1 #include "builtin.h" 2 #include "perf.h" 3 4 #include "util/util.h" 5 #include "util/evlist.h" 6 #include "util/cache.h" 7 #include "util/evsel.h" 8 #include "util/symbol.h" 9 #include "util/thread.h" 10 #include "util/header.h" 11 #include "util/session.h" 12 #include "util/tool.h" 13 #include "util/cloexec.h" 14 #include "util/thread_map.h" 15 #include "util/color.h" 16 17 #include <subcmd/parse-options.h> 18 #include "util/trace-event.h" 19 20 #include "util/debug.h" 21 22 #include <sys/prctl.h> 23 #include <sys/resource.h> 24 25 #include <semaphore.h> 26 #include <pthread.h> 27 #include <math.h> 28 #include <api/fs/fs.h> 29 30 #define PR_SET_NAME 15 /* Set process name */ 31 #define MAX_CPUS 4096 32 #define COMM_LEN 20 33 #define SYM_LEN 129 34 #define MAX_PID 1024000 35 36 struct sched_atom; 37 38 struct task_desc { 39 unsigned long nr; 40 unsigned long pid; 41 char comm[COMM_LEN]; 42 43 unsigned long nr_events; 44 unsigned long curr_event; 45 struct sched_atom **atoms; 46 47 pthread_t thread; 48 sem_t sleep_sem; 49 50 sem_t ready_for_work; 51 sem_t work_done_sem; 52 53 u64 cpu_usage; 54 }; 55 56 enum sched_event_type { 57 SCHED_EVENT_RUN, 58 SCHED_EVENT_SLEEP, 59 SCHED_EVENT_WAKEUP, 60 SCHED_EVENT_MIGRATION, 61 }; 62 63 struct sched_atom { 64 enum sched_event_type type; 65 int specific_wait; 66 u64 timestamp; 67 u64 duration; 68 unsigned long nr; 69 sem_t *wait_sem; 70 struct task_desc *wakee; 71 }; 72 73 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP" 74 75 enum thread_state { 76 THREAD_SLEEPING = 0, 77 THREAD_WAIT_CPU, 78 THREAD_SCHED_IN, 79 THREAD_IGNORE 80 }; 81 82 struct work_atom { 83 struct list_head list; 84 enum thread_state state; 85 u64 sched_out_time; 86 u64 wake_up_time; 87 u64 sched_in_time; 88 u64 runtime; 89 }; 90 91 struct work_atoms { 92 struct list_head work_list; 93 struct thread *thread; 94 struct rb_node node; 95 u64 max_lat; 96 u64 max_lat_at; 97 u64 total_lat; 98 u64 nb_atoms; 99 u64 total_runtime; 100 int num_merged; 101 }; 102 103 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *); 104 105 struct perf_sched; 106 107 struct trace_sched_handler { 108 int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel, 109 struct perf_sample *sample, struct machine *machine); 110 111 int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel, 112 struct perf_sample *sample, struct machine *machine); 113 114 int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel, 115 struct perf_sample *sample, struct machine *machine); 116 117 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */ 118 int (*fork_event)(struct perf_sched *sched, union perf_event *event, 119 struct machine *machine); 120 121 int (*migrate_task_event)(struct perf_sched *sched, 122 struct perf_evsel *evsel, 123 struct perf_sample *sample, 124 struct machine *machine); 125 }; 126 127 #define COLOR_PIDS PERF_COLOR_BLUE 128 #define COLOR_CPUS PERF_COLOR_BG_RED 129 130 struct perf_sched_map { 131 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS); 132 int *comp_cpus; 133 bool comp; 134 struct thread_map *color_pids; 135 const char *color_pids_str; 136 struct cpu_map *color_cpus; 137 const char *color_cpus_str; 138 struct cpu_map *cpus; 139 const char *cpus_str; 140 }; 141 142 struct perf_sched { 143 struct perf_tool tool; 144 const char *sort_order; 145 unsigned long nr_tasks; 146 struct task_desc **pid_to_task; 147 struct task_desc **tasks; 148 const struct trace_sched_handler *tp_handler; 149 pthread_mutex_t start_work_mutex; 150 pthread_mutex_t work_done_wait_mutex; 151 int profile_cpu; 152 /* 153 * Track the current task - that way we can know whether there's any 154 * weird events, such as a task being switched away that is not current. 155 */ 156 int max_cpu; 157 u32 curr_pid[MAX_CPUS]; 158 struct thread *curr_thread[MAX_CPUS]; 159 char next_shortname1; 160 char next_shortname2; 161 unsigned int replay_repeat; 162 unsigned long nr_run_events; 163 unsigned long nr_sleep_events; 164 unsigned long nr_wakeup_events; 165 unsigned long nr_sleep_corrections; 166 unsigned long nr_run_events_optimized; 167 unsigned long targetless_wakeups; 168 unsigned long multitarget_wakeups; 169 unsigned long nr_runs; 170 unsigned long nr_timestamps; 171 unsigned long nr_unordered_timestamps; 172 unsigned long nr_context_switch_bugs; 173 unsigned long nr_events; 174 unsigned long nr_lost_chunks; 175 unsigned long nr_lost_events; 176 u64 run_measurement_overhead; 177 u64 sleep_measurement_overhead; 178 u64 start_time; 179 u64 cpu_usage; 180 u64 runavg_cpu_usage; 181 u64 parent_cpu_usage; 182 u64 runavg_parent_cpu_usage; 183 u64 sum_runtime; 184 u64 sum_fluct; 185 u64 run_avg; 186 u64 all_runtime; 187 u64 all_count; 188 u64 cpu_last_switched[MAX_CPUS]; 189 struct rb_root atom_root, sorted_atom_root, merged_atom_root; 190 struct list_head sort_list, cmp_pid; 191 bool force; 192 bool skip_merge; 193 struct perf_sched_map map; 194 }; 195 196 static u64 get_nsecs(void) 197 { 198 struct timespec ts; 199 200 clock_gettime(CLOCK_MONOTONIC, &ts); 201 202 return ts.tv_sec * 1000000000ULL + ts.tv_nsec; 203 } 204 205 static void burn_nsecs(struct perf_sched *sched, u64 nsecs) 206 { 207 u64 T0 = get_nsecs(), T1; 208 209 do { 210 T1 = get_nsecs(); 211 } while (T1 + sched->run_measurement_overhead < T0 + nsecs); 212 } 213 214 static void sleep_nsecs(u64 nsecs) 215 { 216 struct timespec ts; 217 218 ts.tv_nsec = nsecs % 999999999; 219 ts.tv_sec = nsecs / 999999999; 220 221 nanosleep(&ts, NULL); 222 } 223 224 static void calibrate_run_measurement_overhead(struct perf_sched *sched) 225 { 226 u64 T0, T1, delta, min_delta = 1000000000ULL; 227 int i; 228 229 for (i = 0; i < 10; i++) { 230 T0 = get_nsecs(); 231 burn_nsecs(sched, 0); 232 T1 = get_nsecs(); 233 delta = T1-T0; 234 min_delta = min(min_delta, delta); 235 } 236 sched->run_measurement_overhead = min_delta; 237 238 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta); 239 } 240 241 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched) 242 { 243 u64 T0, T1, delta, min_delta = 1000000000ULL; 244 int i; 245 246 for (i = 0; i < 10; i++) { 247 T0 = get_nsecs(); 248 sleep_nsecs(10000); 249 T1 = get_nsecs(); 250 delta = T1-T0; 251 min_delta = min(min_delta, delta); 252 } 253 min_delta -= 10000; 254 sched->sleep_measurement_overhead = min_delta; 255 256 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta); 257 } 258 259 static struct sched_atom * 260 get_new_event(struct task_desc *task, u64 timestamp) 261 { 262 struct sched_atom *event = zalloc(sizeof(*event)); 263 unsigned long idx = task->nr_events; 264 size_t size; 265 266 event->timestamp = timestamp; 267 event->nr = idx; 268 269 task->nr_events++; 270 size = sizeof(struct sched_atom *) * task->nr_events; 271 task->atoms = realloc(task->atoms, size); 272 BUG_ON(!task->atoms); 273 274 task->atoms[idx] = event; 275 276 return event; 277 } 278 279 static struct sched_atom *last_event(struct task_desc *task) 280 { 281 if (!task->nr_events) 282 return NULL; 283 284 return task->atoms[task->nr_events - 1]; 285 } 286 287 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task, 288 u64 timestamp, u64 duration) 289 { 290 struct sched_atom *event, *curr_event = last_event(task); 291 292 /* 293 * optimize an existing RUN event by merging this one 294 * to it: 295 */ 296 if (curr_event && curr_event->type == SCHED_EVENT_RUN) { 297 sched->nr_run_events_optimized++; 298 curr_event->duration += duration; 299 return; 300 } 301 302 event = get_new_event(task, timestamp); 303 304 event->type = SCHED_EVENT_RUN; 305 event->duration = duration; 306 307 sched->nr_run_events++; 308 } 309 310 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task, 311 u64 timestamp, struct task_desc *wakee) 312 { 313 struct sched_atom *event, *wakee_event; 314 315 event = get_new_event(task, timestamp); 316 event->type = SCHED_EVENT_WAKEUP; 317 event->wakee = wakee; 318 319 wakee_event = last_event(wakee); 320 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) { 321 sched->targetless_wakeups++; 322 return; 323 } 324 if (wakee_event->wait_sem) { 325 sched->multitarget_wakeups++; 326 return; 327 } 328 329 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem)); 330 sem_init(wakee_event->wait_sem, 0, 0); 331 wakee_event->specific_wait = 1; 332 event->wait_sem = wakee_event->wait_sem; 333 334 sched->nr_wakeup_events++; 335 } 336 337 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task, 338 u64 timestamp, u64 task_state __maybe_unused) 339 { 340 struct sched_atom *event = get_new_event(task, timestamp); 341 342 event->type = SCHED_EVENT_SLEEP; 343 344 sched->nr_sleep_events++; 345 } 346 347 static struct task_desc *register_pid(struct perf_sched *sched, 348 unsigned long pid, const char *comm) 349 { 350 struct task_desc *task; 351 static int pid_max; 352 353 if (sched->pid_to_task == NULL) { 354 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0) 355 pid_max = MAX_PID; 356 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL); 357 } 358 if (pid >= (unsigned long)pid_max) { 359 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) * 360 sizeof(struct task_desc *))) == NULL); 361 while (pid >= (unsigned long)pid_max) 362 sched->pid_to_task[pid_max++] = NULL; 363 } 364 365 task = sched->pid_to_task[pid]; 366 367 if (task) 368 return task; 369 370 task = zalloc(sizeof(*task)); 371 task->pid = pid; 372 task->nr = sched->nr_tasks; 373 strcpy(task->comm, comm); 374 /* 375 * every task starts in sleeping state - this gets ignored 376 * if there's no wakeup pointing to this sleep state: 377 */ 378 add_sched_event_sleep(sched, task, 0, 0); 379 380 sched->pid_to_task[pid] = task; 381 sched->nr_tasks++; 382 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *)); 383 BUG_ON(!sched->tasks); 384 sched->tasks[task->nr] = task; 385 386 if (verbose) 387 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm); 388 389 return task; 390 } 391 392 393 static void print_task_traces(struct perf_sched *sched) 394 { 395 struct task_desc *task; 396 unsigned long i; 397 398 for (i = 0; i < sched->nr_tasks; i++) { 399 task = sched->tasks[i]; 400 printf("task %6ld (%20s:%10ld), nr_events: %ld\n", 401 task->nr, task->comm, task->pid, task->nr_events); 402 } 403 } 404 405 static void add_cross_task_wakeups(struct perf_sched *sched) 406 { 407 struct task_desc *task1, *task2; 408 unsigned long i, j; 409 410 for (i = 0; i < sched->nr_tasks; i++) { 411 task1 = sched->tasks[i]; 412 j = i + 1; 413 if (j == sched->nr_tasks) 414 j = 0; 415 task2 = sched->tasks[j]; 416 add_sched_event_wakeup(sched, task1, 0, task2); 417 } 418 } 419 420 static void perf_sched__process_event(struct perf_sched *sched, 421 struct sched_atom *atom) 422 { 423 int ret = 0; 424 425 switch (atom->type) { 426 case SCHED_EVENT_RUN: 427 burn_nsecs(sched, atom->duration); 428 break; 429 case SCHED_EVENT_SLEEP: 430 if (atom->wait_sem) 431 ret = sem_wait(atom->wait_sem); 432 BUG_ON(ret); 433 break; 434 case SCHED_EVENT_WAKEUP: 435 if (atom->wait_sem) 436 ret = sem_post(atom->wait_sem); 437 BUG_ON(ret); 438 break; 439 case SCHED_EVENT_MIGRATION: 440 break; 441 default: 442 BUG_ON(1); 443 } 444 } 445 446 static u64 get_cpu_usage_nsec_parent(void) 447 { 448 struct rusage ru; 449 u64 sum; 450 int err; 451 452 err = getrusage(RUSAGE_SELF, &ru); 453 BUG_ON(err); 454 455 sum = ru.ru_utime.tv_sec*1e9 + ru.ru_utime.tv_usec*1e3; 456 sum += ru.ru_stime.tv_sec*1e9 + ru.ru_stime.tv_usec*1e3; 457 458 return sum; 459 } 460 461 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task) 462 { 463 struct perf_event_attr attr; 464 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE]; 465 int fd; 466 struct rlimit limit; 467 bool need_privilege = false; 468 469 memset(&attr, 0, sizeof(attr)); 470 471 attr.type = PERF_TYPE_SOFTWARE; 472 attr.config = PERF_COUNT_SW_TASK_CLOCK; 473 474 force_again: 475 fd = sys_perf_event_open(&attr, 0, -1, -1, 476 perf_event_open_cloexec_flag()); 477 478 if (fd < 0) { 479 if (errno == EMFILE) { 480 if (sched->force) { 481 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1); 482 limit.rlim_cur += sched->nr_tasks - cur_task; 483 if (limit.rlim_cur > limit.rlim_max) { 484 limit.rlim_max = limit.rlim_cur; 485 need_privilege = true; 486 } 487 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) { 488 if (need_privilege && errno == EPERM) 489 strcpy(info, "Need privilege\n"); 490 } else 491 goto force_again; 492 } else 493 strcpy(info, "Have a try with -f option\n"); 494 } 495 pr_err("Error: sys_perf_event_open() syscall returned " 496 "with %d (%s)\n%s", fd, 497 strerror_r(errno, sbuf, sizeof(sbuf)), info); 498 exit(EXIT_FAILURE); 499 } 500 return fd; 501 } 502 503 static u64 get_cpu_usage_nsec_self(int fd) 504 { 505 u64 runtime; 506 int ret; 507 508 ret = read(fd, &runtime, sizeof(runtime)); 509 BUG_ON(ret != sizeof(runtime)); 510 511 return runtime; 512 } 513 514 struct sched_thread_parms { 515 struct task_desc *task; 516 struct perf_sched *sched; 517 int fd; 518 }; 519 520 static void *thread_func(void *ctx) 521 { 522 struct sched_thread_parms *parms = ctx; 523 struct task_desc *this_task = parms->task; 524 struct perf_sched *sched = parms->sched; 525 u64 cpu_usage_0, cpu_usage_1; 526 unsigned long i, ret; 527 char comm2[22]; 528 int fd = parms->fd; 529 530 zfree(&parms); 531 532 sprintf(comm2, ":%s", this_task->comm); 533 prctl(PR_SET_NAME, comm2); 534 if (fd < 0) 535 return NULL; 536 again: 537 ret = sem_post(&this_task->ready_for_work); 538 BUG_ON(ret); 539 ret = pthread_mutex_lock(&sched->start_work_mutex); 540 BUG_ON(ret); 541 ret = pthread_mutex_unlock(&sched->start_work_mutex); 542 BUG_ON(ret); 543 544 cpu_usage_0 = get_cpu_usage_nsec_self(fd); 545 546 for (i = 0; i < this_task->nr_events; i++) { 547 this_task->curr_event = i; 548 perf_sched__process_event(sched, this_task->atoms[i]); 549 } 550 551 cpu_usage_1 = get_cpu_usage_nsec_self(fd); 552 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0; 553 ret = sem_post(&this_task->work_done_sem); 554 BUG_ON(ret); 555 556 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 557 BUG_ON(ret); 558 ret = pthread_mutex_unlock(&sched->work_done_wait_mutex); 559 BUG_ON(ret); 560 561 goto again; 562 } 563 564 static void create_tasks(struct perf_sched *sched) 565 { 566 struct task_desc *task; 567 pthread_attr_t attr; 568 unsigned long i; 569 int err; 570 571 err = pthread_attr_init(&attr); 572 BUG_ON(err); 573 err = pthread_attr_setstacksize(&attr, 574 (size_t) max(16 * 1024, PTHREAD_STACK_MIN)); 575 BUG_ON(err); 576 err = pthread_mutex_lock(&sched->start_work_mutex); 577 BUG_ON(err); 578 err = pthread_mutex_lock(&sched->work_done_wait_mutex); 579 BUG_ON(err); 580 for (i = 0; i < sched->nr_tasks; i++) { 581 struct sched_thread_parms *parms = malloc(sizeof(*parms)); 582 BUG_ON(parms == NULL); 583 parms->task = task = sched->tasks[i]; 584 parms->sched = sched; 585 parms->fd = self_open_counters(sched, i); 586 sem_init(&task->sleep_sem, 0, 0); 587 sem_init(&task->ready_for_work, 0, 0); 588 sem_init(&task->work_done_sem, 0, 0); 589 task->curr_event = 0; 590 err = pthread_create(&task->thread, &attr, thread_func, parms); 591 BUG_ON(err); 592 } 593 } 594 595 static void wait_for_tasks(struct perf_sched *sched) 596 { 597 u64 cpu_usage_0, cpu_usage_1; 598 struct task_desc *task; 599 unsigned long i, ret; 600 601 sched->start_time = get_nsecs(); 602 sched->cpu_usage = 0; 603 pthread_mutex_unlock(&sched->work_done_wait_mutex); 604 605 for (i = 0; i < sched->nr_tasks; i++) { 606 task = sched->tasks[i]; 607 ret = sem_wait(&task->ready_for_work); 608 BUG_ON(ret); 609 sem_init(&task->ready_for_work, 0, 0); 610 } 611 ret = pthread_mutex_lock(&sched->work_done_wait_mutex); 612 BUG_ON(ret); 613 614 cpu_usage_0 = get_cpu_usage_nsec_parent(); 615 616 pthread_mutex_unlock(&sched->start_work_mutex); 617 618 for (i = 0; i < sched->nr_tasks; i++) { 619 task = sched->tasks[i]; 620 ret = sem_wait(&task->work_done_sem); 621 BUG_ON(ret); 622 sem_init(&task->work_done_sem, 0, 0); 623 sched->cpu_usage += task->cpu_usage; 624 task->cpu_usage = 0; 625 } 626 627 cpu_usage_1 = get_cpu_usage_nsec_parent(); 628 if (!sched->runavg_cpu_usage) 629 sched->runavg_cpu_usage = sched->cpu_usage; 630 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat; 631 632 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0; 633 if (!sched->runavg_parent_cpu_usage) 634 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage; 635 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) + 636 sched->parent_cpu_usage)/sched->replay_repeat; 637 638 ret = pthread_mutex_lock(&sched->start_work_mutex); 639 BUG_ON(ret); 640 641 for (i = 0; i < sched->nr_tasks; i++) { 642 task = sched->tasks[i]; 643 sem_init(&task->sleep_sem, 0, 0); 644 task->curr_event = 0; 645 } 646 } 647 648 static void run_one_test(struct perf_sched *sched) 649 { 650 u64 T0, T1, delta, avg_delta, fluct; 651 652 T0 = get_nsecs(); 653 wait_for_tasks(sched); 654 T1 = get_nsecs(); 655 656 delta = T1 - T0; 657 sched->sum_runtime += delta; 658 sched->nr_runs++; 659 660 avg_delta = sched->sum_runtime / sched->nr_runs; 661 if (delta < avg_delta) 662 fluct = avg_delta - delta; 663 else 664 fluct = delta - avg_delta; 665 sched->sum_fluct += fluct; 666 if (!sched->run_avg) 667 sched->run_avg = delta; 668 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat; 669 670 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / 1000000.0); 671 672 printf("ravg: %0.2f, ", (double)sched->run_avg / 1e6); 673 674 printf("cpu: %0.2f / %0.2f", 675 (double)sched->cpu_usage / 1e6, (double)sched->runavg_cpu_usage / 1e6); 676 677 #if 0 678 /* 679 * rusage statistics done by the parent, these are less 680 * accurate than the sched->sum_exec_runtime based statistics: 681 */ 682 printf(" [%0.2f / %0.2f]", 683 (double)sched->parent_cpu_usage/1e6, 684 (double)sched->runavg_parent_cpu_usage/1e6); 685 #endif 686 687 printf("\n"); 688 689 if (sched->nr_sleep_corrections) 690 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections); 691 sched->nr_sleep_corrections = 0; 692 } 693 694 static void test_calibrations(struct perf_sched *sched) 695 { 696 u64 T0, T1; 697 698 T0 = get_nsecs(); 699 burn_nsecs(sched, 1e6); 700 T1 = get_nsecs(); 701 702 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0); 703 704 T0 = get_nsecs(); 705 sleep_nsecs(1e6); 706 T1 = get_nsecs(); 707 708 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0); 709 } 710 711 static int 712 replay_wakeup_event(struct perf_sched *sched, 713 struct perf_evsel *evsel, struct perf_sample *sample, 714 struct machine *machine __maybe_unused) 715 { 716 const char *comm = perf_evsel__strval(evsel, sample, "comm"); 717 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 718 struct task_desc *waker, *wakee; 719 720 if (verbose) { 721 printf("sched_wakeup event %p\n", evsel); 722 723 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid); 724 } 725 726 waker = register_pid(sched, sample->tid, "<unknown>"); 727 wakee = register_pid(sched, pid, comm); 728 729 add_sched_event_wakeup(sched, waker, sample->time, wakee); 730 return 0; 731 } 732 733 static int replay_switch_event(struct perf_sched *sched, 734 struct perf_evsel *evsel, 735 struct perf_sample *sample, 736 struct machine *machine __maybe_unused) 737 { 738 const char *prev_comm = perf_evsel__strval(evsel, sample, "prev_comm"), 739 *next_comm = perf_evsel__strval(evsel, sample, "next_comm"); 740 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 741 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 742 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 743 struct task_desc *prev, __maybe_unused *next; 744 u64 timestamp0, timestamp = sample->time; 745 int cpu = sample->cpu; 746 s64 delta; 747 748 if (verbose) 749 printf("sched_switch event %p\n", evsel); 750 751 if (cpu >= MAX_CPUS || cpu < 0) 752 return 0; 753 754 timestamp0 = sched->cpu_last_switched[cpu]; 755 if (timestamp0) 756 delta = timestamp - timestamp0; 757 else 758 delta = 0; 759 760 if (delta < 0) { 761 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 762 return -1; 763 } 764 765 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n", 766 prev_comm, prev_pid, next_comm, next_pid, delta); 767 768 prev = register_pid(sched, prev_pid, prev_comm); 769 next = register_pid(sched, next_pid, next_comm); 770 771 sched->cpu_last_switched[cpu] = timestamp; 772 773 add_sched_event_run(sched, prev, timestamp, delta); 774 add_sched_event_sleep(sched, prev, timestamp, prev_state); 775 776 return 0; 777 } 778 779 static int replay_fork_event(struct perf_sched *sched, 780 union perf_event *event, 781 struct machine *machine) 782 { 783 struct thread *child, *parent; 784 785 child = machine__findnew_thread(machine, event->fork.pid, 786 event->fork.tid); 787 parent = machine__findnew_thread(machine, event->fork.ppid, 788 event->fork.ptid); 789 790 if (child == NULL || parent == NULL) { 791 pr_debug("thread does not exist on fork event: child %p, parent %p\n", 792 child, parent); 793 goto out_put; 794 } 795 796 if (verbose) { 797 printf("fork event\n"); 798 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid); 799 printf("... child: %s/%d\n", thread__comm_str(child), child->tid); 800 } 801 802 register_pid(sched, parent->tid, thread__comm_str(parent)); 803 register_pid(sched, child->tid, thread__comm_str(child)); 804 out_put: 805 thread__put(child); 806 thread__put(parent); 807 return 0; 808 } 809 810 struct sort_dimension { 811 const char *name; 812 sort_fn_t cmp; 813 struct list_head list; 814 }; 815 816 static int 817 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r) 818 { 819 struct sort_dimension *sort; 820 int ret = 0; 821 822 BUG_ON(list_empty(list)); 823 824 list_for_each_entry(sort, list, list) { 825 ret = sort->cmp(l, r); 826 if (ret) 827 return ret; 828 } 829 830 return ret; 831 } 832 833 static struct work_atoms * 834 thread_atoms_search(struct rb_root *root, struct thread *thread, 835 struct list_head *sort_list) 836 { 837 struct rb_node *node = root->rb_node; 838 struct work_atoms key = { .thread = thread }; 839 840 while (node) { 841 struct work_atoms *atoms; 842 int cmp; 843 844 atoms = container_of(node, struct work_atoms, node); 845 846 cmp = thread_lat_cmp(sort_list, &key, atoms); 847 if (cmp > 0) 848 node = node->rb_left; 849 else if (cmp < 0) 850 node = node->rb_right; 851 else { 852 BUG_ON(thread != atoms->thread); 853 return atoms; 854 } 855 } 856 return NULL; 857 } 858 859 static void 860 __thread_latency_insert(struct rb_root *root, struct work_atoms *data, 861 struct list_head *sort_list) 862 { 863 struct rb_node **new = &(root->rb_node), *parent = NULL; 864 865 while (*new) { 866 struct work_atoms *this; 867 int cmp; 868 869 this = container_of(*new, struct work_atoms, node); 870 parent = *new; 871 872 cmp = thread_lat_cmp(sort_list, data, this); 873 874 if (cmp > 0) 875 new = &((*new)->rb_left); 876 else 877 new = &((*new)->rb_right); 878 } 879 880 rb_link_node(&data->node, parent, new); 881 rb_insert_color(&data->node, root); 882 } 883 884 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread) 885 { 886 struct work_atoms *atoms = zalloc(sizeof(*atoms)); 887 if (!atoms) { 888 pr_err("No memory at %s\n", __func__); 889 return -1; 890 } 891 892 atoms->thread = thread__get(thread); 893 INIT_LIST_HEAD(&atoms->work_list); 894 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid); 895 return 0; 896 } 897 898 static char sched_out_state(u64 prev_state) 899 { 900 const char *str = TASK_STATE_TO_CHAR_STR; 901 902 return str[prev_state]; 903 } 904 905 static int 906 add_sched_out_event(struct work_atoms *atoms, 907 char run_state, 908 u64 timestamp) 909 { 910 struct work_atom *atom = zalloc(sizeof(*atom)); 911 if (!atom) { 912 pr_err("Non memory at %s", __func__); 913 return -1; 914 } 915 916 atom->sched_out_time = timestamp; 917 918 if (run_state == 'R') { 919 atom->state = THREAD_WAIT_CPU; 920 atom->wake_up_time = atom->sched_out_time; 921 } 922 923 list_add_tail(&atom->list, &atoms->work_list); 924 return 0; 925 } 926 927 static void 928 add_runtime_event(struct work_atoms *atoms, u64 delta, 929 u64 timestamp __maybe_unused) 930 { 931 struct work_atom *atom; 932 933 BUG_ON(list_empty(&atoms->work_list)); 934 935 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 936 937 atom->runtime += delta; 938 atoms->total_runtime += delta; 939 } 940 941 static void 942 add_sched_in_event(struct work_atoms *atoms, u64 timestamp) 943 { 944 struct work_atom *atom; 945 u64 delta; 946 947 if (list_empty(&atoms->work_list)) 948 return; 949 950 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 951 952 if (atom->state != THREAD_WAIT_CPU) 953 return; 954 955 if (timestamp < atom->wake_up_time) { 956 atom->state = THREAD_IGNORE; 957 return; 958 } 959 960 atom->state = THREAD_SCHED_IN; 961 atom->sched_in_time = timestamp; 962 963 delta = atom->sched_in_time - atom->wake_up_time; 964 atoms->total_lat += delta; 965 if (delta > atoms->max_lat) { 966 atoms->max_lat = delta; 967 atoms->max_lat_at = timestamp; 968 } 969 atoms->nb_atoms++; 970 } 971 972 static int latency_switch_event(struct perf_sched *sched, 973 struct perf_evsel *evsel, 974 struct perf_sample *sample, 975 struct machine *machine) 976 { 977 const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 978 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 979 const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state"); 980 struct work_atoms *out_events, *in_events; 981 struct thread *sched_out, *sched_in; 982 u64 timestamp0, timestamp = sample->time; 983 int cpu = sample->cpu, err = -1; 984 s64 delta; 985 986 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 987 988 timestamp0 = sched->cpu_last_switched[cpu]; 989 sched->cpu_last_switched[cpu] = timestamp; 990 if (timestamp0) 991 delta = timestamp - timestamp0; 992 else 993 delta = 0; 994 995 if (delta < 0) { 996 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 997 return -1; 998 } 999 1000 sched_out = machine__findnew_thread(machine, -1, prev_pid); 1001 sched_in = machine__findnew_thread(machine, -1, next_pid); 1002 if (sched_out == NULL || sched_in == NULL) 1003 goto out_put; 1004 1005 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1006 if (!out_events) { 1007 if (thread_atoms_insert(sched, sched_out)) 1008 goto out_put; 1009 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid); 1010 if (!out_events) { 1011 pr_err("out-event: Internal tree error"); 1012 goto out_put; 1013 } 1014 } 1015 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp)) 1016 return -1; 1017 1018 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1019 if (!in_events) { 1020 if (thread_atoms_insert(sched, sched_in)) 1021 goto out_put; 1022 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid); 1023 if (!in_events) { 1024 pr_err("in-event: Internal tree error"); 1025 goto out_put; 1026 } 1027 /* 1028 * Take came in we have not heard about yet, 1029 * add in an initial atom in runnable state: 1030 */ 1031 if (add_sched_out_event(in_events, 'R', timestamp)) 1032 goto out_put; 1033 } 1034 add_sched_in_event(in_events, timestamp); 1035 err = 0; 1036 out_put: 1037 thread__put(sched_out); 1038 thread__put(sched_in); 1039 return err; 1040 } 1041 1042 static int latency_runtime_event(struct perf_sched *sched, 1043 struct perf_evsel *evsel, 1044 struct perf_sample *sample, 1045 struct machine *machine) 1046 { 1047 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1048 const u64 runtime = perf_evsel__intval(evsel, sample, "runtime"); 1049 struct thread *thread = machine__findnew_thread(machine, -1, pid); 1050 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1051 u64 timestamp = sample->time; 1052 int cpu = sample->cpu, err = -1; 1053 1054 if (thread == NULL) 1055 return -1; 1056 1057 BUG_ON(cpu >= MAX_CPUS || cpu < 0); 1058 if (!atoms) { 1059 if (thread_atoms_insert(sched, thread)) 1060 goto out_put; 1061 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid); 1062 if (!atoms) { 1063 pr_err("in-event: Internal tree error"); 1064 goto out_put; 1065 } 1066 if (add_sched_out_event(atoms, 'R', timestamp)) 1067 goto out_put; 1068 } 1069 1070 add_runtime_event(atoms, runtime, timestamp); 1071 err = 0; 1072 out_put: 1073 thread__put(thread); 1074 return err; 1075 } 1076 1077 static int latency_wakeup_event(struct perf_sched *sched, 1078 struct perf_evsel *evsel, 1079 struct perf_sample *sample, 1080 struct machine *machine) 1081 { 1082 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1083 struct work_atoms *atoms; 1084 struct work_atom *atom; 1085 struct thread *wakee; 1086 u64 timestamp = sample->time; 1087 int err = -1; 1088 1089 wakee = machine__findnew_thread(machine, -1, pid); 1090 if (wakee == NULL) 1091 return -1; 1092 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1093 if (!atoms) { 1094 if (thread_atoms_insert(sched, wakee)) 1095 goto out_put; 1096 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid); 1097 if (!atoms) { 1098 pr_err("wakeup-event: Internal tree error"); 1099 goto out_put; 1100 } 1101 if (add_sched_out_event(atoms, 'S', timestamp)) 1102 goto out_put; 1103 } 1104 1105 BUG_ON(list_empty(&atoms->work_list)); 1106 1107 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1108 1109 /* 1110 * As we do not guarantee the wakeup event happens when 1111 * task is out of run queue, also may happen when task is 1112 * on run queue and wakeup only change ->state to TASK_RUNNING, 1113 * then we should not set the ->wake_up_time when wake up a 1114 * task which is on run queue. 1115 * 1116 * You WILL be missing events if you've recorded only 1117 * one CPU, or are only looking at only one, so don't 1118 * skip in this case. 1119 */ 1120 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING) 1121 goto out_ok; 1122 1123 sched->nr_timestamps++; 1124 if (atom->sched_out_time > timestamp) { 1125 sched->nr_unordered_timestamps++; 1126 goto out_ok; 1127 } 1128 1129 atom->state = THREAD_WAIT_CPU; 1130 atom->wake_up_time = timestamp; 1131 out_ok: 1132 err = 0; 1133 out_put: 1134 thread__put(wakee); 1135 return err; 1136 } 1137 1138 static int latency_migrate_task_event(struct perf_sched *sched, 1139 struct perf_evsel *evsel, 1140 struct perf_sample *sample, 1141 struct machine *machine) 1142 { 1143 const u32 pid = perf_evsel__intval(evsel, sample, "pid"); 1144 u64 timestamp = sample->time; 1145 struct work_atoms *atoms; 1146 struct work_atom *atom; 1147 struct thread *migrant; 1148 int err = -1; 1149 1150 /* 1151 * Only need to worry about migration when profiling one CPU. 1152 */ 1153 if (sched->profile_cpu == -1) 1154 return 0; 1155 1156 migrant = machine__findnew_thread(machine, -1, pid); 1157 if (migrant == NULL) 1158 return -1; 1159 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1160 if (!atoms) { 1161 if (thread_atoms_insert(sched, migrant)) 1162 goto out_put; 1163 register_pid(sched, migrant->tid, thread__comm_str(migrant)); 1164 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid); 1165 if (!atoms) { 1166 pr_err("migration-event: Internal tree error"); 1167 goto out_put; 1168 } 1169 if (add_sched_out_event(atoms, 'R', timestamp)) 1170 goto out_put; 1171 } 1172 1173 BUG_ON(list_empty(&atoms->work_list)); 1174 1175 atom = list_entry(atoms->work_list.prev, struct work_atom, list); 1176 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp; 1177 1178 sched->nr_timestamps++; 1179 1180 if (atom->sched_out_time > timestamp) 1181 sched->nr_unordered_timestamps++; 1182 err = 0; 1183 out_put: 1184 thread__put(migrant); 1185 return err; 1186 } 1187 1188 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list) 1189 { 1190 int i; 1191 int ret; 1192 u64 avg; 1193 1194 if (!work_list->nb_atoms) 1195 return; 1196 /* 1197 * Ignore idle threads: 1198 */ 1199 if (!strcmp(thread__comm_str(work_list->thread), "swapper")) 1200 return; 1201 1202 sched->all_runtime += work_list->total_runtime; 1203 sched->all_count += work_list->nb_atoms; 1204 1205 if (work_list->num_merged > 1) 1206 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged); 1207 else 1208 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid); 1209 1210 for (i = 0; i < 24 - ret; i++) 1211 printf(" "); 1212 1213 avg = work_list->total_lat / work_list->nb_atoms; 1214 1215 printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13.6f s\n", 1216 (double)work_list->total_runtime / 1e6, 1217 work_list->nb_atoms, (double)avg / 1e6, 1218 (double)work_list->max_lat / 1e6, 1219 (double)work_list->max_lat_at / 1e9); 1220 } 1221 1222 static int pid_cmp(struct work_atoms *l, struct work_atoms *r) 1223 { 1224 if (l->thread == r->thread) 1225 return 0; 1226 if (l->thread->tid < r->thread->tid) 1227 return -1; 1228 if (l->thread->tid > r->thread->tid) 1229 return 1; 1230 return (int)(l->thread - r->thread); 1231 } 1232 1233 static int avg_cmp(struct work_atoms *l, struct work_atoms *r) 1234 { 1235 u64 avgl, avgr; 1236 1237 if (!l->nb_atoms) 1238 return -1; 1239 1240 if (!r->nb_atoms) 1241 return 1; 1242 1243 avgl = l->total_lat / l->nb_atoms; 1244 avgr = r->total_lat / r->nb_atoms; 1245 1246 if (avgl < avgr) 1247 return -1; 1248 if (avgl > avgr) 1249 return 1; 1250 1251 return 0; 1252 } 1253 1254 static int max_cmp(struct work_atoms *l, struct work_atoms *r) 1255 { 1256 if (l->max_lat < r->max_lat) 1257 return -1; 1258 if (l->max_lat > r->max_lat) 1259 return 1; 1260 1261 return 0; 1262 } 1263 1264 static int switch_cmp(struct work_atoms *l, struct work_atoms *r) 1265 { 1266 if (l->nb_atoms < r->nb_atoms) 1267 return -1; 1268 if (l->nb_atoms > r->nb_atoms) 1269 return 1; 1270 1271 return 0; 1272 } 1273 1274 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r) 1275 { 1276 if (l->total_runtime < r->total_runtime) 1277 return -1; 1278 if (l->total_runtime > r->total_runtime) 1279 return 1; 1280 1281 return 0; 1282 } 1283 1284 static int sort_dimension__add(const char *tok, struct list_head *list) 1285 { 1286 size_t i; 1287 static struct sort_dimension avg_sort_dimension = { 1288 .name = "avg", 1289 .cmp = avg_cmp, 1290 }; 1291 static struct sort_dimension max_sort_dimension = { 1292 .name = "max", 1293 .cmp = max_cmp, 1294 }; 1295 static struct sort_dimension pid_sort_dimension = { 1296 .name = "pid", 1297 .cmp = pid_cmp, 1298 }; 1299 static struct sort_dimension runtime_sort_dimension = { 1300 .name = "runtime", 1301 .cmp = runtime_cmp, 1302 }; 1303 static struct sort_dimension switch_sort_dimension = { 1304 .name = "switch", 1305 .cmp = switch_cmp, 1306 }; 1307 struct sort_dimension *available_sorts[] = { 1308 &pid_sort_dimension, 1309 &avg_sort_dimension, 1310 &max_sort_dimension, 1311 &switch_sort_dimension, 1312 &runtime_sort_dimension, 1313 }; 1314 1315 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) { 1316 if (!strcmp(available_sorts[i]->name, tok)) { 1317 list_add_tail(&available_sorts[i]->list, list); 1318 1319 return 0; 1320 } 1321 } 1322 1323 return -1; 1324 } 1325 1326 static void perf_sched__sort_lat(struct perf_sched *sched) 1327 { 1328 struct rb_node *node; 1329 struct rb_root *root = &sched->atom_root; 1330 again: 1331 for (;;) { 1332 struct work_atoms *data; 1333 node = rb_first(root); 1334 if (!node) 1335 break; 1336 1337 rb_erase(node, root); 1338 data = rb_entry(node, struct work_atoms, node); 1339 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list); 1340 } 1341 if (root == &sched->atom_root) { 1342 root = &sched->merged_atom_root; 1343 goto again; 1344 } 1345 } 1346 1347 static int process_sched_wakeup_event(struct perf_tool *tool, 1348 struct perf_evsel *evsel, 1349 struct perf_sample *sample, 1350 struct machine *machine) 1351 { 1352 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1353 1354 if (sched->tp_handler->wakeup_event) 1355 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine); 1356 1357 return 0; 1358 } 1359 1360 union map_priv { 1361 void *ptr; 1362 bool color; 1363 }; 1364 1365 static bool thread__has_color(struct thread *thread) 1366 { 1367 union map_priv priv = { 1368 .ptr = thread__priv(thread), 1369 }; 1370 1371 return priv.color; 1372 } 1373 1374 static struct thread* 1375 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid) 1376 { 1377 struct thread *thread = machine__findnew_thread(machine, pid, tid); 1378 union map_priv priv = { 1379 .color = false, 1380 }; 1381 1382 if (!sched->map.color_pids || !thread || thread__priv(thread)) 1383 return thread; 1384 1385 if (thread_map__has(sched->map.color_pids, tid)) 1386 priv.color = true; 1387 1388 thread__set_priv(thread, priv.ptr); 1389 return thread; 1390 } 1391 1392 static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel, 1393 struct perf_sample *sample, struct machine *machine) 1394 { 1395 const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1396 struct thread *sched_in; 1397 int new_shortname; 1398 u64 timestamp0, timestamp = sample->time; 1399 s64 delta; 1400 int i, this_cpu = sample->cpu; 1401 int cpus_nr; 1402 bool new_cpu = false; 1403 const char *color = PERF_COLOR_NORMAL; 1404 1405 BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0); 1406 1407 if (this_cpu > sched->max_cpu) 1408 sched->max_cpu = this_cpu; 1409 1410 if (sched->map.comp) { 1411 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS); 1412 if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) { 1413 sched->map.comp_cpus[cpus_nr++] = this_cpu; 1414 new_cpu = true; 1415 } 1416 } else 1417 cpus_nr = sched->max_cpu; 1418 1419 timestamp0 = sched->cpu_last_switched[this_cpu]; 1420 sched->cpu_last_switched[this_cpu] = timestamp; 1421 if (timestamp0) 1422 delta = timestamp - timestamp0; 1423 else 1424 delta = 0; 1425 1426 if (delta < 0) { 1427 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta); 1428 return -1; 1429 } 1430 1431 sched_in = map__findnew_thread(sched, machine, -1, next_pid); 1432 if (sched_in == NULL) 1433 return -1; 1434 1435 sched->curr_thread[this_cpu] = thread__get(sched_in); 1436 1437 printf(" "); 1438 1439 new_shortname = 0; 1440 if (!sched_in->shortname[0]) { 1441 if (!strcmp(thread__comm_str(sched_in), "swapper")) { 1442 /* 1443 * Don't allocate a letter-number for swapper:0 1444 * as a shortname. Instead, we use '.' for it. 1445 */ 1446 sched_in->shortname[0] = '.'; 1447 sched_in->shortname[1] = ' '; 1448 } else { 1449 sched_in->shortname[0] = sched->next_shortname1; 1450 sched_in->shortname[1] = sched->next_shortname2; 1451 1452 if (sched->next_shortname1 < 'Z') { 1453 sched->next_shortname1++; 1454 } else { 1455 sched->next_shortname1 = 'A'; 1456 if (sched->next_shortname2 < '9') 1457 sched->next_shortname2++; 1458 else 1459 sched->next_shortname2 = '0'; 1460 } 1461 } 1462 new_shortname = 1; 1463 } 1464 1465 for (i = 0; i < cpus_nr; i++) { 1466 int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i; 1467 struct thread *curr_thread = sched->curr_thread[cpu]; 1468 const char *pid_color = color; 1469 const char *cpu_color = color; 1470 1471 if (curr_thread && thread__has_color(curr_thread)) 1472 pid_color = COLOR_PIDS; 1473 1474 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu)) 1475 continue; 1476 1477 if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu)) 1478 cpu_color = COLOR_CPUS; 1479 1480 if (cpu != this_cpu) 1481 color_fprintf(stdout, cpu_color, " "); 1482 else 1483 color_fprintf(stdout, cpu_color, "*"); 1484 1485 if (sched->curr_thread[cpu]) 1486 color_fprintf(stdout, pid_color, "%2s ", sched->curr_thread[cpu]->shortname); 1487 else 1488 color_fprintf(stdout, color, " "); 1489 } 1490 1491 if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu)) 1492 goto out; 1493 1494 color_fprintf(stdout, color, " %12.6f secs ", (double)timestamp/1e9); 1495 if (new_shortname) { 1496 const char *pid_color = color; 1497 1498 if (thread__has_color(sched_in)) 1499 pid_color = COLOR_PIDS; 1500 1501 color_fprintf(stdout, pid_color, "%s => %s:%d", 1502 sched_in->shortname, thread__comm_str(sched_in), sched_in->tid); 1503 } 1504 1505 if (sched->map.comp && new_cpu) 1506 color_fprintf(stdout, color, " (CPU %d)", this_cpu); 1507 1508 out: 1509 color_fprintf(stdout, color, "\n"); 1510 1511 thread__put(sched_in); 1512 1513 return 0; 1514 } 1515 1516 static int process_sched_switch_event(struct perf_tool *tool, 1517 struct perf_evsel *evsel, 1518 struct perf_sample *sample, 1519 struct machine *machine) 1520 { 1521 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1522 int this_cpu = sample->cpu, err = 0; 1523 u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"), 1524 next_pid = perf_evsel__intval(evsel, sample, "next_pid"); 1525 1526 if (sched->curr_pid[this_cpu] != (u32)-1) { 1527 /* 1528 * Are we trying to switch away a PID that is 1529 * not current? 1530 */ 1531 if (sched->curr_pid[this_cpu] != prev_pid) 1532 sched->nr_context_switch_bugs++; 1533 } 1534 1535 if (sched->tp_handler->switch_event) 1536 err = sched->tp_handler->switch_event(sched, evsel, sample, machine); 1537 1538 sched->curr_pid[this_cpu] = next_pid; 1539 return err; 1540 } 1541 1542 static int process_sched_runtime_event(struct perf_tool *tool, 1543 struct perf_evsel *evsel, 1544 struct perf_sample *sample, 1545 struct machine *machine) 1546 { 1547 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1548 1549 if (sched->tp_handler->runtime_event) 1550 return sched->tp_handler->runtime_event(sched, evsel, sample, machine); 1551 1552 return 0; 1553 } 1554 1555 static int perf_sched__process_fork_event(struct perf_tool *tool, 1556 union perf_event *event, 1557 struct perf_sample *sample, 1558 struct machine *machine) 1559 { 1560 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1561 1562 /* run the fork event through the perf machineruy */ 1563 perf_event__process_fork(tool, event, sample, machine); 1564 1565 /* and then run additional processing needed for this command */ 1566 if (sched->tp_handler->fork_event) 1567 return sched->tp_handler->fork_event(sched, event, machine); 1568 1569 return 0; 1570 } 1571 1572 static int process_sched_migrate_task_event(struct perf_tool *tool, 1573 struct perf_evsel *evsel, 1574 struct perf_sample *sample, 1575 struct machine *machine) 1576 { 1577 struct perf_sched *sched = container_of(tool, struct perf_sched, tool); 1578 1579 if (sched->tp_handler->migrate_task_event) 1580 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine); 1581 1582 return 0; 1583 } 1584 1585 typedef int (*tracepoint_handler)(struct perf_tool *tool, 1586 struct perf_evsel *evsel, 1587 struct perf_sample *sample, 1588 struct machine *machine); 1589 1590 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused, 1591 union perf_event *event __maybe_unused, 1592 struct perf_sample *sample, 1593 struct perf_evsel *evsel, 1594 struct machine *machine) 1595 { 1596 int err = 0; 1597 1598 if (evsel->handler != NULL) { 1599 tracepoint_handler f = evsel->handler; 1600 err = f(tool, evsel, sample, machine); 1601 } 1602 1603 return err; 1604 } 1605 1606 static int perf_sched__read_events(struct perf_sched *sched) 1607 { 1608 const struct perf_evsel_str_handler handlers[] = { 1609 { "sched:sched_switch", process_sched_switch_event, }, 1610 { "sched:sched_stat_runtime", process_sched_runtime_event, }, 1611 { "sched:sched_wakeup", process_sched_wakeup_event, }, 1612 { "sched:sched_wakeup_new", process_sched_wakeup_event, }, 1613 { "sched:sched_migrate_task", process_sched_migrate_task_event, }, 1614 }; 1615 struct perf_session *session; 1616 struct perf_data_file file = { 1617 .path = input_name, 1618 .mode = PERF_DATA_MODE_READ, 1619 .force = sched->force, 1620 }; 1621 int rc = -1; 1622 1623 session = perf_session__new(&file, false, &sched->tool); 1624 if (session == NULL) { 1625 pr_debug("No Memory for session\n"); 1626 return -1; 1627 } 1628 1629 symbol__init(&session->header.env); 1630 1631 if (perf_session__set_tracepoints_handlers(session, handlers)) 1632 goto out_delete; 1633 1634 if (perf_session__has_traces(session, "record -R")) { 1635 int err = perf_session__process_events(session); 1636 if (err) { 1637 pr_err("Failed to process events, error %d", err); 1638 goto out_delete; 1639 } 1640 1641 sched->nr_events = session->evlist->stats.nr_events[0]; 1642 sched->nr_lost_events = session->evlist->stats.total_lost; 1643 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST]; 1644 } 1645 1646 rc = 0; 1647 out_delete: 1648 perf_session__delete(session); 1649 return rc; 1650 } 1651 1652 static void print_bad_events(struct perf_sched *sched) 1653 { 1654 if (sched->nr_unordered_timestamps && sched->nr_timestamps) { 1655 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n", 1656 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0, 1657 sched->nr_unordered_timestamps, sched->nr_timestamps); 1658 } 1659 if (sched->nr_lost_events && sched->nr_events) { 1660 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n", 1661 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0, 1662 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks); 1663 } 1664 if (sched->nr_context_switch_bugs && sched->nr_timestamps) { 1665 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)", 1666 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0, 1667 sched->nr_context_switch_bugs, sched->nr_timestamps); 1668 if (sched->nr_lost_events) 1669 printf(" (due to lost events?)"); 1670 printf("\n"); 1671 } 1672 } 1673 1674 static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data) 1675 { 1676 struct rb_node **new = &(root->rb_node), *parent = NULL; 1677 struct work_atoms *this; 1678 const char *comm = thread__comm_str(data->thread), *this_comm; 1679 1680 while (*new) { 1681 int cmp; 1682 1683 this = container_of(*new, struct work_atoms, node); 1684 parent = *new; 1685 1686 this_comm = thread__comm_str(this->thread); 1687 cmp = strcmp(comm, this_comm); 1688 if (cmp > 0) { 1689 new = &((*new)->rb_left); 1690 } else if (cmp < 0) { 1691 new = &((*new)->rb_right); 1692 } else { 1693 this->num_merged++; 1694 this->total_runtime += data->total_runtime; 1695 this->nb_atoms += data->nb_atoms; 1696 this->total_lat += data->total_lat; 1697 list_splice(&data->work_list, &this->work_list); 1698 if (this->max_lat < data->max_lat) { 1699 this->max_lat = data->max_lat; 1700 this->max_lat_at = data->max_lat_at; 1701 } 1702 zfree(&data); 1703 return; 1704 } 1705 } 1706 1707 data->num_merged++; 1708 rb_link_node(&data->node, parent, new); 1709 rb_insert_color(&data->node, root); 1710 } 1711 1712 static void perf_sched__merge_lat(struct perf_sched *sched) 1713 { 1714 struct work_atoms *data; 1715 struct rb_node *node; 1716 1717 if (sched->skip_merge) 1718 return; 1719 1720 while ((node = rb_first(&sched->atom_root))) { 1721 rb_erase(node, &sched->atom_root); 1722 data = rb_entry(node, struct work_atoms, node); 1723 __merge_work_atoms(&sched->merged_atom_root, data); 1724 } 1725 } 1726 1727 static int perf_sched__lat(struct perf_sched *sched) 1728 { 1729 struct rb_node *next; 1730 1731 setup_pager(); 1732 1733 if (perf_sched__read_events(sched)) 1734 return -1; 1735 1736 perf_sched__merge_lat(sched); 1737 perf_sched__sort_lat(sched); 1738 1739 printf("\n -----------------------------------------------------------------------------------------------------------------\n"); 1740 printf(" Task | Runtime ms | Switches | Average delay ms | Maximum delay ms | Maximum delay at |\n"); 1741 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 1742 1743 next = rb_first(&sched->sorted_atom_root); 1744 1745 while (next) { 1746 struct work_atoms *work_list; 1747 1748 work_list = rb_entry(next, struct work_atoms, node); 1749 output_lat_thread(sched, work_list); 1750 next = rb_next(next); 1751 thread__zput(work_list->thread); 1752 } 1753 1754 printf(" -----------------------------------------------------------------------------------------------------------------\n"); 1755 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n", 1756 (double)sched->all_runtime / 1e6, sched->all_count); 1757 1758 printf(" ---------------------------------------------------\n"); 1759 1760 print_bad_events(sched); 1761 printf("\n"); 1762 1763 return 0; 1764 } 1765 1766 static int setup_map_cpus(struct perf_sched *sched) 1767 { 1768 struct cpu_map *map; 1769 1770 sched->max_cpu = sysconf(_SC_NPROCESSORS_CONF); 1771 1772 if (sched->map.comp) { 1773 sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int)); 1774 if (!sched->map.comp_cpus) 1775 return -1; 1776 } 1777 1778 if (!sched->map.cpus_str) 1779 return 0; 1780 1781 map = cpu_map__new(sched->map.cpus_str); 1782 if (!map) { 1783 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str); 1784 return -1; 1785 } 1786 1787 sched->map.cpus = map; 1788 return 0; 1789 } 1790 1791 static int setup_color_pids(struct perf_sched *sched) 1792 { 1793 struct thread_map *map; 1794 1795 if (!sched->map.color_pids_str) 1796 return 0; 1797 1798 map = thread_map__new_by_tid_str(sched->map.color_pids_str); 1799 if (!map) { 1800 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str); 1801 return -1; 1802 } 1803 1804 sched->map.color_pids = map; 1805 return 0; 1806 } 1807 1808 static int setup_color_cpus(struct perf_sched *sched) 1809 { 1810 struct cpu_map *map; 1811 1812 if (!sched->map.color_cpus_str) 1813 return 0; 1814 1815 map = cpu_map__new(sched->map.color_cpus_str); 1816 if (!map) { 1817 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str); 1818 return -1; 1819 } 1820 1821 sched->map.color_cpus = map; 1822 return 0; 1823 } 1824 1825 static int perf_sched__map(struct perf_sched *sched) 1826 { 1827 if (setup_map_cpus(sched)) 1828 return -1; 1829 1830 if (setup_color_pids(sched)) 1831 return -1; 1832 1833 if (setup_color_cpus(sched)) 1834 return -1; 1835 1836 setup_pager(); 1837 if (perf_sched__read_events(sched)) 1838 return -1; 1839 print_bad_events(sched); 1840 return 0; 1841 } 1842 1843 static int perf_sched__replay(struct perf_sched *sched) 1844 { 1845 unsigned long i; 1846 1847 calibrate_run_measurement_overhead(sched); 1848 calibrate_sleep_measurement_overhead(sched); 1849 1850 test_calibrations(sched); 1851 1852 if (perf_sched__read_events(sched)) 1853 return -1; 1854 1855 printf("nr_run_events: %ld\n", sched->nr_run_events); 1856 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events); 1857 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events); 1858 1859 if (sched->targetless_wakeups) 1860 printf("target-less wakeups: %ld\n", sched->targetless_wakeups); 1861 if (sched->multitarget_wakeups) 1862 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups); 1863 if (sched->nr_run_events_optimized) 1864 printf("run atoms optimized: %ld\n", 1865 sched->nr_run_events_optimized); 1866 1867 print_task_traces(sched); 1868 add_cross_task_wakeups(sched); 1869 1870 create_tasks(sched); 1871 printf("------------------------------------------------------------\n"); 1872 for (i = 0; i < sched->replay_repeat; i++) 1873 run_one_test(sched); 1874 1875 return 0; 1876 } 1877 1878 static void setup_sorting(struct perf_sched *sched, const struct option *options, 1879 const char * const usage_msg[]) 1880 { 1881 char *tmp, *tok, *str = strdup(sched->sort_order); 1882 1883 for (tok = strtok_r(str, ", ", &tmp); 1884 tok; tok = strtok_r(NULL, ", ", &tmp)) { 1885 if (sort_dimension__add(tok, &sched->sort_list) < 0) { 1886 usage_with_options_msg(usage_msg, options, 1887 "Unknown --sort key: `%s'", tok); 1888 } 1889 } 1890 1891 free(str); 1892 1893 sort_dimension__add("pid", &sched->cmp_pid); 1894 } 1895 1896 static int __cmd_record(int argc, const char **argv) 1897 { 1898 unsigned int rec_argc, i, j; 1899 const char **rec_argv; 1900 const char * const record_args[] = { 1901 "record", 1902 "-a", 1903 "-R", 1904 "-m", "1024", 1905 "-c", "1", 1906 "-e", "sched:sched_switch", 1907 "-e", "sched:sched_stat_wait", 1908 "-e", "sched:sched_stat_sleep", 1909 "-e", "sched:sched_stat_iowait", 1910 "-e", "sched:sched_stat_runtime", 1911 "-e", "sched:sched_process_fork", 1912 "-e", "sched:sched_wakeup", 1913 "-e", "sched:sched_wakeup_new", 1914 "-e", "sched:sched_migrate_task", 1915 }; 1916 1917 rec_argc = ARRAY_SIZE(record_args) + argc - 1; 1918 rec_argv = calloc(rec_argc + 1, sizeof(char *)); 1919 1920 if (rec_argv == NULL) 1921 return -ENOMEM; 1922 1923 for (i = 0; i < ARRAY_SIZE(record_args); i++) 1924 rec_argv[i] = strdup(record_args[i]); 1925 1926 for (j = 1; j < (unsigned int)argc; j++, i++) 1927 rec_argv[i] = argv[j]; 1928 1929 BUG_ON(i != rec_argc); 1930 1931 return cmd_record(i, rec_argv, NULL); 1932 } 1933 1934 int cmd_sched(int argc, const char **argv, const char *prefix __maybe_unused) 1935 { 1936 const char default_sort_order[] = "avg, max, switch, runtime"; 1937 struct perf_sched sched = { 1938 .tool = { 1939 .sample = perf_sched__process_tracepoint_sample, 1940 .comm = perf_event__process_comm, 1941 .lost = perf_event__process_lost, 1942 .fork = perf_sched__process_fork_event, 1943 .ordered_events = true, 1944 }, 1945 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid), 1946 .sort_list = LIST_HEAD_INIT(sched.sort_list), 1947 .start_work_mutex = PTHREAD_MUTEX_INITIALIZER, 1948 .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER, 1949 .sort_order = default_sort_order, 1950 .replay_repeat = 10, 1951 .profile_cpu = -1, 1952 .next_shortname1 = 'A', 1953 .next_shortname2 = '0', 1954 .skip_merge = 0, 1955 }; 1956 const struct option latency_options[] = { 1957 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]", 1958 "sort by key(s): runtime, switch, avg, max"), 1959 OPT_INCR('v', "verbose", &verbose, 1960 "be more verbose (show symbol address, etc)"), 1961 OPT_INTEGER('C', "CPU", &sched.profile_cpu, 1962 "CPU to profile on"), 1963 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 1964 "dump raw trace in ASCII"), 1965 OPT_BOOLEAN('p', "pids", &sched.skip_merge, 1966 "latency stats per pid instead of per comm"), 1967 OPT_END() 1968 }; 1969 const struct option replay_options[] = { 1970 OPT_UINTEGER('r', "repeat", &sched.replay_repeat, 1971 "repeat the workload replay N times (-1: infinite)"), 1972 OPT_INCR('v', "verbose", &verbose, 1973 "be more verbose (show symbol address, etc)"), 1974 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 1975 "dump raw trace in ASCII"), 1976 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"), 1977 OPT_END() 1978 }; 1979 const struct option sched_options[] = { 1980 OPT_STRING('i', "input", &input_name, "file", 1981 "input file name"), 1982 OPT_INCR('v', "verbose", &verbose, 1983 "be more verbose (show symbol address, etc)"), 1984 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace, 1985 "dump raw trace in ASCII"), 1986 OPT_END() 1987 }; 1988 const struct option map_options[] = { 1989 OPT_BOOLEAN(0, "compact", &sched.map.comp, 1990 "map output in compact mode"), 1991 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids", 1992 "highlight given pids in map"), 1993 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus", 1994 "highlight given CPUs in map"), 1995 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus", 1996 "display given CPUs in map"), 1997 OPT_END() 1998 }; 1999 const char * const latency_usage[] = { 2000 "perf sched latency [<options>]", 2001 NULL 2002 }; 2003 const char * const replay_usage[] = { 2004 "perf sched replay [<options>]", 2005 NULL 2006 }; 2007 const char * const map_usage[] = { 2008 "perf sched map [<options>]", 2009 NULL 2010 }; 2011 const char *const sched_subcommands[] = { "record", "latency", "map", 2012 "replay", "script", NULL }; 2013 const char *sched_usage[] = { 2014 NULL, 2015 NULL 2016 }; 2017 struct trace_sched_handler lat_ops = { 2018 .wakeup_event = latency_wakeup_event, 2019 .switch_event = latency_switch_event, 2020 .runtime_event = latency_runtime_event, 2021 .migrate_task_event = latency_migrate_task_event, 2022 }; 2023 struct trace_sched_handler map_ops = { 2024 .switch_event = map_switch_event, 2025 }; 2026 struct trace_sched_handler replay_ops = { 2027 .wakeup_event = replay_wakeup_event, 2028 .switch_event = replay_switch_event, 2029 .fork_event = replay_fork_event, 2030 }; 2031 unsigned int i; 2032 2033 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++) 2034 sched.curr_pid[i] = -1; 2035 2036 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands, 2037 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION); 2038 if (!argc) 2039 usage_with_options(sched_usage, sched_options); 2040 2041 /* 2042 * Aliased to 'perf script' for now: 2043 */ 2044 if (!strcmp(argv[0], "script")) 2045 return cmd_script(argc, argv, prefix); 2046 2047 if (!strncmp(argv[0], "rec", 3)) { 2048 return __cmd_record(argc, argv); 2049 } else if (!strncmp(argv[0], "lat", 3)) { 2050 sched.tp_handler = &lat_ops; 2051 if (argc > 1) { 2052 argc = parse_options(argc, argv, latency_options, latency_usage, 0); 2053 if (argc) 2054 usage_with_options(latency_usage, latency_options); 2055 } 2056 setup_sorting(&sched, latency_options, latency_usage); 2057 return perf_sched__lat(&sched); 2058 } else if (!strcmp(argv[0], "map")) { 2059 if (argc) { 2060 argc = parse_options(argc, argv, map_options, map_usage, 0); 2061 if (argc) 2062 usage_with_options(map_usage, map_options); 2063 } 2064 sched.tp_handler = &map_ops; 2065 setup_sorting(&sched, latency_options, latency_usage); 2066 return perf_sched__map(&sched); 2067 } else if (!strncmp(argv[0], "rep", 3)) { 2068 sched.tp_handler = &replay_ops; 2069 if (argc) { 2070 argc = parse_options(argc, argv, replay_options, replay_usage, 0); 2071 if (argc) 2072 usage_with_options(replay_usage, replay_options); 2073 } 2074 return perf_sched__replay(&sched); 2075 } else { 2076 usage_with_options(sched_usage, sched_options); 2077 } 2078 2079 return 0; 2080 } 2081