1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * numa.c 4 * 5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 6 */ 7 8 #include <inttypes.h> 9 /* For the CLR_() macros */ 10 #include <pthread.h> 11 12 #include <subcmd/parse-options.h> 13 #include "../util/cloexec.h" 14 15 #include "bench.h" 16 17 #include <errno.h> 18 #include <sched.h> 19 #include <stdio.h> 20 #include <assert.h> 21 #include <malloc.h> 22 #include <signal.h> 23 #include <stdlib.h> 24 #include <string.h> 25 #include <unistd.h> 26 #include <sys/mman.h> 27 #include <sys/time.h> 28 #include <sys/resource.h> 29 #include <sys/wait.h> 30 #include <sys/prctl.h> 31 #include <sys/types.h> 32 #include <linux/kernel.h> 33 #include <linux/time64.h> 34 #include <linux/numa.h> 35 #include <linux/zalloc.h> 36 37 #include "../util/header.h" 38 #include <numa.h> 39 #include <numaif.h> 40 41 #ifndef RUSAGE_THREAD 42 # define RUSAGE_THREAD 1 43 #endif 44 45 /* 46 * Regular printout to the terminal, suppressed if -q is specified: 47 */ 48 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 49 50 /* 51 * Debug printf: 52 */ 53 #undef dprintf 54 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 55 56 struct thread_data { 57 int curr_cpu; 58 cpu_set_t *bind_cpumask; 59 int bind_node; 60 u8 *process_data; 61 int process_nr; 62 int thread_nr; 63 int task_nr; 64 unsigned int loops_done; 65 u64 val; 66 u64 runtime_ns; 67 u64 system_time_ns; 68 u64 user_time_ns; 69 double speed_gbs; 70 pthread_mutex_t *process_lock; 71 }; 72 73 /* Parameters set by options: */ 74 75 struct params { 76 /* Startup synchronization: */ 77 bool serialize_startup; 78 79 /* Task hierarchy: */ 80 int nr_proc; 81 int nr_threads; 82 83 /* Working set sizes: */ 84 const char *mb_global_str; 85 const char *mb_proc_str; 86 const char *mb_proc_locked_str; 87 const char *mb_thread_str; 88 89 double mb_global; 90 double mb_proc; 91 double mb_proc_locked; 92 double mb_thread; 93 94 /* Access patterns to the working set: */ 95 bool data_reads; 96 bool data_writes; 97 bool data_backwards; 98 bool data_zero_memset; 99 bool data_rand_walk; 100 u32 nr_loops; 101 u32 nr_secs; 102 u32 sleep_usecs; 103 104 /* Working set initialization: */ 105 bool init_zero; 106 bool init_random; 107 bool init_cpu0; 108 109 /* Misc options: */ 110 int show_details; 111 int run_all; 112 int thp; 113 114 long bytes_global; 115 long bytes_process; 116 long bytes_process_locked; 117 long bytes_thread; 118 119 int nr_tasks; 120 bool show_quiet; 121 122 bool show_convergence; 123 bool measure_convergence; 124 125 int perturb_secs; 126 int nr_cpus; 127 int nr_nodes; 128 129 /* Affinity options -C and -N: */ 130 char *cpu_list_str; 131 char *node_list_str; 132 }; 133 134 135 /* Global, read-writable area, accessible to all processes and threads: */ 136 137 struct global_info { 138 u8 *data; 139 140 pthread_mutex_t startup_mutex; 141 pthread_cond_t startup_cond; 142 int nr_tasks_started; 143 144 pthread_mutex_t start_work_mutex; 145 pthread_cond_t start_work_cond; 146 int nr_tasks_working; 147 bool start_work; 148 149 pthread_mutex_t stop_work_mutex; 150 u64 bytes_done; 151 152 struct thread_data *threads; 153 154 /* Convergence latency measurement: */ 155 bool all_converged; 156 bool stop_work; 157 158 int print_once; 159 160 struct params p; 161 }; 162 163 static struct global_info *g = NULL; 164 165 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 166 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 167 168 struct params p0; 169 170 static const struct option options[] = { 171 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 172 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 173 174 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 175 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 176 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 177 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 178 179 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 180 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 181 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 182 183 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"), 184 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 185 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 186 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 187 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 188 189 190 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 191 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 192 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 193 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 194 195 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 196 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 197 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 198 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, " 199 "convergence is reached when each process (all its threads) is running on a single NUMA node."), 200 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 201 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 202 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 203 204 /* Special option string parsing callbacks: */ 205 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 206 "bind the first N tasks to these specific cpus (the rest is unbound)", 207 parse_cpus_opt), 208 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 209 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 210 parse_nodes_opt), 211 OPT_END() 212 }; 213 214 static const char * const bench_numa_usage[] = { 215 "perf bench numa <options>", 216 NULL 217 }; 218 219 static const char * const numa_usage[] = { 220 "perf bench numa mem [<options>]", 221 NULL 222 }; 223 224 /* 225 * To get number of numa nodes present. 226 */ 227 static int nr_numa_nodes(void) 228 { 229 int i, nr_nodes = 0; 230 231 for (i = 0; i < g->p.nr_nodes; i++) { 232 if (numa_bitmask_isbitset(numa_nodes_ptr, i)) 233 nr_nodes++; 234 } 235 236 return nr_nodes; 237 } 238 239 /* 240 * To check if given numa node is present. 241 */ 242 static int is_node_present(int node) 243 { 244 return numa_bitmask_isbitset(numa_nodes_ptr, node); 245 } 246 247 /* 248 * To check given numa node has cpus. 249 */ 250 static bool node_has_cpus(int node) 251 { 252 struct bitmask *cpumask = numa_allocate_cpumask(); 253 bool ret = false; /* fall back to nocpus */ 254 int cpu; 255 256 BUG_ON(!cpumask); 257 if (!numa_node_to_cpus(node, cpumask)) { 258 for (cpu = 0; cpu < (int)cpumask->size; cpu++) { 259 if (numa_bitmask_isbitset(cpumask, cpu)) { 260 ret = true; 261 break; 262 } 263 } 264 } 265 numa_free_cpumask(cpumask); 266 267 return ret; 268 } 269 270 static cpu_set_t *bind_to_cpu(int target_cpu) 271 { 272 int nrcpus = numa_num_possible_cpus(); 273 cpu_set_t *orig_mask, *mask; 274 size_t size; 275 276 orig_mask = CPU_ALLOC(nrcpus); 277 BUG_ON(!orig_mask); 278 size = CPU_ALLOC_SIZE(nrcpus); 279 CPU_ZERO_S(size, orig_mask); 280 281 if (sched_getaffinity(0, size, orig_mask)) 282 goto err_out; 283 284 mask = CPU_ALLOC(nrcpus); 285 if (!mask) 286 goto err_out; 287 288 CPU_ZERO_S(size, mask); 289 290 if (target_cpu == -1) { 291 int cpu; 292 293 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 294 CPU_SET_S(cpu, size, mask); 295 } else { 296 if (target_cpu < 0 || target_cpu >= g->p.nr_cpus) 297 goto err; 298 299 CPU_SET_S(target_cpu, size, mask); 300 } 301 302 if (sched_setaffinity(0, size, mask)) 303 goto err; 304 305 return orig_mask; 306 307 err: 308 CPU_FREE(mask); 309 err_out: 310 CPU_FREE(orig_mask); 311 312 /* BUG_ON due to failure in allocation of orig_mask/mask */ 313 BUG_ON(-1); 314 } 315 316 static cpu_set_t *bind_to_node(int target_node) 317 { 318 int nrcpus = numa_num_possible_cpus(); 319 size_t size; 320 cpu_set_t *orig_mask, *mask; 321 int cpu; 322 323 orig_mask = CPU_ALLOC(nrcpus); 324 BUG_ON(!orig_mask); 325 size = CPU_ALLOC_SIZE(nrcpus); 326 CPU_ZERO_S(size, orig_mask); 327 328 if (sched_getaffinity(0, size, orig_mask)) 329 goto err_out; 330 331 mask = CPU_ALLOC(nrcpus); 332 if (!mask) 333 goto err_out; 334 335 CPU_ZERO_S(size, mask); 336 337 if (target_node == NUMA_NO_NODE) { 338 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 339 CPU_SET_S(cpu, size, mask); 340 } else { 341 struct bitmask *cpumask = numa_allocate_cpumask(); 342 343 if (!cpumask) 344 goto err; 345 346 if (!numa_node_to_cpus(target_node, cpumask)) { 347 for (cpu = 0; cpu < (int)cpumask->size; cpu++) { 348 if (numa_bitmask_isbitset(cpumask, cpu)) 349 CPU_SET_S(cpu, size, mask); 350 } 351 } 352 numa_free_cpumask(cpumask); 353 } 354 355 if (sched_setaffinity(0, size, mask)) 356 goto err; 357 358 return orig_mask; 359 360 err: 361 CPU_FREE(mask); 362 err_out: 363 CPU_FREE(orig_mask); 364 365 /* BUG_ON due to failure in allocation of orig_mask/mask */ 366 BUG_ON(-1); 367 } 368 369 static void bind_to_cpumask(cpu_set_t *mask) 370 { 371 int ret; 372 size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus()); 373 374 ret = sched_setaffinity(0, size, mask); 375 if (ret) { 376 CPU_FREE(mask); 377 BUG_ON(ret); 378 } 379 } 380 381 static void mempol_restore(void) 382 { 383 int ret; 384 385 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 386 387 BUG_ON(ret); 388 } 389 390 static void bind_to_memnode(int node) 391 { 392 struct bitmask *node_mask; 393 int ret; 394 395 if (node == NUMA_NO_NODE) 396 return; 397 398 node_mask = numa_allocate_nodemask(); 399 BUG_ON(!node_mask); 400 401 numa_bitmask_clearall(node_mask); 402 numa_bitmask_setbit(node_mask, node); 403 404 ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1); 405 dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret); 406 407 numa_bitmask_free(node_mask); 408 BUG_ON(ret); 409 } 410 411 #define HPSIZE (2*1024*1024) 412 413 #define set_taskname(fmt...) \ 414 do { \ 415 char name[20]; \ 416 \ 417 snprintf(name, 20, fmt); \ 418 prctl(PR_SET_NAME, name); \ 419 } while (0) 420 421 static u8 *alloc_data(ssize_t bytes0, int map_flags, 422 int init_zero, int init_cpu0, int thp, int init_random) 423 { 424 cpu_set_t *orig_mask = NULL; 425 ssize_t bytes; 426 u8 *buf; 427 int ret; 428 429 if (!bytes0) 430 return NULL; 431 432 /* Allocate and initialize all memory on CPU#0: */ 433 if (init_cpu0) { 434 int node = numa_node_of_cpu(0); 435 436 orig_mask = bind_to_node(node); 437 bind_to_memnode(node); 438 } 439 440 bytes = bytes0 + HPSIZE; 441 442 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 443 BUG_ON(buf == (void *)-1); 444 445 if (map_flags == MAP_PRIVATE) { 446 if (thp > 0) { 447 ret = madvise(buf, bytes, MADV_HUGEPAGE); 448 if (ret && !g->print_once) { 449 g->print_once = 1; 450 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 451 } 452 } 453 if (thp < 0) { 454 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 455 if (ret && !g->print_once) { 456 g->print_once = 1; 457 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 458 } 459 } 460 } 461 462 if (init_zero) { 463 bzero(buf, bytes); 464 } else { 465 /* Initialize random contents, different in each word: */ 466 if (init_random) { 467 u64 *wbuf = (void *)buf; 468 long off = rand(); 469 long i; 470 471 for (i = 0; i < bytes/8; i++) 472 wbuf[i] = i + off; 473 } 474 } 475 476 /* Align to 2MB boundary: */ 477 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 478 479 /* Restore affinity: */ 480 if (init_cpu0) { 481 bind_to_cpumask(orig_mask); 482 CPU_FREE(orig_mask); 483 mempol_restore(); 484 } 485 486 return buf; 487 } 488 489 static void free_data(void *data, ssize_t bytes) 490 { 491 int ret; 492 493 if (!data) 494 return; 495 496 ret = munmap(data, bytes); 497 BUG_ON(ret); 498 } 499 500 /* 501 * Create a shared memory buffer that can be shared between processes, zeroed: 502 */ 503 static void * zalloc_shared_data(ssize_t bytes) 504 { 505 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 506 } 507 508 /* 509 * Create a shared memory buffer that can be shared between processes: 510 */ 511 static void * setup_shared_data(ssize_t bytes) 512 { 513 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 514 } 515 516 /* 517 * Allocate process-local memory - this will either be shared between 518 * threads of this process, or only be accessed by this thread: 519 */ 520 static void * setup_private_data(ssize_t bytes) 521 { 522 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 523 } 524 525 /* 526 * Return a process-shared (global) mutex: 527 */ 528 static void init_global_mutex(pthread_mutex_t *mutex) 529 { 530 pthread_mutexattr_t attr; 531 532 pthread_mutexattr_init(&attr); 533 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 534 pthread_mutex_init(mutex, &attr); 535 } 536 537 /* 538 * Return a process-shared (global) condition variable: 539 */ 540 static void init_global_cond(pthread_cond_t *cond) 541 { 542 pthread_condattr_t attr; 543 544 pthread_condattr_init(&attr); 545 pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 546 pthread_cond_init(cond, &attr); 547 } 548 549 static int parse_cpu_list(const char *arg) 550 { 551 p0.cpu_list_str = strdup(arg); 552 553 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 554 555 return 0; 556 } 557 558 static int parse_setup_cpu_list(void) 559 { 560 struct thread_data *td; 561 char *str0, *str; 562 int t; 563 564 if (!g->p.cpu_list_str) 565 return 0; 566 567 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 568 569 str0 = str = strdup(g->p.cpu_list_str); 570 t = 0; 571 572 BUG_ON(!str); 573 574 tprintf("# binding tasks to CPUs:\n"); 575 tprintf("# "); 576 577 while (true) { 578 int bind_cpu, bind_cpu_0, bind_cpu_1; 579 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 580 int bind_len; 581 int step; 582 int mul; 583 584 tok = strsep(&str, ","); 585 if (!tok) 586 break; 587 588 tok_end = strstr(tok, "-"); 589 590 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 591 if (!tok_end) { 592 /* Single CPU specified: */ 593 bind_cpu_0 = bind_cpu_1 = atol(tok); 594 } else { 595 /* CPU range specified (for example: "5-11"): */ 596 bind_cpu_0 = atol(tok); 597 bind_cpu_1 = atol(tok_end + 1); 598 } 599 600 step = 1; 601 tok_step = strstr(tok, "#"); 602 if (tok_step) { 603 step = atol(tok_step + 1); 604 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 605 } 606 607 /* 608 * Mask length. 609 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 610 * where the _4 means the next 4 CPUs are allowed. 611 */ 612 bind_len = 1; 613 tok_len = strstr(tok, "_"); 614 if (tok_len) { 615 bind_len = atol(tok_len + 1); 616 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 617 } 618 619 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 620 mul = 1; 621 tok_mul = strstr(tok, "x"); 622 if (tok_mul) { 623 mul = atol(tok_mul + 1); 624 BUG_ON(mul <= 0); 625 } 626 627 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 628 629 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 630 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 631 return -1; 632 } 633 634 if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) { 635 printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n"); 636 return -1; 637 } 638 639 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 640 BUG_ON(bind_cpu_0 > bind_cpu_1); 641 642 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 643 size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus); 644 int i; 645 646 for (i = 0; i < mul; i++) { 647 int cpu; 648 649 if (t >= g->p.nr_tasks) { 650 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 651 goto out; 652 } 653 td = g->threads + t; 654 655 if (t) 656 tprintf(","); 657 if (bind_len > 1) { 658 tprintf("%2d/%d", bind_cpu, bind_len); 659 } else { 660 tprintf("%2d", bind_cpu); 661 } 662 663 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus); 664 BUG_ON(!td->bind_cpumask); 665 CPU_ZERO_S(size, td->bind_cpumask); 666 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 667 if (cpu < 0 || cpu >= g->p.nr_cpus) { 668 CPU_FREE(td->bind_cpumask); 669 BUG_ON(-1); 670 } 671 CPU_SET_S(cpu, size, td->bind_cpumask); 672 } 673 t++; 674 } 675 } 676 } 677 out: 678 679 tprintf("\n"); 680 681 if (t < g->p.nr_tasks) 682 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 683 684 free(str0); 685 return 0; 686 } 687 688 static int parse_cpus_opt(const struct option *opt __maybe_unused, 689 const char *arg, int unset __maybe_unused) 690 { 691 if (!arg) 692 return -1; 693 694 return parse_cpu_list(arg); 695 } 696 697 static int parse_node_list(const char *arg) 698 { 699 p0.node_list_str = strdup(arg); 700 701 dprintf("got NODE list: {%s}\n", p0.node_list_str); 702 703 return 0; 704 } 705 706 static int parse_setup_node_list(void) 707 { 708 struct thread_data *td; 709 char *str0, *str; 710 int t; 711 712 if (!g->p.node_list_str) 713 return 0; 714 715 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 716 717 str0 = str = strdup(g->p.node_list_str); 718 t = 0; 719 720 BUG_ON(!str); 721 722 tprintf("# binding tasks to NODEs:\n"); 723 tprintf("# "); 724 725 while (true) { 726 int bind_node, bind_node_0, bind_node_1; 727 char *tok, *tok_end, *tok_step, *tok_mul; 728 int step; 729 int mul; 730 731 tok = strsep(&str, ","); 732 if (!tok) 733 break; 734 735 tok_end = strstr(tok, "-"); 736 737 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 738 if (!tok_end) { 739 /* Single NODE specified: */ 740 bind_node_0 = bind_node_1 = atol(tok); 741 } else { 742 /* NODE range specified (for example: "5-11"): */ 743 bind_node_0 = atol(tok); 744 bind_node_1 = atol(tok_end + 1); 745 } 746 747 step = 1; 748 tok_step = strstr(tok, "#"); 749 if (tok_step) { 750 step = atol(tok_step + 1); 751 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 752 } 753 754 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 755 mul = 1; 756 tok_mul = strstr(tok, "x"); 757 if (tok_mul) { 758 mul = atol(tok_mul + 1); 759 BUG_ON(mul <= 0); 760 } 761 762 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 763 764 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 765 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 766 return -1; 767 } 768 769 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 770 BUG_ON(bind_node_0 > bind_node_1); 771 772 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 773 int i; 774 775 for (i = 0; i < mul; i++) { 776 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) { 777 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 778 goto out; 779 } 780 td = g->threads + t; 781 782 if (!t) 783 tprintf(" %2d", bind_node); 784 else 785 tprintf(",%2d", bind_node); 786 787 td->bind_node = bind_node; 788 t++; 789 } 790 } 791 } 792 out: 793 794 tprintf("\n"); 795 796 if (t < g->p.nr_tasks) 797 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 798 799 free(str0); 800 return 0; 801 } 802 803 static int parse_nodes_opt(const struct option *opt __maybe_unused, 804 const char *arg, int unset __maybe_unused) 805 { 806 if (!arg) 807 return -1; 808 809 return parse_node_list(arg); 810 } 811 812 static inline uint32_t lfsr_32(uint32_t lfsr) 813 { 814 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 815 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 816 } 817 818 /* 819 * Make sure there's real data dependency to RAM (when read 820 * accesses are enabled), so the compiler, the CPU and the 821 * kernel (KSM, zero page, etc.) cannot optimize away RAM 822 * accesses: 823 */ 824 static inline u64 access_data(u64 *data, u64 val) 825 { 826 if (g->p.data_reads) 827 val += *data; 828 if (g->p.data_writes) 829 *data = val + 1; 830 return val; 831 } 832 833 /* 834 * The worker process does two types of work, a forwards going 835 * loop and a backwards going loop. 836 * 837 * We do this so that on multiprocessor systems we do not create 838 * a 'train' of processing, with highly synchronized processes, 839 * skewing the whole benchmark. 840 */ 841 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 842 { 843 long words = bytes/sizeof(u64); 844 u64 *data = (void *)__data; 845 long chunk_0, chunk_1; 846 u64 *d0, *d, *d1; 847 long off; 848 long i; 849 850 BUG_ON(!data && words); 851 BUG_ON(data && !words); 852 853 if (!data) 854 return val; 855 856 /* Very simple memset() work variant: */ 857 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 858 bzero(data, bytes); 859 return val; 860 } 861 862 /* Spread out by PID/TID nr and by loop nr: */ 863 chunk_0 = words/nr_max; 864 chunk_1 = words/g->p.nr_loops; 865 off = nr*chunk_0 + loop*chunk_1; 866 867 while (off >= words) 868 off -= words; 869 870 if (g->p.data_rand_walk) { 871 u32 lfsr = nr + loop + val; 872 int j; 873 874 for (i = 0; i < words/1024; i++) { 875 long start, end; 876 877 lfsr = lfsr_32(lfsr); 878 879 start = lfsr % words; 880 end = min(start + 1024, words-1); 881 882 if (g->p.data_zero_memset) { 883 bzero(data + start, (end-start) * sizeof(u64)); 884 } else { 885 for (j = start; j < end; j++) 886 val = access_data(data + j, val); 887 } 888 } 889 } else if (!g->p.data_backwards || (nr + loop) & 1) { 890 /* Process data forwards: */ 891 892 d0 = data + off; 893 d = data + off + 1; 894 d1 = data + words; 895 896 for (;;) { 897 if (unlikely(d >= d1)) 898 d = data; 899 if (unlikely(d == d0)) 900 break; 901 902 val = access_data(d, val); 903 904 d++; 905 } 906 } else { 907 /* Process data backwards: */ 908 909 d0 = data + off; 910 d = data + off - 1; 911 d1 = data + words; 912 913 for (;;) { 914 if (unlikely(d < data)) 915 d = data + words-1; 916 if (unlikely(d == d0)) 917 break; 918 919 val = access_data(d, val); 920 921 d--; 922 } 923 } 924 925 return val; 926 } 927 928 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 929 { 930 unsigned int cpu; 931 932 cpu = sched_getcpu(); 933 934 g->threads[task_nr].curr_cpu = cpu; 935 prctl(0, bytes_worked); 936 } 937 938 /* 939 * Count the number of nodes a process's threads 940 * are spread out on. 941 * 942 * A count of 1 means that the process is compressed 943 * to a single node. A count of g->p.nr_nodes means it's 944 * spread out on the whole system. 945 */ 946 static int count_process_nodes(int process_nr) 947 { 948 char *node_present; 949 int nodes; 950 int n, t; 951 952 node_present = (char *)malloc(g->p.nr_nodes * sizeof(char)); 953 BUG_ON(!node_present); 954 for (nodes = 0; nodes < g->p.nr_nodes; nodes++) 955 node_present[nodes] = 0; 956 957 for (t = 0; t < g->p.nr_threads; t++) { 958 struct thread_data *td; 959 int task_nr; 960 int node; 961 962 task_nr = process_nr*g->p.nr_threads + t; 963 td = g->threads + task_nr; 964 965 node = numa_node_of_cpu(td->curr_cpu); 966 if (node < 0) /* curr_cpu was likely still -1 */ { 967 free(node_present); 968 return 0; 969 } 970 971 node_present[node] = 1; 972 } 973 974 nodes = 0; 975 976 for (n = 0; n < g->p.nr_nodes; n++) 977 nodes += node_present[n]; 978 979 free(node_present); 980 return nodes; 981 } 982 983 /* 984 * Count the number of distinct process-threads a node contains. 985 * 986 * A count of 1 means that the node contains only a single 987 * process. If all nodes on the system contain at most one 988 * process then we are well-converged. 989 */ 990 static int count_node_processes(int node) 991 { 992 int processes = 0; 993 int t, p; 994 995 for (p = 0; p < g->p.nr_proc; p++) { 996 for (t = 0; t < g->p.nr_threads; t++) { 997 struct thread_data *td; 998 int task_nr; 999 int n; 1000 1001 task_nr = p*g->p.nr_threads + t; 1002 td = g->threads + task_nr; 1003 1004 n = numa_node_of_cpu(td->curr_cpu); 1005 if (n == node) { 1006 processes++; 1007 break; 1008 } 1009 } 1010 } 1011 1012 return processes; 1013 } 1014 1015 static void calc_convergence_compression(int *strong) 1016 { 1017 unsigned int nodes_min, nodes_max; 1018 int p; 1019 1020 nodes_min = -1; 1021 nodes_max = 0; 1022 1023 for (p = 0; p < g->p.nr_proc; p++) { 1024 unsigned int nodes = count_process_nodes(p); 1025 1026 if (!nodes) { 1027 *strong = 0; 1028 return; 1029 } 1030 1031 nodes_min = min(nodes, nodes_min); 1032 nodes_max = max(nodes, nodes_max); 1033 } 1034 1035 /* Strong convergence: all threads compress on a single node: */ 1036 if (nodes_min == 1 && nodes_max == 1) { 1037 *strong = 1; 1038 } else { 1039 *strong = 0; 1040 tprintf(" {%d-%d}", nodes_min, nodes_max); 1041 } 1042 } 1043 1044 static void calc_convergence(double runtime_ns_max, double *convergence) 1045 { 1046 unsigned int loops_done_min, loops_done_max; 1047 int process_groups; 1048 int *nodes; 1049 int distance; 1050 int nr_min; 1051 int nr_max; 1052 int strong; 1053 int sum; 1054 int nr; 1055 int node; 1056 int cpu; 1057 int t; 1058 1059 if (!g->p.show_convergence && !g->p.measure_convergence) 1060 return; 1061 1062 nodes = (int *)malloc(g->p.nr_nodes * sizeof(int)); 1063 BUG_ON(!nodes); 1064 for (node = 0; node < g->p.nr_nodes; node++) 1065 nodes[node] = 0; 1066 1067 loops_done_min = -1; 1068 loops_done_max = 0; 1069 1070 for (t = 0; t < g->p.nr_tasks; t++) { 1071 struct thread_data *td = g->threads + t; 1072 unsigned int loops_done; 1073 1074 cpu = td->curr_cpu; 1075 1076 /* Not all threads have written it yet: */ 1077 if (cpu < 0) 1078 continue; 1079 1080 node = numa_node_of_cpu(cpu); 1081 1082 nodes[node]++; 1083 1084 loops_done = td->loops_done; 1085 loops_done_min = min(loops_done, loops_done_min); 1086 loops_done_max = max(loops_done, loops_done_max); 1087 } 1088 1089 nr_max = 0; 1090 nr_min = g->p.nr_tasks; 1091 sum = 0; 1092 1093 for (node = 0; node < g->p.nr_nodes; node++) { 1094 if (!is_node_present(node)) 1095 continue; 1096 nr = nodes[node]; 1097 nr_min = min(nr, nr_min); 1098 nr_max = max(nr, nr_max); 1099 sum += nr; 1100 } 1101 BUG_ON(nr_min > nr_max); 1102 1103 BUG_ON(sum > g->p.nr_tasks); 1104 1105 if (0 && (sum < g->p.nr_tasks)) { 1106 free(nodes); 1107 return; 1108 } 1109 1110 /* 1111 * Count the number of distinct process groups present 1112 * on nodes - when we are converged this will decrease 1113 * to g->p.nr_proc: 1114 */ 1115 process_groups = 0; 1116 1117 for (node = 0; node < g->p.nr_nodes; node++) { 1118 int processes; 1119 1120 if (!is_node_present(node)) 1121 continue; 1122 processes = count_node_processes(node); 1123 nr = nodes[node]; 1124 tprintf(" %2d/%-2d", nr, processes); 1125 1126 process_groups += processes; 1127 } 1128 1129 distance = nr_max - nr_min; 1130 1131 tprintf(" [%2d/%-2d]", distance, process_groups); 1132 1133 tprintf(" l:%3d-%-3d (%3d)", 1134 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 1135 1136 if (loops_done_min && loops_done_max) { 1137 double skew = 1.0 - (double)loops_done_min/loops_done_max; 1138 1139 tprintf(" [%4.1f%%]", skew * 100.0); 1140 } 1141 1142 calc_convergence_compression(&strong); 1143 1144 if (strong && process_groups == g->p.nr_proc) { 1145 if (!*convergence) { 1146 *convergence = runtime_ns_max; 1147 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1148 if (g->p.measure_convergence) { 1149 g->all_converged = true; 1150 g->stop_work = true; 1151 } 1152 } 1153 } else { 1154 if (*convergence) { 1155 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1156 *convergence = 0; 1157 } 1158 tprintf("\n"); 1159 } 1160 1161 free(nodes); 1162 } 1163 1164 static void show_summary(double runtime_ns_max, int l, double *convergence) 1165 { 1166 tprintf("\r # %5.1f%% [%.1f mins]", 1167 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1168 1169 calc_convergence(runtime_ns_max, convergence); 1170 1171 if (g->p.show_details >= 0) 1172 fflush(stdout); 1173 } 1174 1175 static void *worker_thread(void *__tdata) 1176 { 1177 struct thread_data *td = __tdata; 1178 struct timeval start0, start, stop, diff; 1179 int process_nr = td->process_nr; 1180 int thread_nr = td->thread_nr; 1181 unsigned long last_perturbance; 1182 int task_nr = td->task_nr; 1183 int details = g->p.show_details; 1184 int first_task, last_task; 1185 double convergence = 0; 1186 u64 val = td->val; 1187 double runtime_ns_max; 1188 u8 *global_data; 1189 u8 *process_data; 1190 u8 *thread_data; 1191 u64 bytes_done, secs; 1192 long work_done; 1193 u32 l; 1194 struct rusage rusage; 1195 1196 bind_to_cpumask(td->bind_cpumask); 1197 bind_to_memnode(td->bind_node); 1198 1199 set_taskname("thread %d/%d", process_nr, thread_nr); 1200 1201 global_data = g->data; 1202 process_data = td->process_data; 1203 thread_data = setup_private_data(g->p.bytes_thread); 1204 1205 bytes_done = 0; 1206 1207 last_task = 0; 1208 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1209 last_task = 1; 1210 1211 first_task = 0; 1212 if (process_nr == 0 && thread_nr == 0) 1213 first_task = 1; 1214 1215 if (details >= 2) { 1216 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1217 process_nr, thread_nr, global_data, process_data, thread_data); 1218 } 1219 1220 if (g->p.serialize_startup) { 1221 pthread_mutex_lock(&g->startup_mutex); 1222 g->nr_tasks_started++; 1223 /* The last thread wakes the main process. */ 1224 if (g->nr_tasks_started == g->p.nr_tasks) 1225 pthread_cond_signal(&g->startup_cond); 1226 1227 pthread_mutex_unlock(&g->startup_mutex); 1228 1229 /* Here we will wait for the main process to start us all at once: */ 1230 pthread_mutex_lock(&g->start_work_mutex); 1231 g->start_work = false; 1232 g->nr_tasks_working++; 1233 while (!g->start_work) 1234 pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex); 1235 1236 pthread_mutex_unlock(&g->start_work_mutex); 1237 } 1238 1239 gettimeofday(&start0, NULL); 1240 1241 start = stop = start0; 1242 last_perturbance = start.tv_sec; 1243 1244 for (l = 0; l < g->p.nr_loops; l++) { 1245 start = stop; 1246 1247 if (g->stop_work) 1248 break; 1249 1250 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1251 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1252 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1253 1254 if (g->p.sleep_usecs) { 1255 pthread_mutex_lock(td->process_lock); 1256 usleep(g->p.sleep_usecs); 1257 pthread_mutex_unlock(td->process_lock); 1258 } 1259 /* 1260 * Amount of work to be done under a process-global lock: 1261 */ 1262 if (g->p.bytes_process_locked) { 1263 pthread_mutex_lock(td->process_lock); 1264 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1265 pthread_mutex_unlock(td->process_lock); 1266 } 1267 1268 work_done = g->p.bytes_global + g->p.bytes_process + 1269 g->p.bytes_process_locked + g->p.bytes_thread; 1270 1271 update_curr_cpu(task_nr, work_done); 1272 bytes_done += work_done; 1273 1274 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1275 continue; 1276 1277 td->loops_done = l; 1278 1279 gettimeofday(&stop, NULL); 1280 1281 /* Check whether our max runtime timed out: */ 1282 if (g->p.nr_secs) { 1283 timersub(&stop, &start0, &diff); 1284 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1285 g->stop_work = true; 1286 break; 1287 } 1288 } 1289 1290 /* Update the summary at most once per second: */ 1291 if (start.tv_sec == stop.tv_sec) 1292 continue; 1293 1294 /* 1295 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1296 * by migrating to CPU#0: 1297 */ 1298 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1299 cpu_set_t *orig_mask; 1300 int target_cpu; 1301 int this_cpu; 1302 1303 last_perturbance = stop.tv_sec; 1304 1305 /* 1306 * Depending on where we are running, move into 1307 * the other half of the system, to create some 1308 * real disturbance: 1309 */ 1310 this_cpu = g->threads[task_nr].curr_cpu; 1311 if (this_cpu < g->p.nr_cpus/2) 1312 target_cpu = g->p.nr_cpus-1; 1313 else 1314 target_cpu = 0; 1315 1316 orig_mask = bind_to_cpu(target_cpu); 1317 1318 /* Here we are running on the target CPU already */ 1319 if (details >= 1) 1320 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1321 1322 bind_to_cpumask(orig_mask); 1323 CPU_FREE(orig_mask); 1324 } 1325 1326 if (details >= 3) { 1327 timersub(&stop, &start, &diff); 1328 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1329 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1330 1331 if (details >= 0) { 1332 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1333 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1334 } 1335 fflush(stdout); 1336 } 1337 if (!last_task) 1338 continue; 1339 1340 timersub(&stop, &start0, &diff); 1341 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1342 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1343 1344 show_summary(runtime_ns_max, l, &convergence); 1345 } 1346 1347 gettimeofday(&stop, NULL); 1348 timersub(&stop, &start0, &diff); 1349 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1350 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1351 secs = td->runtime_ns / NSEC_PER_SEC; 1352 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0; 1353 1354 getrusage(RUSAGE_THREAD, &rusage); 1355 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1356 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1357 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1358 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1359 1360 free_data(thread_data, g->p.bytes_thread); 1361 1362 pthread_mutex_lock(&g->stop_work_mutex); 1363 g->bytes_done += bytes_done; 1364 pthread_mutex_unlock(&g->stop_work_mutex); 1365 1366 return NULL; 1367 } 1368 1369 /* 1370 * A worker process starts a couple of threads: 1371 */ 1372 static void worker_process(int process_nr) 1373 { 1374 pthread_mutex_t process_lock; 1375 struct thread_data *td; 1376 pthread_t *pthreads; 1377 u8 *process_data; 1378 int task_nr; 1379 int ret; 1380 int t; 1381 1382 pthread_mutex_init(&process_lock, NULL); 1383 set_taskname("process %d", process_nr); 1384 1385 /* 1386 * Pick up the memory policy and the CPU binding of our first thread, 1387 * so that we initialize memory accordingly: 1388 */ 1389 task_nr = process_nr*g->p.nr_threads; 1390 td = g->threads + task_nr; 1391 1392 bind_to_memnode(td->bind_node); 1393 bind_to_cpumask(td->bind_cpumask); 1394 1395 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1396 process_data = setup_private_data(g->p.bytes_process); 1397 1398 if (g->p.show_details >= 3) { 1399 printf(" # process %2d global mem: %p, process mem: %p\n", 1400 process_nr, g->data, process_data); 1401 } 1402 1403 for (t = 0; t < g->p.nr_threads; t++) { 1404 task_nr = process_nr*g->p.nr_threads + t; 1405 td = g->threads + task_nr; 1406 1407 td->process_data = process_data; 1408 td->process_nr = process_nr; 1409 td->thread_nr = t; 1410 td->task_nr = task_nr; 1411 td->val = rand(); 1412 td->curr_cpu = -1; 1413 td->process_lock = &process_lock; 1414 1415 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1416 BUG_ON(ret); 1417 } 1418 1419 for (t = 0; t < g->p.nr_threads; t++) { 1420 ret = pthread_join(pthreads[t], NULL); 1421 BUG_ON(ret); 1422 } 1423 1424 free_data(process_data, g->p.bytes_process); 1425 free(pthreads); 1426 } 1427 1428 static void print_summary(void) 1429 { 1430 if (g->p.show_details < 0) 1431 return; 1432 1433 printf("\n ###\n"); 1434 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1435 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus); 1436 printf(" # %5dx %5ldMB global shared mem operations\n", 1437 g->p.nr_loops, g->p.bytes_global/1024/1024); 1438 printf(" # %5dx %5ldMB process shared mem operations\n", 1439 g->p.nr_loops, g->p.bytes_process/1024/1024); 1440 printf(" # %5dx %5ldMB thread local mem operations\n", 1441 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1442 1443 printf(" ###\n"); 1444 1445 printf("\n ###\n"); fflush(stdout); 1446 } 1447 1448 static void init_thread_data(void) 1449 { 1450 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1451 int t; 1452 1453 g->threads = zalloc_shared_data(size); 1454 1455 for (t = 0; t < g->p.nr_tasks; t++) { 1456 struct thread_data *td = g->threads + t; 1457 size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus); 1458 int cpu; 1459 1460 /* Allow all nodes by default: */ 1461 td->bind_node = NUMA_NO_NODE; 1462 1463 /* Allow all CPUs by default: */ 1464 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus); 1465 BUG_ON(!td->bind_cpumask); 1466 CPU_ZERO_S(cpuset_size, td->bind_cpumask); 1467 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1468 CPU_SET_S(cpu, cpuset_size, td->bind_cpumask); 1469 } 1470 } 1471 1472 static void deinit_thread_data(void) 1473 { 1474 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1475 int t; 1476 1477 /* Free the bind_cpumask allocated for thread_data */ 1478 for (t = 0; t < g->p.nr_tasks; t++) { 1479 struct thread_data *td = g->threads + t; 1480 CPU_FREE(td->bind_cpumask); 1481 } 1482 1483 free_data(g->threads, size); 1484 } 1485 1486 static int init(void) 1487 { 1488 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1489 1490 /* Copy over options: */ 1491 g->p = p0; 1492 1493 g->p.nr_cpus = numa_num_configured_cpus(); 1494 1495 g->p.nr_nodes = numa_max_node() + 1; 1496 1497 /* char array in count_process_nodes(): */ 1498 BUG_ON(g->p.nr_nodes < 0); 1499 1500 if (g->p.show_quiet && !g->p.show_details) 1501 g->p.show_details = -1; 1502 1503 /* Some memory should be specified: */ 1504 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1505 return -1; 1506 1507 if (g->p.mb_global_str) { 1508 g->p.mb_global = atof(g->p.mb_global_str); 1509 BUG_ON(g->p.mb_global < 0); 1510 } 1511 1512 if (g->p.mb_proc_str) { 1513 g->p.mb_proc = atof(g->p.mb_proc_str); 1514 BUG_ON(g->p.mb_proc < 0); 1515 } 1516 1517 if (g->p.mb_proc_locked_str) { 1518 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1519 BUG_ON(g->p.mb_proc_locked < 0); 1520 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1521 } 1522 1523 if (g->p.mb_thread_str) { 1524 g->p.mb_thread = atof(g->p.mb_thread_str); 1525 BUG_ON(g->p.mb_thread < 0); 1526 } 1527 1528 BUG_ON(g->p.nr_threads <= 0); 1529 BUG_ON(g->p.nr_proc <= 0); 1530 1531 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1532 1533 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1534 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1535 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1536 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1537 1538 g->data = setup_shared_data(g->p.bytes_global); 1539 1540 /* Startup serialization: */ 1541 init_global_mutex(&g->start_work_mutex); 1542 init_global_cond(&g->start_work_cond); 1543 init_global_mutex(&g->startup_mutex); 1544 init_global_cond(&g->startup_cond); 1545 init_global_mutex(&g->stop_work_mutex); 1546 1547 init_thread_data(); 1548 1549 tprintf("#\n"); 1550 if (parse_setup_cpu_list() || parse_setup_node_list()) 1551 return -1; 1552 tprintf("#\n"); 1553 1554 print_summary(); 1555 1556 return 0; 1557 } 1558 1559 static void deinit(void) 1560 { 1561 free_data(g->data, g->p.bytes_global); 1562 g->data = NULL; 1563 1564 deinit_thread_data(); 1565 1566 free_data(g, sizeof(*g)); 1567 g = NULL; 1568 } 1569 1570 /* 1571 * Print a short or long result, depending on the verbosity setting: 1572 */ 1573 static void print_res(const char *name, double val, 1574 const char *txt_unit, const char *txt_short, const char *txt_long) 1575 { 1576 if (!name) 1577 name = "main,"; 1578 1579 if (!g->p.show_quiet) 1580 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1581 else 1582 printf(" %14.3f %s\n", val, txt_long); 1583 } 1584 1585 static int __bench_numa(const char *name) 1586 { 1587 struct timeval start, stop, diff; 1588 u64 runtime_ns_min, runtime_ns_sum; 1589 pid_t *pids, pid, wpid; 1590 double delta_runtime; 1591 double runtime_avg; 1592 double runtime_sec_max; 1593 double runtime_sec_min; 1594 int wait_stat; 1595 double bytes; 1596 int i, t, p; 1597 1598 if (init()) 1599 return -1; 1600 1601 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1602 pid = -1; 1603 1604 if (g->p.serialize_startup) { 1605 tprintf(" #\n"); 1606 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1607 } 1608 1609 gettimeofday(&start, NULL); 1610 1611 for (i = 0; i < g->p.nr_proc; i++) { 1612 pid = fork(); 1613 dprintf(" # process %2d: PID %d\n", i, pid); 1614 1615 BUG_ON(pid < 0); 1616 if (!pid) { 1617 /* Child process: */ 1618 worker_process(i); 1619 1620 exit(0); 1621 } 1622 pids[i] = pid; 1623 1624 } 1625 1626 if (g->p.serialize_startup) { 1627 bool threads_ready = false; 1628 double startup_sec; 1629 1630 /* 1631 * Wait for all the threads to start up. The last thread will 1632 * signal this process. 1633 */ 1634 pthread_mutex_lock(&g->startup_mutex); 1635 while (g->nr_tasks_started != g->p.nr_tasks) 1636 pthread_cond_wait(&g->startup_cond, &g->startup_mutex); 1637 1638 pthread_mutex_unlock(&g->startup_mutex); 1639 1640 /* Wait for all threads to be at the start_work_cond. */ 1641 while (!threads_ready) { 1642 pthread_mutex_lock(&g->start_work_mutex); 1643 threads_ready = (g->nr_tasks_working == g->p.nr_tasks); 1644 pthread_mutex_unlock(&g->start_work_mutex); 1645 if (!threads_ready) 1646 usleep(1); 1647 } 1648 1649 gettimeofday(&stop, NULL); 1650 1651 timersub(&stop, &start, &diff); 1652 1653 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1654 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1655 startup_sec /= NSEC_PER_SEC; 1656 1657 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1658 tprintf(" #\n"); 1659 1660 start = stop; 1661 /* Start all threads running. */ 1662 pthread_mutex_lock(&g->start_work_mutex); 1663 g->start_work = true; 1664 pthread_mutex_unlock(&g->start_work_mutex); 1665 pthread_cond_broadcast(&g->start_work_cond); 1666 } else { 1667 gettimeofday(&start, NULL); 1668 } 1669 1670 /* Parent process: */ 1671 1672 1673 for (i = 0; i < g->p.nr_proc; i++) { 1674 wpid = waitpid(pids[i], &wait_stat, 0); 1675 BUG_ON(wpid < 0); 1676 BUG_ON(!WIFEXITED(wait_stat)); 1677 1678 } 1679 1680 runtime_ns_sum = 0; 1681 runtime_ns_min = -1LL; 1682 1683 for (t = 0; t < g->p.nr_tasks; t++) { 1684 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1685 1686 runtime_ns_sum += thread_runtime_ns; 1687 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1688 } 1689 1690 gettimeofday(&stop, NULL); 1691 timersub(&stop, &start, &diff); 1692 1693 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1694 1695 tprintf("\n ###\n"); 1696 tprintf("\n"); 1697 1698 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1699 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1700 runtime_sec_max /= NSEC_PER_SEC; 1701 1702 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1703 1704 bytes = g->bytes_done; 1705 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1706 1707 if (g->p.measure_convergence) { 1708 print_res(name, runtime_sec_max, 1709 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1710 } 1711 1712 print_res(name, runtime_sec_max, 1713 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1714 1715 print_res(name, runtime_sec_min, 1716 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1717 1718 print_res(name, runtime_avg, 1719 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1720 1721 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1722 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1723 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1724 1725 print_res(name, bytes / g->p.nr_tasks / 1e9, 1726 "GB,", "data/thread", "GB data processed, per thread"); 1727 1728 print_res(name, bytes / 1e9, 1729 "GB,", "data-total", "GB data processed, total"); 1730 1731 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1732 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1733 1734 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1735 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1736 1737 print_res(name, bytes / runtime_sec_max / 1e9, 1738 "GB/sec,", "total-speed", "GB/sec total speed"); 1739 1740 if (g->p.show_details >= 2) { 1741 char tname[14 + 2 * 10 + 1]; 1742 struct thread_data *td; 1743 for (p = 0; p < g->p.nr_proc; p++) { 1744 for (t = 0; t < g->p.nr_threads; t++) { 1745 memset(tname, 0, sizeof(tname)); 1746 td = g->threads + p*g->p.nr_threads + t; 1747 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); 1748 print_res(tname, td->speed_gbs, 1749 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1750 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1751 "secs", "thread-system-time", "system CPU time/thread"); 1752 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1753 "secs", "thread-user-time", "user CPU time/thread"); 1754 } 1755 } 1756 } 1757 1758 free(pids); 1759 1760 deinit(); 1761 1762 return 0; 1763 } 1764 1765 #define MAX_ARGS 50 1766 1767 static int command_size(const char **argv) 1768 { 1769 int size = 0; 1770 1771 while (*argv) { 1772 size++; 1773 argv++; 1774 } 1775 1776 BUG_ON(size >= MAX_ARGS); 1777 1778 return size; 1779 } 1780 1781 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1782 { 1783 int i; 1784 1785 printf("\n # Running %s \"perf bench numa", name); 1786 1787 for (i = 0; i < argc; i++) 1788 printf(" %s", argv[i]); 1789 1790 printf("\"\n"); 1791 1792 memset(p, 0, sizeof(*p)); 1793 1794 /* Initialize nonzero defaults: */ 1795 1796 p->serialize_startup = 1; 1797 p->data_reads = true; 1798 p->data_writes = true; 1799 p->data_backwards = true; 1800 p->data_rand_walk = true; 1801 p->nr_loops = -1; 1802 p->init_random = true; 1803 p->mb_global_str = "1"; 1804 p->nr_proc = 1; 1805 p->nr_threads = 1; 1806 p->nr_secs = 5; 1807 p->run_all = argc == 1; 1808 } 1809 1810 static int run_bench_numa(const char *name, const char **argv) 1811 { 1812 int argc = command_size(argv); 1813 1814 init_params(&p0, name, argc, argv); 1815 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1816 if (argc) 1817 goto err; 1818 1819 if (__bench_numa(name)) 1820 goto err; 1821 1822 return 0; 1823 1824 err: 1825 return -1; 1826 } 1827 1828 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1829 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1830 1831 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1832 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1833 1834 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1835 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1836 1837 /* 1838 * The built-in test-suite executed by "perf bench numa -a". 1839 * 1840 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1841 */ 1842 static const char *tests[][MAX_ARGS] = { 1843 /* Basic single-stream NUMA bandwidth measurements: */ 1844 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1845 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1846 { "RAM-bw-local-NOTHP,", 1847 "mem", "-p", "1", "-t", "1", "-P", "1024", 1848 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1849 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1850 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1851 1852 /* 2-stream NUMA bandwidth measurements: */ 1853 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1854 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1855 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1856 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1857 1858 /* Cross-stream NUMA bandwidth measurement: */ 1859 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1860 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1861 1862 /* Convergence latency measurements: */ 1863 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1864 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1865 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1866 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV }, 1867 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1868 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1869 { " 4x4-convergence-NOTHP,", 1870 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1871 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1872 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1873 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1874 { " 8x4-convergence-NOTHP,", 1875 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1876 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1877 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1878 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1879 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1880 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1881 1882 /* Various NUMA process/thread layout bandwidth measurements: */ 1883 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1884 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1885 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1886 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1887 { " 8x1-bw-process-NOTHP,", 1888 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1889 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1890 1891 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1892 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1893 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1894 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1895 1896 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1897 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1898 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1899 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1900 { " 4x8-bw-process-NOTHP,", 1901 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1902 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1903 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1904 1905 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1906 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1907 1908 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1909 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1910 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1911 { "numa01-bw-thread-NOTHP,", 1912 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1913 }; 1914 1915 static int bench_all(void) 1916 { 1917 int nr = ARRAY_SIZE(tests); 1918 int ret; 1919 int i; 1920 1921 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1922 BUG_ON(ret < 0); 1923 1924 for (i = 0; i < nr; i++) { 1925 run_bench_numa(tests[i][0], tests[i] + 1); 1926 } 1927 1928 printf("\n"); 1929 1930 return 0; 1931 } 1932 1933 int bench_numa(int argc, const char **argv) 1934 { 1935 init_params(&p0, "main,", argc, argv); 1936 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1937 if (argc) 1938 goto err; 1939 1940 if (p0.run_all) 1941 return bench_all(); 1942 1943 if (__bench_numa(NULL)) 1944 goto err; 1945 1946 return 0; 1947 1948 err: 1949 usage_with_options(numa_usage, options); 1950 return -1; 1951 } 1952