1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * numa.c 4 * 5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 6 */ 7 8 #include <inttypes.h> 9 10 #include <subcmd/parse-options.h> 11 #include "../util/cloexec.h" 12 13 #include "bench.h" 14 15 #include <errno.h> 16 #include <sched.h> 17 #include <stdio.h> 18 #include <assert.h> 19 #include <malloc.h> 20 #include <signal.h> 21 #include <stdlib.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <sys/mman.h> 25 #include <sys/time.h> 26 #include <sys/resource.h> 27 #include <sys/wait.h> 28 #include <sys/prctl.h> 29 #include <sys/types.h> 30 #include <linux/kernel.h> 31 #include <linux/time64.h> 32 #include <linux/numa.h> 33 #include <linux/zalloc.h> 34 35 #include "../util/header.h" 36 #include "../util/mutex.h" 37 #include <numa.h> 38 #include <numaif.h> 39 40 #ifndef RUSAGE_THREAD 41 # define RUSAGE_THREAD 1 42 #endif 43 44 /* 45 * Regular printout to the terminal, suppressed if -q is specified: 46 */ 47 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 48 49 /* 50 * Debug printf: 51 */ 52 #undef dprintf 53 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 54 55 struct thread_data { 56 int curr_cpu; 57 cpu_set_t *bind_cpumask; 58 int bind_node; 59 u8 *process_data; 60 int process_nr; 61 int thread_nr; 62 int task_nr; 63 unsigned int loops_done; 64 u64 val; 65 u64 runtime_ns; 66 u64 system_time_ns; 67 u64 user_time_ns; 68 double speed_gbs; 69 struct mutex *process_lock; 70 }; 71 72 /* Parameters set by options: */ 73 74 struct params { 75 /* Startup synchronization: */ 76 bool serialize_startup; 77 78 /* Task hierarchy: */ 79 int nr_proc; 80 int nr_threads; 81 82 /* Working set sizes: */ 83 const char *mb_global_str; 84 const char *mb_proc_str; 85 const char *mb_proc_locked_str; 86 const char *mb_thread_str; 87 88 double mb_global; 89 double mb_proc; 90 double mb_proc_locked; 91 double mb_thread; 92 93 /* Access patterns to the working set: */ 94 bool data_reads; 95 bool data_writes; 96 bool data_backwards; 97 bool data_zero_memset; 98 bool data_rand_walk; 99 u32 nr_loops; 100 u32 nr_secs; 101 u32 sleep_usecs; 102 103 /* Working set initialization: */ 104 bool init_zero; 105 bool init_random; 106 bool init_cpu0; 107 108 /* Misc options: */ 109 int show_details; 110 int run_all; 111 int thp; 112 113 long bytes_global; 114 long bytes_process; 115 long bytes_process_locked; 116 long bytes_thread; 117 118 int nr_tasks; 119 bool show_quiet; 120 121 bool show_convergence; 122 bool measure_convergence; 123 124 int perturb_secs; 125 int nr_cpus; 126 int nr_nodes; 127 128 /* Affinity options -C and -N: */ 129 char *cpu_list_str; 130 char *node_list_str; 131 }; 132 133 134 /* Global, read-writable area, accessible to all processes and threads: */ 135 136 struct global_info { 137 u8 *data; 138 139 struct mutex startup_mutex; 140 struct cond startup_cond; 141 int nr_tasks_started; 142 143 struct mutex start_work_mutex; 144 struct cond start_work_cond; 145 int nr_tasks_working; 146 bool start_work; 147 148 struct mutex stop_work_mutex; 149 u64 bytes_done; 150 151 struct thread_data *threads; 152 153 /* Convergence latency measurement: */ 154 bool all_converged; 155 bool stop_work; 156 157 int print_once; 158 159 struct params p; 160 }; 161 162 static struct global_info *g = NULL; 163 164 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 165 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 166 167 struct params p0; 168 169 static const struct option options[] = { 170 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 171 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 172 173 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 174 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 175 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 176 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 177 178 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 179 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 180 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 181 182 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"), 183 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 184 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 185 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 186 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 187 188 189 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 190 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 191 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 192 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 193 194 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 195 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 196 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 197 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, " 198 "convergence is reached when each process (all its threads) is running on a single NUMA node."), 199 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 200 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "quiet mode"), 201 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 202 203 /* Special option string parsing callbacks: */ 204 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 205 "bind the first N tasks to these specific cpus (the rest is unbound)", 206 parse_cpus_opt), 207 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 208 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 209 parse_nodes_opt), 210 OPT_END() 211 }; 212 213 static const char * const bench_numa_usage[] = { 214 "perf bench numa <options>", 215 NULL 216 }; 217 218 static const char * const numa_usage[] = { 219 "perf bench numa mem [<options>]", 220 NULL 221 }; 222 223 /* 224 * To get number of numa nodes present. 225 */ 226 static int nr_numa_nodes(void) 227 { 228 int i, nr_nodes = 0; 229 230 for (i = 0; i < g->p.nr_nodes; i++) { 231 if (numa_bitmask_isbitset(numa_nodes_ptr, i)) 232 nr_nodes++; 233 } 234 235 return nr_nodes; 236 } 237 238 /* 239 * To check if given numa node is present. 240 */ 241 static int is_node_present(int node) 242 { 243 return numa_bitmask_isbitset(numa_nodes_ptr, node); 244 } 245 246 /* 247 * To check given numa node has cpus. 248 */ 249 static bool node_has_cpus(int node) 250 { 251 struct bitmask *cpumask = numa_allocate_cpumask(); 252 bool ret = false; /* fall back to nocpus */ 253 int cpu; 254 255 BUG_ON(!cpumask); 256 if (!numa_node_to_cpus(node, cpumask)) { 257 for (cpu = 0; cpu < (int)cpumask->size; cpu++) { 258 if (numa_bitmask_isbitset(cpumask, cpu)) { 259 ret = true; 260 break; 261 } 262 } 263 } 264 numa_free_cpumask(cpumask); 265 266 return ret; 267 } 268 269 static cpu_set_t *bind_to_cpu(int target_cpu) 270 { 271 int nrcpus = numa_num_possible_cpus(); 272 cpu_set_t *orig_mask, *mask; 273 size_t size; 274 275 orig_mask = CPU_ALLOC(nrcpus); 276 BUG_ON(!orig_mask); 277 size = CPU_ALLOC_SIZE(nrcpus); 278 CPU_ZERO_S(size, orig_mask); 279 280 if (sched_getaffinity(0, size, orig_mask)) 281 goto err_out; 282 283 mask = CPU_ALLOC(nrcpus); 284 if (!mask) 285 goto err_out; 286 287 CPU_ZERO_S(size, mask); 288 289 if (target_cpu == -1) { 290 int cpu; 291 292 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 293 CPU_SET_S(cpu, size, mask); 294 } else { 295 if (target_cpu < 0 || target_cpu >= g->p.nr_cpus) 296 goto err; 297 298 CPU_SET_S(target_cpu, size, mask); 299 } 300 301 if (sched_setaffinity(0, size, mask)) 302 goto err; 303 304 return orig_mask; 305 306 err: 307 CPU_FREE(mask); 308 err_out: 309 CPU_FREE(orig_mask); 310 311 /* BUG_ON due to failure in allocation of orig_mask/mask */ 312 BUG_ON(-1); 313 return NULL; 314 } 315 316 static cpu_set_t *bind_to_node(int target_node) 317 { 318 int nrcpus = numa_num_possible_cpus(); 319 size_t size; 320 cpu_set_t *orig_mask, *mask; 321 int cpu; 322 323 orig_mask = CPU_ALLOC(nrcpus); 324 BUG_ON(!orig_mask); 325 size = CPU_ALLOC_SIZE(nrcpus); 326 CPU_ZERO_S(size, orig_mask); 327 328 if (sched_getaffinity(0, size, orig_mask)) 329 goto err_out; 330 331 mask = CPU_ALLOC(nrcpus); 332 if (!mask) 333 goto err_out; 334 335 CPU_ZERO_S(size, mask); 336 337 if (target_node == NUMA_NO_NODE) { 338 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 339 CPU_SET_S(cpu, size, mask); 340 } else { 341 struct bitmask *cpumask = numa_allocate_cpumask(); 342 343 if (!cpumask) 344 goto err; 345 346 if (!numa_node_to_cpus(target_node, cpumask)) { 347 for (cpu = 0; cpu < (int)cpumask->size; cpu++) { 348 if (numa_bitmask_isbitset(cpumask, cpu)) 349 CPU_SET_S(cpu, size, mask); 350 } 351 } 352 numa_free_cpumask(cpumask); 353 } 354 355 if (sched_setaffinity(0, size, mask)) 356 goto err; 357 358 return orig_mask; 359 360 err: 361 CPU_FREE(mask); 362 err_out: 363 CPU_FREE(orig_mask); 364 365 /* BUG_ON due to failure in allocation of orig_mask/mask */ 366 BUG_ON(-1); 367 return NULL; 368 } 369 370 static void bind_to_cpumask(cpu_set_t *mask) 371 { 372 int ret; 373 size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus()); 374 375 ret = sched_setaffinity(0, size, mask); 376 if (ret) { 377 CPU_FREE(mask); 378 BUG_ON(ret); 379 } 380 } 381 382 static void mempol_restore(void) 383 { 384 int ret; 385 386 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 387 388 BUG_ON(ret); 389 } 390 391 static void bind_to_memnode(int node) 392 { 393 struct bitmask *node_mask; 394 int ret; 395 396 if (node == NUMA_NO_NODE) 397 return; 398 399 node_mask = numa_allocate_nodemask(); 400 BUG_ON(!node_mask); 401 402 numa_bitmask_clearall(node_mask); 403 numa_bitmask_setbit(node_mask, node); 404 405 ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1); 406 dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret); 407 408 numa_bitmask_free(node_mask); 409 BUG_ON(ret); 410 } 411 412 #define HPSIZE (2*1024*1024) 413 414 #define set_taskname(fmt...) \ 415 do { \ 416 char name[20]; \ 417 \ 418 snprintf(name, 20, fmt); \ 419 prctl(PR_SET_NAME, name); \ 420 } while (0) 421 422 static u8 *alloc_data(ssize_t bytes0, int map_flags, 423 int init_zero, int init_cpu0, int thp, int init_random) 424 { 425 cpu_set_t *orig_mask = NULL; 426 ssize_t bytes; 427 u8 *buf; 428 int ret; 429 430 if (!bytes0) 431 return NULL; 432 433 /* Allocate and initialize all memory on CPU#0: */ 434 if (init_cpu0) { 435 int node = numa_node_of_cpu(0); 436 437 orig_mask = bind_to_node(node); 438 bind_to_memnode(node); 439 } 440 441 bytes = bytes0 + HPSIZE; 442 443 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 444 BUG_ON(buf == (void *)-1); 445 446 if (map_flags == MAP_PRIVATE) { 447 if (thp > 0) { 448 ret = madvise(buf, bytes, MADV_HUGEPAGE); 449 if (ret && !g->print_once) { 450 g->print_once = 1; 451 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 452 } 453 } 454 if (thp < 0) { 455 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 456 if (ret && !g->print_once) { 457 g->print_once = 1; 458 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 459 } 460 } 461 } 462 463 if (init_zero) { 464 bzero(buf, bytes); 465 } else { 466 /* Initialize random contents, different in each word: */ 467 if (init_random) { 468 u64 *wbuf = (void *)buf; 469 long off = rand(); 470 long i; 471 472 for (i = 0; i < bytes/8; i++) 473 wbuf[i] = i + off; 474 } 475 } 476 477 /* Align to 2MB boundary: */ 478 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 479 480 /* Restore affinity: */ 481 if (init_cpu0) { 482 bind_to_cpumask(orig_mask); 483 CPU_FREE(orig_mask); 484 mempol_restore(); 485 } 486 487 return buf; 488 } 489 490 static void free_data(void *data, ssize_t bytes) 491 { 492 int ret; 493 494 if (!data) 495 return; 496 497 ret = munmap(data, bytes); 498 BUG_ON(ret); 499 } 500 501 /* 502 * Create a shared memory buffer that can be shared between processes, zeroed: 503 */ 504 static void * zalloc_shared_data(ssize_t bytes) 505 { 506 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 507 } 508 509 /* 510 * Create a shared memory buffer that can be shared between processes: 511 */ 512 static void * setup_shared_data(ssize_t bytes) 513 { 514 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 515 } 516 517 /* 518 * Allocate process-local memory - this will either be shared between 519 * threads of this process, or only be accessed by this thread: 520 */ 521 static void * setup_private_data(ssize_t bytes) 522 { 523 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 524 } 525 526 static int parse_cpu_list(const char *arg) 527 { 528 p0.cpu_list_str = strdup(arg); 529 530 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 531 532 return 0; 533 } 534 535 static int parse_setup_cpu_list(void) 536 { 537 struct thread_data *td; 538 char *str0, *str; 539 int t; 540 541 if (!g->p.cpu_list_str) 542 return 0; 543 544 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 545 546 str0 = str = strdup(g->p.cpu_list_str); 547 t = 0; 548 549 BUG_ON(!str); 550 551 tprintf("# binding tasks to CPUs:\n"); 552 tprintf("# "); 553 554 while (true) { 555 int bind_cpu, bind_cpu_0, bind_cpu_1; 556 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 557 int bind_len; 558 int step; 559 int mul; 560 561 tok = strsep(&str, ","); 562 if (!tok) 563 break; 564 565 tok_end = strstr(tok, "-"); 566 567 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 568 if (!tok_end) { 569 /* Single CPU specified: */ 570 bind_cpu_0 = bind_cpu_1 = atol(tok); 571 } else { 572 /* CPU range specified (for example: "5-11"): */ 573 bind_cpu_0 = atol(tok); 574 bind_cpu_1 = atol(tok_end + 1); 575 } 576 577 step = 1; 578 tok_step = strstr(tok, "#"); 579 if (tok_step) { 580 step = atol(tok_step + 1); 581 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 582 } 583 584 /* 585 * Mask length. 586 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 587 * where the _4 means the next 4 CPUs are allowed. 588 */ 589 bind_len = 1; 590 tok_len = strstr(tok, "_"); 591 if (tok_len) { 592 bind_len = atol(tok_len + 1); 593 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 594 } 595 596 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 597 mul = 1; 598 tok_mul = strstr(tok, "x"); 599 if (tok_mul) { 600 mul = atol(tok_mul + 1); 601 BUG_ON(mul <= 0); 602 } 603 604 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 605 606 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 607 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 608 return -1; 609 } 610 611 if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) { 612 printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n"); 613 return -1; 614 } 615 616 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 617 BUG_ON(bind_cpu_0 > bind_cpu_1); 618 619 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 620 size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus); 621 int i; 622 623 for (i = 0; i < mul; i++) { 624 int cpu; 625 626 if (t >= g->p.nr_tasks) { 627 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 628 goto out; 629 } 630 td = g->threads + t; 631 632 if (t) 633 tprintf(","); 634 if (bind_len > 1) { 635 tprintf("%2d/%d", bind_cpu, bind_len); 636 } else { 637 tprintf("%2d", bind_cpu); 638 } 639 640 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus); 641 BUG_ON(!td->bind_cpumask); 642 CPU_ZERO_S(size, td->bind_cpumask); 643 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 644 if (cpu < 0 || cpu >= g->p.nr_cpus) { 645 CPU_FREE(td->bind_cpumask); 646 BUG_ON(-1); 647 } 648 CPU_SET_S(cpu, size, td->bind_cpumask); 649 } 650 t++; 651 } 652 } 653 } 654 out: 655 656 tprintf("\n"); 657 658 if (t < g->p.nr_tasks) 659 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 660 661 free(str0); 662 return 0; 663 } 664 665 static int parse_cpus_opt(const struct option *opt __maybe_unused, 666 const char *arg, int unset __maybe_unused) 667 { 668 if (!arg) 669 return -1; 670 671 return parse_cpu_list(arg); 672 } 673 674 static int parse_node_list(const char *arg) 675 { 676 p0.node_list_str = strdup(arg); 677 678 dprintf("got NODE list: {%s}\n", p0.node_list_str); 679 680 return 0; 681 } 682 683 static int parse_setup_node_list(void) 684 { 685 struct thread_data *td; 686 char *str0, *str; 687 int t; 688 689 if (!g->p.node_list_str) 690 return 0; 691 692 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 693 694 str0 = str = strdup(g->p.node_list_str); 695 t = 0; 696 697 BUG_ON(!str); 698 699 tprintf("# binding tasks to NODEs:\n"); 700 tprintf("# "); 701 702 while (true) { 703 int bind_node, bind_node_0, bind_node_1; 704 char *tok, *tok_end, *tok_step, *tok_mul; 705 int step; 706 int mul; 707 708 tok = strsep(&str, ","); 709 if (!tok) 710 break; 711 712 tok_end = strstr(tok, "-"); 713 714 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 715 if (!tok_end) { 716 /* Single NODE specified: */ 717 bind_node_0 = bind_node_1 = atol(tok); 718 } else { 719 /* NODE range specified (for example: "5-11"): */ 720 bind_node_0 = atol(tok); 721 bind_node_1 = atol(tok_end + 1); 722 } 723 724 step = 1; 725 tok_step = strstr(tok, "#"); 726 if (tok_step) { 727 step = atol(tok_step + 1); 728 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 729 } 730 731 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 732 mul = 1; 733 tok_mul = strstr(tok, "x"); 734 if (tok_mul) { 735 mul = atol(tok_mul + 1); 736 BUG_ON(mul <= 0); 737 } 738 739 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 740 741 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 742 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 743 return -1; 744 } 745 746 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 747 BUG_ON(bind_node_0 > bind_node_1); 748 749 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 750 int i; 751 752 for (i = 0; i < mul; i++) { 753 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) { 754 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 755 goto out; 756 } 757 td = g->threads + t; 758 759 if (!t) 760 tprintf(" %2d", bind_node); 761 else 762 tprintf(",%2d", bind_node); 763 764 td->bind_node = bind_node; 765 t++; 766 } 767 } 768 } 769 out: 770 771 tprintf("\n"); 772 773 if (t < g->p.nr_tasks) 774 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 775 776 free(str0); 777 return 0; 778 } 779 780 static int parse_nodes_opt(const struct option *opt __maybe_unused, 781 const char *arg, int unset __maybe_unused) 782 { 783 if (!arg) 784 return -1; 785 786 return parse_node_list(arg); 787 } 788 789 static inline uint32_t lfsr_32(uint32_t lfsr) 790 { 791 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 792 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 793 } 794 795 /* 796 * Make sure there's real data dependency to RAM (when read 797 * accesses are enabled), so the compiler, the CPU and the 798 * kernel (KSM, zero page, etc.) cannot optimize away RAM 799 * accesses: 800 */ 801 static inline u64 access_data(u64 *data, u64 val) 802 { 803 if (g->p.data_reads) 804 val += *data; 805 if (g->p.data_writes) 806 *data = val + 1; 807 return val; 808 } 809 810 /* 811 * The worker process does two types of work, a forwards going 812 * loop and a backwards going loop. 813 * 814 * We do this so that on multiprocessor systems we do not create 815 * a 'train' of processing, with highly synchronized processes, 816 * skewing the whole benchmark. 817 */ 818 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 819 { 820 long words = bytes/sizeof(u64); 821 u64 *data = (void *)__data; 822 long chunk_0, chunk_1; 823 u64 *d0, *d, *d1; 824 long off; 825 long i; 826 827 BUG_ON(!data && words); 828 BUG_ON(data && !words); 829 830 if (!data) 831 return val; 832 833 /* Very simple memset() work variant: */ 834 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 835 bzero(data, bytes); 836 return val; 837 } 838 839 /* Spread out by PID/TID nr and by loop nr: */ 840 chunk_0 = words/nr_max; 841 chunk_1 = words/g->p.nr_loops; 842 off = nr*chunk_0 + loop*chunk_1; 843 844 while (off >= words) 845 off -= words; 846 847 if (g->p.data_rand_walk) { 848 u32 lfsr = nr + loop + val; 849 int j; 850 851 for (i = 0; i < words/1024; i++) { 852 long start, end; 853 854 lfsr = lfsr_32(lfsr); 855 856 start = lfsr % words; 857 end = min(start + 1024, words-1); 858 859 if (g->p.data_zero_memset) { 860 bzero(data + start, (end-start) * sizeof(u64)); 861 } else { 862 for (j = start; j < end; j++) 863 val = access_data(data + j, val); 864 } 865 } 866 } else if (!g->p.data_backwards || (nr + loop) & 1) { 867 /* Process data forwards: */ 868 869 d0 = data + off; 870 d = data + off + 1; 871 d1 = data + words; 872 873 for (;;) { 874 if (unlikely(d >= d1)) 875 d = data; 876 if (unlikely(d == d0)) 877 break; 878 879 val = access_data(d, val); 880 881 d++; 882 } 883 } else { 884 /* Process data backwards: */ 885 886 d0 = data + off; 887 d = data + off - 1; 888 d1 = data + words; 889 890 for (;;) { 891 if (unlikely(d < data)) 892 d = data + words-1; 893 if (unlikely(d == d0)) 894 break; 895 896 val = access_data(d, val); 897 898 d--; 899 } 900 } 901 902 return val; 903 } 904 905 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 906 { 907 unsigned int cpu; 908 909 cpu = sched_getcpu(); 910 911 g->threads[task_nr].curr_cpu = cpu; 912 prctl(0, bytes_worked); 913 } 914 915 /* 916 * Count the number of nodes a process's threads 917 * are spread out on. 918 * 919 * A count of 1 means that the process is compressed 920 * to a single node. A count of g->p.nr_nodes means it's 921 * spread out on the whole system. 922 */ 923 static int count_process_nodes(int process_nr) 924 { 925 char *node_present; 926 int nodes; 927 int n, t; 928 929 node_present = (char *)malloc(g->p.nr_nodes * sizeof(char)); 930 BUG_ON(!node_present); 931 for (nodes = 0; nodes < g->p.nr_nodes; nodes++) 932 node_present[nodes] = 0; 933 934 for (t = 0; t < g->p.nr_threads; t++) { 935 struct thread_data *td; 936 int task_nr; 937 int node; 938 939 task_nr = process_nr*g->p.nr_threads + t; 940 td = g->threads + task_nr; 941 942 node = numa_node_of_cpu(td->curr_cpu); 943 if (node < 0) /* curr_cpu was likely still -1 */ { 944 free(node_present); 945 return 0; 946 } 947 948 node_present[node] = 1; 949 } 950 951 nodes = 0; 952 953 for (n = 0; n < g->p.nr_nodes; n++) 954 nodes += node_present[n]; 955 956 free(node_present); 957 return nodes; 958 } 959 960 /* 961 * Count the number of distinct process-threads a node contains. 962 * 963 * A count of 1 means that the node contains only a single 964 * process. If all nodes on the system contain at most one 965 * process then we are well-converged. 966 */ 967 static int count_node_processes(int node) 968 { 969 int processes = 0; 970 int t, p; 971 972 for (p = 0; p < g->p.nr_proc; p++) { 973 for (t = 0; t < g->p.nr_threads; t++) { 974 struct thread_data *td; 975 int task_nr; 976 int n; 977 978 task_nr = p*g->p.nr_threads + t; 979 td = g->threads + task_nr; 980 981 n = numa_node_of_cpu(td->curr_cpu); 982 if (n == node) { 983 processes++; 984 break; 985 } 986 } 987 } 988 989 return processes; 990 } 991 992 static void calc_convergence_compression(int *strong) 993 { 994 unsigned int nodes_min, nodes_max; 995 int p; 996 997 nodes_min = -1; 998 nodes_max = 0; 999 1000 for (p = 0; p < g->p.nr_proc; p++) { 1001 unsigned int nodes = count_process_nodes(p); 1002 1003 if (!nodes) { 1004 *strong = 0; 1005 return; 1006 } 1007 1008 nodes_min = min(nodes, nodes_min); 1009 nodes_max = max(nodes, nodes_max); 1010 } 1011 1012 /* Strong convergence: all threads compress on a single node: */ 1013 if (nodes_min == 1 && nodes_max == 1) { 1014 *strong = 1; 1015 } else { 1016 *strong = 0; 1017 tprintf(" {%d-%d}", nodes_min, nodes_max); 1018 } 1019 } 1020 1021 static void calc_convergence(double runtime_ns_max, double *convergence) 1022 { 1023 unsigned int loops_done_min, loops_done_max; 1024 int process_groups; 1025 int *nodes; 1026 int distance; 1027 int nr_min; 1028 int nr_max; 1029 int strong; 1030 int sum; 1031 int nr; 1032 int node; 1033 int cpu; 1034 int t; 1035 1036 if (!g->p.show_convergence && !g->p.measure_convergence) 1037 return; 1038 1039 nodes = (int *)malloc(g->p.nr_nodes * sizeof(int)); 1040 BUG_ON(!nodes); 1041 for (node = 0; node < g->p.nr_nodes; node++) 1042 nodes[node] = 0; 1043 1044 loops_done_min = -1; 1045 loops_done_max = 0; 1046 1047 for (t = 0; t < g->p.nr_tasks; t++) { 1048 struct thread_data *td = g->threads + t; 1049 unsigned int loops_done; 1050 1051 cpu = td->curr_cpu; 1052 1053 /* Not all threads have written it yet: */ 1054 if (cpu < 0) 1055 continue; 1056 1057 node = numa_node_of_cpu(cpu); 1058 1059 nodes[node]++; 1060 1061 loops_done = td->loops_done; 1062 loops_done_min = min(loops_done, loops_done_min); 1063 loops_done_max = max(loops_done, loops_done_max); 1064 } 1065 1066 nr_max = 0; 1067 nr_min = g->p.nr_tasks; 1068 sum = 0; 1069 1070 for (node = 0; node < g->p.nr_nodes; node++) { 1071 if (!is_node_present(node)) 1072 continue; 1073 nr = nodes[node]; 1074 nr_min = min(nr, nr_min); 1075 nr_max = max(nr, nr_max); 1076 sum += nr; 1077 } 1078 BUG_ON(nr_min > nr_max); 1079 1080 BUG_ON(sum > g->p.nr_tasks); 1081 1082 if (0 && (sum < g->p.nr_tasks)) { 1083 free(nodes); 1084 return; 1085 } 1086 1087 /* 1088 * Count the number of distinct process groups present 1089 * on nodes - when we are converged this will decrease 1090 * to g->p.nr_proc: 1091 */ 1092 process_groups = 0; 1093 1094 for (node = 0; node < g->p.nr_nodes; node++) { 1095 int processes; 1096 1097 if (!is_node_present(node)) 1098 continue; 1099 processes = count_node_processes(node); 1100 nr = nodes[node]; 1101 tprintf(" %2d/%-2d", nr, processes); 1102 1103 process_groups += processes; 1104 } 1105 1106 distance = nr_max - nr_min; 1107 1108 tprintf(" [%2d/%-2d]", distance, process_groups); 1109 1110 tprintf(" l:%3d-%-3d (%3d)", 1111 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 1112 1113 if (loops_done_min && loops_done_max) { 1114 double skew = 1.0 - (double)loops_done_min/loops_done_max; 1115 1116 tprintf(" [%4.1f%%]", skew * 100.0); 1117 } 1118 1119 calc_convergence_compression(&strong); 1120 1121 if (strong && process_groups == g->p.nr_proc) { 1122 if (!*convergence) { 1123 *convergence = runtime_ns_max; 1124 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1125 if (g->p.measure_convergence) { 1126 g->all_converged = true; 1127 g->stop_work = true; 1128 } 1129 } 1130 } else { 1131 if (*convergence) { 1132 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1133 *convergence = 0; 1134 } 1135 tprintf("\n"); 1136 } 1137 1138 free(nodes); 1139 } 1140 1141 static void show_summary(double runtime_ns_max, int l, double *convergence) 1142 { 1143 tprintf("\r # %5.1f%% [%.1f mins]", 1144 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1145 1146 calc_convergence(runtime_ns_max, convergence); 1147 1148 if (g->p.show_details >= 0) 1149 fflush(stdout); 1150 } 1151 1152 static void *worker_thread(void *__tdata) 1153 { 1154 struct thread_data *td = __tdata; 1155 struct timeval start0, start, stop, diff; 1156 int process_nr = td->process_nr; 1157 int thread_nr = td->thread_nr; 1158 unsigned long last_perturbance; 1159 int task_nr = td->task_nr; 1160 int details = g->p.show_details; 1161 int first_task, last_task; 1162 double convergence = 0; 1163 u64 val = td->val; 1164 double runtime_ns_max; 1165 u8 *global_data; 1166 u8 *process_data; 1167 u8 *thread_data; 1168 u64 bytes_done, secs; 1169 long work_done; 1170 u32 l; 1171 struct rusage rusage; 1172 1173 bind_to_cpumask(td->bind_cpumask); 1174 bind_to_memnode(td->bind_node); 1175 1176 set_taskname("thread %d/%d", process_nr, thread_nr); 1177 1178 global_data = g->data; 1179 process_data = td->process_data; 1180 thread_data = setup_private_data(g->p.bytes_thread); 1181 1182 bytes_done = 0; 1183 1184 last_task = 0; 1185 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1186 last_task = 1; 1187 1188 first_task = 0; 1189 if (process_nr == 0 && thread_nr == 0) 1190 first_task = 1; 1191 1192 if (details >= 2) { 1193 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1194 process_nr, thread_nr, global_data, process_data, thread_data); 1195 } 1196 1197 if (g->p.serialize_startup) { 1198 mutex_lock(&g->startup_mutex); 1199 g->nr_tasks_started++; 1200 /* The last thread wakes the main process. */ 1201 if (g->nr_tasks_started == g->p.nr_tasks) 1202 cond_signal(&g->startup_cond); 1203 1204 mutex_unlock(&g->startup_mutex); 1205 1206 /* Here we will wait for the main process to start us all at once: */ 1207 mutex_lock(&g->start_work_mutex); 1208 g->start_work = false; 1209 g->nr_tasks_working++; 1210 while (!g->start_work) 1211 cond_wait(&g->start_work_cond, &g->start_work_mutex); 1212 1213 mutex_unlock(&g->start_work_mutex); 1214 } 1215 1216 gettimeofday(&start0, NULL); 1217 1218 start = stop = start0; 1219 last_perturbance = start.tv_sec; 1220 1221 for (l = 0; l < g->p.nr_loops; l++) { 1222 start = stop; 1223 1224 if (g->stop_work) 1225 break; 1226 1227 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1228 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1229 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1230 1231 if (g->p.sleep_usecs) { 1232 mutex_lock(td->process_lock); 1233 usleep(g->p.sleep_usecs); 1234 mutex_unlock(td->process_lock); 1235 } 1236 /* 1237 * Amount of work to be done under a process-global lock: 1238 */ 1239 if (g->p.bytes_process_locked) { 1240 mutex_lock(td->process_lock); 1241 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1242 mutex_unlock(td->process_lock); 1243 } 1244 1245 work_done = g->p.bytes_global + g->p.bytes_process + 1246 g->p.bytes_process_locked + g->p.bytes_thread; 1247 1248 update_curr_cpu(task_nr, work_done); 1249 bytes_done += work_done; 1250 1251 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1252 continue; 1253 1254 td->loops_done = l; 1255 1256 gettimeofday(&stop, NULL); 1257 1258 /* Check whether our max runtime timed out: */ 1259 if (g->p.nr_secs) { 1260 timersub(&stop, &start0, &diff); 1261 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1262 g->stop_work = true; 1263 break; 1264 } 1265 } 1266 1267 /* Update the summary at most once per second: */ 1268 if (start.tv_sec == stop.tv_sec) 1269 continue; 1270 1271 /* 1272 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1273 * by migrating to CPU#0: 1274 */ 1275 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1276 cpu_set_t *orig_mask; 1277 int target_cpu; 1278 int this_cpu; 1279 1280 last_perturbance = stop.tv_sec; 1281 1282 /* 1283 * Depending on where we are running, move into 1284 * the other half of the system, to create some 1285 * real disturbance: 1286 */ 1287 this_cpu = g->threads[task_nr].curr_cpu; 1288 if (this_cpu < g->p.nr_cpus/2) 1289 target_cpu = g->p.nr_cpus-1; 1290 else 1291 target_cpu = 0; 1292 1293 orig_mask = bind_to_cpu(target_cpu); 1294 1295 /* Here we are running on the target CPU already */ 1296 if (details >= 1) 1297 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1298 1299 bind_to_cpumask(orig_mask); 1300 CPU_FREE(orig_mask); 1301 } 1302 1303 if (details >= 3) { 1304 timersub(&stop, &start, &diff); 1305 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1306 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1307 1308 if (details >= 0) { 1309 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1310 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1311 } 1312 fflush(stdout); 1313 } 1314 if (!last_task) 1315 continue; 1316 1317 timersub(&stop, &start0, &diff); 1318 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1319 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1320 1321 show_summary(runtime_ns_max, l, &convergence); 1322 } 1323 1324 gettimeofday(&stop, NULL); 1325 timersub(&stop, &start0, &diff); 1326 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1327 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1328 secs = td->runtime_ns / NSEC_PER_SEC; 1329 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0; 1330 1331 getrusage(RUSAGE_THREAD, &rusage); 1332 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1333 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1334 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1335 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1336 1337 free_data(thread_data, g->p.bytes_thread); 1338 1339 mutex_lock(&g->stop_work_mutex); 1340 g->bytes_done += bytes_done; 1341 mutex_unlock(&g->stop_work_mutex); 1342 1343 return NULL; 1344 } 1345 1346 /* 1347 * A worker process starts a couple of threads: 1348 */ 1349 static void worker_process(int process_nr) 1350 { 1351 struct mutex process_lock; 1352 struct thread_data *td; 1353 pthread_t *pthreads; 1354 u8 *process_data; 1355 int task_nr; 1356 int ret; 1357 int t; 1358 1359 mutex_init(&process_lock); 1360 set_taskname("process %d", process_nr); 1361 1362 /* 1363 * Pick up the memory policy and the CPU binding of our first thread, 1364 * so that we initialize memory accordingly: 1365 */ 1366 task_nr = process_nr*g->p.nr_threads; 1367 td = g->threads + task_nr; 1368 1369 bind_to_memnode(td->bind_node); 1370 bind_to_cpumask(td->bind_cpumask); 1371 1372 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1373 process_data = setup_private_data(g->p.bytes_process); 1374 1375 if (g->p.show_details >= 3) { 1376 printf(" # process %2d global mem: %p, process mem: %p\n", 1377 process_nr, g->data, process_data); 1378 } 1379 1380 for (t = 0; t < g->p.nr_threads; t++) { 1381 task_nr = process_nr*g->p.nr_threads + t; 1382 td = g->threads + task_nr; 1383 1384 td->process_data = process_data; 1385 td->process_nr = process_nr; 1386 td->thread_nr = t; 1387 td->task_nr = task_nr; 1388 td->val = rand(); 1389 td->curr_cpu = -1; 1390 td->process_lock = &process_lock; 1391 1392 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1393 BUG_ON(ret); 1394 } 1395 1396 for (t = 0; t < g->p.nr_threads; t++) { 1397 ret = pthread_join(pthreads[t], NULL); 1398 BUG_ON(ret); 1399 } 1400 1401 free_data(process_data, g->p.bytes_process); 1402 free(pthreads); 1403 } 1404 1405 static void print_summary(void) 1406 { 1407 if (g->p.show_details < 0) 1408 return; 1409 1410 printf("\n ###\n"); 1411 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1412 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus); 1413 printf(" # %5dx %5ldMB global shared mem operations\n", 1414 g->p.nr_loops, g->p.bytes_global/1024/1024); 1415 printf(" # %5dx %5ldMB process shared mem operations\n", 1416 g->p.nr_loops, g->p.bytes_process/1024/1024); 1417 printf(" # %5dx %5ldMB thread local mem operations\n", 1418 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1419 1420 printf(" ###\n"); 1421 1422 printf("\n ###\n"); fflush(stdout); 1423 } 1424 1425 static void init_thread_data(void) 1426 { 1427 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1428 int t; 1429 1430 g->threads = zalloc_shared_data(size); 1431 1432 for (t = 0; t < g->p.nr_tasks; t++) { 1433 struct thread_data *td = g->threads + t; 1434 size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus); 1435 int cpu; 1436 1437 /* Allow all nodes by default: */ 1438 td->bind_node = NUMA_NO_NODE; 1439 1440 /* Allow all CPUs by default: */ 1441 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus); 1442 BUG_ON(!td->bind_cpumask); 1443 CPU_ZERO_S(cpuset_size, td->bind_cpumask); 1444 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1445 CPU_SET_S(cpu, cpuset_size, td->bind_cpumask); 1446 } 1447 } 1448 1449 static void deinit_thread_data(void) 1450 { 1451 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1452 int t; 1453 1454 /* Free the bind_cpumask allocated for thread_data */ 1455 for (t = 0; t < g->p.nr_tasks; t++) { 1456 struct thread_data *td = g->threads + t; 1457 CPU_FREE(td->bind_cpumask); 1458 } 1459 1460 free_data(g->threads, size); 1461 } 1462 1463 static int init(void) 1464 { 1465 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1466 1467 /* Copy over options: */ 1468 g->p = p0; 1469 1470 g->p.nr_cpus = numa_num_configured_cpus(); 1471 1472 g->p.nr_nodes = numa_max_node() + 1; 1473 1474 /* char array in count_process_nodes(): */ 1475 BUG_ON(g->p.nr_nodes < 0); 1476 1477 if (g->p.show_quiet && !g->p.show_details) 1478 g->p.show_details = -1; 1479 1480 /* Some memory should be specified: */ 1481 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1482 return -1; 1483 1484 if (g->p.mb_global_str) { 1485 g->p.mb_global = atof(g->p.mb_global_str); 1486 BUG_ON(g->p.mb_global < 0); 1487 } 1488 1489 if (g->p.mb_proc_str) { 1490 g->p.mb_proc = atof(g->p.mb_proc_str); 1491 BUG_ON(g->p.mb_proc < 0); 1492 } 1493 1494 if (g->p.mb_proc_locked_str) { 1495 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1496 BUG_ON(g->p.mb_proc_locked < 0); 1497 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1498 } 1499 1500 if (g->p.mb_thread_str) { 1501 g->p.mb_thread = atof(g->p.mb_thread_str); 1502 BUG_ON(g->p.mb_thread < 0); 1503 } 1504 1505 BUG_ON(g->p.nr_threads <= 0); 1506 BUG_ON(g->p.nr_proc <= 0); 1507 1508 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1509 1510 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1511 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1512 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1513 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1514 1515 g->data = setup_shared_data(g->p.bytes_global); 1516 1517 /* Startup serialization: */ 1518 mutex_init_pshared(&g->start_work_mutex); 1519 cond_init_pshared(&g->start_work_cond); 1520 mutex_init_pshared(&g->startup_mutex); 1521 cond_init_pshared(&g->startup_cond); 1522 mutex_init_pshared(&g->stop_work_mutex); 1523 1524 init_thread_data(); 1525 1526 tprintf("#\n"); 1527 if (parse_setup_cpu_list() || parse_setup_node_list()) 1528 return -1; 1529 tprintf("#\n"); 1530 1531 print_summary(); 1532 1533 return 0; 1534 } 1535 1536 static void deinit(void) 1537 { 1538 free_data(g->data, g->p.bytes_global); 1539 g->data = NULL; 1540 1541 deinit_thread_data(); 1542 1543 free_data(g, sizeof(*g)); 1544 g = NULL; 1545 } 1546 1547 /* 1548 * Print a short or long result, depending on the verbosity setting: 1549 */ 1550 static void print_res(const char *name, double val, 1551 const char *txt_unit, const char *txt_short, const char *txt_long) 1552 { 1553 if (!name) 1554 name = "main,"; 1555 1556 if (!g->p.show_quiet) 1557 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1558 else 1559 printf(" %14.3f %s\n", val, txt_long); 1560 } 1561 1562 static int __bench_numa(const char *name) 1563 { 1564 struct timeval start, stop, diff; 1565 u64 runtime_ns_min, runtime_ns_sum; 1566 pid_t *pids, pid, wpid; 1567 double delta_runtime; 1568 double runtime_avg; 1569 double runtime_sec_max; 1570 double runtime_sec_min; 1571 int wait_stat; 1572 double bytes; 1573 int i, t, p; 1574 1575 if (init()) 1576 return -1; 1577 1578 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1579 pid = -1; 1580 1581 if (g->p.serialize_startup) { 1582 tprintf(" #\n"); 1583 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1584 } 1585 1586 gettimeofday(&start, NULL); 1587 1588 for (i = 0; i < g->p.nr_proc; i++) { 1589 pid = fork(); 1590 dprintf(" # process %2d: PID %d\n", i, pid); 1591 1592 BUG_ON(pid < 0); 1593 if (!pid) { 1594 /* Child process: */ 1595 worker_process(i); 1596 1597 exit(0); 1598 } 1599 pids[i] = pid; 1600 1601 } 1602 1603 if (g->p.serialize_startup) { 1604 bool threads_ready = false; 1605 double startup_sec; 1606 1607 /* 1608 * Wait for all the threads to start up. The last thread will 1609 * signal this process. 1610 */ 1611 mutex_lock(&g->startup_mutex); 1612 while (g->nr_tasks_started != g->p.nr_tasks) 1613 cond_wait(&g->startup_cond, &g->startup_mutex); 1614 1615 mutex_unlock(&g->startup_mutex); 1616 1617 /* Wait for all threads to be at the start_work_cond. */ 1618 while (!threads_ready) { 1619 mutex_lock(&g->start_work_mutex); 1620 threads_ready = (g->nr_tasks_working == g->p.nr_tasks); 1621 mutex_unlock(&g->start_work_mutex); 1622 if (!threads_ready) 1623 usleep(1); 1624 } 1625 1626 gettimeofday(&stop, NULL); 1627 1628 timersub(&stop, &start, &diff); 1629 1630 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1631 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1632 startup_sec /= NSEC_PER_SEC; 1633 1634 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1635 tprintf(" #\n"); 1636 1637 start = stop; 1638 /* Start all threads running. */ 1639 mutex_lock(&g->start_work_mutex); 1640 g->start_work = true; 1641 mutex_unlock(&g->start_work_mutex); 1642 cond_broadcast(&g->start_work_cond); 1643 } else { 1644 gettimeofday(&start, NULL); 1645 } 1646 1647 /* Parent process: */ 1648 1649 1650 for (i = 0; i < g->p.nr_proc; i++) { 1651 wpid = waitpid(pids[i], &wait_stat, 0); 1652 BUG_ON(wpid < 0); 1653 BUG_ON(!WIFEXITED(wait_stat)); 1654 1655 } 1656 1657 runtime_ns_sum = 0; 1658 runtime_ns_min = -1LL; 1659 1660 for (t = 0; t < g->p.nr_tasks; t++) { 1661 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1662 1663 runtime_ns_sum += thread_runtime_ns; 1664 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1665 } 1666 1667 gettimeofday(&stop, NULL); 1668 timersub(&stop, &start, &diff); 1669 1670 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1671 1672 tprintf("\n ###\n"); 1673 tprintf("\n"); 1674 1675 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1676 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1677 runtime_sec_max /= NSEC_PER_SEC; 1678 1679 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1680 1681 bytes = g->bytes_done; 1682 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1683 1684 if (g->p.measure_convergence) { 1685 print_res(name, runtime_sec_max, 1686 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1687 } 1688 1689 print_res(name, runtime_sec_max, 1690 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1691 1692 print_res(name, runtime_sec_min, 1693 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1694 1695 print_res(name, runtime_avg, 1696 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1697 1698 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1699 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1700 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1701 1702 print_res(name, bytes / g->p.nr_tasks / 1e9, 1703 "GB,", "data/thread", "GB data processed, per thread"); 1704 1705 print_res(name, bytes / 1e9, 1706 "GB,", "data-total", "GB data processed, total"); 1707 1708 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1709 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1710 1711 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1712 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1713 1714 print_res(name, bytes / runtime_sec_max / 1e9, 1715 "GB/sec,", "total-speed", "GB/sec total speed"); 1716 1717 if (g->p.show_details >= 2) { 1718 char tname[14 + 2 * 11 + 1]; 1719 struct thread_data *td; 1720 for (p = 0; p < g->p.nr_proc; p++) { 1721 for (t = 0; t < g->p.nr_threads; t++) { 1722 memset(tname, 0, sizeof(tname)); 1723 td = g->threads + p*g->p.nr_threads + t; 1724 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); 1725 print_res(tname, td->speed_gbs, 1726 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1727 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1728 "secs", "thread-system-time", "system CPU time/thread"); 1729 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1730 "secs", "thread-user-time", "user CPU time/thread"); 1731 } 1732 } 1733 } 1734 1735 free(pids); 1736 1737 deinit(); 1738 1739 return 0; 1740 } 1741 1742 #define MAX_ARGS 50 1743 1744 static int command_size(const char **argv) 1745 { 1746 int size = 0; 1747 1748 while (*argv) { 1749 size++; 1750 argv++; 1751 } 1752 1753 BUG_ON(size >= MAX_ARGS); 1754 1755 return size; 1756 } 1757 1758 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1759 { 1760 int i; 1761 1762 printf("\n # Running %s \"perf bench numa", name); 1763 1764 for (i = 0; i < argc; i++) 1765 printf(" %s", argv[i]); 1766 1767 printf("\"\n"); 1768 1769 memset(p, 0, sizeof(*p)); 1770 1771 /* Initialize nonzero defaults: */ 1772 1773 p->serialize_startup = 1; 1774 p->data_reads = true; 1775 p->data_writes = true; 1776 p->data_backwards = true; 1777 p->data_rand_walk = true; 1778 p->nr_loops = -1; 1779 p->init_random = true; 1780 p->mb_global_str = "1"; 1781 p->nr_proc = 1; 1782 p->nr_threads = 1; 1783 p->nr_secs = 5; 1784 p->run_all = argc == 1; 1785 } 1786 1787 static int run_bench_numa(const char *name, const char **argv) 1788 { 1789 int argc = command_size(argv); 1790 1791 init_params(&p0, name, argc, argv); 1792 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1793 if (argc) 1794 goto err; 1795 1796 if (__bench_numa(name)) 1797 goto err; 1798 1799 return 0; 1800 1801 err: 1802 return -1; 1803 } 1804 1805 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1806 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1807 1808 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1809 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1810 1811 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1812 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1813 1814 /* 1815 * The built-in test-suite executed by "perf bench numa -a". 1816 * 1817 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1818 */ 1819 static const char *tests[][MAX_ARGS] = { 1820 /* Basic single-stream NUMA bandwidth measurements: */ 1821 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1822 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1823 { "RAM-bw-local-NOTHP,", 1824 "mem", "-p", "1", "-t", "1", "-P", "1024", 1825 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1826 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1827 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1828 1829 /* 2-stream NUMA bandwidth measurements: */ 1830 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1831 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1832 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1833 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1834 1835 /* Cross-stream NUMA bandwidth measurement: */ 1836 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1837 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1838 1839 /* Convergence latency measurements: */ 1840 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1841 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1842 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1843 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV }, 1844 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1845 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1846 { " 4x4-convergence-NOTHP,", 1847 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1848 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1849 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1850 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1851 { " 8x4-convergence-NOTHP,", 1852 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1853 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1854 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1855 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1856 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1857 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1858 1859 /* Various NUMA process/thread layout bandwidth measurements: */ 1860 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1861 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1862 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1863 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1864 { " 8x1-bw-process-NOTHP,", 1865 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1866 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1867 1868 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1869 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1870 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1871 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1872 1873 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1874 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1875 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1876 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1877 { " 4x8-bw-process-NOTHP,", 1878 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1879 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1880 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1881 1882 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1883 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1884 1885 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1886 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1887 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1888 { "numa01-bw-thread-NOTHP,", 1889 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1890 }; 1891 1892 static int bench_all(void) 1893 { 1894 int nr = ARRAY_SIZE(tests); 1895 int ret; 1896 int i; 1897 1898 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1899 BUG_ON(ret < 0); 1900 1901 for (i = 0; i < nr; i++) { 1902 run_bench_numa(tests[i][0], tests[i] + 1); 1903 } 1904 1905 printf("\n"); 1906 1907 return 0; 1908 } 1909 1910 int bench_numa(int argc, const char **argv) 1911 { 1912 init_params(&p0, "main,", argc, argv); 1913 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1914 if (argc) 1915 goto err; 1916 1917 if (p0.run_all) 1918 return bench_all(); 1919 1920 if (__bench_numa(NULL)) 1921 goto err; 1922 1923 return 0; 1924 1925 err: 1926 usage_with_options(numa_usage, options); 1927 return -1; 1928 } 1929