xref: /linux/tools/lib/find_bit.c (revision e3b9f1e81de2083f359bacd2a94bf1c024f2ede0)
1 /* bit search implementation
2  *
3  * Copied from lib/find_bit.c to tools/lib/find_bit.c
4  *
5  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
6  * Written by David Howells (dhowells@redhat.com)
7  *
8  * Copyright (C) 2008 IBM Corporation
9  * 'find_last_bit' is written by Rusty Russell <rusty@rustcorp.com.au>
10  * (Inspired by David Howell's find_next_bit implementation)
11  *
12  * Rewritten by Yury Norov <yury.norov@gmail.com> to decrease
13  * size and improve performance, 2015.
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20 
21 #include <linux/bitops.h>
22 #include <linux/bitmap.h>
23 #include <linux/kernel.h>
24 
25 #if !defined(find_next_bit) || !defined(find_next_zero_bit) || \
26 		!defined(find_next_and_bit)
27 
28 /*
29  * This is a common helper function for find_next_bit, find_next_zero_bit, and
30  * find_next_and_bit. The differences are:
31  *  - The "invert" argument, which is XORed with each fetched word before
32  *    searching it for one bits.
33  *  - The optional "addr2", which is anded with "addr1" if present.
34  */
35 static inline unsigned long _find_next_bit(const unsigned long *addr1,
36 		const unsigned long *addr2, unsigned long nbits,
37 		unsigned long start, unsigned long invert)
38 {
39 	unsigned long tmp;
40 
41 	if (unlikely(start >= nbits))
42 		return nbits;
43 
44 	tmp = addr1[start / BITS_PER_LONG];
45 	if (addr2)
46 		tmp &= addr2[start / BITS_PER_LONG];
47 	tmp ^= invert;
48 
49 	/* Handle 1st word. */
50 	tmp &= BITMAP_FIRST_WORD_MASK(start);
51 	start = round_down(start, BITS_PER_LONG);
52 
53 	while (!tmp) {
54 		start += BITS_PER_LONG;
55 		if (start >= nbits)
56 			return nbits;
57 
58 		tmp = addr1[start / BITS_PER_LONG];
59 		if (addr2)
60 			tmp &= addr2[start / BITS_PER_LONG];
61 		tmp ^= invert;
62 	}
63 
64 	return min(start + __ffs(tmp), nbits);
65 }
66 #endif
67 
68 #ifndef find_next_bit
69 /*
70  * Find the next set bit in a memory region.
71  */
72 unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
73 			    unsigned long offset)
74 {
75 	return _find_next_bit(addr, NULL, size, offset, 0UL);
76 }
77 #endif
78 
79 #ifndef find_first_bit
80 /*
81  * Find the first set bit in a memory region.
82  */
83 unsigned long find_first_bit(const unsigned long *addr, unsigned long size)
84 {
85 	unsigned long idx;
86 
87 	for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
88 		if (addr[idx])
89 			return min(idx * BITS_PER_LONG + __ffs(addr[idx]), size);
90 	}
91 
92 	return size;
93 }
94 #endif
95 
96 #ifndef find_first_zero_bit
97 /*
98  * Find the first cleared bit in a memory region.
99  */
100 unsigned long find_first_zero_bit(const unsigned long *addr, unsigned long size)
101 {
102 	unsigned long idx;
103 
104 	for (idx = 0; idx * BITS_PER_LONG < size; idx++) {
105 		if (addr[idx] != ~0UL)
106 			return min(idx * BITS_PER_LONG + ffz(addr[idx]), size);
107 	}
108 
109 	return size;
110 }
111 #endif
112 
113 #ifndef find_next_zero_bit
114 unsigned long find_next_zero_bit(const unsigned long *addr, unsigned long size,
115 				 unsigned long offset)
116 {
117 	return _find_next_bit(addr, NULL, size, offset, ~0UL);
118 }
119 #endif
120 
121 #ifndef find_next_and_bit
122 unsigned long find_next_and_bit(const unsigned long *addr1,
123 		const unsigned long *addr2, unsigned long size,
124 		unsigned long offset)
125 {
126 	return _find_next_bit(addr1, addr2, size, offset, 0UL);
127 }
128 #endif
129