1 /* 2 * numa.c 3 * 4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 5 */ 6 7 /* For the CLR_() macros */ 8 #include <pthread.h> 9 10 #include "../perf.h" 11 #include "../builtin.h" 12 #include "../util/util.h" 13 #include <subcmd/parse-options.h> 14 #include "../util/cloexec.h" 15 16 #include "bench.h" 17 18 #include <errno.h> 19 #include <sched.h> 20 #include <stdio.h> 21 #include <assert.h> 22 #include <malloc.h> 23 #include <signal.h> 24 #include <stdlib.h> 25 #include <string.h> 26 #include <unistd.h> 27 #include <sys/mman.h> 28 #include <sys/time.h> 29 #include <sys/resource.h> 30 #include <sys/wait.h> 31 #include <sys/prctl.h> 32 #include <sys/types.h> 33 #include <linux/time64.h> 34 35 #include <numa.h> 36 #include <numaif.h> 37 38 /* 39 * Regular printout to the terminal, supressed if -q is specified: 40 */ 41 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 42 43 /* 44 * Debug printf: 45 */ 46 #undef dprintf 47 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 48 49 struct thread_data { 50 int curr_cpu; 51 cpu_set_t bind_cpumask; 52 int bind_node; 53 u8 *process_data; 54 int process_nr; 55 int thread_nr; 56 int task_nr; 57 unsigned int loops_done; 58 u64 val; 59 u64 runtime_ns; 60 u64 system_time_ns; 61 u64 user_time_ns; 62 double speed_gbs; 63 pthread_mutex_t *process_lock; 64 }; 65 66 /* Parameters set by options: */ 67 68 struct params { 69 /* Startup synchronization: */ 70 bool serialize_startup; 71 72 /* Task hierarchy: */ 73 int nr_proc; 74 int nr_threads; 75 76 /* Working set sizes: */ 77 const char *mb_global_str; 78 const char *mb_proc_str; 79 const char *mb_proc_locked_str; 80 const char *mb_thread_str; 81 82 double mb_global; 83 double mb_proc; 84 double mb_proc_locked; 85 double mb_thread; 86 87 /* Access patterns to the working set: */ 88 bool data_reads; 89 bool data_writes; 90 bool data_backwards; 91 bool data_zero_memset; 92 bool data_rand_walk; 93 u32 nr_loops; 94 u32 nr_secs; 95 u32 sleep_usecs; 96 97 /* Working set initialization: */ 98 bool init_zero; 99 bool init_random; 100 bool init_cpu0; 101 102 /* Misc options: */ 103 int show_details; 104 int run_all; 105 int thp; 106 107 long bytes_global; 108 long bytes_process; 109 long bytes_process_locked; 110 long bytes_thread; 111 112 int nr_tasks; 113 bool show_quiet; 114 115 bool show_convergence; 116 bool measure_convergence; 117 118 int perturb_secs; 119 int nr_cpus; 120 int nr_nodes; 121 122 /* Affinity options -C and -N: */ 123 char *cpu_list_str; 124 char *node_list_str; 125 }; 126 127 128 /* Global, read-writable area, accessible to all processes and threads: */ 129 130 struct global_info { 131 u8 *data; 132 133 pthread_mutex_t startup_mutex; 134 int nr_tasks_started; 135 136 pthread_mutex_t startup_done_mutex; 137 138 pthread_mutex_t start_work_mutex; 139 int nr_tasks_working; 140 141 pthread_mutex_t stop_work_mutex; 142 u64 bytes_done; 143 144 struct thread_data *threads; 145 146 /* Convergence latency measurement: */ 147 bool all_converged; 148 bool stop_work; 149 150 int print_once; 151 152 struct params p; 153 }; 154 155 static struct global_info *g = NULL; 156 157 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 158 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 159 160 struct params p0; 161 162 static const struct option options[] = { 163 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 164 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 165 166 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 167 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 168 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 169 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 170 171 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 172 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 173 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 174 175 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), 176 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 177 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 178 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 179 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 180 181 182 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 183 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 184 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 185 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 186 187 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 188 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 189 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 190 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"), 191 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 192 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 193 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 194 195 /* Special option string parsing callbacks: */ 196 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 197 "bind the first N tasks to these specific cpus (the rest is unbound)", 198 parse_cpus_opt), 199 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 200 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 201 parse_nodes_opt), 202 OPT_END() 203 }; 204 205 static const char * const bench_numa_usage[] = { 206 "perf bench numa <options>", 207 NULL 208 }; 209 210 static const char * const numa_usage[] = { 211 "perf bench numa mem [<options>]", 212 NULL 213 }; 214 215 static cpu_set_t bind_to_cpu(int target_cpu) 216 { 217 cpu_set_t orig_mask, mask; 218 int ret; 219 220 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 221 BUG_ON(ret); 222 223 CPU_ZERO(&mask); 224 225 if (target_cpu == -1) { 226 int cpu; 227 228 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 229 CPU_SET(cpu, &mask); 230 } else { 231 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 232 CPU_SET(target_cpu, &mask); 233 } 234 235 ret = sched_setaffinity(0, sizeof(mask), &mask); 236 BUG_ON(ret); 237 238 return orig_mask; 239 } 240 241 static cpu_set_t bind_to_node(int target_node) 242 { 243 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; 244 cpu_set_t orig_mask, mask; 245 int cpu; 246 int ret; 247 248 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); 249 BUG_ON(!cpus_per_node); 250 251 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 252 BUG_ON(ret); 253 254 CPU_ZERO(&mask); 255 256 if (target_node == -1) { 257 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 258 CPU_SET(cpu, &mask); 259 } else { 260 int cpu_start = (target_node + 0) * cpus_per_node; 261 int cpu_stop = (target_node + 1) * cpus_per_node; 262 263 BUG_ON(cpu_stop > g->p.nr_cpus); 264 265 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 266 CPU_SET(cpu, &mask); 267 } 268 269 ret = sched_setaffinity(0, sizeof(mask), &mask); 270 BUG_ON(ret); 271 272 return orig_mask; 273 } 274 275 static void bind_to_cpumask(cpu_set_t mask) 276 { 277 int ret; 278 279 ret = sched_setaffinity(0, sizeof(mask), &mask); 280 BUG_ON(ret); 281 } 282 283 static void mempol_restore(void) 284 { 285 int ret; 286 287 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 288 289 BUG_ON(ret); 290 } 291 292 static void bind_to_memnode(int node) 293 { 294 unsigned long nodemask; 295 int ret; 296 297 if (node == -1) 298 return; 299 300 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)*8); 301 nodemask = 1L << node; 302 303 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 304 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 305 306 BUG_ON(ret); 307 } 308 309 #define HPSIZE (2*1024*1024) 310 311 #define set_taskname(fmt...) \ 312 do { \ 313 char name[20]; \ 314 \ 315 snprintf(name, 20, fmt); \ 316 prctl(PR_SET_NAME, name); \ 317 } while (0) 318 319 static u8 *alloc_data(ssize_t bytes0, int map_flags, 320 int init_zero, int init_cpu0, int thp, int init_random) 321 { 322 cpu_set_t orig_mask; 323 ssize_t bytes; 324 u8 *buf; 325 int ret; 326 327 if (!bytes0) 328 return NULL; 329 330 /* Allocate and initialize all memory on CPU#0: */ 331 if (init_cpu0) { 332 orig_mask = bind_to_node(0); 333 bind_to_memnode(0); 334 } 335 336 bytes = bytes0 + HPSIZE; 337 338 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 339 BUG_ON(buf == (void *)-1); 340 341 if (map_flags == MAP_PRIVATE) { 342 if (thp > 0) { 343 ret = madvise(buf, bytes, MADV_HUGEPAGE); 344 if (ret && !g->print_once) { 345 g->print_once = 1; 346 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 347 } 348 } 349 if (thp < 0) { 350 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 351 if (ret && !g->print_once) { 352 g->print_once = 1; 353 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 354 } 355 } 356 } 357 358 if (init_zero) { 359 bzero(buf, bytes); 360 } else { 361 /* Initialize random contents, different in each word: */ 362 if (init_random) { 363 u64 *wbuf = (void *)buf; 364 long off = rand(); 365 long i; 366 367 for (i = 0; i < bytes/8; i++) 368 wbuf[i] = i + off; 369 } 370 } 371 372 /* Align to 2MB boundary: */ 373 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 374 375 /* Restore affinity: */ 376 if (init_cpu0) { 377 bind_to_cpumask(orig_mask); 378 mempol_restore(); 379 } 380 381 return buf; 382 } 383 384 static void free_data(void *data, ssize_t bytes) 385 { 386 int ret; 387 388 if (!data) 389 return; 390 391 ret = munmap(data, bytes); 392 BUG_ON(ret); 393 } 394 395 /* 396 * Create a shared memory buffer that can be shared between processes, zeroed: 397 */ 398 static void * zalloc_shared_data(ssize_t bytes) 399 { 400 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 401 } 402 403 /* 404 * Create a shared memory buffer that can be shared between processes: 405 */ 406 static void * setup_shared_data(ssize_t bytes) 407 { 408 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 409 } 410 411 /* 412 * Allocate process-local memory - this will either be shared between 413 * threads of this process, or only be accessed by this thread: 414 */ 415 static void * setup_private_data(ssize_t bytes) 416 { 417 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 418 } 419 420 /* 421 * Return a process-shared (global) mutex: 422 */ 423 static void init_global_mutex(pthread_mutex_t *mutex) 424 { 425 pthread_mutexattr_t attr; 426 427 pthread_mutexattr_init(&attr); 428 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 429 pthread_mutex_init(mutex, &attr); 430 } 431 432 static int parse_cpu_list(const char *arg) 433 { 434 p0.cpu_list_str = strdup(arg); 435 436 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 437 438 return 0; 439 } 440 441 static int parse_setup_cpu_list(void) 442 { 443 struct thread_data *td; 444 char *str0, *str; 445 int t; 446 447 if (!g->p.cpu_list_str) 448 return 0; 449 450 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 451 452 str0 = str = strdup(g->p.cpu_list_str); 453 t = 0; 454 455 BUG_ON(!str); 456 457 tprintf("# binding tasks to CPUs:\n"); 458 tprintf("# "); 459 460 while (true) { 461 int bind_cpu, bind_cpu_0, bind_cpu_1; 462 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 463 int bind_len; 464 int step; 465 int mul; 466 467 tok = strsep(&str, ","); 468 if (!tok) 469 break; 470 471 tok_end = strstr(tok, "-"); 472 473 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 474 if (!tok_end) { 475 /* Single CPU specified: */ 476 bind_cpu_0 = bind_cpu_1 = atol(tok); 477 } else { 478 /* CPU range specified (for example: "5-11"): */ 479 bind_cpu_0 = atol(tok); 480 bind_cpu_1 = atol(tok_end + 1); 481 } 482 483 step = 1; 484 tok_step = strstr(tok, "#"); 485 if (tok_step) { 486 step = atol(tok_step + 1); 487 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 488 } 489 490 /* 491 * Mask length. 492 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 493 * where the _4 means the next 4 CPUs are allowed. 494 */ 495 bind_len = 1; 496 tok_len = strstr(tok, "_"); 497 if (tok_len) { 498 bind_len = atol(tok_len + 1); 499 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 500 } 501 502 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 503 mul = 1; 504 tok_mul = strstr(tok, "x"); 505 if (tok_mul) { 506 mul = atol(tok_mul + 1); 507 BUG_ON(mul <= 0); 508 } 509 510 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 511 512 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 513 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 514 return -1; 515 } 516 517 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 518 BUG_ON(bind_cpu_0 > bind_cpu_1); 519 520 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 521 int i; 522 523 for (i = 0; i < mul; i++) { 524 int cpu; 525 526 if (t >= g->p.nr_tasks) { 527 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 528 goto out; 529 } 530 td = g->threads + t; 531 532 if (t) 533 tprintf(","); 534 if (bind_len > 1) { 535 tprintf("%2d/%d", bind_cpu, bind_len); 536 } else { 537 tprintf("%2d", bind_cpu); 538 } 539 540 CPU_ZERO(&td->bind_cpumask); 541 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 542 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 543 CPU_SET(cpu, &td->bind_cpumask); 544 } 545 t++; 546 } 547 } 548 } 549 out: 550 551 tprintf("\n"); 552 553 if (t < g->p.nr_tasks) 554 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 555 556 free(str0); 557 return 0; 558 } 559 560 static int parse_cpus_opt(const struct option *opt __maybe_unused, 561 const char *arg, int unset __maybe_unused) 562 { 563 if (!arg) 564 return -1; 565 566 return parse_cpu_list(arg); 567 } 568 569 static int parse_node_list(const char *arg) 570 { 571 p0.node_list_str = strdup(arg); 572 573 dprintf("got NODE list: {%s}\n", p0.node_list_str); 574 575 return 0; 576 } 577 578 static int parse_setup_node_list(void) 579 { 580 struct thread_data *td; 581 char *str0, *str; 582 int t; 583 584 if (!g->p.node_list_str) 585 return 0; 586 587 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 588 589 str0 = str = strdup(g->p.node_list_str); 590 t = 0; 591 592 BUG_ON(!str); 593 594 tprintf("# binding tasks to NODEs:\n"); 595 tprintf("# "); 596 597 while (true) { 598 int bind_node, bind_node_0, bind_node_1; 599 char *tok, *tok_end, *tok_step, *tok_mul; 600 int step; 601 int mul; 602 603 tok = strsep(&str, ","); 604 if (!tok) 605 break; 606 607 tok_end = strstr(tok, "-"); 608 609 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 610 if (!tok_end) { 611 /* Single NODE specified: */ 612 bind_node_0 = bind_node_1 = atol(tok); 613 } else { 614 /* NODE range specified (for example: "5-11"): */ 615 bind_node_0 = atol(tok); 616 bind_node_1 = atol(tok_end + 1); 617 } 618 619 step = 1; 620 tok_step = strstr(tok, "#"); 621 if (tok_step) { 622 step = atol(tok_step + 1); 623 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 624 } 625 626 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 627 mul = 1; 628 tok_mul = strstr(tok, "x"); 629 if (tok_mul) { 630 mul = atol(tok_mul + 1); 631 BUG_ON(mul <= 0); 632 } 633 634 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 635 636 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 637 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 638 return -1; 639 } 640 641 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 642 BUG_ON(bind_node_0 > bind_node_1); 643 644 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 645 int i; 646 647 for (i = 0; i < mul; i++) { 648 if (t >= g->p.nr_tasks) { 649 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 650 goto out; 651 } 652 td = g->threads + t; 653 654 if (!t) 655 tprintf(" %2d", bind_node); 656 else 657 tprintf(",%2d", bind_node); 658 659 td->bind_node = bind_node; 660 t++; 661 } 662 } 663 } 664 out: 665 666 tprintf("\n"); 667 668 if (t < g->p.nr_tasks) 669 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 670 671 free(str0); 672 return 0; 673 } 674 675 static int parse_nodes_opt(const struct option *opt __maybe_unused, 676 const char *arg, int unset __maybe_unused) 677 { 678 if (!arg) 679 return -1; 680 681 return parse_node_list(arg); 682 683 return 0; 684 } 685 686 #define BIT(x) (1ul << x) 687 688 static inline uint32_t lfsr_32(uint32_t lfsr) 689 { 690 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 691 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 692 } 693 694 /* 695 * Make sure there's real data dependency to RAM (when read 696 * accesses are enabled), so the compiler, the CPU and the 697 * kernel (KSM, zero page, etc.) cannot optimize away RAM 698 * accesses: 699 */ 700 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) 701 { 702 if (g->p.data_reads) 703 val += *data; 704 if (g->p.data_writes) 705 *data = val + 1; 706 return val; 707 } 708 709 /* 710 * The worker process does two types of work, a forwards going 711 * loop and a backwards going loop. 712 * 713 * We do this so that on multiprocessor systems we do not create 714 * a 'train' of processing, with highly synchronized processes, 715 * skewing the whole benchmark. 716 */ 717 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 718 { 719 long words = bytes/sizeof(u64); 720 u64 *data = (void *)__data; 721 long chunk_0, chunk_1; 722 u64 *d0, *d, *d1; 723 long off; 724 long i; 725 726 BUG_ON(!data && words); 727 BUG_ON(data && !words); 728 729 if (!data) 730 return val; 731 732 /* Very simple memset() work variant: */ 733 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 734 bzero(data, bytes); 735 return val; 736 } 737 738 /* Spread out by PID/TID nr and by loop nr: */ 739 chunk_0 = words/nr_max; 740 chunk_1 = words/g->p.nr_loops; 741 off = nr*chunk_0 + loop*chunk_1; 742 743 while (off >= words) 744 off -= words; 745 746 if (g->p.data_rand_walk) { 747 u32 lfsr = nr + loop + val; 748 int j; 749 750 for (i = 0; i < words/1024; i++) { 751 long start, end; 752 753 lfsr = lfsr_32(lfsr); 754 755 start = lfsr % words; 756 end = min(start + 1024, words-1); 757 758 if (g->p.data_zero_memset) { 759 bzero(data + start, (end-start) * sizeof(u64)); 760 } else { 761 for (j = start; j < end; j++) 762 val = access_data(data + j, val); 763 } 764 } 765 } else if (!g->p.data_backwards || (nr + loop) & 1) { 766 767 d0 = data + off; 768 d = data + off + 1; 769 d1 = data + words; 770 771 /* Process data forwards: */ 772 for (;;) { 773 if (unlikely(d >= d1)) 774 d = data; 775 if (unlikely(d == d0)) 776 break; 777 778 val = access_data(d, val); 779 780 d++; 781 } 782 } else { 783 /* Process data backwards: */ 784 785 d0 = data + off; 786 d = data + off - 1; 787 d1 = data + words; 788 789 /* Process data forwards: */ 790 for (;;) { 791 if (unlikely(d < data)) 792 d = data + words-1; 793 if (unlikely(d == d0)) 794 break; 795 796 val = access_data(d, val); 797 798 d--; 799 } 800 } 801 802 return val; 803 } 804 805 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 806 { 807 unsigned int cpu; 808 809 cpu = sched_getcpu(); 810 811 g->threads[task_nr].curr_cpu = cpu; 812 prctl(0, bytes_worked); 813 } 814 815 #define MAX_NR_NODES 64 816 817 /* 818 * Count the number of nodes a process's threads 819 * are spread out on. 820 * 821 * A count of 1 means that the process is compressed 822 * to a single node. A count of g->p.nr_nodes means it's 823 * spread out on the whole system. 824 */ 825 static int count_process_nodes(int process_nr) 826 { 827 char node_present[MAX_NR_NODES] = { 0, }; 828 int nodes; 829 int n, t; 830 831 for (t = 0; t < g->p.nr_threads; t++) { 832 struct thread_data *td; 833 int task_nr; 834 int node; 835 836 task_nr = process_nr*g->p.nr_threads + t; 837 td = g->threads + task_nr; 838 839 node = numa_node_of_cpu(td->curr_cpu); 840 if (node < 0) /* curr_cpu was likely still -1 */ 841 return 0; 842 843 node_present[node] = 1; 844 } 845 846 nodes = 0; 847 848 for (n = 0; n < MAX_NR_NODES; n++) 849 nodes += node_present[n]; 850 851 return nodes; 852 } 853 854 /* 855 * Count the number of distinct process-threads a node contains. 856 * 857 * A count of 1 means that the node contains only a single 858 * process. If all nodes on the system contain at most one 859 * process then we are well-converged. 860 */ 861 static int count_node_processes(int node) 862 { 863 int processes = 0; 864 int t, p; 865 866 for (p = 0; p < g->p.nr_proc; p++) { 867 for (t = 0; t < g->p.nr_threads; t++) { 868 struct thread_data *td; 869 int task_nr; 870 int n; 871 872 task_nr = p*g->p.nr_threads + t; 873 td = g->threads + task_nr; 874 875 n = numa_node_of_cpu(td->curr_cpu); 876 if (n == node) { 877 processes++; 878 break; 879 } 880 } 881 } 882 883 return processes; 884 } 885 886 static void calc_convergence_compression(int *strong) 887 { 888 unsigned int nodes_min, nodes_max; 889 int p; 890 891 nodes_min = -1; 892 nodes_max = 0; 893 894 for (p = 0; p < g->p.nr_proc; p++) { 895 unsigned int nodes = count_process_nodes(p); 896 897 if (!nodes) { 898 *strong = 0; 899 return; 900 } 901 902 nodes_min = min(nodes, nodes_min); 903 nodes_max = max(nodes, nodes_max); 904 } 905 906 /* Strong convergence: all threads compress on a single node: */ 907 if (nodes_min == 1 && nodes_max == 1) { 908 *strong = 1; 909 } else { 910 *strong = 0; 911 tprintf(" {%d-%d}", nodes_min, nodes_max); 912 } 913 } 914 915 static void calc_convergence(double runtime_ns_max, double *convergence) 916 { 917 unsigned int loops_done_min, loops_done_max; 918 int process_groups; 919 int nodes[MAX_NR_NODES]; 920 int distance; 921 int nr_min; 922 int nr_max; 923 int strong; 924 int sum; 925 int nr; 926 int node; 927 int cpu; 928 int t; 929 930 if (!g->p.show_convergence && !g->p.measure_convergence) 931 return; 932 933 for (node = 0; node < g->p.nr_nodes; node++) 934 nodes[node] = 0; 935 936 loops_done_min = -1; 937 loops_done_max = 0; 938 939 for (t = 0; t < g->p.nr_tasks; t++) { 940 struct thread_data *td = g->threads + t; 941 unsigned int loops_done; 942 943 cpu = td->curr_cpu; 944 945 /* Not all threads have written it yet: */ 946 if (cpu < 0) 947 continue; 948 949 node = numa_node_of_cpu(cpu); 950 951 nodes[node]++; 952 953 loops_done = td->loops_done; 954 loops_done_min = min(loops_done, loops_done_min); 955 loops_done_max = max(loops_done, loops_done_max); 956 } 957 958 nr_max = 0; 959 nr_min = g->p.nr_tasks; 960 sum = 0; 961 962 for (node = 0; node < g->p.nr_nodes; node++) { 963 nr = nodes[node]; 964 nr_min = min(nr, nr_min); 965 nr_max = max(nr, nr_max); 966 sum += nr; 967 } 968 BUG_ON(nr_min > nr_max); 969 970 BUG_ON(sum > g->p.nr_tasks); 971 972 if (0 && (sum < g->p.nr_tasks)) 973 return; 974 975 /* 976 * Count the number of distinct process groups present 977 * on nodes - when we are converged this will decrease 978 * to g->p.nr_proc: 979 */ 980 process_groups = 0; 981 982 for (node = 0; node < g->p.nr_nodes; node++) { 983 int processes = count_node_processes(node); 984 985 nr = nodes[node]; 986 tprintf(" %2d/%-2d", nr, processes); 987 988 process_groups += processes; 989 } 990 991 distance = nr_max - nr_min; 992 993 tprintf(" [%2d/%-2d]", distance, process_groups); 994 995 tprintf(" l:%3d-%-3d (%3d)", 996 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 997 998 if (loops_done_min && loops_done_max) { 999 double skew = 1.0 - (double)loops_done_min/loops_done_max; 1000 1001 tprintf(" [%4.1f%%]", skew * 100.0); 1002 } 1003 1004 calc_convergence_compression(&strong); 1005 1006 if (strong && process_groups == g->p.nr_proc) { 1007 if (!*convergence) { 1008 *convergence = runtime_ns_max; 1009 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1010 if (g->p.measure_convergence) { 1011 g->all_converged = true; 1012 g->stop_work = true; 1013 } 1014 } 1015 } else { 1016 if (*convergence) { 1017 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1018 *convergence = 0; 1019 } 1020 tprintf("\n"); 1021 } 1022 } 1023 1024 static void show_summary(double runtime_ns_max, int l, double *convergence) 1025 { 1026 tprintf("\r # %5.1f%% [%.1f mins]", 1027 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1028 1029 calc_convergence(runtime_ns_max, convergence); 1030 1031 if (g->p.show_details >= 0) 1032 fflush(stdout); 1033 } 1034 1035 static void *worker_thread(void *__tdata) 1036 { 1037 struct thread_data *td = __tdata; 1038 struct timeval start0, start, stop, diff; 1039 int process_nr = td->process_nr; 1040 int thread_nr = td->thread_nr; 1041 unsigned long last_perturbance; 1042 int task_nr = td->task_nr; 1043 int details = g->p.show_details; 1044 int first_task, last_task; 1045 double convergence = 0; 1046 u64 val = td->val; 1047 double runtime_ns_max; 1048 u8 *global_data; 1049 u8 *process_data; 1050 u8 *thread_data; 1051 u64 bytes_done; 1052 long work_done; 1053 u32 l; 1054 struct rusage rusage; 1055 1056 bind_to_cpumask(td->bind_cpumask); 1057 bind_to_memnode(td->bind_node); 1058 1059 set_taskname("thread %d/%d", process_nr, thread_nr); 1060 1061 global_data = g->data; 1062 process_data = td->process_data; 1063 thread_data = setup_private_data(g->p.bytes_thread); 1064 1065 bytes_done = 0; 1066 1067 last_task = 0; 1068 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1069 last_task = 1; 1070 1071 first_task = 0; 1072 if (process_nr == 0 && thread_nr == 0) 1073 first_task = 1; 1074 1075 if (details >= 2) { 1076 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1077 process_nr, thread_nr, global_data, process_data, thread_data); 1078 } 1079 1080 if (g->p.serialize_startup) { 1081 pthread_mutex_lock(&g->startup_mutex); 1082 g->nr_tasks_started++; 1083 pthread_mutex_unlock(&g->startup_mutex); 1084 1085 /* Here we will wait for the main process to start us all at once: */ 1086 pthread_mutex_lock(&g->start_work_mutex); 1087 g->nr_tasks_working++; 1088 1089 /* Last one wake the main process: */ 1090 if (g->nr_tasks_working == g->p.nr_tasks) 1091 pthread_mutex_unlock(&g->startup_done_mutex); 1092 1093 pthread_mutex_unlock(&g->start_work_mutex); 1094 } 1095 1096 gettimeofday(&start0, NULL); 1097 1098 start = stop = start0; 1099 last_perturbance = start.tv_sec; 1100 1101 for (l = 0; l < g->p.nr_loops; l++) { 1102 start = stop; 1103 1104 if (g->stop_work) 1105 break; 1106 1107 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1108 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1109 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1110 1111 if (g->p.sleep_usecs) { 1112 pthread_mutex_lock(td->process_lock); 1113 usleep(g->p.sleep_usecs); 1114 pthread_mutex_unlock(td->process_lock); 1115 } 1116 /* 1117 * Amount of work to be done under a process-global lock: 1118 */ 1119 if (g->p.bytes_process_locked) { 1120 pthread_mutex_lock(td->process_lock); 1121 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1122 pthread_mutex_unlock(td->process_lock); 1123 } 1124 1125 work_done = g->p.bytes_global + g->p.bytes_process + 1126 g->p.bytes_process_locked + g->p.bytes_thread; 1127 1128 update_curr_cpu(task_nr, work_done); 1129 bytes_done += work_done; 1130 1131 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1132 continue; 1133 1134 td->loops_done = l; 1135 1136 gettimeofday(&stop, NULL); 1137 1138 /* Check whether our max runtime timed out: */ 1139 if (g->p.nr_secs) { 1140 timersub(&stop, &start0, &diff); 1141 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1142 g->stop_work = true; 1143 break; 1144 } 1145 } 1146 1147 /* Update the summary at most once per second: */ 1148 if (start.tv_sec == stop.tv_sec) 1149 continue; 1150 1151 /* 1152 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1153 * by migrating to CPU#0: 1154 */ 1155 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1156 cpu_set_t orig_mask; 1157 int target_cpu; 1158 int this_cpu; 1159 1160 last_perturbance = stop.tv_sec; 1161 1162 /* 1163 * Depending on where we are running, move into 1164 * the other half of the system, to create some 1165 * real disturbance: 1166 */ 1167 this_cpu = g->threads[task_nr].curr_cpu; 1168 if (this_cpu < g->p.nr_cpus/2) 1169 target_cpu = g->p.nr_cpus-1; 1170 else 1171 target_cpu = 0; 1172 1173 orig_mask = bind_to_cpu(target_cpu); 1174 1175 /* Here we are running on the target CPU already */ 1176 if (details >= 1) 1177 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1178 1179 bind_to_cpumask(orig_mask); 1180 } 1181 1182 if (details >= 3) { 1183 timersub(&stop, &start, &diff); 1184 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1185 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1186 1187 if (details >= 0) { 1188 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1189 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1190 } 1191 fflush(stdout); 1192 } 1193 if (!last_task) 1194 continue; 1195 1196 timersub(&stop, &start0, &diff); 1197 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1198 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1199 1200 show_summary(runtime_ns_max, l, &convergence); 1201 } 1202 1203 gettimeofday(&stop, NULL); 1204 timersub(&stop, &start0, &diff); 1205 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1206 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1207 td->speed_gbs = bytes_done / (td->runtime_ns / NSEC_PER_SEC) / 1e9; 1208 1209 getrusage(RUSAGE_THREAD, &rusage); 1210 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1211 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1212 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1213 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1214 1215 free_data(thread_data, g->p.bytes_thread); 1216 1217 pthread_mutex_lock(&g->stop_work_mutex); 1218 g->bytes_done += bytes_done; 1219 pthread_mutex_unlock(&g->stop_work_mutex); 1220 1221 return NULL; 1222 } 1223 1224 /* 1225 * A worker process starts a couple of threads: 1226 */ 1227 static void worker_process(int process_nr) 1228 { 1229 pthread_mutex_t process_lock; 1230 struct thread_data *td; 1231 pthread_t *pthreads; 1232 u8 *process_data; 1233 int task_nr; 1234 int ret; 1235 int t; 1236 1237 pthread_mutex_init(&process_lock, NULL); 1238 set_taskname("process %d", process_nr); 1239 1240 /* 1241 * Pick up the memory policy and the CPU binding of our first thread, 1242 * so that we initialize memory accordingly: 1243 */ 1244 task_nr = process_nr*g->p.nr_threads; 1245 td = g->threads + task_nr; 1246 1247 bind_to_memnode(td->bind_node); 1248 bind_to_cpumask(td->bind_cpumask); 1249 1250 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1251 process_data = setup_private_data(g->p.bytes_process); 1252 1253 if (g->p.show_details >= 3) { 1254 printf(" # process %2d global mem: %p, process mem: %p\n", 1255 process_nr, g->data, process_data); 1256 } 1257 1258 for (t = 0; t < g->p.nr_threads; t++) { 1259 task_nr = process_nr*g->p.nr_threads + t; 1260 td = g->threads + task_nr; 1261 1262 td->process_data = process_data; 1263 td->process_nr = process_nr; 1264 td->thread_nr = t; 1265 td->task_nr = task_nr; 1266 td->val = rand(); 1267 td->curr_cpu = -1; 1268 td->process_lock = &process_lock; 1269 1270 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1271 BUG_ON(ret); 1272 } 1273 1274 for (t = 0; t < g->p.nr_threads; t++) { 1275 ret = pthread_join(pthreads[t], NULL); 1276 BUG_ON(ret); 1277 } 1278 1279 free_data(process_data, g->p.bytes_process); 1280 free(pthreads); 1281 } 1282 1283 static void print_summary(void) 1284 { 1285 if (g->p.show_details < 0) 1286 return; 1287 1288 printf("\n ###\n"); 1289 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1290 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); 1291 printf(" # %5dx %5ldMB global shared mem operations\n", 1292 g->p.nr_loops, g->p.bytes_global/1024/1024); 1293 printf(" # %5dx %5ldMB process shared mem operations\n", 1294 g->p.nr_loops, g->p.bytes_process/1024/1024); 1295 printf(" # %5dx %5ldMB thread local mem operations\n", 1296 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1297 1298 printf(" ###\n"); 1299 1300 printf("\n ###\n"); fflush(stdout); 1301 } 1302 1303 static void init_thread_data(void) 1304 { 1305 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1306 int t; 1307 1308 g->threads = zalloc_shared_data(size); 1309 1310 for (t = 0; t < g->p.nr_tasks; t++) { 1311 struct thread_data *td = g->threads + t; 1312 int cpu; 1313 1314 /* Allow all nodes by default: */ 1315 td->bind_node = -1; 1316 1317 /* Allow all CPUs by default: */ 1318 CPU_ZERO(&td->bind_cpumask); 1319 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1320 CPU_SET(cpu, &td->bind_cpumask); 1321 } 1322 } 1323 1324 static void deinit_thread_data(void) 1325 { 1326 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1327 1328 free_data(g->threads, size); 1329 } 1330 1331 static int init(void) 1332 { 1333 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1334 1335 /* Copy over options: */ 1336 g->p = p0; 1337 1338 g->p.nr_cpus = numa_num_configured_cpus(); 1339 1340 g->p.nr_nodes = numa_max_node() + 1; 1341 1342 /* char array in count_process_nodes(): */ 1343 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1344 1345 if (g->p.show_quiet && !g->p.show_details) 1346 g->p.show_details = -1; 1347 1348 /* Some memory should be specified: */ 1349 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1350 return -1; 1351 1352 if (g->p.mb_global_str) { 1353 g->p.mb_global = atof(g->p.mb_global_str); 1354 BUG_ON(g->p.mb_global < 0); 1355 } 1356 1357 if (g->p.mb_proc_str) { 1358 g->p.mb_proc = atof(g->p.mb_proc_str); 1359 BUG_ON(g->p.mb_proc < 0); 1360 } 1361 1362 if (g->p.mb_proc_locked_str) { 1363 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1364 BUG_ON(g->p.mb_proc_locked < 0); 1365 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1366 } 1367 1368 if (g->p.mb_thread_str) { 1369 g->p.mb_thread = atof(g->p.mb_thread_str); 1370 BUG_ON(g->p.mb_thread < 0); 1371 } 1372 1373 BUG_ON(g->p.nr_threads <= 0); 1374 BUG_ON(g->p.nr_proc <= 0); 1375 1376 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1377 1378 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1379 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1380 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1381 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1382 1383 g->data = setup_shared_data(g->p.bytes_global); 1384 1385 /* Startup serialization: */ 1386 init_global_mutex(&g->start_work_mutex); 1387 init_global_mutex(&g->startup_mutex); 1388 init_global_mutex(&g->startup_done_mutex); 1389 init_global_mutex(&g->stop_work_mutex); 1390 1391 init_thread_data(); 1392 1393 tprintf("#\n"); 1394 if (parse_setup_cpu_list() || parse_setup_node_list()) 1395 return -1; 1396 tprintf("#\n"); 1397 1398 print_summary(); 1399 1400 return 0; 1401 } 1402 1403 static void deinit(void) 1404 { 1405 free_data(g->data, g->p.bytes_global); 1406 g->data = NULL; 1407 1408 deinit_thread_data(); 1409 1410 free_data(g, sizeof(*g)); 1411 g = NULL; 1412 } 1413 1414 /* 1415 * Print a short or long result, depending on the verbosity setting: 1416 */ 1417 static void print_res(const char *name, double val, 1418 const char *txt_unit, const char *txt_short, const char *txt_long) 1419 { 1420 if (!name) 1421 name = "main,"; 1422 1423 if (!g->p.show_quiet) 1424 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1425 else 1426 printf(" %14.3f %s\n", val, txt_long); 1427 } 1428 1429 static int __bench_numa(const char *name) 1430 { 1431 struct timeval start, stop, diff; 1432 u64 runtime_ns_min, runtime_ns_sum; 1433 pid_t *pids, pid, wpid; 1434 double delta_runtime; 1435 double runtime_avg; 1436 double runtime_sec_max; 1437 double runtime_sec_min; 1438 int wait_stat; 1439 double bytes; 1440 int i, t, p; 1441 1442 if (init()) 1443 return -1; 1444 1445 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1446 pid = -1; 1447 1448 /* All threads try to acquire it, this way we can wait for them to start up: */ 1449 pthread_mutex_lock(&g->start_work_mutex); 1450 1451 if (g->p.serialize_startup) { 1452 tprintf(" #\n"); 1453 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1454 } 1455 1456 gettimeofday(&start, NULL); 1457 1458 for (i = 0; i < g->p.nr_proc; i++) { 1459 pid = fork(); 1460 dprintf(" # process %2d: PID %d\n", i, pid); 1461 1462 BUG_ON(pid < 0); 1463 if (!pid) { 1464 /* Child process: */ 1465 worker_process(i); 1466 1467 exit(0); 1468 } 1469 pids[i] = pid; 1470 1471 } 1472 /* Wait for all the threads to start up: */ 1473 while (g->nr_tasks_started != g->p.nr_tasks) 1474 usleep(USEC_PER_MSEC); 1475 1476 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1477 1478 if (g->p.serialize_startup) { 1479 double startup_sec; 1480 1481 pthread_mutex_lock(&g->startup_done_mutex); 1482 1483 /* This will start all threads: */ 1484 pthread_mutex_unlock(&g->start_work_mutex); 1485 1486 /* This mutex is locked - the last started thread will wake us: */ 1487 pthread_mutex_lock(&g->startup_done_mutex); 1488 1489 gettimeofday(&stop, NULL); 1490 1491 timersub(&stop, &start, &diff); 1492 1493 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1494 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1495 startup_sec /= NSEC_PER_SEC; 1496 1497 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1498 tprintf(" #\n"); 1499 1500 start = stop; 1501 pthread_mutex_unlock(&g->startup_done_mutex); 1502 } else { 1503 gettimeofday(&start, NULL); 1504 } 1505 1506 /* Parent process: */ 1507 1508 1509 for (i = 0; i < g->p.nr_proc; i++) { 1510 wpid = waitpid(pids[i], &wait_stat, 0); 1511 BUG_ON(wpid < 0); 1512 BUG_ON(!WIFEXITED(wait_stat)); 1513 1514 } 1515 1516 runtime_ns_sum = 0; 1517 runtime_ns_min = -1LL; 1518 1519 for (t = 0; t < g->p.nr_tasks; t++) { 1520 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1521 1522 runtime_ns_sum += thread_runtime_ns; 1523 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1524 } 1525 1526 gettimeofday(&stop, NULL); 1527 timersub(&stop, &start, &diff); 1528 1529 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1530 1531 tprintf("\n ###\n"); 1532 tprintf("\n"); 1533 1534 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1535 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1536 runtime_sec_max /= NSEC_PER_SEC; 1537 1538 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1539 1540 bytes = g->bytes_done; 1541 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1542 1543 if (g->p.measure_convergence) { 1544 print_res(name, runtime_sec_max, 1545 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1546 } 1547 1548 print_res(name, runtime_sec_max, 1549 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1550 1551 print_res(name, runtime_sec_min, 1552 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1553 1554 print_res(name, runtime_avg, 1555 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1556 1557 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1558 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1559 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1560 1561 print_res(name, bytes / g->p.nr_tasks / 1e9, 1562 "GB,", "data/thread", "GB data processed, per thread"); 1563 1564 print_res(name, bytes / 1e9, 1565 "GB,", "data-total", "GB data processed, total"); 1566 1567 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1568 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1569 1570 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1571 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1572 1573 print_res(name, bytes / runtime_sec_max / 1e9, 1574 "GB/sec,", "total-speed", "GB/sec total speed"); 1575 1576 if (g->p.show_details >= 2) { 1577 char tname[14 + 2 * 10 + 1]; 1578 struct thread_data *td; 1579 for (p = 0; p < g->p.nr_proc; p++) { 1580 for (t = 0; t < g->p.nr_threads; t++) { 1581 memset(tname, 0, sizeof(tname)); 1582 td = g->threads + p*g->p.nr_threads + t; 1583 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); 1584 print_res(tname, td->speed_gbs, 1585 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1586 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1587 "secs", "thread-system-time", "system CPU time/thread"); 1588 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1589 "secs", "thread-user-time", "user CPU time/thread"); 1590 } 1591 } 1592 } 1593 1594 free(pids); 1595 1596 deinit(); 1597 1598 return 0; 1599 } 1600 1601 #define MAX_ARGS 50 1602 1603 static int command_size(const char **argv) 1604 { 1605 int size = 0; 1606 1607 while (*argv) { 1608 size++; 1609 argv++; 1610 } 1611 1612 BUG_ON(size >= MAX_ARGS); 1613 1614 return size; 1615 } 1616 1617 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1618 { 1619 int i; 1620 1621 printf("\n # Running %s \"perf bench numa", name); 1622 1623 for (i = 0; i < argc; i++) 1624 printf(" %s", argv[i]); 1625 1626 printf("\"\n"); 1627 1628 memset(p, 0, sizeof(*p)); 1629 1630 /* Initialize nonzero defaults: */ 1631 1632 p->serialize_startup = 1; 1633 p->data_reads = true; 1634 p->data_writes = true; 1635 p->data_backwards = true; 1636 p->data_rand_walk = true; 1637 p->nr_loops = -1; 1638 p->init_random = true; 1639 p->mb_global_str = "1"; 1640 p->nr_proc = 1; 1641 p->nr_threads = 1; 1642 p->nr_secs = 5; 1643 p->run_all = argc == 1; 1644 } 1645 1646 static int run_bench_numa(const char *name, const char **argv) 1647 { 1648 int argc = command_size(argv); 1649 1650 init_params(&p0, name, argc, argv); 1651 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1652 if (argc) 1653 goto err; 1654 1655 if (__bench_numa(name)) 1656 goto err; 1657 1658 return 0; 1659 1660 err: 1661 return -1; 1662 } 1663 1664 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1665 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1666 1667 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1668 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1669 1670 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1671 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1672 1673 /* 1674 * The built-in test-suite executed by "perf bench numa -a". 1675 * 1676 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1677 */ 1678 static const char *tests[][MAX_ARGS] = { 1679 /* Basic single-stream NUMA bandwidth measurements: */ 1680 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1681 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1682 { "RAM-bw-local-NOTHP,", 1683 "mem", "-p", "1", "-t", "1", "-P", "1024", 1684 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1685 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1686 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1687 1688 /* 2-stream NUMA bandwidth measurements: */ 1689 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1690 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1691 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1692 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1693 1694 /* Cross-stream NUMA bandwidth measurement: */ 1695 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1696 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1697 1698 /* Convergence latency measurements: */ 1699 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1700 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1701 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1702 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1703 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1704 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1705 { " 4x4-convergence-NOTHP,", 1706 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1707 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1708 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1709 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1710 { " 8x4-convergence-NOTHP,", 1711 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1712 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1713 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1714 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1715 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1716 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1717 1718 /* Various NUMA process/thread layout bandwidth measurements: */ 1719 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1720 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1721 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1722 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1723 { " 8x1-bw-process-NOTHP,", 1724 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1725 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1726 1727 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1728 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1729 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1730 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1731 1732 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1733 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1734 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1735 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1736 { " 4x8-bw-thread-NOTHP,", 1737 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1738 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1739 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1740 1741 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1742 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1743 1744 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1745 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1746 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1747 { "numa01-bw-thread-NOTHP,", 1748 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1749 }; 1750 1751 static int bench_all(void) 1752 { 1753 int nr = ARRAY_SIZE(tests); 1754 int ret; 1755 int i; 1756 1757 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1758 BUG_ON(ret < 0); 1759 1760 for (i = 0; i < nr; i++) { 1761 run_bench_numa(tests[i][0], tests[i] + 1); 1762 } 1763 1764 printf("\n"); 1765 1766 return 0; 1767 } 1768 1769 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused) 1770 { 1771 init_params(&p0, "main,", argc, argv); 1772 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1773 if (argc) 1774 goto err; 1775 1776 if (p0.run_all) 1777 return bench_all(); 1778 1779 if (__bench_numa(NULL)) 1780 goto err; 1781 1782 return 0; 1783 1784 err: 1785 usage_with_options(numa_usage, options); 1786 return -1; 1787 } 1788