1 /* 2 * numa.c 3 * 4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 5 */ 6 7 /* For the CLR_() macros */ 8 #include <pthread.h> 9 10 #include "../perf.h" 11 #include "../builtin.h" 12 #include "../util/util.h" 13 #include <subcmd/parse-options.h> 14 #include "../util/cloexec.h" 15 16 #include "bench.h" 17 18 #include <errno.h> 19 #include <sched.h> 20 #include <stdio.h> 21 #include <assert.h> 22 #include <malloc.h> 23 #include <signal.h> 24 #include <stdlib.h> 25 #include <string.h> 26 #include <unistd.h> 27 #include <sys/mman.h> 28 #include <sys/time.h> 29 #include <sys/resource.h> 30 #include <sys/wait.h> 31 #include <sys/prctl.h> 32 #include <sys/types.h> 33 #include <linux/time64.h> 34 35 #include <numa.h> 36 #include <numaif.h> 37 38 /* 39 * Regular printout to the terminal, supressed if -q is specified: 40 */ 41 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 42 43 /* 44 * Debug printf: 45 */ 46 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 47 48 struct thread_data { 49 int curr_cpu; 50 cpu_set_t bind_cpumask; 51 int bind_node; 52 u8 *process_data; 53 int process_nr; 54 int thread_nr; 55 int task_nr; 56 unsigned int loops_done; 57 u64 val; 58 u64 runtime_ns; 59 u64 system_time_ns; 60 u64 user_time_ns; 61 double speed_gbs; 62 pthread_mutex_t *process_lock; 63 }; 64 65 /* Parameters set by options: */ 66 67 struct params { 68 /* Startup synchronization: */ 69 bool serialize_startup; 70 71 /* Task hierarchy: */ 72 int nr_proc; 73 int nr_threads; 74 75 /* Working set sizes: */ 76 const char *mb_global_str; 77 const char *mb_proc_str; 78 const char *mb_proc_locked_str; 79 const char *mb_thread_str; 80 81 double mb_global; 82 double mb_proc; 83 double mb_proc_locked; 84 double mb_thread; 85 86 /* Access patterns to the working set: */ 87 bool data_reads; 88 bool data_writes; 89 bool data_backwards; 90 bool data_zero_memset; 91 bool data_rand_walk; 92 u32 nr_loops; 93 u32 nr_secs; 94 u32 sleep_usecs; 95 96 /* Working set initialization: */ 97 bool init_zero; 98 bool init_random; 99 bool init_cpu0; 100 101 /* Misc options: */ 102 int show_details; 103 int run_all; 104 int thp; 105 106 long bytes_global; 107 long bytes_process; 108 long bytes_process_locked; 109 long bytes_thread; 110 111 int nr_tasks; 112 bool show_quiet; 113 114 bool show_convergence; 115 bool measure_convergence; 116 117 int perturb_secs; 118 int nr_cpus; 119 int nr_nodes; 120 121 /* Affinity options -C and -N: */ 122 char *cpu_list_str; 123 char *node_list_str; 124 }; 125 126 127 /* Global, read-writable area, accessible to all processes and threads: */ 128 129 struct global_info { 130 u8 *data; 131 132 pthread_mutex_t startup_mutex; 133 int nr_tasks_started; 134 135 pthread_mutex_t startup_done_mutex; 136 137 pthread_mutex_t start_work_mutex; 138 int nr_tasks_working; 139 140 pthread_mutex_t stop_work_mutex; 141 u64 bytes_done; 142 143 struct thread_data *threads; 144 145 /* Convergence latency measurement: */ 146 bool all_converged; 147 bool stop_work; 148 149 int print_once; 150 151 struct params p; 152 }; 153 154 static struct global_info *g = NULL; 155 156 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 157 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 158 159 struct params p0; 160 161 static const struct option options[] = { 162 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 163 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 164 165 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 166 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 167 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 168 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 169 170 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 171 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 172 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 173 174 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), 175 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 176 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 177 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 178 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 179 180 181 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 182 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 183 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 184 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 185 186 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 187 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 188 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 189 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"), 190 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 191 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 192 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 193 194 /* Special option string parsing callbacks: */ 195 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 196 "bind the first N tasks to these specific cpus (the rest is unbound)", 197 parse_cpus_opt), 198 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 199 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 200 parse_nodes_opt), 201 OPT_END() 202 }; 203 204 static const char * const bench_numa_usage[] = { 205 "perf bench numa <options>", 206 NULL 207 }; 208 209 static const char * const numa_usage[] = { 210 "perf bench numa mem [<options>]", 211 NULL 212 }; 213 214 static cpu_set_t bind_to_cpu(int target_cpu) 215 { 216 cpu_set_t orig_mask, mask; 217 int ret; 218 219 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 220 BUG_ON(ret); 221 222 CPU_ZERO(&mask); 223 224 if (target_cpu == -1) { 225 int cpu; 226 227 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 228 CPU_SET(cpu, &mask); 229 } else { 230 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 231 CPU_SET(target_cpu, &mask); 232 } 233 234 ret = sched_setaffinity(0, sizeof(mask), &mask); 235 BUG_ON(ret); 236 237 return orig_mask; 238 } 239 240 static cpu_set_t bind_to_node(int target_node) 241 { 242 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; 243 cpu_set_t orig_mask, mask; 244 int cpu; 245 int ret; 246 247 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); 248 BUG_ON(!cpus_per_node); 249 250 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 251 BUG_ON(ret); 252 253 CPU_ZERO(&mask); 254 255 if (target_node == -1) { 256 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 257 CPU_SET(cpu, &mask); 258 } else { 259 int cpu_start = (target_node + 0) * cpus_per_node; 260 int cpu_stop = (target_node + 1) * cpus_per_node; 261 262 BUG_ON(cpu_stop > g->p.nr_cpus); 263 264 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 265 CPU_SET(cpu, &mask); 266 } 267 268 ret = sched_setaffinity(0, sizeof(mask), &mask); 269 BUG_ON(ret); 270 271 return orig_mask; 272 } 273 274 static void bind_to_cpumask(cpu_set_t mask) 275 { 276 int ret; 277 278 ret = sched_setaffinity(0, sizeof(mask), &mask); 279 BUG_ON(ret); 280 } 281 282 static void mempol_restore(void) 283 { 284 int ret; 285 286 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 287 288 BUG_ON(ret); 289 } 290 291 static void bind_to_memnode(int node) 292 { 293 unsigned long nodemask; 294 int ret; 295 296 if (node == -1) 297 return; 298 299 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8); 300 nodemask = 1L << node; 301 302 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 303 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 304 305 BUG_ON(ret); 306 } 307 308 #define HPSIZE (2*1024*1024) 309 310 #define set_taskname(fmt...) \ 311 do { \ 312 char name[20]; \ 313 \ 314 snprintf(name, 20, fmt); \ 315 prctl(PR_SET_NAME, name); \ 316 } while (0) 317 318 static u8 *alloc_data(ssize_t bytes0, int map_flags, 319 int init_zero, int init_cpu0, int thp, int init_random) 320 { 321 cpu_set_t orig_mask; 322 ssize_t bytes; 323 u8 *buf; 324 int ret; 325 326 if (!bytes0) 327 return NULL; 328 329 /* Allocate and initialize all memory on CPU#0: */ 330 if (init_cpu0) { 331 orig_mask = bind_to_node(0); 332 bind_to_memnode(0); 333 } 334 335 bytes = bytes0 + HPSIZE; 336 337 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 338 BUG_ON(buf == (void *)-1); 339 340 if (map_flags == MAP_PRIVATE) { 341 if (thp > 0) { 342 ret = madvise(buf, bytes, MADV_HUGEPAGE); 343 if (ret && !g->print_once) { 344 g->print_once = 1; 345 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 346 } 347 } 348 if (thp < 0) { 349 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 350 if (ret && !g->print_once) { 351 g->print_once = 1; 352 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 353 } 354 } 355 } 356 357 if (init_zero) { 358 bzero(buf, bytes); 359 } else { 360 /* Initialize random contents, different in each word: */ 361 if (init_random) { 362 u64 *wbuf = (void *)buf; 363 long off = rand(); 364 long i; 365 366 for (i = 0; i < bytes/8; i++) 367 wbuf[i] = i + off; 368 } 369 } 370 371 /* Align to 2MB boundary: */ 372 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 373 374 /* Restore affinity: */ 375 if (init_cpu0) { 376 bind_to_cpumask(orig_mask); 377 mempol_restore(); 378 } 379 380 return buf; 381 } 382 383 static void free_data(void *data, ssize_t bytes) 384 { 385 int ret; 386 387 if (!data) 388 return; 389 390 ret = munmap(data, bytes); 391 BUG_ON(ret); 392 } 393 394 /* 395 * Create a shared memory buffer that can be shared between processes, zeroed: 396 */ 397 static void * zalloc_shared_data(ssize_t bytes) 398 { 399 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 400 } 401 402 /* 403 * Create a shared memory buffer that can be shared between processes: 404 */ 405 static void * setup_shared_data(ssize_t bytes) 406 { 407 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 408 } 409 410 /* 411 * Allocate process-local memory - this will either be shared between 412 * threads of this process, or only be accessed by this thread: 413 */ 414 static void * setup_private_data(ssize_t bytes) 415 { 416 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 417 } 418 419 /* 420 * Return a process-shared (global) mutex: 421 */ 422 static void init_global_mutex(pthread_mutex_t *mutex) 423 { 424 pthread_mutexattr_t attr; 425 426 pthread_mutexattr_init(&attr); 427 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 428 pthread_mutex_init(mutex, &attr); 429 } 430 431 static int parse_cpu_list(const char *arg) 432 { 433 p0.cpu_list_str = strdup(arg); 434 435 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 436 437 return 0; 438 } 439 440 static int parse_setup_cpu_list(void) 441 { 442 struct thread_data *td; 443 char *str0, *str; 444 int t; 445 446 if (!g->p.cpu_list_str) 447 return 0; 448 449 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 450 451 str0 = str = strdup(g->p.cpu_list_str); 452 t = 0; 453 454 BUG_ON(!str); 455 456 tprintf("# binding tasks to CPUs:\n"); 457 tprintf("# "); 458 459 while (true) { 460 int bind_cpu, bind_cpu_0, bind_cpu_1; 461 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 462 int bind_len; 463 int step; 464 int mul; 465 466 tok = strsep(&str, ","); 467 if (!tok) 468 break; 469 470 tok_end = strstr(tok, "-"); 471 472 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 473 if (!tok_end) { 474 /* Single CPU specified: */ 475 bind_cpu_0 = bind_cpu_1 = atol(tok); 476 } else { 477 /* CPU range specified (for example: "5-11"): */ 478 bind_cpu_0 = atol(tok); 479 bind_cpu_1 = atol(tok_end + 1); 480 } 481 482 step = 1; 483 tok_step = strstr(tok, "#"); 484 if (tok_step) { 485 step = atol(tok_step + 1); 486 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 487 } 488 489 /* 490 * Mask length. 491 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 492 * where the _4 means the next 4 CPUs are allowed. 493 */ 494 bind_len = 1; 495 tok_len = strstr(tok, "_"); 496 if (tok_len) { 497 bind_len = atol(tok_len + 1); 498 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 499 } 500 501 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 502 mul = 1; 503 tok_mul = strstr(tok, "x"); 504 if (tok_mul) { 505 mul = atol(tok_mul + 1); 506 BUG_ON(mul <= 0); 507 } 508 509 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 510 511 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 512 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 513 return -1; 514 } 515 516 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 517 BUG_ON(bind_cpu_0 > bind_cpu_1); 518 519 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 520 int i; 521 522 for (i = 0; i < mul; i++) { 523 int cpu; 524 525 if (t >= g->p.nr_tasks) { 526 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 527 goto out; 528 } 529 td = g->threads + t; 530 531 if (t) 532 tprintf(","); 533 if (bind_len > 1) { 534 tprintf("%2d/%d", bind_cpu, bind_len); 535 } else { 536 tprintf("%2d", bind_cpu); 537 } 538 539 CPU_ZERO(&td->bind_cpumask); 540 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 541 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 542 CPU_SET(cpu, &td->bind_cpumask); 543 } 544 t++; 545 } 546 } 547 } 548 out: 549 550 tprintf("\n"); 551 552 if (t < g->p.nr_tasks) 553 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 554 555 free(str0); 556 return 0; 557 } 558 559 static int parse_cpus_opt(const struct option *opt __maybe_unused, 560 const char *arg, int unset __maybe_unused) 561 { 562 if (!arg) 563 return -1; 564 565 return parse_cpu_list(arg); 566 } 567 568 static int parse_node_list(const char *arg) 569 { 570 p0.node_list_str = strdup(arg); 571 572 dprintf("got NODE list: {%s}\n", p0.node_list_str); 573 574 return 0; 575 } 576 577 static int parse_setup_node_list(void) 578 { 579 struct thread_data *td; 580 char *str0, *str; 581 int t; 582 583 if (!g->p.node_list_str) 584 return 0; 585 586 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 587 588 str0 = str = strdup(g->p.node_list_str); 589 t = 0; 590 591 BUG_ON(!str); 592 593 tprintf("# binding tasks to NODEs:\n"); 594 tprintf("# "); 595 596 while (true) { 597 int bind_node, bind_node_0, bind_node_1; 598 char *tok, *tok_end, *tok_step, *tok_mul; 599 int step; 600 int mul; 601 602 tok = strsep(&str, ","); 603 if (!tok) 604 break; 605 606 tok_end = strstr(tok, "-"); 607 608 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 609 if (!tok_end) { 610 /* Single NODE specified: */ 611 bind_node_0 = bind_node_1 = atol(tok); 612 } else { 613 /* NODE range specified (for example: "5-11"): */ 614 bind_node_0 = atol(tok); 615 bind_node_1 = atol(tok_end + 1); 616 } 617 618 step = 1; 619 tok_step = strstr(tok, "#"); 620 if (tok_step) { 621 step = atol(tok_step + 1); 622 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 623 } 624 625 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 626 mul = 1; 627 tok_mul = strstr(tok, "x"); 628 if (tok_mul) { 629 mul = atol(tok_mul + 1); 630 BUG_ON(mul <= 0); 631 } 632 633 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 634 635 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 636 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 637 return -1; 638 } 639 640 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 641 BUG_ON(bind_node_0 > bind_node_1); 642 643 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 644 int i; 645 646 for (i = 0; i < mul; i++) { 647 if (t >= g->p.nr_tasks) { 648 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 649 goto out; 650 } 651 td = g->threads + t; 652 653 if (!t) 654 tprintf(" %2d", bind_node); 655 else 656 tprintf(",%2d", bind_node); 657 658 td->bind_node = bind_node; 659 t++; 660 } 661 } 662 } 663 out: 664 665 tprintf("\n"); 666 667 if (t < g->p.nr_tasks) 668 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 669 670 free(str0); 671 return 0; 672 } 673 674 static int parse_nodes_opt(const struct option *opt __maybe_unused, 675 const char *arg, int unset __maybe_unused) 676 { 677 if (!arg) 678 return -1; 679 680 return parse_node_list(arg); 681 682 return 0; 683 } 684 685 #define BIT(x) (1ul << x) 686 687 static inline uint32_t lfsr_32(uint32_t lfsr) 688 { 689 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 690 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 691 } 692 693 /* 694 * Make sure there's real data dependency to RAM (when read 695 * accesses are enabled), so the compiler, the CPU and the 696 * kernel (KSM, zero page, etc.) cannot optimize away RAM 697 * accesses: 698 */ 699 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) 700 { 701 if (g->p.data_reads) 702 val += *data; 703 if (g->p.data_writes) 704 *data = val + 1; 705 return val; 706 } 707 708 /* 709 * The worker process does two types of work, a forwards going 710 * loop and a backwards going loop. 711 * 712 * We do this so that on multiprocessor systems we do not create 713 * a 'train' of processing, with highly synchronized processes, 714 * skewing the whole benchmark. 715 */ 716 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 717 { 718 long words = bytes/sizeof(u64); 719 u64 *data = (void *)__data; 720 long chunk_0, chunk_1; 721 u64 *d0, *d, *d1; 722 long off; 723 long i; 724 725 BUG_ON(!data && words); 726 BUG_ON(data && !words); 727 728 if (!data) 729 return val; 730 731 /* Very simple memset() work variant: */ 732 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 733 bzero(data, bytes); 734 return val; 735 } 736 737 /* Spread out by PID/TID nr and by loop nr: */ 738 chunk_0 = words/nr_max; 739 chunk_1 = words/g->p.nr_loops; 740 off = nr*chunk_0 + loop*chunk_1; 741 742 while (off >= words) 743 off -= words; 744 745 if (g->p.data_rand_walk) { 746 u32 lfsr = nr + loop + val; 747 int j; 748 749 for (i = 0; i < words/1024; i++) { 750 long start, end; 751 752 lfsr = lfsr_32(lfsr); 753 754 start = lfsr % words; 755 end = min(start + 1024, words-1); 756 757 if (g->p.data_zero_memset) { 758 bzero(data + start, (end-start) * sizeof(u64)); 759 } else { 760 for (j = start; j < end; j++) 761 val = access_data(data + j, val); 762 } 763 } 764 } else if (!g->p.data_backwards || (nr + loop) & 1) { 765 766 d0 = data + off; 767 d = data + off + 1; 768 d1 = data + words; 769 770 /* Process data forwards: */ 771 for (;;) { 772 if (unlikely(d >= d1)) 773 d = data; 774 if (unlikely(d == d0)) 775 break; 776 777 val = access_data(d, val); 778 779 d++; 780 } 781 } else { 782 /* Process data backwards: */ 783 784 d0 = data + off; 785 d = data + off - 1; 786 d1 = data + words; 787 788 /* Process data forwards: */ 789 for (;;) { 790 if (unlikely(d < data)) 791 d = data + words-1; 792 if (unlikely(d == d0)) 793 break; 794 795 val = access_data(d, val); 796 797 d--; 798 } 799 } 800 801 return val; 802 } 803 804 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 805 { 806 unsigned int cpu; 807 808 cpu = sched_getcpu(); 809 810 g->threads[task_nr].curr_cpu = cpu; 811 prctl(0, bytes_worked); 812 } 813 814 #define MAX_NR_NODES 64 815 816 /* 817 * Count the number of nodes a process's threads 818 * are spread out on. 819 * 820 * A count of 1 means that the process is compressed 821 * to a single node. A count of g->p.nr_nodes means it's 822 * spread out on the whole system. 823 */ 824 static int count_process_nodes(int process_nr) 825 { 826 char node_present[MAX_NR_NODES] = { 0, }; 827 int nodes; 828 int n, t; 829 830 for (t = 0; t < g->p.nr_threads; t++) { 831 struct thread_data *td; 832 int task_nr; 833 int node; 834 835 task_nr = process_nr*g->p.nr_threads + t; 836 td = g->threads + task_nr; 837 838 node = numa_node_of_cpu(td->curr_cpu); 839 if (node < 0) /* curr_cpu was likely still -1 */ 840 return 0; 841 842 node_present[node] = 1; 843 } 844 845 nodes = 0; 846 847 for (n = 0; n < MAX_NR_NODES; n++) 848 nodes += node_present[n]; 849 850 return nodes; 851 } 852 853 /* 854 * Count the number of distinct process-threads a node contains. 855 * 856 * A count of 1 means that the node contains only a single 857 * process. If all nodes on the system contain at most one 858 * process then we are well-converged. 859 */ 860 static int count_node_processes(int node) 861 { 862 int processes = 0; 863 int t, p; 864 865 for (p = 0; p < g->p.nr_proc; p++) { 866 for (t = 0; t < g->p.nr_threads; t++) { 867 struct thread_data *td; 868 int task_nr; 869 int n; 870 871 task_nr = p*g->p.nr_threads + t; 872 td = g->threads + task_nr; 873 874 n = numa_node_of_cpu(td->curr_cpu); 875 if (n == node) { 876 processes++; 877 break; 878 } 879 } 880 } 881 882 return processes; 883 } 884 885 static void calc_convergence_compression(int *strong) 886 { 887 unsigned int nodes_min, nodes_max; 888 int p; 889 890 nodes_min = -1; 891 nodes_max = 0; 892 893 for (p = 0; p < g->p.nr_proc; p++) { 894 unsigned int nodes = count_process_nodes(p); 895 896 if (!nodes) { 897 *strong = 0; 898 return; 899 } 900 901 nodes_min = min(nodes, nodes_min); 902 nodes_max = max(nodes, nodes_max); 903 } 904 905 /* Strong convergence: all threads compress on a single node: */ 906 if (nodes_min == 1 && nodes_max == 1) { 907 *strong = 1; 908 } else { 909 *strong = 0; 910 tprintf(" {%d-%d}", nodes_min, nodes_max); 911 } 912 } 913 914 static void calc_convergence(double runtime_ns_max, double *convergence) 915 { 916 unsigned int loops_done_min, loops_done_max; 917 int process_groups; 918 int nodes[MAX_NR_NODES]; 919 int distance; 920 int nr_min; 921 int nr_max; 922 int strong; 923 int sum; 924 int nr; 925 int node; 926 int cpu; 927 int t; 928 929 if (!g->p.show_convergence && !g->p.measure_convergence) 930 return; 931 932 for (node = 0; node < g->p.nr_nodes; node++) 933 nodes[node] = 0; 934 935 loops_done_min = -1; 936 loops_done_max = 0; 937 938 for (t = 0; t < g->p.nr_tasks; t++) { 939 struct thread_data *td = g->threads + t; 940 unsigned int loops_done; 941 942 cpu = td->curr_cpu; 943 944 /* Not all threads have written it yet: */ 945 if (cpu < 0) 946 continue; 947 948 node = numa_node_of_cpu(cpu); 949 950 nodes[node]++; 951 952 loops_done = td->loops_done; 953 loops_done_min = min(loops_done, loops_done_min); 954 loops_done_max = max(loops_done, loops_done_max); 955 } 956 957 nr_max = 0; 958 nr_min = g->p.nr_tasks; 959 sum = 0; 960 961 for (node = 0; node < g->p.nr_nodes; node++) { 962 nr = nodes[node]; 963 nr_min = min(nr, nr_min); 964 nr_max = max(nr, nr_max); 965 sum += nr; 966 } 967 BUG_ON(nr_min > nr_max); 968 969 BUG_ON(sum > g->p.nr_tasks); 970 971 if (0 && (sum < g->p.nr_tasks)) 972 return; 973 974 /* 975 * Count the number of distinct process groups present 976 * on nodes - when we are converged this will decrease 977 * to g->p.nr_proc: 978 */ 979 process_groups = 0; 980 981 for (node = 0; node < g->p.nr_nodes; node++) { 982 int processes = count_node_processes(node); 983 984 nr = nodes[node]; 985 tprintf(" %2d/%-2d", nr, processes); 986 987 process_groups += processes; 988 } 989 990 distance = nr_max - nr_min; 991 992 tprintf(" [%2d/%-2d]", distance, process_groups); 993 994 tprintf(" l:%3d-%-3d (%3d)", 995 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 996 997 if (loops_done_min && loops_done_max) { 998 double skew = 1.0 - (double)loops_done_min/loops_done_max; 999 1000 tprintf(" [%4.1f%%]", skew * 100.0); 1001 } 1002 1003 calc_convergence_compression(&strong); 1004 1005 if (strong && process_groups == g->p.nr_proc) { 1006 if (!*convergence) { 1007 *convergence = runtime_ns_max; 1008 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1009 if (g->p.measure_convergence) { 1010 g->all_converged = true; 1011 g->stop_work = true; 1012 } 1013 } 1014 } else { 1015 if (*convergence) { 1016 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1017 *convergence = 0; 1018 } 1019 tprintf("\n"); 1020 } 1021 } 1022 1023 static void show_summary(double runtime_ns_max, int l, double *convergence) 1024 { 1025 tprintf("\r # %5.1f%% [%.1f mins]", 1026 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1027 1028 calc_convergence(runtime_ns_max, convergence); 1029 1030 if (g->p.show_details >= 0) 1031 fflush(stdout); 1032 } 1033 1034 static void *worker_thread(void *__tdata) 1035 { 1036 struct thread_data *td = __tdata; 1037 struct timeval start0, start, stop, diff; 1038 int process_nr = td->process_nr; 1039 int thread_nr = td->thread_nr; 1040 unsigned long last_perturbance; 1041 int task_nr = td->task_nr; 1042 int details = g->p.show_details; 1043 int first_task, last_task; 1044 double convergence = 0; 1045 u64 val = td->val; 1046 double runtime_ns_max; 1047 u8 *global_data; 1048 u8 *process_data; 1049 u8 *thread_data; 1050 u64 bytes_done; 1051 long work_done; 1052 u32 l; 1053 struct rusage rusage; 1054 1055 bind_to_cpumask(td->bind_cpumask); 1056 bind_to_memnode(td->bind_node); 1057 1058 set_taskname("thread %d/%d", process_nr, thread_nr); 1059 1060 global_data = g->data; 1061 process_data = td->process_data; 1062 thread_data = setup_private_data(g->p.bytes_thread); 1063 1064 bytes_done = 0; 1065 1066 last_task = 0; 1067 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1068 last_task = 1; 1069 1070 first_task = 0; 1071 if (process_nr == 0 && thread_nr == 0) 1072 first_task = 1; 1073 1074 if (details >= 2) { 1075 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1076 process_nr, thread_nr, global_data, process_data, thread_data); 1077 } 1078 1079 if (g->p.serialize_startup) { 1080 pthread_mutex_lock(&g->startup_mutex); 1081 g->nr_tasks_started++; 1082 pthread_mutex_unlock(&g->startup_mutex); 1083 1084 /* Here we will wait for the main process to start us all at once: */ 1085 pthread_mutex_lock(&g->start_work_mutex); 1086 g->nr_tasks_working++; 1087 1088 /* Last one wake the main process: */ 1089 if (g->nr_tasks_working == g->p.nr_tasks) 1090 pthread_mutex_unlock(&g->startup_done_mutex); 1091 1092 pthread_mutex_unlock(&g->start_work_mutex); 1093 } 1094 1095 gettimeofday(&start0, NULL); 1096 1097 start = stop = start0; 1098 last_perturbance = start.tv_sec; 1099 1100 for (l = 0; l < g->p.nr_loops; l++) { 1101 start = stop; 1102 1103 if (g->stop_work) 1104 break; 1105 1106 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1107 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1108 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1109 1110 if (g->p.sleep_usecs) { 1111 pthread_mutex_lock(td->process_lock); 1112 usleep(g->p.sleep_usecs); 1113 pthread_mutex_unlock(td->process_lock); 1114 } 1115 /* 1116 * Amount of work to be done under a process-global lock: 1117 */ 1118 if (g->p.bytes_process_locked) { 1119 pthread_mutex_lock(td->process_lock); 1120 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1121 pthread_mutex_unlock(td->process_lock); 1122 } 1123 1124 work_done = g->p.bytes_global + g->p.bytes_process + 1125 g->p.bytes_process_locked + g->p.bytes_thread; 1126 1127 update_curr_cpu(task_nr, work_done); 1128 bytes_done += work_done; 1129 1130 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1131 continue; 1132 1133 td->loops_done = l; 1134 1135 gettimeofday(&stop, NULL); 1136 1137 /* Check whether our max runtime timed out: */ 1138 if (g->p.nr_secs) { 1139 timersub(&stop, &start0, &diff); 1140 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1141 g->stop_work = true; 1142 break; 1143 } 1144 } 1145 1146 /* Update the summary at most once per second: */ 1147 if (start.tv_sec == stop.tv_sec) 1148 continue; 1149 1150 /* 1151 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1152 * by migrating to CPU#0: 1153 */ 1154 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1155 cpu_set_t orig_mask; 1156 int target_cpu; 1157 int this_cpu; 1158 1159 last_perturbance = stop.tv_sec; 1160 1161 /* 1162 * Depending on where we are running, move into 1163 * the other half of the system, to create some 1164 * real disturbance: 1165 */ 1166 this_cpu = g->threads[task_nr].curr_cpu; 1167 if (this_cpu < g->p.nr_cpus/2) 1168 target_cpu = g->p.nr_cpus-1; 1169 else 1170 target_cpu = 0; 1171 1172 orig_mask = bind_to_cpu(target_cpu); 1173 1174 /* Here we are running on the target CPU already */ 1175 if (details >= 1) 1176 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1177 1178 bind_to_cpumask(orig_mask); 1179 } 1180 1181 if (details >= 3) { 1182 timersub(&stop, &start, &diff); 1183 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1184 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1185 1186 if (details >= 0) { 1187 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1188 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1189 } 1190 fflush(stdout); 1191 } 1192 if (!last_task) 1193 continue; 1194 1195 timersub(&stop, &start0, &diff); 1196 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1197 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1198 1199 show_summary(runtime_ns_max, l, &convergence); 1200 } 1201 1202 gettimeofday(&stop, NULL); 1203 timersub(&stop, &start0, &diff); 1204 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1205 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1206 td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9; 1207 1208 getrusage(RUSAGE_THREAD, &rusage); 1209 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1210 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1211 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1212 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1213 1214 free_data(thread_data, g->p.bytes_thread); 1215 1216 pthread_mutex_lock(&g->stop_work_mutex); 1217 g->bytes_done += bytes_done; 1218 pthread_mutex_unlock(&g->stop_work_mutex); 1219 1220 return NULL; 1221 } 1222 1223 /* 1224 * A worker process starts a couple of threads: 1225 */ 1226 static void worker_process(int process_nr) 1227 { 1228 pthread_mutex_t process_lock; 1229 struct thread_data *td; 1230 pthread_t *pthreads; 1231 u8 *process_data; 1232 int task_nr; 1233 int ret; 1234 int t; 1235 1236 pthread_mutex_init(&process_lock, NULL); 1237 set_taskname("process %d", process_nr); 1238 1239 /* 1240 * Pick up the memory policy and the CPU binding of our first thread, 1241 * so that we initialize memory accordingly: 1242 */ 1243 task_nr = process_nr*g->p.nr_threads; 1244 td = g->threads + task_nr; 1245 1246 bind_to_memnode(td->bind_node); 1247 bind_to_cpumask(td->bind_cpumask); 1248 1249 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1250 process_data = setup_private_data(g->p.bytes_process); 1251 1252 if (g->p.show_details >= 3) { 1253 printf(" # process %2d global mem: %p, process mem: %p\n", 1254 process_nr, g->data, process_data); 1255 } 1256 1257 for (t = 0; t < g->p.nr_threads; t++) { 1258 task_nr = process_nr*g->p.nr_threads + t; 1259 td = g->threads + task_nr; 1260 1261 td->process_data = process_data; 1262 td->process_nr = process_nr; 1263 td->thread_nr = t; 1264 td->task_nr = task_nr; 1265 td->val = rand(); 1266 td->curr_cpu = -1; 1267 td->process_lock = &process_lock; 1268 1269 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1270 BUG_ON(ret); 1271 } 1272 1273 for (t = 0; t < g->p.nr_threads; t++) { 1274 ret = pthread_join(pthreads[t], NULL); 1275 BUG_ON(ret); 1276 } 1277 1278 free_data(process_data, g->p.bytes_process); 1279 free(pthreads); 1280 } 1281 1282 static void print_summary(void) 1283 { 1284 if (g->p.show_details < 0) 1285 return; 1286 1287 printf("\n ###\n"); 1288 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1289 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); 1290 printf(" # %5dx %5ldMB global shared mem operations\n", 1291 g->p.nr_loops, g->p.bytes_global/1024/1024); 1292 printf(" # %5dx %5ldMB process shared mem operations\n", 1293 g->p.nr_loops, g->p.bytes_process/1024/1024); 1294 printf(" # %5dx %5ldMB thread local mem operations\n", 1295 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1296 1297 printf(" ###\n"); 1298 1299 printf("\n ###\n"); fflush(stdout); 1300 } 1301 1302 static void init_thread_data(void) 1303 { 1304 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1305 int t; 1306 1307 g->threads = zalloc_shared_data(size); 1308 1309 for (t = 0; t < g->p.nr_tasks; t++) { 1310 struct thread_data *td = g->threads + t; 1311 int cpu; 1312 1313 /* Allow all nodes by default: */ 1314 td->bind_node = -1; 1315 1316 /* Allow all CPUs by default: */ 1317 CPU_ZERO(&td->bind_cpumask); 1318 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1319 CPU_SET(cpu, &td->bind_cpumask); 1320 } 1321 } 1322 1323 static void deinit_thread_data(void) 1324 { 1325 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1326 1327 free_data(g->threads, size); 1328 } 1329 1330 static int init(void) 1331 { 1332 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1333 1334 /* Copy over options: */ 1335 g->p = p0; 1336 1337 g->p.nr_cpus = numa_num_configured_cpus(); 1338 1339 g->p.nr_nodes = numa_max_node() + 1; 1340 1341 /* char array in count_process_nodes(): */ 1342 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1343 1344 if (g->p.show_quiet && !g->p.show_details) 1345 g->p.show_details = -1; 1346 1347 /* Some memory should be specified: */ 1348 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1349 return -1; 1350 1351 if (g->p.mb_global_str) { 1352 g->p.mb_global = atof(g->p.mb_global_str); 1353 BUG_ON(g->p.mb_global < 0); 1354 } 1355 1356 if (g->p.mb_proc_str) { 1357 g->p.mb_proc = atof(g->p.mb_proc_str); 1358 BUG_ON(g->p.mb_proc < 0); 1359 } 1360 1361 if (g->p.mb_proc_locked_str) { 1362 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1363 BUG_ON(g->p.mb_proc_locked < 0); 1364 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1365 } 1366 1367 if (g->p.mb_thread_str) { 1368 g->p.mb_thread = atof(g->p.mb_thread_str); 1369 BUG_ON(g->p.mb_thread < 0); 1370 } 1371 1372 BUG_ON(g->p.nr_threads <= 0); 1373 BUG_ON(g->p.nr_proc <= 0); 1374 1375 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1376 1377 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1378 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1379 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1380 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1381 1382 g->data = setup_shared_data(g->p.bytes_global); 1383 1384 /* Startup serialization: */ 1385 init_global_mutex(&g->start_work_mutex); 1386 init_global_mutex(&g->startup_mutex); 1387 init_global_mutex(&g->startup_done_mutex); 1388 init_global_mutex(&g->stop_work_mutex); 1389 1390 init_thread_data(); 1391 1392 tprintf("#\n"); 1393 if (parse_setup_cpu_list() || parse_setup_node_list()) 1394 return -1; 1395 tprintf("#\n"); 1396 1397 print_summary(); 1398 1399 return 0; 1400 } 1401 1402 static void deinit(void) 1403 { 1404 free_data(g->data, g->p.bytes_global); 1405 g->data = NULL; 1406 1407 deinit_thread_data(); 1408 1409 free_data(g, sizeof(*g)); 1410 g = NULL; 1411 } 1412 1413 /* 1414 * Print a short or long result, depending on the verbosity setting: 1415 */ 1416 static void print_res(const char *name, double val, 1417 const char *txt_unit, const char *txt_short, const char *txt_long) 1418 { 1419 if (!name) 1420 name = "main,"; 1421 1422 if (!g->p.show_quiet) 1423 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1424 else 1425 printf(" %14.3f %s\n", val, txt_long); 1426 } 1427 1428 static int __bench_numa(const char *name) 1429 { 1430 struct timeval start, stop, diff; 1431 u64 runtime_ns_min, runtime_ns_sum; 1432 pid_t *pids, pid, wpid; 1433 double delta_runtime; 1434 double runtime_avg; 1435 double runtime_sec_max; 1436 double runtime_sec_min; 1437 int wait_stat; 1438 double bytes; 1439 int i, t, p; 1440 1441 if (init()) 1442 return -1; 1443 1444 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1445 pid = -1; 1446 1447 /* All threads try to acquire it, this way we can wait for them to start up: */ 1448 pthread_mutex_lock(&g->start_work_mutex); 1449 1450 if (g->p.serialize_startup) { 1451 tprintf(" #\n"); 1452 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1453 } 1454 1455 gettimeofday(&start, NULL); 1456 1457 for (i = 0; i < g->p.nr_proc; i++) { 1458 pid = fork(); 1459 dprintf(" # process %2d: PID %d\n", i, pid); 1460 1461 BUG_ON(pid < 0); 1462 if (!pid) { 1463 /* Child process: */ 1464 worker_process(i); 1465 1466 exit(0); 1467 } 1468 pids[i] = pid; 1469 1470 } 1471 /* Wait for all the threads to start up: */ 1472 while (g->nr_tasks_started != g->p.nr_tasks) 1473 usleep(USEC_PER_MSEC); 1474 1475 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1476 1477 if (g->p.serialize_startup) { 1478 double startup_sec; 1479 1480 pthread_mutex_lock(&g->startup_done_mutex); 1481 1482 /* This will start all threads: */ 1483 pthread_mutex_unlock(&g->start_work_mutex); 1484 1485 /* This mutex is locked - the last started thread will wake us: */ 1486 pthread_mutex_lock(&g->startup_done_mutex); 1487 1488 gettimeofday(&stop, NULL); 1489 1490 timersub(&stop, &start, &diff); 1491 1492 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1493 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1494 startup_sec /= NSEC_PER_SEC; 1495 1496 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1497 tprintf(" #\n"); 1498 1499 start = stop; 1500 pthread_mutex_unlock(&g->startup_done_mutex); 1501 } else { 1502 gettimeofday(&start, NULL); 1503 } 1504 1505 /* Parent process: */ 1506 1507 1508 for (i = 0; i < g->p.nr_proc; i++) { 1509 wpid = waitpid(pids[i], &wait_stat, 0); 1510 BUG_ON(wpid < 0); 1511 BUG_ON(!WIFEXITED(wait_stat)); 1512 1513 } 1514 1515 runtime_ns_sum = 0; 1516 runtime_ns_min = -1LL; 1517 1518 for (t = 0; t < g->p.nr_tasks; t++) { 1519 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1520 1521 runtime_ns_sum += thread_runtime_ns; 1522 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1523 } 1524 1525 gettimeofday(&stop, NULL); 1526 timersub(&stop, &start, &diff); 1527 1528 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1529 1530 tprintf("\n ###\n"); 1531 tprintf("\n"); 1532 1533 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1534 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1535 runtime_sec_max /= NSEC_PER_SEC; 1536 1537 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1538 1539 bytes = g->bytes_done; 1540 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1541 1542 if (g->p.measure_convergence) { 1543 print_res(name, runtime_sec_max, 1544 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1545 } 1546 1547 print_res(name, runtime_sec_max, 1548 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1549 1550 print_res(name, runtime_sec_min, 1551 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1552 1553 print_res(name, runtime_avg, 1554 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1555 1556 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1557 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1558 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1559 1560 print_res(name, bytes / g->p.nr_tasks / 1e9, 1561 "GB,", "data/thread", "GB data processed, per thread"); 1562 1563 print_res(name, bytes / 1e9, 1564 "GB,", "data-total", "GB data processed, total"); 1565 1566 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1567 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1568 1569 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1570 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1571 1572 print_res(name, bytes / runtime_sec_max / 1e9, 1573 "GB/sec,", "total-speed", "GB/sec total speed"); 1574 1575 if (g->p.show_details >= 2) { 1576 char tname[32]; 1577 struct thread_data *td; 1578 for (p = 0; p < g->p.nr_proc; p++) { 1579 for (t = 0; t < g->p.nr_threads; t++) { 1580 memset(tname, 0, 32); 1581 td = g->threads + p*g->p.nr_threads + t; 1582 snprintf(tname, 32, "process%d:thread%d", p, t); 1583 print_res(tname, td->speed_gbs, 1584 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1585 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1586 "secs", "thread-system-time", "system CPU time/thread"); 1587 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1588 "secs", "thread-user-time", "user CPU time/thread"); 1589 } 1590 } 1591 } 1592 1593 free(pids); 1594 1595 deinit(); 1596 1597 return 0; 1598 } 1599 1600 #define MAX_ARGS 50 1601 1602 static int command_size(const char **argv) 1603 { 1604 int size = 0; 1605 1606 while (*argv) { 1607 size++; 1608 argv++; 1609 } 1610 1611 BUG_ON(size >= MAX_ARGS); 1612 1613 return size; 1614 } 1615 1616 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1617 { 1618 int i; 1619 1620 printf("\n # Running %s \"perf bench numa", name); 1621 1622 for (i = 0; i < argc; i++) 1623 printf(" %s", argv[i]); 1624 1625 printf("\"\n"); 1626 1627 memset(p, 0, sizeof(*p)); 1628 1629 /* Initialize nonzero defaults: */ 1630 1631 p->serialize_startup = 1; 1632 p->data_reads = true; 1633 p->data_writes = true; 1634 p->data_backwards = true; 1635 p->data_rand_walk = true; 1636 p->nr_loops = -1; 1637 p->init_random = true; 1638 p->mb_global_str = "1"; 1639 p->nr_proc = 1; 1640 p->nr_threads = 1; 1641 p->nr_secs = 5; 1642 p->run_all = argc == 1; 1643 } 1644 1645 static int run_bench_numa(const char *name, const char **argv) 1646 { 1647 int argc = command_size(argv); 1648 1649 init_params(&p0, name, argc, argv); 1650 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1651 if (argc) 1652 goto err; 1653 1654 if (__bench_numa(name)) 1655 goto err; 1656 1657 return 0; 1658 1659 err: 1660 return -1; 1661 } 1662 1663 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1664 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1665 1666 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1667 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1668 1669 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1670 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1671 1672 /* 1673 * The built-in test-suite executed by "perf bench numa -a". 1674 * 1675 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1676 */ 1677 static const char *tests[][MAX_ARGS] = { 1678 /* Basic single-stream NUMA bandwidth measurements: */ 1679 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1680 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1681 { "RAM-bw-local-NOTHP,", 1682 "mem", "-p", "1", "-t", "1", "-P", "1024", 1683 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1684 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1685 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1686 1687 /* 2-stream NUMA bandwidth measurements: */ 1688 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1689 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1690 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1691 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1692 1693 /* Cross-stream NUMA bandwidth measurement: */ 1694 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1695 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1696 1697 /* Convergence latency measurements: */ 1698 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1699 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1700 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1701 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1702 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1703 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1704 { " 4x4-convergence-NOTHP,", 1705 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1706 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1707 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1708 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1709 { " 8x4-convergence-NOTHP,", 1710 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1711 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1712 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1713 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1714 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1715 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1716 1717 /* Various NUMA process/thread layout bandwidth measurements: */ 1718 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1719 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1720 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1721 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1722 { " 8x1-bw-process-NOTHP,", 1723 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1724 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1725 1726 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1727 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1728 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1729 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1730 1731 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1732 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1733 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1734 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1735 { " 4x8-bw-thread-NOTHP,", 1736 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1737 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1738 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1739 1740 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1741 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1742 1743 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1744 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1745 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1746 { "numa01-bw-thread-NOTHP,", 1747 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1748 }; 1749 1750 static int bench_all(void) 1751 { 1752 int nr = ARRAY_SIZE(tests); 1753 int ret; 1754 int i; 1755 1756 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1757 BUG_ON(ret < 0); 1758 1759 for (i = 0; i < nr; i++) { 1760 run_bench_numa(tests[i][0], tests[i] + 1); 1761 } 1762 1763 printf("\n"); 1764 1765 return 0; 1766 } 1767 1768 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused) 1769 { 1770 init_params(&p0, "main,", argc, argv); 1771 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1772 if (argc) 1773 goto err; 1774 1775 if (p0.run_all) 1776 return bench_all(); 1777 1778 if (__bench_numa(NULL)) 1779 goto err; 1780 1781 return 0; 1782 1783 err: 1784 usage_with_options(numa_usage, options); 1785 return -1; 1786 } 1787