xref: /linux/tools/lib/list_sort.c (revision c532de5a67a70f8533d495f8f2aaa9a0491c3ad0)
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/kernel.h>
3 #include <linux/compiler.h>
4 #include <linux/export.h>
5 #include <linux/string.h>
6 #include <linux/list_sort.h>
7 #include <linux/list.h>
8 
9 /*
10  * Returns a list organized in an intermediate format suited
11  * to chaining of merge() calls: null-terminated, no reserved or
12  * sentinel head node, "prev" links not maintained.
13  */
14 __attribute__((nonnull(2,3,4)))
15 static struct list_head *merge(void *priv, list_cmp_func_t cmp,
16 				struct list_head *a, struct list_head *b)
17 {
18 	struct list_head *head, **tail = &head;
19 
20 	for (;;) {
21 		/* if equal, take 'a' -- important for sort stability */
22 		if (cmp(priv, a, b) <= 0) {
23 			*tail = a;
24 			tail = &a->next;
25 			a = a->next;
26 			if (!a) {
27 				*tail = b;
28 				break;
29 			}
30 		} else {
31 			*tail = b;
32 			tail = &b->next;
33 			b = b->next;
34 			if (!b) {
35 				*tail = a;
36 				break;
37 			}
38 		}
39 	}
40 	return head;
41 }
42 
43 /*
44  * Combine final list merge with restoration of standard doubly-linked
45  * list structure.  This approach duplicates code from merge(), but
46  * runs faster than the tidier alternatives of either a separate final
47  * prev-link restoration pass, or maintaining the prev links
48  * throughout.
49  */
50 __attribute__((nonnull(2,3,4,5)))
51 static void merge_final(void *priv, list_cmp_func_t cmp, struct list_head *head,
52 			struct list_head *a, struct list_head *b)
53 {
54 	struct list_head *tail = head;
55 
56 	for (;;) {
57 		/* if equal, take 'a' -- important for sort stability */
58 		if (cmp(priv, a, b) <= 0) {
59 			tail->next = a;
60 			a->prev = tail;
61 			tail = a;
62 			a = a->next;
63 			if (!a)
64 				break;
65 		} else {
66 			tail->next = b;
67 			b->prev = tail;
68 			tail = b;
69 			b = b->next;
70 			if (!b) {
71 				b = a;
72 				break;
73 			}
74 		}
75 	}
76 
77 	/* Finish linking remainder of list b on to tail */
78 	tail->next = b;
79 	do {
80 		b->prev = tail;
81 		tail = b;
82 		b = b->next;
83 	} while (b);
84 
85 	/* And the final links to make a circular doubly-linked list */
86 	tail->next = head;
87 	head->prev = tail;
88 }
89 
90 /**
91  * list_sort - sort a list
92  * @priv: private data, opaque to list_sort(), passed to @cmp
93  * @head: the list to sort
94  * @cmp: the elements comparison function
95  *
96  * The comparison function @cmp must return > 0 if @a should sort after
97  * @b ("@a > @b" if you want an ascending sort), and <= 0 if @a should
98  * sort before @b *or* their original order should be preserved.  It is
99  * always called with the element that came first in the input in @a,
100  * and list_sort is a stable sort, so it is not necessary to distinguish
101  * the @a < @b and @a == @b cases.
102  *
103  * This is compatible with two styles of @cmp function:
104  * - The traditional style which returns <0 / =0 / >0, or
105  * - Returning a boolean 0/1.
106  * The latter offers a chance to save a few cycles in the comparison
107  * (which is used by e.g. plug_ctx_cmp() in block/blk-mq.c).
108  *
109  * A good way to write a multi-word comparison is::
110  *
111  *	if (a->high != b->high)
112  *		return a->high > b->high;
113  *	if (a->middle != b->middle)
114  *		return a->middle > b->middle;
115  *	return a->low > b->low;
116  *
117  *
118  * This mergesort is as eager as possible while always performing at least
119  * 2:1 balanced merges.  Given two pending sublists of size 2^k, they are
120  * merged to a size-2^(k+1) list as soon as we have 2^k following elements.
121  *
122  * Thus, it will avoid cache thrashing as long as 3*2^k elements can
123  * fit into the cache.  Not quite as good as a fully-eager bottom-up
124  * mergesort, but it does use 0.2*n fewer comparisons, so is faster in
125  * the common case that everything fits into L1.
126  *
127  *
128  * The merging is controlled by "count", the number of elements in the
129  * pending lists.  This is beautifully simple code, but rather subtle.
130  *
131  * Each time we increment "count", we set one bit (bit k) and clear
132  * bits k-1 .. 0.  Each time this happens (except the very first time
133  * for each bit, when count increments to 2^k), we merge two lists of
134  * size 2^k into one list of size 2^(k+1).
135  *
136  * This merge happens exactly when the count reaches an odd multiple of
137  * 2^k, which is when we have 2^k elements pending in smaller lists,
138  * so it's safe to merge away two lists of size 2^k.
139  *
140  * After this happens twice, we have created two lists of size 2^(k+1),
141  * which will be merged into a list of size 2^(k+2) before we create
142  * a third list of size 2^(k+1), so there are never more than two pending.
143  *
144  * The number of pending lists of size 2^k is determined by the
145  * state of bit k of "count" plus two extra pieces of information:
146  *
147  * - The state of bit k-1 (when k == 0, consider bit -1 always set), and
148  * - Whether the higher-order bits are zero or non-zero (i.e.
149  *   is count >= 2^(k+1)).
150  *
151  * There are six states we distinguish.  "x" represents some arbitrary
152  * bits, and "y" represents some arbitrary non-zero bits:
153  * 0:  00x: 0 pending of size 2^k;           x pending of sizes < 2^k
154  * 1:  01x: 0 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
155  * 2: x10x: 0 pending of size 2^k; 2^k     + x pending of sizes < 2^k
156  * 3: x11x: 1 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
157  * 4: y00x: 1 pending of size 2^k; 2^k     + x pending of sizes < 2^k
158  * 5: y01x: 2 pending of size 2^k; 2^(k-1) + x pending of sizes < 2^k
159  * (merge and loop back to state 2)
160  *
161  * We gain lists of size 2^k in the 2->3 and 4->5 transitions (because
162  * bit k-1 is set while the more significant bits are non-zero) and
163  * merge them away in the 5->2 transition.  Note in particular that just
164  * before the 5->2 transition, all lower-order bits are 11 (state 3),
165  * so there is one list of each smaller size.
166  *
167  * When we reach the end of the input, we merge all the pending
168  * lists, from smallest to largest.  If you work through cases 2 to
169  * 5 above, you can see that the number of elements we merge with a list
170  * of size 2^k varies from 2^(k-1) (cases 3 and 5 when x == 0) to
171  * 2^(k+1) - 1 (second merge of case 5 when x == 2^(k-1) - 1).
172  */
173 __attribute__((nonnull(2,3)))
174 void list_sort(void *priv, struct list_head *head, list_cmp_func_t cmp)
175 {
176 	struct list_head *list = head->next, *pending = NULL;
177 	size_t count = 0;	/* Count of pending */
178 
179 	if (list == head->prev)	/* Zero or one elements */
180 		return;
181 
182 	/* Convert to a null-terminated singly-linked list. */
183 	head->prev->next = NULL;
184 
185 	/*
186 	 * Data structure invariants:
187 	 * - All lists are singly linked and null-terminated; prev
188 	 *   pointers are not maintained.
189 	 * - pending is a prev-linked "list of lists" of sorted
190 	 *   sublists awaiting further merging.
191 	 * - Each of the sorted sublists is power-of-two in size.
192 	 * - Sublists are sorted by size and age, smallest & newest at front.
193 	 * - There are zero to two sublists of each size.
194 	 * - A pair of pending sublists are merged as soon as the number
195 	 *   of following pending elements equals their size (i.e.
196 	 *   each time count reaches an odd multiple of that size).
197 	 *   That ensures each later final merge will be at worst 2:1.
198 	 * - Each round consists of:
199 	 *   - Merging the two sublists selected by the highest bit
200 	 *     which flips when count is incremented, and
201 	 *   - Adding an element from the input as a size-1 sublist.
202 	 */
203 	do {
204 		size_t bits;
205 		struct list_head **tail = &pending;
206 
207 		/* Find the least-significant clear bit in count */
208 		for (bits = count; bits & 1; bits >>= 1)
209 			tail = &(*tail)->prev;
210 		/* Do the indicated merge */
211 		if (likely(bits)) {
212 			struct list_head *a = *tail, *b = a->prev;
213 
214 			a = merge(priv, cmp, b, a);
215 			/* Install the merged result in place of the inputs */
216 			a->prev = b->prev;
217 			*tail = a;
218 		}
219 
220 		/* Move one element from input list to pending */
221 		list->prev = pending;
222 		pending = list;
223 		list = list->next;
224 		pending->next = NULL;
225 		count++;
226 	} while (list);
227 
228 	/* End of input; merge together all the pending lists. */
229 	list = pending;
230 	pending = pending->prev;
231 	for (;;) {
232 		struct list_head *next = pending->prev;
233 
234 		if (!next)
235 			break;
236 		list = merge(priv, cmp, pending, list);
237 		pending = next;
238 	}
239 	/* The final merge, rebuilding prev links */
240 	merge_final(priv, cmp, head, pending, list);
241 }
242 EXPORT_SYMBOL(list_sort);
243