273 u64 *last_time; /* time this event was last seen per cpu */ 274 u32 ncpu; /* highest cpu slot allocated */ 275 }; 276 277 /* per cpu idle time data */ 278 struct idle_thread_runtime { 279 struct thread_runtime tr; 280 struct thread *last_thread; 281 struct rb_root_cached sorted_root; 282 struct callchain_root callchain; 283 struct callchain_cursor cursor; 284 }; 285 286 /* track idle times per cpu */ 287 static struct thread **idle_threads; 288 static int idle_max_cpu; 289 static char idle_comm[] = "<idle>"; 290 291 static u64 get_nsecs(void) 292 { 293 struct timespec ts; 294 295 clock_gettime(CLOCK_MONOTONIC, &ts); 296 297 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; 298 } 299 300 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 301 { 302 u64 T0 = get_nsecs(), T1; 303 304 do { 305 T1 = get_nsecs(); 306 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 307 } 308 309 static void sleep_nsecs(u64 nsecs) 310 { 311 struct timespec ts; 312 313 ts.tv_nsec = nsecs % 999999999; 314 ts.tv_sec = nsecs / 999999999; 315 316 nanosleep(&ts, NULL); 317 } 318 319 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 320 { 321 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 322 int i; 323 324 for (i = 0; i < 10; i++) { 325 T0 = get_nsecs(); 326 burn_nsecs(sched, 0); 327 T1 = get_nsecs(); 328 delta = T1-T0; 329 min_delta = min(min_delta, delta); 330 } 331 sched->run_measurement_overhead = min_delta; 332 333 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 334 } 335 336 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 337 { 338 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 339 int i; 340 341 for (i = 0; i < 10; i++) { 342 T0 = get_nsecs(); 343 sleep_nsecs(10000); 344 T1 = get_nsecs(); 345 delta = T1-T0; 346 min_delta = min(min_delta, delta); 347 } 348 min_delta -= 10000; 349 sched->sleep_measurement_overhead = min_delta; 350 351 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 352 } 353 354 static struct sched_atom * 355 get_new_event(struct task_desc *task, u64 timestamp) 356 { 357 struct sched_atom *event = zalloc(sizeof(*event)); 358 unsigned long idx = task->nr_events; 359 size_t size; 360 361 event->timestamp = timestamp; 362 event->nr = idx; 363 364 task->nr_events++; 365 size = sizeof(struct sched_atom *) * task->nr_events; 366 task->atoms = realloc(task->atoms, size); 367 BUG_ON(!task->atoms); 368 369 task->atoms[idx] = event; 370 371 return event; 372 } 373 374 static struct sched_atom *last_event(struct task_desc *task) 375 { 376 if (!task->nr_events) 377 return NULL; 378 379 return task->atoms[task->nr_events - 1]; 380 } 381 382 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 383 u64 timestamp, u64 duration) 384 { 385 struct sched_atom *event, *curr_event = last_event(task); 386 387 /* 388 * optimize an existing RUN event by merging this one 389 * to it: 390 */ 391 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 392 sched->nr_run_events_optimized++; 393 curr_event->duration += duration; 394 return; 395 } 396 397 event = get_new_event(task, timestamp); 398 399 event->type = SCHED_EVENT_RUN; 400 event->duration = duration; 401 402 sched->nr_run_events++; 403 } 404 405 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 406 u64 timestamp, struct task_desc *wakee) 407 { 408 struct sched_atom *event, *wakee_event; 409 410 event = get_new_event(task, timestamp); 411 event->type = SCHED_EVENT_WAKEUP; 412 event->wakee = wakee; 413 414 wakee_event = last_event(wakee); 415 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 416 sched->targetless_wakeups++; 417 return; 418 } 419 if (wakee_event->wait_sem) { 420 sched->multitarget_wakeups++; 421 return; 422 } 423 424 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 425 sem_init(wakee_event->wait_sem, 0, 0); 426 event->wait_sem = wakee_event->wait_sem; 427 428 sched->nr_wakeup_events++; 429 } 430 431 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 432 u64 timestamp) 433 { 434 struct sched_atom *event = get_new_event(task, timestamp); 435 436 event->type = SCHED_EVENT_SLEEP; 437 438 sched->nr_sleep_events++; 439 } 440 441 static struct task_desc *register_pid(struct perf_sched *sched, 442 unsigned long pid, const char *comm) 443 { 444 struct task_desc *task; 445 static int pid_max; 446 447 if (sched->pid_to_task == NULL) { 448 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) 449 pid_max = MAX_PID; 450 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); 451 } 452 if (pid >= (unsigned long)pid_max) { 453 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * 454 sizeof(struct task_desc *))) == NULL); 455 while (pid >= (unsigned long)pid_max) 456 sched->pid_to_task[pid_max++] = NULL; 457 } 458 459 task = sched->pid_to_task[pid]; 460 461 if (task) 462 return task; 463 464 task = zalloc(sizeof(*task)); 465 task->pid = pid; 466 task->nr = sched->nr_tasks; 467 strcpy(task->comm, comm); 468 /* 469 * every task starts in sleeping state - this gets ignored 470 * if there's no wakeup pointing to this sleep state: 471 */ 472 add_sched_event_sleep(sched, task, 0); 473 474 sched->pid_to_task[pid] = task; 475 sched->nr_tasks++; 476 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); 477 BUG_ON(!sched->tasks); 478 sched->tasks[task->nr] = task; 479 480 if (verbose > 0) 481 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 482 483 return task; 484 } 485 486 487 static void print_task_traces(struct perf_sched *sched) 488 { 489 struct task_desc *task; 490 unsigned long i; 491 492 for (i = 0; i < sched->nr_tasks; i++) { 493 task = sched->tasks[i]; 494 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 495 task->nr, task->comm, task->pid, task->nr_events); 496 } 497 } 498 499 static void add_cross_task_wakeups(struct perf_sched *sched) 500 { 501 struct task_desc *task1, *task2; 502 unsigned long i, j; 503 504 for (i = 0; i < sched->nr_tasks; i++) { 505 task1 = sched->tasks[i]; 506 j = i + 1; 507 if (j == sched->nr_tasks) 508 j = 0; 509 task2 = sched->tasks[j]; 510 add_sched_event_wakeup(sched, task1, 0, task2); 511 } 512 } 513 514 static void perf_sched__process_event(struct perf_sched *sched, 515 struct sched_atom *atom) 516 { 517 int ret = 0; 518 519 switch (atom->type) { 520 case SCHED_EVENT_RUN: 521 burn_nsecs(sched, atom->duration); 522 break; 523 case SCHED_EVENT_SLEEP: 524 if (atom->wait_sem) 525 ret = sem_wait(atom->wait_sem); 526 BUG_ON(ret); 527 break; 528 case SCHED_EVENT_WAKEUP: 529 if (atom->wait_sem) 530 ret = sem_post(atom->wait_sem); 531 BUG_ON(ret); 532 break; 533 default: 534 BUG_ON(1); 535 } 536 } 537 538 static u64 get_cpu_usage_nsec_parent(void) 539 { 540 struct rusage ru; 541 u64 sum; 542 int err; 543 544 err = getrusage(RUSAGE_SELF, &ru); 545 BUG_ON(err); 546 547 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC; 548 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC; 549 550 return sum; 551 } 552 553 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) 554 { 555 struct perf_event_attr attr; 556 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; 557 int fd; 558 struct rlimit limit; 559 bool need_privilege = false; 560 561 memset(&attr, 0, sizeof(attr)); 562 563 attr.type = PERF_TYPE_SOFTWARE; 564 attr.config = PERF_COUNT_SW_TASK_CLOCK; 565 566 force_again: 567 fd = sys_perf_event_open(&attr, 0, -1, -1, 568 perf_event_open_cloexec_flag()); 569 570 if (fd < 0) { 571 if (errno == EMFILE) { 572 if (sched->force) { 573 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); 574 limit.rlim_cur += sched->nr_tasks - cur_task; 575 if (limit.rlim_cur > limit.rlim_max) { 576 limit.rlim_max = limit.rlim_cur; 577 need_privilege = true; 578 } 579 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { 580 if (need_privilege && errno == EPERM) 581 strcpy(info, "Need privilege\n"); 582 } else 583 goto force_again; 584 } else 585 strcpy(info, "Have a try with -f option\n"); 586 } 587 pr_err("Error: sys_perf_event_open() syscall returned " 588 "with %d (%s)\n%s", fd, 589 str_error_r(errno, sbuf, sizeof(sbuf)), info); 590 exit(EXIT_FAILURE); 591 } 592 return fd; 593 } 594 595 static u64 get_cpu_usage_nsec_self(int fd) 596 { 597 u64 runtime; 598 int ret; 599 600 ret = read(fd, &runtime, sizeof(runtime)); 601 BUG_ON(ret != sizeof(runtime)); 602 603 return runtime; 604 } 605 606 struct sched_thread_parms { 607 struct task_desc *task; 608 struct perf_sched *sched; 609 int fd; 610 }; 611 612 static void *thread_func(void *ctx) 613 { 614 struct sched_thread_parms *parms = ctx; 615 struct task_desc *this_task = parms->task; 616 struct perf_sched *sched = parms->sched; 617 u64 cpu_usage_0, cpu_usage_1; 618 unsigned long i, ret; 619 char comm2[22]; 620 int fd = parms->fd; 621 622 zfree(&parms); 623 624 sprintf(comm2, ":%s", this_task->comm); 625 prctl(PR_SET_NAME, comm2); 626 if (fd < 0) 627 return NULL; 628 629 while (!sched->thread_funcs_exit) { 630 ret = sem_post(&this_task->ready_for_work); 631 BUG_ON(ret); 632 mutex_lock(&sched->start_work_mutex); 633 mutex_unlock(&sched->start_work_mutex); 634 635 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 636 637 for (i = 0; i < this_task->nr_events; i++) { 638 this_task->curr_event = i; 639 perf_sched__process_event(sched, this_task->atoms[i]); 640 } 641 642 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 643 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 644 ret = sem_post(&this_task->work_done_sem); 645 BUG_ON(ret); 646 647 mutex_lock(&sched->work_done_wait_mutex); 648 mutex_unlock(&sched->work_done_wait_mutex); 649 } 650 return NULL; 651 } 652 653 static void create_tasks(struct perf_sched *sched) 654 EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex) 655 EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex) 656 { 657 struct task_desc *task; 658 pthread_attr_t attr; 659 unsigned long i; 660 int err; 661 662 err = pthread_attr_init(&attr); 663 BUG_ON(err); 664 err = pthread_attr_setstacksize(&attr, 665 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN)); 666 BUG_ON(err); 667 mutex_lock(&sched->start_work_mutex); 668 mutex_lock(&sched->work_done_wait_mutex); 669 for (i = 0; i < sched->nr_tasks; i++) { 670 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 671 BUG_ON(parms == NULL); 672 parms->task = task = sched->tasks[i]; 673 parms->sched = sched; 674 parms->fd = self_open_counters(sched, i); 675 sem_init(&task->ready_for_work, 0, 0); 676 sem_init(&task->work_done_sem, 0, 0); 677 task->curr_event = 0; 678 err = pthread_create(&task->thread, &attr, thread_func, parms); 679 BUG_ON(err); 680 } 681 } 682 683 static void destroy_tasks(struct perf_sched *sched) 684 UNLOCK_FUNCTION(sched->start_work_mutex) 685 UNLOCK_FUNCTION(sched->work_done_wait_mutex) 686 { 687 struct task_desc *task; 688 unsigned long i; 689 int err; 690 691 mutex_unlock(&sched->start_work_mutex); 692 mutex_unlock(&sched->work_done_wait_mutex); 693 /* Get rid of threads so they won't be upset by mutex destrunction */ 694 for (i = 0; i < sched->nr_tasks; i++) { 695 task = sched->tasks[i]; 696 err = pthread_join(task->thread, NULL); 697 BUG_ON(err); 698 sem_destroy(&task->ready_for_work); 699 sem_destroy(&task->work_done_sem); 700 } 701 } 702 703 static void wait_for_tasks(struct perf_sched *sched) 704 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) 705 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) 706 { 707 u64 cpu_usage_0, cpu_usage_1; 708 struct task_desc *task; 709 unsigned long i, ret; 710 711 sched->start_time = get_nsecs(); 712 sched->cpu_usage = 0; 713 mutex_unlock(&sched->work_done_wait_mutex); 714 715 for (i = 0; i < sched->nr_tasks; i++) { 716 task = sched->tasks[i]; 717 ret = sem_wait(&task->ready_for_work); 718 BUG_ON(ret); 719 sem_init(&task->ready_for_work, 0, 0); 720 } 721 mutex_lock(&sched->work_done_wait_mutex); 722 723 cpu_usage_0 = get_cpu_usage_nsec_parent(); 724 725 mutex_unlock(&sched->start_work_mutex); 726 727 for (i = 0; i < sched->nr_tasks; i++) { 728 task = sched->tasks[i]; 729 ret = sem_wait(&task->work_done_sem); 730 BUG_ON(ret); 731 sem_init(&task->work_done_sem, 0, 0); 732 sched->cpu_usage += task->cpu_usage; 733 task->cpu_usage = 0; 734 } 735 736 cpu_usage_1 = get_cpu_usage_nsec_parent(); 737 if (!sched->runavg_cpu_usage) 738 sched->runavg_cpu_usage = sched->cpu_usage; 739 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; 740 741 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 742 if (!sched->runavg_parent_cpu_usage) 743 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 744 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + 745 sched->parent_cpu_usage)/sched->replay_repeat; 746 747 mutex_lock(&sched->start_work_mutex); 748 749 for (i = 0; i < sched->nr_tasks; i++) { 750 task = sched->tasks[i]; 751 task->curr_event = 0; 752 } 753 } 754 755 static void run_one_test(struct perf_sched *sched) 756 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) 757 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) 758 { 759 u64 T0, T1, delta, avg_delta, fluct; 760 761 T0 = get_nsecs(); 762 wait_for_tasks(sched); 763 T1 = get_nsecs(); 764 765 delta = T1 - T0; 766 sched->sum_runtime += delta; 767 sched->nr_runs++; 768 769 avg_delta = sched->sum_runtime / sched->nr_runs; 770 if (delta < avg_delta) 771 fluct = avg_delta - delta; 772 else 773 fluct = delta - avg_delta; 774 sched->sum_fluct += fluct; 775 if (!sched->run_avg) 776 sched->run_avg = delta; 777 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; 778 779 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC); 780 781 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC); 782 783 printf("cpu: %0.2f / %0.2f", 784 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC); 785 786 #if 0 787 /* 788 * rusage statistics done by the parent, these are less 789 * accurate than the sched->sum_exec_runtime based statistics: 790 */ 791 printf(" [%0.2f / %0.2f]", 792 (double)sched->parent_cpu_usage / NSEC_PER_MSEC, 793 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC); 794 #endif 795 796 printf("\n"); 797 798 if (sched->nr_sleep_corrections) 799 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 800 sched->nr_sleep_corrections = 0; 801 } 802 803 static void test_calibrations(struct perf_sched *sched) 804 { 805 u64 T0, T1; 806 807 T0 = get_nsecs(); 808 burn_nsecs(sched, NSEC_PER_MSEC); 809 T1 = get_nsecs(); 810 811 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 812 813 T0 = get_nsecs(); 814 sleep_nsecs(NSEC_PER_MSEC); 815 T1 = get_nsecs(); 816 817 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 818 } 819 820 static int 821 replay_wakeup_event(struct perf_sched *sched, 822 struct evsel *evsel, struct perf_sample *sample, 823 struct machine *machine __maybe_unused) 824 { 825 const char *comm = evsel__strval(evsel, sample, "comm"); 826 const u32 pid = evsel__intval(evsel, sample, "pid"); 827 struct task_desc *waker, *wakee; 828 829 if (verbose > 0) { 830 printf("sched_wakeup event %p\n", evsel); 831 832 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 833 } 834 835 waker = register_pid(sched, sample->tid, "<unknown>"); 836 wakee = register_pid(sched, pid, comm); 837 838 add_sched_event_wakeup(sched, waker, sample->time, wakee); 839 return 0; 840 } 841 842 static int replay_switch_event(struct perf_sched *sched, 843 struct evsel *evsel, 844 struct perf_sample *sample, 845 struct machine *machine __maybe_unused) 846 { 847 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"), 848 *next_comm = evsel__strval(evsel, sample, "next_comm"); 849 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 850 next_pid = evsel__intval(evsel, sample, "next_pid"); 851 struct task_desc *prev, __maybe_unused *next; 852 u64 timestamp0, timestamp = sample->time; 853 int cpu = sample->cpu; 854 s64 delta; 855 856 if (verbose > 0) 857 printf("sched_switch event %p\n", evsel); 858 859 if (cpu >= MAX_CPUS || cpu < 0) 860 return 0; 861 862 timestamp0 = sched->cpu_last_switched[cpu]; 863 if (timestamp0) 864 delta = timestamp - timestamp0; 865 else 866 delta = 0; 867 868 if (delta < 0) { 869 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 870 return -1; 871 } 872 873 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 874 prev_comm, prev_pid, next_comm, next_pid, delta); 875 876 prev = register_pid(sched, prev_pid, prev_comm); 877 next = register_pid(sched, next_pid, next_comm); 878 879 sched->cpu_last_switched[cpu] = timestamp; 880 881 add_sched_event_run(sched, prev, timestamp, delta); 882 add_sched_event_sleep(sched, prev, timestamp); 883 884 return 0; 885 } 886 887 static int replay_fork_event(struct perf_sched *sched, 888 union perf_event *event, 889 struct machine *machine) 890 { 891 struct thread *child, *parent; 892 893 child = machine__findnew_thread(machine, event->fork.pid, 894 event->fork.tid); 895 parent = machine__findnew_thread(machine, event->fork.ppid, 896 event->fork.ptid); 897 898 if (child == NULL || parent == NULL) { 899 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 900 child, parent); 901 goto out_put; 902 } 903 904 if (verbose > 0) { 905 printf("fork event\n"); 906 printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent)); 907 printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child)); 908 } 909 910 register_pid(sched, thread__tid(parent), thread__comm_str(parent)); 911 register_pid(sched, thread__tid(child), thread__comm_str(child)); 912 out_put: 913 thread__put(child); 914 thread__put(parent); 915 return 0; 916 } 917 918 struct sort_dimension { 919 const char *name; 920 sort_fn_t cmp; 921 struct list_head list; 922 }; 923 924 static inline void init_prio(struct thread_runtime *r) 925 { 926 r->prio = -1; 927 } 928 929 /* 930 * handle runtime stats saved per thread 931 */ 932 static struct thread_runtime *thread__init_runtime(struct thread *thread) 933 { 934 struct thread_runtime *r; 935 936 r = zalloc(sizeof(struct thread_runtime)); 937 if (!r) 938 return NULL; 939 940 init_stats(&r->run_stats); 941 init_prio(r); 942 thread__set_priv(thread, r); 943 944 return r; 945 } 946 947 static struct thread_runtime *thread__get_runtime(struct thread *thread) 948 { 949 struct thread_runtime *tr; 950 951 tr = thread__priv(thread); 952 if (tr == NULL) { 953 tr = thread__init_runtime(thread); 954 if (tr == NULL) 955 pr_debug("Failed to malloc memory for runtime data.\n"); 956 } 957 958 return tr; 959 } 960 961 static int 962 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 963 { 964 struct sort_dimension *sort; 965 int ret = 0; 966 967 BUG_ON(list_empty(list)); 968 969 list_for_each_entry(sort, list, list) { 970 ret = sort->cmp(l, r); 971 if (ret) 972 return ret; 973 } 974 975 return ret; 976 } 977 978 static struct work_atoms * 979 thread_atoms_search(struct rb_root_cached *root, struct thread *thread, 980 struct list_head *sort_list) 981 { 982 struct rb_node *node = root->rb_root.rb_node; 983 struct work_atoms key = { .thread = thread }; 984 985 while (node) { 986 struct work_atoms *atoms; 987 int cmp; 988 989 atoms = container_of(node, struct work_atoms, node); 990 991 cmp = thread_lat_cmp(sort_list, &key, atoms); 992 if (cmp > 0) 993 node = node->rb_left; 994 else if (cmp < 0) 995 node = node->rb_right; 996 else { 997 BUG_ON(!RC_CHK_EQUAL(thread, atoms->thread)); 998 return atoms; 999 } 1000 } 1001 return NULL; 1002 } 1003 1004 static void 1005 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data, 1006 struct list_head *sort_list) 1007 { 1008 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 1009 bool leftmost = true; 1010 1011 while (*new) { 1012 struct work_atoms *this; 1013 int cmp; 1014 1015 this = container_of(*new, struct work_atoms, node); 1016 parent = *new; 1017 1018 cmp = thread_lat_cmp(sort_list, data, this); 1019 1020 if (cmp > 0) 1021 new = &((*new)->rb_left); 1022 else { 1023 new = &((*new)->rb_right); 1024 leftmost = false; 1025 } 1026 } 1027 1028 rb_link_node(&data->node, parent, new); 1029 rb_insert_color_cached(&data->node, root, leftmost); 1030 } 1031 1032 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 1033 { 1034 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 1035 if (!atoms) { 1036 pr_err("No memory at %s\n", __func__); 1037 return -1; 1038 } 1039 1040 atoms->thread = thread__get(thread); 1041 INIT_LIST_HEAD(&atoms->work_list); 1042 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 1043 return 0; 1044 } 1045 1046 static int 1047 add_sched_out_event(struct work_atoms *atoms, 1048 char run_state, 1049 u64 timestamp) 1050 { 1051 struct work_atom *atom = zalloc(sizeof(*atom)); 1052 if (!atom) { 1053 pr_err("Non memory at %s", __func__); 1054 return -1; 1055 } 1056 1057 atom->sched_out_time = timestamp; 1058 1059 if (run_state == 'R') { 1060 atom->state = THREAD_WAIT_CPU; 1061 atom->wake_up_time = atom->sched_out_time; 1062 } 1063 1064 list_add_tail(&atom->list, &atoms->work_list); 1065 return 0; 1066 } 1067 1068 static void 1069 add_runtime_event(struct work_atoms *atoms, u64 delta, 1070 u64 timestamp __maybe_unused) 1071 { 1072 struct work_atom *atom; 1073 1074 BUG_ON(list_empty(&atoms->work_list)); 1075 1076 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1077 1078 atom->runtime += delta; 1079 atoms->total_runtime += delta; 1080 } 1081 1082 static void 1083 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 1084 { 1085 struct work_atom *atom; 1086 u64 delta; 1087 1088 if (list_empty(&atoms->work_list)) 1089 return; 1090 1091 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1092 1093 if (atom->state != THREAD_WAIT_CPU) 1094 return; 1095 1096 if (timestamp < atom->wake_up_time) { 1097 atom->state = THREAD_IGNORE; 1098 return; 1099 } 1100 1101 atom->state = THREAD_SCHED_IN; 1102 atom->sched_in_time = timestamp; 1103 1104 delta = atom->sched_in_time - atom->wake_up_time; 1105 atoms->total_lat += delta; 1106 if (delta > atoms->max_lat) { 1107 atoms->max_lat = delta; 1108 atoms->max_lat_start = atom->wake_up_time; 1109 atoms->max_lat_end = timestamp; 1110 } 1111 atoms->nb_atoms++; 1112 } 1113 1114 static void free_work_atoms(struct work_atoms *atoms) 1115 { 1116 struct work_atom *atom, *tmp; 1117 1118 if (atoms == NULL) 1119 return; 1120 1121 list_for_each_entry_safe(atom, tmp, &atoms->work_list, list) { 1122 list_del(&atom->list); 1123 free(atom); 1124 } 1125 thread__zput(atoms->thread); 1126 free(atoms); 1127 } 1128 1129 static int latency_switch_event(struct perf_sched *sched, 1130 struct evsel *evsel, 1131 struct perf_sample *sample, 1132 struct machine *machine) 1133 { 1134 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 1135 next_pid = evsel__intval(evsel, sample, "next_pid"); 1136 const char prev_state = evsel__taskstate(evsel, sample, "prev_state"); 1137 struct work_atoms *out_events, *in_events; 1138 struct thread *sched_out, *sched_in; 1139 u64 timestamp0, timestamp = sample->time; 1140 int cpu = sample->cpu, err = -1; 1141 s64 delta; 1142 1143 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1144 1145 timestamp0 = sched->cpu_last_switched[cpu]; 1146 sched->cpu_last_switched[cpu] = timestamp; 1147 if (timestamp0) 1148 delta = timestamp - timestamp0; 1149 else 1150 delta = 0; 1151 1152 if (delta < 0) { 1153 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1154 return -1; 1155 } 1156 1157 sched_out = machine__findnew_thread(machine, -1, prev_pid); 1158 sched_in = machine__findnew_thread(machine, -1, next_pid); 1159 if (sched_out == NULL || sched_in == NULL) 1160 goto out_put; 1161 1162 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1163 if (!out_events) { 1164 if (thread_atoms_insert(sched, sched_out)) 1165 goto out_put; 1166 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1167 if (!out_events) { 1168 pr_err("out-event: Internal tree error"); 1169 goto out_put; 1170 } 1171 } 1172 if (add_sched_out_event(out_events, prev_state, timestamp)) 1173 return -1; 1174 1175 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1176 if (!in_events) { 1177 if (thread_atoms_insert(sched, sched_in)) 1178 goto out_put; 1179 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1180 if (!in_events) { 1181 pr_err("in-event: Internal tree error"); 1182 goto out_put; 1183 } 1184 /* 1185 * Take came in we have not heard about yet, 1186 * add in an initial atom in runnable state: 1187 */ 1188 if (add_sched_out_event(in_events, 'R', timestamp)) 1189 goto out_put; 1190 } 1191 add_sched_in_event(in_events, timestamp); 1192 err = 0; 1193 out_put: 1194 thread__put(sched_out); 1195 thread__put(sched_in); 1196 return err; 1197 } 1198 1199 static int latency_runtime_event(struct perf_sched *sched, 1200 struct evsel *evsel, 1201 struct perf_sample *sample, 1202 struct machine *machine) 1203 { 1204 const u32 pid = evsel__intval(evsel, sample, "pid"); 1205 const u64 runtime = evsel__intval(evsel, sample, "runtime"); 1206 struct thread *thread = machine__findnew_thread(machine, -1, pid); 1207 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1208 u64 timestamp = sample->time; 1209 int cpu = sample->cpu, err = -1; 1210 1211 if (thread == NULL) 1212 return -1; 1213 1214 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1215 if (!atoms) { 1216 if (thread_atoms_insert(sched, thread)) 1217 goto out_put; 1218 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1219 if (!atoms) { 1220 pr_err("in-event: Internal tree error"); 1221 goto out_put; 1222 } 1223 if (add_sched_out_event(atoms, 'R', timestamp)) 1224 goto out_put; 1225 } 1226 1227 add_runtime_event(atoms, runtime, timestamp); 1228 err = 0; 1229 out_put: 1230 thread__put(thread); 1231 return err; 1232 } 1233 1234 static int latency_wakeup_event(struct perf_sched *sched, 1235 struct evsel *evsel, 1236 struct perf_sample *sample, 1237 struct machine *machine) 1238 { 1239 const u32 pid = evsel__intval(evsel, sample, "pid"); 1240 struct work_atoms *atoms; 1241 struct work_atom *atom; 1242 struct thread *wakee; 1243 u64 timestamp = sample->time; 1244 int err = -1; 1245 1246 wakee = machine__findnew_thread(machine, -1, pid); 1247 if (wakee == NULL) 1248 return -1; 1249 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1250 if (!atoms) { 1251 if (thread_atoms_insert(sched, wakee)) 1252 goto out_put; 1253 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1254 if (!atoms) { 1255 pr_err("wakeup-event: Internal tree error"); 1256 goto out_put; 1257 } 1258 if (add_sched_out_event(atoms, 'S', timestamp)) 1259 goto out_put; 1260 } 1261 1262 BUG_ON(list_empty(&atoms->work_list)); 1263 1264 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1265 1266 /* 1267 * As we do not guarantee the wakeup event happens when 1268 * task is out of run queue, also may happen when task is 1269 * on run queue and wakeup only change ->state to TASK_RUNNING, 1270 * then we should not set the ->wake_up_time when wake up a 1271 * task which is on run queue. 1272 * 1273 * You WILL be missing events if you've recorded only 1274 * one CPU, or are only looking at only one, so don't 1275 * skip in this case. 1276 */ 1277 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1278 goto out_ok; 1279 1280 sched->nr_timestamps++; 1281 if (atom->sched_out_time > timestamp) { 1282 sched->nr_unordered_timestamps++; 1283 goto out_ok; 1284 } 1285 1286 atom->state = THREAD_WAIT_CPU; 1287 atom->wake_up_time = timestamp; 1288 out_ok: 1289 err = 0; 1290 out_put: 1291 thread__put(wakee); 1292 return err; 1293 } 1294 1295 static int latency_migrate_task_event(struct perf_sched *sched, 1296 struct evsel *evsel, 1297 struct perf_sample *sample, 1298 struct machine *machine) 1299 { 1300 const u32 pid = evsel__intval(evsel, sample, "pid"); 1301 u64 timestamp = sample->time; 1302 struct work_atoms *atoms; 1303 struct work_atom *atom; 1304 struct thread *migrant; 1305 int err = -1; 1306 1307 /* 1308 * Only need to worry about migration when profiling one CPU. 1309 */ 1310 if (sched->profile_cpu == -1) 1311 return 0; 1312 1313 migrant = machine__findnew_thread(machine, -1, pid); 1314 if (migrant == NULL) 1315 return -1; 1316 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1317 if (!atoms) { 1318 if (thread_atoms_insert(sched, migrant)) 1319 goto out_put; 1320 register_pid(sched, thread__tid(migrant), thread__comm_str(migrant)); 1321 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1322 if (!atoms) { 1323 pr_err("migration-event: Internal tree error"); 1324 goto out_put; 1325 } 1326 if (add_sched_out_event(atoms, 'R', timestamp)) 1327 goto out_put; 1328 } 1329 1330 BUG_ON(list_empty(&atoms->work_list)); 1331 1332 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1333 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1334 1335 sched->nr_timestamps++; 1336 1337 if (atom->sched_out_time > timestamp) 1338 sched->nr_unordered_timestamps++; 1339 err = 0; 1340 out_put: 1341 thread__put(migrant); 1342 return err; 1343 } 1344 1345 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1346 { 1347 int i; 1348 int ret; 1349 u64 avg; 1350 char max_lat_start[32], max_lat_end[32]; 1351 1352 if (!work_list->nb_atoms) 1353 return; 1354 /* 1355 * Ignore idle threads: 1356 */ 1357 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1358 return; 1359 1360 sched->all_runtime += work_list->total_runtime; 1361 sched->all_count += work_list->nb_atoms; 1362 1363 if (work_list->num_merged > 1) { 1364 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), 1365 work_list->num_merged); 1366 } else { 1367 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), 1368 thread__tid(work_list->thread)); 1369 } 1370 1371 for (i = 0; i < 24 - ret; i++) 1372 printf(" "); 1373 1374 avg = work_list->total_lat / work_list->nb_atoms; 1375 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start)); 1376 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end)); 1377 1378 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n", 1379 (double)work_list->total_runtime / NSEC_PER_MSEC, 1380 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC, 1381 (double)work_list->max_lat / NSEC_PER_MSEC, 1382 max_lat_start, max_lat_end); 1383 } 1384 1385 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1386 { 1387 pid_t l_tid, r_tid; 1388 1389 if (RC_CHK_EQUAL(l->thread, r->thread)) 1390 return 0; 1391 l_tid = thread__tid(l->thread); 1392 r_tid = thread__tid(r->thread); 1393 if (l_tid < r_tid) 1394 return -1; 1395 if (l_tid > r_tid) 1396 return 1; 1397 return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread)); 1398 } 1399 1400 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1401 { 1402 u64 avgl, avgr; 1403 1404 if (!l->nb_atoms) 1405 return -1; 1406 1407 if (!r->nb_atoms) 1408 return 1; 1409 1410 avgl = l->total_lat / l->nb_atoms; 1411 avgr = r->total_lat / r->nb_atoms; 1412 1413 if (avgl < avgr) 1414 return -1; 1415 if (avgl > avgr) 1416 return 1; 1417 1418 return 0; 1419 } 1420 1421 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1422 { 1423 if (l->max_lat < r->max_lat) 1424 return -1; 1425 if (l->max_lat > r->max_lat) 1426 return 1; 1427 1428 return 0; 1429 } 1430 1431 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1432 { 1433 if (l->nb_atoms < r->nb_atoms) 1434 return -1; 1435 if (l->nb_atoms > r->nb_atoms) 1436 return 1; 1437 1438 return 0; 1439 } 1440 1441 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1442 { 1443 if (l->total_runtime < r->total_runtime) 1444 return -1; 1445 if (l->total_runtime > r->total_runtime) 1446 return 1; 1447 1448 return 0; 1449 } 1450 1451 static int sort_dimension__add(const char *tok, struct list_head *list) 1452 { 1453 size_t i; 1454 static struct sort_dimension avg_sort_dimension = { 1455 .name = "avg", 1456 .cmp = avg_cmp, 1457 }; 1458 static struct sort_dimension max_sort_dimension = { 1459 .name = "max", 1460 .cmp = max_cmp, 1461 }; 1462 static struct sort_dimension pid_sort_dimension = { 1463 .name = "pid", 1464 .cmp = pid_cmp, 1465 }; 1466 static struct sort_dimension runtime_sort_dimension = { 1467 .name = "runtime", 1468 .cmp = runtime_cmp, 1469 }; 1470 static struct sort_dimension switch_sort_dimension = { 1471 .name = "switch", 1472 .cmp = switch_cmp, 1473 }; 1474 struct sort_dimension *available_sorts[] = { 1475 &pid_sort_dimension, 1476 &avg_sort_dimension, 1477 &max_sort_dimension, 1478 &switch_sort_dimension, 1479 &runtime_sort_dimension, 1480 }; 1481 1482 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1483 if (!strcmp(available_sorts[i]->name, tok)) { 1484 list_add_tail(&available_sorts[i]->list, list); 1485 1486 return 0; 1487 } 1488 } 1489 1490 return -1; 1491 } 1492 1493 static void perf_sched__sort_lat(struct perf_sched *sched) 1494 { 1495 struct rb_node *node; 1496 struct rb_root_cached *root = &sched->atom_root; 1497 again: 1498 for (;;) { 1499 struct work_atoms *data; 1500 node = rb_first_cached(root); 1501 if (!node) 1502 break; 1503 1504 rb_erase_cached(node, root); 1505 data = rb_entry(node, struct work_atoms, node); 1506 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1507 } 1508 if (root == &sched->atom_root) { 1509 root = &sched->merged_atom_root; 1510 goto again; 1511 } 1512 } 1513 1514 static int process_sched_wakeup_event(const struct perf_tool *tool, 1515 struct evsel *evsel, 1516 struct perf_sample *sample, 1517 struct machine *machine) 1518 { 1519 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1520 1521 if (sched->tp_handler->wakeup_event) 1522 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1523 1524 return 0; 1525 } 1526 1527 static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused, 1528 struct evsel *evsel __maybe_unused, 1529 struct perf_sample *sample __maybe_unused, 1530 struct machine *machine __maybe_unused) 1531 { 1532 return 0; 1533 } 1534 1535 static bool thread__has_color(struct thread *thread) 1536 { 1537 return thread__priv(thread) != NULL; 1538 } 1539 1540 static struct thread* 1541 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) 1542 { 1543 struct thread *thread = machine__findnew_thread(machine, pid, tid); 1544 bool color = false; 1545 1546 if (!sched->map.color_pids || !thread || thread__priv(thread)) 1547 return thread; 1548 1549 if (thread_map__has(sched->map.color_pids, tid)) 1550 color = true; 1551 1552 thread__set_priv(thread, color ? ((void*)1) : NULL); 1553 return thread; 1554 } 1555 1556 static bool sched_match_task(struct perf_sched *sched, const char *comm_str) 1557 { 1558 bool fuzzy_match = sched->map.fuzzy; 1559 struct strlist *task_names = sched->map.task_names; 1560 struct str_node *node; 1561 1562 strlist__for_each_entry(node, task_names) { 1563 bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) : 1564 !strcmp(comm_str, node->s); 1565 if (match_found) 1566 return true; 1567 } 1568 1569 return false; 1570 } 1571 1572 static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr, 1573 const char *color, bool sched_out) 1574 { 1575 for (int i = 0; i < cpus_nr; i++) { 1576 struct perf_cpu cpu = { 1577 .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i, 1578 }; 1579 struct thread *curr_thread = sched->curr_thread[cpu.cpu]; 1580 struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu]; 1581 struct thread_runtime *curr_tr; 1582 const char *pid_color = color; 1583 const char *cpu_color = color; 1584 char symbol = ' '; 1585 struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread; 1586 1587 if (thread_to_check && thread__has_color(thread_to_check)) 1588 pid_color = COLOR_PIDS; 1589 1590 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu)) 1591 cpu_color = COLOR_CPUS; 1592 1593 if (cpu.cpu == this_cpu.cpu) 1594 symbol = '*'; 1595 1596 color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol); 1597 1598 thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] : 1599 sched->curr_thread[cpu.cpu]; 1600 1601 if (thread_to_check) { 1602 curr_tr = thread__get_runtime(thread_to_check); 1603 if (curr_tr == NULL) 1604 return; 1605 1606 if (sched_out) { 1607 if (cpu.cpu == this_cpu.cpu) 1608 color_fprintf(stdout, color, "- "); 1609 else { 1610 curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]); 1611 if (curr_tr != NULL) 1612 color_fprintf(stdout, pid_color, "%2s ", 1613 curr_tr->shortname); 1614 } 1615 } else 1616 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname); 1617 } else 1618 color_fprintf(stdout, color, " "); 1619 } 1620 } 1621 1622 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel, 1623 struct perf_sample *sample, struct machine *machine) 1624 { 1625 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 1626 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"); 1627 struct thread *sched_in, *sched_out; 1628 struct thread_runtime *tr; 1629 int new_shortname; 1630 u64 timestamp0, timestamp = sample->time; 1631 s64 delta; 1632 struct perf_cpu this_cpu = { 1633 .cpu = sample->cpu, 1634 }; 1635 int cpus_nr; 1636 int proceed; 1637 bool new_cpu = false; 1638 const char *color = PERF_COLOR_NORMAL; 1639 char stimestamp[32]; 1640 const char *str; 1641 int ret = -1; 1642 1643 BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0); 1644 1645 if (this_cpu.cpu > sched->max_cpu.cpu) 1646 sched->max_cpu = this_cpu; 1647 1648 if (sched->map.comp) { 1649 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); 1650 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) { 1651 sched->map.comp_cpus[cpus_nr++] = this_cpu; 1652 new_cpu = true; 1653 } 1654 } else 1655 cpus_nr = sched->max_cpu.cpu; 1656 1657 timestamp0 = sched->cpu_last_switched[this_cpu.cpu]; 1658 sched->cpu_last_switched[this_cpu.cpu] = timestamp; 1659 if (timestamp0) 1660 delta = timestamp - timestamp0; 1661 else 1662 delta = 0; 1663 1664 if (delta < 0) { 1665 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1666 return -1; 1667 } 1668 1669 sched_in = map__findnew_thread(sched, machine, -1, next_pid); 1670 sched_out = map__findnew_thread(sched, machine, -1, prev_pid); 1671 if (sched_in == NULL || sched_out == NULL) 1672 goto out; 1673 1674 tr = thread__get_runtime(sched_in); 1675 if (tr == NULL) 1676 goto out; 1677 1678 thread__put(sched->curr_thread[this_cpu.cpu]); 1679 thread__put(sched->curr_out_thread[this_cpu.cpu]); 1680 1681 sched->curr_thread[this_cpu.cpu] = thread__get(sched_in); 1682 sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out); 1683 1684 ret = 0; 1685 1686 str = thread__comm_str(sched_in); 1687 new_shortname = 0; 1688 if (!tr->shortname[0]) { 1689 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1690 /* 1691 * Don't allocate a letter-number for swapper:0 1692 * as a shortname. Instead, we use '.' for it. 1693 */ 1694 tr->shortname[0] = '.'; 1695 tr->shortname[1] = ' '; 1696 } else if (!sched->map.task_name || sched_match_task(sched, str)) { 1697 tr->shortname[0] = sched->next_shortname1; 1698 tr->shortname[1] = sched->next_shortname2; 1699 1700 if (sched->next_shortname1 < 'Z') { 1701 sched->next_shortname1++; 1702 } else { 1703 sched->next_shortname1 = 'A'; 1704 if (sched->next_shortname2 < '9') 1705 sched->next_shortname2++; 1706 else 1707 sched->next_shortname2 = '0'; 1708 } 1709 } else { 1710 tr->shortname[0] = '-'; 1711 tr->shortname[1] = ' '; 1712 } 1713 new_shortname = 1; 1714 } 1715 1716 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu)) 1717 goto out; 1718 1719 proceed = 0; 1720 str = thread__comm_str(sched_in); 1721 /* 1722 * Check which of sched_in and sched_out matches the passed --task-name 1723 * arguments and call the corresponding print_sched_map. 1724 */ 1725 if (sched->map.task_name && !sched_match_task(sched, str)) { 1726 if (!sched_match_task(sched, thread__comm_str(sched_out))) 1727 goto out; 1728 else 1729 goto sched_out; 1730 1731 } else { 1732 str = thread__comm_str(sched_out); 1733 if (!(sched->map.task_name && !sched_match_task(sched, str))) 1734 proceed = 1; 1735 } 1736 1737 printf(" "); 1738 1739 print_sched_map(sched, this_cpu, cpus_nr, color, false); 1740 1741 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1742 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1743 if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) { 1744 const char *pid_color = color; 1745 1746 if (thread__has_color(sched_in)) 1747 pid_color = COLOR_PIDS; 1748 1749 color_fprintf(stdout, pid_color, "%s => %s:%d", 1750 tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in)); 1751 tr->comm_changed = false; 1752 } 1753 1754 if (sched->map.comp && new_cpu) 1755 color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu); 1756 1757 if (proceed != 1) { 1758 color_fprintf(stdout, color, "\n"); 1759 goto out; 1760 } 1761 1762 sched_out: 1763 if (sched->map.task_name) { 1764 tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]); 1765 if (strcmp(tr->shortname, "") == 0) 1766 goto out; 1767 1768 if (proceed == 1) 1769 color_fprintf(stdout, color, "\n"); 1770 1771 printf(" "); 1772 print_sched_map(sched, this_cpu, cpus_nr, color, true); 1773 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1774 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1775 } 1776 1777 color_fprintf(stdout, color, "\n"); 1778 1779 out: 1780 thread__put(sched_out); 1781 thread__put(sched_in); 1782 1783 return ret; 1784 } 1785 1786 static int process_sched_switch_event(const struct perf_tool *tool, 1787 struct evsel *evsel, 1788 struct perf_sample *sample, 1789 struct machine *machine) 1790 { 1791 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1792 int this_cpu = sample->cpu, err = 0; 1793 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 1794 next_pid = evsel__intval(evsel, sample, "next_pid"); 1795 1796 if (sched->curr_pid[this_cpu] != (u32)-1) { 1797 /* 1798 * Are we trying to switch away a PID that is 1799 * not current? 1800 */ 1801 if (sched->curr_pid[this_cpu] != prev_pid) 1802 sched->nr_context_switch_bugs++; 1803 } 1804 1805 if (sched->tp_handler->switch_event) 1806 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1807 1808 sched->curr_pid[this_cpu] = next_pid; 1809 return err; 1810 } 1811 1812 static int process_sched_runtime_event(const struct perf_tool *tool, 1813 struct evsel *evsel, 1814 struct perf_sample *sample, 1815 struct machine *machine) 1816 { 1817 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1818 1819 if (sched->tp_handler->runtime_event) 1820 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1821 1822 return 0; 1823 } 1824 1825 static int perf_sched__process_fork_event(const struct perf_tool *tool, 1826 union perf_event *event, 1827 struct perf_sample *sample, 1828 struct machine *machine) 1829 { 1830 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1831 1832 /* run the fork event through the perf machinery */ 1833 perf_event__process_fork(tool, event, sample, machine); 1834 1835 /* and then run additional processing needed for this command */ 1836 if (sched->tp_handler->fork_event) 1837 return sched->tp_handler->fork_event(sched, event, machine); 1838 1839 return 0; 1840 } 1841 1842 static int process_sched_migrate_task_event(const struct perf_tool *tool, 1843 struct evsel *evsel, 1844 struct perf_sample *sample, 1845 struct machine *machine) 1846 { 1847 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1848 1849 if (sched->tp_handler->migrate_task_event) 1850 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1851 1852 return 0; 1853 } 1854 1855 typedef int (*tracepoint_handler)(const struct perf_tool *tool, 1856 struct evsel *evsel, 1857 struct perf_sample *sample, 1858 struct machine *machine); 1859 1860 static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused, 1861 union perf_event *event __maybe_unused, 1862 struct perf_sample *sample, 1863 struct evsel *evsel, 1864 struct machine *machine) 1865 { 1866 int err = 0; 1867 1868 if (evsel->handler != NULL) { 1869 tracepoint_handler f = evsel->handler; 1870 err = f(tool, evsel, sample, machine); 1871 } 1872 1873 return err; 1874 } 1875 1876 static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused, 1877 union perf_event *event, 1878 struct perf_sample *sample, 1879 struct machine *machine) 1880 { 1881 struct thread *thread; 1882 struct thread_runtime *tr; 1883 int err; 1884 1885 err = perf_event__process_comm(tool, event, sample, machine); 1886 if (err) 1887 return err; 1888 1889 thread = machine__find_thread(machine, sample->pid, sample->tid); 1890 if (!thread) { 1891 pr_err("Internal error: can't find thread\n"); 1892 return -1; 1893 } 1894 1895 tr = thread__get_runtime(thread); 1896 if (tr == NULL) { 1897 thread__put(thread); 1898 return -1; 1899 } 1900 1901 tr->comm_changed = true; 1902 thread__put(thread); 1903 1904 return 0; 1905 } 1906 1907 static int perf_sched__read_events(struct perf_sched *sched) 1908 { 1909 struct evsel_str_handler handlers[] = { 1910 { "sched:sched_switch", process_sched_switch_event, }, 1911 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1912 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1913 { "sched:sched_waking", process_sched_wakeup_event, }, 1914 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1915 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1916 }; 1917 struct perf_session *session; 1918 struct perf_data data = { 1919 .path = input_name, 1920 .mode = PERF_DATA_MODE_READ, 1921 .force = sched->force, 1922 }; 1923 int rc = -1; 1924 1925 session = perf_session__new(&data, &sched->tool); 1926 if (IS_ERR(session)) { 1927 pr_debug("Error creating perf session"); 1928 return PTR_ERR(session); 1929 } 1930 1931 symbol__init(perf_session__env(session)); 1932 1933 /* prefer sched_waking if it is captured */ 1934 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) 1935 handlers[2].handler = process_sched_wakeup_ignore; 1936 1937 if (perf_session__set_tracepoints_handlers(session, handlers)) 1938 goto out_delete; 1939 1940 if (perf_session__has_traces(session, "record -R")) { 1941 int err = perf_session__process_events(session); 1942 if (err) { 1943 pr_err("Failed to process events, error %d", err); 1944 goto out_delete; 1945 } 1946 1947 sched->nr_events = session->evlist->stats.nr_events[0]; 1948 sched->nr_lost_events = session->evlist->stats.total_lost; 1949 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; 1950 } 1951 1952 rc = 0; 1953 out_delete: 1954 perf_session__delete(session); 1955 return rc; 1956 } 1957 1958 /* 1959 * scheduling times are printed as msec.usec 1960 */ 1961 static inline void print_sched_time(unsigned long long nsecs, int width) 1962 { 1963 unsigned long msecs; 1964 unsigned long usecs; 1965 1966 msecs = nsecs / NSEC_PER_MSEC; 1967 nsecs -= msecs * NSEC_PER_MSEC; 1968 usecs = nsecs / NSEC_PER_USEC; 1969 printf("%*lu.%03lu ", width, msecs, usecs); 1970 } 1971 1972 /* 1973 * returns runtime data for event, allocating memory for it the 1974 * first time it is used. 1975 */ 1976 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel) 1977 { 1978 struct evsel_runtime *r = evsel->priv; 1979 1980 if (r == NULL) { 1981 r = zalloc(sizeof(struct evsel_runtime)); 1982 evsel->priv = r; 1983 } 1984 1985 return r; 1986 } 1987 1988 /* 1989 * save last time event was seen per cpu 1990 */ 1991 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu) 1992 { 1993 struct evsel_runtime *r = evsel__get_runtime(evsel); 1994 1995 if (r == NULL) 1996 return; 1997 1998 if ((cpu >= r->ncpu) || (r->last_time == NULL)) { 1999 int i, n = __roundup_pow_of_two(cpu+1); 2000 void *p = r->last_time; 2001 2002 p = realloc(r->last_time, n * sizeof(u64)); 2003 if (!p) 2004 return; 2005 2006 r->last_time = p; 2007 for (i = r->ncpu; i < n; ++i) 2008 r->last_time[i] = (u64) 0; 2009 2010 r->ncpu = n; 2011 } 2012 2013 r->last_time[cpu] = timestamp; 2014 } 2015 2016 /* returns last time this event was seen on the given cpu */ 2017 static u64 evsel__get_time(struct evsel *evsel, u32 cpu) 2018 { 2019 struct evsel_runtime *r = evsel__get_runtime(evsel); 2020 2021 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu)) 2022 return 0; 2023 2024 return r->last_time[cpu]; 2025 } 2026 2027 static void timehist__evsel_priv_destructor(void *priv) 2028 { 2029 struct evsel_runtime *r = priv; 2030 2031 if (r) { 2032 free(r->last_time); 2033 free(r); 2034 } 2035 } 2036 2037 static int comm_width = 30; 2038 2039 static char *timehist_get_commstr(struct thread *thread) 2040 { 2041 static char str[32]; 2042 const char *comm = thread__comm_str(thread); 2043 pid_t tid = thread__tid(thread); 2044 pid_t pid = thread__pid(thread); 2045 int n; 2046 2047 if (pid == 0) 2048 n = scnprintf(str, sizeof(str), "%s", comm); 2049 2050 else if (tid != pid) 2051 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid); 2052 2053 else 2054 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid); 2055 2056 if (n > comm_width) 2057 comm_width = n; 2058 2059 return str; 2060 } 2061 2062 /* prio field format: xxx or xxx->yyy */ 2063 #define MAX_PRIO_STR_LEN 8 2064 static char *timehist_get_priostr(struct evsel *evsel, 2065 struct thread *thread, 2066 struct perf_sample *sample) 2067 { 2068 static char prio_str[16]; 2069 int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio"); 2070 struct thread_runtime *tr = thread__priv(thread); 2071 2072 if (tr->prio != prev_prio && tr->prio != -1) 2073 scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio); 2074 else 2075 scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio); 2076 2077 return prio_str; 2078 } 2079 2080 static void timehist_header(struct perf_sched *sched) 2081 { 2082 u32 ncpus = sched->max_cpu.cpu + 1; 2083 u32 i, j; 2084 2085 printf("%15s %6s ", "time", "cpu"); 2086 2087 if (sched->show_cpu_visual) { 2088 printf(" "); 2089 for (i = 0, j = 0; i < ncpus; ++i) { 2090 printf("%x", j++); 2091 if (j > 15) 2092 j = 0; 2093 } 2094 printf(" "); 2095 } 2096 2097 printf(" %-*s", comm_width, "task name"); 2098 2099 if (sched->show_prio) 2100 printf(" %-*s", MAX_PRIO_STR_LEN, "prio"); 2101 2102 printf(" %9s %9s %9s", "wait time", "sch delay", "run time"); 2103 2104 if (sched->pre_migrations) 2105 printf(" %9s", "pre-mig time"); 2106 2107 if (sched->show_state) 2108 printf(" %s", "state"); 2109 2110 printf("\n"); 2111 2112 /* 2113 * units row 2114 */ 2115 printf("%15s %-6s ", "", ""); 2116 2117 if (sched->show_cpu_visual) 2118 printf(" %*s ", ncpus, ""); 2119 2120 printf(" %-*s", comm_width, "[tid/pid]"); 2121 2122 if (sched->show_prio) 2123 printf(" %-*s", MAX_PRIO_STR_LEN, ""); 2124 2125 printf(" %9s %9s %9s", "(msec)", "(msec)", "(msec)"); 2126 2127 if (sched->pre_migrations) 2128 printf(" %9s", "(msec)"); 2129 2130 printf("\n"); 2131 2132 /* 2133 * separator 2134 */ 2135 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line); 2136 2137 if (sched->show_cpu_visual) 2138 printf(" %.*s ", ncpus, graph_dotted_line); 2139 2140 printf(" %.*s", comm_width, graph_dotted_line); 2141 2142 if (sched->show_prio) 2143 printf(" %.*s", MAX_PRIO_STR_LEN, graph_dotted_line); 2144 2145 printf(" %.9s %.9s %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line); 2146 2147 if (sched->pre_migrations) 2148 printf(" %.9s", graph_dotted_line); 2149 2150 if (sched->show_state) 2151 printf(" %.5s", graph_dotted_line); 2152 2153 printf("\n"); 2154 } 2155 2156 static void timehist_print_sample(struct perf_sched *sched, 2157 struct evsel *evsel, 2158 struct perf_sample *sample, 2159 struct addr_location *al, 2160 struct thread *thread, 2161 u64 t, const char state) 2162 { 2163 struct thread_runtime *tr = thread__priv(thread); 2164 const char *next_comm = evsel__strval(evsel, sample, "next_comm"); 2165 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 2166 u32 max_cpus = sched->max_cpu.cpu + 1; 2167 char tstr[64]; 2168 char nstr[30]; 2169 u64 wait_time; 2170 2171 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap)) 2172 return; 2173 2174 timestamp__scnprintf_usec(t, tstr, sizeof(tstr)); 2175 printf("%15s [%04d] ", tstr, sample->cpu); 2176 2177 if (sched->show_cpu_visual) { 2178 u32 i; 2179 char c; 2180 2181 printf(" "); 2182 for (i = 0; i < max_cpus; ++i) { 2183 /* flag idle times with 'i'; others are sched events */ 2184 if (i == sample->cpu) 2185 c = (thread__tid(thread) == 0) ? 'i' : 's'; 2186 else 2187 c = ' '; 2188 printf("%c", c); 2189 } 2190 printf(" "); 2191 } 2192 2193 if (!thread__comm_set(thread)) { 2194 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"); 2195 thread__set_comm(thread, prev_comm, sample->time); 2196 } 2197 2198 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2199 2200 if (sched->show_prio) 2201 printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample)); 2202 2203 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt; 2204 print_sched_time(wait_time, 6); 2205 2206 print_sched_time(tr->dt_delay, 6); 2207 print_sched_time(tr->dt_run, 6); 2208 if (sched->pre_migrations) 2209 print_sched_time(tr->dt_pre_mig, 6); 2210 2211 if (sched->show_state) 2212 printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state); 2213 2214 if (sched->show_next) { 2215 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid); 2216 printf(" %-*s", comm_width, nstr); 2217 } 2218 2219 if (sched->show_wakeups && !sched->show_next) 2220 printf(" %-*s", comm_width, ""); 2221 2222 if (thread__tid(thread) == 0) 2223 goto out; 2224 2225 if (sched->show_callchain) 2226 printf(" "); 2227 2228 sample__fprintf_sym(sample, al, 0, 2229 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE | 2230 EVSEL__PRINT_CALLCHAIN_ARROW | 2231 EVSEL__PRINT_SKIP_IGNORED, 2232 get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout); 2233 2234 out: 2235 printf("\n"); 2236 } 2237 2238 /* 2239 * Explanation of delta-time stats: 2240 * 2241 * t = time of current schedule out event 2242 * tprev = time of previous sched out event 2243 * also time of schedule-in event for current task 2244 * last_time = time of last sched change event for current task 2245 * (i.e, time process was last scheduled out) 2246 * ready_to_run = time of wakeup for current task 2247 * migrated = time of task migration to another CPU 2248 * 2249 * -----|-------------|-------------|-------------|-------------|----- 2250 * last ready migrated tprev t 2251 * time to run 2252 * 2253 * |---------------- dt_wait ----------------| 2254 * |--------- dt_delay ---------|-- dt_run --| 2255 * |- dt_pre_mig -| 2256 * 2257 * dt_run = run time of current task 2258 * dt_wait = time between last schedule out event for task and tprev 2259 * represents time spent off the cpu 2260 * dt_delay = time between wakeup and schedule-in of task 2261 * dt_pre_mig = time between wakeup and migration to another CPU 2262 */ 2263 2264 static void timehist_update_runtime_stats(struct thread_runtime *r, 2265 u64 t, u64 tprev) 2266 { 2267 r->dt_delay = 0; 2268 r->dt_sleep = 0; 2269 r->dt_iowait = 0; 2270 r->dt_preempt = 0; 2271 r->dt_run = 0; 2272 r->dt_pre_mig = 0; 2273 2274 if (tprev) { 2275 r->dt_run = t - tprev; 2276 if (r->ready_to_run) { 2277 if (r->ready_to_run > tprev) 2278 pr_debug("time travel: wakeup time for task > previous sched_switch event\n"); 2279 else 2280 r->dt_delay = tprev - r->ready_to_run; 2281 2282 if ((r->migrated > r->ready_to_run) && (r->migrated < tprev)) 2283 r->dt_pre_mig = r->migrated - r->ready_to_run; 2284 } 2285 2286 if (r->last_time > tprev) 2287 pr_debug("time travel: last sched out time for task > previous sched_switch event\n"); 2288 else if (r->last_time) { 2289 u64 dt_wait = tprev - r->last_time; 2290 2291 if (r->last_state == 'R') 2292 r->dt_preempt = dt_wait; 2293 else if (r->last_state == 'D') 2294 r->dt_iowait = dt_wait; 2295 else 2296 r->dt_sleep = dt_wait; 2297 } 2298 } 2299 2300 update_stats(&r->run_stats, r->dt_run); 2301 2302 r->total_run_time += r->dt_run; 2303 r->total_delay_time += r->dt_delay; 2304 r->total_sleep_time += r->dt_sleep; 2305 r->total_iowait_time += r->dt_iowait; 2306 r->total_preempt_time += r->dt_preempt; 2307 r->total_pre_mig_time += r->dt_pre_mig; 2308 } 2309 2310 static bool is_idle_sample(struct perf_sample *sample, 2311 struct evsel *evsel) 2312 { 2313 /* pid 0 == swapper == idle task */ 2314 if (evsel__name_is(evsel, "sched:sched_switch")) 2315 return evsel__intval(evsel, sample, "prev_pid") == 0; 2316 2317 return sample->pid == 0; 2318 } 2319 2320 static void save_task_callchain(struct perf_sched *sched, 2321 struct perf_sample *sample, 2322 struct evsel *evsel, 2323 struct machine *machine) 2324 { 2325 struct callchain_cursor *cursor; 2326 struct thread *thread; 2327 2328 /* want main thread for process - has maps */ 2329 thread = machine__findnew_thread(machine, sample->pid, sample->pid); 2330 if (thread == NULL) { 2331 pr_debug("Failed to get thread for pid %d.\n", sample->pid); 2332 return; 2333 } 2334 2335 if (!sched->show_callchain || sample->callchain == NULL) { 2336 thread__put(thread); 2337 return; 2338 } 2339 2340 cursor = get_tls_callchain_cursor(); 2341 2342 if (thread__resolve_callchain(thread, cursor, evsel, sample, 2343 NULL, NULL, sched->max_stack + 2) != 0) { 2344 if (verbose > 0) 2345 pr_err("Failed to resolve callchain. Skipping\n"); 2346 2347 thread__put(thread); 2348 return; 2349 } 2350 2351 callchain_cursor_commit(cursor); 2352 thread__put(thread); 2353 2354 while (true) { 2355 struct callchain_cursor_node *node; 2356 struct symbol *sym; 2357 2358 node = callchain_cursor_current(cursor); 2359 if (node == NULL) 2360 break; 2361 2362 sym = node->ms.sym; 2363 if (sym) { 2364 if (!strcmp(sym->name, "schedule") || 2365 !strcmp(sym->name, "__schedule") || 2366 !strcmp(sym->name, "preempt_schedule")) 2367 sym->ignore = 1; 2368 } 2369 2370 callchain_cursor_advance(cursor); 2371 } 2372 } 2373 2374 static int init_idle_thread(struct thread *thread) 2375 { 2376 struct idle_thread_runtime *itr; 2377 2378 thread__set_comm(thread, idle_comm, 0); 2379 2380 itr = zalloc(sizeof(*itr)); 2381 if (itr == NULL) 2382 return -ENOMEM; 2383 2384 init_prio(&itr->tr); 2385 init_stats(&itr->tr.run_stats); 2386 callchain_init(&itr->callchain); 2387 callchain_cursor_reset(&itr->cursor); 2388 thread__set_priv(thread, itr); 2389 2390 return 0; 2391 } 2392 2393 /* 2394 * Track idle stats per cpu by maintaining a local thread 2395 * struct for the idle task on each cpu. 2396 */ 2397 static int init_idle_threads(int ncpu) 2398 { 2399 int i, ret; 2400 2401 idle_threads = zalloc(ncpu * sizeof(struct thread *)); 2402 if (!idle_threads) 2403 return -ENOMEM; 2404 2405 idle_max_cpu = ncpu; 2406 2407 /* allocate the actual thread struct if needed */ 2408 for (i = 0; i < ncpu; ++i) { 2409 idle_threads[i] = thread__new(0, 0); 2410 if (idle_threads[i] == NULL) 2411 return -ENOMEM; 2412 2413 ret = init_idle_thread(idle_threads[i]); 2414 if (ret < 0) 2415 return ret; 2416 } 2417 2418 return 0; 2419 } 2420 2421 static void free_idle_threads(void) 2422 { 2423 int i; 2424 2425 if (idle_threads == NULL) 2426 return; 2427 2428 for (i = 0; i < idle_max_cpu; ++i) { 2429 struct thread *idle = idle_threads[i]; 2430 2431 if (idle) { 2432 struct idle_thread_runtime *itr; 2433 2434 itr = thread__priv(idle); 2435 if (itr) 2436 thread__put(itr->last_thread); 2437 2438 thread__delete(idle); 2439 } 2440 } 2441 2442 free(idle_threads); 2443 } 2444 2445 static struct thread *get_idle_thread(int cpu) 2446 { 2447 /* 2448 * expand/allocate array of pointers to local thread 2449 * structs if needed 2450 */ 2451 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) { 2452 int i, j = __roundup_pow_of_two(cpu+1); 2453 void *p; 2454 2455 p = realloc(idle_threads, j * sizeof(struct thread *)); 2456 if (!p) 2457 return NULL; 2458 2459 idle_threads = (struct thread **) p; 2460 for (i = idle_max_cpu; i < j; ++i) 2461 idle_threads[i] = NULL; 2462 2463 idle_max_cpu = j; 2464 } 2465 2466 /* allocate a new thread struct if needed */ 2467 if (idle_threads[cpu] == NULL) { 2468 idle_threads[cpu] = thread__new(0, 0); 2469 2470 if (idle_threads[cpu]) { 2471 if (init_idle_thread(idle_threads[cpu]) < 0) 2472 return NULL; 2473 } 2474 } 2475 2476 return thread__get(idle_threads[cpu]); 2477 } 2478 2479 static void save_idle_callchain(struct perf_sched *sched, 2480 struct idle_thread_runtime *itr, 2481 struct perf_sample *sample) 2482 { 2483 struct callchain_cursor *cursor; 2484 2485 if (!sched->show_callchain || sample->callchain == NULL) 2486 return; 2487 2488 cursor = get_tls_callchain_cursor(); 2489 if (cursor == NULL) 2490 return; 2491 2492 callchain_cursor__copy(&itr->cursor, cursor); 2493 } 2494 2495 static struct thread *timehist_get_thread(struct perf_sched *sched, 2496 struct perf_sample *sample, 2497 struct machine *machine, 2498 struct evsel *evsel) 2499 { 2500 struct thread *thread; 2501 2502 if (is_idle_sample(sample, evsel)) { 2503 thread = get_idle_thread(sample->cpu); 2504 if (thread == NULL) 2505 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2506 2507 } else { 2508 /* there were samples with tid 0 but non-zero pid */ 2509 thread = machine__findnew_thread(machine, sample->pid, 2510 sample->tid ?: sample->pid); 2511 if (thread == NULL) { 2512 pr_debug("Failed to get thread for tid %d. skipping sample.\n", 2513 sample->tid); 2514 } 2515 2516 save_task_callchain(sched, sample, evsel, machine); 2517 if (sched->idle_hist) { 2518 struct thread *idle; 2519 struct idle_thread_runtime *itr; 2520 2521 idle = get_idle_thread(sample->cpu); 2522 if (idle == NULL) { 2523 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2524 return NULL; 2525 } 2526 2527 itr = thread__priv(idle); 2528 if (itr == NULL) 2529 return NULL; 2530 2531 thread__put(itr->last_thread); 2532 itr->last_thread = thread__get(thread); 2533 2534 /* copy task callchain when entering to idle */ 2535 if (evsel__intval(evsel, sample, "next_pid") == 0) 2536 save_idle_callchain(sched, itr, sample); 2537 } 2538 } 2539 2540 return thread; 2541 } 2542 2543 static bool timehist_skip_sample(struct perf_sched *sched, 2544 struct thread *thread, 2545 struct evsel *evsel, 2546 struct perf_sample *sample) 2547 { 2548 bool rc = false; 2549 int prio = -1; 2550 struct thread_runtime *tr = NULL; 2551 2552 if (thread__is_filtered(thread)) { 2553 rc = true; 2554 sched->skipped_samples++; 2555 } 2556 2557 if (sched->prio_str) { 2558 /* 2559 * Because priority may be changed during task execution, 2560 * first read priority from prev sched_in event for current task. 2561 * If prev sched_in event is not saved, then read priority from 2562 * current task sched_out event. 2563 */ 2564 tr = thread__get_runtime(thread); 2565 if (tr && tr->prio != -1) 2566 prio = tr->prio; 2567 else if (evsel__name_is(evsel, "sched:sched_switch")) 2568 prio = evsel__intval(evsel, sample, "prev_prio"); 2569 2570 if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) { 2571 rc = true; 2572 sched->skipped_samples++; 2573 } 2574 } 2575 2576 if (sched->idle_hist) { 2577 if (!evsel__name_is(evsel, "sched:sched_switch")) 2578 rc = true; 2579 else if (evsel__intval(evsel, sample, "prev_pid") != 0 && 2580 evsel__intval(evsel, sample, "next_pid") != 0) 2581 rc = true; 2582 } 2583 2584 return rc; 2585 } 2586 2587 static void timehist_print_wakeup_event(struct perf_sched *sched, 2588 struct evsel *evsel, 2589 struct perf_sample *sample, 2590 struct machine *machine, 2591 struct thread *awakened) 2592 { 2593 struct thread *thread; 2594 char tstr[64]; 2595 2596 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2597 if (thread == NULL) 2598 return; 2599 2600 /* show wakeup unless both awakee and awaker are filtered */ 2601 if (timehist_skip_sample(sched, thread, evsel, sample) && 2602 timehist_skip_sample(sched, awakened, evsel, sample)) { 2603 thread__put(thread); 2604 return; 2605 } 2606 2607 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2608 printf("%15s [%04d] ", tstr, sample->cpu); 2609 if (sched->show_cpu_visual) 2610 printf(" %*s ", sched->max_cpu.cpu + 1, ""); 2611 2612 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2613 2614 /* dt spacer */ 2615 printf(" %9s %9s %9s ", "", "", ""); 2616 2617 printf("awakened: %s", timehist_get_commstr(awakened)); 2618 2619 printf("\n"); 2620 2621 thread__put(thread); 2622 } 2623 2624 static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused, 2625 union perf_event *event __maybe_unused, 2626 struct evsel *evsel __maybe_unused, 2627 struct perf_sample *sample __maybe_unused, 2628 struct machine *machine __maybe_unused) 2629 { 2630 return 0; 2631 } 2632 2633 static int timehist_sched_wakeup_event(const struct perf_tool *tool, 2634 union perf_event *event __maybe_unused, 2635 struct evsel *evsel, 2636 struct perf_sample *sample, 2637 struct machine *machine) 2638 { 2639 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2640 struct thread *thread; 2641 struct thread_runtime *tr = NULL; 2642 /* want pid of awakened task not pid in sample */ 2643 const u32 pid = evsel__intval(evsel, sample, "pid"); 2644 2645 thread = machine__findnew_thread(machine, 0, pid); 2646 if (thread == NULL) 2647 return -1; 2648 2649 tr = thread__get_runtime(thread); 2650 if (tr == NULL) { 2651 thread__put(thread); 2652 return -1; 2653 } 2654 2655 if (tr->ready_to_run == 0) 2656 tr->ready_to_run = sample->time; 2657 2658 /* show wakeups if requested */ 2659 if (sched->show_wakeups && 2660 !perf_time__skip_sample(&sched->ptime, sample->time)) 2661 timehist_print_wakeup_event(sched, evsel, sample, machine, thread); 2662 2663 thread__put(thread); 2664 return 0; 2665 } 2666 2667 static void timehist_print_migration_event(struct perf_sched *sched, 2668 struct evsel *evsel, 2669 struct perf_sample *sample, 2670 struct machine *machine, 2671 struct thread *migrated) 2672 { 2673 struct thread *thread; 2674 char tstr[64]; 2675 u32 max_cpus; 2676 u32 ocpu, dcpu; 2677 2678 if (sched->summary_only) 2679 return; 2680 2681 max_cpus = sched->max_cpu.cpu + 1; 2682 ocpu = evsel__intval(evsel, sample, "orig_cpu"); 2683 dcpu = evsel__intval(evsel, sample, "dest_cpu"); 2684 2685 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2686 if (thread == NULL) 2687 return; 2688 2689 if (timehist_skip_sample(sched, thread, evsel, sample) && 2690 timehist_skip_sample(sched, migrated, evsel, sample)) { 2691 thread__put(thread); 2692 return; 2693 } 2694 2695 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2696 printf("%15s [%04d] ", tstr, sample->cpu); 2697 2698 if (sched->show_cpu_visual) { 2699 u32 i; 2700 char c; 2701 2702 printf(" "); 2703 for (i = 0; i < max_cpus; ++i) { 2704 c = (i == sample->cpu) ? 'm' : ' '; 2705 printf("%c", c); 2706 } 2707 printf(" "); 2708 } 2709 2710 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2711 2712 /* dt spacer */ 2713 printf(" %9s %9s %9s ", "", "", ""); 2714 2715 printf("migrated: %s", timehist_get_commstr(migrated)); 2716 printf(" cpu %d => %d", ocpu, dcpu); 2717 2718 printf("\n"); 2719 thread__put(thread); 2720 } 2721 2722 static int timehist_migrate_task_event(const struct perf_tool *tool, 2723 union perf_event *event __maybe_unused, 2724 struct evsel *evsel, 2725 struct perf_sample *sample, 2726 struct machine *machine) 2727 { 2728 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2729 struct thread *thread; 2730 struct thread_runtime *tr = NULL; 2731 /* want pid of migrated task not pid in sample */ 2732 const u32 pid = evsel__intval(evsel, sample, "pid"); 2733 2734 thread = machine__findnew_thread(machine, 0, pid); 2735 if (thread == NULL) 2736 return -1; 2737 2738 tr = thread__get_runtime(thread); 2739 if (tr == NULL) { 2740 thread__put(thread); 2741 return -1; 2742 } 2743 2744 tr->migrations++; 2745 tr->migrated = sample->time; 2746 2747 /* show migrations if requested */ 2748 if (sched->show_migrations) { 2749 timehist_print_migration_event(sched, evsel, sample, 2750 machine, thread); 2751 } 2752 thread__put(thread); 2753 2754 return 0; 2755 } 2756 2757 static void timehist_update_task_prio(struct evsel *evsel, 2758 struct perf_sample *sample, 2759 struct machine *machine) 2760 { 2761 struct thread *thread; 2762 struct thread_runtime *tr = NULL; 2763 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 2764 const u32 next_prio = evsel__intval(evsel, sample, "next_prio"); 2765 2766 if (next_pid == 0) 2767 thread = get_idle_thread(sample->cpu); 2768 else 2769 thread = machine__findnew_thread(machine, -1, next_pid); 2770 2771 if (thread == NULL) 2772 return; 2773 2774 tr = thread__get_runtime(thread); 2775 if (tr != NULL) 2776 tr->prio = next_prio; 2777 2778 thread__put(thread); 2779 } 2780 2781 static int timehist_sched_change_event(const struct perf_tool *tool, 2782 union perf_event *event, 2783 struct evsel *evsel, 2784 struct perf_sample *sample, 2785 struct machine *machine) 2786 { 2787 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2788 struct perf_time_interval *ptime = &sched->ptime; 2789 struct addr_location al; 2790 struct thread *thread = NULL; 2791 struct thread_runtime *tr = NULL; 2792 u64 tprev, t = sample->time; 2793 int rc = 0; 2794 const char state = evsel__taskstate(evsel, sample, "prev_state"); 2795 2796 addr_location__init(&al); 2797 if (machine__resolve(machine, &al, sample) < 0) { 2798 pr_err("problem processing %d event. skipping it\n", 2799 event->header.type); 2800 rc = -1; 2801 goto out; 2802 } 2803 2804 if (sched->show_prio || sched->prio_str) 2805 timehist_update_task_prio(evsel, sample, machine); 2806 2807 thread = timehist_get_thread(sched, sample, machine, evsel); 2808 if (thread == NULL) { 2809 rc = -1; 2810 goto out; 2811 } 2812 2813 if (timehist_skip_sample(sched, thread, evsel, sample)) 2814 goto out; 2815 2816 tr = thread__get_runtime(thread); 2817 if (tr == NULL) { 2818 rc = -1; 2819 goto out; 2820 } 2821 2822 tprev = evsel__get_time(evsel, sample->cpu); 2823 2824 /* 2825 * If start time given: 2826 * - sample time is under window user cares about - skip sample 2827 * - tprev is under window user cares about - reset to start of window 2828 */ 2829 if (ptime->start && ptime->start > t) 2830 goto out; 2831 2832 if (tprev && ptime->start > tprev) 2833 tprev = ptime->start; 2834 2835 /* 2836 * If end time given: 2837 * - previous sched event is out of window - we are done 2838 * - sample time is beyond window user cares about - reset it 2839 * to close out stats for time window interest 2840 * - If tprev is 0, that is, sched_in event for current task is 2841 * not recorded, cannot determine whether sched_in event is 2842 * within time window interest - ignore it 2843 */ 2844 if (ptime->end) { 2845 if (!tprev || tprev > ptime->end) 2846 goto out; 2847 2848 if (t > ptime->end) 2849 t = ptime->end; 2850 } 2851 2852 if (!sched->idle_hist || thread__tid(thread) == 0) { 2853 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap)) 2854 timehist_update_runtime_stats(tr, t, tprev); 2855 2856 if (sched->idle_hist) { 2857 struct idle_thread_runtime *itr = (void *)tr; 2858 struct thread_runtime *last_tr; 2859 2860 if (itr->last_thread == NULL) 2861 goto out; 2862 2863 /* add current idle time as last thread's runtime */ 2864 last_tr = thread__get_runtime(itr->last_thread); 2865 if (last_tr == NULL) 2866 goto out; 2867 2868 timehist_update_runtime_stats(last_tr, t, tprev); 2869 /* 2870 * remove delta time of last thread as it's not updated 2871 * and otherwise it will show an invalid value next 2872 * time. we only care total run time and run stat. 2873 */ 2874 last_tr->dt_run = 0; 2875 last_tr->dt_delay = 0; 2876 last_tr->dt_sleep = 0; 2877 last_tr->dt_iowait = 0; 2878 last_tr->dt_preempt = 0; 2879 2880 if (itr->cursor.nr) 2881 callchain_append(&itr->callchain, &itr->cursor, t - tprev); 2882 2883 itr->last_thread = NULL; 2884 } 2885 2886 if (!sched->summary_only) 2887 timehist_print_sample(sched, evsel, sample, &al, thread, t, state); 2888 } 2889 2890 out: 2891 if (sched->hist_time.start == 0 && t >= ptime->start) 2892 sched->hist_time.start = t; 2893 if (ptime->end == 0 || t <= ptime->end) 2894 sched->hist_time.end = t; 2895 2896 if (tr) { 2897 /* time of this sched_switch event becomes last time task seen */ 2898 tr->last_time = sample->time; 2899 2900 /* last state is used to determine where to account wait time */ 2901 tr->last_state = state; 2902 2903 /* sched out event for task so reset ready to run time and migrated time */ 2904 if (state == 'R') 2905 tr->ready_to_run = t; 2906 else 2907 tr->ready_to_run = 0; 2908 2909 tr->migrated = 0; 2910 } 2911 2912 evsel__save_time(evsel, sample->time, sample->cpu); 2913 2914 thread__put(thread); 2915 addr_location__exit(&al); 2916 return rc; 2917 } 2918 2919 static int timehist_sched_switch_event(const struct perf_tool *tool, 2920 union perf_event *event, 2921 struct evsel *evsel, 2922 struct perf_sample *sample, 2923 struct machine *machine __maybe_unused) 2924 { 2925 return timehist_sched_change_event(tool, event, evsel, sample, machine); 2926 } 2927 2928 static int process_lost(const struct perf_tool *tool __maybe_unused, 2929 union perf_event *event, 2930 struct perf_sample *sample, 2931 struct machine *machine __maybe_unused) 2932 { 2933 char tstr[64]; 2934 2935 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2936 printf("%15s ", tstr); 2937 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu); 2938 2939 return 0; 2940 } 2941 2942 2943 static void print_thread_runtime(struct thread *t, 2944 struct thread_runtime *r) 2945 { 2946 double mean = avg_stats(&r->run_stats); 2947 float stddev; 2948 2949 printf("%*s %5d %9" PRIu64 " ", 2950 comm_width, timehist_get_commstr(t), thread__ppid(t), 2951 (u64) r->run_stats.n); 2952 2953 print_sched_time(r->total_run_time, 8); 2954 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean); 2955 print_sched_time(r->run_stats.min, 6); 2956 printf(" "); 2957 print_sched_time((u64) mean, 6); 2958 printf(" "); 2959 print_sched_time(r->run_stats.max, 6); 2960 printf(" "); 2961 printf("%5.2f", stddev); 2962 printf(" %5" PRIu64, r->migrations); 2963 printf("\n"); 2964 } 2965 2966 static void print_thread_waittime(struct thread *t, 2967 struct thread_runtime *r) 2968 { 2969 printf("%*s %5d %9" PRIu64 " ", 2970 comm_width, timehist_get_commstr(t), thread__ppid(t), 2971 (u64) r->run_stats.n); 2972 2973 print_sched_time(r->total_run_time, 8); 2974 print_sched_time(r->total_sleep_time, 6); 2975 printf(" "); 2976 print_sched_time(r->total_iowait_time, 6); 2977 printf(" "); 2978 print_sched_time(r->total_preempt_time, 6); 2979 printf(" "); 2980 print_sched_time(r->total_delay_time, 6); 2981 printf("\n"); 2982 } 2983 2984 struct total_run_stats { 2985 struct perf_sched *sched; 2986 u64 sched_count; 2987 u64 task_count; 2988 u64 total_run_time; 2989 }; 2990 2991 static int show_thread_runtime(struct thread *t, void *priv) 2992 { 2993 struct total_run_stats *stats = priv; 2994 struct thread_runtime *r; 2995 2996 if (thread__is_filtered(t)) 2997 return 0; 2998 2999 r = thread__priv(t); 3000 if (r && r->run_stats.n) { 3001 stats->task_count++; 3002 stats->sched_count += r->run_stats.n; 3003 stats->total_run_time += r->total_run_time; 3004 3005 if (stats->sched->show_state) 3006 print_thread_waittime(t, r); 3007 else 3008 print_thread_runtime(t, r); 3009 } 3010 3011 return 0; 3012 } 3013 3014 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node) 3015 { 3016 const char *sep = " <- "; 3017 struct callchain_list *chain; 3018 size_t ret = 0; 3019 char bf[1024]; 3020 bool first; 3021 3022 if (node == NULL) 3023 return 0; 3024 3025 ret = callchain__fprintf_folded(fp, node->parent); 3026 first = (ret == 0); 3027 3028 list_for_each_entry(chain, &node->val, list) { 3029 if (chain->ip >= PERF_CONTEXT_MAX) 3030 continue; 3031 if (chain->ms.sym && chain->ms.sym->ignore) 3032 continue; 3033 ret += fprintf(fp, "%s%s", first ? "" : sep, 3034 callchain_list__sym_name(chain, bf, sizeof(bf), 3035 false)); 3036 first = false; 3037 } 3038 3039 return ret; 3040 } 3041 3042 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root) 3043 { 3044 size_t ret = 0; 3045 FILE *fp = stdout; 3046 struct callchain_node *chain; 3047 struct rb_node *rb_node = rb_first_cached(root); 3048 3049 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains"); 3050 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line, 3051 graph_dotted_line); 3052 3053 while (rb_node) { 3054 chain = rb_entry(rb_node, struct callchain_node, rb_node); 3055 rb_node = rb_next(rb_node); 3056 3057 ret += fprintf(fp, " "); 3058 print_sched_time(chain->hit, 12); 3059 ret += 16; /* print_sched_time returns 2nd arg + 4 */ 3060 ret += fprintf(fp, " %8d ", chain->count); 3061 ret += callchain__fprintf_folded(fp, chain); 3062 ret += fprintf(fp, "\n"); 3063 } 3064 3065 return ret; 3066 } 3067 3068 static void timehist_print_summary(struct perf_sched *sched, 3069 struct perf_session *session) 3070 { 3071 struct machine *m = &session->machines.host; 3072 struct total_run_stats totals; 3073 u64 task_count; 3074 struct thread *t; 3075 struct thread_runtime *r; 3076 int i; 3077 u64 hist_time = sched->hist_time.end - sched->hist_time.start; 3078 3079 memset(&totals, 0, sizeof(totals)); 3080 totals.sched = sched; 3081 3082 if (sched->idle_hist) { 3083 printf("\nIdle-time summary\n"); 3084 printf("%*s parent sched-out ", comm_width, "comm"); 3085 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n"); 3086 } else if (sched->show_state) { 3087 printf("\nWait-time summary\n"); 3088 printf("%*s parent sched-in ", comm_width, "comm"); 3089 printf(" run-time sleep iowait preempt delay\n"); 3090 } else { 3091 printf("\nRuntime summary\n"); 3092 printf("%*s parent sched-in ", comm_width, "comm"); 3093 printf(" run-time min-run avg-run max-run stddev migrations\n"); 3094 } 3095 printf("%*s (count) ", comm_width, ""); 3096 printf(" (msec) (msec) (msec) (msec) %s\n", 3097 sched->show_state ? "(msec)" : "%"); 3098 printf("%.117s\n", graph_dotted_line); 3099 3100 machine__for_each_thread(m, show_thread_runtime, &totals); 3101 task_count = totals.task_count; 3102 if (!task_count) 3103 printf("<no still running tasks>\n"); 3104 3105 /* CPU idle stats not tracked when samples were skipped */ 3106 if (sched->skipped_samples && !sched->idle_hist) 3107 return; 3108 3109 printf("\nIdle stats:\n"); 3110 for (i = 0; i < idle_max_cpu; ++i) { 3111 if (cpu_list && !test_bit(i, cpu_bitmap)) 3112 continue; 3113 3114 t = idle_threads[i]; 3115 if (!t) 3116 continue; 3117 3118 r = thread__priv(t); 3119 if (r && r->run_stats.n) { 3120 totals.sched_count += r->run_stats.n; 3121 printf(" CPU %2d idle for ", i); 3122 print_sched_time(r->total_run_time, 6); 3123 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time); 3124 } else 3125 printf(" CPU %2d idle entire time window\n", i); 3126 } 3127 3128 if (sched->idle_hist && sched->show_callchain) { 3129 callchain_param.mode = CHAIN_FOLDED; 3130 callchain_param.value = CCVAL_PERIOD; 3131 3132 callchain_register_param(&callchain_param); 3133 3134 printf("\nIdle stats by callchain:\n"); 3135 for (i = 0; i < idle_max_cpu; ++i) { 3136 struct idle_thread_runtime *itr; 3137 3138 t = idle_threads[i]; 3139 if (!t) 3140 continue; 3141 3142 itr = thread__priv(t); 3143 if (itr == NULL) 3144 continue; 3145 3146 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain, 3147 0, &callchain_param); 3148 3149 printf(" CPU %2d:", i); 3150 print_sched_time(itr->tr.total_run_time, 6); 3151 printf(" msec\n"); 3152 timehist_print_idlehist_callchain(&itr->sorted_root); 3153 printf("\n"); 3154 } 3155 } 3156 3157 printf("\n" 3158 " Total number of unique tasks: %" PRIu64 "\n" 3159 "Total number of context switches: %" PRIu64 "\n", 3160 totals.task_count, totals.sched_count); 3161 3162 printf(" Total run time (msec): "); 3163 print_sched_time(totals.total_run_time, 2); 3164 printf("\n"); 3165 3166 printf(" Total scheduling time (msec): "); 3167 print_sched_time(hist_time, 2); 3168 printf(" (x %d)\n", sched->max_cpu.cpu); 3169 } 3170 3171 typedef int (*sched_handler)(const struct perf_tool *tool, 3172 union perf_event *event, 3173 struct evsel *evsel, 3174 struct perf_sample *sample, 3175 struct machine *machine); 3176 3177 static int perf_timehist__process_sample(const struct perf_tool *tool, 3178 union perf_event *event, 3179 struct perf_sample *sample, 3180 struct evsel *evsel, 3181 struct machine *machine) 3182 { 3183 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 3184 int err = 0; 3185 struct perf_cpu this_cpu = { 3186 .cpu = sample->cpu, 3187 }; 3188 3189 if (this_cpu.cpu > sched->max_cpu.cpu) 3190 sched->max_cpu = this_cpu; 3191 3192 if (evsel->handler != NULL) { 3193 sched_handler f = evsel->handler; 3194 3195 err = f(tool, event, evsel, sample, machine); 3196 } 3197 3198 return err; 3199 } 3200 3201 static int timehist_check_attr(struct perf_sched *sched, 3202 struct evlist *evlist) 3203 { 3204 struct evsel *evsel; 3205 struct evsel_runtime *er; 3206 3207 list_for_each_entry(evsel, &evlist->core.entries, core.node) { 3208 er = evsel__get_runtime(evsel); 3209 if (er == NULL) { 3210 pr_err("Failed to allocate memory for evsel runtime data\n"); 3211 return -1; 3212 } 3213 3214 /* only need to save callchain related to sched_switch event */ 3215 if (sched->show_callchain && 3216 evsel__name_is(evsel, "sched:sched_switch") && 3217 !evsel__has_callchain(evsel)) { 3218 pr_info("Samples of sched_switch event do not have callchains.\n"); 3219 sched->show_callchain = 0; 3220 symbol_conf.use_callchain = 0; 3221 } 3222 } 3223 3224 return 0; 3225 } 3226 3227 static int timehist_parse_prio_str(struct perf_sched *sched) 3228 { 3229 char *p; 3230 unsigned long start_prio, end_prio; 3231 const char *str = sched->prio_str; 3232 3233 if (!str) 3234 return 0; 3235 3236 while (isdigit(*str)) { 3237 p = NULL; 3238 start_prio = strtoul(str, &p, 0); 3239 if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-')) 3240 return -1; 3241 3242 if (*p == '-') { 3243 str = ++p; 3244 p = NULL; 3245 end_prio = strtoul(str, &p, 0); 3246 3247 if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ',')) 3248 return -1; 3249 3250 if (end_prio < start_prio) 3251 return -1; 3252 } else { 3253 end_prio = start_prio; 3254 } 3255 3256 for (; start_prio <= end_prio; start_prio++) 3257 __set_bit(start_prio, sched->prio_bitmap); 3258 3259 if (*p) 3260 ++p; 3261 3262 str = p; 3263 } 3264 3265 return 0; 3266 } 3267 3268 static int perf_sched__timehist(struct perf_sched *sched) 3269 { 3270 struct evsel_str_handler handlers[] = { 3271 { "sched:sched_switch", timehist_sched_switch_event, }, 3272 { "sched:sched_wakeup", timehist_sched_wakeup_event, }, 3273 { "sched:sched_waking", timehist_sched_wakeup_event, }, 3274 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, }, 3275 }; 3276 const struct evsel_str_handler migrate_handlers[] = { 3277 { "sched:sched_migrate_task", timehist_migrate_task_event, }, 3278 }; 3279 struct perf_data data = { 3280 .path = input_name, 3281 .mode = PERF_DATA_MODE_READ, 3282 .force = sched->force, 3283 }; 3284 3285 struct perf_session *session; 3286 struct perf_env *env; 3287 struct evlist *evlist; 3288 int err = -1; 3289 3290 /* 3291 * event handlers for timehist option 3292 */ 3293 sched->tool.sample = perf_timehist__process_sample; 3294 sched->tool.mmap = perf_event__process_mmap; 3295 sched->tool.comm = perf_event__process_comm; 3296 sched->tool.exit = perf_event__process_exit; 3297 sched->tool.fork = perf_event__process_fork; 3298 sched->tool.lost = process_lost; 3299 sched->tool.attr = perf_event__process_attr; 3300 sched->tool.tracing_data = perf_event__process_tracing_data; 3301 sched->tool.build_id = perf_event__process_build_id; 3302 3303 sched->tool.ordering_requires_timestamps = true; 3304 3305 symbol_conf.use_callchain = sched->show_callchain; 3306 3307 session = perf_session__new(&data, &sched->tool); 3308 if (IS_ERR(session)) 3309 return PTR_ERR(session); 3310 3311 env = perf_session__env(session); 3312 if (cpu_list) { 3313 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap); 3314 if (err < 0) 3315 goto out; 3316 } 3317 3318 evlist = session->evlist; 3319 3320 symbol__init(env); 3321 3322 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) { 3323 pr_err("Invalid time string\n"); 3324 err = -EINVAL; 3325 goto out; 3326 } 3327 3328 if (timehist_check_attr(sched, evlist) != 0) 3329 goto out; 3330 3331 if (timehist_parse_prio_str(sched) != 0) { 3332 pr_err("Invalid prio string\n"); 3333 goto out; 3334 } 3335 3336 setup_pager(); 3337 3338 evsel__set_priv_destructor(timehist__evsel_priv_destructor); 3339 3340 /* prefer sched_waking if it is captured */ 3341 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) 3342 handlers[1].handler = timehist_sched_wakeup_ignore; 3343 3344 /* setup per-evsel handlers */ 3345 if (perf_session__set_tracepoints_handlers(session, handlers)) 3346 goto out; 3347 3348 /* sched_switch event at a minimum needs to exist */ 3349 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) { 3350 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n"); 3351 goto out; 3352 } 3353 3354 if ((sched->show_migrations || sched->pre_migrations) && 3355 perf_session__set_tracepoints_handlers(session, migrate_handlers)) 3356 goto out; 3357 3358 /* pre-allocate struct for per-CPU idle stats */ 3359 sched->max_cpu.cpu = env->nr_cpus_online; 3360 if (sched->max_cpu.cpu == 0) 3361 sched->max_cpu.cpu = 4; 3362 if (init_idle_threads(sched->max_cpu.cpu)) 3363 goto out; 3364 3365 /* summary_only implies summary option, but don't overwrite summary if set */ 3366 if (sched->summary_only) 3367 sched->summary = sched->summary_only; 3368 3369 if (!sched->summary_only) 3370 timehist_header(sched); 3371 3372 err = perf_session__process_events(session); 3373 if (err) { 3374 pr_err("Failed to process events, error %d", err); 3375 goto out; 3376 } 3377 3378 sched->nr_events = evlist->stats.nr_events[0]; 3379 sched->nr_lost_events = evlist->stats.total_lost; 3380 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST]; 3381 3382 if (sched->summary) 3383 timehist_print_summary(sched, session); 3384 3385 out: 3386 free_idle_threads(); 3387 perf_session__delete(session); 3388 3389 return err; 3390 } 3391 3392 3393 static void print_bad_events(struct perf_sched *sched) 3394 { 3395 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 3396 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 3397 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 3398 sched->nr_unordered_timestamps, sched->nr_timestamps); 3399 } 3400 if (sched->nr_lost_events && sched->nr_events) { 3401 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 3402 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 3403 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 3404 } 3405 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 3406 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 3407 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 3408 sched->nr_context_switch_bugs, sched->nr_timestamps); 3409 if (sched->nr_lost_events) 3410 printf(" (due to lost events?)"); 3411 printf("\n"); 3412 } 3413 } 3414 3415 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data) 3416 { 3417 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 3418 struct work_atoms *this; 3419 const char *comm = thread__comm_str(data->thread), *this_comm; 3420 bool leftmost = true; 3421 3422 while (*new) { 3423 int cmp; 3424 3425 this = container_of(*new, struct work_atoms, node); 3426 parent = *new; 3427 3428 this_comm = thread__comm_str(this->thread); 3429 cmp = strcmp(comm, this_comm); 3430 if (cmp > 0) { 3431 new = &((*new)->rb_left); 3432 } else if (cmp < 0) { 3433 new = &((*new)->rb_right); 3434 leftmost = false; 3435 } else { 3436 this->num_merged++; 3437 this->total_runtime += data->total_runtime; 3438 this->nb_atoms += data->nb_atoms; 3439 this->total_lat += data->total_lat; 3440 list_splice_init(&data->work_list, &this->work_list); 3441 if (this->max_lat < data->max_lat) { 3442 this->max_lat = data->max_lat; 3443 this->max_lat_start = data->max_lat_start; 3444 this->max_lat_end = data->max_lat_end; 3445 } 3446 free_work_atoms(data); 3447 return; 3448 } 3449 } 3450 3451 data->num_merged++; 3452 rb_link_node(&data->node, parent, new); 3453 rb_insert_color_cached(&data->node, root, leftmost); 3454 } 3455 3456 static void perf_sched__merge_lat(struct perf_sched *sched) 3457 { 3458 struct work_atoms *data; 3459 struct rb_node *node; 3460 3461 if (sched->skip_merge) 3462 return; 3463 3464 while ((node = rb_first_cached(&sched->atom_root))) { 3465 rb_erase_cached(node, &sched->atom_root); 3466 data = rb_entry(node, struct work_atoms, node); 3467 __merge_work_atoms(&sched->merged_atom_root, data); 3468 } 3469 } 3470 3471 static int setup_cpus_switch_event(struct perf_sched *sched) 3472 { 3473 unsigned int i; 3474 3475 sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched))); 3476 if (!sched->cpu_last_switched) 3477 return -1; 3478 3479 sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid))); 3480 if (!sched->curr_pid) { 3481 zfree(&sched->cpu_last_switched); 3482 return -1; 3483 } 3484 3485 for (i = 0; i < MAX_CPUS; i++) 3486 sched->curr_pid[i] = -1; 3487 3488 return 0; 3489 } 3490 3491 static void free_cpus_switch_event(struct perf_sched *sched) 3492 { 3493 zfree(&sched->curr_pid); 3494 zfree(&sched->cpu_last_switched); 3495 } 3496 3497 static int perf_sched__lat(struct perf_sched *sched) 3498 { 3499 int rc = -1; 3500 struct rb_node *next; 3501 3502 setup_pager(); 3503 3504 if (setup_cpus_switch_event(sched)) 3505 return rc; 3506 3507 if (perf_sched__read_events(sched)) 3508 goto out_free_cpus_switch_event; 3509 3510 perf_sched__merge_lat(sched); 3511 perf_sched__sort_lat(sched); 3512 3513 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n"); 3514 printf(" Task | Runtime ms | Count | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n"); 3515 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n"); 3516 3517 next = rb_first_cached(&sched->sorted_atom_root); 3518 3519 while (next) { 3520 struct work_atoms *work_list; 3521 3522 work_list = rb_entry(next, struct work_atoms, node); 3523 output_lat_thread(sched, work_list); 3524 next = rb_next(next); 3525 } 3526 3527 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3528 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 3529 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count); 3530 3531 printf(" ---------------------------------------------------\n"); 3532 3533 print_bad_events(sched); 3534 printf("\n"); 3535 3536 rc = 0; 3537 3538 while ((next = rb_first_cached(&sched->sorted_atom_root))) { 3539 struct work_atoms *data; 3540 3541 data = rb_entry(next, struct work_atoms, node); 3542 rb_erase_cached(next, &sched->sorted_atom_root); 3543 free_work_atoms(data); 3544 } 3545 out_free_cpus_switch_event: 3546 free_cpus_switch_event(sched); 3547 return rc; 3548 } 3549 3550 static int setup_map_cpus(struct perf_sched *sched) 3551 { 3552 sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF); 3553 3554 if (sched->map.comp) { 3555 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int)); 3556 if (!sched->map.comp_cpus) 3557 return -1; 3558 } 3559 3560 if (sched->map.cpus_str) { 3561 sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str); 3562 if (!sched->map.cpus) { 3563 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str); 3564 zfree(&sched->map.comp_cpus); 3565 return -1; 3566 } 3567 } 3568 3569 return 0; 3570 } 3571 3572 static int setup_color_pids(struct perf_sched *sched) 3573 { 3574 struct perf_thread_map *map; 3575 3576 if (!sched->map.color_pids_str) 3577 return 0; 3578 3579 map = thread_map__new_by_tid_str(sched->map.color_pids_str); 3580 if (!map) { 3581 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str); 3582 return -1; 3583 } 3584 3585 sched->map.color_pids = map; 3586 return 0; 3587 } 3588 3589 static int setup_color_cpus(struct perf_sched *sched) 3590 { 3591 struct perf_cpu_map *map; 3592 3593 if (!sched->map.color_cpus_str) 3594 return 0; 3595 3596 map = perf_cpu_map__new(sched->map.color_cpus_str); 3597 if (!map) { 3598 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str); 3599 return -1; 3600 } 3601 3602 sched->map.color_cpus = map; 3603 return 0; 3604 } 3605 3606 static int perf_sched__map(struct perf_sched *sched) 3607 { 3608 int rc = -1; 3609 3610 sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread))); 3611 if (!sched->curr_thread) 3612 return rc; 3613 3614 sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread))); 3615 if (!sched->curr_out_thread) 3616 goto out_free_curr_thread; 3617 3618 if (setup_cpus_switch_event(sched)) 3619 goto out_free_curr_out_thread; 3620 3621 if (setup_map_cpus(sched)) 3622 goto out_free_cpus_switch_event; 3623 3624 if (setup_color_pids(sched)) 3625 goto out_put_map_cpus; 3626 3627 if (setup_color_cpus(sched)) 3628 goto out_put_color_pids; 3629 3630 setup_pager(); 3631 if (perf_sched__read_events(sched)) 3632 goto out_put_color_cpus; 3633 3634 rc = 0; 3635 print_bad_events(sched); 3636 3637 out_put_color_cpus: 3638 perf_cpu_map__put(sched->map.color_cpus); 3639 3640 out_put_color_pids: 3641 perf_thread_map__put(sched->map.color_pids); 3642 3643 out_put_map_cpus: 3644 zfree(&sched->map.comp_cpus); 3645 perf_cpu_map__put(sched->map.cpus); 3646 3647 out_free_cpus_switch_event: 3648 free_cpus_switch_event(sched); 3649 3650 out_free_curr_out_thread: 3651 for (int i = 0; i < MAX_CPUS; i++) 3652 thread__put(sched->curr_out_thread[i]); 3653 zfree(&sched->curr_out_thread); 3654 3655 out_free_curr_thread: 3656 for (int i = 0; i < MAX_CPUS; i++) 3657 thread__put(sched->curr_thread[i]); 3658 zfree(&sched->curr_thread); 3659 return rc; 3660 } 3661 3662 static int perf_sched__replay(struct perf_sched *sched) 3663 { 3664 int ret; 3665 unsigned long i; 3666 3667 mutex_init(&sched->start_work_mutex); 3668 mutex_init(&sched->work_done_wait_mutex); 3669 3670 ret = setup_cpus_switch_event(sched); 3671 if (ret) 3672 goto out_mutex_destroy; 3673 3674 calibrate_run_measurement_overhead(sched); 3675 calibrate_sleep_measurement_overhead(sched); 3676 3677 test_calibrations(sched); 3678 3679 ret = perf_sched__read_events(sched); 3680 if (ret) 3681 goto out_free_cpus_switch_event; 3682 3683 printf("nr_run_events: %ld\n", sched->nr_run_events); 3684 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 3685 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 3686 3687 if (sched->targetless_wakeups) 3688 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 3689 if (sched->multitarget_wakeups) 3690 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 3691 if (sched->nr_run_events_optimized) 3692 printf("run atoms optimized: %ld\n", 3693 sched->nr_run_events_optimized); 3694 3695 print_task_traces(sched); 3696 add_cross_task_wakeups(sched); 3697 3698 sched->thread_funcs_exit = false; 3699 create_tasks(sched); 3700 printf("------------------------------------------------------------\n"); 3701 if (sched->replay_repeat == 0) 3702 sched->replay_repeat = UINT_MAX; 3703 3704 for (i = 0; i < sched->replay_repeat; i++) 3705 run_one_test(sched); 3706 3707 sched->thread_funcs_exit = true; 3708 destroy_tasks(sched); 3709 3710 out_free_cpus_switch_event: 3711 free_cpus_switch_event(sched); 3712 3713 out_mutex_destroy: 3714 mutex_destroy(&sched->start_work_mutex); 3715 mutex_destroy(&sched->work_done_wait_mutex); 3716 return ret; 3717 } 3718 3719 static void setup_sorting(struct perf_sched *sched, const struct option *options, 3720 const char * const usage_msg[]) 3721 { 3722 char *tmp, *tok, *str = strdup(sched->sort_order); 3723 3724 for (tok = strtok_r(str, ", ", &tmp); 3725 tok; tok = strtok_r(NULL, ", ", &tmp)) { 3726 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 3727 usage_with_options_msg(usage_msg, options, 3728 "Unknown --sort key: `%s'", tok); 3729 } 3730 } 3731 3732 free(str); 3733 3734 sort_dimension__add("pid", &sched->cmp_pid); 3735 } 3736 3737 static bool schedstat_events_exposed(void) 3738 { 3739 /* 3740 * Select "sched:sched_stat_wait" event to check 3741 * whether schedstat tracepoints are exposed. 3742 */ 3743 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ? 3744 false : true; 3745 } 3746 3747 static int __cmd_record(int argc, const char **argv) 3748 { 3749 unsigned int rec_argc, i, j; 3750 char **rec_argv; 3751 const char **rec_argv_copy; 3752 const char * const record_args[] = { 3753 "record", 3754 "-a", 3755 "-R", 3756 "-m", "1024", 3757 "-c", "1", 3758 "-e", "sched:sched_switch", 3759 "-e", "sched:sched_stat_runtime", 3760 "-e", "sched:sched_process_fork", 3761 "-e", "sched:sched_wakeup_new", 3762 "-e", "sched:sched_migrate_task", 3763 }; 3764 3765 /* 3766 * The tracepoints trace_sched_stat_{wait, sleep, iowait} 3767 * are not exposed to user if CONFIG_SCHEDSTATS is not set, 3768 * to prevent "perf sched record" execution failure, determine 3769 * whether to record schedstat events according to actual situation. 3770 */ 3771 const char * const schedstat_args[] = { 3772 "-e", "sched:sched_stat_wait", 3773 "-e", "sched:sched_stat_sleep", 3774 "-e", "sched:sched_stat_iowait", 3775 }; 3776 unsigned int schedstat_argc = schedstat_events_exposed() ? 3777 ARRAY_SIZE(schedstat_args) : 0; 3778 3779 struct tep_event *waking_event; 3780 int ret; 3781 3782 /* 3783 * +2 for either "-e", "sched:sched_wakeup" or 3784 * "-e", "sched:sched_waking" 3785 */ 3786 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1; 3787 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 3788 if (rec_argv == NULL) 3789 return -ENOMEM; 3790 rec_argv_copy = calloc(rec_argc + 1, sizeof(char *)); 3791 if (rec_argv_copy == NULL) { 3792 free(rec_argv); 3793 return -ENOMEM; 3794 } 3795 3796 for (i = 0; i < ARRAY_SIZE(record_args); i++) 3797 rec_argv[i] = strdup(record_args[i]); 3798 3799 rec_argv[i++] = strdup("-e"); 3800 waking_event = trace_event__tp_format("sched", "sched_waking"); 3801 if (!IS_ERR(waking_event)) 3802 rec_argv[i++] = strdup("sched:sched_waking"); 3803 else 3804 rec_argv[i++] = strdup("sched:sched_wakeup"); 3805 3806 for (j = 0; j < schedstat_argc; j++) 3807 rec_argv[i++] = strdup(schedstat_args[j]); 3808 3809 for (j = 1; j < (unsigned int)argc; j++, i++) 3810 rec_argv[i] = strdup(argv[j]); 3811 3812 BUG_ON(i != rec_argc); 3813 3814 memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc); 3815 ret = cmd_record(rec_argc, rec_argv_copy); 3816 3817 for (i = 0; i < rec_argc; i++) 3818 free(rec_argv[i]); 3819 free(rec_argv); 3820 free(rec_argv_copy); 3821 3822 return ret; 3823 } 3824 3825 int cmd_sched(int argc, const char **argv) 3826 { 3827 static const char default_sort_order[] = "avg, max, switch, runtime"; 3828 struct perf_sched sched = { 3829 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 3830 .sort_list = LIST_HEAD_INIT(sched.sort_list), 3831 .sort_order = default_sort_order, 3832 .replay_repeat = 10, 3833 .profile_cpu = -1, 3834 .next_shortname1 = 'A', 3835 .next_shortname2 = '0', 3836 .skip_merge = 0, 3837 .show_callchain = 1, 3838 .max_stack = 5, 3839 }; 3840 const struct option sched_options[] = { 3841 OPT_STRING('i', "input", &input_name, "file", 3842 "input file name"), 3843 OPT_INCR('v', "verbose", &verbose, 3844 "be more verbose (show symbol address, etc)"), 3845 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 3846 "dump raw trace in ASCII"), 3847 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), 3848 OPT_END() 3849 }; 3850 const struct option latency_options[] = { 3851 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 3852 "sort by key(s): runtime, switch, avg, max"), 3853 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 3854 "CPU to profile on"), 3855 OPT_BOOLEAN('p', "pids", &sched.skip_merge, 3856 "latency stats per pid instead of per comm"), 3857 OPT_PARENT(sched_options) 3858 }; 3859 const struct option replay_options[] = { 3860 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 3861 "repeat the workload replay N times (0: infinite)"), 3862 OPT_PARENT(sched_options) 3863 }; 3864 const struct option map_options[] = { 3865 OPT_BOOLEAN(0, "compact", &sched.map.comp, 3866 "map output in compact mode"), 3867 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids", 3868 "highlight given pids in map"), 3869 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus", 3870 "highlight given CPUs in map"), 3871 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus", 3872 "display given CPUs in map"), 3873 OPT_STRING(0, "task-name", &sched.map.task_name, "task", 3874 "map output only for the given task name(s)."), 3875 OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy, 3876 "given command name can be partially matched (fuzzy matching)"), 3877 OPT_PARENT(sched_options) 3878 }; 3879 const struct option timehist_options[] = { 3880 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name, 3881 "file", "vmlinux pathname"), 3882 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name, 3883 "file", "kallsyms pathname"), 3884 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain, 3885 "Display call chains if present (default on)"), 3886 OPT_UINTEGER(0, "max-stack", &sched.max_stack, 3887 "Maximum number of functions to display backtrace."), 3888 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", 3889 "Look for files with symbols relative to this directory"), 3890 OPT_BOOLEAN('s', "summary", &sched.summary_only, 3891 "Show only syscall summary with statistics"), 3892 OPT_BOOLEAN('S', "with-summary", &sched.summary, 3893 "Show all syscalls and summary with statistics"), 3894 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"), 3895 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"), 3896 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"), 3897 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"), 3898 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"), 3899 OPT_STRING(0, "time", &sched.time_str, "str", 3900 "Time span for analysis (start,stop)"), 3901 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"), 3902 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]", 3903 "analyze events only for given process id(s)"), 3904 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]", 3905 "analyze events only for given thread id(s)"), 3906 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"), 3907 OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"), 3908 OPT_STRING(0, "prio", &sched.prio_str, "prio", 3909 "analyze events only for given task priority(ies)"), 3910 OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"), 3911 OPT_PARENT(sched_options) 3912 }; 3913 3914 const char * const latency_usage[] = { 3915 "perf sched latency [<options>]", 3916 NULL 3917 }; 3918 const char * const replay_usage[] = { 3919 "perf sched replay [<options>]", 3920 NULL 3921 }; 3922 const char * const map_usage[] = { 3923 "perf sched map [<options>]", 3924 NULL 3925 }; 3926 const char * const timehist_usage[] = { 3927 "perf sched timehist [<options>]", 3928 NULL 3929 }; 3930 const char *const sched_subcommands[] = { "record", "latency", "map", 3931 "replay", "script", 3932 "timehist", NULL }; 3933 const char *sched_usage[] = { 3934 NULL, 3935 NULL 3936 }; 3937 struct trace_sched_handler lat_ops = { 3938 .wakeup_event = latency_wakeup_event, 3939 .switch_event = latency_switch_event, 3940 .runtime_event = latency_runtime_event, 3941 .migrate_task_event = latency_migrate_task_event, 3942 }; 3943 struct trace_sched_handler map_ops = { 3944 .switch_event = map_switch_event, 3945 }; 3946 struct trace_sched_handler replay_ops = { 3947 .wakeup_event = replay_wakeup_event, 3948 .switch_event = replay_switch_event, 3949 .fork_event = replay_fork_event, 3950 }; 3951 int ret; 3952 3953 perf_tool__init(&sched.tool, /*ordered_events=*/true); 3954 sched.tool.sample = perf_sched__process_tracepoint_sample; 3955 sched.tool.comm = perf_sched__process_comm; 3956 sched.tool.namespaces = perf_event__process_namespaces; 3957 sched.tool.lost = perf_event__process_lost; 3958 sched.tool.fork = perf_sched__process_fork_event; 3959 3960 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 3961 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 3962 if (!argc) 3963 usage_with_options(sched_usage, sched_options); 3964 3965 thread__set_priv_destructor(free); 3966 3967 /* 3968 * Aliased to 'perf script' for now: 3969 */ 3970 if (!strcmp(argv[0], "script")) { 3971 ret = cmd_script(argc, argv); 3972 } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 3973 ret = __cmd_record(argc, argv); 3974 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) { 3975 sched.tp_handler = &lat_ops; 3976 if (argc > 1) { 3977 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 3978 if (argc) 3979 usage_with_options(latency_usage, latency_options); 3980 } 3981 setup_sorting(&sched, latency_options, latency_usage); 3982 ret = perf_sched__lat(&sched); 3983 } else if (!strcmp(argv[0], "map")) { 3984 if (argc) { 3985 argc = parse_options(argc, argv, map_options, map_usage, 0); 3986 if (argc) 3987 usage_with_options(map_usage, map_options); 3988 3989 if (sched.map.task_name) { 3990 sched.map.task_names = strlist__new(sched.map.task_name, NULL); 3991 if (sched.map.task_names == NULL) { 3992 fprintf(stderr, "Failed to parse task names\n"); 3993 ret = -1; 3994 goto out; 3995 } 3996 } 3997 } 3998 sched.tp_handler = &map_ops; 3999 setup_sorting(&sched, latency_options, latency_usage); 4000 ret = perf_sched__map(&sched); 4001 } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) { 4002 sched.tp_handler = &replay_ops; 4003 if (argc) { 4004 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 4005 if (argc) 4006 usage_with_options(replay_usage, replay_options); 4007 } 4008 ret = perf_sched__replay(&sched); 4009 } else if (!strcmp(argv[0], "timehist")) { 4010 if (argc) { 4011 argc = parse_options(argc, argv, timehist_options, 4012 timehist_usage, 0); 4013 if (argc) 4014 usage_with_options(timehist_usage, timehist_options); 4015 } 4016 if ((sched.show_wakeups || sched.show_next) && 4017 sched.summary_only) { 4018 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n"); 4019 parse_options_usage(timehist_usage, timehist_options, "s", true); 4020 if (sched.show_wakeups) 4021 parse_options_usage(NULL, timehist_options, "w", true); 4022 if (sched.show_next) 4023 parse_options_usage(NULL, timehist_options, "n", true); 4024 ret = -EINVAL; 4025 goto out; 4026 } 4027 ret = symbol__validate_sym_arguments(); 4028 if (!ret) 4029 ret = perf_sched__timehist(&sched); 4030 } else { 4031 usage_with_options(sched_usage, sched_options); 4032 } 4033 4034 out: 4035 /* free usage string allocated by parse_options_subcommand */ 4036 free((void *)sched_usage[0]); 4037 4038 return ret; 4039 } 4040