1 // SPDX-License-Identifier: GPL-2.0 2 #include "builtin.h" 3 #include "perf.h" 4 #include "perf-sys.h" 5 6 #include "util/cpumap.h" 7 #include "util/evlist.h" 8 #include "util/evsel.h" 9 #include "util/evsel_fprintf.h" 10 #include "util/mutex.h" 11 #include "util/symbol.h" 12 #include "util/thread.h" 13 #include "util/header.h" 14 #include "util/session.h" 15 #include "util/tool.h" 16 #include "util/cloexec.h" 17 #include "util/thread_map.h" 18 #include "util/color.h" 19 #include "util/stat.h" 20 #include "util/string2.h" 21 #include "util/callchain.h" 22 #include "util/time-utils.h" 23 24 #include <subcmd/pager.h> 25 #include <subcmd/parse-options.h> 26 #include "util/trace-event.h" 27 28 #include "util/debug.h" 29 #include "util/event.h" 30 #include "util/util.h" 31 32 #include <linux/kernel.h> 33 #include <linux/log2.h> 34 #include <linux/zalloc.h> 35 #include <sys/prctl.h> 36 #include <sys/resource.h> 37 #include <inttypes.h> 38 39 #include <errno.h> 40 #include <semaphore.h> 41 #include <pthread.h> 42 #include <math.h> 43 #include <api/fs/fs.h> 44 #include <perf/cpumap.h> 45 #include <linux/time64.h> 46 #include <linux/err.h> 47 48 #include <linux/ctype.h> 49 50 #define PR_SET_NAME 15 /* Set process name */ 51 #define MAX_CPUS 4096 52 #define COMM_LEN 20 53 #define SYM_LEN 129 54 #define MAX_PID 1024000 55 #define MAX_PRIO 140 56 57 static const char *cpu_list; 58 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS); 59 60 struct sched_atom; 61 62 struct task_desc { 63 unsigned long nr; 64 unsigned long pid; 65 char comm[COMM_LEN]; 66 67 unsigned long nr_events; 68 unsigned long curr_event; 69 struct sched_atom **atoms; 70 71 pthread_t thread; 72 73 sem_t ready_for_work; 74 sem_t work_done_sem; 75 76 u64 cpu_usage; 77 }; 78 79 enum sched_event_type { 80 SCHED_EVENT_RUN, 81 SCHED_EVENT_SLEEP, 82 SCHED_EVENT_WAKEUP, 83 }; 84 85 struct sched_atom { 86 enum sched_event_type type; 87 u64 timestamp; 88 u64 duration; 89 unsigned long nr; 90 sem_t *wait_sem; 91 struct task_desc *wakee; 92 }; 93 94 enum thread_state { 95 THREAD_SLEEPING = 0, 96 THREAD_WAIT_CPU, 97 THREAD_SCHED_IN, 98 THREAD_IGNORE 99 }; 100 101 struct work_atom { 102 struct list_head list; 103 enum thread_state state; 104 u64 sched_out_time; 105 u64 wake_up_time; 106 u64 sched_in_time; 107 u64 runtime; 108 }; 109 110 struct work_atoms { 111 struct list_head work_list; 112 struct thread *thread; 113 struct rb_node node; 114 u64 max_lat; 115 u64 max_lat_start; 116 u64 max_lat_end; 117 u64 total_lat; 118 u64 nb_atoms; 119 u64 total_runtime; 120 int num_merged; 121 }; 122 123 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 124 125 struct perf_sched; 126 127 struct trace_sched_handler { 128 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel, 129 struct perf_sample *sample, struct machine *machine); 130 131 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel, 132 struct perf_sample *sample, struct machine *machine); 133 134 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel, 135 struct perf_sample *sample, struct machine *machine); 136 137 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 138 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 139 struct machine *machine); 140 141 int (*migrate_task_event)(struct perf_sched *sched, 142 struct evsel *evsel, 143 struct perf_sample *sample, 144 struct machine *machine); 145 }; 146 147 #define COLOR_PIDS PERF_COLOR_BLUE 148 #define COLOR_CPUS PERF_COLOR_BG_RED 149 150 struct perf_sched_map { 151 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); 152 struct perf_cpu *comp_cpus; 153 bool comp; 154 struct perf_thread_map *color_pids; 155 const char *color_pids_str; 156 struct perf_cpu_map *color_cpus; 157 const char *color_cpus_str; 158 const char *task_name; 159 struct strlist *task_names; 160 bool fuzzy; 161 struct perf_cpu_map *cpus; 162 const char *cpus_str; 163 }; 164 165 struct perf_sched { 166 struct perf_tool tool; 167 const char *sort_order; 168 unsigned long nr_tasks; 169 struct task_desc **pid_to_task; 170 struct task_desc **tasks; 171 const struct trace_sched_handler *tp_handler; 172 struct mutex start_work_mutex; 173 struct mutex work_done_wait_mutex; 174 int profile_cpu; 175 /* 176 * Track the current task - that way we can know whether there's any 177 * weird events, such as a task being switched away that is not current. 178 */ 179 struct perf_cpu max_cpu; 180 u32 *curr_pid; 181 struct thread **curr_thread; 182 struct thread **curr_out_thread; 183 char next_shortname1; 184 char next_shortname2; 185 unsigned int replay_repeat; 186 unsigned long nr_run_events; 187 unsigned long nr_sleep_events; 188 unsigned long nr_wakeup_events; 189 unsigned long nr_sleep_corrections; 190 unsigned long nr_run_events_optimized; 191 unsigned long targetless_wakeups; 192 unsigned long multitarget_wakeups; 193 unsigned long nr_runs; 194 unsigned long nr_timestamps; 195 unsigned long nr_unordered_timestamps; 196 unsigned long nr_context_switch_bugs; 197 unsigned long nr_events; 198 unsigned long nr_lost_chunks; 199 unsigned long nr_lost_events; 200 u64 run_measurement_overhead; 201 u64 sleep_measurement_overhead; 202 u64 start_time; 203 u64 cpu_usage; 204 u64 runavg_cpu_usage; 205 u64 parent_cpu_usage; 206 u64 runavg_parent_cpu_usage; 207 u64 sum_runtime; 208 u64 sum_fluct; 209 u64 run_avg; 210 u64 all_runtime; 211 u64 all_count; 212 u64 *cpu_last_switched; 213 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root; 214 struct list_head sort_list, cmp_pid; 215 bool force; 216 bool skip_merge; 217 struct perf_sched_map map; 218 219 /* options for timehist command */ 220 bool summary; 221 bool summary_only; 222 bool idle_hist; 223 bool show_callchain; 224 unsigned int max_stack; 225 bool show_cpu_visual; 226 bool show_wakeups; 227 bool show_next; 228 bool show_migrations; 229 bool pre_migrations; 230 bool show_state; 231 bool show_prio; 232 u64 skipped_samples; 233 const char *time_str; 234 struct perf_time_interval ptime; 235 struct perf_time_interval hist_time; 236 volatile bool thread_funcs_exit; 237 const char *prio_str; 238 DECLARE_BITMAP(prio_bitmap, MAX_PRIO); 239 }; 240 241 /* per thread run time data */ 242 struct thread_runtime { 243 u64 last_time; /* time of previous sched in/out event */ 244 u64 dt_run; /* run time */ 245 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */ 246 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */ 247 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */ 248 u64 dt_delay; /* time between wakeup and sched-in */ 249 u64 dt_pre_mig; /* time between migration and wakeup */ 250 u64 ready_to_run; /* time of wakeup */ 251 u64 migrated; /* time when a thread is migrated */ 252 253 struct stats run_stats; 254 u64 total_run_time; 255 u64 total_sleep_time; 256 u64 total_iowait_time; 257 u64 total_preempt_time; 258 u64 total_delay_time; 259 u64 total_pre_mig_time; 260 261 char last_state; 262 263 char shortname[3]; 264 bool comm_changed; 265 266 u64 migrations; 267 268 int prio; 269 }; 270 271 /* per event run time data */ 272 struct evsel_runtime { 273 u64 *last_time; /* time this event was last seen per cpu */ 274 u32 ncpu; /* highest cpu slot allocated */ 275 }; 276 277 /* per cpu idle time data */ 278 struct idle_thread_runtime { 279 struct thread_runtime tr; 280 struct thread *last_thread; 281 struct rb_root_cached sorted_root; 282 struct callchain_root callchain; 283 struct callchain_cursor cursor; 284 }; 285 286 /* track idle times per cpu */ 287 static struct thread **idle_threads; 288 static int idle_max_cpu; 289 static char idle_comm[] = "<idle>"; 290 291 static u64 get_nsecs(void) 292 { 293 struct timespec ts; 294 295 clock_gettime(CLOCK_MONOTONIC, &ts); 296 297 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec; 298 } 299 300 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 301 { 302 u64 T0 = get_nsecs(), T1; 303 304 do { 305 T1 = get_nsecs(); 306 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 307 } 308 309 static void sleep_nsecs(u64 nsecs) 310 { 311 struct timespec ts; 312 313 ts.tv_nsec = nsecs % 999999999; 314 ts.tv_sec = nsecs / 999999999; 315 316 nanosleep(&ts, NULL); 317 } 318 319 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 320 { 321 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 322 int i; 323 324 for (i = 0; i < 10; i++) { 325 T0 = get_nsecs(); 326 burn_nsecs(sched, 0); 327 T1 = get_nsecs(); 328 delta = T1-T0; 329 min_delta = min(min_delta, delta); 330 } 331 sched->run_measurement_overhead = min_delta; 332 333 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 334 } 335 336 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 337 { 338 u64 T0, T1, delta, min_delta = NSEC_PER_SEC; 339 int i; 340 341 for (i = 0; i < 10; i++) { 342 T0 = get_nsecs(); 343 sleep_nsecs(10000); 344 T1 = get_nsecs(); 345 delta = T1-T0; 346 min_delta = min(min_delta, delta); 347 } 348 min_delta -= 10000; 349 sched->sleep_measurement_overhead = min_delta; 350 351 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 352 } 353 354 static struct sched_atom * 355 get_new_event(struct task_desc *task, u64 timestamp) 356 { 357 struct sched_atom *event = zalloc(sizeof(*event)); 358 unsigned long idx = task->nr_events; 359 size_t size; 360 361 event->timestamp = timestamp; 362 event->nr = idx; 363 364 task->nr_events++; 365 size = sizeof(struct sched_atom *) * task->nr_events; 366 task->atoms = realloc(task->atoms, size); 367 BUG_ON(!task->atoms); 368 369 task->atoms[idx] = event; 370 371 return event; 372 } 373 374 static struct sched_atom *last_event(struct task_desc *task) 375 { 376 if (!task->nr_events) 377 return NULL; 378 379 return task->atoms[task->nr_events - 1]; 380 } 381 382 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 383 u64 timestamp, u64 duration) 384 { 385 struct sched_atom *event, *curr_event = last_event(task); 386 387 /* 388 * optimize an existing RUN event by merging this one 389 * to it: 390 */ 391 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 392 sched->nr_run_events_optimized++; 393 curr_event->duration += duration; 394 return; 395 } 396 397 event = get_new_event(task, timestamp); 398 399 event->type = SCHED_EVENT_RUN; 400 event->duration = duration; 401 402 sched->nr_run_events++; 403 } 404 405 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 406 u64 timestamp, struct task_desc *wakee) 407 { 408 struct sched_atom *event, *wakee_event; 409 410 event = get_new_event(task, timestamp); 411 event->type = SCHED_EVENT_WAKEUP; 412 event->wakee = wakee; 413 414 wakee_event = last_event(wakee); 415 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 416 sched->targetless_wakeups++; 417 return; 418 } 419 if (wakee_event->wait_sem) { 420 sched->multitarget_wakeups++; 421 return; 422 } 423 424 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 425 sem_init(wakee_event->wait_sem, 0, 0); 426 event->wait_sem = wakee_event->wait_sem; 427 428 sched->nr_wakeup_events++; 429 } 430 431 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 432 u64 timestamp) 433 { 434 struct sched_atom *event = get_new_event(task, timestamp); 435 436 event->type = SCHED_EVENT_SLEEP; 437 438 sched->nr_sleep_events++; 439 } 440 441 static struct task_desc *register_pid(struct perf_sched *sched, 442 unsigned long pid, const char *comm) 443 { 444 struct task_desc *task; 445 static int pid_max; 446 447 if (sched->pid_to_task == NULL) { 448 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) 449 pid_max = MAX_PID; 450 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); 451 } 452 if (pid >= (unsigned long)pid_max) { 453 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * 454 sizeof(struct task_desc *))) == NULL); 455 while (pid >= (unsigned long)pid_max) 456 sched->pid_to_task[pid_max++] = NULL; 457 } 458 459 task = sched->pid_to_task[pid]; 460 461 if (task) 462 return task; 463 464 task = zalloc(sizeof(*task)); 465 task->pid = pid; 466 task->nr = sched->nr_tasks; 467 strcpy(task->comm, comm); 468 /* 469 * every task starts in sleeping state - this gets ignored 470 * if there's no wakeup pointing to this sleep state: 471 */ 472 add_sched_event_sleep(sched, task, 0); 473 474 sched->pid_to_task[pid] = task; 475 sched->nr_tasks++; 476 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); 477 BUG_ON(!sched->tasks); 478 sched->tasks[task->nr] = task; 479 480 if (verbose > 0) 481 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 482 483 return task; 484 } 485 486 487 static void print_task_traces(struct perf_sched *sched) 488 { 489 struct task_desc *task; 490 unsigned long i; 491 492 for (i = 0; i < sched->nr_tasks; i++) { 493 task = sched->tasks[i]; 494 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 495 task->nr, task->comm, task->pid, task->nr_events); 496 } 497 } 498 499 static void add_cross_task_wakeups(struct perf_sched *sched) 500 { 501 struct task_desc *task1, *task2; 502 unsigned long i, j; 503 504 for (i = 0; i < sched->nr_tasks; i++) { 505 task1 = sched->tasks[i]; 506 j = i + 1; 507 if (j == sched->nr_tasks) 508 j = 0; 509 task2 = sched->tasks[j]; 510 add_sched_event_wakeup(sched, task1, 0, task2); 511 } 512 } 513 514 static void perf_sched__process_event(struct perf_sched *sched, 515 struct sched_atom *atom) 516 { 517 int ret = 0; 518 519 switch (atom->type) { 520 case SCHED_EVENT_RUN: 521 burn_nsecs(sched, atom->duration); 522 break; 523 case SCHED_EVENT_SLEEP: 524 if (atom->wait_sem) 525 ret = sem_wait(atom->wait_sem); 526 BUG_ON(ret); 527 break; 528 case SCHED_EVENT_WAKEUP: 529 if (atom->wait_sem) 530 ret = sem_post(atom->wait_sem); 531 BUG_ON(ret); 532 break; 533 default: 534 BUG_ON(1); 535 } 536 } 537 538 static u64 get_cpu_usage_nsec_parent(void) 539 { 540 struct rusage ru; 541 u64 sum; 542 int err; 543 544 err = getrusage(RUSAGE_SELF, &ru); 545 BUG_ON(err); 546 547 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC; 548 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC; 549 550 return sum; 551 } 552 553 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) 554 { 555 struct perf_event_attr attr; 556 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; 557 int fd; 558 struct rlimit limit; 559 bool need_privilege = false; 560 561 memset(&attr, 0, sizeof(attr)); 562 563 attr.type = PERF_TYPE_SOFTWARE; 564 attr.config = PERF_COUNT_SW_TASK_CLOCK; 565 566 force_again: 567 fd = sys_perf_event_open(&attr, 0, -1, -1, 568 perf_event_open_cloexec_flag()); 569 570 if (fd < 0) { 571 if (errno == EMFILE) { 572 if (sched->force) { 573 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); 574 limit.rlim_cur += sched->nr_tasks - cur_task; 575 if (limit.rlim_cur > limit.rlim_max) { 576 limit.rlim_max = limit.rlim_cur; 577 need_privilege = true; 578 } 579 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { 580 if (need_privilege && errno == EPERM) 581 strcpy(info, "Need privilege\n"); 582 } else 583 goto force_again; 584 } else 585 strcpy(info, "Have a try with -f option\n"); 586 } 587 pr_err("Error: sys_perf_event_open() syscall returned " 588 "with %d (%s)\n%s", fd, 589 str_error_r(errno, sbuf, sizeof(sbuf)), info); 590 exit(EXIT_FAILURE); 591 } 592 return fd; 593 } 594 595 static u64 get_cpu_usage_nsec_self(int fd) 596 { 597 u64 runtime; 598 int ret; 599 600 ret = read(fd, &runtime, sizeof(runtime)); 601 BUG_ON(ret != sizeof(runtime)); 602 603 return runtime; 604 } 605 606 struct sched_thread_parms { 607 struct task_desc *task; 608 struct perf_sched *sched; 609 int fd; 610 }; 611 612 static void *thread_func(void *ctx) 613 { 614 struct sched_thread_parms *parms = ctx; 615 struct task_desc *this_task = parms->task; 616 struct perf_sched *sched = parms->sched; 617 u64 cpu_usage_0, cpu_usage_1; 618 unsigned long i, ret; 619 char comm2[22]; 620 int fd = parms->fd; 621 622 zfree(&parms); 623 624 sprintf(comm2, ":%s", this_task->comm); 625 prctl(PR_SET_NAME, comm2); 626 if (fd < 0) 627 return NULL; 628 629 while (!sched->thread_funcs_exit) { 630 ret = sem_post(&this_task->ready_for_work); 631 BUG_ON(ret); 632 mutex_lock(&sched->start_work_mutex); 633 mutex_unlock(&sched->start_work_mutex); 634 635 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 636 637 for (i = 0; i < this_task->nr_events; i++) { 638 this_task->curr_event = i; 639 perf_sched__process_event(sched, this_task->atoms[i]); 640 } 641 642 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 643 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 644 ret = sem_post(&this_task->work_done_sem); 645 BUG_ON(ret); 646 647 mutex_lock(&sched->work_done_wait_mutex); 648 mutex_unlock(&sched->work_done_wait_mutex); 649 } 650 return NULL; 651 } 652 653 static void create_tasks(struct perf_sched *sched) 654 EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex) 655 EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex) 656 { 657 struct task_desc *task; 658 pthread_attr_t attr; 659 unsigned long i; 660 int err; 661 662 err = pthread_attr_init(&attr); 663 BUG_ON(err); 664 err = pthread_attr_setstacksize(&attr, 665 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN)); 666 BUG_ON(err); 667 mutex_lock(&sched->start_work_mutex); 668 mutex_lock(&sched->work_done_wait_mutex); 669 for (i = 0; i < sched->nr_tasks; i++) { 670 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 671 BUG_ON(parms == NULL); 672 parms->task = task = sched->tasks[i]; 673 parms->sched = sched; 674 parms->fd = self_open_counters(sched, i); 675 sem_init(&task->ready_for_work, 0, 0); 676 sem_init(&task->work_done_sem, 0, 0); 677 task->curr_event = 0; 678 err = pthread_create(&task->thread, &attr, thread_func, parms); 679 BUG_ON(err); 680 } 681 } 682 683 static void destroy_tasks(struct perf_sched *sched) 684 UNLOCK_FUNCTION(sched->start_work_mutex) 685 UNLOCK_FUNCTION(sched->work_done_wait_mutex) 686 { 687 struct task_desc *task; 688 unsigned long i; 689 int err; 690 691 mutex_unlock(&sched->start_work_mutex); 692 mutex_unlock(&sched->work_done_wait_mutex); 693 /* Get rid of threads so they won't be upset by mutex destrunction */ 694 for (i = 0; i < sched->nr_tasks; i++) { 695 task = sched->tasks[i]; 696 err = pthread_join(task->thread, NULL); 697 BUG_ON(err); 698 sem_destroy(&task->ready_for_work); 699 sem_destroy(&task->work_done_sem); 700 } 701 } 702 703 static void wait_for_tasks(struct perf_sched *sched) 704 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) 705 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) 706 { 707 u64 cpu_usage_0, cpu_usage_1; 708 struct task_desc *task; 709 unsigned long i, ret; 710 711 sched->start_time = get_nsecs(); 712 sched->cpu_usage = 0; 713 mutex_unlock(&sched->work_done_wait_mutex); 714 715 for (i = 0; i < sched->nr_tasks; i++) { 716 task = sched->tasks[i]; 717 ret = sem_wait(&task->ready_for_work); 718 BUG_ON(ret); 719 sem_init(&task->ready_for_work, 0, 0); 720 } 721 mutex_lock(&sched->work_done_wait_mutex); 722 723 cpu_usage_0 = get_cpu_usage_nsec_parent(); 724 725 mutex_unlock(&sched->start_work_mutex); 726 727 for (i = 0; i < sched->nr_tasks; i++) { 728 task = sched->tasks[i]; 729 ret = sem_wait(&task->work_done_sem); 730 BUG_ON(ret); 731 sem_init(&task->work_done_sem, 0, 0); 732 sched->cpu_usage += task->cpu_usage; 733 task->cpu_usage = 0; 734 } 735 736 cpu_usage_1 = get_cpu_usage_nsec_parent(); 737 if (!sched->runavg_cpu_usage) 738 sched->runavg_cpu_usage = sched->cpu_usage; 739 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; 740 741 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 742 if (!sched->runavg_parent_cpu_usage) 743 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 744 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + 745 sched->parent_cpu_usage)/sched->replay_repeat; 746 747 mutex_lock(&sched->start_work_mutex); 748 749 for (i = 0; i < sched->nr_tasks; i++) { 750 task = sched->tasks[i]; 751 task->curr_event = 0; 752 } 753 } 754 755 static void run_one_test(struct perf_sched *sched) 756 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex) 757 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex) 758 { 759 u64 T0, T1, delta, avg_delta, fluct; 760 761 T0 = get_nsecs(); 762 wait_for_tasks(sched); 763 T1 = get_nsecs(); 764 765 delta = T1 - T0; 766 sched->sum_runtime += delta; 767 sched->nr_runs++; 768 769 avg_delta = sched->sum_runtime / sched->nr_runs; 770 if (delta < avg_delta) 771 fluct = avg_delta - delta; 772 else 773 fluct = delta - avg_delta; 774 sched->sum_fluct += fluct; 775 if (!sched->run_avg) 776 sched->run_avg = delta; 777 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; 778 779 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC); 780 781 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC); 782 783 printf("cpu: %0.2f / %0.2f", 784 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC); 785 786 #if 0 787 /* 788 * rusage statistics done by the parent, these are less 789 * accurate than the sched->sum_exec_runtime based statistics: 790 */ 791 printf(" [%0.2f / %0.2f]", 792 (double)sched->parent_cpu_usage / NSEC_PER_MSEC, 793 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC); 794 #endif 795 796 printf("\n"); 797 798 if (sched->nr_sleep_corrections) 799 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 800 sched->nr_sleep_corrections = 0; 801 } 802 803 static void test_calibrations(struct perf_sched *sched) 804 { 805 u64 T0, T1; 806 807 T0 = get_nsecs(); 808 burn_nsecs(sched, NSEC_PER_MSEC); 809 T1 = get_nsecs(); 810 811 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 812 813 T0 = get_nsecs(); 814 sleep_nsecs(NSEC_PER_MSEC); 815 T1 = get_nsecs(); 816 817 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 818 } 819 820 static int 821 replay_wakeup_event(struct perf_sched *sched, 822 struct evsel *evsel, struct perf_sample *sample, 823 struct machine *machine __maybe_unused) 824 { 825 const char *comm = evsel__strval(evsel, sample, "comm"); 826 const u32 pid = evsel__intval(evsel, sample, "pid"); 827 struct task_desc *waker, *wakee; 828 829 if (verbose > 0) { 830 printf("sched_wakeup event %p\n", evsel); 831 832 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 833 } 834 835 waker = register_pid(sched, sample->tid, "<unknown>"); 836 wakee = register_pid(sched, pid, comm); 837 838 add_sched_event_wakeup(sched, waker, sample->time, wakee); 839 return 0; 840 } 841 842 static int replay_switch_event(struct perf_sched *sched, 843 struct evsel *evsel, 844 struct perf_sample *sample, 845 struct machine *machine __maybe_unused) 846 { 847 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"), 848 *next_comm = evsel__strval(evsel, sample, "next_comm"); 849 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 850 next_pid = evsel__intval(evsel, sample, "next_pid"); 851 struct task_desc *prev, __maybe_unused *next; 852 u64 timestamp0, timestamp = sample->time; 853 int cpu = sample->cpu; 854 s64 delta; 855 856 if (verbose > 0) 857 printf("sched_switch event %p\n", evsel); 858 859 if (cpu >= MAX_CPUS || cpu < 0) 860 return 0; 861 862 timestamp0 = sched->cpu_last_switched[cpu]; 863 if (timestamp0) 864 delta = timestamp - timestamp0; 865 else 866 delta = 0; 867 868 if (delta < 0) { 869 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 870 return -1; 871 } 872 873 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 874 prev_comm, prev_pid, next_comm, next_pid, delta); 875 876 prev = register_pid(sched, prev_pid, prev_comm); 877 next = register_pid(sched, next_pid, next_comm); 878 879 sched->cpu_last_switched[cpu] = timestamp; 880 881 add_sched_event_run(sched, prev, timestamp, delta); 882 add_sched_event_sleep(sched, prev, timestamp); 883 884 return 0; 885 } 886 887 static int replay_fork_event(struct perf_sched *sched, 888 union perf_event *event, 889 struct machine *machine) 890 { 891 struct thread *child, *parent; 892 893 child = machine__findnew_thread(machine, event->fork.pid, 894 event->fork.tid); 895 parent = machine__findnew_thread(machine, event->fork.ppid, 896 event->fork.ptid); 897 898 if (child == NULL || parent == NULL) { 899 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 900 child, parent); 901 goto out_put; 902 } 903 904 if (verbose > 0) { 905 printf("fork event\n"); 906 printf("... parent: %s/%d\n", thread__comm_str(parent), thread__tid(parent)); 907 printf("... child: %s/%d\n", thread__comm_str(child), thread__tid(child)); 908 } 909 910 register_pid(sched, thread__tid(parent), thread__comm_str(parent)); 911 register_pid(sched, thread__tid(child), thread__comm_str(child)); 912 out_put: 913 thread__put(child); 914 thread__put(parent); 915 return 0; 916 } 917 918 struct sort_dimension { 919 const char *name; 920 sort_fn_t cmp; 921 struct list_head list; 922 }; 923 924 static inline void init_prio(struct thread_runtime *r) 925 { 926 r->prio = -1; 927 } 928 929 /* 930 * handle runtime stats saved per thread 931 */ 932 static struct thread_runtime *thread__init_runtime(struct thread *thread) 933 { 934 struct thread_runtime *r; 935 936 r = zalloc(sizeof(struct thread_runtime)); 937 if (!r) 938 return NULL; 939 940 init_stats(&r->run_stats); 941 init_prio(r); 942 thread__set_priv(thread, r); 943 944 return r; 945 } 946 947 static struct thread_runtime *thread__get_runtime(struct thread *thread) 948 { 949 struct thread_runtime *tr; 950 951 tr = thread__priv(thread); 952 if (tr == NULL) { 953 tr = thread__init_runtime(thread); 954 if (tr == NULL) 955 pr_debug("Failed to malloc memory for runtime data.\n"); 956 } 957 958 return tr; 959 } 960 961 static int 962 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 963 { 964 struct sort_dimension *sort; 965 int ret = 0; 966 967 BUG_ON(list_empty(list)); 968 969 list_for_each_entry(sort, list, list) { 970 ret = sort->cmp(l, r); 971 if (ret) 972 return ret; 973 } 974 975 return ret; 976 } 977 978 static struct work_atoms * 979 thread_atoms_search(struct rb_root_cached *root, struct thread *thread, 980 struct list_head *sort_list) 981 { 982 struct rb_node *node = root->rb_root.rb_node; 983 struct work_atoms key = { .thread = thread }; 984 985 while (node) { 986 struct work_atoms *atoms; 987 int cmp; 988 989 atoms = container_of(node, struct work_atoms, node); 990 991 cmp = thread_lat_cmp(sort_list, &key, atoms); 992 if (cmp > 0) 993 node = node->rb_left; 994 else if (cmp < 0) 995 node = node->rb_right; 996 else { 997 BUG_ON(!RC_CHK_EQUAL(thread, atoms->thread)); 998 return atoms; 999 } 1000 } 1001 return NULL; 1002 } 1003 1004 static void 1005 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data, 1006 struct list_head *sort_list) 1007 { 1008 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 1009 bool leftmost = true; 1010 1011 while (*new) { 1012 struct work_atoms *this; 1013 int cmp; 1014 1015 this = container_of(*new, struct work_atoms, node); 1016 parent = *new; 1017 1018 cmp = thread_lat_cmp(sort_list, data, this); 1019 1020 if (cmp > 0) 1021 new = &((*new)->rb_left); 1022 else { 1023 new = &((*new)->rb_right); 1024 leftmost = false; 1025 } 1026 } 1027 1028 rb_link_node(&data->node, parent, new); 1029 rb_insert_color_cached(&data->node, root, leftmost); 1030 } 1031 1032 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 1033 { 1034 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 1035 if (!atoms) { 1036 pr_err("No memory at %s\n", __func__); 1037 return -1; 1038 } 1039 1040 atoms->thread = thread__get(thread); 1041 INIT_LIST_HEAD(&atoms->work_list); 1042 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 1043 return 0; 1044 } 1045 1046 static int 1047 add_sched_out_event(struct work_atoms *atoms, 1048 char run_state, 1049 u64 timestamp) 1050 { 1051 struct work_atom *atom = zalloc(sizeof(*atom)); 1052 if (!atom) { 1053 pr_err("Non memory at %s", __func__); 1054 return -1; 1055 } 1056 1057 atom->sched_out_time = timestamp; 1058 1059 if (run_state == 'R') { 1060 atom->state = THREAD_WAIT_CPU; 1061 atom->wake_up_time = atom->sched_out_time; 1062 } 1063 1064 list_add_tail(&atom->list, &atoms->work_list); 1065 return 0; 1066 } 1067 1068 static void 1069 add_runtime_event(struct work_atoms *atoms, u64 delta, 1070 u64 timestamp __maybe_unused) 1071 { 1072 struct work_atom *atom; 1073 1074 BUG_ON(list_empty(&atoms->work_list)); 1075 1076 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1077 1078 atom->runtime += delta; 1079 atoms->total_runtime += delta; 1080 } 1081 1082 static void 1083 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 1084 { 1085 struct work_atom *atom; 1086 u64 delta; 1087 1088 if (list_empty(&atoms->work_list)) 1089 return; 1090 1091 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1092 1093 if (atom->state != THREAD_WAIT_CPU) 1094 return; 1095 1096 if (timestamp < atom->wake_up_time) { 1097 atom->state = THREAD_IGNORE; 1098 return; 1099 } 1100 1101 atom->state = THREAD_SCHED_IN; 1102 atom->sched_in_time = timestamp; 1103 1104 delta = atom->sched_in_time - atom->wake_up_time; 1105 atoms->total_lat += delta; 1106 if (delta > atoms->max_lat) { 1107 atoms->max_lat = delta; 1108 atoms->max_lat_start = atom->wake_up_time; 1109 atoms->max_lat_end = timestamp; 1110 } 1111 atoms->nb_atoms++; 1112 } 1113 1114 static void free_work_atoms(struct work_atoms *atoms) 1115 { 1116 struct work_atom *atom, *tmp; 1117 1118 if (atoms == NULL) 1119 return; 1120 1121 list_for_each_entry_safe(atom, tmp, &atoms->work_list, list) { 1122 list_del(&atom->list); 1123 free(atom); 1124 } 1125 thread__zput(atoms->thread); 1126 free(atoms); 1127 } 1128 1129 static int latency_switch_event(struct perf_sched *sched, 1130 struct evsel *evsel, 1131 struct perf_sample *sample, 1132 struct machine *machine) 1133 { 1134 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 1135 next_pid = evsel__intval(evsel, sample, "next_pid"); 1136 const char prev_state = evsel__taskstate(evsel, sample, "prev_state"); 1137 struct work_atoms *out_events, *in_events; 1138 struct thread *sched_out, *sched_in; 1139 u64 timestamp0, timestamp = sample->time; 1140 int cpu = sample->cpu, err = -1; 1141 s64 delta; 1142 1143 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1144 1145 timestamp0 = sched->cpu_last_switched[cpu]; 1146 sched->cpu_last_switched[cpu] = timestamp; 1147 if (timestamp0) 1148 delta = timestamp - timestamp0; 1149 else 1150 delta = 0; 1151 1152 if (delta < 0) { 1153 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1154 return -1; 1155 } 1156 1157 sched_out = machine__findnew_thread(machine, -1, prev_pid); 1158 sched_in = machine__findnew_thread(machine, -1, next_pid); 1159 if (sched_out == NULL || sched_in == NULL) 1160 goto out_put; 1161 1162 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1163 if (!out_events) { 1164 if (thread_atoms_insert(sched, sched_out)) 1165 goto out_put; 1166 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1167 if (!out_events) { 1168 pr_err("out-event: Internal tree error"); 1169 goto out_put; 1170 } 1171 } 1172 if (add_sched_out_event(out_events, prev_state, timestamp)) 1173 return -1; 1174 1175 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1176 if (!in_events) { 1177 if (thread_atoms_insert(sched, sched_in)) 1178 goto out_put; 1179 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1180 if (!in_events) { 1181 pr_err("in-event: Internal tree error"); 1182 goto out_put; 1183 } 1184 /* 1185 * Take came in we have not heard about yet, 1186 * add in an initial atom in runnable state: 1187 */ 1188 if (add_sched_out_event(in_events, 'R', timestamp)) 1189 goto out_put; 1190 } 1191 add_sched_in_event(in_events, timestamp); 1192 err = 0; 1193 out_put: 1194 thread__put(sched_out); 1195 thread__put(sched_in); 1196 return err; 1197 } 1198 1199 static int latency_runtime_event(struct perf_sched *sched, 1200 struct evsel *evsel, 1201 struct perf_sample *sample, 1202 struct machine *machine) 1203 { 1204 const u32 pid = evsel__intval(evsel, sample, "pid"); 1205 const u64 runtime = evsel__intval(evsel, sample, "runtime"); 1206 struct thread *thread = machine__findnew_thread(machine, -1, pid); 1207 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1208 u64 timestamp = sample->time; 1209 int cpu = sample->cpu, err = -1; 1210 1211 if (thread == NULL) 1212 return -1; 1213 1214 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1215 if (!atoms) { 1216 if (thread_atoms_insert(sched, thread)) 1217 goto out_put; 1218 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1219 if (!atoms) { 1220 pr_err("in-event: Internal tree error"); 1221 goto out_put; 1222 } 1223 if (add_sched_out_event(atoms, 'R', timestamp)) 1224 goto out_put; 1225 } 1226 1227 add_runtime_event(atoms, runtime, timestamp); 1228 err = 0; 1229 out_put: 1230 thread__put(thread); 1231 return err; 1232 } 1233 1234 static int latency_wakeup_event(struct perf_sched *sched, 1235 struct evsel *evsel, 1236 struct perf_sample *sample, 1237 struct machine *machine) 1238 { 1239 const u32 pid = evsel__intval(evsel, sample, "pid"); 1240 struct work_atoms *atoms; 1241 struct work_atom *atom; 1242 struct thread *wakee; 1243 u64 timestamp = sample->time; 1244 int err = -1; 1245 1246 wakee = machine__findnew_thread(machine, -1, pid); 1247 if (wakee == NULL) 1248 return -1; 1249 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1250 if (!atoms) { 1251 if (thread_atoms_insert(sched, wakee)) 1252 goto out_put; 1253 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1254 if (!atoms) { 1255 pr_err("wakeup-event: Internal tree error"); 1256 goto out_put; 1257 } 1258 if (add_sched_out_event(atoms, 'S', timestamp)) 1259 goto out_put; 1260 } 1261 1262 BUG_ON(list_empty(&atoms->work_list)); 1263 1264 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1265 1266 /* 1267 * As we do not guarantee the wakeup event happens when 1268 * task is out of run queue, also may happen when task is 1269 * on run queue and wakeup only change ->state to TASK_RUNNING, 1270 * then we should not set the ->wake_up_time when wake up a 1271 * task which is on run queue. 1272 * 1273 * You WILL be missing events if you've recorded only 1274 * one CPU, or are only looking at only one, so don't 1275 * skip in this case. 1276 */ 1277 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1278 goto out_ok; 1279 1280 sched->nr_timestamps++; 1281 if (atom->sched_out_time > timestamp) { 1282 sched->nr_unordered_timestamps++; 1283 goto out_ok; 1284 } 1285 1286 atom->state = THREAD_WAIT_CPU; 1287 atom->wake_up_time = timestamp; 1288 out_ok: 1289 err = 0; 1290 out_put: 1291 thread__put(wakee); 1292 return err; 1293 } 1294 1295 static int latency_migrate_task_event(struct perf_sched *sched, 1296 struct evsel *evsel, 1297 struct perf_sample *sample, 1298 struct machine *machine) 1299 { 1300 const u32 pid = evsel__intval(evsel, sample, "pid"); 1301 u64 timestamp = sample->time; 1302 struct work_atoms *atoms; 1303 struct work_atom *atom; 1304 struct thread *migrant; 1305 int err = -1; 1306 1307 /* 1308 * Only need to worry about migration when profiling one CPU. 1309 */ 1310 if (sched->profile_cpu == -1) 1311 return 0; 1312 1313 migrant = machine__findnew_thread(machine, -1, pid); 1314 if (migrant == NULL) 1315 return -1; 1316 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1317 if (!atoms) { 1318 if (thread_atoms_insert(sched, migrant)) 1319 goto out_put; 1320 register_pid(sched, thread__tid(migrant), thread__comm_str(migrant)); 1321 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1322 if (!atoms) { 1323 pr_err("migration-event: Internal tree error"); 1324 goto out_put; 1325 } 1326 if (add_sched_out_event(atoms, 'R', timestamp)) 1327 goto out_put; 1328 } 1329 1330 BUG_ON(list_empty(&atoms->work_list)); 1331 1332 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1333 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1334 1335 sched->nr_timestamps++; 1336 1337 if (atom->sched_out_time > timestamp) 1338 sched->nr_unordered_timestamps++; 1339 err = 0; 1340 out_put: 1341 thread__put(migrant); 1342 return err; 1343 } 1344 1345 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1346 { 1347 int i; 1348 int ret; 1349 u64 avg; 1350 char max_lat_start[32], max_lat_end[32]; 1351 1352 if (!work_list->nb_atoms) 1353 return; 1354 /* 1355 * Ignore idle threads: 1356 */ 1357 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1358 return; 1359 1360 sched->all_runtime += work_list->total_runtime; 1361 sched->all_count += work_list->nb_atoms; 1362 1363 if (work_list->num_merged > 1) { 1364 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), 1365 work_list->num_merged); 1366 } else { 1367 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), 1368 thread__tid(work_list->thread)); 1369 } 1370 1371 for (i = 0; i < 24 - ret; i++) 1372 printf(" "); 1373 1374 avg = work_list->total_lat / work_list->nb_atoms; 1375 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start)); 1376 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end)); 1377 1378 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n", 1379 (double)work_list->total_runtime / NSEC_PER_MSEC, 1380 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC, 1381 (double)work_list->max_lat / NSEC_PER_MSEC, 1382 max_lat_start, max_lat_end); 1383 } 1384 1385 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1386 { 1387 pid_t l_tid, r_tid; 1388 1389 if (RC_CHK_EQUAL(l->thread, r->thread)) 1390 return 0; 1391 l_tid = thread__tid(l->thread); 1392 r_tid = thread__tid(r->thread); 1393 if (l_tid < r_tid) 1394 return -1; 1395 if (l_tid > r_tid) 1396 return 1; 1397 return (int)(RC_CHK_ACCESS(l->thread) - RC_CHK_ACCESS(r->thread)); 1398 } 1399 1400 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1401 { 1402 u64 avgl, avgr; 1403 1404 if (!l->nb_atoms) 1405 return -1; 1406 1407 if (!r->nb_atoms) 1408 return 1; 1409 1410 avgl = l->total_lat / l->nb_atoms; 1411 avgr = r->total_lat / r->nb_atoms; 1412 1413 if (avgl < avgr) 1414 return -1; 1415 if (avgl > avgr) 1416 return 1; 1417 1418 return 0; 1419 } 1420 1421 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1422 { 1423 if (l->max_lat < r->max_lat) 1424 return -1; 1425 if (l->max_lat > r->max_lat) 1426 return 1; 1427 1428 return 0; 1429 } 1430 1431 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1432 { 1433 if (l->nb_atoms < r->nb_atoms) 1434 return -1; 1435 if (l->nb_atoms > r->nb_atoms) 1436 return 1; 1437 1438 return 0; 1439 } 1440 1441 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1442 { 1443 if (l->total_runtime < r->total_runtime) 1444 return -1; 1445 if (l->total_runtime > r->total_runtime) 1446 return 1; 1447 1448 return 0; 1449 } 1450 1451 static int sort_dimension__add(const char *tok, struct list_head *list) 1452 { 1453 size_t i; 1454 static struct sort_dimension avg_sort_dimension = { 1455 .name = "avg", 1456 .cmp = avg_cmp, 1457 }; 1458 static struct sort_dimension max_sort_dimension = { 1459 .name = "max", 1460 .cmp = max_cmp, 1461 }; 1462 static struct sort_dimension pid_sort_dimension = { 1463 .name = "pid", 1464 .cmp = pid_cmp, 1465 }; 1466 static struct sort_dimension runtime_sort_dimension = { 1467 .name = "runtime", 1468 .cmp = runtime_cmp, 1469 }; 1470 static struct sort_dimension switch_sort_dimension = { 1471 .name = "switch", 1472 .cmp = switch_cmp, 1473 }; 1474 struct sort_dimension *available_sorts[] = { 1475 &pid_sort_dimension, 1476 &avg_sort_dimension, 1477 &max_sort_dimension, 1478 &switch_sort_dimension, 1479 &runtime_sort_dimension, 1480 }; 1481 1482 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1483 if (!strcmp(available_sorts[i]->name, tok)) { 1484 list_add_tail(&available_sorts[i]->list, list); 1485 1486 return 0; 1487 } 1488 } 1489 1490 return -1; 1491 } 1492 1493 static void perf_sched__sort_lat(struct perf_sched *sched) 1494 { 1495 struct rb_node *node; 1496 struct rb_root_cached *root = &sched->atom_root; 1497 again: 1498 for (;;) { 1499 struct work_atoms *data; 1500 node = rb_first_cached(root); 1501 if (!node) 1502 break; 1503 1504 rb_erase_cached(node, root); 1505 data = rb_entry(node, struct work_atoms, node); 1506 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1507 } 1508 if (root == &sched->atom_root) { 1509 root = &sched->merged_atom_root; 1510 goto again; 1511 } 1512 } 1513 1514 static int process_sched_wakeup_event(const struct perf_tool *tool, 1515 struct evsel *evsel, 1516 struct perf_sample *sample, 1517 struct machine *machine) 1518 { 1519 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1520 1521 if (sched->tp_handler->wakeup_event) 1522 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1523 1524 return 0; 1525 } 1526 1527 static int process_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused, 1528 struct evsel *evsel __maybe_unused, 1529 struct perf_sample *sample __maybe_unused, 1530 struct machine *machine __maybe_unused) 1531 { 1532 return 0; 1533 } 1534 1535 union map_priv { 1536 void *ptr; 1537 bool color; 1538 }; 1539 1540 static bool thread__has_color(struct thread *thread) 1541 { 1542 union map_priv priv = { 1543 .ptr = thread__priv(thread), 1544 }; 1545 1546 return priv.color; 1547 } 1548 1549 static struct thread* 1550 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) 1551 { 1552 struct thread *thread = machine__findnew_thread(machine, pid, tid); 1553 union map_priv priv = { 1554 .color = false, 1555 }; 1556 1557 if (!sched->map.color_pids || !thread || thread__priv(thread)) 1558 return thread; 1559 1560 if (thread_map__has(sched->map.color_pids, tid)) 1561 priv.color = true; 1562 1563 thread__set_priv(thread, priv.ptr); 1564 return thread; 1565 } 1566 1567 static bool sched_match_task(struct perf_sched *sched, const char *comm_str) 1568 { 1569 bool fuzzy_match = sched->map.fuzzy; 1570 struct strlist *task_names = sched->map.task_names; 1571 struct str_node *node; 1572 1573 strlist__for_each_entry(node, task_names) { 1574 bool match_found = fuzzy_match ? !!strstr(comm_str, node->s) : 1575 !strcmp(comm_str, node->s); 1576 if (match_found) 1577 return true; 1578 } 1579 1580 return false; 1581 } 1582 1583 static void print_sched_map(struct perf_sched *sched, struct perf_cpu this_cpu, int cpus_nr, 1584 const char *color, bool sched_out) 1585 { 1586 for (int i = 0; i < cpus_nr; i++) { 1587 struct perf_cpu cpu = { 1588 .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i, 1589 }; 1590 struct thread *curr_thread = sched->curr_thread[cpu.cpu]; 1591 struct thread *curr_out_thread = sched->curr_out_thread[cpu.cpu]; 1592 struct thread_runtime *curr_tr; 1593 const char *pid_color = color; 1594 const char *cpu_color = color; 1595 char symbol = ' '; 1596 struct thread *thread_to_check = sched_out ? curr_out_thread : curr_thread; 1597 1598 if (thread_to_check && thread__has_color(thread_to_check)) 1599 pid_color = COLOR_PIDS; 1600 1601 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu)) 1602 cpu_color = COLOR_CPUS; 1603 1604 if (cpu.cpu == this_cpu.cpu) 1605 symbol = '*'; 1606 1607 color_fprintf(stdout, cpu.cpu != this_cpu.cpu ? color : cpu_color, "%c", symbol); 1608 1609 thread_to_check = sched_out ? sched->curr_out_thread[cpu.cpu] : 1610 sched->curr_thread[cpu.cpu]; 1611 1612 if (thread_to_check) { 1613 curr_tr = thread__get_runtime(thread_to_check); 1614 if (curr_tr == NULL) 1615 return; 1616 1617 if (sched_out) { 1618 if (cpu.cpu == this_cpu.cpu) 1619 color_fprintf(stdout, color, "- "); 1620 else { 1621 curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]); 1622 if (curr_tr != NULL) 1623 color_fprintf(stdout, pid_color, "%2s ", 1624 curr_tr->shortname); 1625 } 1626 } else 1627 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname); 1628 } else 1629 color_fprintf(stdout, color, " "); 1630 } 1631 } 1632 1633 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel, 1634 struct perf_sample *sample, struct machine *machine) 1635 { 1636 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 1637 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"); 1638 struct thread *sched_in, *sched_out; 1639 struct thread_runtime *tr; 1640 int new_shortname; 1641 u64 timestamp0, timestamp = sample->time; 1642 s64 delta; 1643 struct perf_cpu this_cpu = { 1644 .cpu = sample->cpu, 1645 }; 1646 int cpus_nr; 1647 int proceed; 1648 bool new_cpu = false; 1649 const char *color = PERF_COLOR_NORMAL; 1650 char stimestamp[32]; 1651 const char *str; 1652 int ret = -1; 1653 1654 BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0); 1655 1656 if (this_cpu.cpu > sched->max_cpu.cpu) 1657 sched->max_cpu = this_cpu; 1658 1659 if (sched->map.comp) { 1660 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); 1661 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) { 1662 sched->map.comp_cpus[cpus_nr++] = this_cpu; 1663 new_cpu = true; 1664 } 1665 } else 1666 cpus_nr = sched->max_cpu.cpu; 1667 1668 timestamp0 = sched->cpu_last_switched[this_cpu.cpu]; 1669 sched->cpu_last_switched[this_cpu.cpu] = timestamp; 1670 if (timestamp0) 1671 delta = timestamp - timestamp0; 1672 else 1673 delta = 0; 1674 1675 if (delta < 0) { 1676 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1677 return -1; 1678 } 1679 1680 sched_in = map__findnew_thread(sched, machine, -1, next_pid); 1681 sched_out = map__findnew_thread(sched, machine, -1, prev_pid); 1682 if (sched_in == NULL || sched_out == NULL) 1683 goto out; 1684 1685 tr = thread__get_runtime(sched_in); 1686 if (tr == NULL) 1687 goto out; 1688 1689 thread__put(sched->curr_thread[this_cpu.cpu]); 1690 thread__put(sched->curr_out_thread[this_cpu.cpu]); 1691 1692 sched->curr_thread[this_cpu.cpu] = thread__get(sched_in); 1693 sched->curr_out_thread[this_cpu.cpu] = thread__get(sched_out); 1694 1695 ret = 0; 1696 1697 str = thread__comm_str(sched_in); 1698 new_shortname = 0; 1699 if (!tr->shortname[0]) { 1700 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1701 /* 1702 * Don't allocate a letter-number for swapper:0 1703 * as a shortname. Instead, we use '.' for it. 1704 */ 1705 tr->shortname[0] = '.'; 1706 tr->shortname[1] = ' '; 1707 } else if (!sched->map.task_name || sched_match_task(sched, str)) { 1708 tr->shortname[0] = sched->next_shortname1; 1709 tr->shortname[1] = sched->next_shortname2; 1710 1711 if (sched->next_shortname1 < 'Z') { 1712 sched->next_shortname1++; 1713 } else { 1714 sched->next_shortname1 = 'A'; 1715 if (sched->next_shortname2 < '9') 1716 sched->next_shortname2++; 1717 else 1718 sched->next_shortname2 = '0'; 1719 } 1720 } else { 1721 tr->shortname[0] = '-'; 1722 tr->shortname[1] = ' '; 1723 } 1724 new_shortname = 1; 1725 } 1726 1727 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu)) 1728 goto out; 1729 1730 proceed = 0; 1731 str = thread__comm_str(sched_in); 1732 /* 1733 * Check which of sched_in and sched_out matches the passed --task-name 1734 * arguments and call the corresponding print_sched_map. 1735 */ 1736 if (sched->map.task_name && !sched_match_task(sched, str)) { 1737 if (!sched_match_task(sched, thread__comm_str(sched_out))) 1738 goto out; 1739 else 1740 goto sched_out; 1741 1742 } else { 1743 str = thread__comm_str(sched_out); 1744 if (!(sched->map.task_name && !sched_match_task(sched, str))) 1745 proceed = 1; 1746 } 1747 1748 printf(" "); 1749 1750 print_sched_map(sched, this_cpu, cpus_nr, color, false); 1751 1752 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1753 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1754 if (new_shortname || tr->comm_changed || (verbose > 0 && thread__tid(sched_in))) { 1755 const char *pid_color = color; 1756 1757 if (thread__has_color(sched_in)) 1758 pid_color = COLOR_PIDS; 1759 1760 color_fprintf(stdout, pid_color, "%s => %s:%d", 1761 tr->shortname, thread__comm_str(sched_in), thread__tid(sched_in)); 1762 tr->comm_changed = false; 1763 } 1764 1765 if (sched->map.comp && new_cpu) 1766 color_fprintf(stdout, color, " (CPU %d)", this_cpu.cpu); 1767 1768 if (proceed != 1) { 1769 color_fprintf(stdout, color, "\n"); 1770 goto out; 1771 } 1772 1773 sched_out: 1774 if (sched->map.task_name) { 1775 tr = thread__get_runtime(sched->curr_out_thread[this_cpu.cpu]); 1776 if (strcmp(tr->shortname, "") == 0) 1777 goto out; 1778 1779 if (proceed == 1) 1780 color_fprintf(stdout, color, "\n"); 1781 1782 printf(" "); 1783 print_sched_map(sched, this_cpu, cpus_nr, color, true); 1784 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp)); 1785 color_fprintf(stdout, color, " %12s secs ", stimestamp); 1786 } 1787 1788 color_fprintf(stdout, color, "\n"); 1789 1790 out: 1791 thread__put(sched_out); 1792 thread__put(sched_in); 1793 1794 return ret; 1795 } 1796 1797 static int process_sched_switch_event(const struct perf_tool *tool, 1798 struct evsel *evsel, 1799 struct perf_sample *sample, 1800 struct machine *machine) 1801 { 1802 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1803 int this_cpu = sample->cpu, err = 0; 1804 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"), 1805 next_pid = evsel__intval(evsel, sample, "next_pid"); 1806 1807 if (sched->curr_pid[this_cpu] != (u32)-1) { 1808 /* 1809 * Are we trying to switch away a PID that is 1810 * not current? 1811 */ 1812 if (sched->curr_pid[this_cpu] != prev_pid) 1813 sched->nr_context_switch_bugs++; 1814 } 1815 1816 if (sched->tp_handler->switch_event) 1817 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1818 1819 sched->curr_pid[this_cpu] = next_pid; 1820 return err; 1821 } 1822 1823 static int process_sched_runtime_event(const struct perf_tool *tool, 1824 struct evsel *evsel, 1825 struct perf_sample *sample, 1826 struct machine *machine) 1827 { 1828 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1829 1830 if (sched->tp_handler->runtime_event) 1831 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1832 1833 return 0; 1834 } 1835 1836 static int perf_sched__process_fork_event(const struct perf_tool *tool, 1837 union perf_event *event, 1838 struct perf_sample *sample, 1839 struct machine *machine) 1840 { 1841 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1842 1843 /* run the fork event through the perf machinery */ 1844 perf_event__process_fork(tool, event, sample, machine); 1845 1846 /* and then run additional processing needed for this command */ 1847 if (sched->tp_handler->fork_event) 1848 return sched->tp_handler->fork_event(sched, event, machine); 1849 1850 return 0; 1851 } 1852 1853 static int process_sched_migrate_task_event(const struct perf_tool *tool, 1854 struct evsel *evsel, 1855 struct perf_sample *sample, 1856 struct machine *machine) 1857 { 1858 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1859 1860 if (sched->tp_handler->migrate_task_event) 1861 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1862 1863 return 0; 1864 } 1865 1866 typedef int (*tracepoint_handler)(const struct perf_tool *tool, 1867 struct evsel *evsel, 1868 struct perf_sample *sample, 1869 struct machine *machine); 1870 1871 static int perf_sched__process_tracepoint_sample(const struct perf_tool *tool __maybe_unused, 1872 union perf_event *event __maybe_unused, 1873 struct perf_sample *sample, 1874 struct evsel *evsel, 1875 struct machine *machine) 1876 { 1877 int err = 0; 1878 1879 if (evsel->handler != NULL) { 1880 tracepoint_handler f = evsel->handler; 1881 err = f(tool, evsel, sample, machine); 1882 } 1883 1884 return err; 1885 } 1886 1887 static int perf_sched__process_comm(const struct perf_tool *tool __maybe_unused, 1888 union perf_event *event, 1889 struct perf_sample *sample, 1890 struct machine *machine) 1891 { 1892 struct thread *thread; 1893 struct thread_runtime *tr; 1894 int err; 1895 1896 err = perf_event__process_comm(tool, event, sample, machine); 1897 if (err) 1898 return err; 1899 1900 thread = machine__find_thread(machine, sample->pid, sample->tid); 1901 if (!thread) { 1902 pr_err("Internal error: can't find thread\n"); 1903 return -1; 1904 } 1905 1906 tr = thread__get_runtime(thread); 1907 if (tr == NULL) { 1908 thread__put(thread); 1909 return -1; 1910 } 1911 1912 tr->comm_changed = true; 1913 thread__put(thread); 1914 1915 return 0; 1916 } 1917 1918 static int perf_sched__read_events(struct perf_sched *sched) 1919 { 1920 struct evsel_str_handler handlers[] = { 1921 { "sched:sched_switch", process_sched_switch_event, }, 1922 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1923 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1924 { "sched:sched_waking", process_sched_wakeup_event, }, 1925 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1926 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1927 }; 1928 struct perf_session *session; 1929 struct perf_data data = { 1930 .path = input_name, 1931 .mode = PERF_DATA_MODE_READ, 1932 .force = sched->force, 1933 }; 1934 int rc = -1; 1935 1936 session = perf_session__new(&data, &sched->tool); 1937 if (IS_ERR(session)) { 1938 pr_debug("Error creating perf session"); 1939 return PTR_ERR(session); 1940 } 1941 1942 symbol__init(perf_session__env(session)); 1943 1944 /* prefer sched_waking if it is captured */ 1945 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) 1946 handlers[2].handler = process_sched_wakeup_ignore; 1947 1948 if (perf_session__set_tracepoints_handlers(session, handlers)) 1949 goto out_delete; 1950 1951 if (perf_session__has_traces(session, "record -R")) { 1952 int err = perf_session__process_events(session); 1953 if (err) { 1954 pr_err("Failed to process events, error %d", err); 1955 goto out_delete; 1956 } 1957 1958 sched->nr_events = session->evlist->stats.nr_events[0]; 1959 sched->nr_lost_events = session->evlist->stats.total_lost; 1960 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; 1961 } 1962 1963 rc = 0; 1964 out_delete: 1965 perf_session__delete(session); 1966 return rc; 1967 } 1968 1969 /* 1970 * scheduling times are printed as msec.usec 1971 */ 1972 static inline void print_sched_time(unsigned long long nsecs, int width) 1973 { 1974 unsigned long msecs; 1975 unsigned long usecs; 1976 1977 msecs = nsecs / NSEC_PER_MSEC; 1978 nsecs -= msecs * NSEC_PER_MSEC; 1979 usecs = nsecs / NSEC_PER_USEC; 1980 printf("%*lu.%03lu ", width, msecs, usecs); 1981 } 1982 1983 /* 1984 * returns runtime data for event, allocating memory for it the 1985 * first time it is used. 1986 */ 1987 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel) 1988 { 1989 struct evsel_runtime *r = evsel->priv; 1990 1991 if (r == NULL) { 1992 r = zalloc(sizeof(struct evsel_runtime)); 1993 evsel->priv = r; 1994 } 1995 1996 return r; 1997 } 1998 1999 /* 2000 * save last time event was seen per cpu 2001 */ 2002 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu) 2003 { 2004 struct evsel_runtime *r = evsel__get_runtime(evsel); 2005 2006 if (r == NULL) 2007 return; 2008 2009 if ((cpu >= r->ncpu) || (r->last_time == NULL)) { 2010 int i, n = __roundup_pow_of_two(cpu+1); 2011 void *p = r->last_time; 2012 2013 p = realloc(r->last_time, n * sizeof(u64)); 2014 if (!p) 2015 return; 2016 2017 r->last_time = p; 2018 for (i = r->ncpu; i < n; ++i) 2019 r->last_time[i] = (u64) 0; 2020 2021 r->ncpu = n; 2022 } 2023 2024 r->last_time[cpu] = timestamp; 2025 } 2026 2027 /* returns last time this event was seen on the given cpu */ 2028 static u64 evsel__get_time(struct evsel *evsel, u32 cpu) 2029 { 2030 struct evsel_runtime *r = evsel__get_runtime(evsel); 2031 2032 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu)) 2033 return 0; 2034 2035 return r->last_time[cpu]; 2036 } 2037 2038 static void timehist__evsel_priv_destructor(void *priv) 2039 { 2040 struct evsel_runtime *r = priv; 2041 2042 if (r) { 2043 free(r->last_time); 2044 free(r); 2045 } 2046 } 2047 2048 static int comm_width = 30; 2049 2050 static char *timehist_get_commstr(struct thread *thread) 2051 { 2052 static char str[32]; 2053 const char *comm = thread__comm_str(thread); 2054 pid_t tid = thread__tid(thread); 2055 pid_t pid = thread__pid(thread); 2056 int n; 2057 2058 if (pid == 0) 2059 n = scnprintf(str, sizeof(str), "%s", comm); 2060 2061 else if (tid != pid) 2062 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid); 2063 2064 else 2065 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid); 2066 2067 if (n > comm_width) 2068 comm_width = n; 2069 2070 return str; 2071 } 2072 2073 /* prio field format: xxx or xxx->yyy */ 2074 #define MAX_PRIO_STR_LEN 8 2075 static char *timehist_get_priostr(struct evsel *evsel, 2076 struct thread *thread, 2077 struct perf_sample *sample) 2078 { 2079 static char prio_str[16]; 2080 int prev_prio = (int)evsel__intval(evsel, sample, "prev_prio"); 2081 struct thread_runtime *tr = thread__priv(thread); 2082 2083 if (tr->prio != prev_prio && tr->prio != -1) 2084 scnprintf(prio_str, sizeof(prio_str), "%d->%d", tr->prio, prev_prio); 2085 else 2086 scnprintf(prio_str, sizeof(prio_str), "%d", prev_prio); 2087 2088 return prio_str; 2089 } 2090 2091 static void timehist_header(struct perf_sched *sched) 2092 { 2093 u32 ncpus = sched->max_cpu.cpu + 1; 2094 u32 i, j; 2095 2096 printf("%15s %6s ", "time", "cpu"); 2097 2098 if (sched->show_cpu_visual) { 2099 printf(" "); 2100 for (i = 0, j = 0; i < ncpus; ++i) { 2101 printf("%x", j++); 2102 if (j > 15) 2103 j = 0; 2104 } 2105 printf(" "); 2106 } 2107 2108 printf(" %-*s", comm_width, "task name"); 2109 2110 if (sched->show_prio) 2111 printf(" %-*s", MAX_PRIO_STR_LEN, "prio"); 2112 2113 printf(" %9s %9s %9s", "wait time", "sch delay", "run time"); 2114 2115 if (sched->pre_migrations) 2116 printf(" %9s", "pre-mig time"); 2117 2118 if (sched->show_state) 2119 printf(" %s", "state"); 2120 2121 printf("\n"); 2122 2123 /* 2124 * units row 2125 */ 2126 printf("%15s %-6s ", "", ""); 2127 2128 if (sched->show_cpu_visual) 2129 printf(" %*s ", ncpus, ""); 2130 2131 printf(" %-*s", comm_width, "[tid/pid]"); 2132 2133 if (sched->show_prio) 2134 printf(" %-*s", MAX_PRIO_STR_LEN, ""); 2135 2136 printf(" %9s %9s %9s", "(msec)", "(msec)", "(msec)"); 2137 2138 if (sched->pre_migrations) 2139 printf(" %9s", "(msec)"); 2140 2141 printf("\n"); 2142 2143 /* 2144 * separator 2145 */ 2146 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line); 2147 2148 if (sched->show_cpu_visual) 2149 printf(" %.*s ", ncpus, graph_dotted_line); 2150 2151 printf(" %.*s", comm_width, graph_dotted_line); 2152 2153 if (sched->show_prio) 2154 printf(" %.*s", MAX_PRIO_STR_LEN, graph_dotted_line); 2155 2156 printf(" %.9s %.9s %.9s", graph_dotted_line, graph_dotted_line, graph_dotted_line); 2157 2158 if (sched->pre_migrations) 2159 printf(" %.9s", graph_dotted_line); 2160 2161 if (sched->show_state) 2162 printf(" %.5s", graph_dotted_line); 2163 2164 printf("\n"); 2165 } 2166 2167 static void timehist_print_sample(struct perf_sched *sched, 2168 struct evsel *evsel, 2169 struct perf_sample *sample, 2170 struct addr_location *al, 2171 struct thread *thread, 2172 u64 t, const char state) 2173 { 2174 struct thread_runtime *tr = thread__priv(thread); 2175 const char *next_comm = evsel__strval(evsel, sample, "next_comm"); 2176 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 2177 u32 max_cpus = sched->max_cpu.cpu + 1; 2178 char tstr[64]; 2179 char nstr[30]; 2180 u64 wait_time; 2181 2182 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap)) 2183 return; 2184 2185 timestamp__scnprintf_usec(t, tstr, sizeof(tstr)); 2186 printf("%15s [%04d] ", tstr, sample->cpu); 2187 2188 if (sched->show_cpu_visual) { 2189 u32 i; 2190 char c; 2191 2192 printf(" "); 2193 for (i = 0; i < max_cpus; ++i) { 2194 /* flag idle times with 'i'; others are sched events */ 2195 if (i == sample->cpu) 2196 c = (thread__tid(thread) == 0) ? 'i' : 's'; 2197 else 2198 c = ' '; 2199 printf("%c", c); 2200 } 2201 printf(" "); 2202 } 2203 2204 if (!thread__comm_set(thread)) { 2205 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"); 2206 thread__set_comm(thread, prev_comm, sample->time); 2207 } 2208 2209 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2210 2211 if (sched->show_prio) 2212 printf(" %-*s ", MAX_PRIO_STR_LEN, timehist_get_priostr(evsel, thread, sample)); 2213 2214 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt; 2215 print_sched_time(wait_time, 6); 2216 2217 print_sched_time(tr->dt_delay, 6); 2218 print_sched_time(tr->dt_run, 6); 2219 if (sched->pre_migrations) 2220 print_sched_time(tr->dt_pre_mig, 6); 2221 2222 if (sched->show_state) 2223 printf(" %5c ", thread__tid(thread) == 0 ? 'I' : state); 2224 2225 if (sched->show_next) { 2226 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid); 2227 printf(" %-*s", comm_width, nstr); 2228 } 2229 2230 if (sched->show_wakeups && !sched->show_next) 2231 printf(" %-*s", comm_width, ""); 2232 2233 if (thread__tid(thread) == 0) 2234 goto out; 2235 2236 if (sched->show_callchain) 2237 printf(" "); 2238 2239 sample__fprintf_sym(sample, al, 0, 2240 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE | 2241 EVSEL__PRINT_CALLCHAIN_ARROW | 2242 EVSEL__PRINT_SKIP_IGNORED, 2243 get_tls_callchain_cursor(), symbol_conf.bt_stop_list, stdout); 2244 2245 out: 2246 printf("\n"); 2247 } 2248 2249 /* 2250 * Explanation of delta-time stats: 2251 * 2252 * t = time of current schedule out event 2253 * tprev = time of previous sched out event 2254 * also time of schedule-in event for current task 2255 * last_time = time of last sched change event for current task 2256 * (i.e, time process was last scheduled out) 2257 * ready_to_run = time of wakeup for current task 2258 * migrated = time of task migration to another CPU 2259 * 2260 * -----|-------------|-------------|-------------|-------------|----- 2261 * last ready migrated tprev t 2262 * time to run 2263 * 2264 * |---------------- dt_wait ----------------| 2265 * |--------- dt_delay ---------|-- dt_run --| 2266 * |- dt_pre_mig -| 2267 * 2268 * dt_run = run time of current task 2269 * dt_wait = time between last schedule out event for task and tprev 2270 * represents time spent off the cpu 2271 * dt_delay = time between wakeup and schedule-in of task 2272 * dt_pre_mig = time between wakeup and migration to another CPU 2273 */ 2274 2275 static void timehist_update_runtime_stats(struct thread_runtime *r, 2276 u64 t, u64 tprev) 2277 { 2278 r->dt_delay = 0; 2279 r->dt_sleep = 0; 2280 r->dt_iowait = 0; 2281 r->dt_preempt = 0; 2282 r->dt_run = 0; 2283 r->dt_pre_mig = 0; 2284 2285 if (tprev) { 2286 r->dt_run = t - tprev; 2287 if (r->ready_to_run) { 2288 if (r->ready_to_run > tprev) 2289 pr_debug("time travel: wakeup time for task > previous sched_switch event\n"); 2290 else 2291 r->dt_delay = tprev - r->ready_to_run; 2292 2293 if ((r->migrated > r->ready_to_run) && (r->migrated < tprev)) 2294 r->dt_pre_mig = r->migrated - r->ready_to_run; 2295 } 2296 2297 if (r->last_time > tprev) 2298 pr_debug("time travel: last sched out time for task > previous sched_switch event\n"); 2299 else if (r->last_time) { 2300 u64 dt_wait = tprev - r->last_time; 2301 2302 if (r->last_state == 'R') 2303 r->dt_preempt = dt_wait; 2304 else if (r->last_state == 'D') 2305 r->dt_iowait = dt_wait; 2306 else 2307 r->dt_sleep = dt_wait; 2308 } 2309 } 2310 2311 update_stats(&r->run_stats, r->dt_run); 2312 2313 r->total_run_time += r->dt_run; 2314 r->total_delay_time += r->dt_delay; 2315 r->total_sleep_time += r->dt_sleep; 2316 r->total_iowait_time += r->dt_iowait; 2317 r->total_preempt_time += r->dt_preempt; 2318 r->total_pre_mig_time += r->dt_pre_mig; 2319 } 2320 2321 static bool is_idle_sample(struct perf_sample *sample, 2322 struct evsel *evsel) 2323 { 2324 /* pid 0 == swapper == idle task */ 2325 if (evsel__name_is(evsel, "sched:sched_switch")) 2326 return evsel__intval(evsel, sample, "prev_pid") == 0; 2327 2328 return sample->pid == 0; 2329 } 2330 2331 static void save_task_callchain(struct perf_sched *sched, 2332 struct perf_sample *sample, 2333 struct evsel *evsel, 2334 struct machine *machine) 2335 { 2336 struct callchain_cursor *cursor; 2337 struct thread *thread; 2338 2339 /* want main thread for process - has maps */ 2340 thread = machine__findnew_thread(machine, sample->pid, sample->pid); 2341 if (thread == NULL) { 2342 pr_debug("Failed to get thread for pid %d.\n", sample->pid); 2343 return; 2344 } 2345 2346 if (!sched->show_callchain || sample->callchain == NULL) { 2347 thread__put(thread); 2348 return; 2349 } 2350 2351 cursor = get_tls_callchain_cursor(); 2352 2353 if (thread__resolve_callchain(thread, cursor, evsel, sample, 2354 NULL, NULL, sched->max_stack + 2) != 0) { 2355 if (verbose > 0) 2356 pr_err("Failed to resolve callchain. Skipping\n"); 2357 2358 thread__put(thread); 2359 return; 2360 } 2361 2362 callchain_cursor_commit(cursor); 2363 thread__put(thread); 2364 2365 while (true) { 2366 struct callchain_cursor_node *node; 2367 struct symbol *sym; 2368 2369 node = callchain_cursor_current(cursor); 2370 if (node == NULL) 2371 break; 2372 2373 sym = node->ms.sym; 2374 if (sym) { 2375 if (!strcmp(sym->name, "schedule") || 2376 !strcmp(sym->name, "__schedule") || 2377 !strcmp(sym->name, "preempt_schedule")) 2378 sym->ignore = 1; 2379 } 2380 2381 callchain_cursor_advance(cursor); 2382 } 2383 } 2384 2385 static int init_idle_thread(struct thread *thread) 2386 { 2387 struct idle_thread_runtime *itr; 2388 2389 thread__set_comm(thread, idle_comm, 0); 2390 2391 itr = zalloc(sizeof(*itr)); 2392 if (itr == NULL) 2393 return -ENOMEM; 2394 2395 init_prio(&itr->tr); 2396 init_stats(&itr->tr.run_stats); 2397 callchain_init(&itr->callchain); 2398 callchain_cursor_reset(&itr->cursor); 2399 thread__set_priv(thread, itr); 2400 2401 return 0; 2402 } 2403 2404 /* 2405 * Track idle stats per cpu by maintaining a local thread 2406 * struct for the idle task on each cpu. 2407 */ 2408 static int init_idle_threads(int ncpu) 2409 { 2410 int i, ret; 2411 2412 idle_threads = zalloc(ncpu * sizeof(struct thread *)); 2413 if (!idle_threads) 2414 return -ENOMEM; 2415 2416 idle_max_cpu = ncpu; 2417 2418 /* allocate the actual thread struct if needed */ 2419 for (i = 0; i < ncpu; ++i) { 2420 idle_threads[i] = thread__new(0, 0); 2421 if (idle_threads[i] == NULL) 2422 return -ENOMEM; 2423 2424 ret = init_idle_thread(idle_threads[i]); 2425 if (ret < 0) 2426 return ret; 2427 } 2428 2429 return 0; 2430 } 2431 2432 static void free_idle_threads(void) 2433 { 2434 int i; 2435 2436 if (idle_threads == NULL) 2437 return; 2438 2439 for (i = 0; i < idle_max_cpu; ++i) { 2440 struct thread *idle = idle_threads[i]; 2441 2442 if (idle) { 2443 struct idle_thread_runtime *itr; 2444 2445 itr = thread__priv(idle); 2446 if (itr) 2447 thread__put(itr->last_thread); 2448 2449 thread__delete(idle); 2450 } 2451 } 2452 2453 free(idle_threads); 2454 } 2455 2456 static struct thread *get_idle_thread(int cpu) 2457 { 2458 /* 2459 * expand/allocate array of pointers to local thread 2460 * structs if needed 2461 */ 2462 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) { 2463 int i, j = __roundup_pow_of_two(cpu+1); 2464 void *p; 2465 2466 p = realloc(idle_threads, j * sizeof(struct thread *)); 2467 if (!p) 2468 return NULL; 2469 2470 idle_threads = (struct thread **) p; 2471 for (i = idle_max_cpu; i < j; ++i) 2472 idle_threads[i] = NULL; 2473 2474 idle_max_cpu = j; 2475 } 2476 2477 /* allocate a new thread struct if needed */ 2478 if (idle_threads[cpu] == NULL) { 2479 idle_threads[cpu] = thread__new(0, 0); 2480 2481 if (idle_threads[cpu]) { 2482 if (init_idle_thread(idle_threads[cpu]) < 0) 2483 return NULL; 2484 } 2485 } 2486 2487 return thread__get(idle_threads[cpu]); 2488 } 2489 2490 static void save_idle_callchain(struct perf_sched *sched, 2491 struct idle_thread_runtime *itr, 2492 struct perf_sample *sample) 2493 { 2494 struct callchain_cursor *cursor; 2495 2496 if (!sched->show_callchain || sample->callchain == NULL) 2497 return; 2498 2499 cursor = get_tls_callchain_cursor(); 2500 if (cursor == NULL) 2501 return; 2502 2503 callchain_cursor__copy(&itr->cursor, cursor); 2504 } 2505 2506 static struct thread *timehist_get_thread(struct perf_sched *sched, 2507 struct perf_sample *sample, 2508 struct machine *machine, 2509 struct evsel *evsel) 2510 { 2511 struct thread *thread; 2512 2513 if (is_idle_sample(sample, evsel)) { 2514 thread = get_idle_thread(sample->cpu); 2515 if (thread == NULL) 2516 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2517 2518 } else { 2519 /* there were samples with tid 0 but non-zero pid */ 2520 thread = machine__findnew_thread(machine, sample->pid, 2521 sample->tid ?: sample->pid); 2522 if (thread == NULL) { 2523 pr_debug("Failed to get thread for tid %d. skipping sample.\n", 2524 sample->tid); 2525 } 2526 2527 save_task_callchain(sched, sample, evsel, machine); 2528 if (sched->idle_hist) { 2529 struct thread *idle; 2530 struct idle_thread_runtime *itr; 2531 2532 idle = get_idle_thread(sample->cpu); 2533 if (idle == NULL) { 2534 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu); 2535 return NULL; 2536 } 2537 2538 itr = thread__priv(idle); 2539 if (itr == NULL) 2540 return NULL; 2541 2542 thread__put(itr->last_thread); 2543 itr->last_thread = thread__get(thread); 2544 2545 /* copy task callchain when entering to idle */ 2546 if (evsel__intval(evsel, sample, "next_pid") == 0) 2547 save_idle_callchain(sched, itr, sample); 2548 } 2549 } 2550 2551 return thread; 2552 } 2553 2554 static bool timehist_skip_sample(struct perf_sched *sched, 2555 struct thread *thread, 2556 struct evsel *evsel, 2557 struct perf_sample *sample) 2558 { 2559 bool rc = false; 2560 int prio = -1; 2561 struct thread_runtime *tr = NULL; 2562 2563 if (thread__is_filtered(thread)) { 2564 rc = true; 2565 sched->skipped_samples++; 2566 } 2567 2568 if (sched->prio_str) { 2569 /* 2570 * Because priority may be changed during task execution, 2571 * first read priority from prev sched_in event for current task. 2572 * If prev sched_in event is not saved, then read priority from 2573 * current task sched_out event. 2574 */ 2575 tr = thread__get_runtime(thread); 2576 if (tr && tr->prio != -1) 2577 prio = tr->prio; 2578 else if (evsel__name_is(evsel, "sched:sched_switch")) 2579 prio = evsel__intval(evsel, sample, "prev_prio"); 2580 2581 if (prio != -1 && !test_bit(prio, sched->prio_bitmap)) { 2582 rc = true; 2583 sched->skipped_samples++; 2584 } 2585 } 2586 2587 if (sched->idle_hist) { 2588 if (!evsel__name_is(evsel, "sched:sched_switch")) 2589 rc = true; 2590 else if (evsel__intval(evsel, sample, "prev_pid") != 0 && 2591 evsel__intval(evsel, sample, "next_pid") != 0) 2592 rc = true; 2593 } 2594 2595 return rc; 2596 } 2597 2598 static void timehist_print_wakeup_event(struct perf_sched *sched, 2599 struct evsel *evsel, 2600 struct perf_sample *sample, 2601 struct machine *machine, 2602 struct thread *awakened) 2603 { 2604 struct thread *thread; 2605 char tstr[64]; 2606 2607 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2608 if (thread == NULL) 2609 return; 2610 2611 /* show wakeup unless both awakee and awaker are filtered */ 2612 if (timehist_skip_sample(sched, thread, evsel, sample) && 2613 timehist_skip_sample(sched, awakened, evsel, sample)) { 2614 thread__put(thread); 2615 return; 2616 } 2617 2618 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2619 printf("%15s [%04d] ", tstr, sample->cpu); 2620 if (sched->show_cpu_visual) 2621 printf(" %*s ", sched->max_cpu.cpu + 1, ""); 2622 2623 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2624 2625 /* dt spacer */ 2626 printf(" %9s %9s %9s ", "", "", ""); 2627 2628 printf("awakened: %s", timehist_get_commstr(awakened)); 2629 2630 printf("\n"); 2631 2632 thread__put(thread); 2633 } 2634 2635 static int timehist_sched_wakeup_ignore(const struct perf_tool *tool __maybe_unused, 2636 union perf_event *event __maybe_unused, 2637 struct evsel *evsel __maybe_unused, 2638 struct perf_sample *sample __maybe_unused, 2639 struct machine *machine __maybe_unused) 2640 { 2641 return 0; 2642 } 2643 2644 static int timehist_sched_wakeup_event(const struct perf_tool *tool, 2645 union perf_event *event __maybe_unused, 2646 struct evsel *evsel, 2647 struct perf_sample *sample, 2648 struct machine *machine) 2649 { 2650 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2651 struct thread *thread; 2652 struct thread_runtime *tr = NULL; 2653 /* want pid of awakened task not pid in sample */ 2654 const u32 pid = evsel__intval(evsel, sample, "pid"); 2655 2656 thread = machine__findnew_thread(machine, 0, pid); 2657 if (thread == NULL) 2658 return -1; 2659 2660 tr = thread__get_runtime(thread); 2661 if (tr == NULL) { 2662 thread__put(thread); 2663 return -1; 2664 } 2665 2666 if (tr->ready_to_run == 0) 2667 tr->ready_to_run = sample->time; 2668 2669 /* show wakeups if requested */ 2670 if (sched->show_wakeups && 2671 !perf_time__skip_sample(&sched->ptime, sample->time)) 2672 timehist_print_wakeup_event(sched, evsel, sample, machine, thread); 2673 2674 thread__put(thread); 2675 return 0; 2676 } 2677 2678 static void timehist_print_migration_event(struct perf_sched *sched, 2679 struct evsel *evsel, 2680 struct perf_sample *sample, 2681 struct machine *machine, 2682 struct thread *migrated) 2683 { 2684 struct thread *thread; 2685 char tstr[64]; 2686 u32 max_cpus; 2687 u32 ocpu, dcpu; 2688 2689 if (sched->summary_only) 2690 return; 2691 2692 max_cpus = sched->max_cpu.cpu + 1; 2693 ocpu = evsel__intval(evsel, sample, "orig_cpu"); 2694 dcpu = evsel__intval(evsel, sample, "dest_cpu"); 2695 2696 thread = machine__findnew_thread(machine, sample->pid, sample->tid); 2697 if (thread == NULL) 2698 return; 2699 2700 if (timehist_skip_sample(sched, thread, evsel, sample) && 2701 timehist_skip_sample(sched, migrated, evsel, sample)) { 2702 thread__put(thread); 2703 return; 2704 } 2705 2706 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2707 printf("%15s [%04d] ", tstr, sample->cpu); 2708 2709 if (sched->show_cpu_visual) { 2710 u32 i; 2711 char c; 2712 2713 printf(" "); 2714 for (i = 0; i < max_cpus; ++i) { 2715 c = (i == sample->cpu) ? 'm' : ' '; 2716 printf("%c", c); 2717 } 2718 printf(" "); 2719 } 2720 2721 printf(" %-*s ", comm_width, timehist_get_commstr(thread)); 2722 2723 /* dt spacer */ 2724 printf(" %9s %9s %9s ", "", "", ""); 2725 2726 printf("migrated: %s", timehist_get_commstr(migrated)); 2727 printf(" cpu %d => %d", ocpu, dcpu); 2728 2729 printf("\n"); 2730 thread__put(thread); 2731 } 2732 2733 static int timehist_migrate_task_event(const struct perf_tool *tool, 2734 union perf_event *event __maybe_unused, 2735 struct evsel *evsel, 2736 struct perf_sample *sample, 2737 struct machine *machine) 2738 { 2739 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2740 struct thread *thread; 2741 struct thread_runtime *tr = NULL; 2742 /* want pid of migrated task not pid in sample */ 2743 const u32 pid = evsel__intval(evsel, sample, "pid"); 2744 2745 thread = machine__findnew_thread(machine, 0, pid); 2746 if (thread == NULL) 2747 return -1; 2748 2749 tr = thread__get_runtime(thread); 2750 if (tr == NULL) { 2751 thread__put(thread); 2752 return -1; 2753 } 2754 2755 tr->migrations++; 2756 tr->migrated = sample->time; 2757 2758 /* show migrations if requested */ 2759 if (sched->show_migrations) { 2760 timehist_print_migration_event(sched, evsel, sample, 2761 machine, thread); 2762 } 2763 thread__put(thread); 2764 2765 return 0; 2766 } 2767 2768 static void timehist_update_task_prio(struct evsel *evsel, 2769 struct perf_sample *sample, 2770 struct machine *machine) 2771 { 2772 struct thread *thread; 2773 struct thread_runtime *tr = NULL; 2774 const u32 next_pid = evsel__intval(evsel, sample, "next_pid"); 2775 const u32 next_prio = evsel__intval(evsel, sample, "next_prio"); 2776 2777 if (next_pid == 0) 2778 thread = get_idle_thread(sample->cpu); 2779 else 2780 thread = machine__findnew_thread(machine, -1, next_pid); 2781 2782 if (thread == NULL) 2783 return; 2784 2785 tr = thread__get_runtime(thread); 2786 if (tr != NULL) 2787 tr->prio = next_prio; 2788 2789 thread__put(thread); 2790 } 2791 2792 static int timehist_sched_change_event(const struct perf_tool *tool, 2793 union perf_event *event, 2794 struct evsel *evsel, 2795 struct perf_sample *sample, 2796 struct machine *machine) 2797 { 2798 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 2799 struct perf_time_interval *ptime = &sched->ptime; 2800 struct addr_location al; 2801 struct thread *thread = NULL; 2802 struct thread_runtime *tr = NULL; 2803 u64 tprev, t = sample->time; 2804 int rc = 0; 2805 const char state = evsel__taskstate(evsel, sample, "prev_state"); 2806 2807 addr_location__init(&al); 2808 if (machine__resolve(machine, &al, sample) < 0) { 2809 pr_err("problem processing %d event. skipping it\n", 2810 event->header.type); 2811 rc = -1; 2812 goto out; 2813 } 2814 2815 if (sched->show_prio || sched->prio_str) 2816 timehist_update_task_prio(evsel, sample, machine); 2817 2818 thread = timehist_get_thread(sched, sample, machine, evsel); 2819 if (thread == NULL) { 2820 rc = -1; 2821 goto out; 2822 } 2823 2824 if (timehist_skip_sample(sched, thread, evsel, sample)) 2825 goto out; 2826 2827 tr = thread__get_runtime(thread); 2828 if (tr == NULL) { 2829 rc = -1; 2830 goto out; 2831 } 2832 2833 tprev = evsel__get_time(evsel, sample->cpu); 2834 2835 /* 2836 * If start time given: 2837 * - sample time is under window user cares about - skip sample 2838 * - tprev is under window user cares about - reset to start of window 2839 */ 2840 if (ptime->start && ptime->start > t) 2841 goto out; 2842 2843 if (tprev && ptime->start > tprev) 2844 tprev = ptime->start; 2845 2846 /* 2847 * If end time given: 2848 * - previous sched event is out of window - we are done 2849 * - sample time is beyond window user cares about - reset it 2850 * to close out stats for time window interest 2851 * - If tprev is 0, that is, sched_in event for current task is 2852 * not recorded, cannot determine whether sched_in event is 2853 * within time window interest - ignore it 2854 */ 2855 if (ptime->end) { 2856 if (!tprev || tprev > ptime->end) 2857 goto out; 2858 2859 if (t > ptime->end) 2860 t = ptime->end; 2861 } 2862 2863 if (!sched->idle_hist || thread__tid(thread) == 0) { 2864 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap)) 2865 timehist_update_runtime_stats(tr, t, tprev); 2866 2867 if (sched->idle_hist) { 2868 struct idle_thread_runtime *itr = (void *)tr; 2869 struct thread_runtime *last_tr; 2870 2871 if (itr->last_thread == NULL) 2872 goto out; 2873 2874 /* add current idle time as last thread's runtime */ 2875 last_tr = thread__get_runtime(itr->last_thread); 2876 if (last_tr == NULL) 2877 goto out; 2878 2879 timehist_update_runtime_stats(last_tr, t, tprev); 2880 /* 2881 * remove delta time of last thread as it's not updated 2882 * and otherwise it will show an invalid value next 2883 * time. we only care total run time and run stat. 2884 */ 2885 last_tr->dt_run = 0; 2886 last_tr->dt_delay = 0; 2887 last_tr->dt_sleep = 0; 2888 last_tr->dt_iowait = 0; 2889 last_tr->dt_preempt = 0; 2890 2891 if (itr->cursor.nr) 2892 callchain_append(&itr->callchain, &itr->cursor, t - tprev); 2893 2894 itr->last_thread = NULL; 2895 } 2896 2897 if (!sched->summary_only) 2898 timehist_print_sample(sched, evsel, sample, &al, thread, t, state); 2899 } 2900 2901 out: 2902 if (sched->hist_time.start == 0 && t >= ptime->start) 2903 sched->hist_time.start = t; 2904 if (ptime->end == 0 || t <= ptime->end) 2905 sched->hist_time.end = t; 2906 2907 if (tr) { 2908 /* time of this sched_switch event becomes last time task seen */ 2909 tr->last_time = sample->time; 2910 2911 /* last state is used to determine where to account wait time */ 2912 tr->last_state = state; 2913 2914 /* sched out event for task so reset ready to run time and migrated time */ 2915 if (state == 'R') 2916 tr->ready_to_run = t; 2917 else 2918 tr->ready_to_run = 0; 2919 2920 tr->migrated = 0; 2921 } 2922 2923 evsel__save_time(evsel, sample->time, sample->cpu); 2924 2925 thread__put(thread); 2926 addr_location__exit(&al); 2927 return rc; 2928 } 2929 2930 static int timehist_sched_switch_event(const struct perf_tool *tool, 2931 union perf_event *event, 2932 struct evsel *evsel, 2933 struct perf_sample *sample, 2934 struct machine *machine __maybe_unused) 2935 { 2936 return timehist_sched_change_event(tool, event, evsel, sample, machine); 2937 } 2938 2939 static int process_lost(const struct perf_tool *tool __maybe_unused, 2940 union perf_event *event, 2941 struct perf_sample *sample, 2942 struct machine *machine __maybe_unused) 2943 { 2944 char tstr[64]; 2945 2946 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr)); 2947 printf("%15s ", tstr); 2948 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu); 2949 2950 return 0; 2951 } 2952 2953 2954 static void print_thread_runtime(struct thread *t, 2955 struct thread_runtime *r) 2956 { 2957 double mean = avg_stats(&r->run_stats); 2958 float stddev; 2959 2960 printf("%*s %5d %9" PRIu64 " ", 2961 comm_width, timehist_get_commstr(t), thread__ppid(t), 2962 (u64) r->run_stats.n); 2963 2964 print_sched_time(r->total_run_time, 8); 2965 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean); 2966 print_sched_time(r->run_stats.min, 6); 2967 printf(" "); 2968 print_sched_time((u64) mean, 6); 2969 printf(" "); 2970 print_sched_time(r->run_stats.max, 6); 2971 printf(" "); 2972 printf("%5.2f", stddev); 2973 printf(" %5" PRIu64, r->migrations); 2974 printf("\n"); 2975 } 2976 2977 static void print_thread_waittime(struct thread *t, 2978 struct thread_runtime *r) 2979 { 2980 printf("%*s %5d %9" PRIu64 " ", 2981 comm_width, timehist_get_commstr(t), thread__ppid(t), 2982 (u64) r->run_stats.n); 2983 2984 print_sched_time(r->total_run_time, 8); 2985 print_sched_time(r->total_sleep_time, 6); 2986 printf(" "); 2987 print_sched_time(r->total_iowait_time, 6); 2988 printf(" "); 2989 print_sched_time(r->total_preempt_time, 6); 2990 printf(" "); 2991 print_sched_time(r->total_delay_time, 6); 2992 printf("\n"); 2993 } 2994 2995 struct total_run_stats { 2996 struct perf_sched *sched; 2997 u64 sched_count; 2998 u64 task_count; 2999 u64 total_run_time; 3000 }; 3001 3002 static int show_thread_runtime(struct thread *t, void *priv) 3003 { 3004 struct total_run_stats *stats = priv; 3005 struct thread_runtime *r; 3006 3007 if (thread__is_filtered(t)) 3008 return 0; 3009 3010 r = thread__priv(t); 3011 if (r && r->run_stats.n) { 3012 stats->task_count++; 3013 stats->sched_count += r->run_stats.n; 3014 stats->total_run_time += r->total_run_time; 3015 3016 if (stats->sched->show_state) 3017 print_thread_waittime(t, r); 3018 else 3019 print_thread_runtime(t, r); 3020 } 3021 3022 return 0; 3023 } 3024 3025 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node) 3026 { 3027 const char *sep = " <- "; 3028 struct callchain_list *chain; 3029 size_t ret = 0; 3030 char bf[1024]; 3031 bool first; 3032 3033 if (node == NULL) 3034 return 0; 3035 3036 ret = callchain__fprintf_folded(fp, node->parent); 3037 first = (ret == 0); 3038 3039 list_for_each_entry(chain, &node->val, list) { 3040 if (chain->ip >= PERF_CONTEXT_MAX) 3041 continue; 3042 if (chain->ms.sym && chain->ms.sym->ignore) 3043 continue; 3044 ret += fprintf(fp, "%s%s", first ? "" : sep, 3045 callchain_list__sym_name(chain, bf, sizeof(bf), 3046 false)); 3047 first = false; 3048 } 3049 3050 return ret; 3051 } 3052 3053 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root) 3054 { 3055 size_t ret = 0; 3056 FILE *fp = stdout; 3057 struct callchain_node *chain; 3058 struct rb_node *rb_node = rb_first_cached(root); 3059 3060 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains"); 3061 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line, 3062 graph_dotted_line); 3063 3064 while (rb_node) { 3065 chain = rb_entry(rb_node, struct callchain_node, rb_node); 3066 rb_node = rb_next(rb_node); 3067 3068 ret += fprintf(fp, " "); 3069 print_sched_time(chain->hit, 12); 3070 ret += 16; /* print_sched_time returns 2nd arg + 4 */ 3071 ret += fprintf(fp, " %8d ", chain->count); 3072 ret += callchain__fprintf_folded(fp, chain); 3073 ret += fprintf(fp, "\n"); 3074 } 3075 3076 return ret; 3077 } 3078 3079 static void timehist_print_summary(struct perf_sched *sched, 3080 struct perf_session *session) 3081 { 3082 struct machine *m = &session->machines.host; 3083 struct total_run_stats totals; 3084 u64 task_count; 3085 struct thread *t; 3086 struct thread_runtime *r; 3087 int i; 3088 u64 hist_time = sched->hist_time.end - sched->hist_time.start; 3089 3090 memset(&totals, 0, sizeof(totals)); 3091 totals.sched = sched; 3092 3093 if (sched->idle_hist) { 3094 printf("\nIdle-time summary\n"); 3095 printf("%*s parent sched-out ", comm_width, "comm"); 3096 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n"); 3097 } else if (sched->show_state) { 3098 printf("\nWait-time summary\n"); 3099 printf("%*s parent sched-in ", comm_width, "comm"); 3100 printf(" run-time sleep iowait preempt delay\n"); 3101 } else { 3102 printf("\nRuntime summary\n"); 3103 printf("%*s parent sched-in ", comm_width, "comm"); 3104 printf(" run-time min-run avg-run max-run stddev migrations\n"); 3105 } 3106 printf("%*s (count) ", comm_width, ""); 3107 printf(" (msec) (msec) (msec) (msec) %s\n", 3108 sched->show_state ? "(msec)" : "%"); 3109 printf("%.117s\n", graph_dotted_line); 3110 3111 machine__for_each_thread(m, show_thread_runtime, &totals); 3112 task_count = totals.task_count; 3113 if (!task_count) 3114 printf("<no still running tasks>\n"); 3115 3116 /* CPU idle stats not tracked when samples were skipped */ 3117 if (sched->skipped_samples && !sched->idle_hist) 3118 return; 3119 3120 printf("\nIdle stats:\n"); 3121 for (i = 0; i < idle_max_cpu; ++i) { 3122 if (cpu_list && !test_bit(i, cpu_bitmap)) 3123 continue; 3124 3125 t = idle_threads[i]; 3126 if (!t) 3127 continue; 3128 3129 r = thread__priv(t); 3130 if (r && r->run_stats.n) { 3131 totals.sched_count += r->run_stats.n; 3132 printf(" CPU %2d idle for ", i); 3133 print_sched_time(r->total_run_time, 6); 3134 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time); 3135 } else 3136 printf(" CPU %2d idle entire time window\n", i); 3137 } 3138 3139 if (sched->idle_hist && sched->show_callchain) { 3140 callchain_param.mode = CHAIN_FOLDED; 3141 callchain_param.value = CCVAL_PERIOD; 3142 3143 callchain_register_param(&callchain_param); 3144 3145 printf("\nIdle stats by callchain:\n"); 3146 for (i = 0; i < idle_max_cpu; ++i) { 3147 struct idle_thread_runtime *itr; 3148 3149 t = idle_threads[i]; 3150 if (!t) 3151 continue; 3152 3153 itr = thread__priv(t); 3154 if (itr == NULL) 3155 continue; 3156 3157 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain, 3158 0, &callchain_param); 3159 3160 printf(" CPU %2d:", i); 3161 print_sched_time(itr->tr.total_run_time, 6); 3162 printf(" msec\n"); 3163 timehist_print_idlehist_callchain(&itr->sorted_root); 3164 printf("\n"); 3165 } 3166 } 3167 3168 printf("\n" 3169 " Total number of unique tasks: %" PRIu64 "\n" 3170 "Total number of context switches: %" PRIu64 "\n", 3171 totals.task_count, totals.sched_count); 3172 3173 printf(" Total run time (msec): "); 3174 print_sched_time(totals.total_run_time, 2); 3175 printf("\n"); 3176 3177 printf(" Total scheduling time (msec): "); 3178 print_sched_time(hist_time, 2); 3179 printf(" (x %d)\n", sched->max_cpu.cpu); 3180 } 3181 3182 typedef int (*sched_handler)(const struct perf_tool *tool, 3183 union perf_event *event, 3184 struct evsel *evsel, 3185 struct perf_sample *sample, 3186 struct machine *machine); 3187 3188 static int perf_timehist__process_sample(const struct perf_tool *tool, 3189 union perf_event *event, 3190 struct perf_sample *sample, 3191 struct evsel *evsel, 3192 struct machine *machine) 3193 { 3194 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 3195 int err = 0; 3196 struct perf_cpu this_cpu = { 3197 .cpu = sample->cpu, 3198 }; 3199 3200 if (this_cpu.cpu > sched->max_cpu.cpu) 3201 sched->max_cpu = this_cpu; 3202 3203 if (evsel->handler != NULL) { 3204 sched_handler f = evsel->handler; 3205 3206 err = f(tool, event, evsel, sample, machine); 3207 } 3208 3209 return err; 3210 } 3211 3212 static int timehist_check_attr(struct perf_sched *sched, 3213 struct evlist *evlist) 3214 { 3215 struct evsel *evsel; 3216 struct evsel_runtime *er; 3217 3218 list_for_each_entry(evsel, &evlist->core.entries, core.node) { 3219 er = evsel__get_runtime(evsel); 3220 if (er == NULL) { 3221 pr_err("Failed to allocate memory for evsel runtime data\n"); 3222 return -1; 3223 } 3224 3225 /* only need to save callchain related to sched_switch event */ 3226 if (sched->show_callchain && 3227 evsel__name_is(evsel, "sched:sched_switch") && 3228 !evsel__has_callchain(evsel)) { 3229 pr_info("Samples of sched_switch event do not have callchains.\n"); 3230 sched->show_callchain = 0; 3231 symbol_conf.use_callchain = 0; 3232 } 3233 } 3234 3235 return 0; 3236 } 3237 3238 static int timehist_parse_prio_str(struct perf_sched *sched) 3239 { 3240 char *p; 3241 unsigned long start_prio, end_prio; 3242 const char *str = sched->prio_str; 3243 3244 if (!str) 3245 return 0; 3246 3247 while (isdigit(*str)) { 3248 p = NULL; 3249 start_prio = strtoul(str, &p, 0); 3250 if (start_prio >= MAX_PRIO || (*p != '\0' && *p != ',' && *p != '-')) 3251 return -1; 3252 3253 if (*p == '-') { 3254 str = ++p; 3255 p = NULL; 3256 end_prio = strtoul(str, &p, 0); 3257 3258 if (end_prio >= MAX_PRIO || (*p != '\0' && *p != ',')) 3259 return -1; 3260 3261 if (end_prio < start_prio) 3262 return -1; 3263 } else { 3264 end_prio = start_prio; 3265 } 3266 3267 for (; start_prio <= end_prio; start_prio++) 3268 __set_bit(start_prio, sched->prio_bitmap); 3269 3270 if (*p) 3271 ++p; 3272 3273 str = p; 3274 } 3275 3276 return 0; 3277 } 3278 3279 static int perf_sched__timehist(struct perf_sched *sched) 3280 { 3281 struct evsel_str_handler handlers[] = { 3282 { "sched:sched_switch", timehist_sched_switch_event, }, 3283 { "sched:sched_wakeup", timehist_sched_wakeup_event, }, 3284 { "sched:sched_waking", timehist_sched_wakeup_event, }, 3285 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, }, 3286 }; 3287 const struct evsel_str_handler migrate_handlers[] = { 3288 { "sched:sched_migrate_task", timehist_migrate_task_event, }, 3289 }; 3290 struct perf_data data = { 3291 .path = input_name, 3292 .mode = PERF_DATA_MODE_READ, 3293 .force = sched->force, 3294 }; 3295 3296 struct perf_session *session; 3297 struct perf_env *env; 3298 struct evlist *evlist; 3299 int err = -1; 3300 3301 /* 3302 * event handlers for timehist option 3303 */ 3304 sched->tool.sample = perf_timehist__process_sample; 3305 sched->tool.mmap = perf_event__process_mmap; 3306 sched->tool.comm = perf_event__process_comm; 3307 sched->tool.exit = perf_event__process_exit; 3308 sched->tool.fork = perf_event__process_fork; 3309 sched->tool.lost = process_lost; 3310 sched->tool.attr = perf_event__process_attr; 3311 sched->tool.tracing_data = perf_event__process_tracing_data; 3312 sched->tool.build_id = perf_event__process_build_id; 3313 3314 sched->tool.ordering_requires_timestamps = true; 3315 3316 symbol_conf.use_callchain = sched->show_callchain; 3317 3318 session = perf_session__new(&data, &sched->tool); 3319 if (IS_ERR(session)) 3320 return PTR_ERR(session); 3321 3322 env = perf_session__env(session); 3323 if (cpu_list) { 3324 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap); 3325 if (err < 0) 3326 goto out; 3327 } 3328 3329 evlist = session->evlist; 3330 3331 symbol__init(env); 3332 3333 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) { 3334 pr_err("Invalid time string\n"); 3335 err = -EINVAL; 3336 goto out; 3337 } 3338 3339 if (timehist_check_attr(sched, evlist) != 0) 3340 goto out; 3341 3342 if (timehist_parse_prio_str(sched) != 0) { 3343 pr_err("Invalid prio string\n"); 3344 goto out; 3345 } 3346 3347 setup_pager(); 3348 3349 evsel__set_priv_destructor(timehist__evsel_priv_destructor); 3350 3351 /* prefer sched_waking if it is captured */ 3352 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking")) 3353 handlers[1].handler = timehist_sched_wakeup_ignore; 3354 3355 /* setup per-evsel handlers */ 3356 if (perf_session__set_tracepoints_handlers(session, handlers)) 3357 goto out; 3358 3359 /* sched_switch event at a minimum needs to exist */ 3360 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) { 3361 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n"); 3362 goto out; 3363 } 3364 3365 if ((sched->show_migrations || sched->pre_migrations) && 3366 perf_session__set_tracepoints_handlers(session, migrate_handlers)) 3367 goto out; 3368 3369 /* pre-allocate struct for per-CPU idle stats */ 3370 sched->max_cpu.cpu = env->nr_cpus_online; 3371 if (sched->max_cpu.cpu == 0) 3372 sched->max_cpu.cpu = 4; 3373 if (init_idle_threads(sched->max_cpu.cpu)) 3374 goto out; 3375 3376 /* summary_only implies summary option, but don't overwrite summary if set */ 3377 if (sched->summary_only) 3378 sched->summary = sched->summary_only; 3379 3380 if (!sched->summary_only) 3381 timehist_header(sched); 3382 3383 err = perf_session__process_events(session); 3384 if (err) { 3385 pr_err("Failed to process events, error %d", err); 3386 goto out; 3387 } 3388 3389 sched->nr_events = evlist->stats.nr_events[0]; 3390 sched->nr_lost_events = evlist->stats.total_lost; 3391 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST]; 3392 3393 if (sched->summary) 3394 timehist_print_summary(sched, session); 3395 3396 out: 3397 free_idle_threads(); 3398 perf_session__delete(session); 3399 3400 return err; 3401 } 3402 3403 3404 static void print_bad_events(struct perf_sched *sched) 3405 { 3406 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 3407 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 3408 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 3409 sched->nr_unordered_timestamps, sched->nr_timestamps); 3410 } 3411 if (sched->nr_lost_events && sched->nr_events) { 3412 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 3413 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 3414 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 3415 } 3416 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 3417 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 3418 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 3419 sched->nr_context_switch_bugs, sched->nr_timestamps); 3420 if (sched->nr_lost_events) 3421 printf(" (due to lost events?)"); 3422 printf("\n"); 3423 } 3424 } 3425 3426 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data) 3427 { 3428 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL; 3429 struct work_atoms *this; 3430 const char *comm = thread__comm_str(data->thread), *this_comm; 3431 bool leftmost = true; 3432 3433 while (*new) { 3434 int cmp; 3435 3436 this = container_of(*new, struct work_atoms, node); 3437 parent = *new; 3438 3439 this_comm = thread__comm_str(this->thread); 3440 cmp = strcmp(comm, this_comm); 3441 if (cmp > 0) { 3442 new = &((*new)->rb_left); 3443 } else if (cmp < 0) { 3444 new = &((*new)->rb_right); 3445 leftmost = false; 3446 } else { 3447 this->num_merged++; 3448 this->total_runtime += data->total_runtime; 3449 this->nb_atoms += data->nb_atoms; 3450 this->total_lat += data->total_lat; 3451 list_splice_init(&data->work_list, &this->work_list); 3452 if (this->max_lat < data->max_lat) { 3453 this->max_lat = data->max_lat; 3454 this->max_lat_start = data->max_lat_start; 3455 this->max_lat_end = data->max_lat_end; 3456 } 3457 free_work_atoms(data); 3458 return; 3459 } 3460 } 3461 3462 data->num_merged++; 3463 rb_link_node(&data->node, parent, new); 3464 rb_insert_color_cached(&data->node, root, leftmost); 3465 } 3466 3467 static void perf_sched__merge_lat(struct perf_sched *sched) 3468 { 3469 struct work_atoms *data; 3470 struct rb_node *node; 3471 3472 if (sched->skip_merge) 3473 return; 3474 3475 while ((node = rb_first_cached(&sched->atom_root))) { 3476 rb_erase_cached(node, &sched->atom_root); 3477 data = rb_entry(node, struct work_atoms, node); 3478 __merge_work_atoms(&sched->merged_atom_root, data); 3479 } 3480 } 3481 3482 static int setup_cpus_switch_event(struct perf_sched *sched) 3483 { 3484 unsigned int i; 3485 3486 sched->cpu_last_switched = calloc(MAX_CPUS, sizeof(*(sched->cpu_last_switched))); 3487 if (!sched->cpu_last_switched) 3488 return -1; 3489 3490 sched->curr_pid = malloc(MAX_CPUS * sizeof(*(sched->curr_pid))); 3491 if (!sched->curr_pid) { 3492 zfree(&sched->cpu_last_switched); 3493 return -1; 3494 } 3495 3496 for (i = 0; i < MAX_CPUS; i++) 3497 sched->curr_pid[i] = -1; 3498 3499 return 0; 3500 } 3501 3502 static void free_cpus_switch_event(struct perf_sched *sched) 3503 { 3504 zfree(&sched->curr_pid); 3505 zfree(&sched->cpu_last_switched); 3506 } 3507 3508 static int perf_sched__lat(struct perf_sched *sched) 3509 { 3510 int rc = -1; 3511 struct rb_node *next; 3512 3513 setup_pager(); 3514 3515 if (setup_cpus_switch_event(sched)) 3516 return rc; 3517 3518 if (perf_sched__read_events(sched)) 3519 goto out_free_cpus_switch_event; 3520 3521 perf_sched__merge_lat(sched); 3522 perf_sched__sort_lat(sched); 3523 3524 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n"); 3525 printf(" Task | Runtime ms | Count | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n"); 3526 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n"); 3527 3528 next = rb_first_cached(&sched->sorted_atom_root); 3529 3530 while (next) { 3531 struct work_atoms *work_list; 3532 3533 work_list = rb_entry(next, struct work_atoms, node); 3534 output_lat_thread(sched, work_list); 3535 next = rb_next(next); 3536 } 3537 3538 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 3539 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 3540 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count); 3541 3542 printf(" ---------------------------------------------------\n"); 3543 3544 print_bad_events(sched); 3545 printf("\n"); 3546 3547 rc = 0; 3548 3549 while ((next = rb_first_cached(&sched->sorted_atom_root))) { 3550 struct work_atoms *data; 3551 3552 data = rb_entry(next, struct work_atoms, node); 3553 rb_erase_cached(next, &sched->sorted_atom_root); 3554 free_work_atoms(data); 3555 } 3556 out_free_cpus_switch_event: 3557 free_cpus_switch_event(sched); 3558 return rc; 3559 } 3560 3561 static int setup_map_cpus(struct perf_sched *sched) 3562 { 3563 sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF); 3564 3565 if (sched->map.comp) { 3566 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int)); 3567 if (!sched->map.comp_cpus) 3568 return -1; 3569 } 3570 3571 if (sched->map.cpus_str) { 3572 sched->map.cpus = perf_cpu_map__new(sched->map.cpus_str); 3573 if (!sched->map.cpus) { 3574 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str); 3575 zfree(&sched->map.comp_cpus); 3576 return -1; 3577 } 3578 } 3579 3580 return 0; 3581 } 3582 3583 static int setup_color_pids(struct perf_sched *sched) 3584 { 3585 struct perf_thread_map *map; 3586 3587 if (!sched->map.color_pids_str) 3588 return 0; 3589 3590 map = thread_map__new_by_tid_str(sched->map.color_pids_str); 3591 if (!map) { 3592 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str); 3593 return -1; 3594 } 3595 3596 sched->map.color_pids = map; 3597 return 0; 3598 } 3599 3600 static int setup_color_cpus(struct perf_sched *sched) 3601 { 3602 struct perf_cpu_map *map; 3603 3604 if (!sched->map.color_cpus_str) 3605 return 0; 3606 3607 map = perf_cpu_map__new(sched->map.color_cpus_str); 3608 if (!map) { 3609 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str); 3610 return -1; 3611 } 3612 3613 sched->map.color_cpus = map; 3614 return 0; 3615 } 3616 3617 static int perf_sched__map(struct perf_sched *sched) 3618 { 3619 int rc = -1; 3620 3621 sched->curr_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_thread))); 3622 if (!sched->curr_thread) 3623 return rc; 3624 3625 sched->curr_out_thread = calloc(MAX_CPUS, sizeof(*(sched->curr_out_thread))); 3626 if (!sched->curr_out_thread) 3627 goto out_free_curr_thread; 3628 3629 if (setup_cpus_switch_event(sched)) 3630 goto out_free_curr_out_thread; 3631 3632 if (setup_map_cpus(sched)) 3633 goto out_free_cpus_switch_event; 3634 3635 if (setup_color_pids(sched)) 3636 goto out_put_map_cpus; 3637 3638 if (setup_color_cpus(sched)) 3639 goto out_put_color_pids; 3640 3641 setup_pager(); 3642 if (perf_sched__read_events(sched)) 3643 goto out_put_color_cpus; 3644 3645 rc = 0; 3646 print_bad_events(sched); 3647 3648 out_put_color_cpus: 3649 perf_cpu_map__put(sched->map.color_cpus); 3650 3651 out_put_color_pids: 3652 perf_thread_map__put(sched->map.color_pids); 3653 3654 out_put_map_cpus: 3655 zfree(&sched->map.comp_cpus); 3656 perf_cpu_map__put(sched->map.cpus); 3657 3658 out_free_cpus_switch_event: 3659 free_cpus_switch_event(sched); 3660 3661 out_free_curr_out_thread: 3662 for (int i = 0; i < MAX_CPUS; i++) 3663 thread__put(sched->curr_out_thread[i]); 3664 zfree(&sched->curr_out_thread); 3665 3666 out_free_curr_thread: 3667 for (int i = 0; i < MAX_CPUS; i++) 3668 thread__put(sched->curr_thread[i]); 3669 zfree(&sched->curr_thread); 3670 return rc; 3671 } 3672 3673 static int perf_sched__replay(struct perf_sched *sched) 3674 { 3675 int ret; 3676 unsigned long i; 3677 3678 mutex_init(&sched->start_work_mutex); 3679 mutex_init(&sched->work_done_wait_mutex); 3680 3681 ret = setup_cpus_switch_event(sched); 3682 if (ret) 3683 goto out_mutex_destroy; 3684 3685 calibrate_run_measurement_overhead(sched); 3686 calibrate_sleep_measurement_overhead(sched); 3687 3688 test_calibrations(sched); 3689 3690 ret = perf_sched__read_events(sched); 3691 if (ret) 3692 goto out_free_cpus_switch_event; 3693 3694 printf("nr_run_events: %ld\n", sched->nr_run_events); 3695 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 3696 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 3697 3698 if (sched->targetless_wakeups) 3699 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 3700 if (sched->multitarget_wakeups) 3701 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 3702 if (sched->nr_run_events_optimized) 3703 printf("run atoms optimized: %ld\n", 3704 sched->nr_run_events_optimized); 3705 3706 print_task_traces(sched); 3707 add_cross_task_wakeups(sched); 3708 3709 sched->thread_funcs_exit = false; 3710 create_tasks(sched); 3711 printf("------------------------------------------------------------\n"); 3712 if (sched->replay_repeat == 0) 3713 sched->replay_repeat = UINT_MAX; 3714 3715 for (i = 0; i < sched->replay_repeat; i++) 3716 run_one_test(sched); 3717 3718 sched->thread_funcs_exit = true; 3719 destroy_tasks(sched); 3720 3721 out_free_cpus_switch_event: 3722 free_cpus_switch_event(sched); 3723 3724 out_mutex_destroy: 3725 mutex_destroy(&sched->start_work_mutex); 3726 mutex_destroy(&sched->work_done_wait_mutex); 3727 return ret; 3728 } 3729 3730 static void setup_sorting(struct perf_sched *sched, const struct option *options, 3731 const char * const usage_msg[]) 3732 { 3733 char *tmp, *tok, *str = strdup(sched->sort_order); 3734 3735 for (tok = strtok_r(str, ", ", &tmp); 3736 tok; tok = strtok_r(NULL, ", ", &tmp)) { 3737 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 3738 usage_with_options_msg(usage_msg, options, 3739 "Unknown --sort key: `%s'", tok); 3740 } 3741 } 3742 3743 free(str); 3744 3745 sort_dimension__add("pid", &sched->cmp_pid); 3746 } 3747 3748 static bool schedstat_events_exposed(void) 3749 { 3750 /* 3751 * Select "sched:sched_stat_wait" event to check 3752 * whether schedstat tracepoints are exposed. 3753 */ 3754 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ? 3755 false : true; 3756 } 3757 3758 static int __cmd_record(int argc, const char **argv) 3759 { 3760 unsigned int rec_argc, i, j; 3761 char **rec_argv; 3762 const char **rec_argv_copy; 3763 const char * const record_args[] = { 3764 "record", 3765 "-a", 3766 "-R", 3767 "-m", "1024", 3768 "-c", "1", 3769 "-e", "sched:sched_switch", 3770 "-e", "sched:sched_stat_runtime", 3771 "-e", "sched:sched_process_fork", 3772 "-e", "sched:sched_wakeup_new", 3773 "-e", "sched:sched_migrate_task", 3774 }; 3775 3776 /* 3777 * The tracepoints trace_sched_stat_{wait, sleep, iowait} 3778 * are not exposed to user if CONFIG_SCHEDSTATS is not set, 3779 * to prevent "perf sched record" execution failure, determine 3780 * whether to record schedstat events according to actual situation. 3781 */ 3782 const char * const schedstat_args[] = { 3783 "-e", "sched:sched_stat_wait", 3784 "-e", "sched:sched_stat_sleep", 3785 "-e", "sched:sched_stat_iowait", 3786 }; 3787 unsigned int schedstat_argc = schedstat_events_exposed() ? 3788 ARRAY_SIZE(schedstat_args) : 0; 3789 3790 struct tep_event *waking_event; 3791 int ret; 3792 3793 /* 3794 * +2 for either "-e", "sched:sched_wakeup" or 3795 * "-e", "sched:sched_waking" 3796 */ 3797 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1; 3798 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 3799 if (rec_argv == NULL) 3800 return -ENOMEM; 3801 rec_argv_copy = calloc(rec_argc + 1, sizeof(char *)); 3802 if (rec_argv_copy == NULL) { 3803 free(rec_argv); 3804 return -ENOMEM; 3805 } 3806 3807 for (i = 0; i < ARRAY_SIZE(record_args); i++) 3808 rec_argv[i] = strdup(record_args[i]); 3809 3810 rec_argv[i++] = strdup("-e"); 3811 waking_event = trace_event__tp_format("sched", "sched_waking"); 3812 if (!IS_ERR(waking_event)) 3813 rec_argv[i++] = strdup("sched:sched_waking"); 3814 else 3815 rec_argv[i++] = strdup("sched:sched_wakeup"); 3816 3817 for (j = 0; j < schedstat_argc; j++) 3818 rec_argv[i++] = strdup(schedstat_args[j]); 3819 3820 for (j = 1; j < (unsigned int)argc; j++, i++) 3821 rec_argv[i] = strdup(argv[j]); 3822 3823 BUG_ON(i != rec_argc); 3824 3825 memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc); 3826 ret = cmd_record(rec_argc, rec_argv_copy); 3827 3828 for (i = 0; i < rec_argc; i++) 3829 free(rec_argv[i]); 3830 free(rec_argv); 3831 free(rec_argv_copy); 3832 3833 return ret; 3834 } 3835 3836 int cmd_sched(int argc, const char **argv) 3837 { 3838 static const char default_sort_order[] = "avg, max, switch, runtime"; 3839 struct perf_sched sched = { 3840 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 3841 .sort_list = LIST_HEAD_INIT(sched.sort_list), 3842 .sort_order = default_sort_order, 3843 .replay_repeat = 10, 3844 .profile_cpu = -1, 3845 .next_shortname1 = 'A', 3846 .next_shortname2 = '0', 3847 .skip_merge = 0, 3848 .show_callchain = 1, 3849 .max_stack = 5, 3850 }; 3851 const struct option sched_options[] = { 3852 OPT_STRING('i', "input", &input_name, "file", 3853 "input file name"), 3854 OPT_INCR('v', "verbose", &verbose, 3855 "be more verbose (show symbol address, etc)"), 3856 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 3857 "dump raw trace in ASCII"), 3858 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), 3859 OPT_END() 3860 }; 3861 const struct option latency_options[] = { 3862 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 3863 "sort by key(s): runtime, switch, avg, max"), 3864 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 3865 "CPU to profile on"), 3866 OPT_BOOLEAN('p', "pids", &sched.skip_merge, 3867 "latency stats per pid instead of per comm"), 3868 OPT_PARENT(sched_options) 3869 }; 3870 const struct option replay_options[] = { 3871 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 3872 "repeat the workload replay N times (0: infinite)"), 3873 OPT_PARENT(sched_options) 3874 }; 3875 const struct option map_options[] = { 3876 OPT_BOOLEAN(0, "compact", &sched.map.comp, 3877 "map output in compact mode"), 3878 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids", 3879 "highlight given pids in map"), 3880 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus", 3881 "highlight given CPUs in map"), 3882 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus", 3883 "display given CPUs in map"), 3884 OPT_STRING(0, "task-name", &sched.map.task_name, "task", 3885 "map output only for the given task name(s)."), 3886 OPT_BOOLEAN(0, "fuzzy-name", &sched.map.fuzzy, 3887 "given command name can be partially matched (fuzzy matching)"), 3888 OPT_PARENT(sched_options) 3889 }; 3890 const struct option timehist_options[] = { 3891 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name, 3892 "file", "vmlinux pathname"), 3893 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name, 3894 "file", "kallsyms pathname"), 3895 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain, 3896 "Display call chains if present (default on)"), 3897 OPT_UINTEGER(0, "max-stack", &sched.max_stack, 3898 "Maximum number of functions to display backtrace."), 3899 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory", 3900 "Look for files with symbols relative to this directory"), 3901 OPT_BOOLEAN('s', "summary", &sched.summary_only, 3902 "Show only syscall summary with statistics"), 3903 OPT_BOOLEAN('S', "with-summary", &sched.summary, 3904 "Show all syscalls and summary with statistics"), 3905 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"), 3906 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"), 3907 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"), 3908 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"), 3909 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"), 3910 OPT_STRING(0, "time", &sched.time_str, "str", 3911 "Time span for analysis (start,stop)"), 3912 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"), 3913 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]", 3914 "analyze events only for given process id(s)"), 3915 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]", 3916 "analyze events only for given thread id(s)"), 3917 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"), 3918 OPT_BOOLEAN(0, "show-prio", &sched.show_prio, "Show task priority"), 3919 OPT_STRING(0, "prio", &sched.prio_str, "prio", 3920 "analyze events only for given task priority(ies)"), 3921 OPT_BOOLEAN('P', "pre-migrations", &sched.pre_migrations, "Show pre-migration wait time"), 3922 OPT_PARENT(sched_options) 3923 }; 3924 3925 const char * const latency_usage[] = { 3926 "perf sched latency [<options>]", 3927 NULL 3928 }; 3929 const char * const replay_usage[] = { 3930 "perf sched replay [<options>]", 3931 NULL 3932 }; 3933 const char * const map_usage[] = { 3934 "perf sched map [<options>]", 3935 NULL 3936 }; 3937 const char * const timehist_usage[] = { 3938 "perf sched timehist [<options>]", 3939 NULL 3940 }; 3941 const char *const sched_subcommands[] = { "record", "latency", "map", 3942 "replay", "script", 3943 "timehist", NULL }; 3944 const char *sched_usage[] = { 3945 NULL, 3946 NULL 3947 }; 3948 struct trace_sched_handler lat_ops = { 3949 .wakeup_event = latency_wakeup_event, 3950 .switch_event = latency_switch_event, 3951 .runtime_event = latency_runtime_event, 3952 .migrate_task_event = latency_migrate_task_event, 3953 }; 3954 struct trace_sched_handler map_ops = { 3955 .switch_event = map_switch_event, 3956 }; 3957 struct trace_sched_handler replay_ops = { 3958 .wakeup_event = replay_wakeup_event, 3959 .switch_event = replay_switch_event, 3960 .fork_event = replay_fork_event, 3961 }; 3962 int ret; 3963 3964 perf_tool__init(&sched.tool, /*ordered_events=*/true); 3965 sched.tool.sample = perf_sched__process_tracepoint_sample; 3966 sched.tool.comm = perf_sched__process_comm; 3967 sched.tool.namespaces = perf_event__process_namespaces; 3968 sched.tool.lost = perf_event__process_lost; 3969 sched.tool.fork = perf_sched__process_fork_event; 3970 3971 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 3972 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 3973 if (!argc) 3974 usage_with_options(sched_usage, sched_options); 3975 3976 thread__set_priv_destructor(free); 3977 3978 /* 3979 * Aliased to 'perf script' for now: 3980 */ 3981 if (!strcmp(argv[0], "script")) { 3982 ret = cmd_script(argc, argv); 3983 } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) { 3984 ret = __cmd_record(argc, argv); 3985 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) { 3986 sched.tp_handler = &lat_ops; 3987 if (argc > 1) { 3988 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 3989 if (argc) 3990 usage_with_options(latency_usage, latency_options); 3991 } 3992 setup_sorting(&sched, latency_options, latency_usage); 3993 ret = perf_sched__lat(&sched); 3994 } else if (!strcmp(argv[0], "map")) { 3995 if (argc) { 3996 argc = parse_options(argc, argv, map_options, map_usage, 0); 3997 if (argc) 3998 usage_with_options(map_usage, map_options); 3999 4000 if (sched.map.task_name) { 4001 sched.map.task_names = strlist__new(sched.map.task_name, NULL); 4002 if (sched.map.task_names == NULL) { 4003 fprintf(stderr, "Failed to parse task names\n"); 4004 ret = -1; 4005 goto out; 4006 } 4007 } 4008 } 4009 sched.tp_handler = &map_ops; 4010 setup_sorting(&sched, latency_options, latency_usage); 4011 ret = perf_sched__map(&sched); 4012 } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) { 4013 sched.tp_handler = &replay_ops; 4014 if (argc) { 4015 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 4016 if (argc) 4017 usage_with_options(replay_usage, replay_options); 4018 } 4019 ret = perf_sched__replay(&sched); 4020 } else if (!strcmp(argv[0], "timehist")) { 4021 if (argc) { 4022 argc = parse_options(argc, argv, timehist_options, 4023 timehist_usage, 0); 4024 if (argc) 4025 usage_with_options(timehist_usage, timehist_options); 4026 } 4027 if ((sched.show_wakeups || sched.show_next) && 4028 sched.summary_only) { 4029 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n"); 4030 parse_options_usage(timehist_usage, timehist_options, "s", true); 4031 if (sched.show_wakeups) 4032 parse_options_usage(NULL, timehist_options, "w", true); 4033 if (sched.show_next) 4034 parse_options_usage(NULL, timehist_options, "n", true); 4035 ret = -EINVAL; 4036 goto out; 4037 } 4038 ret = symbol__validate_sym_arguments(); 4039 if (!ret) 4040 ret = perf_sched__timehist(&sched); 4041 } else { 4042 usage_with_options(sched_usage, sched_options); 4043 } 4044 4045 out: 4046 /* free usage string allocated by parse_options_subcommand */ 4047 free((void *)sched_usage[0]); 4048 4049 return ret; 4050 } 4051