xref: /linux/tools/perf/bench/numa.c (revision ef69f8d2ff09518657c3ecaf2db8408c16549829)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * numa.c
4  *
5  * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
6  */
7 
8 #include <inttypes.h>
9 /* For the CLR_() macros */
10 #include <pthread.h>
11 
12 #include "../perf.h"
13 #include "../builtin.h"
14 #include "../util/util.h"
15 #include <subcmd/parse-options.h>
16 #include "../util/cloexec.h"
17 
18 #include "bench.h"
19 
20 #include <errno.h>
21 #include <sched.h>
22 #include <stdio.h>
23 #include <assert.h>
24 #include <malloc.h>
25 #include <signal.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <unistd.h>
29 #include <sys/mman.h>
30 #include <sys/time.h>
31 #include <sys/resource.h>
32 #include <sys/wait.h>
33 #include <sys/prctl.h>
34 #include <sys/types.h>
35 #include <linux/kernel.h>
36 #include <linux/time64.h>
37 
38 #include <numa.h>
39 #include <numaif.h>
40 
41 /*
42  * Regular printout to the terminal, supressed if -q is specified:
43  */
44 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
45 
46 /*
47  * Debug printf:
48  */
49 #undef dprintf
50 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
51 
52 struct thread_data {
53 	int			curr_cpu;
54 	cpu_set_t		bind_cpumask;
55 	int			bind_node;
56 	u8			*process_data;
57 	int			process_nr;
58 	int			thread_nr;
59 	int			task_nr;
60 	unsigned int		loops_done;
61 	u64			val;
62 	u64			runtime_ns;
63 	u64			system_time_ns;
64 	u64			user_time_ns;
65 	double			speed_gbs;
66 	pthread_mutex_t		*process_lock;
67 };
68 
69 /* Parameters set by options: */
70 
71 struct params {
72 	/* Startup synchronization: */
73 	bool			serialize_startup;
74 
75 	/* Task hierarchy: */
76 	int			nr_proc;
77 	int			nr_threads;
78 
79 	/* Working set sizes: */
80 	const char		*mb_global_str;
81 	const char		*mb_proc_str;
82 	const char		*mb_proc_locked_str;
83 	const char		*mb_thread_str;
84 
85 	double			mb_global;
86 	double			mb_proc;
87 	double			mb_proc_locked;
88 	double			mb_thread;
89 
90 	/* Access patterns to the working set: */
91 	bool			data_reads;
92 	bool			data_writes;
93 	bool			data_backwards;
94 	bool			data_zero_memset;
95 	bool			data_rand_walk;
96 	u32			nr_loops;
97 	u32			nr_secs;
98 	u32			sleep_usecs;
99 
100 	/* Working set initialization: */
101 	bool			init_zero;
102 	bool			init_random;
103 	bool			init_cpu0;
104 
105 	/* Misc options: */
106 	int			show_details;
107 	int			run_all;
108 	int			thp;
109 
110 	long			bytes_global;
111 	long			bytes_process;
112 	long			bytes_process_locked;
113 	long			bytes_thread;
114 
115 	int			nr_tasks;
116 	bool			show_quiet;
117 
118 	bool			show_convergence;
119 	bool			measure_convergence;
120 
121 	int			perturb_secs;
122 	int			nr_cpus;
123 	int			nr_nodes;
124 
125 	/* Affinity options -C and -N: */
126 	char			*cpu_list_str;
127 	char			*node_list_str;
128 };
129 
130 
131 /* Global, read-writable area, accessible to all processes and threads: */
132 
133 struct global_info {
134 	u8			*data;
135 
136 	pthread_mutex_t		startup_mutex;
137 	int			nr_tasks_started;
138 
139 	pthread_mutex_t		startup_done_mutex;
140 
141 	pthread_mutex_t		start_work_mutex;
142 	int			nr_tasks_working;
143 
144 	pthread_mutex_t		stop_work_mutex;
145 	u64			bytes_done;
146 
147 	struct thread_data	*threads;
148 
149 	/* Convergence latency measurement: */
150 	bool			all_converged;
151 	bool			stop_work;
152 
153 	int			print_once;
154 
155 	struct params		p;
156 };
157 
158 static struct global_info	*g = NULL;
159 
160 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
161 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
162 
163 struct params p0;
164 
165 static const struct option options[] = {
166 	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
167 	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
168 
169 	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
170 	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
171 	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
172 	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
173 
174 	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
175 	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
176 	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
177 
178 	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via writes (can be mixed with -W)"),
179 	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
180 	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
181 	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
182 	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
183 
184 
185 	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
186 	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
187 	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
188 	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
189 
190 	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
191 	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
192 	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
193 	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
194 		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
195 	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
196 	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
197 	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
198 
199 	/* Special option string parsing callbacks: */
200         OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
201 			"bind the first N tasks to these specific cpus (the rest is unbound)",
202 			parse_cpus_opt),
203         OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
204 			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
205 			parse_nodes_opt),
206 	OPT_END()
207 };
208 
209 static const char * const bench_numa_usage[] = {
210 	"perf bench numa <options>",
211 	NULL
212 };
213 
214 static const char * const numa_usage[] = {
215 	"perf bench numa mem [<options>]",
216 	NULL
217 };
218 
219 static cpu_set_t bind_to_cpu(int target_cpu)
220 {
221 	cpu_set_t orig_mask, mask;
222 	int ret;
223 
224 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
225 	BUG_ON(ret);
226 
227 	CPU_ZERO(&mask);
228 
229 	if (target_cpu == -1) {
230 		int cpu;
231 
232 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
233 			CPU_SET(cpu, &mask);
234 	} else {
235 		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
236 		CPU_SET(target_cpu, &mask);
237 	}
238 
239 	ret = sched_setaffinity(0, sizeof(mask), &mask);
240 	BUG_ON(ret);
241 
242 	return orig_mask;
243 }
244 
245 static cpu_set_t bind_to_node(int target_node)
246 {
247 	int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes;
248 	cpu_set_t orig_mask, mask;
249 	int cpu;
250 	int ret;
251 
252 	BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus);
253 	BUG_ON(!cpus_per_node);
254 
255 	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
256 	BUG_ON(ret);
257 
258 	CPU_ZERO(&mask);
259 
260 	if (target_node == -1) {
261 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
262 			CPU_SET(cpu, &mask);
263 	} else {
264 		int cpu_start = (target_node + 0) * cpus_per_node;
265 		int cpu_stop  = (target_node + 1) * cpus_per_node;
266 
267 		BUG_ON(cpu_stop > g->p.nr_cpus);
268 
269 		for (cpu = cpu_start; cpu < cpu_stop; cpu++)
270 			CPU_SET(cpu, &mask);
271 	}
272 
273 	ret = sched_setaffinity(0, sizeof(mask), &mask);
274 	BUG_ON(ret);
275 
276 	return orig_mask;
277 }
278 
279 static void bind_to_cpumask(cpu_set_t mask)
280 {
281 	int ret;
282 
283 	ret = sched_setaffinity(0, sizeof(mask), &mask);
284 	BUG_ON(ret);
285 }
286 
287 static void mempol_restore(void)
288 {
289 	int ret;
290 
291 	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
292 
293 	BUG_ON(ret);
294 }
295 
296 static void bind_to_memnode(int node)
297 {
298 	unsigned long nodemask;
299 	int ret;
300 
301 	if (node == -1)
302 		return;
303 
304 	BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8);
305 	nodemask = 1L << node;
306 
307 	ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8);
308 	dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret);
309 
310 	BUG_ON(ret);
311 }
312 
313 #define HPSIZE (2*1024*1024)
314 
315 #define set_taskname(fmt...)				\
316 do {							\
317 	char name[20];					\
318 							\
319 	snprintf(name, 20, fmt);			\
320 	prctl(PR_SET_NAME, name);			\
321 } while (0)
322 
323 static u8 *alloc_data(ssize_t bytes0, int map_flags,
324 		      int init_zero, int init_cpu0, int thp, int init_random)
325 {
326 	cpu_set_t orig_mask;
327 	ssize_t bytes;
328 	u8 *buf;
329 	int ret;
330 
331 	if (!bytes0)
332 		return NULL;
333 
334 	/* Allocate and initialize all memory on CPU#0: */
335 	if (init_cpu0) {
336 		orig_mask = bind_to_node(0);
337 		bind_to_memnode(0);
338 	}
339 
340 	bytes = bytes0 + HPSIZE;
341 
342 	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
343 	BUG_ON(buf == (void *)-1);
344 
345 	if (map_flags == MAP_PRIVATE) {
346 		if (thp > 0) {
347 			ret = madvise(buf, bytes, MADV_HUGEPAGE);
348 			if (ret && !g->print_once) {
349 				g->print_once = 1;
350 				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
351 			}
352 		}
353 		if (thp < 0) {
354 			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
355 			if (ret && !g->print_once) {
356 				g->print_once = 1;
357 				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
358 			}
359 		}
360 	}
361 
362 	if (init_zero) {
363 		bzero(buf, bytes);
364 	} else {
365 		/* Initialize random contents, different in each word: */
366 		if (init_random) {
367 			u64 *wbuf = (void *)buf;
368 			long off = rand();
369 			long i;
370 
371 			for (i = 0; i < bytes/8; i++)
372 				wbuf[i] = i + off;
373 		}
374 	}
375 
376 	/* Align to 2MB boundary: */
377 	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
378 
379 	/* Restore affinity: */
380 	if (init_cpu0) {
381 		bind_to_cpumask(orig_mask);
382 		mempol_restore();
383 	}
384 
385 	return buf;
386 }
387 
388 static void free_data(void *data, ssize_t bytes)
389 {
390 	int ret;
391 
392 	if (!data)
393 		return;
394 
395 	ret = munmap(data, bytes);
396 	BUG_ON(ret);
397 }
398 
399 /*
400  * Create a shared memory buffer that can be shared between processes, zeroed:
401  */
402 static void * zalloc_shared_data(ssize_t bytes)
403 {
404 	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
405 }
406 
407 /*
408  * Create a shared memory buffer that can be shared between processes:
409  */
410 static void * setup_shared_data(ssize_t bytes)
411 {
412 	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
413 }
414 
415 /*
416  * Allocate process-local memory - this will either be shared between
417  * threads of this process, or only be accessed by this thread:
418  */
419 static void * setup_private_data(ssize_t bytes)
420 {
421 	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
422 }
423 
424 /*
425  * Return a process-shared (global) mutex:
426  */
427 static void init_global_mutex(pthread_mutex_t *mutex)
428 {
429 	pthread_mutexattr_t attr;
430 
431 	pthread_mutexattr_init(&attr);
432 	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
433 	pthread_mutex_init(mutex, &attr);
434 }
435 
436 static int parse_cpu_list(const char *arg)
437 {
438 	p0.cpu_list_str = strdup(arg);
439 
440 	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
441 
442 	return 0;
443 }
444 
445 static int parse_setup_cpu_list(void)
446 {
447 	struct thread_data *td;
448 	char *str0, *str;
449 	int t;
450 
451 	if (!g->p.cpu_list_str)
452 		return 0;
453 
454 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
455 
456 	str0 = str = strdup(g->p.cpu_list_str);
457 	t = 0;
458 
459 	BUG_ON(!str);
460 
461 	tprintf("# binding tasks to CPUs:\n");
462 	tprintf("#  ");
463 
464 	while (true) {
465 		int bind_cpu, bind_cpu_0, bind_cpu_1;
466 		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
467 		int bind_len;
468 		int step;
469 		int mul;
470 
471 		tok = strsep(&str, ",");
472 		if (!tok)
473 			break;
474 
475 		tok_end = strstr(tok, "-");
476 
477 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
478 		if (!tok_end) {
479 			/* Single CPU specified: */
480 			bind_cpu_0 = bind_cpu_1 = atol(tok);
481 		} else {
482 			/* CPU range specified (for example: "5-11"): */
483 			bind_cpu_0 = atol(tok);
484 			bind_cpu_1 = atol(tok_end + 1);
485 		}
486 
487 		step = 1;
488 		tok_step = strstr(tok, "#");
489 		if (tok_step) {
490 			step = atol(tok_step + 1);
491 			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
492 		}
493 
494 		/*
495 		 * Mask length.
496 		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
497 		 * where the _4 means the next 4 CPUs are allowed.
498 		 */
499 		bind_len = 1;
500 		tok_len = strstr(tok, "_");
501 		if (tok_len) {
502 			bind_len = atol(tok_len + 1);
503 			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
504 		}
505 
506 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
507 		mul = 1;
508 		tok_mul = strstr(tok, "x");
509 		if (tok_mul) {
510 			mul = atol(tok_mul + 1);
511 			BUG_ON(mul <= 0);
512 		}
513 
514 		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
515 
516 		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
517 			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
518 			return -1;
519 		}
520 
521 		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
522 		BUG_ON(bind_cpu_0 > bind_cpu_1);
523 
524 		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
525 			int i;
526 
527 			for (i = 0; i < mul; i++) {
528 				int cpu;
529 
530 				if (t >= g->p.nr_tasks) {
531 					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
532 					goto out;
533 				}
534 				td = g->threads + t;
535 
536 				if (t)
537 					tprintf(",");
538 				if (bind_len > 1) {
539 					tprintf("%2d/%d", bind_cpu, bind_len);
540 				} else {
541 					tprintf("%2d", bind_cpu);
542 				}
543 
544 				CPU_ZERO(&td->bind_cpumask);
545 				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
546 					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
547 					CPU_SET(cpu, &td->bind_cpumask);
548 				}
549 				t++;
550 			}
551 		}
552 	}
553 out:
554 
555 	tprintf("\n");
556 
557 	if (t < g->p.nr_tasks)
558 		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
559 
560 	free(str0);
561 	return 0;
562 }
563 
564 static int parse_cpus_opt(const struct option *opt __maybe_unused,
565 			  const char *arg, int unset __maybe_unused)
566 {
567 	if (!arg)
568 		return -1;
569 
570 	return parse_cpu_list(arg);
571 }
572 
573 static int parse_node_list(const char *arg)
574 {
575 	p0.node_list_str = strdup(arg);
576 
577 	dprintf("got NODE list: {%s}\n", p0.node_list_str);
578 
579 	return 0;
580 }
581 
582 static int parse_setup_node_list(void)
583 {
584 	struct thread_data *td;
585 	char *str0, *str;
586 	int t;
587 
588 	if (!g->p.node_list_str)
589 		return 0;
590 
591 	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
592 
593 	str0 = str = strdup(g->p.node_list_str);
594 	t = 0;
595 
596 	BUG_ON(!str);
597 
598 	tprintf("# binding tasks to NODEs:\n");
599 	tprintf("# ");
600 
601 	while (true) {
602 		int bind_node, bind_node_0, bind_node_1;
603 		char *tok, *tok_end, *tok_step, *tok_mul;
604 		int step;
605 		int mul;
606 
607 		tok = strsep(&str, ",");
608 		if (!tok)
609 			break;
610 
611 		tok_end = strstr(tok, "-");
612 
613 		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
614 		if (!tok_end) {
615 			/* Single NODE specified: */
616 			bind_node_0 = bind_node_1 = atol(tok);
617 		} else {
618 			/* NODE range specified (for example: "5-11"): */
619 			bind_node_0 = atol(tok);
620 			bind_node_1 = atol(tok_end + 1);
621 		}
622 
623 		step = 1;
624 		tok_step = strstr(tok, "#");
625 		if (tok_step) {
626 			step = atol(tok_step + 1);
627 			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
628 		}
629 
630 		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
631 		mul = 1;
632 		tok_mul = strstr(tok, "x");
633 		if (tok_mul) {
634 			mul = atol(tok_mul + 1);
635 			BUG_ON(mul <= 0);
636 		}
637 
638 		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
639 
640 		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
641 			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
642 			return -1;
643 		}
644 
645 		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
646 		BUG_ON(bind_node_0 > bind_node_1);
647 
648 		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
649 			int i;
650 
651 			for (i = 0; i < mul; i++) {
652 				if (t >= g->p.nr_tasks) {
653 					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
654 					goto out;
655 				}
656 				td = g->threads + t;
657 
658 				if (!t)
659 					tprintf(" %2d", bind_node);
660 				else
661 					tprintf(",%2d", bind_node);
662 
663 				td->bind_node = bind_node;
664 				t++;
665 			}
666 		}
667 	}
668 out:
669 
670 	tprintf("\n");
671 
672 	if (t < g->p.nr_tasks)
673 		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
674 
675 	free(str0);
676 	return 0;
677 }
678 
679 static int parse_nodes_opt(const struct option *opt __maybe_unused,
680 			  const char *arg, int unset __maybe_unused)
681 {
682 	if (!arg)
683 		return -1;
684 
685 	return parse_node_list(arg);
686 
687 	return 0;
688 }
689 
690 #define BIT(x) (1ul << x)
691 
692 static inline uint32_t lfsr_32(uint32_t lfsr)
693 {
694 	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
695 	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
696 }
697 
698 /*
699  * Make sure there's real data dependency to RAM (when read
700  * accesses are enabled), so the compiler, the CPU and the
701  * kernel (KSM, zero page, etc.) cannot optimize away RAM
702  * accesses:
703  */
704 static inline u64 access_data(u64 *data, u64 val)
705 {
706 	if (g->p.data_reads)
707 		val += *data;
708 	if (g->p.data_writes)
709 		*data = val + 1;
710 	return val;
711 }
712 
713 /*
714  * The worker process does two types of work, a forwards going
715  * loop and a backwards going loop.
716  *
717  * We do this so that on multiprocessor systems we do not create
718  * a 'train' of processing, with highly synchronized processes,
719  * skewing the whole benchmark.
720  */
721 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
722 {
723 	long words = bytes/sizeof(u64);
724 	u64 *data = (void *)__data;
725 	long chunk_0, chunk_1;
726 	u64 *d0, *d, *d1;
727 	long off;
728 	long i;
729 
730 	BUG_ON(!data && words);
731 	BUG_ON(data && !words);
732 
733 	if (!data)
734 		return val;
735 
736 	/* Very simple memset() work variant: */
737 	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
738 		bzero(data, bytes);
739 		return val;
740 	}
741 
742 	/* Spread out by PID/TID nr and by loop nr: */
743 	chunk_0 = words/nr_max;
744 	chunk_1 = words/g->p.nr_loops;
745 	off = nr*chunk_0 + loop*chunk_1;
746 
747 	while (off >= words)
748 		off -= words;
749 
750 	if (g->p.data_rand_walk) {
751 		u32 lfsr = nr + loop + val;
752 		int j;
753 
754 		for (i = 0; i < words/1024; i++) {
755 			long start, end;
756 
757 			lfsr = lfsr_32(lfsr);
758 
759 			start = lfsr % words;
760 			end = min(start + 1024, words-1);
761 
762 			if (g->p.data_zero_memset) {
763 				bzero(data + start, (end-start) * sizeof(u64));
764 			} else {
765 				for (j = start; j < end; j++)
766 					val = access_data(data + j, val);
767 			}
768 		}
769 	} else if (!g->p.data_backwards || (nr + loop) & 1) {
770 
771 		d0 = data + off;
772 		d  = data + off + 1;
773 		d1 = data + words;
774 
775 		/* Process data forwards: */
776 		for (;;) {
777 			if (unlikely(d >= d1))
778 				d = data;
779 			if (unlikely(d == d0))
780 				break;
781 
782 			val = access_data(d, val);
783 
784 			d++;
785 		}
786 	} else {
787 		/* Process data backwards: */
788 
789 		d0 = data + off;
790 		d  = data + off - 1;
791 		d1 = data + words;
792 
793 		/* Process data forwards: */
794 		for (;;) {
795 			if (unlikely(d < data))
796 				d = data + words-1;
797 			if (unlikely(d == d0))
798 				break;
799 
800 			val = access_data(d, val);
801 
802 			d--;
803 		}
804 	}
805 
806 	return val;
807 }
808 
809 static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
810 {
811 	unsigned int cpu;
812 
813 	cpu = sched_getcpu();
814 
815 	g->threads[task_nr].curr_cpu = cpu;
816 	prctl(0, bytes_worked);
817 }
818 
819 #define MAX_NR_NODES	64
820 
821 /*
822  * Count the number of nodes a process's threads
823  * are spread out on.
824  *
825  * A count of 1 means that the process is compressed
826  * to a single node. A count of g->p.nr_nodes means it's
827  * spread out on the whole system.
828  */
829 static int count_process_nodes(int process_nr)
830 {
831 	char node_present[MAX_NR_NODES] = { 0, };
832 	int nodes;
833 	int n, t;
834 
835 	for (t = 0; t < g->p.nr_threads; t++) {
836 		struct thread_data *td;
837 		int task_nr;
838 		int node;
839 
840 		task_nr = process_nr*g->p.nr_threads + t;
841 		td = g->threads + task_nr;
842 
843 		node = numa_node_of_cpu(td->curr_cpu);
844 		if (node < 0) /* curr_cpu was likely still -1 */
845 			return 0;
846 
847 		node_present[node] = 1;
848 	}
849 
850 	nodes = 0;
851 
852 	for (n = 0; n < MAX_NR_NODES; n++)
853 		nodes += node_present[n];
854 
855 	return nodes;
856 }
857 
858 /*
859  * Count the number of distinct process-threads a node contains.
860  *
861  * A count of 1 means that the node contains only a single
862  * process. If all nodes on the system contain at most one
863  * process then we are well-converged.
864  */
865 static int count_node_processes(int node)
866 {
867 	int processes = 0;
868 	int t, p;
869 
870 	for (p = 0; p < g->p.nr_proc; p++) {
871 		for (t = 0; t < g->p.nr_threads; t++) {
872 			struct thread_data *td;
873 			int task_nr;
874 			int n;
875 
876 			task_nr = p*g->p.nr_threads + t;
877 			td = g->threads + task_nr;
878 
879 			n = numa_node_of_cpu(td->curr_cpu);
880 			if (n == node) {
881 				processes++;
882 				break;
883 			}
884 		}
885 	}
886 
887 	return processes;
888 }
889 
890 static void calc_convergence_compression(int *strong)
891 {
892 	unsigned int nodes_min, nodes_max;
893 	int p;
894 
895 	nodes_min = -1;
896 	nodes_max =  0;
897 
898 	for (p = 0; p < g->p.nr_proc; p++) {
899 		unsigned int nodes = count_process_nodes(p);
900 
901 		if (!nodes) {
902 			*strong = 0;
903 			return;
904 		}
905 
906 		nodes_min = min(nodes, nodes_min);
907 		nodes_max = max(nodes, nodes_max);
908 	}
909 
910 	/* Strong convergence: all threads compress on a single node: */
911 	if (nodes_min == 1 && nodes_max == 1) {
912 		*strong = 1;
913 	} else {
914 		*strong = 0;
915 		tprintf(" {%d-%d}", nodes_min, nodes_max);
916 	}
917 }
918 
919 static void calc_convergence(double runtime_ns_max, double *convergence)
920 {
921 	unsigned int loops_done_min, loops_done_max;
922 	int process_groups;
923 	int nodes[MAX_NR_NODES];
924 	int distance;
925 	int nr_min;
926 	int nr_max;
927 	int strong;
928 	int sum;
929 	int nr;
930 	int node;
931 	int cpu;
932 	int t;
933 
934 	if (!g->p.show_convergence && !g->p.measure_convergence)
935 		return;
936 
937 	for (node = 0; node < g->p.nr_nodes; node++)
938 		nodes[node] = 0;
939 
940 	loops_done_min = -1;
941 	loops_done_max = 0;
942 
943 	for (t = 0; t < g->p.nr_tasks; t++) {
944 		struct thread_data *td = g->threads + t;
945 		unsigned int loops_done;
946 
947 		cpu = td->curr_cpu;
948 
949 		/* Not all threads have written it yet: */
950 		if (cpu < 0)
951 			continue;
952 
953 		node = numa_node_of_cpu(cpu);
954 
955 		nodes[node]++;
956 
957 		loops_done = td->loops_done;
958 		loops_done_min = min(loops_done, loops_done_min);
959 		loops_done_max = max(loops_done, loops_done_max);
960 	}
961 
962 	nr_max = 0;
963 	nr_min = g->p.nr_tasks;
964 	sum = 0;
965 
966 	for (node = 0; node < g->p.nr_nodes; node++) {
967 		nr = nodes[node];
968 		nr_min = min(nr, nr_min);
969 		nr_max = max(nr, nr_max);
970 		sum += nr;
971 	}
972 	BUG_ON(nr_min > nr_max);
973 
974 	BUG_ON(sum > g->p.nr_tasks);
975 
976 	if (0 && (sum < g->p.nr_tasks))
977 		return;
978 
979 	/*
980 	 * Count the number of distinct process groups present
981 	 * on nodes - when we are converged this will decrease
982 	 * to g->p.nr_proc:
983 	 */
984 	process_groups = 0;
985 
986 	for (node = 0; node < g->p.nr_nodes; node++) {
987 		int processes = count_node_processes(node);
988 
989 		nr = nodes[node];
990 		tprintf(" %2d/%-2d", nr, processes);
991 
992 		process_groups += processes;
993 	}
994 
995 	distance = nr_max - nr_min;
996 
997 	tprintf(" [%2d/%-2d]", distance, process_groups);
998 
999 	tprintf(" l:%3d-%-3d (%3d)",
1000 		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1001 
1002 	if (loops_done_min && loops_done_max) {
1003 		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1004 
1005 		tprintf(" [%4.1f%%]", skew * 100.0);
1006 	}
1007 
1008 	calc_convergence_compression(&strong);
1009 
1010 	if (strong && process_groups == g->p.nr_proc) {
1011 		if (!*convergence) {
1012 			*convergence = runtime_ns_max;
1013 			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1014 			if (g->p.measure_convergence) {
1015 				g->all_converged = true;
1016 				g->stop_work = true;
1017 			}
1018 		}
1019 	} else {
1020 		if (*convergence) {
1021 			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1022 			*convergence = 0;
1023 		}
1024 		tprintf("\n");
1025 	}
1026 }
1027 
1028 static void show_summary(double runtime_ns_max, int l, double *convergence)
1029 {
1030 	tprintf("\r #  %5.1f%%  [%.1f mins]",
1031 		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1032 
1033 	calc_convergence(runtime_ns_max, convergence);
1034 
1035 	if (g->p.show_details >= 0)
1036 		fflush(stdout);
1037 }
1038 
1039 static void *worker_thread(void *__tdata)
1040 {
1041 	struct thread_data *td = __tdata;
1042 	struct timeval start0, start, stop, diff;
1043 	int process_nr = td->process_nr;
1044 	int thread_nr = td->thread_nr;
1045 	unsigned long last_perturbance;
1046 	int task_nr = td->task_nr;
1047 	int details = g->p.show_details;
1048 	int first_task, last_task;
1049 	double convergence = 0;
1050 	u64 val = td->val;
1051 	double runtime_ns_max;
1052 	u8 *global_data;
1053 	u8 *process_data;
1054 	u8 *thread_data;
1055 	u64 bytes_done;
1056 	long work_done;
1057 	u32 l;
1058 	struct rusage rusage;
1059 
1060 	bind_to_cpumask(td->bind_cpumask);
1061 	bind_to_memnode(td->bind_node);
1062 
1063 	set_taskname("thread %d/%d", process_nr, thread_nr);
1064 
1065 	global_data = g->data;
1066 	process_data = td->process_data;
1067 	thread_data = setup_private_data(g->p.bytes_thread);
1068 
1069 	bytes_done = 0;
1070 
1071 	last_task = 0;
1072 	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1073 		last_task = 1;
1074 
1075 	first_task = 0;
1076 	if (process_nr == 0 && thread_nr == 0)
1077 		first_task = 1;
1078 
1079 	if (details >= 2) {
1080 		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1081 			process_nr, thread_nr, global_data, process_data, thread_data);
1082 	}
1083 
1084 	if (g->p.serialize_startup) {
1085 		pthread_mutex_lock(&g->startup_mutex);
1086 		g->nr_tasks_started++;
1087 		pthread_mutex_unlock(&g->startup_mutex);
1088 
1089 		/* Here we will wait for the main process to start us all at once: */
1090 		pthread_mutex_lock(&g->start_work_mutex);
1091 		g->nr_tasks_working++;
1092 
1093 		/* Last one wake the main process: */
1094 		if (g->nr_tasks_working == g->p.nr_tasks)
1095 			pthread_mutex_unlock(&g->startup_done_mutex);
1096 
1097 		pthread_mutex_unlock(&g->start_work_mutex);
1098 	}
1099 
1100 	gettimeofday(&start0, NULL);
1101 
1102 	start = stop = start0;
1103 	last_perturbance = start.tv_sec;
1104 
1105 	for (l = 0; l < g->p.nr_loops; l++) {
1106 		start = stop;
1107 
1108 		if (g->stop_work)
1109 			break;
1110 
1111 		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1112 		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1113 		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1114 
1115 		if (g->p.sleep_usecs) {
1116 			pthread_mutex_lock(td->process_lock);
1117 			usleep(g->p.sleep_usecs);
1118 			pthread_mutex_unlock(td->process_lock);
1119 		}
1120 		/*
1121 		 * Amount of work to be done under a process-global lock:
1122 		 */
1123 		if (g->p.bytes_process_locked) {
1124 			pthread_mutex_lock(td->process_lock);
1125 			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1126 			pthread_mutex_unlock(td->process_lock);
1127 		}
1128 
1129 		work_done = g->p.bytes_global + g->p.bytes_process +
1130 			    g->p.bytes_process_locked + g->p.bytes_thread;
1131 
1132 		update_curr_cpu(task_nr, work_done);
1133 		bytes_done += work_done;
1134 
1135 		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1136 			continue;
1137 
1138 		td->loops_done = l;
1139 
1140 		gettimeofday(&stop, NULL);
1141 
1142 		/* Check whether our max runtime timed out: */
1143 		if (g->p.nr_secs) {
1144 			timersub(&stop, &start0, &diff);
1145 			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1146 				g->stop_work = true;
1147 				break;
1148 			}
1149 		}
1150 
1151 		/* Update the summary at most once per second: */
1152 		if (start.tv_sec == stop.tv_sec)
1153 			continue;
1154 
1155 		/*
1156 		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1157 		 * by migrating to CPU#0:
1158 		 */
1159 		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1160 			cpu_set_t orig_mask;
1161 			int target_cpu;
1162 			int this_cpu;
1163 
1164 			last_perturbance = stop.tv_sec;
1165 
1166 			/*
1167 			 * Depending on where we are running, move into
1168 			 * the other half of the system, to create some
1169 			 * real disturbance:
1170 			 */
1171 			this_cpu = g->threads[task_nr].curr_cpu;
1172 			if (this_cpu < g->p.nr_cpus/2)
1173 				target_cpu = g->p.nr_cpus-1;
1174 			else
1175 				target_cpu = 0;
1176 
1177 			orig_mask = bind_to_cpu(target_cpu);
1178 
1179 			/* Here we are running on the target CPU already */
1180 			if (details >= 1)
1181 				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1182 
1183 			bind_to_cpumask(orig_mask);
1184 		}
1185 
1186 		if (details >= 3) {
1187 			timersub(&stop, &start, &diff);
1188 			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1189 			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1190 
1191 			if (details >= 0) {
1192 				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1193 					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1194 			}
1195 			fflush(stdout);
1196 		}
1197 		if (!last_task)
1198 			continue;
1199 
1200 		timersub(&stop, &start0, &diff);
1201 		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1202 		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1203 
1204 		show_summary(runtime_ns_max, l, &convergence);
1205 	}
1206 
1207 	gettimeofday(&stop, NULL);
1208 	timersub(&stop, &start0, &diff);
1209 	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1210 	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1211 	td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9;
1212 
1213 	getrusage(RUSAGE_THREAD, &rusage);
1214 	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1215 	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1216 	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1217 	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1218 
1219 	free_data(thread_data, g->p.bytes_thread);
1220 
1221 	pthread_mutex_lock(&g->stop_work_mutex);
1222 	g->bytes_done += bytes_done;
1223 	pthread_mutex_unlock(&g->stop_work_mutex);
1224 
1225 	return NULL;
1226 }
1227 
1228 /*
1229  * A worker process starts a couple of threads:
1230  */
1231 static void worker_process(int process_nr)
1232 {
1233 	pthread_mutex_t process_lock;
1234 	struct thread_data *td;
1235 	pthread_t *pthreads;
1236 	u8 *process_data;
1237 	int task_nr;
1238 	int ret;
1239 	int t;
1240 
1241 	pthread_mutex_init(&process_lock, NULL);
1242 	set_taskname("process %d", process_nr);
1243 
1244 	/*
1245 	 * Pick up the memory policy and the CPU binding of our first thread,
1246 	 * so that we initialize memory accordingly:
1247 	 */
1248 	task_nr = process_nr*g->p.nr_threads;
1249 	td = g->threads + task_nr;
1250 
1251 	bind_to_memnode(td->bind_node);
1252 	bind_to_cpumask(td->bind_cpumask);
1253 
1254 	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1255 	process_data = setup_private_data(g->p.bytes_process);
1256 
1257 	if (g->p.show_details >= 3) {
1258 		printf(" # process %2d global mem: %p, process mem: %p\n",
1259 			process_nr, g->data, process_data);
1260 	}
1261 
1262 	for (t = 0; t < g->p.nr_threads; t++) {
1263 		task_nr = process_nr*g->p.nr_threads + t;
1264 		td = g->threads + task_nr;
1265 
1266 		td->process_data = process_data;
1267 		td->process_nr   = process_nr;
1268 		td->thread_nr    = t;
1269 		td->task_nr	 = task_nr;
1270 		td->val          = rand();
1271 		td->curr_cpu	 = -1;
1272 		td->process_lock = &process_lock;
1273 
1274 		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1275 		BUG_ON(ret);
1276 	}
1277 
1278 	for (t = 0; t < g->p.nr_threads; t++) {
1279                 ret = pthread_join(pthreads[t], NULL);
1280 		BUG_ON(ret);
1281 	}
1282 
1283 	free_data(process_data, g->p.bytes_process);
1284 	free(pthreads);
1285 }
1286 
1287 static void print_summary(void)
1288 {
1289 	if (g->p.show_details < 0)
1290 		return;
1291 
1292 	printf("\n ###\n");
1293 	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1294 		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus);
1295 	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1296 			g->p.nr_loops, g->p.bytes_global/1024/1024);
1297 	printf(" #      %5dx %5ldMB process shared mem operations\n",
1298 			g->p.nr_loops, g->p.bytes_process/1024/1024);
1299 	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1300 			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1301 
1302 	printf(" ###\n");
1303 
1304 	printf("\n ###\n"); fflush(stdout);
1305 }
1306 
1307 static void init_thread_data(void)
1308 {
1309 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1310 	int t;
1311 
1312 	g->threads = zalloc_shared_data(size);
1313 
1314 	for (t = 0; t < g->p.nr_tasks; t++) {
1315 		struct thread_data *td = g->threads + t;
1316 		int cpu;
1317 
1318 		/* Allow all nodes by default: */
1319 		td->bind_node = -1;
1320 
1321 		/* Allow all CPUs by default: */
1322 		CPU_ZERO(&td->bind_cpumask);
1323 		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1324 			CPU_SET(cpu, &td->bind_cpumask);
1325 	}
1326 }
1327 
1328 static void deinit_thread_data(void)
1329 {
1330 	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1331 
1332 	free_data(g->threads, size);
1333 }
1334 
1335 static int init(void)
1336 {
1337 	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1338 
1339 	/* Copy over options: */
1340 	g->p = p0;
1341 
1342 	g->p.nr_cpus = numa_num_configured_cpus();
1343 
1344 	g->p.nr_nodes = numa_max_node() + 1;
1345 
1346 	/* char array in count_process_nodes(): */
1347 	BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0);
1348 
1349 	if (g->p.show_quiet && !g->p.show_details)
1350 		g->p.show_details = -1;
1351 
1352 	/* Some memory should be specified: */
1353 	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1354 		return -1;
1355 
1356 	if (g->p.mb_global_str) {
1357 		g->p.mb_global = atof(g->p.mb_global_str);
1358 		BUG_ON(g->p.mb_global < 0);
1359 	}
1360 
1361 	if (g->p.mb_proc_str) {
1362 		g->p.mb_proc = atof(g->p.mb_proc_str);
1363 		BUG_ON(g->p.mb_proc < 0);
1364 	}
1365 
1366 	if (g->p.mb_proc_locked_str) {
1367 		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1368 		BUG_ON(g->p.mb_proc_locked < 0);
1369 		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1370 	}
1371 
1372 	if (g->p.mb_thread_str) {
1373 		g->p.mb_thread = atof(g->p.mb_thread_str);
1374 		BUG_ON(g->p.mb_thread < 0);
1375 	}
1376 
1377 	BUG_ON(g->p.nr_threads <= 0);
1378 	BUG_ON(g->p.nr_proc <= 0);
1379 
1380 	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1381 
1382 	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1383 	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1384 	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1385 	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1386 
1387 	g->data = setup_shared_data(g->p.bytes_global);
1388 
1389 	/* Startup serialization: */
1390 	init_global_mutex(&g->start_work_mutex);
1391 	init_global_mutex(&g->startup_mutex);
1392 	init_global_mutex(&g->startup_done_mutex);
1393 	init_global_mutex(&g->stop_work_mutex);
1394 
1395 	init_thread_data();
1396 
1397 	tprintf("#\n");
1398 	if (parse_setup_cpu_list() || parse_setup_node_list())
1399 		return -1;
1400 	tprintf("#\n");
1401 
1402 	print_summary();
1403 
1404 	return 0;
1405 }
1406 
1407 static void deinit(void)
1408 {
1409 	free_data(g->data, g->p.bytes_global);
1410 	g->data = NULL;
1411 
1412 	deinit_thread_data();
1413 
1414 	free_data(g, sizeof(*g));
1415 	g = NULL;
1416 }
1417 
1418 /*
1419  * Print a short or long result, depending on the verbosity setting:
1420  */
1421 static void print_res(const char *name, double val,
1422 		      const char *txt_unit, const char *txt_short, const char *txt_long)
1423 {
1424 	if (!name)
1425 		name = "main,";
1426 
1427 	if (!g->p.show_quiet)
1428 		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1429 	else
1430 		printf(" %14.3f %s\n", val, txt_long);
1431 }
1432 
1433 static int __bench_numa(const char *name)
1434 {
1435 	struct timeval start, stop, diff;
1436 	u64 runtime_ns_min, runtime_ns_sum;
1437 	pid_t *pids, pid, wpid;
1438 	double delta_runtime;
1439 	double runtime_avg;
1440 	double runtime_sec_max;
1441 	double runtime_sec_min;
1442 	int wait_stat;
1443 	double bytes;
1444 	int i, t, p;
1445 
1446 	if (init())
1447 		return -1;
1448 
1449 	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1450 	pid = -1;
1451 
1452 	/* All threads try to acquire it, this way we can wait for them to start up: */
1453 	pthread_mutex_lock(&g->start_work_mutex);
1454 
1455 	if (g->p.serialize_startup) {
1456 		tprintf(" #\n");
1457 		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1458 	}
1459 
1460 	gettimeofday(&start, NULL);
1461 
1462 	for (i = 0; i < g->p.nr_proc; i++) {
1463 		pid = fork();
1464 		dprintf(" # process %2d: PID %d\n", i, pid);
1465 
1466 		BUG_ON(pid < 0);
1467 		if (!pid) {
1468 			/* Child process: */
1469 			worker_process(i);
1470 
1471 			exit(0);
1472 		}
1473 		pids[i] = pid;
1474 
1475 	}
1476 	/* Wait for all the threads to start up: */
1477 	while (g->nr_tasks_started != g->p.nr_tasks)
1478 		usleep(USEC_PER_MSEC);
1479 
1480 	BUG_ON(g->nr_tasks_started != g->p.nr_tasks);
1481 
1482 	if (g->p.serialize_startup) {
1483 		double startup_sec;
1484 
1485 		pthread_mutex_lock(&g->startup_done_mutex);
1486 
1487 		/* This will start all threads: */
1488 		pthread_mutex_unlock(&g->start_work_mutex);
1489 
1490 		/* This mutex is locked - the last started thread will wake us: */
1491 		pthread_mutex_lock(&g->startup_done_mutex);
1492 
1493 		gettimeofday(&stop, NULL);
1494 
1495 		timersub(&stop, &start, &diff);
1496 
1497 		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1498 		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1499 		startup_sec /= NSEC_PER_SEC;
1500 
1501 		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1502 		tprintf(" #\n");
1503 
1504 		start = stop;
1505 		pthread_mutex_unlock(&g->startup_done_mutex);
1506 	} else {
1507 		gettimeofday(&start, NULL);
1508 	}
1509 
1510 	/* Parent process: */
1511 
1512 
1513 	for (i = 0; i < g->p.nr_proc; i++) {
1514 		wpid = waitpid(pids[i], &wait_stat, 0);
1515 		BUG_ON(wpid < 0);
1516 		BUG_ON(!WIFEXITED(wait_stat));
1517 
1518 	}
1519 
1520 	runtime_ns_sum = 0;
1521 	runtime_ns_min = -1LL;
1522 
1523 	for (t = 0; t < g->p.nr_tasks; t++) {
1524 		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1525 
1526 		runtime_ns_sum += thread_runtime_ns;
1527 		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1528 	}
1529 
1530 	gettimeofday(&stop, NULL);
1531 	timersub(&stop, &start, &diff);
1532 
1533 	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1534 
1535 	tprintf("\n ###\n");
1536 	tprintf("\n");
1537 
1538 	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1539 	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1540 	runtime_sec_max /= NSEC_PER_SEC;
1541 
1542 	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1543 
1544 	bytes = g->bytes_done;
1545 	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1546 
1547 	if (g->p.measure_convergence) {
1548 		print_res(name, runtime_sec_max,
1549 			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1550 	}
1551 
1552 	print_res(name, runtime_sec_max,
1553 		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1554 
1555 	print_res(name, runtime_sec_min,
1556 		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1557 
1558 	print_res(name, runtime_avg,
1559 		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1560 
1561 	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1562 	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1563 		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1564 
1565 	print_res(name, bytes / g->p.nr_tasks / 1e9,
1566 		"GB,", "data/thread",		"GB data processed, per thread");
1567 
1568 	print_res(name, bytes / 1e9,
1569 		"GB,", "data-total",		"GB data processed, total");
1570 
1571 	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1572 		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1573 
1574 	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1575 		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1576 
1577 	print_res(name, bytes / runtime_sec_max / 1e9,
1578 		"GB/sec,", "total-speed",	"GB/sec total speed");
1579 
1580 	if (g->p.show_details >= 2) {
1581 		char tname[14 + 2 * 10 + 1];
1582 		struct thread_data *td;
1583 		for (p = 0; p < g->p.nr_proc; p++) {
1584 			for (t = 0; t < g->p.nr_threads; t++) {
1585 				memset(tname, 0, sizeof(tname));
1586 				td = g->threads + p*g->p.nr_threads + t;
1587 				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1588 				print_res(tname, td->speed_gbs,
1589 					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1590 				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1591 					"secs",	"thread-system-time", "system CPU time/thread");
1592 				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1593 					"secs",	"thread-user-time", "user CPU time/thread");
1594 			}
1595 		}
1596 	}
1597 
1598 	free(pids);
1599 
1600 	deinit();
1601 
1602 	return 0;
1603 }
1604 
1605 #define MAX_ARGS 50
1606 
1607 static int command_size(const char **argv)
1608 {
1609 	int size = 0;
1610 
1611 	while (*argv) {
1612 		size++;
1613 		argv++;
1614 	}
1615 
1616 	BUG_ON(size >= MAX_ARGS);
1617 
1618 	return size;
1619 }
1620 
1621 static void init_params(struct params *p, const char *name, int argc, const char **argv)
1622 {
1623 	int i;
1624 
1625 	printf("\n # Running %s \"perf bench numa", name);
1626 
1627 	for (i = 0; i < argc; i++)
1628 		printf(" %s", argv[i]);
1629 
1630 	printf("\"\n");
1631 
1632 	memset(p, 0, sizeof(*p));
1633 
1634 	/* Initialize nonzero defaults: */
1635 
1636 	p->serialize_startup		= 1;
1637 	p->data_reads			= true;
1638 	p->data_writes			= true;
1639 	p->data_backwards		= true;
1640 	p->data_rand_walk		= true;
1641 	p->nr_loops			= -1;
1642 	p->init_random			= true;
1643 	p->mb_global_str		= "1";
1644 	p->nr_proc			= 1;
1645 	p->nr_threads			= 1;
1646 	p->nr_secs			= 5;
1647 	p->run_all			= argc == 1;
1648 }
1649 
1650 static int run_bench_numa(const char *name, const char **argv)
1651 {
1652 	int argc = command_size(argv);
1653 
1654 	init_params(&p0, name, argc, argv);
1655 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1656 	if (argc)
1657 		goto err;
1658 
1659 	if (__bench_numa(name))
1660 		goto err;
1661 
1662 	return 0;
1663 
1664 err:
1665 	return -1;
1666 }
1667 
1668 #define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1669 #define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1670 
1671 #define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1672 #define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1673 
1674 #define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1675 #define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1676 
1677 /*
1678  * The built-in test-suite executed by "perf bench numa -a".
1679  *
1680  * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1681  */
1682 static const char *tests[][MAX_ARGS] = {
1683    /* Basic single-stream NUMA bandwidth measurements: */
1684    { "RAM-bw-local,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1685 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1686    { "RAM-bw-local-NOTHP,",
1687 			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1688 			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1689    { "RAM-bw-remote,",	  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1690 			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1691 
1692    /* 2-stream NUMA bandwidth measurements: */
1693    { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1694 			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1695    { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1696 		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1697 
1698    /* Cross-stream NUMA bandwidth measurement: */
1699    { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1700 		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1701 
1702    /* Convergence latency measurements: */
1703    { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1704    { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1705    { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1706    { " 2x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1707    { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1708    { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1709    { " 4x4-convergence-NOTHP,",
1710 			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1711    { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1712    { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1713    { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1714    { " 8x4-convergence-NOTHP,",
1715 			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1716    { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1717    { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1718    { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1719    { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1720    { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1721 
1722    /* Various NUMA process/thread layout bandwidth measurements: */
1723    { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1724    { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1725    { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1726    { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1727    { " 8x1-bw-process-NOTHP,",
1728 			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1729    { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1730 
1731    { " 4x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1732    { " 8x1-bw-thread,",	  "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1733    { "16x1-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1734    { "32x1-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1735 
1736    { " 2x3-bw-thread,",	  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1737    { " 4x4-bw-thread,",	  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1738    { " 4x6-bw-thread,",	  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1739    { " 4x8-bw-thread,",	  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1740    { " 4x8-bw-thread-NOTHP,",
1741 			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1742    { " 3x3-bw-thread,",	  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1743    { " 5x5-bw-thread,",	  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1744 
1745    { "2x16-bw-thread,",   "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1746    { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1747 
1748    { "numa02-bw,",	  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1749    { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1750    { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1751    { "numa01-bw-thread-NOTHP,",
1752 			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1753 };
1754 
1755 static int bench_all(void)
1756 {
1757 	int nr = ARRAY_SIZE(tests);
1758 	int ret;
1759 	int i;
1760 
1761 	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1762 	BUG_ON(ret < 0);
1763 
1764 	for (i = 0; i < nr; i++) {
1765 		run_bench_numa(tests[i][0], tests[i] + 1);
1766 	}
1767 
1768 	printf("\n");
1769 
1770 	return 0;
1771 }
1772 
1773 int bench_numa(int argc, const char **argv)
1774 {
1775 	init_params(&p0, "main,", argc, argv);
1776 	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1777 	if (argc)
1778 		goto err;
1779 
1780 	if (p0.run_all)
1781 		return bench_all();
1782 
1783 	if (__bench_numa(NULL))
1784 		goto err;
1785 
1786 	return 0;
1787 
1788 err:
1789 	usage_with_options(numa_usage, options);
1790 	return -1;
1791 }
1792