1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * numa.c 4 * 5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance 6 */ 7 8 #include <inttypes.h> 9 10 #include <subcmd/parse-options.h> 11 #include "../util/cloexec.h" 12 13 #include "bench.h" 14 15 #include <errno.h> 16 #include <sched.h> 17 #include <stdio.h> 18 #include <assert.h> 19 #include <debug.h> 20 #include <malloc.h> 21 #include <signal.h> 22 #include <stdlib.h> 23 #include <string.h> 24 #include <unistd.h> 25 #include <sys/mman.h> 26 #include <sys/time.h> 27 #include <sys/resource.h> 28 #include <sys/wait.h> 29 #include <sys/prctl.h> 30 #include <sys/stat.h> 31 #include <sys/types.h> 32 #include <linux/kernel.h> 33 #include <linux/time64.h> 34 #include <linux/numa.h> 35 #include <linux/zalloc.h> 36 37 #include "../util/header.h" 38 #include "../util/mutex.h" 39 #include <api/fs/fs.h> 40 #include <numa.h> 41 #include <numaif.h> 42 43 #ifndef RUSAGE_THREAD 44 # define RUSAGE_THREAD 1 45 #endif 46 47 /* 48 * Regular printout to the terminal, suppressed if -q is specified: 49 */ 50 #define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0) 51 52 /* 53 * Debug printf: 54 */ 55 #undef dprintf 56 #define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0) 57 58 struct thread_data { 59 int curr_cpu; 60 cpu_set_t *bind_cpumask; 61 int bind_node; 62 u8 *process_data; 63 int process_nr; 64 int thread_nr; 65 int task_nr; 66 unsigned int loops_done; 67 u64 val; 68 u64 runtime_ns; 69 u64 system_time_ns; 70 u64 user_time_ns; 71 double speed_gbs; 72 struct mutex *process_lock; 73 }; 74 75 /* Parameters set by options: */ 76 77 struct params { 78 /* Startup synchronization: */ 79 bool serialize_startup; 80 81 /* Task hierarchy: */ 82 int nr_proc; 83 int nr_threads; 84 85 /* Working set sizes: */ 86 const char *mb_global_str; 87 const char *mb_proc_str; 88 const char *mb_proc_locked_str; 89 const char *mb_thread_str; 90 91 double mb_global; 92 double mb_proc; 93 double mb_proc_locked; 94 double mb_thread; 95 96 /* Access patterns to the working set: */ 97 bool data_reads; 98 bool data_writes; 99 bool data_backwards; 100 bool data_zero_memset; 101 bool data_rand_walk; 102 u32 nr_loops; 103 u32 nr_secs; 104 u32 sleep_usecs; 105 106 /* Working set initialization: */ 107 bool init_zero; 108 bool init_random; 109 bool init_cpu0; 110 111 /* Misc options: */ 112 int show_details; 113 int run_all; 114 int thp; 115 116 long bytes_global; 117 long bytes_process; 118 long bytes_process_locked; 119 long bytes_thread; 120 121 int nr_tasks; 122 123 bool show_convergence; 124 bool measure_convergence; 125 126 int perturb_secs; 127 int nr_cpus; 128 int nr_nodes; 129 130 /* Affinity options -C and -N: */ 131 char *cpu_list_str; 132 char *node_list_str; 133 }; 134 135 136 /* Global, read-writable area, accessible to all processes and threads: */ 137 138 struct global_info { 139 u8 *data; 140 141 struct mutex startup_mutex; 142 struct cond startup_cond; 143 int nr_tasks_started; 144 145 struct mutex start_work_mutex; 146 struct cond start_work_cond; 147 int nr_tasks_working; 148 bool start_work; 149 150 struct mutex stop_work_mutex; 151 u64 bytes_done; 152 153 struct thread_data *threads; 154 155 /* Convergence latency measurement: */ 156 bool all_converged; 157 bool stop_work; 158 159 int print_once; 160 161 struct params p; 162 }; 163 164 static struct global_info *g = NULL; 165 166 static int parse_cpus_opt(const struct option *opt, const char *arg, int unset); 167 static int parse_nodes_opt(const struct option *opt, const char *arg, int unset); 168 169 struct params p0; 170 171 static const struct option options[] = { 172 OPT_INTEGER('p', "nr_proc" , &p0.nr_proc, "number of processes"), 173 OPT_INTEGER('t', "nr_threads" , &p0.nr_threads, "number of threads per process"), 174 175 OPT_STRING('G', "mb_global" , &p0.mb_global_str, "MB", "global memory (MBs)"), 176 OPT_STRING('P', "mb_proc" , &p0.mb_proc_str, "MB", "process memory (MBs)"), 177 OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"), 178 OPT_STRING('T', "mb_thread" , &p0.mb_thread_str, "MB", "thread memory (MBs)"), 179 180 OPT_UINTEGER('l', "nr_loops" , &p0.nr_loops, "max number of loops to run (default: unlimited)"), 181 OPT_UINTEGER('s', "nr_secs" , &p0.nr_secs, "max number of seconds to run (default: 5 secs)"), 182 OPT_UINTEGER('u', "usleep" , &p0.sleep_usecs, "usecs to sleep per loop iteration"), 183 184 OPT_BOOLEAN('R', "data_reads" , &p0.data_reads, "access the data via reads (can be mixed with -W)"), 185 OPT_BOOLEAN('W', "data_writes" , &p0.data_writes, "access the data via writes (can be mixed with -R)"), 186 OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards, "access the data backwards as well"), 187 OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"), 188 OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk, "access the data with random (32bit LFSR) walk"), 189 190 191 OPT_BOOLEAN('z', "init_zero" , &p0.init_zero, "bzero the initial allocations"), 192 OPT_BOOLEAN('I', "init_random" , &p0.init_random, "randomize the contents of the initial allocations"), 193 OPT_BOOLEAN('0', "init_cpu0" , &p0.init_cpu0, "do the initial allocations on CPU#0"), 194 OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs, "perturb thread 0/0 every X secs, to test convergence stability"), 195 196 OPT_INCR ('d', "show_details" , &p0.show_details, "Show details"), 197 OPT_INCR ('a', "all" , &p0.run_all, "Run all tests in the suite"), 198 OPT_INTEGER('H', "thp" , &p0.thp, "MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"), 199 OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, " 200 "convergence is reached when each process (all its threads) is running on a single NUMA node."), 201 OPT_BOOLEAN('m', "measure_convergence", &p0.measure_convergence, "measure convergence latency"), 202 OPT_BOOLEAN('q', "quiet" , &quiet, 203 "quiet mode (do not show any warnings or messages)"), 204 OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"), 205 206 /* Special option string parsing callbacks: */ 207 OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]", 208 "bind the first N tasks to these specific cpus (the rest is unbound)", 209 parse_cpus_opt), 210 OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]", 211 "bind the first N tasks to these specific memory nodes (the rest is unbound)", 212 parse_nodes_opt), 213 OPT_END() 214 }; 215 216 static const char * const bench_numa_usage[] = { 217 "perf bench numa <options>", 218 NULL 219 }; 220 221 static const char * const numa_usage[] = { 222 "perf bench numa mem [<options>]", 223 NULL 224 }; 225 226 /* 227 * To get number of numa nodes present. 228 */ 229 static int nr_numa_nodes(void) 230 { 231 int i, nr_nodes = 0; 232 233 for (i = 0; i < g->p.nr_nodes; i++) { 234 if (numa_bitmask_isbitset(numa_nodes_ptr, i)) 235 nr_nodes++; 236 } 237 238 return nr_nodes; 239 } 240 241 /* 242 * To check if given numa node is present. 243 */ 244 static int is_node_present(int node) 245 { 246 return numa_bitmask_isbitset(numa_nodes_ptr, node); 247 } 248 249 /* 250 * To check given numa node has cpus. 251 */ 252 static bool node_has_cpus(int node) 253 { 254 struct bitmask *cpumask = numa_allocate_cpumask(); 255 bool ret = false; /* fall back to nocpus */ 256 int cpu; 257 258 BUG_ON(!cpumask); 259 if (!numa_node_to_cpus(node, cpumask)) { 260 for (cpu = 0; cpu < (int)cpumask->size; cpu++) { 261 if (numa_bitmask_isbitset(cpumask, cpu)) { 262 ret = true; 263 break; 264 } 265 } 266 } 267 numa_free_cpumask(cpumask); 268 269 return ret; 270 } 271 272 static cpu_set_t *bind_to_cpu(int target_cpu) 273 { 274 int nrcpus = numa_num_possible_cpus(); 275 cpu_set_t *orig_mask, *mask; 276 size_t size; 277 278 orig_mask = CPU_ALLOC(nrcpus); 279 BUG_ON(!orig_mask); 280 size = CPU_ALLOC_SIZE(nrcpus); 281 CPU_ZERO_S(size, orig_mask); 282 283 if (sched_getaffinity(0, size, orig_mask)) 284 goto err_out; 285 286 mask = CPU_ALLOC(nrcpus); 287 if (!mask) 288 goto err_out; 289 290 CPU_ZERO_S(size, mask); 291 292 if (target_cpu == -1) { 293 int cpu; 294 295 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 296 CPU_SET_S(cpu, size, mask); 297 } else { 298 if (target_cpu < 0 || target_cpu >= g->p.nr_cpus) 299 goto err; 300 301 CPU_SET_S(target_cpu, size, mask); 302 } 303 304 if (sched_setaffinity(0, size, mask)) 305 goto err; 306 307 return orig_mask; 308 309 err: 310 CPU_FREE(mask); 311 err_out: 312 CPU_FREE(orig_mask); 313 314 /* BUG_ON due to failure in allocation of orig_mask/mask */ 315 BUG_ON(-1); 316 return NULL; 317 } 318 319 static cpu_set_t *bind_to_node(int target_node) 320 { 321 int nrcpus = numa_num_possible_cpus(); 322 size_t size; 323 cpu_set_t *orig_mask, *mask; 324 int cpu; 325 326 orig_mask = CPU_ALLOC(nrcpus); 327 BUG_ON(!orig_mask); 328 size = CPU_ALLOC_SIZE(nrcpus); 329 CPU_ZERO_S(size, orig_mask); 330 331 if (sched_getaffinity(0, size, orig_mask)) 332 goto err_out; 333 334 mask = CPU_ALLOC(nrcpus); 335 if (!mask) 336 goto err_out; 337 338 CPU_ZERO_S(size, mask); 339 340 if (target_node == NUMA_NO_NODE) { 341 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 342 CPU_SET_S(cpu, size, mask); 343 } else { 344 struct bitmask *cpumask = numa_allocate_cpumask(); 345 346 if (!cpumask) 347 goto err; 348 349 if (!numa_node_to_cpus(target_node, cpumask)) { 350 for (cpu = 0; cpu < (int)cpumask->size; cpu++) { 351 if (numa_bitmask_isbitset(cpumask, cpu)) 352 CPU_SET_S(cpu, size, mask); 353 } 354 } 355 numa_free_cpumask(cpumask); 356 } 357 358 if (sched_setaffinity(0, size, mask)) 359 goto err; 360 361 return orig_mask; 362 363 err: 364 CPU_FREE(mask); 365 err_out: 366 CPU_FREE(orig_mask); 367 368 /* BUG_ON due to failure in allocation of orig_mask/mask */ 369 BUG_ON(-1); 370 return NULL; 371 } 372 373 static void bind_to_cpumask(cpu_set_t *mask) 374 { 375 int ret; 376 size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus()); 377 378 ret = sched_setaffinity(0, size, mask); 379 if (ret) { 380 CPU_FREE(mask); 381 BUG_ON(ret); 382 } 383 } 384 385 static void mempol_restore(void) 386 { 387 int ret; 388 389 ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1); 390 391 BUG_ON(ret); 392 } 393 394 static void bind_to_memnode(int node) 395 { 396 struct bitmask *node_mask; 397 int ret; 398 399 if (node == NUMA_NO_NODE) 400 return; 401 402 node_mask = numa_allocate_nodemask(); 403 BUG_ON(!node_mask); 404 405 numa_bitmask_clearall(node_mask); 406 numa_bitmask_setbit(node_mask, node); 407 408 ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1); 409 dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret); 410 411 numa_bitmask_free(node_mask); 412 BUG_ON(ret); 413 } 414 415 #define HPSIZE (2*1024*1024) 416 417 #define set_taskname(fmt...) \ 418 do { \ 419 char name[20]; \ 420 \ 421 snprintf(name, 20, fmt); \ 422 prctl(PR_SET_NAME, name); \ 423 } while (0) 424 425 static u8 *alloc_data(ssize_t bytes0, int map_flags, 426 int init_zero, int init_cpu0, int thp, int init_random) 427 { 428 cpu_set_t *orig_mask = NULL; 429 ssize_t bytes; 430 u8 *buf; 431 int ret; 432 433 if (!bytes0) 434 return NULL; 435 436 /* Allocate and initialize all memory on CPU#0: */ 437 if (init_cpu0) { 438 int node = numa_node_of_cpu(0); 439 440 orig_mask = bind_to_node(node); 441 bind_to_memnode(node); 442 } 443 444 bytes = bytes0 + HPSIZE; 445 446 buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0); 447 BUG_ON(buf == (void *)-1); 448 449 if (map_flags == MAP_PRIVATE) { 450 if (thp > 0) { 451 ret = madvise(buf, bytes, MADV_HUGEPAGE); 452 if (ret && !g->print_once) { 453 g->print_once = 1; 454 printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n"); 455 } 456 } 457 if (thp < 0) { 458 ret = madvise(buf, bytes, MADV_NOHUGEPAGE); 459 if (ret && !g->print_once) { 460 g->print_once = 1; 461 printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n"); 462 } 463 } 464 } 465 466 if (init_zero) { 467 bzero(buf, bytes); 468 } else { 469 /* Initialize random contents, different in each word: */ 470 if (init_random) { 471 u64 *wbuf = (void *)buf; 472 long off = rand(); 473 long i; 474 475 for (i = 0; i < bytes/8; i++) 476 wbuf[i] = i + off; 477 } 478 } 479 480 /* Align to 2MB boundary: */ 481 buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1)); 482 483 /* Restore affinity: */ 484 if (init_cpu0) { 485 bind_to_cpumask(orig_mask); 486 CPU_FREE(orig_mask); 487 mempol_restore(); 488 } 489 490 return buf; 491 } 492 493 static void free_data(void *data, ssize_t bytes) 494 { 495 int ret; 496 497 if (!data) 498 return; 499 500 ret = munmap(data, bytes); 501 BUG_ON(ret); 502 } 503 504 /* 505 * Create a shared memory buffer that can be shared between processes, zeroed: 506 */ 507 static void * zalloc_shared_data(ssize_t bytes) 508 { 509 return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0, g->p.thp, g->p.init_random); 510 } 511 512 /* 513 * Create a shared memory buffer that can be shared between processes: 514 */ 515 static void * setup_shared_data(ssize_t bytes) 516 { 517 return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 518 } 519 520 /* 521 * Allocate process-local memory - this will either be shared between 522 * threads of this process, or only be accessed by this thread: 523 */ 524 static void * setup_private_data(ssize_t bytes) 525 { 526 return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0, g->p.thp, g->p.init_random); 527 } 528 529 static int parse_cpu_list(const char *arg) 530 { 531 p0.cpu_list_str = strdup(arg); 532 533 dprintf("got CPU list: {%s}\n", p0.cpu_list_str); 534 535 return 0; 536 } 537 538 /* 539 * Check whether a CPU is online 540 * 541 * Returns: 542 * 1 -> if CPU is online 543 * 0 -> if CPU is offline 544 * -1 -> error case 545 */ 546 static int is_cpu_online(unsigned int cpu) 547 { 548 char *str; 549 size_t strlen; 550 char buf[256]; 551 int status = -1; 552 struct stat statbuf; 553 554 snprintf(buf, sizeof(buf), 555 "/sys/devices/system/cpu/cpu%d", cpu); 556 if (stat(buf, &statbuf) != 0) 557 return 0; 558 559 /* 560 * Check if /sys/devices/system/cpu/cpux/online file 561 * exists. Some cases cpu0 won't have online file since 562 * it is not expected to be turned off generally. 563 * In kernels without CONFIG_HOTPLUG_CPU, this 564 * file won't exist 565 */ 566 snprintf(buf, sizeof(buf), 567 "/sys/devices/system/cpu/cpu%d/online", cpu); 568 if (stat(buf, &statbuf) != 0) 569 return 1; 570 571 /* 572 * Read online file using sysfs__read_str. 573 * If read or open fails, return -1. 574 * If read succeeds, return value from file 575 * which gets stored in "str" 576 */ 577 snprintf(buf, sizeof(buf), 578 "devices/system/cpu/cpu%d/online", cpu); 579 580 if (sysfs__read_str(buf, &str, &strlen) < 0) 581 return status; 582 583 status = atoi(str); 584 585 free(str); 586 return status; 587 } 588 589 static int parse_setup_cpu_list(void) 590 { 591 struct thread_data *td; 592 char *str0, *str; 593 int t; 594 595 if (!g->p.cpu_list_str) 596 return 0; 597 598 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 599 600 str0 = str = strdup(g->p.cpu_list_str); 601 t = 0; 602 603 BUG_ON(!str); 604 605 tprintf("# binding tasks to CPUs:\n"); 606 tprintf("# "); 607 608 while (true) { 609 int bind_cpu, bind_cpu_0, bind_cpu_1; 610 char *tok, *tok_end, *tok_step, *tok_len, *tok_mul; 611 int bind_len; 612 int step; 613 int mul; 614 615 tok = strsep(&str, ","); 616 if (!tok) 617 break; 618 619 tok_end = strstr(tok, "-"); 620 621 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 622 if (!tok_end) { 623 /* Single CPU specified: */ 624 bind_cpu_0 = bind_cpu_1 = atol(tok); 625 } else { 626 /* CPU range specified (for example: "5-11"): */ 627 bind_cpu_0 = atol(tok); 628 bind_cpu_1 = atol(tok_end + 1); 629 } 630 631 step = 1; 632 tok_step = strstr(tok, "#"); 633 if (tok_step) { 634 step = atol(tok_step + 1); 635 BUG_ON(step <= 0 || step >= g->p.nr_cpus); 636 } 637 638 /* 639 * Mask length. 640 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4', 641 * where the _4 means the next 4 CPUs are allowed. 642 */ 643 bind_len = 1; 644 tok_len = strstr(tok, "_"); 645 if (tok_len) { 646 bind_len = atol(tok_len + 1); 647 BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus); 648 } 649 650 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 651 mul = 1; 652 tok_mul = strstr(tok, "x"); 653 if (tok_mul) { 654 mul = atol(tok_mul + 1); 655 BUG_ON(mul <= 0); 656 } 657 658 dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul); 659 660 if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) { 661 printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus); 662 return -1; 663 } 664 665 if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) { 666 printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n"); 667 return -1; 668 } 669 670 BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0); 671 BUG_ON(bind_cpu_0 > bind_cpu_1); 672 673 for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) { 674 size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus); 675 int i; 676 677 for (i = 0; i < mul; i++) { 678 int cpu; 679 680 if (t >= g->p.nr_tasks) { 681 printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu); 682 goto out; 683 } 684 td = g->threads + t; 685 686 if (t) 687 tprintf(","); 688 if (bind_len > 1) { 689 tprintf("%2d/%d", bind_cpu, bind_len); 690 } else { 691 tprintf("%2d", bind_cpu); 692 } 693 694 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus); 695 BUG_ON(!td->bind_cpumask); 696 CPU_ZERO_S(size, td->bind_cpumask); 697 for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) { 698 if (cpu < 0 || cpu >= g->p.nr_cpus) { 699 CPU_FREE(td->bind_cpumask); 700 BUG_ON(-1); 701 } 702 CPU_SET_S(cpu, size, td->bind_cpumask); 703 } 704 t++; 705 } 706 } 707 } 708 out: 709 710 tprintf("\n"); 711 712 if (t < g->p.nr_tasks) 713 printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 714 715 free(str0); 716 return 0; 717 } 718 719 static int parse_cpus_opt(const struct option *opt __maybe_unused, 720 const char *arg, int unset __maybe_unused) 721 { 722 if (!arg) 723 return -1; 724 725 return parse_cpu_list(arg); 726 } 727 728 static int parse_node_list(const char *arg) 729 { 730 p0.node_list_str = strdup(arg); 731 732 dprintf("got NODE list: {%s}\n", p0.node_list_str); 733 734 return 0; 735 } 736 737 static int parse_setup_node_list(void) 738 { 739 struct thread_data *td; 740 char *str0, *str; 741 int t; 742 743 if (!g->p.node_list_str) 744 return 0; 745 746 dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks); 747 748 str0 = str = strdup(g->p.node_list_str); 749 t = 0; 750 751 BUG_ON(!str); 752 753 tprintf("# binding tasks to NODEs:\n"); 754 tprintf("# "); 755 756 while (true) { 757 int bind_node, bind_node_0, bind_node_1; 758 char *tok, *tok_end, *tok_step, *tok_mul; 759 int step; 760 int mul; 761 762 tok = strsep(&str, ","); 763 if (!tok) 764 break; 765 766 tok_end = strstr(tok, "-"); 767 768 dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end); 769 if (!tok_end) { 770 /* Single NODE specified: */ 771 bind_node_0 = bind_node_1 = atol(tok); 772 } else { 773 /* NODE range specified (for example: "5-11"): */ 774 bind_node_0 = atol(tok); 775 bind_node_1 = atol(tok_end + 1); 776 } 777 778 step = 1; 779 tok_step = strstr(tok, "#"); 780 if (tok_step) { 781 step = atol(tok_step + 1); 782 BUG_ON(step <= 0 || step >= g->p.nr_nodes); 783 } 784 785 /* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */ 786 mul = 1; 787 tok_mul = strstr(tok, "x"); 788 if (tok_mul) { 789 mul = atol(tok_mul + 1); 790 BUG_ON(mul <= 0); 791 } 792 793 dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step); 794 795 if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) { 796 printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes); 797 return -1; 798 } 799 800 BUG_ON(bind_node_0 < 0 || bind_node_1 < 0); 801 BUG_ON(bind_node_0 > bind_node_1); 802 803 for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) { 804 int i; 805 806 for (i = 0; i < mul; i++) { 807 if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) { 808 printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node); 809 goto out; 810 } 811 td = g->threads + t; 812 813 if (!t) 814 tprintf(" %2d", bind_node); 815 else 816 tprintf(",%2d", bind_node); 817 818 td->bind_node = bind_node; 819 t++; 820 } 821 } 822 } 823 out: 824 825 tprintf("\n"); 826 827 if (t < g->p.nr_tasks) 828 printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t); 829 830 free(str0); 831 return 0; 832 } 833 834 static int parse_nodes_opt(const struct option *opt __maybe_unused, 835 const char *arg, int unset __maybe_unused) 836 { 837 if (!arg) 838 return -1; 839 840 return parse_node_list(arg); 841 } 842 843 static inline uint32_t lfsr_32(uint32_t lfsr) 844 { 845 const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31); 846 return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps); 847 } 848 849 /* 850 * Make sure there's real data dependency to RAM (when read 851 * accesses are enabled), so the compiler, the CPU and the 852 * kernel (KSM, zero page, etc.) cannot optimize away RAM 853 * accesses: 854 */ 855 static inline u64 access_data(u64 *data, u64 val) 856 { 857 if (g->p.data_reads) 858 val += *data; 859 if (g->p.data_writes) 860 *data = val + 1; 861 return val; 862 } 863 864 /* 865 * The worker process does two types of work, a forwards going 866 * loop and a backwards going loop. 867 * 868 * We do this so that on multiprocessor systems we do not create 869 * a 'train' of processing, with highly synchronized processes, 870 * skewing the whole benchmark. 871 */ 872 static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val) 873 { 874 long words = bytes/sizeof(u64); 875 u64 *data = (void *)__data; 876 long chunk_0, chunk_1; 877 u64 *d0, *d, *d1; 878 long off; 879 long i; 880 881 BUG_ON(!data && words); 882 BUG_ON(data && !words); 883 884 if (!data) 885 return val; 886 887 /* Very simple memset() work variant: */ 888 if (g->p.data_zero_memset && !g->p.data_rand_walk) { 889 bzero(data, bytes); 890 return val; 891 } 892 893 /* Spread out by PID/TID nr and by loop nr: */ 894 chunk_0 = words/nr_max; 895 chunk_1 = words/g->p.nr_loops; 896 off = nr*chunk_0 + loop*chunk_1; 897 898 while (off >= words) 899 off -= words; 900 901 if (g->p.data_rand_walk) { 902 u32 lfsr = nr + loop + val; 903 long j; 904 905 for (i = 0; i < words/1024; i++) { 906 long start, end; 907 908 lfsr = lfsr_32(lfsr); 909 910 start = lfsr % words; 911 end = min(start + 1024, words-1); 912 913 if (g->p.data_zero_memset) { 914 bzero(data + start, (end-start) * sizeof(u64)); 915 } else { 916 for (j = start; j < end; j++) 917 val = access_data(data + j, val); 918 } 919 } 920 } else if (!g->p.data_backwards || (nr + loop) & 1) { 921 /* Process data forwards: */ 922 923 d0 = data + off; 924 d = data + off + 1; 925 d1 = data + words; 926 927 for (;;) { 928 if (unlikely(d >= d1)) 929 d = data; 930 if (unlikely(d == d0)) 931 break; 932 933 val = access_data(d, val); 934 935 d++; 936 } 937 } else { 938 /* Process data backwards: */ 939 940 d0 = data + off; 941 d = data + off - 1; 942 d1 = data + words; 943 944 for (;;) { 945 if (unlikely(d < data)) 946 d = data + words-1; 947 if (unlikely(d == d0)) 948 break; 949 950 val = access_data(d, val); 951 952 d--; 953 } 954 } 955 956 return val; 957 } 958 959 static void update_curr_cpu(int task_nr, unsigned long bytes_worked) 960 { 961 unsigned int cpu; 962 963 cpu = sched_getcpu(); 964 965 g->threads[task_nr].curr_cpu = cpu; 966 prctl(0, bytes_worked); 967 } 968 969 /* 970 * Count the number of nodes a process's threads 971 * are spread out on. 972 * 973 * A count of 1 means that the process is compressed 974 * to a single node. A count of g->p.nr_nodes means it's 975 * spread out on the whole system. 976 */ 977 static int count_process_nodes(int process_nr) 978 { 979 char *node_present; 980 int nodes; 981 int n, t; 982 983 node_present = (char *)malloc(g->p.nr_nodes * sizeof(char)); 984 BUG_ON(!node_present); 985 for (nodes = 0; nodes < g->p.nr_nodes; nodes++) 986 node_present[nodes] = 0; 987 988 for (t = 0; t < g->p.nr_threads; t++) { 989 struct thread_data *td; 990 int task_nr; 991 int node; 992 993 task_nr = process_nr*g->p.nr_threads + t; 994 td = g->threads + task_nr; 995 996 node = numa_node_of_cpu(td->curr_cpu); 997 if (node < 0) /* curr_cpu was likely still -1 */ { 998 free(node_present); 999 return 0; 1000 } 1001 1002 node_present[node] = 1; 1003 } 1004 1005 nodes = 0; 1006 1007 for (n = 0; n < g->p.nr_nodes; n++) 1008 nodes += node_present[n]; 1009 1010 free(node_present); 1011 return nodes; 1012 } 1013 1014 /* 1015 * Count the number of distinct process-threads a node contains. 1016 * 1017 * A count of 1 means that the node contains only a single 1018 * process. If all nodes on the system contain at most one 1019 * process then we are well-converged. 1020 */ 1021 static int count_node_processes(int node) 1022 { 1023 int processes = 0; 1024 int t, p; 1025 1026 for (p = 0; p < g->p.nr_proc; p++) { 1027 for (t = 0; t < g->p.nr_threads; t++) { 1028 struct thread_data *td; 1029 int task_nr; 1030 int n; 1031 1032 task_nr = p*g->p.nr_threads + t; 1033 td = g->threads + task_nr; 1034 1035 n = numa_node_of_cpu(td->curr_cpu); 1036 if (n == node) { 1037 processes++; 1038 break; 1039 } 1040 } 1041 } 1042 1043 return processes; 1044 } 1045 1046 static void calc_convergence_compression(int *strong) 1047 { 1048 unsigned int nodes_min, nodes_max; 1049 int p; 1050 1051 nodes_min = -1; 1052 nodes_max = 0; 1053 1054 for (p = 0; p < g->p.nr_proc; p++) { 1055 unsigned int nodes = count_process_nodes(p); 1056 1057 if (!nodes) { 1058 *strong = 0; 1059 return; 1060 } 1061 1062 nodes_min = min(nodes, nodes_min); 1063 nodes_max = max(nodes, nodes_max); 1064 } 1065 1066 /* Strong convergence: all threads compress on a single node: */ 1067 if (nodes_min == 1 && nodes_max == 1) { 1068 *strong = 1; 1069 } else { 1070 *strong = 0; 1071 tprintf(" {%d-%d}", nodes_min, nodes_max); 1072 } 1073 } 1074 1075 static void calc_convergence(double runtime_ns_max, double *convergence) 1076 { 1077 unsigned int loops_done_min, loops_done_max; 1078 int process_groups; 1079 int *nodes; 1080 int distance; 1081 int nr_min; 1082 int nr_max; 1083 int strong; 1084 int sum; 1085 int nr; 1086 int node; 1087 int cpu; 1088 int t; 1089 1090 if (!g->p.show_convergence && !g->p.measure_convergence) 1091 return; 1092 1093 nodes = (int *)malloc(g->p.nr_nodes * sizeof(int)); 1094 BUG_ON(!nodes); 1095 for (node = 0; node < g->p.nr_nodes; node++) 1096 nodes[node] = 0; 1097 1098 loops_done_min = -1; 1099 loops_done_max = 0; 1100 1101 for (t = 0; t < g->p.nr_tasks; t++) { 1102 struct thread_data *td = g->threads + t; 1103 unsigned int loops_done; 1104 1105 cpu = td->curr_cpu; 1106 1107 /* Not all threads have written it yet: */ 1108 if (cpu < 0) 1109 continue; 1110 1111 node = numa_node_of_cpu(cpu); 1112 1113 nodes[node]++; 1114 1115 loops_done = td->loops_done; 1116 loops_done_min = min(loops_done, loops_done_min); 1117 loops_done_max = max(loops_done, loops_done_max); 1118 } 1119 1120 nr_max = 0; 1121 nr_min = g->p.nr_tasks; 1122 sum = 0; 1123 1124 for (node = 0; node < g->p.nr_nodes; node++) { 1125 if (!is_node_present(node)) 1126 continue; 1127 nr = nodes[node]; 1128 nr_min = min(nr, nr_min); 1129 nr_max = max(nr, nr_max); 1130 sum += nr; 1131 } 1132 BUG_ON(nr_min > nr_max); 1133 1134 BUG_ON(sum > g->p.nr_tasks); 1135 1136 if (0 && (sum < g->p.nr_tasks)) { 1137 free(nodes); 1138 return; 1139 } 1140 1141 /* 1142 * Count the number of distinct process groups present 1143 * on nodes - when we are converged this will decrease 1144 * to g->p.nr_proc: 1145 */ 1146 process_groups = 0; 1147 1148 for (node = 0; node < g->p.nr_nodes; node++) { 1149 int processes; 1150 1151 if (!is_node_present(node)) 1152 continue; 1153 processes = count_node_processes(node); 1154 nr = nodes[node]; 1155 tprintf(" %2d/%-2d", nr, processes); 1156 1157 process_groups += processes; 1158 } 1159 1160 distance = nr_max - nr_min; 1161 1162 tprintf(" [%2d/%-2d]", distance, process_groups); 1163 1164 tprintf(" l:%3d-%-3d (%3d)", 1165 loops_done_min, loops_done_max, loops_done_max-loops_done_min); 1166 1167 if (loops_done_min && loops_done_max) { 1168 double skew = 1.0 - (double)loops_done_min/loops_done_max; 1169 1170 tprintf(" [%4.1f%%]", skew * 100.0); 1171 } 1172 1173 calc_convergence_compression(&strong); 1174 1175 if (strong && process_groups == g->p.nr_proc) { 1176 if (!*convergence) { 1177 *convergence = runtime_ns_max; 1178 tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC); 1179 if (g->p.measure_convergence) { 1180 g->all_converged = true; 1181 g->stop_work = true; 1182 } 1183 } 1184 } else { 1185 if (*convergence) { 1186 tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC); 1187 *convergence = 0; 1188 } 1189 tprintf("\n"); 1190 } 1191 1192 free(nodes); 1193 } 1194 1195 static void show_summary(double runtime_ns_max, int l, double *convergence) 1196 { 1197 tprintf("\r # %5.1f%% [%.1f mins]", 1198 (double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0); 1199 1200 calc_convergence(runtime_ns_max, convergence); 1201 1202 if (g->p.show_details >= 0) 1203 fflush(stdout); 1204 } 1205 1206 static void *worker_thread(void *__tdata) 1207 { 1208 struct thread_data *td = __tdata; 1209 struct timeval start0, start, stop, diff; 1210 int process_nr = td->process_nr; 1211 int thread_nr = td->thread_nr; 1212 unsigned long last_perturbance; 1213 int task_nr = td->task_nr; 1214 int details = g->p.show_details; 1215 int first_task, last_task; 1216 double convergence = 0; 1217 u64 val = td->val; 1218 double runtime_ns_max; 1219 u8 *global_data; 1220 u8 *process_data; 1221 u8 *thread_data; 1222 u64 bytes_done, secs; 1223 long work_done; 1224 u32 l; 1225 struct rusage rusage; 1226 1227 bind_to_cpumask(td->bind_cpumask); 1228 bind_to_memnode(td->bind_node); 1229 1230 set_taskname("thread %d/%d", process_nr, thread_nr); 1231 1232 global_data = g->data; 1233 process_data = td->process_data; 1234 thread_data = setup_private_data(g->p.bytes_thread); 1235 1236 bytes_done = 0; 1237 1238 last_task = 0; 1239 if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1) 1240 last_task = 1; 1241 1242 first_task = 0; 1243 if (process_nr == 0 && thread_nr == 0) 1244 first_task = 1; 1245 1246 if (details >= 2) { 1247 printf("# thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n", 1248 process_nr, thread_nr, global_data, process_data, thread_data); 1249 } 1250 1251 if (g->p.serialize_startup) { 1252 mutex_lock(&g->startup_mutex); 1253 g->nr_tasks_started++; 1254 /* The last thread wakes the main process. */ 1255 if (g->nr_tasks_started == g->p.nr_tasks) 1256 cond_signal(&g->startup_cond); 1257 1258 mutex_unlock(&g->startup_mutex); 1259 1260 /* Here we will wait for the main process to start us all at once: */ 1261 mutex_lock(&g->start_work_mutex); 1262 g->start_work = false; 1263 g->nr_tasks_working++; 1264 while (!g->start_work) 1265 cond_wait(&g->start_work_cond, &g->start_work_mutex); 1266 1267 mutex_unlock(&g->start_work_mutex); 1268 } 1269 1270 gettimeofday(&start0, NULL); 1271 1272 start = stop = start0; 1273 last_perturbance = start.tv_sec; 1274 1275 for (l = 0; l < g->p.nr_loops; l++) { 1276 start = stop; 1277 1278 if (g->stop_work) 1279 break; 1280 1281 val += do_work(global_data, g->p.bytes_global, process_nr, g->p.nr_proc, l, val); 1282 val += do_work(process_data, g->p.bytes_process, thread_nr, g->p.nr_threads, l, val); 1283 val += do_work(thread_data, g->p.bytes_thread, 0, 1, l, val); 1284 1285 if (g->p.sleep_usecs) { 1286 mutex_lock(td->process_lock); 1287 usleep(g->p.sleep_usecs); 1288 mutex_unlock(td->process_lock); 1289 } 1290 /* 1291 * Amount of work to be done under a process-global lock: 1292 */ 1293 if (g->p.bytes_process_locked) { 1294 mutex_lock(td->process_lock); 1295 val += do_work(process_data, g->p.bytes_process_locked, thread_nr, g->p.nr_threads, l, val); 1296 mutex_unlock(td->process_lock); 1297 } 1298 1299 work_done = g->p.bytes_global + g->p.bytes_process + 1300 g->p.bytes_process_locked + g->p.bytes_thread; 1301 1302 update_curr_cpu(task_nr, work_done); 1303 bytes_done += work_done; 1304 1305 if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs) 1306 continue; 1307 1308 td->loops_done = l; 1309 1310 gettimeofday(&stop, NULL); 1311 1312 /* Check whether our max runtime timed out: */ 1313 if (g->p.nr_secs) { 1314 timersub(&stop, &start0, &diff); 1315 if ((u32)diff.tv_sec >= g->p.nr_secs) { 1316 g->stop_work = true; 1317 break; 1318 } 1319 } 1320 1321 /* Update the summary at most once per second: */ 1322 if (start.tv_sec == stop.tv_sec) 1323 continue; 1324 1325 /* 1326 * Perturb the first task's equilibrium every g->p.perturb_secs seconds, 1327 * by migrating to CPU#0: 1328 */ 1329 if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) { 1330 cpu_set_t *orig_mask; 1331 int target_cpu; 1332 int this_cpu; 1333 1334 last_perturbance = stop.tv_sec; 1335 1336 /* 1337 * Depending on where we are running, move into 1338 * the other half of the system, to create some 1339 * real disturbance: 1340 */ 1341 this_cpu = g->threads[task_nr].curr_cpu; 1342 if (this_cpu < g->p.nr_cpus/2) 1343 target_cpu = g->p.nr_cpus-1; 1344 else 1345 target_cpu = 0; 1346 1347 orig_mask = bind_to_cpu(target_cpu); 1348 1349 /* Here we are running on the target CPU already */ 1350 if (details >= 1) 1351 printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu); 1352 1353 bind_to_cpumask(orig_mask); 1354 CPU_FREE(orig_mask); 1355 } 1356 1357 if (details >= 3) { 1358 timersub(&stop, &start, &diff); 1359 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1360 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1361 1362 if (details >= 0) { 1363 printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n", 1364 process_nr, thread_nr, runtime_ns_max / bytes_done, val); 1365 } 1366 fflush(stdout); 1367 } 1368 if (!last_task) 1369 continue; 1370 1371 timersub(&stop, &start0, &diff); 1372 runtime_ns_max = diff.tv_sec * NSEC_PER_SEC; 1373 runtime_ns_max += diff.tv_usec * NSEC_PER_USEC; 1374 1375 show_summary(runtime_ns_max, l, &convergence); 1376 } 1377 1378 gettimeofday(&stop, NULL); 1379 timersub(&stop, &start0, &diff); 1380 td->runtime_ns = diff.tv_sec * NSEC_PER_SEC; 1381 td->runtime_ns += diff.tv_usec * NSEC_PER_USEC; 1382 secs = td->runtime_ns / NSEC_PER_SEC; 1383 td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0; 1384 1385 getrusage(RUSAGE_THREAD, &rusage); 1386 td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC; 1387 td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC; 1388 td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC; 1389 td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC; 1390 1391 free_data(thread_data, g->p.bytes_thread); 1392 1393 mutex_lock(&g->stop_work_mutex); 1394 g->bytes_done += bytes_done; 1395 mutex_unlock(&g->stop_work_mutex); 1396 1397 return NULL; 1398 } 1399 1400 /* 1401 * A worker process starts a couple of threads: 1402 */ 1403 static void worker_process(int process_nr) 1404 { 1405 struct mutex process_lock; 1406 struct thread_data *td; 1407 pthread_t *pthreads; 1408 u8 *process_data; 1409 int task_nr; 1410 int ret; 1411 int t; 1412 1413 mutex_init(&process_lock); 1414 set_taskname("process %d", process_nr); 1415 1416 /* 1417 * Pick up the memory policy and the CPU binding of our first thread, 1418 * so that we initialize memory accordingly: 1419 */ 1420 task_nr = process_nr*g->p.nr_threads; 1421 td = g->threads + task_nr; 1422 1423 bind_to_memnode(td->bind_node); 1424 bind_to_cpumask(td->bind_cpumask); 1425 1426 pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t)); 1427 process_data = setup_private_data(g->p.bytes_process); 1428 1429 if (g->p.show_details >= 3) { 1430 printf(" # process %2d global mem: %p, process mem: %p\n", 1431 process_nr, g->data, process_data); 1432 } 1433 1434 for (t = 0; t < g->p.nr_threads; t++) { 1435 task_nr = process_nr*g->p.nr_threads + t; 1436 td = g->threads + task_nr; 1437 1438 td->process_data = process_data; 1439 td->process_nr = process_nr; 1440 td->thread_nr = t; 1441 td->task_nr = task_nr; 1442 td->val = rand(); 1443 td->curr_cpu = -1; 1444 td->process_lock = &process_lock; 1445 1446 ret = pthread_create(pthreads + t, NULL, worker_thread, td); 1447 BUG_ON(ret); 1448 } 1449 1450 for (t = 0; t < g->p.nr_threads; t++) { 1451 ret = pthread_join(pthreads[t], NULL); 1452 BUG_ON(ret); 1453 } 1454 1455 free_data(process_data, g->p.bytes_process); 1456 free(pthreads); 1457 } 1458 1459 static void print_summary(void) 1460 { 1461 if (g->p.show_details < 0) 1462 return; 1463 1464 printf("\n ###\n"); 1465 printf(" # %d %s will execute (on %d nodes, %d CPUs):\n", 1466 g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus); 1467 printf(" # %5dx %5ldMB global shared mem operations\n", 1468 g->p.nr_loops, g->p.bytes_global/1024/1024); 1469 printf(" # %5dx %5ldMB process shared mem operations\n", 1470 g->p.nr_loops, g->p.bytes_process/1024/1024); 1471 printf(" # %5dx %5ldMB thread local mem operations\n", 1472 g->p.nr_loops, g->p.bytes_thread/1024/1024); 1473 1474 printf(" ###\n"); 1475 1476 printf("\n ###\n"); fflush(stdout); 1477 } 1478 1479 static void init_thread_data(void) 1480 { 1481 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1482 int t; 1483 1484 g->threads = zalloc_shared_data(size); 1485 1486 for (t = 0; t < g->p.nr_tasks; t++) { 1487 struct thread_data *td = g->threads + t; 1488 size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus); 1489 int cpu; 1490 1491 /* Allow all nodes by default: */ 1492 td->bind_node = NUMA_NO_NODE; 1493 1494 /* Allow all CPUs by default: */ 1495 td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus); 1496 BUG_ON(!td->bind_cpumask); 1497 CPU_ZERO_S(cpuset_size, td->bind_cpumask); 1498 for (cpu = 0; cpu < g->p.nr_cpus; cpu++) 1499 CPU_SET_S(cpu, cpuset_size, td->bind_cpumask); 1500 } 1501 } 1502 1503 static void deinit_thread_data(void) 1504 { 1505 ssize_t size = sizeof(*g->threads)*g->p.nr_tasks; 1506 int t; 1507 1508 /* Free the bind_cpumask allocated for thread_data */ 1509 for (t = 0; t < g->p.nr_tasks; t++) { 1510 struct thread_data *td = g->threads + t; 1511 CPU_FREE(td->bind_cpumask); 1512 } 1513 1514 free_data(g->threads, size); 1515 } 1516 1517 static int init(void) 1518 { 1519 g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0); 1520 1521 /* Copy over options: */ 1522 g->p = p0; 1523 1524 g->p.nr_cpus = numa_num_configured_cpus(); 1525 1526 g->p.nr_nodes = numa_max_node() + 1; 1527 1528 /* char array in count_process_nodes(): */ 1529 BUG_ON(g->p.nr_nodes < 0); 1530 1531 if (quiet && !g->p.show_details) 1532 g->p.show_details = -1; 1533 1534 /* Some memory should be specified: */ 1535 if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str) 1536 return -1; 1537 1538 if (g->p.mb_global_str) { 1539 g->p.mb_global = atof(g->p.mb_global_str); 1540 BUG_ON(g->p.mb_global < 0); 1541 } 1542 1543 if (g->p.mb_proc_str) { 1544 g->p.mb_proc = atof(g->p.mb_proc_str); 1545 BUG_ON(g->p.mb_proc < 0); 1546 } 1547 1548 if (g->p.mb_proc_locked_str) { 1549 g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str); 1550 BUG_ON(g->p.mb_proc_locked < 0); 1551 BUG_ON(g->p.mb_proc_locked > g->p.mb_proc); 1552 } 1553 1554 if (g->p.mb_thread_str) { 1555 g->p.mb_thread = atof(g->p.mb_thread_str); 1556 BUG_ON(g->p.mb_thread < 0); 1557 } 1558 1559 BUG_ON(g->p.nr_threads <= 0); 1560 BUG_ON(g->p.nr_proc <= 0); 1561 1562 g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads; 1563 1564 g->p.bytes_global = g->p.mb_global *1024L*1024L; 1565 g->p.bytes_process = g->p.mb_proc *1024L*1024L; 1566 g->p.bytes_process_locked = g->p.mb_proc_locked *1024L*1024L; 1567 g->p.bytes_thread = g->p.mb_thread *1024L*1024L; 1568 1569 g->data = setup_shared_data(g->p.bytes_global); 1570 1571 /* Startup serialization: */ 1572 mutex_init_pshared(&g->start_work_mutex); 1573 cond_init_pshared(&g->start_work_cond); 1574 mutex_init_pshared(&g->startup_mutex); 1575 cond_init_pshared(&g->startup_cond); 1576 mutex_init_pshared(&g->stop_work_mutex); 1577 1578 init_thread_data(); 1579 1580 tprintf("#\n"); 1581 if (parse_setup_cpu_list() || parse_setup_node_list()) 1582 return -1; 1583 tprintf("#\n"); 1584 1585 print_summary(); 1586 1587 return 0; 1588 } 1589 1590 static void deinit(void) 1591 { 1592 free_data(g->data, g->p.bytes_global); 1593 g->data = NULL; 1594 1595 deinit_thread_data(); 1596 1597 free_data(g, sizeof(*g)); 1598 g = NULL; 1599 } 1600 1601 /* 1602 * Print a short or long result, depending on the verbosity setting: 1603 */ 1604 static void print_res(const char *name, double val, 1605 const char *txt_unit, const char *txt_short, const char *txt_long) 1606 { 1607 if (!name) 1608 name = "main,"; 1609 1610 if (!quiet) 1611 printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short); 1612 else 1613 printf(" %14.3f %s\n", val, txt_long); 1614 } 1615 1616 static int __bench_numa(const char *name) 1617 { 1618 struct timeval start, stop, diff; 1619 u64 runtime_ns_min, runtime_ns_sum; 1620 pid_t *pids, pid, wpid; 1621 double delta_runtime; 1622 double runtime_avg; 1623 double runtime_sec_max; 1624 double runtime_sec_min; 1625 int wait_stat; 1626 double bytes; 1627 int i, t, p; 1628 1629 if (init()) 1630 return -1; 1631 1632 pids = zalloc(g->p.nr_proc * sizeof(*pids)); 1633 pid = -1; 1634 1635 if (g->p.serialize_startup) { 1636 tprintf(" #\n"); 1637 tprintf(" # Startup synchronization: ..."); fflush(stdout); 1638 } 1639 1640 gettimeofday(&start, NULL); 1641 1642 for (i = 0; i < g->p.nr_proc; i++) { 1643 pid = fork(); 1644 dprintf(" # process %2d: PID %d\n", i, pid); 1645 1646 BUG_ON(pid < 0); 1647 if (!pid) { 1648 /* Child process: */ 1649 worker_process(i); 1650 1651 exit(0); 1652 } 1653 pids[i] = pid; 1654 1655 } 1656 1657 if (g->p.serialize_startup) { 1658 bool threads_ready = false; 1659 double startup_sec; 1660 1661 /* 1662 * Wait for all the threads to start up. The last thread will 1663 * signal this process. 1664 */ 1665 mutex_lock(&g->startup_mutex); 1666 while (g->nr_tasks_started != g->p.nr_tasks) 1667 cond_wait(&g->startup_cond, &g->startup_mutex); 1668 1669 mutex_unlock(&g->startup_mutex); 1670 1671 /* Wait for all threads to be at the start_work_cond. */ 1672 while (!threads_ready) { 1673 mutex_lock(&g->start_work_mutex); 1674 threads_ready = (g->nr_tasks_working == g->p.nr_tasks); 1675 mutex_unlock(&g->start_work_mutex); 1676 if (!threads_ready) 1677 usleep(1); 1678 } 1679 1680 gettimeofday(&stop, NULL); 1681 1682 timersub(&stop, &start, &diff); 1683 1684 startup_sec = diff.tv_sec * NSEC_PER_SEC; 1685 startup_sec += diff.tv_usec * NSEC_PER_USEC; 1686 startup_sec /= NSEC_PER_SEC; 1687 1688 tprintf(" threads initialized in %.6f seconds.\n", startup_sec); 1689 tprintf(" #\n"); 1690 1691 start = stop; 1692 /* Start all threads running. */ 1693 mutex_lock(&g->start_work_mutex); 1694 g->start_work = true; 1695 mutex_unlock(&g->start_work_mutex); 1696 cond_broadcast(&g->start_work_cond); 1697 } else { 1698 gettimeofday(&start, NULL); 1699 } 1700 1701 /* Parent process: */ 1702 1703 1704 for (i = 0; i < g->p.nr_proc; i++) { 1705 wpid = waitpid(pids[i], &wait_stat, 0); 1706 BUG_ON(wpid < 0); 1707 BUG_ON(!WIFEXITED(wait_stat)); 1708 1709 } 1710 1711 runtime_ns_sum = 0; 1712 runtime_ns_min = -1LL; 1713 1714 for (t = 0; t < g->p.nr_tasks; t++) { 1715 u64 thread_runtime_ns = g->threads[t].runtime_ns; 1716 1717 runtime_ns_sum += thread_runtime_ns; 1718 runtime_ns_min = min(thread_runtime_ns, runtime_ns_min); 1719 } 1720 1721 gettimeofday(&stop, NULL); 1722 timersub(&stop, &start, &diff); 1723 1724 BUG_ON(bench_format != BENCH_FORMAT_DEFAULT); 1725 1726 tprintf("\n ###\n"); 1727 tprintf("\n"); 1728 1729 runtime_sec_max = diff.tv_sec * NSEC_PER_SEC; 1730 runtime_sec_max += diff.tv_usec * NSEC_PER_USEC; 1731 runtime_sec_max /= NSEC_PER_SEC; 1732 1733 runtime_sec_min = runtime_ns_min / NSEC_PER_SEC; 1734 1735 bytes = g->bytes_done; 1736 runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC; 1737 1738 if (g->p.measure_convergence) { 1739 print_res(name, runtime_sec_max, 1740 "secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge"); 1741 } 1742 1743 print_res(name, runtime_sec_max, 1744 "secs,", "runtime-max/thread", "secs slowest (max) thread-runtime"); 1745 1746 print_res(name, runtime_sec_min, 1747 "secs,", "runtime-min/thread", "secs fastest (min) thread-runtime"); 1748 1749 print_res(name, runtime_avg, 1750 "secs,", "runtime-avg/thread", "secs average thread-runtime"); 1751 1752 delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0; 1753 print_res(name, delta_runtime / runtime_sec_max * 100.0, 1754 "%,", "spread-runtime/thread", "% difference between max/avg runtime"); 1755 1756 print_res(name, bytes / g->p.nr_tasks / 1e9, 1757 "GB,", "data/thread", "GB data processed, per thread"); 1758 1759 print_res(name, bytes / 1e9, 1760 "GB,", "data-total", "GB data processed, total"); 1761 1762 print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks), 1763 "nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime"); 1764 1765 print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max, 1766 "GB/sec,", "thread-speed", "GB/sec/thread speed"); 1767 1768 print_res(name, bytes / runtime_sec_max / 1e9, 1769 "GB/sec,", "total-speed", "GB/sec total speed"); 1770 1771 if (g->p.show_details >= 2) { 1772 char tname[14 + 2 * 11 + 1]; 1773 struct thread_data *td; 1774 for (p = 0; p < g->p.nr_proc; p++) { 1775 for (t = 0; t < g->p.nr_threads; t++) { 1776 memset(tname, 0, sizeof(tname)); 1777 td = g->threads + p*g->p.nr_threads + t; 1778 snprintf(tname, sizeof(tname), "process%d:thread%d", p, t); 1779 print_res(tname, td->speed_gbs, 1780 "GB/sec", "thread-speed", "GB/sec/thread speed"); 1781 print_res(tname, td->system_time_ns / NSEC_PER_SEC, 1782 "secs", "thread-system-time", "system CPU time/thread"); 1783 print_res(tname, td->user_time_ns / NSEC_PER_SEC, 1784 "secs", "thread-user-time", "user CPU time/thread"); 1785 } 1786 } 1787 } 1788 1789 free(pids); 1790 1791 deinit(); 1792 1793 return 0; 1794 } 1795 1796 #define MAX_ARGS 50 1797 1798 static int command_size(const char **argv) 1799 { 1800 int size = 0; 1801 1802 while (*argv) { 1803 size++; 1804 argv++; 1805 } 1806 1807 BUG_ON(size >= MAX_ARGS); 1808 1809 return size; 1810 } 1811 1812 static void init_params(struct params *p, const char *name, int argc, const char **argv) 1813 { 1814 int i; 1815 1816 printf("\n # Running %s \"perf bench numa", name); 1817 1818 for (i = 0; i < argc; i++) 1819 printf(" %s", argv[i]); 1820 1821 printf("\"\n"); 1822 1823 memset(p, 0, sizeof(*p)); 1824 1825 /* Initialize nonzero defaults: */ 1826 1827 p->serialize_startup = 1; 1828 p->data_reads = true; 1829 p->data_writes = true; 1830 p->data_backwards = true; 1831 p->data_rand_walk = true; 1832 p->nr_loops = -1; 1833 p->init_random = true; 1834 p->mb_global_str = "1"; 1835 p->nr_proc = 1; 1836 p->nr_threads = 1; 1837 p->nr_secs = 5; 1838 p->run_all = argc == 1; 1839 } 1840 1841 static int run_bench_numa(const char *name, const char **argv) 1842 { 1843 int argc = command_size(argv); 1844 1845 init_params(&p0, name, argc, argv); 1846 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1847 if (argc) 1848 goto err; 1849 1850 if (__bench_numa(name)) 1851 goto err; 1852 1853 return 0; 1854 1855 err: 1856 return -1; 1857 } 1858 1859 #define OPT_BW_RAM "-s", "20", "-zZq", "--thp", " 1", "--no-data_rand_walk" 1860 #define OPT_BW_RAM_NOTHP OPT_BW_RAM, "--thp", "-1" 1861 1862 #define OPT_CONV "-s", "100", "-zZ0qcm", "--thp", " 1" 1863 #define OPT_CONV_NOTHP OPT_CONV, "--thp", "-1" 1864 1865 #define OPT_BW "-s", "20", "-zZ0q", "--thp", " 1" 1866 #define OPT_BW_NOTHP OPT_BW, "--thp", "-1" 1867 1868 /* 1869 * The built-in test-suite executed by "perf bench numa -a". 1870 * 1871 * (A minimum of 4 nodes and 16 GB of RAM is recommended.) 1872 */ 1873 static const char *tests[][MAX_ARGS] = { 1874 /* Basic single-stream NUMA bandwidth measurements: */ 1875 { "RAM-bw-local,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1876 "-C" , "0", "-M", "0", OPT_BW_RAM }, 1877 { "RAM-bw-local-NOTHP,", 1878 "mem", "-p", "1", "-t", "1", "-P", "1024", 1879 "-C" , "0", "-M", "0", OPT_BW_RAM_NOTHP }, 1880 { "RAM-bw-remote,", "mem", "-p", "1", "-t", "1", "-P", "1024", 1881 "-C" , "0", "-M", "1", OPT_BW_RAM }, 1882 1883 /* 2-stream NUMA bandwidth measurements: */ 1884 { "RAM-bw-local-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1885 "-C", "0,2", "-M", "0x2", OPT_BW_RAM }, 1886 { "RAM-bw-remote-2x,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1887 "-C", "0,2", "-M", "1x2", OPT_BW_RAM }, 1888 1889 /* Cross-stream NUMA bandwidth measurement: */ 1890 { "RAM-bw-cross,", "mem", "-p", "2", "-t", "1", "-P", "1024", 1891 "-C", "0,8", "-M", "1,0", OPT_BW_RAM }, 1892 1893 /* Convergence latency measurements: */ 1894 { " 1x3-convergence,", "mem", "-p", "1", "-t", "3", "-P", "512", OPT_CONV }, 1895 { " 1x4-convergence,", "mem", "-p", "1", "-t", "4", "-P", "512", OPT_CONV }, 1896 { " 1x6-convergence,", "mem", "-p", "1", "-t", "6", "-P", "1020", OPT_CONV }, 1897 { " 2x3-convergence,", "mem", "-p", "2", "-t", "3", "-P", "1020", OPT_CONV }, 1898 { " 3x3-convergence,", "mem", "-p", "3", "-t", "3", "-P", "1020", OPT_CONV }, 1899 { " 4x4-convergence,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV }, 1900 { " 4x4-convergence-NOTHP,", 1901 "mem", "-p", "4", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1902 { " 4x6-convergence,", "mem", "-p", "4", "-t", "6", "-P", "1020", OPT_CONV }, 1903 { " 4x8-convergence,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_CONV }, 1904 { " 8x4-convergence,", "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV }, 1905 { " 8x4-convergence-NOTHP,", 1906 "mem", "-p", "8", "-t", "4", "-P", "512", OPT_CONV_NOTHP }, 1907 { " 3x1-convergence,", "mem", "-p", "3", "-t", "1", "-P", "512", OPT_CONV }, 1908 { " 4x1-convergence,", "mem", "-p", "4", "-t", "1", "-P", "512", OPT_CONV }, 1909 { " 8x1-convergence,", "mem", "-p", "8", "-t", "1", "-P", "512", OPT_CONV }, 1910 { "16x1-convergence,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_CONV }, 1911 { "32x1-convergence,", "mem", "-p", "32", "-t", "1", "-P", "128", OPT_CONV }, 1912 1913 /* Various NUMA process/thread layout bandwidth measurements: */ 1914 { " 2x1-bw-process,", "mem", "-p", "2", "-t", "1", "-P", "1024", OPT_BW }, 1915 { " 3x1-bw-process,", "mem", "-p", "3", "-t", "1", "-P", "1024", OPT_BW }, 1916 { " 4x1-bw-process,", "mem", "-p", "4", "-t", "1", "-P", "1024", OPT_BW }, 1917 { " 8x1-bw-process,", "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW }, 1918 { " 8x1-bw-process-NOTHP,", 1919 "mem", "-p", "8", "-t", "1", "-P", " 512", OPT_BW_NOTHP }, 1920 { "16x1-bw-process,", "mem", "-p", "16", "-t", "1", "-P", "256", OPT_BW }, 1921 1922 { " 1x4-bw-thread,", "mem", "-p", "1", "-t", "4", "-T", "256", OPT_BW }, 1923 { " 1x8-bw-thread,", "mem", "-p", "1", "-t", "8", "-T", "256", OPT_BW }, 1924 { "1x16-bw-thread,", "mem", "-p", "1", "-t", "16", "-T", "128", OPT_BW }, 1925 { "1x32-bw-thread,", "mem", "-p", "1", "-t", "32", "-T", "64", OPT_BW }, 1926 1927 { " 2x3-bw-process,", "mem", "-p", "2", "-t", "3", "-P", "512", OPT_BW }, 1928 { " 4x4-bw-process,", "mem", "-p", "4", "-t", "4", "-P", "512", OPT_BW }, 1929 { " 4x6-bw-process,", "mem", "-p", "4", "-t", "6", "-P", "512", OPT_BW }, 1930 { " 4x8-bw-process,", "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW }, 1931 { " 4x8-bw-process-NOTHP,", 1932 "mem", "-p", "4", "-t", "8", "-P", "512", OPT_BW_NOTHP }, 1933 { " 3x3-bw-process,", "mem", "-p", "3", "-t", "3", "-P", "512", OPT_BW }, 1934 { " 5x5-bw-process,", "mem", "-p", "5", "-t", "5", "-P", "512", OPT_BW }, 1935 1936 { "2x16-bw-process,", "mem", "-p", "2", "-t", "16", "-P", "512", OPT_BW }, 1937 { "1x32-bw-process,", "mem", "-p", "1", "-t", "32", "-P", "2048", OPT_BW }, 1938 1939 { "numa02-bw,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW }, 1940 { "numa02-bw-NOTHP,", "mem", "-p", "1", "-t", "32", "-T", "32", OPT_BW_NOTHP }, 1941 { "numa01-bw-thread,", "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW }, 1942 { "numa01-bw-thread-NOTHP,", 1943 "mem", "-p", "2", "-t", "16", "-T", "192", OPT_BW_NOTHP }, 1944 }; 1945 1946 static int bench_all(void) 1947 { 1948 int nr = ARRAY_SIZE(tests); 1949 int ret; 1950 int i; 1951 1952 ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'"); 1953 BUG_ON(ret < 0); 1954 1955 for (i = 0; i < nr; i++) { 1956 run_bench_numa(tests[i][0], tests[i] + 1); 1957 } 1958 1959 printf("\n"); 1960 1961 return 0; 1962 } 1963 1964 int bench_numa(int argc, const char **argv) 1965 { 1966 init_params(&p0, "main,", argc, argv); 1967 argc = parse_options(argc, argv, options, bench_numa_usage, 0); 1968 if (argc) 1969 goto err; 1970 1971 if (p0.run_all) 1972 return bench_all(); 1973 1974 if (__bench_numa(NULL)) 1975 goto err; 1976 1977 return 0; 1978 1979 err: 1980 usage_with_options(numa_usage, options); 1981 return -1; 1982 } 1983