xref: /linux/tools/perf/builtin-sched.c (revision 32786fdc9506aeba98278c1844d4bfb766863832)
1 #include "builtin.h"
2 #include "perf.h"
3 
4 #include "util/util.h"
5 #include "util/evlist.h"
6 #include "util/cache.h"
7 #include "util/evsel.h"
8 #include "util/symbol.h"
9 #include "util/thread.h"
10 #include "util/header.h"
11 #include "util/session.h"
12 #include "util/tool.h"
13 #include "util/cloexec.h"
14 #include "util/thread_map.h"
15 #include "util/color.h"
16 #include "util/stat.h"
17 #include "util/callchain.h"
18 #include "util/time-utils.h"
19 
20 #include <subcmd/parse-options.h>
21 #include "util/trace-event.h"
22 
23 #include "util/debug.h"
24 
25 #include <linux/log2.h>
26 #include <sys/prctl.h>
27 #include <sys/resource.h>
28 
29 #include <semaphore.h>
30 #include <pthread.h>
31 #include <math.h>
32 #include <api/fs/fs.h>
33 #include <linux/time64.h>
34 
35 #define PR_SET_NAME		15               /* Set process name */
36 #define MAX_CPUS		4096
37 #define COMM_LEN		20
38 #define SYM_LEN			129
39 #define MAX_PID			1024000
40 
41 struct sched_atom;
42 
43 struct task_desc {
44 	unsigned long		nr;
45 	unsigned long		pid;
46 	char			comm[COMM_LEN];
47 
48 	unsigned long		nr_events;
49 	unsigned long		curr_event;
50 	struct sched_atom	**atoms;
51 
52 	pthread_t		thread;
53 	sem_t			sleep_sem;
54 
55 	sem_t			ready_for_work;
56 	sem_t			work_done_sem;
57 
58 	u64			cpu_usage;
59 };
60 
61 enum sched_event_type {
62 	SCHED_EVENT_RUN,
63 	SCHED_EVENT_SLEEP,
64 	SCHED_EVENT_WAKEUP,
65 	SCHED_EVENT_MIGRATION,
66 };
67 
68 struct sched_atom {
69 	enum sched_event_type	type;
70 	int			specific_wait;
71 	u64			timestamp;
72 	u64			duration;
73 	unsigned long		nr;
74 	sem_t			*wait_sem;
75 	struct task_desc	*wakee;
76 };
77 
78 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
79 
80 enum thread_state {
81 	THREAD_SLEEPING = 0,
82 	THREAD_WAIT_CPU,
83 	THREAD_SCHED_IN,
84 	THREAD_IGNORE
85 };
86 
87 struct work_atom {
88 	struct list_head	list;
89 	enum thread_state	state;
90 	u64			sched_out_time;
91 	u64			wake_up_time;
92 	u64			sched_in_time;
93 	u64			runtime;
94 };
95 
96 struct work_atoms {
97 	struct list_head	work_list;
98 	struct thread		*thread;
99 	struct rb_node		node;
100 	u64			max_lat;
101 	u64			max_lat_at;
102 	u64			total_lat;
103 	u64			nb_atoms;
104 	u64			total_runtime;
105 	int			num_merged;
106 };
107 
108 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
109 
110 struct perf_sched;
111 
112 struct trace_sched_handler {
113 	int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
114 			    struct perf_sample *sample, struct machine *machine);
115 
116 	int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
117 			     struct perf_sample *sample, struct machine *machine);
118 
119 	int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
120 			    struct perf_sample *sample, struct machine *machine);
121 
122 	/* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
123 	int (*fork_event)(struct perf_sched *sched, union perf_event *event,
124 			  struct machine *machine);
125 
126 	int (*migrate_task_event)(struct perf_sched *sched,
127 				  struct perf_evsel *evsel,
128 				  struct perf_sample *sample,
129 				  struct machine *machine);
130 };
131 
132 #define COLOR_PIDS PERF_COLOR_BLUE
133 #define COLOR_CPUS PERF_COLOR_BG_RED
134 
135 struct perf_sched_map {
136 	DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
137 	int			*comp_cpus;
138 	bool			 comp;
139 	struct thread_map	*color_pids;
140 	const char		*color_pids_str;
141 	struct cpu_map		*color_cpus;
142 	const char		*color_cpus_str;
143 	struct cpu_map		*cpus;
144 	const char		*cpus_str;
145 };
146 
147 struct perf_sched {
148 	struct perf_tool tool;
149 	const char	 *sort_order;
150 	unsigned long	 nr_tasks;
151 	struct task_desc **pid_to_task;
152 	struct task_desc **tasks;
153 	const struct trace_sched_handler *tp_handler;
154 	pthread_mutex_t	 start_work_mutex;
155 	pthread_mutex_t	 work_done_wait_mutex;
156 	int		 profile_cpu;
157 /*
158  * Track the current task - that way we can know whether there's any
159  * weird events, such as a task being switched away that is not current.
160  */
161 	int		 max_cpu;
162 	u32		 curr_pid[MAX_CPUS];
163 	struct thread	 *curr_thread[MAX_CPUS];
164 	char		 next_shortname1;
165 	char		 next_shortname2;
166 	unsigned int	 replay_repeat;
167 	unsigned long	 nr_run_events;
168 	unsigned long	 nr_sleep_events;
169 	unsigned long	 nr_wakeup_events;
170 	unsigned long	 nr_sleep_corrections;
171 	unsigned long	 nr_run_events_optimized;
172 	unsigned long	 targetless_wakeups;
173 	unsigned long	 multitarget_wakeups;
174 	unsigned long	 nr_runs;
175 	unsigned long	 nr_timestamps;
176 	unsigned long	 nr_unordered_timestamps;
177 	unsigned long	 nr_context_switch_bugs;
178 	unsigned long	 nr_events;
179 	unsigned long	 nr_lost_chunks;
180 	unsigned long	 nr_lost_events;
181 	u64		 run_measurement_overhead;
182 	u64		 sleep_measurement_overhead;
183 	u64		 start_time;
184 	u64		 cpu_usage;
185 	u64		 runavg_cpu_usage;
186 	u64		 parent_cpu_usage;
187 	u64		 runavg_parent_cpu_usage;
188 	u64		 sum_runtime;
189 	u64		 sum_fluct;
190 	u64		 run_avg;
191 	u64		 all_runtime;
192 	u64		 all_count;
193 	u64		 cpu_last_switched[MAX_CPUS];
194 	struct rb_root	 atom_root, sorted_atom_root, merged_atom_root;
195 	struct list_head sort_list, cmp_pid;
196 	bool force;
197 	bool skip_merge;
198 	struct perf_sched_map map;
199 
200 	/* options for timehist command */
201 	bool		summary;
202 	bool		summary_only;
203 	bool		show_callchain;
204 	unsigned int	max_stack;
205 	bool		show_cpu_visual;
206 	bool		show_wakeups;
207 	bool		show_migrations;
208 	u64		skipped_samples;
209 	const char	*time_str;
210 	struct perf_time_interval ptime;
211 };
212 
213 /* per thread run time data */
214 struct thread_runtime {
215 	u64 last_time;      /* time of previous sched in/out event */
216 	u64 dt_run;         /* run time */
217 	u64 dt_wait;        /* time between CPU access (off cpu) */
218 	u64 dt_delay;       /* time between wakeup and sched-in */
219 	u64 ready_to_run;   /* time of wakeup */
220 
221 	struct stats run_stats;
222 	u64 total_run_time;
223 
224 	u64 migrations;
225 };
226 
227 /* per event run time data */
228 struct evsel_runtime {
229 	u64 *last_time; /* time this event was last seen per cpu */
230 	u32 ncpu;       /* highest cpu slot allocated */
231 };
232 
233 /* track idle times per cpu */
234 static struct thread **idle_threads;
235 static int idle_max_cpu;
236 static char idle_comm[] = "<idle>";
237 
238 static u64 get_nsecs(void)
239 {
240 	struct timespec ts;
241 
242 	clock_gettime(CLOCK_MONOTONIC, &ts);
243 
244 	return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
245 }
246 
247 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
248 {
249 	u64 T0 = get_nsecs(), T1;
250 
251 	do {
252 		T1 = get_nsecs();
253 	} while (T1 + sched->run_measurement_overhead < T0 + nsecs);
254 }
255 
256 static void sleep_nsecs(u64 nsecs)
257 {
258 	struct timespec ts;
259 
260 	ts.tv_nsec = nsecs % 999999999;
261 	ts.tv_sec = nsecs / 999999999;
262 
263 	nanosleep(&ts, NULL);
264 }
265 
266 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
267 {
268 	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
269 	int i;
270 
271 	for (i = 0; i < 10; i++) {
272 		T0 = get_nsecs();
273 		burn_nsecs(sched, 0);
274 		T1 = get_nsecs();
275 		delta = T1-T0;
276 		min_delta = min(min_delta, delta);
277 	}
278 	sched->run_measurement_overhead = min_delta;
279 
280 	printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
281 }
282 
283 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
284 {
285 	u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
286 	int i;
287 
288 	for (i = 0; i < 10; i++) {
289 		T0 = get_nsecs();
290 		sleep_nsecs(10000);
291 		T1 = get_nsecs();
292 		delta = T1-T0;
293 		min_delta = min(min_delta, delta);
294 	}
295 	min_delta -= 10000;
296 	sched->sleep_measurement_overhead = min_delta;
297 
298 	printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
299 }
300 
301 static struct sched_atom *
302 get_new_event(struct task_desc *task, u64 timestamp)
303 {
304 	struct sched_atom *event = zalloc(sizeof(*event));
305 	unsigned long idx = task->nr_events;
306 	size_t size;
307 
308 	event->timestamp = timestamp;
309 	event->nr = idx;
310 
311 	task->nr_events++;
312 	size = sizeof(struct sched_atom *) * task->nr_events;
313 	task->atoms = realloc(task->atoms, size);
314 	BUG_ON(!task->atoms);
315 
316 	task->atoms[idx] = event;
317 
318 	return event;
319 }
320 
321 static struct sched_atom *last_event(struct task_desc *task)
322 {
323 	if (!task->nr_events)
324 		return NULL;
325 
326 	return task->atoms[task->nr_events - 1];
327 }
328 
329 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
330 				u64 timestamp, u64 duration)
331 {
332 	struct sched_atom *event, *curr_event = last_event(task);
333 
334 	/*
335 	 * optimize an existing RUN event by merging this one
336 	 * to it:
337 	 */
338 	if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
339 		sched->nr_run_events_optimized++;
340 		curr_event->duration += duration;
341 		return;
342 	}
343 
344 	event = get_new_event(task, timestamp);
345 
346 	event->type = SCHED_EVENT_RUN;
347 	event->duration = duration;
348 
349 	sched->nr_run_events++;
350 }
351 
352 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
353 				   u64 timestamp, struct task_desc *wakee)
354 {
355 	struct sched_atom *event, *wakee_event;
356 
357 	event = get_new_event(task, timestamp);
358 	event->type = SCHED_EVENT_WAKEUP;
359 	event->wakee = wakee;
360 
361 	wakee_event = last_event(wakee);
362 	if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
363 		sched->targetless_wakeups++;
364 		return;
365 	}
366 	if (wakee_event->wait_sem) {
367 		sched->multitarget_wakeups++;
368 		return;
369 	}
370 
371 	wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
372 	sem_init(wakee_event->wait_sem, 0, 0);
373 	wakee_event->specific_wait = 1;
374 	event->wait_sem = wakee_event->wait_sem;
375 
376 	sched->nr_wakeup_events++;
377 }
378 
379 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
380 				  u64 timestamp, u64 task_state __maybe_unused)
381 {
382 	struct sched_atom *event = get_new_event(task, timestamp);
383 
384 	event->type = SCHED_EVENT_SLEEP;
385 
386 	sched->nr_sleep_events++;
387 }
388 
389 static struct task_desc *register_pid(struct perf_sched *sched,
390 				      unsigned long pid, const char *comm)
391 {
392 	struct task_desc *task;
393 	static int pid_max;
394 
395 	if (sched->pid_to_task == NULL) {
396 		if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
397 			pid_max = MAX_PID;
398 		BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
399 	}
400 	if (pid >= (unsigned long)pid_max) {
401 		BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
402 			sizeof(struct task_desc *))) == NULL);
403 		while (pid >= (unsigned long)pid_max)
404 			sched->pid_to_task[pid_max++] = NULL;
405 	}
406 
407 	task = sched->pid_to_task[pid];
408 
409 	if (task)
410 		return task;
411 
412 	task = zalloc(sizeof(*task));
413 	task->pid = pid;
414 	task->nr = sched->nr_tasks;
415 	strcpy(task->comm, comm);
416 	/*
417 	 * every task starts in sleeping state - this gets ignored
418 	 * if there's no wakeup pointing to this sleep state:
419 	 */
420 	add_sched_event_sleep(sched, task, 0, 0);
421 
422 	sched->pid_to_task[pid] = task;
423 	sched->nr_tasks++;
424 	sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
425 	BUG_ON(!sched->tasks);
426 	sched->tasks[task->nr] = task;
427 
428 	if (verbose)
429 		printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
430 
431 	return task;
432 }
433 
434 
435 static void print_task_traces(struct perf_sched *sched)
436 {
437 	struct task_desc *task;
438 	unsigned long i;
439 
440 	for (i = 0; i < sched->nr_tasks; i++) {
441 		task = sched->tasks[i];
442 		printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
443 			task->nr, task->comm, task->pid, task->nr_events);
444 	}
445 }
446 
447 static void add_cross_task_wakeups(struct perf_sched *sched)
448 {
449 	struct task_desc *task1, *task2;
450 	unsigned long i, j;
451 
452 	for (i = 0; i < sched->nr_tasks; i++) {
453 		task1 = sched->tasks[i];
454 		j = i + 1;
455 		if (j == sched->nr_tasks)
456 			j = 0;
457 		task2 = sched->tasks[j];
458 		add_sched_event_wakeup(sched, task1, 0, task2);
459 	}
460 }
461 
462 static void perf_sched__process_event(struct perf_sched *sched,
463 				      struct sched_atom *atom)
464 {
465 	int ret = 0;
466 
467 	switch (atom->type) {
468 		case SCHED_EVENT_RUN:
469 			burn_nsecs(sched, atom->duration);
470 			break;
471 		case SCHED_EVENT_SLEEP:
472 			if (atom->wait_sem)
473 				ret = sem_wait(atom->wait_sem);
474 			BUG_ON(ret);
475 			break;
476 		case SCHED_EVENT_WAKEUP:
477 			if (atom->wait_sem)
478 				ret = sem_post(atom->wait_sem);
479 			BUG_ON(ret);
480 			break;
481 		case SCHED_EVENT_MIGRATION:
482 			break;
483 		default:
484 			BUG_ON(1);
485 	}
486 }
487 
488 static u64 get_cpu_usage_nsec_parent(void)
489 {
490 	struct rusage ru;
491 	u64 sum;
492 	int err;
493 
494 	err = getrusage(RUSAGE_SELF, &ru);
495 	BUG_ON(err);
496 
497 	sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
498 	sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
499 
500 	return sum;
501 }
502 
503 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
504 {
505 	struct perf_event_attr attr;
506 	char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
507 	int fd;
508 	struct rlimit limit;
509 	bool need_privilege = false;
510 
511 	memset(&attr, 0, sizeof(attr));
512 
513 	attr.type = PERF_TYPE_SOFTWARE;
514 	attr.config = PERF_COUNT_SW_TASK_CLOCK;
515 
516 force_again:
517 	fd = sys_perf_event_open(&attr, 0, -1, -1,
518 				 perf_event_open_cloexec_flag());
519 
520 	if (fd < 0) {
521 		if (errno == EMFILE) {
522 			if (sched->force) {
523 				BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
524 				limit.rlim_cur += sched->nr_tasks - cur_task;
525 				if (limit.rlim_cur > limit.rlim_max) {
526 					limit.rlim_max = limit.rlim_cur;
527 					need_privilege = true;
528 				}
529 				if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
530 					if (need_privilege && errno == EPERM)
531 						strcpy(info, "Need privilege\n");
532 				} else
533 					goto force_again;
534 			} else
535 				strcpy(info, "Have a try with -f option\n");
536 		}
537 		pr_err("Error: sys_perf_event_open() syscall returned "
538 		       "with %d (%s)\n%s", fd,
539 		       str_error_r(errno, sbuf, sizeof(sbuf)), info);
540 		exit(EXIT_FAILURE);
541 	}
542 	return fd;
543 }
544 
545 static u64 get_cpu_usage_nsec_self(int fd)
546 {
547 	u64 runtime;
548 	int ret;
549 
550 	ret = read(fd, &runtime, sizeof(runtime));
551 	BUG_ON(ret != sizeof(runtime));
552 
553 	return runtime;
554 }
555 
556 struct sched_thread_parms {
557 	struct task_desc  *task;
558 	struct perf_sched *sched;
559 	int fd;
560 };
561 
562 static void *thread_func(void *ctx)
563 {
564 	struct sched_thread_parms *parms = ctx;
565 	struct task_desc *this_task = parms->task;
566 	struct perf_sched *sched = parms->sched;
567 	u64 cpu_usage_0, cpu_usage_1;
568 	unsigned long i, ret;
569 	char comm2[22];
570 	int fd = parms->fd;
571 
572 	zfree(&parms);
573 
574 	sprintf(comm2, ":%s", this_task->comm);
575 	prctl(PR_SET_NAME, comm2);
576 	if (fd < 0)
577 		return NULL;
578 again:
579 	ret = sem_post(&this_task->ready_for_work);
580 	BUG_ON(ret);
581 	ret = pthread_mutex_lock(&sched->start_work_mutex);
582 	BUG_ON(ret);
583 	ret = pthread_mutex_unlock(&sched->start_work_mutex);
584 	BUG_ON(ret);
585 
586 	cpu_usage_0 = get_cpu_usage_nsec_self(fd);
587 
588 	for (i = 0; i < this_task->nr_events; i++) {
589 		this_task->curr_event = i;
590 		perf_sched__process_event(sched, this_task->atoms[i]);
591 	}
592 
593 	cpu_usage_1 = get_cpu_usage_nsec_self(fd);
594 	this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
595 	ret = sem_post(&this_task->work_done_sem);
596 	BUG_ON(ret);
597 
598 	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
599 	BUG_ON(ret);
600 	ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
601 	BUG_ON(ret);
602 
603 	goto again;
604 }
605 
606 static void create_tasks(struct perf_sched *sched)
607 {
608 	struct task_desc *task;
609 	pthread_attr_t attr;
610 	unsigned long i;
611 	int err;
612 
613 	err = pthread_attr_init(&attr);
614 	BUG_ON(err);
615 	err = pthread_attr_setstacksize(&attr,
616 			(size_t) max(16 * 1024, PTHREAD_STACK_MIN));
617 	BUG_ON(err);
618 	err = pthread_mutex_lock(&sched->start_work_mutex);
619 	BUG_ON(err);
620 	err = pthread_mutex_lock(&sched->work_done_wait_mutex);
621 	BUG_ON(err);
622 	for (i = 0; i < sched->nr_tasks; i++) {
623 		struct sched_thread_parms *parms = malloc(sizeof(*parms));
624 		BUG_ON(parms == NULL);
625 		parms->task = task = sched->tasks[i];
626 		parms->sched = sched;
627 		parms->fd = self_open_counters(sched, i);
628 		sem_init(&task->sleep_sem, 0, 0);
629 		sem_init(&task->ready_for_work, 0, 0);
630 		sem_init(&task->work_done_sem, 0, 0);
631 		task->curr_event = 0;
632 		err = pthread_create(&task->thread, &attr, thread_func, parms);
633 		BUG_ON(err);
634 	}
635 }
636 
637 static void wait_for_tasks(struct perf_sched *sched)
638 {
639 	u64 cpu_usage_0, cpu_usage_1;
640 	struct task_desc *task;
641 	unsigned long i, ret;
642 
643 	sched->start_time = get_nsecs();
644 	sched->cpu_usage = 0;
645 	pthread_mutex_unlock(&sched->work_done_wait_mutex);
646 
647 	for (i = 0; i < sched->nr_tasks; i++) {
648 		task = sched->tasks[i];
649 		ret = sem_wait(&task->ready_for_work);
650 		BUG_ON(ret);
651 		sem_init(&task->ready_for_work, 0, 0);
652 	}
653 	ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
654 	BUG_ON(ret);
655 
656 	cpu_usage_0 = get_cpu_usage_nsec_parent();
657 
658 	pthread_mutex_unlock(&sched->start_work_mutex);
659 
660 	for (i = 0; i < sched->nr_tasks; i++) {
661 		task = sched->tasks[i];
662 		ret = sem_wait(&task->work_done_sem);
663 		BUG_ON(ret);
664 		sem_init(&task->work_done_sem, 0, 0);
665 		sched->cpu_usage += task->cpu_usage;
666 		task->cpu_usage = 0;
667 	}
668 
669 	cpu_usage_1 = get_cpu_usage_nsec_parent();
670 	if (!sched->runavg_cpu_usage)
671 		sched->runavg_cpu_usage = sched->cpu_usage;
672 	sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
673 
674 	sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
675 	if (!sched->runavg_parent_cpu_usage)
676 		sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
677 	sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
678 					 sched->parent_cpu_usage)/sched->replay_repeat;
679 
680 	ret = pthread_mutex_lock(&sched->start_work_mutex);
681 	BUG_ON(ret);
682 
683 	for (i = 0; i < sched->nr_tasks; i++) {
684 		task = sched->tasks[i];
685 		sem_init(&task->sleep_sem, 0, 0);
686 		task->curr_event = 0;
687 	}
688 }
689 
690 static void run_one_test(struct perf_sched *sched)
691 {
692 	u64 T0, T1, delta, avg_delta, fluct;
693 
694 	T0 = get_nsecs();
695 	wait_for_tasks(sched);
696 	T1 = get_nsecs();
697 
698 	delta = T1 - T0;
699 	sched->sum_runtime += delta;
700 	sched->nr_runs++;
701 
702 	avg_delta = sched->sum_runtime / sched->nr_runs;
703 	if (delta < avg_delta)
704 		fluct = avg_delta - delta;
705 	else
706 		fluct = delta - avg_delta;
707 	sched->sum_fluct += fluct;
708 	if (!sched->run_avg)
709 		sched->run_avg = delta;
710 	sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
711 
712 	printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
713 
714 	printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
715 
716 	printf("cpu: %0.2f / %0.2f",
717 		(double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
718 
719 #if 0
720 	/*
721 	 * rusage statistics done by the parent, these are less
722 	 * accurate than the sched->sum_exec_runtime based statistics:
723 	 */
724 	printf(" [%0.2f / %0.2f]",
725 		(double)sched->parent_cpu_usage / NSEC_PER_MSEC,
726 		(double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
727 #endif
728 
729 	printf("\n");
730 
731 	if (sched->nr_sleep_corrections)
732 		printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
733 	sched->nr_sleep_corrections = 0;
734 }
735 
736 static void test_calibrations(struct perf_sched *sched)
737 {
738 	u64 T0, T1;
739 
740 	T0 = get_nsecs();
741 	burn_nsecs(sched, NSEC_PER_MSEC);
742 	T1 = get_nsecs();
743 
744 	printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
745 
746 	T0 = get_nsecs();
747 	sleep_nsecs(NSEC_PER_MSEC);
748 	T1 = get_nsecs();
749 
750 	printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
751 }
752 
753 static int
754 replay_wakeup_event(struct perf_sched *sched,
755 		    struct perf_evsel *evsel, struct perf_sample *sample,
756 		    struct machine *machine __maybe_unused)
757 {
758 	const char *comm = perf_evsel__strval(evsel, sample, "comm");
759 	const u32 pid	 = perf_evsel__intval(evsel, sample, "pid");
760 	struct task_desc *waker, *wakee;
761 
762 	if (verbose) {
763 		printf("sched_wakeup event %p\n", evsel);
764 
765 		printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
766 	}
767 
768 	waker = register_pid(sched, sample->tid, "<unknown>");
769 	wakee = register_pid(sched, pid, comm);
770 
771 	add_sched_event_wakeup(sched, waker, sample->time, wakee);
772 	return 0;
773 }
774 
775 static int replay_switch_event(struct perf_sched *sched,
776 			       struct perf_evsel *evsel,
777 			       struct perf_sample *sample,
778 			       struct machine *machine __maybe_unused)
779 {
780 	const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
781 		   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
782 	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
783 		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
784 	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
785 	struct task_desc *prev, __maybe_unused *next;
786 	u64 timestamp0, timestamp = sample->time;
787 	int cpu = sample->cpu;
788 	s64 delta;
789 
790 	if (verbose)
791 		printf("sched_switch event %p\n", evsel);
792 
793 	if (cpu >= MAX_CPUS || cpu < 0)
794 		return 0;
795 
796 	timestamp0 = sched->cpu_last_switched[cpu];
797 	if (timestamp0)
798 		delta = timestamp - timestamp0;
799 	else
800 		delta = 0;
801 
802 	if (delta < 0) {
803 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
804 		return -1;
805 	}
806 
807 	pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
808 		 prev_comm, prev_pid, next_comm, next_pid, delta);
809 
810 	prev = register_pid(sched, prev_pid, prev_comm);
811 	next = register_pid(sched, next_pid, next_comm);
812 
813 	sched->cpu_last_switched[cpu] = timestamp;
814 
815 	add_sched_event_run(sched, prev, timestamp, delta);
816 	add_sched_event_sleep(sched, prev, timestamp, prev_state);
817 
818 	return 0;
819 }
820 
821 static int replay_fork_event(struct perf_sched *sched,
822 			     union perf_event *event,
823 			     struct machine *machine)
824 {
825 	struct thread *child, *parent;
826 
827 	child = machine__findnew_thread(machine, event->fork.pid,
828 					event->fork.tid);
829 	parent = machine__findnew_thread(machine, event->fork.ppid,
830 					 event->fork.ptid);
831 
832 	if (child == NULL || parent == NULL) {
833 		pr_debug("thread does not exist on fork event: child %p, parent %p\n",
834 				 child, parent);
835 		goto out_put;
836 	}
837 
838 	if (verbose) {
839 		printf("fork event\n");
840 		printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
841 		printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
842 	}
843 
844 	register_pid(sched, parent->tid, thread__comm_str(parent));
845 	register_pid(sched, child->tid, thread__comm_str(child));
846 out_put:
847 	thread__put(child);
848 	thread__put(parent);
849 	return 0;
850 }
851 
852 struct sort_dimension {
853 	const char		*name;
854 	sort_fn_t		cmp;
855 	struct list_head	list;
856 };
857 
858 static int
859 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
860 {
861 	struct sort_dimension *sort;
862 	int ret = 0;
863 
864 	BUG_ON(list_empty(list));
865 
866 	list_for_each_entry(sort, list, list) {
867 		ret = sort->cmp(l, r);
868 		if (ret)
869 			return ret;
870 	}
871 
872 	return ret;
873 }
874 
875 static struct work_atoms *
876 thread_atoms_search(struct rb_root *root, struct thread *thread,
877 			 struct list_head *sort_list)
878 {
879 	struct rb_node *node = root->rb_node;
880 	struct work_atoms key = { .thread = thread };
881 
882 	while (node) {
883 		struct work_atoms *atoms;
884 		int cmp;
885 
886 		atoms = container_of(node, struct work_atoms, node);
887 
888 		cmp = thread_lat_cmp(sort_list, &key, atoms);
889 		if (cmp > 0)
890 			node = node->rb_left;
891 		else if (cmp < 0)
892 			node = node->rb_right;
893 		else {
894 			BUG_ON(thread != atoms->thread);
895 			return atoms;
896 		}
897 	}
898 	return NULL;
899 }
900 
901 static void
902 __thread_latency_insert(struct rb_root *root, struct work_atoms *data,
903 			 struct list_head *sort_list)
904 {
905 	struct rb_node **new = &(root->rb_node), *parent = NULL;
906 
907 	while (*new) {
908 		struct work_atoms *this;
909 		int cmp;
910 
911 		this = container_of(*new, struct work_atoms, node);
912 		parent = *new;
913 
914 		cmp = thread_lat_cmp(sort_list, data, this);
915 
916 		if (cmp > 0)
917 			new = &((*new)->rb_left);
918 		else
919 			new = &((*new)->rb_right);
920 	}
921 
922 	rb_link_node(&data->node, parent, new);
923 	rb_insert_color(&data->node, root);
924 }
925 
926 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
927 {
928 	struct work_atoms *atoms = zalloc(sizeof(*atoms));
929 	if (!atoms) {
930 		pr_err("No memory at %s\n", __func__);
931 		return -1;
932 	}
933 
934 	atoms->thread = thread__get(thread);
935 	INIT_LIST_HEAD(&atoms->work_list);
936 	__thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
937 	return 0;
938 }
939 
940 static char sched_out_state(u64 prev_state)
941 {
942 	const char *str = TASK_STATE_TO_CHAR_STR;
943 
944 	return str[prev_state];
945 }
946 
947 static int
948 add_sched_out_event(struct work_atoms *atoms,
949 		    char run_state,
950 		    u64 timestamp)
951 {
952 	struct work_atom *atom = zalloc(sizeof(*atom));
953 	if (!atom) {
954 		pr_err("Non memory at %s", __func__);
955 		return -1;
956 	}
957 
958 	atom->sched_out_time = timestamp;
959 
960 	if (run_state == 'R') {
961 		atom->state = THREAD_WAIT_CPU;
962 		atom->wake_up_time = atom->sched_out_time;
963 	}
964 
965 	list_add_tail(&atom->list, &atoms->work_list);
966 	return 0;
967 }
968 
969 static void
970 add_runtime_event(struct work_atoms *atoms, u64 delta,
971 		  u64 timestamp __maybe_unused)
972 {
973 	struct work_atom *atom;
974 
975 	BUG_ON(list_empty(&atoms->work_list));
976 
977 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
978 
979 	atom->runtime += delta;
980 	atoms->total_runtime += delta;
981 }
982 
983 static void
984 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
985 {
986 	struct work_atom *atom;
987 	u64 delta;
988 
989 	if (list_empty(&atoms->work_list))
990 		return;
991 
992 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
993 
994 	if (atom->state != THREAD_WAIT_CPU)
995 		return;
996 
997 	if (timestamp < atom->wake_up_time) {
998 		atom->state = THREAD_IGNORE;
999 		return;
1000 	}
1001 
1002 	atom->state = THREAD_SCHED_IN;
1003 	atom->sched_in_time = timestamp;
1004 
1005 	delta = atom->sched_in_time - atom->wake_up_time;
1006 	atoms->total_lat += delta;
1007 	if (delta > atoms->max_lat) {
1008 		atoms->max_lat = delta;
1009 		atoms->max_lat_at = timestamp;
1010 	}
1011 	atoms->nb_atoms++;
1012 }
1013 
1014 static int latency_switch_event(struct perf_sched *sched,
1015 				struct perf_evsel *evsel,
1016 				struct perf_sample *sample,
1017 				struct machine *machine)
1018 {
1019 	const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1020 		  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1021 	const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1022 	struct work_atoms *out_events, *in_events;
1023 	struct thread *sched_out, *sched_in;
1024 	u64 timestamp0, timestamp = sample->time;
1025 	int cpu = sample->cpu, err = -1;
1026 	s64 delta;
1027 
1028 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1029 
1030 	timestamp0 = sched->cpu_last_switched[cpu];
1031 	sched->cpu_last_switched[cpu] = timestamp;
1032 	if (timestamp0)
1033 		delta = timestamp - timestamp0;
1034 	else
1035 		delta = 0;
1036 
1037 	if (delta < 0) {
1038 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1039 		return -1;
1040 	}
1041 
1042 	sched_out = machine__findnew_thread(machine, -1, prev_pid);
1043 	sched_in = machine__findnew_thread(machine, -1, next_pid);
1044 	if (sched_out == NULL || sched_in == NULL)
1045 		goto out_put;
1046 
1047 	out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1048 	if (!out_events) {
1049 		if (thread_atoms_insert(sched, sched_out))
1050 			goto out_put;
1051 		out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1052 		if (!out_events) {
1053 			pr_err("out-event: Internal tree error");
1054 			goto out_put;
1055 		}
1056 	}
1057 	if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1058 		return -1;
1059 
1060 	in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1061 	if (!in_events) {
1062 		if (thread_atoms_insert(sched, sched_in))
1063 			goto out_put;
1064 		in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1065 		if (!in_events) {
1066 			pr_err("in-event: Internal tree error");
1067 			goto out_put;
1068 		}
1069 		/*
1070 		 * Take came in we have not heard about yet,
1071 		 * add in an initial atom in runnable state:
1072 		 */
1073 		if (add_sched_out_event(in_events, 'R', timestamp))
1074 			goto out_put;
1075 	}
1076 	add_sched_in_event(in_events, timestamp);
1077 	err = 0;
1078 out_put:
1079 	thread__put(sched_out);
1080 	thread__put(sched_in);
1081 	return err;
1082 }
1083 
1084 static int latency_runtime_event(struct perf_sched *sched,
1085 				 struct perf_evsel *evsel,
1086 				 struct perf_sample *sample,
1087 				 struct machine *machine)
1088 {
1089 	const u32 pid	   = perf_evsel__intval(evsel, sample, "pid");
1090 	const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1091 	struct thread *thread = machine__findnew_thread(machine, -1, pid);
1092 	struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1093 	u64 timestamp = sample->time;
1094 	int cpu = sample->cpu, err = -1;
1095 
1096 	if (thread == NULL)
1097 		return -1;
1098 
1099 	BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1100 	if (!atoms) {
1101 		if (thread_atoms_insert(sched, thread))
1102 			goto out_put;
1103 		atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1104 		if (!atoms) {
1105 			pr_err("in-event: Internal tree error");
1106 			goto out_put;
1107 		}
1108 		if (add_sched_out_event(atoms, 'R', timestamp))
1109 			goto out_put;
1110 	}
1111 
1112 	add_runtime_event(atoms, runtime, timestamp);
1113 	err = 0;
1114 out_put:
1115 	thread__put(thread);
1116 	return err;
1117 }
1118 
1119 static int latency_wakeup_event(struct perf_sched *sched,
1120 				struct perf_evsel *evsel,
1121 				struct perf_sample *sample,
1122 				struct machine *machine)
1123 {
1124 	const u32 pid	  = perf_evsel__intval(evsel, sample, "pid");
1125 	struct work_atoms *atoms;
1126 	struct work_atom *atom;
1127 	struct thread *wakee;
1128 	u64 timestamp = sample->time;
1129 	int err = -1;
1130 
1131 	wakee = machine__findnew_thread(machine, -1, pid);
1132 	if (wakee == NULL)
1133 		return -1;
1134 	atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1135 	if (!atoms) {
1136 		if (thread_atoms_insert(sched, wakee))
1137 			goto out_put;
1138 		atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1139 		if (!atoms) {
1140 			pr_err("wakeup-event: Internal tree error");
1141 			goto out_put;
1142 		}
1143 		if (add_sched_out_event(atoms, 'S', timestamp))
1144 			goto out_put;
1145 	}
1146 
1147 	BUG_ON(list_empty(&atoms->work_list));
1148 
1149 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1150 
1151 	/*
1152 	 * As we do not guarantee the wakeup event happens when
1153 	 * task is out of run queue, also may happen when task is
1154 	 * on run queue and wakeup only change ->state to TASK_RUNNING,
1155 	 * then we should not set the ->wake_up_time when wake up a
1156 	 * task which is on run queue.
1157 	 *
1158 	 * You WILL be missing events if you've recorded only
1159 	 * one CPU, or are only looking at only one, so don't
1160 	 * skip in this case.
1161 	 */
1162 	if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1163 		goto out_ok;
1164 
1165 	sched->nr_timestamps++;
1166 	if (atom->sched_out_time > timestamp) {
1167 		sched->nr_unordered_timestamps++;
1168 		goto out_ok;
1169 	}
1170 
1171 	atom->state = THREAD_WAIT_CPU;
1172 	atom->wake_up_time = timestamp;
1173 out_ok:
1174 	err = 0;
1175 out_put:
1176 	thread__put(wakee);
1177 	return err;
1178 }
1179 
1180 static int latency_migrate_task_event(struct perf_sched *sched,
1181 				      struct perf_evsel *evsel,
1182 				      struct perf_sample *sample,
1183 				      struct machine *machine)
1184 {
1185 	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1186 	u64 timestamp = sample->time;
1187 	struct work_atoms *atoms;
1188 	struct work_atom *atom;
1189 	struct thread *migrant;
1190 	int err = -1;
1191 
1192 	/*
1193 	 * Only need to worry about migration when profiling one CPU.
1194 	 */
1195 	if (sched->profile_cpu == -1)
1196 		return 0;
1197 
1198 	migrant = machine__findnew_thread(machine, -1, pid);
1199 	if (migrant == NULL)
1200 		return -1;
1201 	atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1202 	if (!atoms) {
1203 		if (thread_atoms_insert(sched, migrant))
1204 			goto out_put;
1205 		register_pid(sched, migrant->tid, thread__comm_str(migrant));
1206 		atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1207 		if (!atoms) {
1208 			pr_err("migration-event: Internal tree error");
1209 			goto out_put;
1210 		}
1211 		if (add_sched_out_event(atoms, 'R', timestamp))
1212 			goto out_put;
1213 	}
1214 
1215 	BUG_ON(list_empty(&atoms->work_list));
1216 
1217 	atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1218 	atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1219 
1220 	sched->nr_timestamps++;
1221 
1222 	if (atom->sched_out_time > timestamp)
1223 		sched->nr_unordered_timestamps++;
1224 	err = 0;
1225 out_put:
1226 	thread__put(migrant);
1227 	return err;
1228 }
1229 
1230 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1231 {
1232 	int i;
1233 	int ret;
1234 	u64 avg;
1235 	char max_lat_at[32];
1236 
1237 	if (!work_list->nb_atoms)
1238 		return;
1239 	/*
1240 	 * Ignore idle threads:
1241 	 */
1242 	if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1243 		return;
1244 
1245 	sched->all_runtime += work_list->total_runtime;
1246 	sched->all_count   += work_list->nb_atoms;
1247 
1248 	if (work_list->num_merged > 1)
1249 		ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1250 	else
1251 		ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1252 
1253 	for (i = 0; i < 24 - ret; i++)
1254 		printf(" ");
1255 
1256 	avg = work_list->total_lat / work_list->nb_atoms;
1257 	timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1258 
1259 	printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1260 	      (double)work_list->total_runtime / NSEC_PER_MSEC,
1261 		 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1262 		 (double)work_list->max_lat / NSEC_PER_MSEC,
1263 		 max_lat_at);
1264 }
1265 
1266 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1267 {
1268 	if (l->thread == r->thread)
1269 		return 0;
1270 	if (l->thread->tid < r->thread->tid)
1271 		return -1;
1272 	if (l->thread->tid > r->thread->tid)
1273 		return 1;
1274 	return (int)(l->thread - r->thread);
1275 }
1276 
1277 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1278 {
1279 	u64 avgl, avgr;
1280 
1281 	if (!l->nb_atoms)
1282 		return -1;
1283 
1284 	if (!r->nb_atoms)
1285 		return 1;
1286 
1287 	avgl = l->total_lat / l->nb_atoms;
1288 	avgr = r->total_lat / r->nb_atoms;
1289 
1290 	if (avgl < avgr)
1291 		return -1;
1292 	if (avgl > avgr)
1293 		return 1;
1294 
1295 	return 0;
1296 }
1297 
1298 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1299 {
1300 	if (l->max_lat < r->max_lat)
1301 		return -1;
1302 	if (l->max_lat > r->max_lat)
1303 		return 1;
1304 
1305 	return 0;
1306 }
1307 
1308 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1309 {
1310 	if (l->nb_atoms < r->nb_atoms)
1311 		return -1;
1312 	if (l->nb_atoms > r->nb_atoms)
1313 		return 1;
1314 
1315 	return 0;
1316 }
1317 
1318 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1319 {
1320 	if (l->total_runtime < r->total_runtime)
1321 		return -1;
1322 	if (l->total_runtime > r->total_runtime)
1323 		return 1;
1324 
1325 	return 0;
1326 }
1327 
1328 static int sort_dimension__add(const char *tok, struct list_head *list)
1329 {
1330 	size_t i;
1331 	static struct sort_dimension avg_sort_dimension = {
1332 		.name = "avg",
1333 		.cmp  = avg_cmp,
1334 	};
1335 	static struct sort_dimension max_sort_dimension = {
1336 		.name = "max",
1337 		.cmp  = max_cmp,
1338 	};
1339 	static struct sort_dimension pid_sort_dimension = {
1340 		.name = "pid",
1341 		.cmp  = pid_cmp,
1342 	};
1343 	static struct sort_dimension runtime_sort_dimension = {
1344 		.name = "runtime",
1345 		.cmp  = runtime_cmp,
1346 	};
1347 	static struct sort_dimension switch_sort_dimension = {
1348 		.name = "switch",
1349 		.cmp  = switch_cmp,
1350 	};
1351 	struct sort_dimension *available_sorts[] = {
1352 		&pid_sort_dimension,
1353 		&avg_sort_dimension,
1354 		&max_sort_dimension,
1355 		&switch_sort_dimension,
1356 		&runtime_sort_dimension,
1357 	};
1358 
1359 	for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1360 		if (!strcmp(available_sorts[i]->name, tok)) {
1361 			list_add_tail(&available_sorts[i]->list, list);
1362 
1363 			return 0;
1364 		}
1365 	}
1366 
1367 	return -1;
1368 }
1369 
1370 static void perf_sched__sort_lat(struct perf_sched *sched)
1371 {
1372 	struct rb_node *node;
1373 	struct rb_root *root = &sched->atom_root;
1374 again:
1375 	for (;;) {
1376 		struct work_atoms *data;
1377 		node = rb_first(root);
1378 		if (!node)
1379 			break;
1380 
1381 		rb_erase(node, root);
1382 		data = rb_entry(node, struct work_atoms, node);
1383 		__thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1384 	}
1385 	if (root == &sched->atom_root) {
1386 		root = &sched->merged_atom_root;
1387 		goto again;
1388 	}
1389 }
1390 
1391 static int process_sched_wakeup_event(struct perf_tool *tool,
1392 				      struct perf_evsel *evsel,
1393 				      struct perf_sample *sample,
1394 				      struct machine *machine)
1395 {
1396 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1397 
1398 	if (sched->tp_handler->wakeup_event)
1399 		return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1400 
1401 	return 0;
1402 }
1403 
1404 union map_priv {
1405 	void	*ptr;
1406 	bool	 color;
1407 };
1408 
1409 static bool thread__has_color(struct thread *thread)
1410 {
1411 	union map_priv priv = {
1412 		.ptr = thread__priv(thread),
1413 	};
1414 
1415 	return priv.color;
1416 }
1417 
1418 static struct thread*
1419 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1420 {
1421 	struct thread *thread = machine__findnew_thread(machine, pid, tid);
1422 	union map_priv priv = {
1423 		.color = false,
1424 	};
1425 
1426 	if (!sched->map.color_pids || !thread || thread__priv(thread))
1427 		return thread;
1428 
1429 	if (thread_map__has(sched->map.color_pids, tid))
1430 		priv.color = true;
1431 
1432 	thread__set_priv(thread, priv.ptr);
1433 	return thread;
1434 }
1435 
1436 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1437 			    struct perf_sample *sample, struct machine *machine)
1438 {
1439 	const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1440 	struct thread *sched_in;
1441 	int new_shortname;
1442 	u64 timestamp0, timestamp = sample->time;
1443 	s64 delta;
1444 	int i, this_cpu = sample->cpu;
1445 	int cpus_nr;
1446 	bool new_cpu = false;
1447 	const char *color = PERF_COLOR_NORMAL;
1448 	char stimestamp[32];
1449 
1450 	BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1451 
1452 	if (this_cpu > sched->max_cpu)
1453 		sched->max_cpu = this_cpu;
1454 
1455 	if (sched->map.comp) {
1456 		cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1457 		if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1458 			sched->map.comp_cpus[cpus_nr++] = this_cpu;
1459 			new_cpu = true;
1460 		}
1461 	} else
1462 		cpus_nr = sched->max_cpu;
1463 
1464 	timestamp0 = sched->cpu_last_switched[this_cpu];
1465 	sched->cpu_last_switched[this_cpu] = timestamp;
1466 	if (timestamp0)
1467 		delta = timestamp - timestamp0;
1468 	else
1469 		delta = 0;
1470 
1471 	if (delta < 0) {
1472 		pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1473 		return -1;
1474 	}
1475 
1476 	sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1477 	if (sched_in == NULL)
1478 		return -1;
1479 
1480 	sched->curr_thread[this_cpu] = thread__get(sched_in);
1481 
1482 	printf("  ");
1483 
1484 	new_shortname = 0;
1485 	if (!sched_in->shortname[0]) {
1486 		if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1487 			/*
1488 			 * Don't allocate a letter-number for swapper:0
1489 			 * as a shortname. Instead, we use '.' for it.
1490 			 */
1491 			sched_in->shortname[0] = '.';
1492 			sched_in->shortname[1] = ' ';
1493 		} else {
1494 			sched_in->shortname[0] = sched->next_shortname1;
1495 			sched_in->shortname[1] = sched->next_shortname2;
1496 
1497 			if (sched->next_shortname1 < 'Z') {
1498 				sched->next_shortname1++;
1499 			} else {
1500 				sched->next_shortname1 = 'A';
1501 				if (sched->next_shortname2 < '9')
1502 					sched->next_shortname2++;
1503 				else
1504 					sched->next_shortname2 = '0';
1505 			}
1506 		}
1507 		new_shortname = 1;
1508 	}
1509 
1510 	for (i = 0; i < cpus_nr; i++) {
1511 		int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1512 		struct thread *curr_thread = sched->curr_thread[cpu];
1513 		const char *pid_color = color;
1514 		const char *cpu_color = color;
1515 
1516 		if (curr_thread && thread__has_color(curr_thread))
1517 			pid_color = COLOR_PIDS;
1518 
1519 		if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1520 			continue;
1521 
1522 		if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1523 			cpu_color = COLOR_CPUS;
1524 
1525 		if (cpu != this_cpu)
1526 			color_fprintf(stdout, color, " ");
1527 		else
1528 			color_fprintf(stdout, cpu_color, "*");
1529 
1530 		if (sched->curr_thread[cpu])
1531 			color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname);
1532 		else
1533 			color_fprintf(stdout, color, "   ");
1534 	}
1535 
1536 	if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1537 		goto out;
1538 
1539 	timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1540 	color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1541 	if (new_shortname || (verbose && sched_in->tid)) {
1542 		const char *pid_color = color;
1543 
1544 		if (thread__has_color(sched_in))
1545 			pid_color = COLOR_PIDS;
1546 
1547 		color_fprintf(stdout, pid_color, "%s => %s:%d",
1548 		       sched_in->shortname, thread__comm_str(sched_in), sched_in->tid);
1549 	}
1550 
1551 	if (sched->map.comp && new_cpu)
1552 		color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1553 
1554 out:
1555 	color_fprintf(stdout, color, "\n");
1556 
1557 	thread__put(sched_in);
1558 
1559 	return 0;
1560 }
1561 
1562 static int process_sched_switch_event(struct perf_tool *tool,
1563 				      struct perf_evsel *evsel,
1564 				      struct perf_sample *sample,
1565 				      struct machine *machine)
1566 {
1567 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1568 	int this_cpu = sample->cpu, err = 0;
1569 	u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1570 	    next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1571 
1572 	if (sched->curr_pid[this_cpu] != (u32)-1) {
1573 		/*
1574 		 * Are we trying to switch away a PID that is
1575 		 * not current?
1576 		 */
1577 		if (sched->curr_pid[this_cpu] != prev_pid)
1578 			sched->nr_context_switch_bugs++;
1579 	}
1580 
1581 	if (sched->tp_handler->switch_event)
1582 		err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1583 
1584 	sched->curr_pid[this_cpu] = next_pid;
1585 	return err;
1586 }
1587 
1588 static int process_sched_runtime_event(struct perf_tool *tool,
1589 				       struct perf_evsel *evsel,
1590 				       struct perf_sample *sample,
1591 				       struct machine *machine)
1592 {
1593 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1594 
1595 	if (sched->tp_handler->runtime_event)
1596 		return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1597 
1598 	return 0;
1599 }
1600 
1601 static int perf_sched__process_fork_event(struct perf_tool *tool,
1602 					  union perf_event *event,
1603 					  struct perf_sample *sample,
1604 					  struct machine *machine)
1605 {
1606 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1607 
1608 	/* run the fork event through the perf machineruy */
1609 	perf_event__process_fork(tool, event, sample, machine);
1610 
1611 	/* and then run additional processing needed for this command */
1612 	if (sched->tp_handler->fork_event)
1613 		return sched->tp_handler->fork_event(sched, event, machine);
1614 
1615 	return 0;
1616 }
1617 
1618 static int process_sched_migrate_task_event(struct perf_tool *tool,
1619 					    struct perf_evsel *evsel,
1620 					    struct perf_sample *sample,
1621 					    struct machine *machine)
1622 {
1623 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1624 
1625 	if (sched->tp_handler->migrate_task_event)
1626 		return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1627 
1628 	return 0;
1629 }
1630 
1631 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1632 				  struct perf_evsel *evsel,
1633 				  struct perf_sample *sample,
1634 				  struct machine *machine);
1635 
1636 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1637 						 union perf_event *event __maybe_unused,
1638 						 struct perf_sample *sample,
1639 						 struct perf_evsel *evsel,
1640 						 struct machine *machine)
1641 {
1642 	int err = 0;
1643 
1644 	if (evsel->handler != NULL) {
1645 		tracepoint_handler f = evsel->handler;
1646 		err = f(tool, evsel, sample, machine);
1647 	}
1648 
1649 	return err;
1650 }
1651 
1652 static int perf_sched__read_events(struct perf_sched *sched)
1653 {
1654 	const struct perf_evsel_str_handler handlers[] = {
1655 		{ "sched:sched_switch",	      process_sched_switch_event, },
1656 		{ "sched:sched_stat_runtime", process_sched_runtime_event, },
1657 		{ "sched:sched_wakeup",	      process_sched_wakeup_event, },
1658 		{ "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1659 		{ "sched:sched_migrate_task", process_sched_migrate_task_event, },
1660 	};
1661 	struct perf_session *session;
1662 	struct perf_data_file file = {
1663 		.path = input_name,
1664 		.mode = PERF_DATA_MODE_READ,
1665 		.force = sched->force,
1666 	};
1667 	int rc = -1;
1668 
1669 	session = perf_session__new(&file, false, &sched->tool);
1670 	if (session == NULL) {
1671 		pr_debug("No Memory for session\n");
1672 		return -1;
1673 	}
1674 
1675 	symbol__init(&session->header.env);
1676 
1677 	if (perf_session__set_tracepoints_handlers(session, handlers))
1678 		goto out_delete;
1679 
1680 	if (perf_session__has_traces(session, "record -R")) {
1681 		int err = perf_session__process_events(session);
1682 		if (err) {
1683 			pr_err("Failed to process events, error %d", err);
1684 			goto out_delete;
1685 		}
1686 
1687 		sched->nr_events      = session->evlist->stats.nr_events[0];
1688 		sched->nr_lost_events = session->evlist->stats.total_lost;
1689 		sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1690 	}
1691 
1692 	rc = 0;
1693 out_delete:
1694 	perf_session__delete(session);
1695 	return rc;
1696 }
1697 
1698 /*
1699  * scheduling times are printed as msec.usec
1700  */
1701 static inline void print_sched_time(unsigned long long nsecs, int width)
1702 {
1703 	unsigned long msecs;
1704 	unsigned long usecs;
1705 
1706 	msecs  = nsecs / NSEC_PER_MSEC;
1707 	nsecs -= msecs * NSEC_PER_MSEC;
1708 	usecs  = nsecs / NSEC_PER_USEC;
1709 	printf("%*lu.%03lu ", width, msecs, usecs);
1710 }
1711 
1712 /*
1713  * returns runtime data for event, allocating memory for it the
1714  * first time it is used.
1715  */
1716 static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1717 {
1718 	struct evsel_runtime *r = evsel->priv;
1719 
1720 	if (r == NULL) {
1721 		r = zalloc(sizeof(struct evsel_runtime));
1722 		evsel->priv = r;
1723 	}
1724 
1725 	return r;
1726 }
1727 
1728 /*
1729  * save last time event was seen per cpu
1730  */
1731 static void perf_evsel__save_time(struct perf_evsel *evsel,
1732 				  u64 timestamp, u32 cpu)
1733 {
1734 	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1735 
1736 	if (r == NULL)
1737 		return;
1738 
1739 	if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1740 		int i, n = __roundup_pow_of_two(cpu+1);
1741 		void *p = r->last_time;
1742 
1743 		p = realloc(r->last_time, n * sizeof(u64));
1744 		if (!p)
1745 			return;
1746 
1747 		r->last_time = p;
1748 		for (i = r->ncpu; i < n; ++i)
1749 			r->last_time[i] = (u64) 0;
1750 
1751 		r->ncpu = n;
1752 	}
1753 
1754 	r->last_time[cpu] = timestamp;
1755 }
1756 
1757 /* returns last time this event was seen on the given cpu */
1758 static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1759 {
1760 	struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1761 
1762 	if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1763 		return 0;
1764 
1765 	return r->last_time[cpu];
1766 }
1767 
1768 static int comm_width = 20;
1769 
1770 static char *timehist_get_commstr(struct thread *thread)
1771 {
1772 	static char str[32];
1773 	const char *comm = thread__comm_str(thread);
1774 	pid_t tid = thread->tid;
1775 	pid_t pid = thread->pid_;
1776 	int n;
1777 
1778 	if (pid == 0)
1779 		n = scnprintf(str, sizeof(str), "%s", comm);
1780 
1781 	else if (tid != pid)
1782 		n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1783 
1784 	else
1785 		n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1786 
1787 	if (n > comm_width)
1788 		comm_width = n;
1789 
1790 	return str;
1791 }
1792 
1793 static void timehist_header(struct perf_sched *sched)
1794 {
1795 	u32 ncpus = sched->max_cpu + 1;
1796 	u32 i, j;
1797 
1798 	printf("%15s %6s ", "time", "cpu");
1799 
1800 	if (sched->show_cpu_visual) {
1801 		printf(" ");
1802 		for (i = 0, j = 0; i < ncpus; ++i) {
1803 			printf("%x", j++);
1804 			if (j > 15)
1805 				j = 0;
1806 		}
1807 		printf(" ");
1808 	}
1809 
1810 	printf(" %-20s  %9s  %9s  %9s",
1811 		"task name", "wait time", "sch delay", "run time");
1812 
1813 	printf("\n");
1814 
1815 	/*
1816 	 * units row
1817 	 */
1818 	printf("%15s %-6s ", "", "");
1819 
1820 	if (sched->show_cpu_visual)
1821 		printf(" %*s ", ncpus, "");
1822 
1823 	printf(" %-20s  %9s  %9s  %9s\n", "[tid/pid]", "(msec)", "(msec)", "(msec)");
1824 
1825 	/*
1826 	 * separator
1827 	 */
1828 	printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1829 
1830 	if (sched->show_cpu_visual)
1831 		printf(" %.*s ", ncpus, graph_dotted_line);
1832 
1833 	printf(" %.20s  %.9s  %.9s  %.9s",
1834 		graph_dotted_line, graph_dotted_line, graph_dotted_line,
1835 		graph_dotted_line);
1836 
1837 	printf("\n");
1838 }
1839 
1840 static void timehist_print_sample(struct perf_sched *sched,
1841 				  struct perf_sample *sample,
1842 				  struct addr_location *al,
1843 				  struct thread *thread,
1844 				  u64 t)
1845 {
1846 	struct thread_runtime *tr = thread__priv(thread);
1847 	u32 max_cpus = sched->max_cpu + 1;
1848 	char tstr[64];
1849 
1850 	timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
1851 	printf("%15s [%04d] ", tstr, sample->cpu);
1852 
1853 	if (sched->show_cpu_visual) {
1854 		u32 i;
1855 		char c;
1856 
1857 		printf(" ");
1858 		for (i = 0; i < max_cpus; ++i) {
1859 			/* flag idle times with 'i'; others are sched events */
1860 			if (i == sample->cpu)
1861 				c = (thread->tid == 0) ? 'i' : 's';
1862 			else
1863 				c = ' ';
1864 			printf("%c", c);
1865 		}
1866 		printf(" ");
1867 	}
1868 
1869 	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
1870 
1871 	print_sched_time(tr->dt_wait, 6);
1872 	print_sched_time(tr->dt_delay, 6);
1873 	print_sched_time(tr->dt_run, 6);
1874 
1875 	if (sched->show_wakeups)
1876 		printf("  %-*s", comm_width, "");
1877 
1878 	if (thread->tid == 0)
1879 		goto out;
1880 
1881 	if (sched->show_callchain)
1882 		printf("  ");
1883 
1884 	sample__fprintf_sym(sample, al, 0,
1885 			    EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
1886 			    EVSEL__PRINT_CALLCHAIN_ARROW |
1887 			    EVSEL__PRINT_SKIP_IGNORED,
1888 			    &callchain_cursor, stdout);
1889 
1890 out:
1891 	printf("\n");
1892 }
1893 
1894 /*
1895  * Explanation of delta-time stats:
1896  *
1897  *            t = time of current schedule out event
1898  *        tprev = time of previous sched out event
1899  *                also time of schedule-in event for current task
1900  *    last_time = time of last sched change event for current task
1901  *                (i.e, time process was last scheduled out)
1902  * ready_to_run = time of wakeup for current task
1903  *
1904  * -----|------------|------------|------------|------
1905  *    last         ready        tprev          t
1906  *    time         to run
1907  *
1908  *      |-------- dt_wait --------|
1909  *                   |- dt_delay -|-- dt_run --|
1910  *
1911  *   dt_run = run time of current task
1912  *  dt_wait = time between last schedule out event for task and tprev
1913  *            represents time spent off the cpu
1914  * dt_delay = time between wakeup and schedule-in of task
1915  */
1916 
1917 static void timehist_update_runtime_stats(struct thread_runtime *r,
1918 					 u64 t, u64 tprev)
1919 {
1920 	r->dt_delay   = 0;
1921 	r->dt_wait    = 0;
1922 	r->dt_run     = 0;
1923 	if (tprev) {
1924 		r->dt_run = t - tprev;
1925 		if (r->ready_to_run) {
1926 			if (r->ready_to_run > tprev)
1927 				pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
1928 			else
1929 				r->dt_delay = tprev - r->ready_to_run;
1930 		}
1931 
1932 		if (r->last_time > tprev)
1933 			pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
1934 		else if (r->last_time)
1935 			r->dt_wait = tprev - r->last_time;
1936 	}
1937 
1938 	update_stats(&r->run_stats, r->dt_run);
1939 	r->total_run_time += r->dt_run;
1940 }
1941 
1942 static bool is_idle_sample(struct perf_sched *sched,
1943 			   struct perf_sample *sample,
1944 			   struct perf_evsel *evsel,
1945 			   struct machine *machine)
1946 {
1947 	struct thread *thread;
1948 	struct callchain_cursor *cursor = &callchain_cursor;
1949 
1950 	/* pid 0 == swapper == idle task */
1951 	if (sample->pid == 0)
1952 		return true;
1953 
1954 	if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0) {
1955 		if (perf_evsel__intval(evsel, sample, "prev_pid") == 0)
1956 			return true;
1957 	}
1958 
1959 	/* want main thread for process - has maps */
1960 	thread = machine__findnew_thread(machine, sample->pid, sample->pid);
1961 	if (thread == NULL) {
1962 		pr_debug("Failed to get thread for pid %d.\n", sample->pid);
1963 		return false;
1964 	}
1965 
1966 	if (!symbol_conf.use_callchain || sample->callchain == NULL)
1967 		return false;
1968 
1969 	if (thread__resolve_callchain(thread, cursor, evsel, sample,
1970 				      NULL, NULL, sched->max_stack + 2) != 0) {
1971 		if (verbose)
1972 			error("Failed to resolve callchain. Skipping\n");
1973 
1974 		return false;
1975 	}
1976 
1977 	callchain_cursor_commit(cursor);
1978 
1979 	while (true) {
1980 		struct callchain_cursor_node *node;
1981 		struct symbol *sym;
1982 
1983 		node = callchain_cursor_current(cursor);
1984 		if (node == NULL)
1985 			break;
1986 
1987 		sym = node->sym;
1988 		if (sym && sym->name) {
1989 			if (!strcmp(sym->name, "schedule") ||
1990 			    !strcmp(sym->name, "__schedule") ||
1991 			    !strcmp(sym->name, "preempt_schedule"))
1992 				sym->ignore = 1;
1993 		}
1994 
1995 		callchain_cursor_advance(cursor);
1996 	}
1997 
1998 	return false;
1999 }
2000 
2001 /*
2002  * Track idle stats per cpu by maintaining a local thread
2003  * struct for the idle task on each cpu.
2004  */
2005 static int init_idle_threads(int ncpu)
2006 {
2007 	int i;
2008 
2009 	idle_threads = zalloc(ncpu * sizeof(struct thread *));
2010 	if (!idle_threads)
2011 		return -ENOMEM;
2012 
2013 	idle_max_cpu = ncpu;
2014 
2015 	/* allocate the actual thread struct if needed */
2016 	for (i = 0; i < ncpu; ++i) {
2017 		idle_threads[i] = thread__new(0, 0);
2018 		if (idle_threads[i] == NULL)
2019 			return -ENOMEM;
2020 
2021 		thread__set_comm(idle_threads[i], idle_comm, 0);
2022 	}
2023 
2024 	return 0;
2025 }
2026 
2027 static void free_idle_threads(void)
2028 {
2029 	int i;
2030 
2031 	if (idle_threads == NULL)
2032 		return;
2033 
2034 	for (i = 0; i < idle_max_cpu; ++i) {
2035 		if ((idle_threads[i]))
2036 			thread__delete(idle_threads[i]);
2037 	}
2038 
2039 	free(idle_threads);
2040 }
2041 
2042 static struct thread *get_idle_thread(int cpu)
2043 {
2044 	/*
2045 	 * expand/allocate array of pointers to local thread
2046 	 * structs if needed
2047 	 */
2048 	if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2049 		int i, j = __roundup_pow_of_two(cpu+1);
2050 		void *p;
2051 
2052 		p = realloc(idle_threads, j * sizeof(struct thread *));
2053 		if (!p)
2054 			return NULL;
2055 
2056 		idle_threads = (struct thread **) p;
2057 		for (i = idle_max_cpu; i < j; ++i)
2058 			idle_threads[i] = NULL;
2059 
2060 		idle_max_cpu = j;
2061 	}
2062 
2063 	/* allocate a new thread struct if needed */
2064 	if (idle_threads[cpu] == NULL) {
2065 		idle_threads[cpu] = thread__new(0, 0);
2066 
2067 		if (idle_threads[cpu]) {
2068 			idle_threads[cpu]->tid = 0;
2069 			thread__set_comm(idle_threads[cpu], idle_comm, 0);
2070 		}
2071 	}
2072 
2073 	return idle_threads[cpu];
2074 }
2075 
2076 /*
2077  * handle runtime stats saved per thread
2078  */
2079 static struct thread_runtime *thread__init_runtime(struct thread *thread)
2080 {
2081 	struct thread_runtime *r;
2082 
2083 	r = zalloc(sizeof(struct thread_runtime));
2084 	if (!r)
2085 		return NULL;
2086 
2087 	init_stats(&r->run_stats);
2088 	thread__set_priv(thread, r);
2089 
2090 	return r;
2091 }
2092 
2093 static struct thread_runtime *thread__get_runtime(struct thread *thread)
2094 {
2095 	struct thread_runtime *tr;
2096 
2097 	tr = thread__priv(thread);
2098 	if (tr == NULL) {
2099 		tr = thread__init_runtime(thread);
2100 		if (tr == NULL)
2101 			pr_debug("Failed to malloc memory for runtime data.\n");
2102 	}
2103 
2104 	return tr;
2105 }
2106 
2107 static struct thread *timehist_get_thread(struct perf_sched *sched,
2108 					  struct perf_sample *sample,
2109 					  struct machine *machine,
2110 					  struct perf_evsel *evsel)
2111 {
2112 	struct thread *thread;
2113 
2114 	if (is_idle_sample(sched, sample, evsel, machine)) {
2115 		thread = get_idle_thread(sample->cpu);
2116 		if (thread == NULL)
2117 			pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2118 
2119 	} else {
2120 		/* there were samples with tid 0 but non-zero pid */
2121 		thread = machine__findnew_thread(machine, sample->pid,
2122 						 sample->tid ?: sample->pid);
2123 		if (thread == NULL) {
2124 			pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2125 				 sample->tid);
2126 		}
2127 	}
2128 
2129 	return thread;
2130 }
2131 
2132 static bool timehist_skip_sample(struct perf_sched *sched,
2133 				 struct thread *thread)
2134 {
2135 	bool rc = false;
2136 
2137 	if (thread__is_filtered(thread)) {
2138 		rc = true;
2139 		sched->skipped_samples++;
2140 	}
2141 
2142 	return rc;
2143 }
2144 
2145 static void timehist_print_wakeup_event(struct perf_sched *sched,
2146 					struct perf_sample *sample,
2147 					struct machine *machine,
2148 					struct thread *awakened)
2149 {
2150 	struct thread *thread;
2151 	char tstr[64];
2152 
2153 	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2154 	if (thread == NULL)
2155 		return;
2156 
2157 	/* show wakeup unless both awakee and awaker are filtered */
2158 	if (timehist_skip_sample(sched, thread) &&
2159 	    timehist_skip_sample(sched, awakened)) {
2160 		return;
2161 	}
2162 
2163 	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2164 	printf("%15s [%04d] ", tstr, sample->cpu);
2165 	if (sched->show_cpu_visual)
2166 		printf(" %*s ", sched->max_cpu + 1, "");
2167 
2168 	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2169 
2170 	/* dt spacer */
2171 	printf("  %9s  %9s  %9s ", "", "", "");
2172 
2173 	printf("awakened: %s", timehist_get_commstr(awakened));
2174 
2175 	printf("\n");
2176 }
2177 
2178 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2179 				       union perf_event *event __maybe_unused,
2180 				       struct perf_evsel *evsel,
2181 				       struct perf_sample *sample,
2182 				       struct machine *machine)
2183 {
2184 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2185 	struct thread *thread;
2186 	struct thread_runtime *tr = NULL;
2187 	/* want pid of awakened task not pid in sample */
2188 	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2189 
2190 	thread = machine__findnew_thread(machine, 0, pid);
2191 	if (thread == NULL)
2192 		return -1;
2193 
2194 	tr = thread__get_runtime(thread);
2195 	if (tr == NULL)
2196 		return -1;
2197 
2198 	if (tr->ready_to_run == 0)
2199 		tr->ready_to_run = sample->time;
2200 
2201 	/* show wakeups if requested */
2202 	if (sched->show_wakeups &&
2203 	    !perf_time__skip_sample(&sched->ptime, sample->time))
2204 		timehist_print_wakeup_event(sched, sample, machine, thread);
2205 
2206 	return 0;
2207 }
2208 
2209 static void timehist_print_migration_event(struct perf_sched *sched,
2210 					struct perf_evsel *evsel,
2211 					struct perf_sample *sample,
2212 					struct machine *machine,
2213 					struct thread *migrated)
2214 {
2215 	struct thread *thread;
2216 	char tstr[64];
2217 	u32 max_cpus = sched->max_cpu + 1;
2218 	u32 ocpu, dcpu;
2219 
2220 	if (sched->summary_only)
2221 		return;
2222 
2223 	max_cpus = sched->max_cpu + 1;
2224 	ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2225 	dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2226 
2227 	thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2228 	if (thread == NULL)
2229 		return;
2230 
2231 	if (timehist_skip_sample(sched, thread) &&
2232 	    timehist_skip_sample(sched, migrated)) {
2233 		return;
2234 	}
2235 
2236 	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2237 	printf("%15s [%04d] ", tstr, sample->cpu);
2238 
2239 	if (sched->show_cpu_visual) {
2240 		u32 i;
2241 		char c;
2242 
2243 		printf("  ");
2244 		for (i = 0; i < max_cpus; ++i) {
2245 			c = (i == sample->cpu) ? 'm' : ' ';
2246 			printf("%c", c);
2247 		}
2248 		printf("  ");
2249 	}
2250 
2251 	printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2252 
2253 	/* dt spacer */
2254 	printf("  %9s  %9s  %9s ", "", "", "");
2255 
2256 	printf("migrated: %s", timehist_get_commstr(migrated));
2257 	printf(" cpu %d => %d", ocpu, dcpu);
2258 
2259 	printf("\n");
2260 }
2261 
2262 static int timehist_migrate_task_event(struct perf_tool *tool,
2263 				       union perf_event *event __maybe_unused,
2264 				       struct perf_evsel *evsel,
2265 				       struct perf_sample *sample,
2266 				       struct machine *machine)
2267 {
2268 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2269 	struct thread *thread;
2270 	struct thread_runtime *tr = NULL;
2271 	/* want pid of migrated task not pid in sample */
2272 	const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2273 
2274 	thread = machine__findnew_thread(machine, 0, pid);
2275 	if (thread == NULL)
2276 		return -1;
2277 
2278 	tr = thread__get_runtime(thread);
2279 	if (tr == NULL)
2280 		return -1;
2281 
2282 	tr->migrations++;
2283 
2284 	/* show migrations if requested */
2285 	timehist_print_migration_event(sched, evsel, sample, machine, thread);
2286 
2287 	return 0;
2288 }
2289 
2290 static int timehist_sched_change_event(struct perf_tool *tool,
2291 				       union perf_event *event,
2292 				       struct perf_evsel *evsel,
2293 				       struct perf_sample *sample,
2294 				       struct machine *machine)
2295 {
2296 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2297 	struct perf_time_interval *ptime = &sched->ptime;
2298 	struct addr_location al;
2299 	struct thread *thread;
2300 	struct thread_runtime *tr = NULL;
2301 	u64 tprev, t = sample->time;
2302 	int rc = 0;
2303 
2304 	if (machine__resolve(machine, &al, sample) < 0) {
2305 		pr_err("problem processing %d event. skipping it\n",
2306 		       event->header.type);
2307 		rc = -1;
2308 		goto out;
2309 	}
2310 
2311 	thread = timehist_get_thread(sched, sample, machine, evsel);
2312 	if (thread == NULL) {
2313 		rc = -1;
2314 		goto out;
2315 	}
2316 
2317 	if (timehist_skip_sample(sched, thread))
2318 		goto out;
2319 
2320 	tr = thread__get_runtime(thread);
2321 	if (tr == NULL) {
2322 		rc = -1;
2323 		goto out;
2324 	}
2325 
2326 	tprev = perf_evsel__get_time(evsel, sample->cpu);
2327 
2328 	/*
2329 	 * If start time given:
2330 	 * - sample time is under window user cares about - skip sample
2331 	 * - tprev is under window user cares about  - reset to start of window
2332 	 */
2333 	if (ptime->start && ptime->start > t)
2334 		goto out;
2335 
2336 	if (ptime->start > tprev)
2337 		tprev = ptime->start;
2338 
2339 	/*
2340 	 * If end time given:
2341 	 * - previous sched event is out of window - we are done
2342 	 * - sample time is beyond window user cares about - reset it
2343 	 *   to close out stats for time window interest
2344 	 */
2345 	if (ptime->end) {
2346 		if (tprev > ptime->end)
2347 			goto out;
2348 
2349 		if (t > ptime->end)
2350 			t = ptime->end;
2351 	}
2352 
2353 	timehist_update_runtime_stats(tr, t, tprev);
2354 
2355 	if (!sched->summary_only)
2356 		timehist_print_sample(sched, sample, &al, thread, t);
2357 
2358 out:
2359 	if (tr) {
2360 		/* time of this sched_switch event becomes last time task seen */
2361 		tr->last_time = sample->time;
2362 
2363 		/* sched out event for task so reset ready to run time */
2364 		tr->ready_to_run = 0;
2365 	}
2366 
2367 	perf_evsel__save_time(evsel, sample->time, sample->cpu);
2368 
2369 	return rc;
2370 }
2371 
2372 static int timehist_sched_switch_event(struct perf_tool *tool,
2373 			     union perf_event *event,
2374 			     struct perf_evsel *evsel,
2375 			     struct perf_sample *sample,
2376 			     struct machine *machine __maybe_unused)
2377 {
2378 	return timehist_sched_change_event(tool, event, evsel, sample, machine);
2379 }
2380 
2381 static int process_lost(struct perf_tool *tool __maybe_unused,
2382 			union perf_event *event,
2383 			struct perf_sample *sample,
2384 			struct machine *machine __maybe_unused)
2385 {
2386 	char tstr[64];
2387 
2388 	timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2389 	printf("%15s ", tstr);
2390 	printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2391 
2392 	return 0;
2393 }
2394 
2395 
2396 static void print_thread_runtime(struct thread *t,
2397 				 struct thread_runtime *r)
2398 {
2399 	double mean = avg_stats(&r->run_stats);
2400 	float stddev;
2401 
2402 	printf("%*s   %5d  %9" PRIu64 " ",
2403 	       comm_width, timehist_get_commstr(t), t->ppid,
2404 	       (u64) r->run_stats.n);
2405 
2406 	print_sched_time(r->total_run_time, 8);
2407 	stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2408 	print_sched_time(r->run_stats.min, 6);
2409 	printf(" ");
2410 	print_sched_time((u64) mean, 6);
2411 	printf(" ");
2412 	print_sched_time(r->run_stats.max, 6);
2413 	printf("  ");
2414 	printf("%5.2f", stddev);
2415 	printf("   %5" PRIu64, r->migrations);
2416 	printf("\n");
2417 }
2418 
2419 struct total_run_stats {
2420 	u64  sched_count;
2421 	u64  task_count;
2422 	u64  total_run_time;
2423 };
2424 
2425 static int __show_thread_runtime(struct thread *t, void *priv)
2426 {
2427 	struct total_run_stats *stats = priv;
2428 	struct thread_runtime *r;
2429 
2430 	if (thread__is_filtered(t))
2431 		return 0;
2432 
2433 	r = thread__priv(t);
2434 	if (r && r->run_stats.n) {
2435 		stats->task_count++;
2436 		stats->sched_count += r->run_stats.n;
2437 		stats->total_run_time += r->total_run_time;
2438 		print_thread_runtime(t, r);
2439 	}
2440 
2441 	return 0;
2442 }
2443 
2444 static int show_thread_runtime(struct thread *t, void *priv)
2445 {
2446 	if (t->dead)
2447 		return 0;
2448 
2449 	return __show_thread_runtime(t, priv);
2450 }
2451 
2452 static int show_deadthread_runtime(struct thread *t, void *priv)
2453 {
2454 	if (!t->dead)
2455 		return 0;
2456 
2457 	return __show_thread_runtime(t, priv);
2458 }
2459 
2460 static void timehist_print_summary(struct perf_sched *sched,
2461 				   struct perf_session *session)
2462 {
2463 	struct machine *m = &session->machines.host;
2464 	struct total_run_stats totals;
2465 	u64 task_count;
2466 	struct thread *t;
2467 	struct thread_runtime *r;
2468 	int i;
2469 
2470 	memset(&totals, 0, sizeof(totals));
2471 
2472 	if (comm_width < 30)
2473 		comm_width = 30;
2474 
2475 	printf("\nRuntime summary\n");
2476 	printf("%*s  parent   sched-in  ", comm_width, "comm");
2477 	printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2478 	printf("%*s            (count)  ", comm_width, "");
2479 	printf("     (msec)     (msec)      (msec)      (msec)       %%\n");
2480 	printf("%.117s\n", graph_dotted_line);
2481 
2482 	machine__for_each_thread(m, show_thread_runtime, &totals);
2483 	task_count = totals.task_count;
2484 	if (!task_count)
2485 		printf("<no still running tasks>\n");
2486 
2487 	printf("\nTerminated tasks:\n");
2488 	machine__for_each_thread(m, show_deadthread_runtime, &totals);
2489 	if (task_count == totals.task_count)
2490 		printf("<no terminated tasks>\n");
2491 
2492 	/* CPU idle stats not tracked when samples were skipped */
2493 	if (sched->skipped_samples)
2494 		return;
2495 
2496 	printf("\nIdle stats:\n");
2497 	for (i = 0; i < idle_max_cpu; ++i) {
2498 		t = idle_threads[i];
2499 		if (!t)
2500 			continue;
2501 
2502 		r = thread__priv(t);
2503 		if (r && r->run_stats.n) {
2504 			totals.sched_count += r->run_stats.n;
2505 			printf("    CPU %2d idle for ", i);
2506 			print_sched_time(r->total_run_time, 6);
2507 			printf(" msec\n");
2508 		} else
2509 			printf("    CPU %2d idle entire time window\n", i);
2510 	}
2511 
2512 	printf("\n"
2513 	       "    Total number of unique tasks: %" PRIu64 "\n"
2514 	       "Total number of context switches: %" PRIu64 "\n"
2515 	       "           Total run time (msec): ",
2516 	       totals.task_count, totals.sched_count);
2517 
2518 	print_sched_time(totals.total_run_time, 2);
2519 	printf("\n");
2520 }
2521 
2522 typedef int (*sched_handler)(struct perf_tool *tool,
2523 			  union perf_event *event,
2524 			  struct perf_evsel *evsel,
2525 			  struct perf_sample *sample,
2526 			  struct machine *machine);
2527 
2528 static int perf_timehist__process_sample(struct perf_tool *tool,
2529 					 union perf_event *event,
2530 					 struct perf_sample *sample,
2531 					 struct perf_evsel *evsel,
2532 					 struct machine *machine)
2533 {
2534 	struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2535 	int err = 0;
2536 	int this_cpu = sample->cpu;
2537 
2538 	if (this_cpu > sched->max_cpu)
2539 		sched->max_cpu = this_cpu;
2540 
2541 	if (evsel->handler != NULL) {
2542 		sched_handler f = evsel->handler;
2543 
2544 		err = f(tool, event, evsel, sample, machine);
2545 	}
2546 
2547 	return err;
2548 }
2549 
2550 static int timehist_check_attr(struct perf_sched *sched,
2551 			       struct perf_evlist *evlist)
2552 {
2553 	struct perf_evsel *evsel;
2554 	struct evsel_runtime *er;
2555 
2556 	list_for_each_entry(evsel, &evlist->entries, node) {
2557 		er = perf_evsel__get_runtime(evsel);
2558 		if (er == NULL) {
2559 			pr_err("Failed to allocate memory for evsel runtime data\n");
2560 			return -1;
2561 		}
2562 
2563 		if (sched->show_callchain &&
2564 		    !(evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN)) {
2565 			pr_info("Samples do not have callchains.\n");
2566 			sched->show_callchain = 0;
2567 			symbol_conf.use_callchain = 0;
2568 		}
2569 	}
2570 
2571 	return 0;
2572 }
2573 
2574 static int perf_sched__timehist(struct perf_sched *sched)
2575 {
2576 	const struct perf_evsel_str_handler handlers[] = {
2577 		{ "sched:sched_switch",       timehist_sched_switch_event, },
2578 		{ "sched:sched_wakeup",	      timehist_sched_wakeup_event, },
2579 		{ "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2580 	};
2581 	const struct perf_evsel_str_handler migrate_handlers[] = {
2582 		{ "sched:sched_migrate_task", timehist_migrate_task_event, },
2583 	};
2584 	struct perf_data_file file = {
2585 		.path = input_name,
2586 		.mode = PERF_DATA_MODE_READ,
2587 		.force = sched->force,
2588 	};
2589 
2590 	struct perf_session *session;
2591 	struct perf_evlist *evlist;
2592 	int err = -1;
2593 
2594 	/*
2595 	 * event handlers for timehist option
2596 	 */
2597 	sched->tool.sample	 = perf_timehist__process_sample;
2598 	sched->tool.mmap	 = perf_event__process_mmap;
2599 	sched->tool.comm	 = perf_event__process_comm;
2600 	sched->tool.exit	 = perf_event__process_exit;
2601 	sched->tool.fork	 = perf_event__process_fork;
2602 	sched->tool.lost	 = process_lost;
2603 	sched->tool.attr	 = perf_event__process_attr;
2604 	sched->tool.tracing_data = perf_event__process_tracing_data;
2605 	sched->tool.build_id	 = perf_event__process_build_id;
2606 
2607 	sched->tool.ordered_events = true;
2608 	sched->tool.ordering_requires_timestamps = true;
2609 
2610 	symbol_conf.use_callchain = sched->show_callchain;
2611 
2612 	session = perf_session__new(&file, false, &sched->tool);
2613 	if (session == NULL)
2614 		return -ENOMEM;
2615 
2616 	evlist = session->evlist;
2617 
2618 	symbol__init(&session->header.env);
2619 
2620 	if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2621 		pr_err("Invalid time string\n");
2622 		return -EINVAL;
2623 	}
2624 
2625 	if (timehist_check_attr(sched, evlist) != 0)
2626 		goto out;
2627 
2628 	setup_pager();
2629 
2630 	/* setup per-evsel handlers */
2631 	if (perf_session__set_tracepoints_handlers(session, handlers))
2632 		goto out;
2633 
2634 	/* sched_switch event at a minimum needs to exist */
2635 	if (!perf_evlist__find_tracepoint_by_name(session->evlist,
2636 						  "sched:sched_switch")) {
2637 		pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
2638 		goto out;
2639 	}
2640 
2641 	if (sched->show_migrations &&
2642 	    perf_session__set_tracepoints_handlers(session, migrate_handlers))
2643 		goto out;
2644 
2645 	/* pre-allocate struct for per-CPU idle stats */
2646 	sched->max_cpu = session->header.env.nr_cpus_online;
2647 	if (sched->max_cpu == 0)
2648 		sched->max_cpu = 4;
2649 	if (init_idle_threads(sched->max_cpu))
2650 		goto out;
2651 
2652 	/* summary_only implies summary option, but don't overwrite summary if set */
2653 	if (sched->summary_only)
2654 		sched->summary = sched->summary_only;
2655 
2656 	if (!sched->summary_only)
2657 		timehist_header(sched);
2658 
2659 	err = perf_session__process_events(session);
2660 	if (err) {
2661 		pr_err("Failed to process events, error %d", err);
2662 		goto out;
2663 	}
2664 
2665 	sched->nr_events      = evlist->stats.nr_events[0];
2666 	sched->nr_lost_events = evlist->stats.total_lost;
2667 	sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
2668 
2669 	if (sched->summary)
2670 		timehist_print_summary(sched, session);
2671 
2672 out:
2673 	free_idle_threads();
2674 	perf_session__delete(session);
2675 
2676 	return err;
2677 }
2678 
2679 
2680 static void print_bad_events(struct perf_sched *sched)
2681 {
2682 	if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
2683 		printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
2684 			(double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
2685 			sched->nr_unordered_timestamps, sched->nr_timestamps);
2686 	}
2687 	if (sched->nr_lost_events && sched->nr_events) {
2688 		printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
2689 			(double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
2690 			sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
2691 	}
2692 	if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
2693 		printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
2694 			(double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
2695 			sched->nr_context_switch_bugs, sched->nr_timestamps);
2696 		if (sched->nr_lost_events)
2697 			printf(" (due to lost events?)");
2698 		printf("\n");
2699 	}
2700 }
2701 
2702 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
2703 {
2704 	struct rb_node **new = &(root->rb_node), *parent = NULL;
2705 	struct work_atoms *this;
2706 	const char *comm = thread__comm_str(data->thread), *this_comm;
2707 
2708 	while (*new) {
2709 		int cmp;
2710 
2711 		this = container_of(*new, struct work_atoms, node);
2712 		parent = *new;
2713 
2714 		this_comm = thread__comm_str(this->thread);
2715 		cmp = strcmp(comm, this_comm);
2716 		if (cmp > 0) {
2717 			new = &((*new)->rb_left);
2718 		} else if (cmp < 0) {
2719 			new = &((*new)->rb_right);
2720 		} else {
2721 			this->num_merged++;
2722 			this->total_runtime += data->total_runtime;
2723 			this->nb_atoms += data->nb_atoms;
2724 			this->total_lat += data->total_lat;
2725 			list_splice(&data->work_list, &this->work_list);
2726 			if (this->max_lat < data->max_lat) {
2727 				this->max_lat = data->max_lat;
2728 				this->max_lat_at = data->max_lat_at;
2729 			}
2730 			zfree(&data);
2731 			return;
2732 		}
2733 	}
2734 
2735 	data->num_merged++;
2736 	rb_link_node(&data->node, parent, new);
2737 	rb_insert_color(&data->node, root);
2738 }
2739 
2740 static void perf_sched__merge_lat(struct perf_sched *sched)
2741 {
2742 	struct work_atoms *data;
2743 	struct rb_node *node;
2744 
2745 	if (sched->skip_merge)
2746 		return;
2747 
2748 	while ((node = rb_first(&sched->atom_root))) {
2749 		rb_erase(node, &sched->atom_root);
2750 		data = rb_entry(node, struct work_atoms, node);
2751 		__merge_work_atoms(&sched->merged_atom_root, data);
2752 	}
2753 }
2754 
2755 static int perf_sched__lat(struct perf_sched *sched)
2756 {
2757 	struct rb_node *next;
2758 
2759 	setup_pager();
2760 
2761 	if (perf_sched__read_events(sched))
2762 		return -1;
2763 
2764 	perf_sched__merge_lat(sched);
2765 	perf_sched__sort_lat(sched);
2766 
2767 	printf("\n -----------------------------------------------------------------------------------------------------------------\n");
2768 	printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
2769 	printf(" -----------------------------------------------------------------------------------------------------------------\n");
2770 
2771 	next = rb_first(&sched->sorted_atom_root);
2772 
2773 	while (next) {
2774 		struct work_atoms *work_list;
2775 
2776 		work_list = rb_entry(next, struct work_atoms, node);
2777 		output_lat_thread(sched, work_list);
2778 		next = rb_next(next);
2779 		thread__zput(work_list->thread);
2780 	}
2781 
2782 	printf(" -----------------------------------------------------------------------------------------------------------------\n");
2783 	printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
2784 		(double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
2785 
2786 	printf(" ---------------------------------------------------\n");
2787 
2788 	print_bad_events(sched);
2789 	printf("\n");
2790 
2791 	return 0;
2792 }
2793 
2794 static int setup_map_cpus(struct perf_sched *sched)
2795 {
2796 	struct cpu_map *map;
2797 
2798 	sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
2799 
2800 	if (sched->map.comp) {
2801 		sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
2802 		if (!sched->map.comp_cpus)
2803 			return -1;
2804 	}
2805 
2806 	if (!sched->map.cpus_str)
2807 		return 0;
2808 
2809 	map = cpu_map__new(sched->map.cpus_str);
2810 	if (!map) {
2811 		pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
2812 		return -1;
2813 	}
2814 
2815 	sched->map.cpus = map;
2816 	return 0;
2817 }
2818 
2819 static int setup_color_pids(struct perf_sched *sched)
2820 {
2821 	struct thread_map *map;
2822 
2823 	if (!sched->map.color_pids_str)
2824 		return 0;
2825 
2826 	map = thread_map__new_by_tid_str(sched->map.color_pids_str);
2827 	if (!map) {
2828 		pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
2829 		return -1;
2830 	}
2831 
2832 	sched->map.color_pids = map;
2833 	return 0;
2834 }
2835 
2836 static int setup_color_cpus(struct perf_sched *sched)
2837 {
2838 	struct cpu_map *map;
2839 
2840 	if (!sched->map.color_cpus_str)
2841 		return 0;
2842 
2843 	map = cpu_map__new(sched->map.color_cpus_str);
2844 	if (!map) {
2845 		pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
2846 		return -1;
2847 	}
2848 
2849 	sched->map.color_cpus = map;
2850 	return 0;
2851 }
2852 
2853 static int perf_sched__map(struct perf_sched *sched)
2854 {
2855 	if (setup_map_cpus(sched))
2856 		return -1;
2857 
2858 	if (setup_color_pids(sched))
2859 		return -1;
2860 
2861 	if (setup_color_cpus(sched))
2862 		return -1;
2863 
2864 	setup_pager();
2865 	if (perf_sched__read_events(sched))
2866 		return -1;
2867 	print_bad_events(sched);
2868 	return 0;
2869 }
2870 
2871 static int perf_sched__replay(struct perf_sched *sched)
2872 {
2873 	unsigned long i;
2874 
2875 	calibrate_run_measurement_overhead(sched);
2876 	calibrate_sleep_measurement_overhead(sched);
2877 
2878 	test_calibrations(sched);
2879 
2880 	if (perf_sched__read_events(sched))
2881 		return -1;
2882 
2883 	printf("nr_run_events:        %ld\n", sched->nr_run_events);
2884 	printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
2885 	printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
2886 
2887 	if (sched->targetless_wakeups)
2888 		printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
2889 	if (sched->multitarget_wakeups)
2890 		printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
2891 	if (sched->nr_run_events_optimized)
2892 		printf("run atoms optimized: %ld\n",
2893 			sched->nr_run_events_optimized);
2894 
2895 	print_task_traces(sched);
2896 	add_cross_task_wakeups(sched);
2897 
2898 	create_tasks(sched);
2899 	printf("------------------------------------------------------------\n");
2900 	for (i = 0; i < sched->replay_repeat; i++)
2901 		run_one_test(sched);
2902 
2903 	return 0;
2904 }
2905 
2906 static void setup_sorting(struct perf_sched *sched, const struct option *options,
2907 			  const char * const usage_msg[])
2908 {
2909 	char *tmp, *tok, *str = strdup(sched->sort_order);
2910 
2911 	for (tok = strtok_r(str, ", ", &tmp);
2912 			tok; tok = strtok_r(NULL, ", ", &tmp)) {
2913 		if (sort_dimension__add(tok, &sched->sort_list) < 0) {
2914 			usage_with_options_msg(usage_msg, options,
2915 					"Unknown --sort key: `%s'", tok);
2916 		}
2917 	}
2918 
2919 	free(str);
2920 
2921 	sort_dimension__add("pid", &sched->cmp_pid);
2922 }
2923 
2924 static int __cmd_record(int argc, const char **argv)
2925 {
2926 	unsigned int rec_argc, i, j;
2927 	const char **rec_argv;
2928 	const char * const record_args[] = {
2929 		"record",
2930 		"-a",
2931 		"-R",
2932 		"-m", "1024",
2933 		"-c", "1",
2934 		"-e", "sched:sched_switch",
2935 		"-e", "sched:sched_stat_wait",
2936 		"-e", "sched:sched_stat_sleep",
2937 		"-e", "sched:sched_stat_iowait",
2938 		"-e", "sched:sched_stat_runtime",
2939 		"-e", "sched:sched_process_fork",
2940 		"-e", "sched:sched_wakeup",
2941 		"-e", "sched:sched_wakeup_new",
2942 		"-e", "sched:sched_migrate_task",
2943 	};
2944 
2945 	rec_argc = ARRAY_SIZE(record_args) + argc - 1;
2946 	rec_argv = calloc(rec_argc + 1, sizeof(char *));
2947 
2948 	if (rec_argv == NULL)
2949 		return -ENOMEM;
2950 
2951 	for (i = 0; i < ARRAY_SIZE(record_args); i++)
2952 		rec_argv[i] = strdup(record_args[i]);
2953 
2954 	for (j = 1; j < (unsigned int)argc; j++, i++)
2955 		rec_argv[i] = argv[j];
2956 
2957 	BUG_ON(i != rec_argc);
2958 
2959 	return cmd_record(i, rec_argv, NULL);
2960 }
2961 
2962 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused)
2963 {
2964 	const char default_sort_order[] = "avg, max, switch, runtime";
2965 	struct perf_sched sched = {
2966 		.tool = {
2967 			.sample		 = perf_sched__process_tracepoint_sample,
2968 			.comm		 = perf_event__process_comm,
2969 			.lost		 = perf_event__process_lost,
2970 			.fork		 = perf_sched__process_fork_event,
2971 			.ordered_events = true,
2972 		},
2973 		.cmp_pid	      = LIST_HEAD_INIT(sched.cmp_pid),
2974 		.sort_list	      = LIST_HEAD_INIT(sched.sort_list),
2975 		.start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
2976 		.work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
2977 		.sort_order	      = default_sort_order,
2978 		.replay_repeat	      = 10,
2979 		.profile_cpu	      = -1,
2980 		.next_shortname1      = 'A',
2981 		.next_shortname2      = '0',
2982 		.skip_merge           = 0,
2983 		.show_callchain	      = 1,
2984 		.max_stack            = 5,
2985 	};
2986 	const struct option sched_options[] = {
2987 	OPT_STRING('i', "input", &input_name, "file",
2988 		    "input file name"),
2989 	OPT_INCR('v', "verbose", &verbose,
2990 		    "be more verbose (show symbol address, etc)"),
2991 	OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
2992 		    "dump raw trace in ASCII"),
2993 	OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
2994 	OPT_END()
2995 	};
2996 	const struct option latency_options[] = {
2997 	OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
2998 		   "sort by key(s): runtime, switch, avg, max"),
2999 	OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3000 		    "CPU to profile on"),
3001 	OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3002 		    "latency stats per pid instead of per comm"),
3003 	OPT_PARENT(sched_options)
3004 	};
3005 	const struct option replay_options[] = {
3006 	OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3007 		     "repeat the workload replay N times (-1: infinite)"),
3008 	OPT_PARENT(sched_options)
3009 	};
3010 	const struct option map_options[] = {
3011 	OPT_BOOLEAN(0, "compact", &sched.map.comp,
3012 		    "map output in compact mode"),
3013 	OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3014 		   "highlight given pids in map"),
3015 	OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3016                     "highlight given CPUs in map"),
3017 	OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3018                     "display given CPUs in map"),
3019 	OPT_PARENT(sched_options)
3020 	};
3021 	const struct option timehist_options[] = {
3022 	OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3023 		   "file", "vmlinux pathname"),
3024 	OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3025 		   "file", "kallsyms pathname"),
3026 	OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3027 		    "Display call chains if present (default on)"),
3028 	OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3029 		   "Maximum number of functions to display backtrace."),
3030 	OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3031 		    "Look for files with symbols relative to this directory"),
3032 	OPT_BOOLEAN('s', "summary", &sched.summary_only,
3033 		    "Show only syscall summary with statistics"),
3034 	OPT_BOOLEAN('S', "with-summary", &sched.summary,
3035 		    "Show all syscalls and summary with statistics"),
3036 	OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3037 	OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3038 	OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3039 	OPT_STRING(0, "time", &sched.time_str, "str",
3040 		   "Time span for analysis (start,stop)"),
3041 	OPT_PARENT(sched_options)
3042 	};
3043 
3044 	const char * const latency_usage[] = {
3045 		"perf sched latency [<options>]",
3046 		NULL
3047 	};
3048 	const char * const replay_usage[] = {
3049 		"perf sched replay [<options>]",
3050 		NULL
3051 	};
3052 	const char * const map_usage[] = {
3053 		"perf sched map [<options>]",
3054 		NULL
3055 	};
3056 	const char * const timehist_usage[] = {
3057 		"perf sched timehist [<options>]",
3058 		NULL
3059 	};
3060 	const char *const sched_subcommands[] = { "record", "latency", "map",
3061 						  "replay", "script",
3062 						  "timehist", NULL };
3063 	const char *sched_usage[] = {
3064 		NULL,
3065 		NULL
3066 	};
3067 	struct trace_sched_handler lat_ops  = {
3068 		.wakeup_event	    = latency_wakeup_event,
3069 		.switch_event	    = latency_switch_event,
3070 		.runtime_event	    = latency_runtime_event,
3071 		.migrate_task_event = latency_migrate_task_event,
3072 	};
3073 	struct trace_sched_handler map_ops  = {
3074 		.switch_event	    = map_switch_event,
3075 	};
3076 	struct trace_sched_handler replay_ops  = {
3077 		.wakeup_event	    = replay_wakeup_event,
3078 		.switch_event	    = replay_switch_event,
3079 		.fork_event	    = replay_fork_event,
3080 	};
3081 	unsigned int i;
3082 
3083 	for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3084 		sched.curr_pid[i] = -1;
3085 
3086 	argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3087 					sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3088 	if (!argc)
3089 		usage_with_options(sched_usage, sched_options);
3090 
3091 	/*
3092 	 * Aliased to 'perf script' for now:
3093 	 */
3094 	if (!strcmp(argv[0], "script"))
3095 		return cmd_script(argc, argv, prefix);
3096 
3097 	if (!strncmp(argv[0], "rec", 3)) {
3098 		return __cmd_record(argc, argv);
3099 	} else if (!strncmp(argv[0], "lat", 3)) {
3100 		sched.tp_handler = &lat_ops;
3101 		if (argc > 1) {
3102 			argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3103 			if (argc)
3104 				usage_with_options(latency_usage, latency_options);
3105 		}
3106 		setup_sorting(&sched, latency_options, latency_usage);
3107 		return perf_sched__lat(&sched);
3108 	} else if (!strcmp(argv[0], "map")) {
3109 		if (argc) {
3110 			argc = parse_options(argc, argv, map_options, map_usage, 0);
3111 			if (argc)
3112 				usage_with_options(map_usage, map_options);
3113 		}
3114 		sched.tp_handler = &map_ops;
3115 		setup_sorting(&sched, latency_options, latency_usage);
3116 		return perf_sched__map(&sched);
3117 	} else if (!strncmp(argv[0], "rep", 3)) {
3118 		sched.tp_handler = &replay_ops;
3119 		if (argc) {
3120 			argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3121 			if (argc)
3122 				usage_with_options(replay_usage, replay_options);
3123 		}
3124 		return perf_sched__replay(&sched);
3125 	} else if (!strcmp(argv[0], "timehist")) {
3126 		if (argc) {
3127 			argc = parse_options(argc, argv, timehist_options,
3128 					     timehist_usage, 0);
3129 			if (argc)
3130 				usage_with_options(timehist_usage, timehist_options);
3131 		}
3132 		if (sched.show_wakeups && sched.summary_only) {
3133 			pr_err(" Error: -s and -w are mutually exclusive.\n");
3134 			parse_options_usage(timehist_usage, timehist_options, "s", true);
3135 			parse_options_usage(NULL, timehist_options, "w", true);
3136 			return -EINVAL;
3137 		}
3138 
3139 		return perf_sched__timehist(&sched);
3140 	} else {
3141 		usage_with_options(sched_usage, sched_options);
3142 	}
3143 
3144 	return 0;
3145 }
3146