1 /* 2 * numa.c 3 * 4 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 5 */ 6 7 #include "../perf.h" 8 #include "../builtin.h" 9 #include "../util/util.h" 10 #include "../util/parse-options.h" 11 12 #include "bench.h" 13 14 #include <errno.h> 15 #include <sched.h> 16 #include <stdio.h> 17 #include <assert.h> 18 #include <malloc.h> 19 #include <signal.h> 20 #include <stdlib.h> 21 #include <string.h> 22 #include <unistd.h> 23 #include <pthread.h> 24 #include <sys/mman.h> 25 #include <sys/time.h> 26 #include <sys/wait.h> 27 #include <sys/prctl.h> 28 #include <sys/types.h> 29 30 #include <numa.h> 31 #include <numaif.h> 32 33 /* 34 * Regular printout to the terminal, supressed if -q is specified: 35 */ 36 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 37 38 /* 39 * Debug printf: 40 */ 41 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 42 43 struct thread_data { 44 int curr_cpu; 45 cpu_set_t bind_cpumask; 46 int bind_node; 47 u8 *process_data; 48 int process_nr; 49 int thread_nr; 50 int task_nr; 51 unsigned int loops_done; 52 u64 val; 53 u64 runtime_ns; 54 pthread_mutex_t *process_lock; 55 }; 56 57 /* Parameters set by options: */ 58 59 struct params { 60 /* Startup synchronization: */ 61 bool serialize_startup; 62 63 /* Task hierarchy: */ 64 int nr_proc; 65 int nr_threads; 66 67 /* Working set sizes: */ 68 const char *mb_global_str; 69 const char *mb_proc_str; 70 const char *mb_proc_locked_str; 71 const char *mb_thread_str; 72 73 double mb_global; 74 double mb_proc; 75 double mb_proc_locked; 76 double mb_thread; 77 78 /* Access patterns to the working set: */ 79 bool data_reads; 80 bool data_writes; 81 bool data_backwards; 82 bool data_zero_memset; 83 bool data_rand_walk; 84 u32 nr_loops; 85 u32 nr_secs; 86 u32 sleep_usecs; 87 88 /* Working set initialization: */ 89 bool init_zero; 90 bool init_random; 91 bool init_cpu0; 92 93 /* Misc options: */ 94 int show_details; 95 int run_all; 96 int thp; 97 98 long bytes_global; 99 long bytes_process; 100 long bytes_process_locked; 101 long bytes_thread; 102 103 int nr_tasks; 104 bool show_quiet; 105 106 bool show_convergence; 107 bool measure_convergence; 108 109 int perturb_secs; 110 int nr_cpus; 111 int nr_nodes; 112 113 /* Affinity options -C and -N: */ 114 char *cpu_list_str; 115 char *node_list_str; 116 }; 117 118 119 /* Global, read-writable area, accessible to all processes and threads: */ 120 121 struct global_info { 122 u8 *data; 123 124 pthread_mutex_t startup_mutex; 125 int nr_tasks_started; 126 127 pthread_mutex_t startup_done_mutex; 128 129 pthread_mutex_t start_work_mutex; 130 int nr_tasks_working; 131 132 pthread_mutex_t stop_work_mutex; 133 u64 bytes_done; 134 135 struct thread_data *threads; 136 137 /* Convergence latency measurement: */ 138 bool all_converged; 139 bool stop_work; 140 141 int print_once; 142 143 struct params p; 144 }; 145 146 static struct global_info *g = NULL; 147 148 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 149 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 150 151 struct params p0; 152 153 static const struct option options[] = { 154 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 155 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 156 157 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 158 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 159 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 160 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 161 162 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run"), 163 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run"), 164 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 165 166 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via writes (can be mixed with -W)"), 167 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 168 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 169 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 170 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 171 172 173 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 174 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 175 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 176 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 177 178 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 179 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 180 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 181 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details"), 182 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 183 OPT_BOOLEAN('q', "quiet" , &p0.show_quiet, "bzero the initial allocations"), 184 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 185 186 /* Special option string parsing callbacks: */ 187 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 188 "bind the first N tasks to these specific cpus (the rest is unbound)", 189 parse_cpus_opt), 190 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 191 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 192 parse_nodes_opt), 193 OPT_END() 194 }; 195 196 static const char * const bench_numa_usage[] = { 197 "perf bench numa <options>", 198 NULL 199 }; 200 201 static const char * const numa_usage[] = { 202 "perf bench numa mem [<options>]", 203 NULL 204 }; 205 206 static cpu_set_t bind_to_cpu(int target_cpu) 207 { 208 cpu_set_t orig_mask, mask; 209 int ret; 210 211 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 212 BUG_ON(ret); 213 214 CPU_ZERO(&mask); 215 216 if (target_cpu == -1) { 217 int cpu; 218 219 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 220 CPU_SET(cpu, &mask); 221 } else { 222 BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus); 223 CPU_SET(target_cpu, &mask); 224 } 225 226 ret = sched_setaffinity(0, sizeof(mask), &mask); 227 BUG_ON(ret); 228 229 return orig_mask; 230 } 231 232 static cpu_set_t bind_to_node(int target_node) 233 { 234 int cpus_per_node = g->p.nr_cpus/g->p.nr_nodes; 235 cpu_set_t orig_mask, mask; 236 int cpu; 237 int ret; 238 239 BUG_ON(cpus_per_node*g->p.nr_nodes != g->p.nr_cpus); 240 BUG_ON(!cpus_per_node); 241 242 ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask); 243 BUG_ON(ret); 244 245 CPU_ZERO(&mask); 246 247 if (target_node == -1) { 248 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 249 CPU_SET(cpu, &mask); 250 } else { 251 int cpu_start = (target_node + 0) * cpus_per_node; 252 int cpu_stop = (target_node + 1) * cpus_per_node; 253 254 BUG_ON(cpu_stop > g->p.nr_cpus); 255 256 for (cpu = cpu_start; cpu < cpu_stop; cpu++) 257 CPU_SET(cpu, &mask); 258 } 259 260 ret = sched_setaffinity(0, sizeof(mask), &mask); 261 BUG_ON(ret); 262 263 return orig_mask; 264 } 265 266 static void bind_to_cpumask(cpu_set_t mask) 267 { 268 int ret; 269 270 ret = sched_setaffinity(0, sizeof(mask), &mask); 271 BUG_ON(ret); 272 } 273 274 static void mempol_restore(void) 275 { 276 int ret; 277 278 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 279 280 BUG_ON(ret); 281 } 282 283 static void bind_to_memnode(int node) 284 { 285 unsigned long nodemask; 286 int ret; 287 288 if (node == -1) 289 return; 290 291 BUG_ON(g->p.nr_nodes > (int)sizeof(nodemask)); 292 nodemask = 1L << node; 293 294 ret = set_mempolicy(MPOL_BIND, &nodemask, sizeof(nodemask)*8); 295 dprintf("binding to node %d, mask: %016lx => %d\n", node, nodemask, ret); 296 297 BUG_ON(ret); 298 } 299 300 #define HPSIZE (2*1024*1024) 301 302 #define set_taskname(fmt...) \ 303 do { \ 304 char name[20]; \ 305 \ 306 snprintf(name, 20, fmt); \ 307 prctl(PR_SET_NAME, name); \ 308 } while (0) 309 310 static u8 *alloc_data(ssize_t bytes0, int map_flags, 311 int init_zero, int init_cpu0, int thp, int init_random) 312 { 313 cpu_set_t orig_mask; 314 ssize_t bytes; 315 u8 *buf; 316 int ret; 317 318 if (!bytes0) 319 return NULL; 320 321 /* Allocate and initialize all memory on CPU#0: */ 322 if (init_cpu0) { 323 orig_mask = bind_to_node(0); 324 bind_to_memnode(0); 325 } 326 327 bytes = bytes0 + HPSIZE; 328 329 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 330 BUG_ON(buf == (void *)-1); 331 332 if (map_flags == MAP_PRIVATE) { 333 if (thp > 0) { 334 ret = madvise(buf, bytes, MADV_HUGEPAGE); 335 if (ret && !g->print_once) { 336 g->print_once = 1; 337 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 338 } 339 } 340 if (thp < 0) { 341 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 342 if (ret && !g->print_once) { 343 g->print_once = 1; 344 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 345 } 346 } 347 } 348 349 if (init_zero) { 350 bzero(buf, bytes); 351 } else { 352 /* Initialize random contents, different in each word: */ 353 if (init_random) { 354 u64 *wbuf = (void *)buf; 355 long off = rand(); 356 long i; 357 358 for (i = 0; i < bytes/8; i++) 359 wbuf[i] = i + off; 360 } 361 } 362 363 /* Align to 2MB boundary: */ 364 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 365 366 /* Restore affinity: */ 367 if (init_cpu0) { 368 bind_to_cpumask(orig_mask); 369 mempol_restore(); 370 } 371 372 return buf; 373 } 374 375 static void free_data(void *data, ssize_t bytes) 376 { 377 int ret; 378 379 if (!data) 380 return; 381 382 ret = munmap(data, bytes); 383 BUG_ON(ret); 384 } 385 386 /* 387 * Create a shared memory buffer that can be shared between processes, zeroed: 388 */ 389 static void * zalloc_shared_data(ssize_t bytes) 390 { 391 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 392 } 393 394 /* 395 * Create a shared memory buffer that can be shared between processes: 396 */ 397 static void * setup_shared_data(ssize_t bytes) 398 { 399 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 400 } 401 402 /* 403 * Allocate process-local memory - this will either be shared between 404 * threads of this process, or only be accessed by this thread: 405 */ 406 static void * setup_private_data(ssize_t bytes) 407 { 408 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 409 } 410 411 /* 412 * Return a process-shared (global) mutex: 413 */ 414 static void init_global_mutex(pthread_mutex_t *mutex) 415 { 416 pthread_mutexattr_t attr; 417 418 pthread_mutexattr_init(&attr); 419 pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED); 420 pthread_mutex_init(mutex, &attr); 421 } 422 423 static int parse_cpu_list(const char *arg) 424 { 425 p0.cpu_list_str = strdup(arg); 426 427 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 428 429 return 0; 430 } 431 432 static int parse_setup_cpu_list(void) 433 { 434 struct thread_data *td; 435 char *str0, *str; 436 int t; 437 438 if (!g->p.cpu_list_str) 439 return 0; 440 441 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 442 443 str0 = str = strdup(g->p.cpu_list_str); 444 t = 0; 445 446 BUG_ON(!str); 447 448 tprintf("# binding tasks to CPUs:\n"); 449 tprintf("# "); 450 451 while (true) { 452 int bind_cpu, bind_cpu_0, bind_cpu_1; 453 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 454 int bind_len; 455 int step; 456 int mul; 457 458 tok = strsep(&str, ","); 459 if (!tok) 460 break; 461 462 tok_end = strstr(tok, "-"); 463 464 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 465 if (!tok_end) { 466 /* Single CPU specified: */ 467 bind_cpu_0 = bind_cpu_1 = atol(tok); 468 } else { 469 /* CPU range specified (for example: "5-11"): */ 470 bind_cpu_0 = atol(tok); 471 bind_cpu_1 = atol(tok_end + 1); 472 } 473 474 step = 1; 475 tok_step = strstr(tok, "#"); 476 if (tok_step) { 477 step = atol(tok_step + 1); 478 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 479 } 480 481 /* 482 * Mask length. 483 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 484 * where the _4 means the next 4 CPUs are allowed. 485 */ 486 bind_len = 1; 487 tok_len = strstr(tok, "_"); 488 if (tok_len) { 489 bind_len = atol(tok_len + 1); 490 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 491 } 492 493 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 494 mul = 1; 495 tok_mul = strstr(tok, "x"); 496 if (tok_mul) { 497 mul = atol(tok_mul + 1); 498 BUG_ON(mul <= 0); 499 } 500 501 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 502 503 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 504 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 505 return -1; 506 } 507 508 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 509 BUG_ON(bind_cpu_0 > bind_cpu_1); 510 511 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 512 int i; 513 514 for (i = 0; i < mul; i++) { 515 int cpu; 516 517 if (t >= g->p.nr_tasks) { 518 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 519 goto out; 520 } 521 td = g->threads + t; 522 523 if (t) 524 tprintf(","); 525 if (bind_len > 1) { 526 tprintf("%2d/%d", bind_cpu, bind_len); 527 } else { 528 tprintf("%2d", bind_cpu); 529 } 530 531 CPU_ZERO(&td->bind_cpumask); 532 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 533 BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus); 534 CPU_SET(cpu, &td->bind_cpumask); 535 } 536 t++; 537 } 538 } 539 } 540 out: 541 542 tprintf("\n"); 543 544 if (t < g->p.nr_tasks) 545 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 546 547 free(str0); 548 return 0; 549 } 550 551 static int parse_cpus_opt(const struct option *opt __maybe_unused, 552 const char *arg, int unset __maybe_unused) 553 { 554 if (!arg) 555 return -1; 556 557 return parse_cpu_list(arg); 558 } 559 560 static int parse_node_list(const char *arg) 561 { 562 p0.node_list_str = strdup(arg); 563 564 dprintf("got NODE list: {%s}\n", p0.node_list_str); 565 566 return 0; 567 } 568 569 static int parse_setup_node_list(void) 570 { 571 struct thread_data *td; 572 char *str0, *str; 573 int t; 574 575 if (!g->p.node_list_str) 576 return 0; 577 578 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 579 580 str0 = str = strdup(g->p.node_list_str); 581 t = 0; 582 583 BUG_ON(!str); 584 585 tprintf("# binding tasks to NODEs:\n"); 586 tprintf("# "); 587 588 while (true) { 589 int bind_node, bind_node_0, bind_node_1; 590 char *tok, *tok_end, *tok_step, *tok_mul; 591 int step; 592 int mul; 593 594 tok = strsep(&str, ","); 595 if (!tok) 596 break; 597 598 tok_end = strstr(tok, "-"); 599 600 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 601 if (!tok_end) { 602 /* Single NODE specified: */ 603 bind_node_0 = bind_node_1 = atol(tok); 604 } else { 605 /* NODE range specified (for example: "5-11"): */ 606 bind_node_0 = atol(tok); 607 bind_node_1 = atol(tok_end + 1); 608 } 609 610 step = 1; 611 tok_step = strstr(tok, "#"); 612 if (tok_step) { 613 step = atol(tok_step + 1); 614 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 615 } 616 617 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 618 mul = 1; 619 tok_mul = strstr(tok, "x"); 620 if (tok_mul) { 621 mul = atol(tok_mul + 1); 622 BUG_ON(mul <= 0); 623 } 624 625 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 626 627 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 628 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 629 return -1; 630 } 631 632 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 633 BUG_ON(bind_node_0 > bind_node_1); 634 635 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 636 int i; 637 638 for (i = 0; i < mul; i++) { 639 if (t >= g->p.nr_tasks) { 640 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 641 goto out; 642 } 643 td = g->threads + t; 644 645 if (!t) 646 tprintf(" %2d", bind_node); 647 else 648 tprintf(",%2d", bind_node); 649 650 td->bind_node = bind_node; 651 t++; 652 } 653 } 654 } 655 out: 656 657 tprintf("\n"); 658 659 if (t < g->p.nr_tasks) 660 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 661 662 free(str0); 663 return 0; 664 } 665 666 static int parse_nodes_opt(const struct option *opt __maybe_unused, 667 const char *arg, int unset __maybe_unused) 668 { 669 if (!arg) 670 return -1; 671 672 return parse_node_list(arg); 673 674 return 0; 675 } 676 677 #define BIT(x) (1ul << x) 678 679 static inline uint32_t lfsr_32(uint32_t lfsr) 680 { 681 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 682 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 683 } 684 685 /* 686 * Make sure there's real data dependency to RAM (when read 687 * accesses are enabled), so the compiler, the CPU and the 688 * kernel (KSM, zero page, etc.) cannot optimize away RAM 689 * accesses: 690 */ 691 static inline u64 access_data(u64 *data __attribute__((unused)), u64 val) 692 { 693 if (g->p.data_reads) 694 val += *data; 695 if (g->p.data_writes) 696 *data = val + 1; 697 return val; 698 } 699 700 /* 701 * The worker process does two types of work, a forwards going 702 * loop and a backwards going loop. 703 * 704 * We do this so that on multiprocessor systems we do not create 705 * a 'train' of processing, with highly synchronized processes, 706 * skewing the whole benchmark. 707 */ 708 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 709 { 710 long words = bytes/sizeof(u64); 711 u64 *data = (void *)__data; 712 long chunk_0, chunk_1; 713 u64 *d0, *d, *d1; 714 long off; 715 long i; 716 717 BUG_ON(!data && words); 718 BUG_ON(data && !words); 719 720 if (!data) 721 return val; 722 723 /* Very simple memset() work variant: */ 724 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 725 bzero(data, bytes); 726 return val; 727 } 728 729 /* Spread out by PID/TID nr and by loop nr: */ 730 chunk_0 = words/nr_max; 731 chunk_1 = words/g->p.nr_loops; 732 off = nr*chunk_0 + loop*chunk_1; 733 734 while (off >= words) 735 off -= words; 736 737 if (g->p.data_rand_walk) { 738 u32 lfsr = nr + loop + val; 739 int j; 740 741 for (i = 0; i < words/1024; i++) { 742 long start, end; 743 744 lfsr = lfsr_32(lfsr); 745 746 start = lfsr % words; 747 end = min(start + 1024, words-1); 748 749 if (g->p.data_zero_memset) { 750 bzero(data + start, (end-start) * sizeof(u64)); 751 } else { 752 for (j = start; j < end; j++) 753 val = access_data(data + j, val); 754 } 755 } 756 } else if (!g->p.data_backwards || (nr + loop) & 1) { 757 758 d0 = data + off; 759 d = data + off + 1; 760 d1 = data + words; 761 762 /* Process data forwards: */ 763 for (;;) { 764 if (unlikely(d >= d1)) 765 d = data; 766 if (unlikely(d == d0)) 767 break; 768 769 val = access_data(d, val); 770 771 d++; 772 } 773 } else { 774 /* Process data backwards: */ 775 776 d0 = data + off; 777 d = data + off - 1; 778 d1 = data + words; 779 780 /* Process data forwards: */ 781 for (;;) { 782 if (unlikely(d < data)) 783 d = data + words-1; 784 if (unlikely(d == d0)) 785 break; 786 787 val = access_data(d, val); 788 789 d--; 790 } 791 } 792 793 return val; 794 } 795 796 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 797 { 798 unsigned int cpu; 799 800 cpu = sched_getcpu(); 801 802 g->threads[task_nr].curr_cpu = cpu; 803 prctl(0, bytes_worked); 804 } 805 806 #define MAX_NR_NODES 64 807 808 /* 809 * Count the number of nodes a process's threads 810 * are spread out on. 811 * 812 * A count of 1 means that the process is compressed 813 * to a single node. A count of g->p.nr_nodes means it's 814 * spread out on the whole system. 815 */ 816 static int count_process_nodes(int process_nr) 817 { 818 char node_present[MAX_NR_NODES] = { 0, }; 819 int nodes; 820 int n, t; 821 822 for (t = 0; t < g->p.nr_threads; t++) { 823 struct thread_data *td; 824 int task_nr; 825 int node; 826 827 task_nr = process_nr*g->p.nr_threads + t; 828 td = g->threads + task_nr; 829 830 node = numa_node_of_cpu(td->curr_cpu); 831 node_present[node] = 1; 832 } 833 834 nodes = 0; 835 836 for (n = 0; n < MAX_NR_NODES; n++) 837 nodes += node_present[n]; 838 839 return nodes; 840 } 841 842 /* 843 * Count the number of distinct process-threads a node contains. 844 * 845 * A count of 1 means that the node contains only a single 846 * process. If all nodes on the system contain at most one 847 * process then we are well-converged. 848 */ 849 static int count_node_processes(int node) 850 { 851 int processes = 0; 852 int t, p; 853 854 for (p = 0; p < g->p.nr_proc; p++) { 855 for (t = 0; t < g->p.nr_threads; t++) { 856 struct thread_data *td; 857 int task_nr; 858 int n; 859 860 task_nr = p*g->p.nr_threads + t; 861 td = g->threads + task_nr; 862 863 n = numa_node_of_cpu(td->curr_cpu); 864 if (n == node) { 865 processes++; 866 break; 867 } 868 } 869 } 870 871 return processes; 872 } 873 874 static void calc_convergence_compression(int *strong) 875 { 876 unsigned int nodes_min, nodes_max; 877 int p; 878 879 nodes_min = -1; 880 nodes_max = 0; 881 882 for (p = 0; p < g->p.nr_proc; p++) { 883 unsigned int nodes = count_process_nodes(p); 884 885 nodes_min = min(nodes, nodes_min); 886 nodes_max = max(nodes, nodes_max); 887 } 888 889 /* Strong convergence: all threads compress on a single node: */ 890 if (nodes_min == 1 && nodes_max == 1) { 891 *strong = 1; 892 } else { 893 *strong = 0; 894 tprintf(" {%d-%d}", nodes_min, nodes_max); 895 } 896 } 897 898 static void calc_convergence(double runtime_ns_max, double *convergence) 899 { 900 unsigned int loops_done_min, loops_done_max; 901 int process_groups; 902 int nodes[MAX_NR_NODES]; 903 int distance; 904 int nr_min; 905 int nr_max; 906 int strong; 907 int sum; 908 int nr; 909 int node; 910 int cpu; 911 int t; 912 913 if (!g->p.show_convergence && !g->p.measure_convergence) 914 return; 915 916 for (node = 0; node < g->p.nr_nodes; node++) 917 nodes[node] = 0; 918 919 loops_done_min = -1; 920 loops_done_max = 0; 921 922 for (t = 0; t < g->p.nr_tasks; t++) { 923 struct thread_data *td = g->threads + t; 924 unsigned int loops_done; 925 926 cpu = td->curr_cpu; 927 928 /* Not all threads have written it yet: */ 929 if (cpu < 0) 930 continue; 931 932 node = numa_node_of_cpu(cpu); 933 934 nodes[node]++; 935 936 loops_done = td->loops_done; 937 loops_done_min = min(loops_done, loops_done_min); 938 loops_done_max = max(loops_done, loops_done_max); 939 } 940 941 nr_max = 0; 942 nr_min = g->p.nr_tasks; 943 sum = 0; 944 945 for (node = 0; node < g->p.nr_nodes; node++) { 946 nr = nodes[node]; 947 nr_min = min(nr, nr_min); 948 nr_max = max(nr, nr_max); 949 sum += nr; 950 } 951 BUG_ON(nr_min > nr_max); 952 953 BUG_ON(sum > g->p.nr_tasks); 954 955 if (0 && (sum < g->p.nr_tasks)) 956 return; 957 958 /* 959 * Count the number of distinct process groups present 960 * on nodes - when we are converged this will decrease 961 * to g->p.nr_proc: 962 */ 963 process_groups = 0; 964 965 for (node = 0; node < g->p.nr_nodes; node++) { 966 int processes = count_node_processes(node); 967 968 nr = nodes[node]; 969 tprintf(" %2d/%-2d", nr, processes); 970 971 process_groups += processes; 972 } 973 974 distance = nr_max - nr_min; 975 976 tprintf(" [%2d/%-2d]", distance, process_groups); 977 978 tprintf(" l:%3d-%-3d (%3d)", 979 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 980 981 if (loops_done_min && loops_done_max) { 982 double skew = 1.0 - (double)loops_done_min/loops_done_max; 983 984 tprintf(" [%4.1f%%]", skew * 100.0); 985 } 986 987 calc_convergence_compression(&strong); 988 989 if (strong && process_groups == g->p.nr_proc) { 990 if (!*convergence) { 991 *convergence = runtime_ns_max; 992 tprintf(" (%6.1fs converged)\n", *convergence/1e9); 993 if (g->p.measure_convergence) { 994 g->all_converged = true; 995 g->stop_work = true; 996 } 997 } 998 } else { 999 if (*convergence) { 1000 tprintf(" (%6.1fs de-converged)", runtime_ns_max/1e9); 1001 *convergence = 0; 1002 } 1003 tprintf("\n"); 1004 } 1005 } 1006 1007 static void show_summary(double runtime_ns_max, int l, double *convergence) 1008 { 1009 tprintf("\r # %5.1f%% [%.1f mins]", 1010 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max/1e9 / 60.0); 1011 1012 calc_convergence(runtime_ns_max, convergence); 1013 1014 if (g->p.show_details >= 0) 1015 fflush(stdout); 1016 } 1017 1018 static void *worker_thread(void *__tdata) 1019 { 1020 struct thread_data *td = __tdata; 1021 struct timeval start0, start, stop, diff; 1022 int process_nr = td->process_nr; 1023 int thread_nr = td->thread_nr; 1024 unsigned long last_perturbance; 1025 int task_nr = td->task_nr; 1026 int details = g->p.show_details; 1027 int first_task, last_task; 1028 double convergence = 0; 1029 u64 val = td->val; 1030 double runtime_ns_max; 1031 u8 *global_data; 1032 u8 *process_data; 1033 u8 *thread_data; 1034 u64 bytes_done; 1035 long work_done; 1036 u32 l; 1037 1038 bind_to_cpumask(td->bind_cpumask); 1039 bind_to_memnode(td->bind_node); 1040 1041 set_taskname("thread %d/%d", process_nr, thread_nr); 1042 1043 global_data = g->data; 1044 process_data = td->process_data; 1045 thread_data = setup_private_data(g->p.bytes_thread); 1046 1047 bytes_done = 0; 1048 1049 last_task = 0; 1050 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1051 last_task = 1; 1052 1053 first_task = 0; 1054 if (process_nr == 0 && thread_nr == 0) 1055 first_task = 1; 1056 1057 if (details >= 2) { 1058 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1059 process_nr, thread_nr, global_data, process_data, thread_data); 1060 } 1061 1062 if (g->p.serialize_startup) { 1063 pthread_mutex_lock(&g->startup_mutex); 1064 g->nr_tasks_started++; 1065 pthread_mutex_unlock(&g->startup_mutex); 1066 1067 /* Here we will wait for the main process to start us all at once: */ 1068 pthread_mutex_lock(&g->start_work_mutex); 1069 g->nr_tasks_working++; 1070 1071 /* Last one wake the main process: */ 1072 if (g->nr_tasks_working == g->p.nr_tasks) 1073 pthread_mutex_unlock(&g->startup_done_mutex); 1074 1075 pthread_mutex_unlock(&g->start_work_mutex); 1076 } 1077 1078 gettimeofday(&start0, NULL); 1079 1080 start = stop = start0; 1081 last_perturbance = start.tv_sec; 1082 1083 for (l = 0; l < g->p.nr_loops; l++) { 1084 start = stop; 1085 1086 if (g->stop_work) 1087 break; 1088 1089 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1090 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1091 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1092 1093 if (g->p.sleep_usecs) { 1094 pthread_mutex_lock(td->process_lock); 1095 usleep(g->p.sleep_usecs); 1096 pthread_mutex_unlock(td->process_lock); 1097 } 1098 /* 1099 * Amount of work to be done under a process-global lock: 1100 */ 1101 if (g->p.bytes_process_locked) { 1102 pthread_mutex_lock(td->process_lock); 1103 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1104 pthread_mutex_unlock(td->process_lock); 1105 } 1106 1107 work_done = g->p.bytes_global + g->p.bytes_process + 1108 g->p.bytes_process_locked + g->p.bytes_thread; 1109 1110 update_curr_cpu(task_nr, work_done); 1111 bytes_done += work_done; 1112 1113 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1114 continue; 1115 1116 td->loops_done = l; 1117 1118 gettimeofday(&stop, NULL); 1119 1120 /* Check whether our max runtime timed out: */ 1121 if (g->p.nr_secs) { 1122 timersub(&stop, &start0, &diff); 1123 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1124 g->stop_work = true; 1125 break; 1126 } 1127 } 1128 1129 /* Update the summary at most once per second: */ 1130 if (start.tv_sec == stop.tv_sec) 1131 continue; 1132 1133 /* 1134 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1135 * by migrating to CPU#0: 1136 */ 1137 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1138 cpu_set_t orig_mask; 1139 int target_cpu; 1140 int this_cpu; 1141 1142 last_perturbance = stop.tv_sec; 1143 1144 /* 1145 * Depending on where we are running, move into 1146 * the other half of the system, to create some 1147 * real disturbance: 1148 */ 1149 this_cpu = g->threads[task_nr].curr_cpu; 1150 if (this_cpu < g->p.nr_cpus/2) 1151 target_cpu = g->p.nr_cpus-1; 1152 else 1153 target_cpu = 0; 1154 1155 orig_mask = bind_to_cpu(target_cpu); 1156 1157 /* Here we are running on the target CPU already */ 1158 if (details >= 1) 1159 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1160 1161 bind_to_cpumask(orig_mask); 1162 } 1163 1164 if (details >= 3) { 1165 timersub(&stop, &start, &diff); 1166 runtime_ns_max = diff.tv_sec * 1000000000; 1167 runtime_ns_max += diff.tv_usec * 1000; 1168 1169 if (details >= 0) { 1170 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1171 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1172 } 1173 fflush(stdout); 1174 } 1175 if (!last_task) 1176 continue; 1177 1178 timersub(&stop, &start0, &diff); 1179 runtime_ns_max = diff.tv_sec * 1000000000ULL; 1180 runtime_ns_max += diff.tv_usec * 1000ULL; 1181 1182 show_summary(runtime_ns_max, l, &convergence); 1183 } 1184 1185 gettimeofday(&stop, NULL); 1186 timersub(&stop, &start0, &diff); 1187 td->runtime_ns = diff.tv_sec * 1000000000ULL; 1188 td->runtime_ns += diff.tv_usec * 1000ULL; 1189 1190 free_data(thread_data, g->p.bytes_thread); 1191 1192 pthread_mutex_lock(&g->stop_work_mutex); 1193 g->bytes_done += bytes_done; 1194 pthread_mutex_unlock(&g->stop_work_mutex); 1195 1196 return NULL; 1197 } 1198 1199 /* 1200 * A worker process starts a couple of threads: 1201 */ 1202 static void worker_process(int process_nr) 1203 { 1204 pthread_mutex_t process_lock; 1205 struct thread_data *td; 1206 pthread_t *pthreads; 1207 u8 *process_data; 1208 int task_nr; 1209 int ret; 1210 int t; 1211 1212 pthread_mutex_init(&process_lock, NULL); 1213 set_taskname("process %d", process_nr); 1214 1215 /* 1216 * Pick up the memory policy and the CPU binding of our first thread, 1217 * so that we initialize memory accordingly: 1218 */ 1219 task_nr = process_nr*g->p.nr_threads; 1220 td = g->threads + task_nr; 1221 1222 bind_to_memnode(td->bind_node); 1223 bind_to_cpumask(td->bind_cpumask); 1224 1225 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1226 process_data = setup_private_data(g->p.bytes_process); 1227 1228 if (g->p.show_details >= 3) { 1229 printf(" # process %2d global mem: %p, process mem: %p\n", 1230 process_nr, g->data, process_data); 1231 } 1232 1233 for (t = 0; t < g->p.nr_threads; t++) { 1234 task_nr = process_nr*g->p.nr_threads + t; 1235 td = g->threads + task_nr; 1236 1237 td->process_data = process_data; 1238 td->process_nr = process_nr; 1239 td->thread_nr = t; 1240 td->task_nr = task_nr; 1241 td->val = rand(); 1242 td->curr_cpu = -1; 1243 td->process_lock = &process_lock; 1244 1245 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1246 BUG_ON(ret); 1247 } 1248 1249 for (t = 0; t < g->p.nr_threads; t++) { 1250 ret = pthread_join(pthreads[t], NULL); 1251 BUG_ON(ret); 1252 } 1253 1254 free_data(process_data, g->p.bytes_process); 1255 free(pthreads); 1256 } 1257 1258 static void print_summary(void) 1259 { 1260 if (g->p.show_details < 0) 1261 return; 1262 1263 printf("\n ###\n"); 1264 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1265 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", g->p.nr_nodes, g->p.nr_cpus); 1266 printf(" # %5dx %5ldMB global shared mem operations\n", 1267 g->p.nr_loops, g->p.bytes_global/1024/1024); 1268 printf(" # %5dx %5ldMB process shared mem operations\n", 1269 g->p.nr_loops, g->p.bytes_process/1024/1024); 1270 printf(" # %5dx %5ldMB thread local mem operations\n", 1271 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1272 1273 printf(" ###\n"); 1274 1275 printf("\n ###\n"); fflush(stdout); 1276 } 1277 1278 static void init_thread_data(void) 1279 { 1280 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1281 int t; 1282 1283 g->threads = zalloc_shared_data(size); 1284 1285 for (t = 0; t < g->p.nr_tasks; t++) { 1286 struct thread_data *td = g->threads + t; 1287 int cpu; 1288 1289 /* Allow all nodes by default: */ 1290 td->bind_node = -1; 1291 1292 /* Allow all CPUs by default: */ 1293 CPU_ZERO(&td->bind_cpumask); 1294 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1295 CPU_SET(cpu, &td->bind_cpumask); 1296 } 1297 } 1298 1299 static void deinit_thread_data(void) 1300 { 1301 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1302 1303 free_data(g->threads, size); 1304 } 1305 1306 static int init(void) 1307 { 1308 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1309 1310 /* Copy over options: */ 1311 g->p = p0; 1312 1313 g->p.nr_cpus = numa_num_configured_cpus(); 1314 1315 g->p.nr_nodes = numa_max_node() + 1; 1316 1317 /* char array in count_process_nodes(): */ 1318 BUG_ON(g->p.nr_nodes > MAX_NR_NODES || g->p.nr_nodes < 0); 1319 1320 if (g->p.show_quiet && !g->p.show_details) 1321 g->p.show_details = -1; 1322 1323 /* Some memory should be specified: */ 1324 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1325 return -1; 1326 1327 if (g->p.mb_global_str) { 1328 g->p.mb_global = atof(g->p.mb_global_str); 1329 BUG_ON(g->p.mb_global < 0); 1330 } 1331 1332 if (g->p.mb_proc_str) { 1333 g->p.mb_proc = atof(g->p.mb_proc_str); 1334 BUG_ON(g->p.mb_proc < 0); 1335 } 1336 1337 if (g->p.mb_proc_locked_str) { 1338 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1339 BUG_ON(g->p.mb_proc_locked < 0); 1340 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1341 } 1342 1343 if (g->p.mb_thread_str) { 1344 g->p.mb_thread = atof(g->p.mb_thread_str); 1345 BUG_ON(g->p.mb_thread < 0); 1346 } 1347 1348 BUG_ON(g->p.nr_threads <= 0); 1349 BUG_ON(g->p.nr_proc <= 0); 1350 1351 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1352 1353 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1354 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1355 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1356 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1357 1358 g->data = setup_shared_data(g->p.bytes_global); 1359 1360 /* Startup serialization: */ 1361 init_global_mutex(&g->start_work_mutex); 1362 init_global_mutex(&g->startup_mutex); 1363 init_global_mutex(&g->startup_done_mutex); 1364 init_global_mutex(&g->stop_work_mutex); 1365 1366 init_thread_data(); 1367 1368 tprintf("#\n"); 1369 if (parse_setup_cpu_list() || parse_setup_node_list()) 1370 return -1; 1371 tprintf("#\n"); 1372 1373 print_summary(); 1374 1375 return 0; 1376 } 1377 1378 static void deinit(void) 1379 { 1380 free_data(g->data, g->p.bytes_global); 1381 g->data = NULL; 1382 1383 deinit_thread_data(); 1384 1385 free_data(g, sizeof(*g)); 1386 g = NULL; 1387 } 1388 1389 /* 1390 * Print a short or long result, depending on the verbosity setting: 1391 */ 1392 static void print_res(const char *name, double val, 1393 const char *txt_unit, const char *txt_short, const char *txt_long) 1394 { 1395 if (!name) 1396 name = "main,"; 1397 1398 if (g->p.show_quiet) 1399 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1400 else 1401 printf(" %14.3f %s\n", val, txt_long); 1402 } 1403 1404 static int __bench_numa(const char *name) 1405 { 1406 struct timeval start, stop, diff; 1407 u64 runtime_ns_min, runtime_ns_sum; 1408 pid_t *pids, pid, wpid; 1409 double delta_runtime; 1410 double runtime_avg; 1411 double runtime_sec_max; 1412 double runtime_sec_min; 1413 int wait_stat; 1414 double bytes; 1415 int i, t; 1416 1417 if (init()) 1418 return -1; 1419 1420 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1421 pid = -1; 1422 1423 /* All threads try to acquire it, this way we can wait for them to start up: */ 1424 pthread_mutex_lock(&g->start_work_mutex); 1425 1426 if (g->p.serialize_startup) { 1427 tprintf(" #\n"); 1428 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1429 } 1430 1431 gettimeofday(&start, NULL); 1432 1433 for (i = 0; i < g->p.nr_proc; i++) { 1434 pid = fork(); 1435 dprintf(" # process %2d: PID %d\n", i, pid); 1436 1437 BUG_ON(pid < 0); 1438 if (!pid) { 1439 /* Child process: */ 1440 worker_process(i); 1441 1442 exit(0); 1443 } 1444 pids[i] = pid; 1445 1446 } 1447 /* Wait for all the threads to start up: */ 1448 while (g->nr_tasks_started != g->p.nr_tasks) 1449 usleep(1000); 1450 1451 BUG_ON(g->nr_tasks_started != g->p.nr_tasks); 1452 1453 if (g->p.serialize_startup) { 1454 double startup_sec; 1455 1456 pthread_mutex_lock(&g->startup_done_mutex); 1457 1458 /* This will start all threads: */ 1459 pthread_mutex_unlock(&g->start_work_mutex); 1460 1461 /* This mutex is locked - the last started thread will wake us: */ 1462 pthread_mutex_lock(&g->startup_done_mutex); 1463 1464 gettimeofday(&stop, NULL); 1465 1466 timersub(&stop, &start, &diff); 1467 1468 startup_sec = diff.tv_sec * 1000000000.0; 1469 startup_sec += diff.tv_usec * 1000.0; 1470 startup_sec /= 1e9; 1471 1472 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1473 tprintf(" #\n"); 1474 1475 start = stop; 1476 pthread_mutex_unlock(&g->startup_done_mutex); 1477 } else { 1478 gettimeofday(&start, NULL); 1479 } 1480 1481 /* Parent process: */ 1482 1483 1484 for (i = 0; i < g->p.nr_proc; i++) { 1485 wpid = waitpid(pids[i], &wait_stat, 0); 1486 BUG_ON(wpid < 0); 1487 BUG_ON(!WIFEXITED(wait_stat)); 1488 1489 } 1490 1491 runtime_ns_sum = 0; 1492 runtime_ns_min = -1LL; 1493 1494 for (t = 0; t < g->p.nr_tasks; t++) { 1495 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1496 1497 runtime_ns_sum += thread_runtime_ns; 1498 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1499 } 1500 1501 gettimeofday(&stop, NULL); 1502 timersub(&stop, &start, &diff); 1503 1504 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1505 1506 tprintf("\n ###\n"); 1507 tprintf("\n"); 1508 1509 runtime_sec_max = diff.tv_sec * 1000000000.0; 1510 runtime_sec_max += diff.tv_usec * 1000.0; 1511 runtime_sec_max /= 1e9; 1512 1513 runtime_sec_min = runtime_ns_min/1e9; 1514 1515 bytes = g->bytes_done; 1516 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / 1e9; 1517 1518 if (g->p.measure_convergence) { 1519 print_res(name, runtime_sec_max, 1520 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1521 } 1522 1523 print_res(name, runtime_sec_max, 1524 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1525 1526 print_res(name, runtime_sec_min, 1527 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1528 1529 print_res(name, runtime_avg, 1530 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1531 1532 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1533 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1534 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1535 1536 print_res(name, bytes / g->p.nr_tasks / 1e9, 1537 "GB,", "data/thread", "GB data processed, per thread"); 1538 1539 print_res(name, bytes / 1e9, 1540 "GB,", "data-total", "GB data processed, total"); 1541 1542 print_res(name, runtime_sec_max * 1e9 / (bytes / g->p.nr_tasks), 1543 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1544 1545 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1546 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1547 1548 print_res(name, bytes / runtime_sec_max / 1e9, 1549 "GB/sec,", "total-speed", "GB/sec total speed"); 1550 1551 free(pids); 1552 1553 deinit(); 1554 1555 return 0; 1556 } 1557 1558 #define MAX_ARGS 50 1559 1560 static int command_size(const char **argv) 1561 { 1562 int size = 0; 1563 1564 while (*argv) { 1565 size++; 1566 argv++; 1567 } 1568 1569 BUG_ON(size >= MAX_ARGS); 1570 1571 return size; 1572 } 1573 1574 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1575 { 1576 int i; 1577 1578 printf("\n # Running %s \"perf bench numa", name); 1579 1580 for (i = 0; i < argc; i++) 1581 printf(" %s", argv[i]); 1582 1583 printf("\"\n"); 1584 1585 memset(p, 0, sizeof(*p)); 1586 1587 /* Initialize nonzero defaults: */ 1588 1589 p->serialize_startup = 1; 1590 p->data_reads = true; 1591 p->data_writes = true; 1592 p->data_backwards = true; 1593 p->data_rand_walk = true; 1594 p->nr_loops = -1; 1595 p->init_random = true; 1596 p->mb_global_str = "1"; 1597 p->nr_proc = 1; 1598 p->nr_threads = 1; 1599 p->nr_secs = 5; 1600 p->run_all = argc == 1; 1601 } 1602 1603 static int run_bench_numa(const char *name, const char **argv) 1604 { 1605 int argc = command_size(argv); 1606 1607 init_params(&p0, name, argc, argv); 1608 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1609 if (argc) 1610 goto err; 1611 1612 if (__bench_numa(name)) 1613 goto err; 1614 1615 return 0; 1616 1617 err: 1618 return -1; 1619 } 1620 1621 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1622 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1623 1624 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1625 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1626 1627 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1628 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1629 1630 /* 1631 * The built-in test-suite executed by "perf bench numa -a". 1632 * 1633 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1634 */ 1635 static const char *tests[][MAX_ARGS] = { 1636 /* Basic single-stream NUMA bandwidth measurements: */ 1637 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1638 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1639 { "RAM-bw-local-NOTHP,", 1640 "mem", "-p", "1", "-t", "1", "-P", "1024", 1641 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1642 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1643 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1644 1645 /* 2-stream NUMA bandwidth measurements: */ 1646 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1647 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1648 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1649 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1650 1651 /* Cross-stream NUMA bandwidth measurement: */ 1652 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1653 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1654 1655 /* Convergence latency measurements: */ 1656 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1657 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1658 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1659 { " 2x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1660 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1661 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1662 { " 4x4-convergence-NOTHP,", 1663 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1664 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1665 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1666 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1667 { " 8x4-convergence-NOTHP,", 1668 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1669 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1670 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1671 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1672 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1673 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1674 1675 /* Various NUMA process/thread layout bandwidth measurements: */ 1676 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1677 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1678 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1679 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1680 { " 8x1-bw-process-NOTHP,", 1681 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1682 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1683 1684 { " 4x1-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1685 { " 8x1-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1686 { "16x1-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1687 { "32x1-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1688 1689 { " 2x3-bw-thread,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1690 { " 4x4-bw-thread,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1691 { " 4x6-bw-thread,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1692 { " 4x8-bw-thread,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1693 { " 4x8-bw-thread-NOTHP,", 1694 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1695 { " 3x3-bw-thread,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1696 { " 5x5-bw-thread,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1697 1698 { "2x16-bw-thread,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1699 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1700 1701 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1702 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1703 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1704 { "numa01-bw-thread-NOTHP,", 1705 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1706 }; 1707 1708 static int bench_all(void) 1709 { 1710 int nr = ARRAY_SIZE(tests); 1711 int ret; 1712 int i; 1713 1714 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1715 BUG_ON(ret < 0); 1716 1717 for (i = 0; i < nr; i++) { 1718 run_bench_numa(tests[i][0], tests[i] + 1); 1719 } 1720 1721 printf("\n"); 1722 1723 return 0; 1724 } 1725 1726 int bench_numa(int argc, const char **argv, const char *prefix __maybe_unused) 1727 { 1728 init_params(&p0, "main,", argc, argv); 1729 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1730 if (argc) 1731 goto err; 1732 1733 if (p0.run_all) 1734 return bench_all(); 1735 1736 if (__bench_numa(NULL)) 1737 goto err; 1738 1739 return 0; 1740 1741 err: 1742 usage_with_options(numa_usage, options); 1743 return -1; 1744 } 1745