xref: /linux/tools/lib/bpf/usdt.c (revision fcc79e1714e8c2b8e216dc3149812edd37884eef)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3 #include <ctype.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <libelf.h>
8 #include <gelf.h>
9 #include <unistd.h>
10 #include <linux/ptrace.h>
11 #include <linux/kernel.h>
12 
13 /* s8 will be marked as poison while it's a reg of riscv */
14 #if defined(__riscv)
15 #define rv_s8 s8
16 #endif
17 
18 #include "bpf.h"
19 #include "libbpf.h"
20 #include "libbpf_common.h"
21 #include "libbpf_internal.h"
22 #include "hashmap.h"
23 #include "str_error.h"
24 
25 /* libbpf's USDT support consists of BPF-side state/code and user-space
26  * state/code working together in concert. BPF-side parts are defined in
27  * usdt.bpf.h header library. User-space state is encapsulated by struct
28  * usdt_manager and all the supporting code centered around usdt_manager.
29  *
30  * usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map
31  * and IP-to-spec-ID map, which is auxiliary map necessary for kernels that
32  * don't support BPF cookie (see below). These two maps are implicitly
33  * embedded into user's end BPF object file when user's code included
34  * usdt.bpf.h. This means that libbpf doesn't do anything special to create
35  * these USDT support maps. They are created by normal libbpf logic of
36  * instantiating BPF maps when opening and loading BPF object.
37  *
38  * As such, libbpf is basically unaware of the need to do anything
39  * USDT-related until the very first call to bpf_program__attach_usdt(), which
40  * can be called by user explicitly or happen automatically during skeleton
41  * attach (or, equivalently, through generic bpf_program__attach() call). At
42  * this point, libbpf will instantiate and initialize struct usdt_manager and
43  * store it in bpf_object. USDT manager is per-BPF object construct, as each
44  * independent BPF object might or might not have USDT programs, and thus all
45  * the expected USDT-related state. There is no coordination between two
46  * bpf_object in parts of USDT attachment, they are oblivious of each other's
47  * existence and libbpf is just oblivious, dealing with bpf_object-specific
48  * USDT state.
49  *
50  * Quick crash course on USDTs.
51  *
52  * From user-space application's point of view, USDT is essentially just
53  * a slightly special function call that normally has zero overhead, unless it
54  * is being traced by some external entity (e.g, BPF-based tool). Here's how
55  * a typical application can trigger USDT probe:
56  *
57  * #include <sys/sdt.h>  // provided by systemtap-sdt-devel package
58  * // folly also provide similar functionality in folly/tracing/StaticTracepoint.h
59  *
60  * STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y);
61  *
62  * USDT is identified by it's <provider-name>:<probe-name> pair of names. Each
63  * individual USDT has a fixed number of arguments (3 in the above example)
64  * and specifies values of each argument as if it was a function call.
65  *
66  * USDT call is actually not a function call, but is instead replaced by
67  * a single NOP instruction (thus zero overhead, effectively). But in addition
68  * to that, those USDT macros generate special SHT_NOTE ELF records in
69  * .note.stapsdt ELF section. Here's an example USDT definition as emitted by
70  * `readelf -n <binary>`:
71  *
72  *   stapsdt              0x00000089       NT_STAPSDT (SystemTap probe descriptors)
73  *   Provider: test
74  *   Name: usdt12
75  *   Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e
76  *   Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil
77  *
78  * In this case we have USDT test:usdt12 with 12 arguments.
79  *
80  * Location and base are offsets used to calculate absolute IP address of that
81  * NOP instruction that kernel can replace with an interrupt instruction to
82  * trigger instrumentation code (BPF program for all that we care about).
83  *
84  * Semaphore above is and optional feature. It records an address of a 2-byte
85  * refcount variable (normally in '.probes' ELF section) used for signaling if
86  * there is anything that is attached to USDT. This is useful for user
87  * applications if, for example, they need to prepare some arguments that are
88  * passed only to USDTs and preparation is expensive. By checking if USDT is
89  * "activated", an application can avoid paying those costs unnecessarily.
90  * Recent enough kernel has built-in support for automatically managing this
91  * refcount, which libbpf expects and relies on. If USDT is defined without
92  * associated semaphore, this value will be zero. See selftests for semaphore
93  * examples.
94  *
95  * Arguments is the most interesting part. This USDT specification string is
96  * providing information about all the USDT arguments and their locations. The
97  * part before @ sign defined byte size of the argument (1, 2, 4, or 8) and
98  * whether the argument is signed or unsigned (negative size means signed).
99  * The part after @ sign is assembly-like definition of argument location
100  * (see [0] for more details). Technically, assembler can provide some pretty
101  * advanced definitions, but libbpf is currently supporting three most common
102  * cases:
103  *   1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9);
104  *   2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer
105  *      whose value is in register %rdx";
106  *   3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which
107  *      specifies signed 32-bit integer stored at offset -1204 bytes from
108  *      memory address stored in %rbp.
109  *
110  *   [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
111  *
112  * During attachment, libbpf parses all the relevant USDT specifications and
113  * prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side
114  * code through spec map. This allows BPF applications to quickly fetch the
115  * actual value at runtime using a simple BPF-side code.
116  *
117  * With basics out of the way, let's go over less immediately obvious aspects
118  * of supporting USDTs.
119  *
120  * First, there is no special USDT BPF program type. It is actually just
121  * a uprobe BPF program (which for kernel, at least currently, is just a kprobe
122  * program, so BPF_PROG_TYPE_KPROBE program type). With the only difference
123  * that uprobe is usually attached at the function entry, while USDT will
124  * normally will be somewhere inside the function. But it should always be
125  * pointing to NOP instruction, which makes such uprobes the fastest uprobe
126  * kind.
127  *
128  * Second, it's important to realize that such STAP_PROBEn(provider, name, ...)
129  * macro invocations can end up being inlined many-many times, depending on
130  * specifics of each individual user application. So single conceptual USDT
131  * (identified by provider:name pair of identifiers) is, generally speaking,
132  * multiple uprobe locations (USDT call sites) in different places in user
133  * application. Further, again due to inlining, each USDT call site might end
134  * up having the same argument #N be located in a different place. In one call
135  * site it could be a constant, in another will end up in a register, and in
136  * yet another could be some other register or even somewhere on the stack.
137  *
138  * As such, "attaching to USDT" means (in general case) attaching the same
139  * uprobe BPF program to multiple target locations in user application, each
140  * potentially having a completely different USDT spec associated with it.
141  * To wire all this up together libbpf allocates a unique integer spec ID for
142  * each unique USDT spec. Spec IDs are allocated as sequential small integers
143  * so that they can be used as keys in array BPF map (for performance reasons).
144  * Spec ID allocation and accounting is big part of what usdt_manager is
145  * about. This state has to be maintained per-BPF object and coordinate
146  * between different USDT attachments within the same BPF object.
147  *
148  * Spec ID is the key in spec BPF map, value is the actual USDT spec layed out
149  * as struct usdt_spec. Each invocation of BPF program at runtime needs to
150  * know its associated spec ID. It gets it either through BPF cookie, which
151  * libbpf sets to spec ID during attach time, or, if kernel is too old to
152  * support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such
153  * case. The latter means that some modes of operation can't be supported
154  * without BPF cookie. Such mode is attaching to shared library "generically",
155  * without specifying target process. In such case, it's impossible to
156  * calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode
157  * is not supported without BPF cookie support.
158  *
159  * Note that libbpf is using BPF cookie functionality for its own internal
160  * needs, so user itself can't rely on BPF cookie feature. To that end, libbpf
161  * provides conceptually equivalent USDT cookie support. It's still u64
162  * user-provided value that can be associated with USDT attachment. Note that
163  * this will be the same value for all USDT call sites within the same single
164  * *logical* USDT attachment. This makes sense because to user attaching to
165  * USDT is a single BPF program triggered for singular USDT probe. The fact
166  * that this is done at multiple actual locations is a mostly hidden
167  * implementation details. This USDT cookie value can be fetched with
168  * bpf_usdt_cookie(ctx) API provided by usdt.bpf.h
169  *
170  * Lastly, while single USDT can have tons of USDT call sites, it doesn't
171  * necessarily have that many different USDT specs. It very well might be
172  * that 1000 USDT call sites only need 5 different USDT specs, because all the
173  * arguments are typically contained in a small set of registers or stack
174  * locations. As such, it's wasteful to allocate as many USDT spec IDs as
175  * there are USDT call sites. So libbpf tries to be frugal and performs
176  * on-the-fly deduplication during a single USDT attachment to only allocate
177  * the minimal required amount of unique USDT specs (and thus spec IDs). This
178  * is trivially achieved by using USDT spec string (Arguments string from USDT
179  * note) as a lookup key in a hashmap. USDT spec string uniquely defines
180  * everything about how to fetch USDT arguments, so two USDT call sites
181  * sharing USDT spec string can safely share the same USDT spec and spec ID.
182  * Note, this spec string deduplication is happening only during the same USDT
183  * attachment, so each USDT spec shares the same USDT cookie value. This is
184  * not generally true for other USDT attachments within the same BPF object,
185  * as even if USDT spec string is the same, USDT cookie value can be
186  * different. It was deemed excessive to try to deduplicate across independent
187  * USDT attachments by taking into account USDT spec string *and* USDT cookie
188  * value, which would complicated spec ID accounting significantly for little
189  * gain.
190  */
191 
192 #define USDT_BASE_SEC ".stapsdt.base"
193 #define USDT_SEMA_SEC ".probes"
194 #define USDT_NOTE_SEC  ".note.stapsdt"
195 #define USDT_NOTE_TYPE 3
196 #define USDT_NOTE_NAME "stapsdt"
197 
198 /* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */
199 enum usdt_arg_type {
200 	USDT_ARG_CONST,
201 	USDT_ARG_REG,
202 	USDT_ARG_REG_DEREF,
203 };
204 
205 /* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */
206 struct usdt_arg_spec {
207 	__u64 val_off;
208 	enum usdt_arg_type arg_type;
209 	short reg_off;
210 	bool arg_signed;
211 	char arg_bitshift;
212 };
213 
214 /* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */
215 #define USDT_MAX_ARG_CNT 12
216 
217 /* should match struct __bpf_usdt_spec from usdt.bpf.h */
218 struct usdt_spec {
219 	struct usdt_arg_spec args[USDT_MAX_ARG_CNT];
220 	__u64 usdt_cookie;
221 	short arg_cnt;
222 };
223 
224 struct usdt_note {
225 	const char *provider;
226 	const char *name;
227 	/* USDT args specification string, e.g.:
228 	 * "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx"
229 	 */
230 	const char *args;
231 	long loc_addr;
232 	long base_addr;
233 	long sema_addr;
234 };
235 
236 struct usdt_target {
237 	long abs_ip;
238 	long rel_ip;
239 	long sema_off;
240 	struct usdt_spec spec;
241 	const char *spec_str;
242 };
243 
244 struct usdt_manager {
245 	struct bpf_map *specs_map;
246 	struct bpf_map *ip_to_spec_id_map;
247 
248 	int *free_spec_ids;
249 	size_t free_spec_cnt;
250 	size_t next_free_spec_id;
251 
252 	bool has_bpf_cookie;
253 	bool has_sema_refcnt;
254 	bool has_uprobe_multi;
255 };
256 
257 struct usdt_manager *usdt_manager_new(struct bpf_object *obj)
258 {
259 	static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset";
260 	struct usdt_manager *man;
261 	struct bpf_map *specs_map, *ip_to_spec_id_map;
262 
263 	specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs");
264 	ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id");
265 	if (!specs_map || !ip_to_spec_id_map) {
266 		pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n");
267 		return ERR_PTR(-ESRCH);
268 	}
269 
270 	man = calloc(1, sizeof(*man));
271 	if (!man)
272 		return ERR_PTR(-ENOMEM);
273 
274 	man->specs_map = specs_map;
275 	man->ip_to_spec_id_map = ip_to_spec_id_map;
276 
277 	/* Detect if BPF cookie is supported for kprobes.
278 	 * We don't need IP-to-ID mapping if we can use BPF cookies.
279 	 * Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value")
280 	 */
281 	man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE);
282 
283 	/* Detect kernel support for automatic refcounting of USDT semaphore.
284 	 * If this is not supported, USDTs with semaphores will not be supported.
285 	 * Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe")
286 	 */
287 	man->has_sema_refcnt = faccessat(AT_FDCWD, ref_ctr_sysfs_path, F_OK, AT_EACCESS) == 0;
288 
289 	/*
290 	 * Detect kernel support for uprobe multi link to be used for attaching
291 	 * usdt probes.
292 	 */
293 	man->has_uprobe_multi = kernel_supports(obj, FEAT_UPROBE_MULTI_LINK);
294 	return man;
295 }
296 
297 void usdt_manager_free(struct usdt_manager *man)
298 {
299 	if (IS_ERR_OR_NULL(man))
300 		return;
301 
302 	free(man->free_spec_ids);
303 	free(man);
304 }
305 
306 static int sanity_check_usdt_elf(Elf *elf, const char *path)
307 {
308 	GElf_Ehdr ehdr;
309 	int endianness;
310 
311 	if (elf_kind(elf) != ELF_K_ELF) {
312 		pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path);
313 		return -EBADF;
314 	}
315 
316 	switch (gelf_getclass(elf)) {
317 	case ELFCLASS64:
318 		if (sizeof(void *) != 8) {
319 			pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path);
320 			return -EBADF;
321 		}
322 		break;
323 	case ELFCLASS32:
324 		if (sizeof(void *) != 4) {
325 			pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path);
326 			return -EBADF;
327 		}
328 		break;
329 	default:
330 		pr_warn("usdt: unsupported ELF class for '%s'\n", path);
331 		return -EBADF;
332 	}
333 
334 	if (!gelf_getehdr(elf, &ehdr))
335 		return -EINVAL;
336 
337 	if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) {
338 		pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n",
339 			path, ehdr.e_type);
340 		return -EBADF;
341 	}
342 
343 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
344 	endianness = ELFDATA2LSB;
345 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
346 	endianness = ELFDATA2MSB;
347 #else
348 # error "Unrecognized __BYTE_ORDER__"
349 #endif
350 	if (endianness != ehdr.e_ident[EI_DATA]) {
351 		pr_warn("usdt: ELF endianness mismatch for '%s'\n", path);
352 		return -EBADF;
353 	}
354 
355 	return 0;
356 }
357 
358 static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn)
359 {
360 	Elf_Scn *sec = NULL;
361 	size_t shstrndx;
362 
363 	if (elf_getshdrstrndx(elf, &shstrndx))
364 		return -EINVAL;
365 
366 	/* check if ELF is corrupted and avoid calling elf_strptr if yes */
367 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL))
368 		return -EINVAL;
369 
370 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
371 		char *name;
372 
373 		if (!gelf_getshdr(sec, shdr))
374 			return -EINVAL;
375 
376 		name = elf_strptr(elf, shstrndx, shdr->sh_name);
377 		if (name && strcmp(sec_name, name) == 0) {
378 			*scn = sec;
379 			return 0;
380 		}
381 	}
382 
383 	return -ENOENT;
384 }
385 
386 struct elf_seg {
387 	long start;
388 	long end;
389 	long offset;
390 	bool is_exec;
391 };
392 
393 static int cmp_elf_segs(const void *_a, const void *_b)
394 {
395 	const struct elf_seg *a = _a;
396 	const struct elf_seg *b = _b;
397 
398 	return a->start < b->start ? -1 : 1;
399 }
400 
401 static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt)
402 {
403 	GElf_Phdr phdr;
404 	size_t n;
405 	int i, err;
406 	struct elf_seg *seg;
407 	void *tmp;
408 
409 	*seg_cnt = 0;
410 
411 	if (elf_getphdrnum(elf, &n)) {
412 		err = -errno;
413 		return err;
414 	}
415 
416 	for (i = 0; i < n; i++) {
417 		if (!gelf_getphdr(elf, i, &phdr)) {
418 			err = -errno;
419 			return err;
420 		}
421 
422 		pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n",
423 			 i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset,
424 			 (long)phdr.p_type, (long)phdr.p_flags);
425 		if (phdr.p_type != PT_LOAD)
426 			continue;
427 
428 		tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
429 		if (!tmp)
430 			return -ENOMEM;
431 
432 		*segs = tmp;
433 		seg = *segs + *seg_cnt;
434 		(*seg_cnt)++;
435 
436 		seg->start = phdr.p_vaddr;
437 		seg->end = phdr.p_vaddr + phdr.p_memsz;
438 		seg->offset = phdr.p_offset;
439 		seg->is_exec = phdr.p_flags & PF_X;
440 	}
441 
442 	if (*seg_cnt == 0) {
443 		pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path);
444 		return -ESRCH;
445 	}
446 
447 	qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
448 	return 0;
449 }
450 
451 static int parse_vma_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt)
452 {
453 	char path[PATH_MAX], line[PATH_MAX], mode[16];
454 	size_t seg_start, seg_end, seg_off;
455 	struct elf_seg *seg;
456 	int tmp_pid, i, err;
457 	FILE *f;
458 
459 	*seg_cnt = 0;
460 
461 	/* Handle containerized binaries only accessible from
462 	 * /proc/<pid>/root/<path>. They will be reported as just /<path> in
463 	 * /proc/<pid>/maps.
464 	 */
465 	if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid)
466 		goto proceed;
467 
468 	if (!realpath(lib_path, path)) {
469 		pr_warn("usdt: failed to get absolute path of '%s' (err %s), using path as is...\n",
470 			lib_path, errstr(-errno));
471 		libbpf_strlcpy(path, lib_path, sizeof(path));
472 	}
473 
474 proceed:
475 	sprintf(line, "/proc/%d/maps", pid);
476 	f = fopen(line, "re");
477 	if (!f) {
478 		err = -errno;
479 		pr_warn("usdt: failed to open '%s' to get base addr of '%s': %s\n",
480 			line, lib_path, errstr(err));
481 		return err;
482 	}
483 
484 	/* We need to handle lines with no path at the end:
485 	 *
486 	 * 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613      /usr/lib64/libc-2.17.so
487 	 * 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0
488 	 * 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598    /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so
489 	 */
490 	while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n",
491 		      &seg_start, &seg_end, mode, &seg_off, line) == 5) {
492 		void *tmp;
493 
494 		/* to handle no path case (see above) we need to capture line
495 		 * without skipping any whitespaces. So we need to strip
496 		 * leading whitespaces manually here
497 		 */
498 		i = 0;
499 		while (isblank(line[i]))
500 			i++;
501 		if (strcmp(line + i, path) != 0)
502 			continue;
503 
504 		pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n",
505 			 path, seg_start, seg_end, mode, seg_off);
506 
507 		/* ignore non-executable sections for shared libs */
508 		if (mode[2] != 'x')
509 			continue;
510 
511 		tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
512 		if (!tmp) {
513 			err = -ENOMEM;
514 			goto err_out;
515 		}
516 
517 		*segs = tmp;
518 		seg = *segs + *seg_cnt;
519 		*seg_cnt += 1;
520 
521 		seg->start = seg_start;
522 		seg->end = seg_end;
523 		seg->offset = seg_off;
524 		seg->is_exec = true;
525 	}
526 
527 	if (*seg_cnt == 0) {
528 		pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n",
529 			lib_path, path, pid);
530 		err = -ESRCH;
531 		goto err_out;
532 	}
533 
534 	qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
535 	err = 0;
536 err_out:
537 	fclose(f);
538 	return err;
539 }
540 
541 static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long virtaddr)
542 {
543 	struct elf_seg *seg;
544 	int i;
545 
546 	/* for ELF binaries (both executables and shared libraries), we are
547 	 * given virtual address (absolute for executables, relative for
548 	 * libraries) which should match address range of [seg_start, seg_end)
549 	 */
550 	for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
551 		if (seg->start <= virtaddr && virtaddr < seg->end)
552 			return seg;
553 	}
554 	return NULL;
555 }
556 
557 static struct elf_seg *find_vma_seg(struct elf_seg *segs, size_t seg_cnt, long offset)
558 {
559 	struct elf_seg *seg;
560 	int i;
561 
562 	/* for VMA segments from /proc/<pid>/maps file, provided "address" is
563 	 * actually a file offset, so should be fall within logical
564 	 * offset-based range of [offset_start, offset_end)
565 	 */
566 	for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
567 		if (seg->offset <= offset && offset < seg->offset + (seg->end - seg->start))
568 			return seg;
569 	}
570 	return NULL;
571 }
572 
573 static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr,
574 			   const char *data, size_t name_off, size_t desc_off,
575 			   struct usdt_note *usdt_note);
576 
577 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie);
578 
579 static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid,
580 				const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie,
581 				struct usdt_target **out_targets, size_t *out_target_cnt)
582 {
583 	size_t off, name_off, desc_off, seg_cnt = 0, vma_seg_cnt = 0, target_cnt = 0;
584 	struct elf_seg *segs = NULL, *vma_segs = NULL;
585 	struct usdt_target *targets = NULL, *target;
586 	long base_addr = 0;
587 	Elf_Scn *notes_scn, *base_scn;
588 	GElf_Shdr base_shdr, notes_shdr;
589 	GElf_Ehdr ehdr;
590 	GElf_Nhdr nhdr;
591 	Elf_Data *data;
592 	int err;
593 
594 	*out_targets = NULL;
595 	*out_target_cnt = 0;
596 
597 	err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, &notes_shdr, &notes_scn);
598 	if (err) {
599 		pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path);
600 		return err;
601 	}
602 
603 	if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) {
604 		pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path);
605 		return -EINVAL;
606 	}
607 
608 	err = parse_elf_segs(elf, path, &segs, &seg_cnt);
609 	if (err) {
610 		pr_warn("usdt: failed to process ELF program segments for '%s': %s\n",
611 			path, errstr(err));
612 		goto err_out;
613 	}
614 
615 	/* .stapsdt.base ELF section is optional, but is used for prelink
616 	 * offset compensation (see a big comment further below)
617 	 */
618 	if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0)
619 		base_addr = base_shdr.sh_addr;
620 
621 	data = elf_getdata(notes_scn, 0);
622 	off = 0;
623 	while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) {
624 		long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0;
625 		struct usdt_note note;
626 		struct elf_seg *seg = NULL;
627 		void *tmp;
628 
629 		err = parse_usdt_note(elf, path, &nhdr, data->d_buf, name_off, desc_off, &note);
630 		if (err)
631 			goto err_out;
632 
633 		if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0)
634 			continue;
635 
636 		/* We need to compensate "prelink effect". See [0] for details,
637 		 * relevant parts quoted here:
638 		 *
639 		 * Each SDT probe also expands into a non-allocated ELF note. You can
640 		 * find this by looking at SHT_NOTE sections and decoding the format;
641 		 * see below for details. Because the note is non-allocated, it means
642 		 * there is no runtime cost, and also preserved in both stripped files
643 		 * and .debug files.
644 		 *
645 		 * However, this means that prelink won't adjust the note's contents
646 		 * for address offsets. Instead, this is done via the .stapsdt.base
647 		 * section. This is a special section that is added to the text. We
648 		 * will only ever have one of these sections in a final link and it
649 		 * will only ever be one byte long. Nothing about this section itself
650 		 * matters, we just use it as a marker to detect prelink address
651 		 * adjustments.
652 		 *
653 		 * Each probe note records the link-time address of the .stapsdt.base
654 		 * section alongside the probe PC address. The decoder compares the
655 		 * base address stored in the note with the .stapsdt.base section's
656 		 * sh_addr. Initially these are the same, but the section header will
657 		 * be adjusted by prelink. So the decoder applies the difference to
658 		 * the probe PC address to get the correct prelinked PC address; the
659 		 * same adjustment is applied to the semaphore address, if any.
660 		 *
661 		 *   [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
662 		 */
663 		usdt_abs_ip = note.loc_addr;
664 		if (base_addr)
665 			usdt_abs_ip += base_addr - note.base_addr;
666 
667 		/* When attaching uprobes (which is what USDTs basically are)
668 		 * kernel expects file offset to be specified, not a relative
669 		 * virtual address, so we need to translate virtual address to
670 		 * file offset, for both ET_EXEC and ET_DYN binaries.
671 		 */
672 		seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip);
673 		if (!seg) {
674 			err = -ESRCH;
675 			pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n",
676 				usdt_provider, usdt_name, path, usdt_abs_ip);
677 			goto err_out;
678 		}
679 		if (!seg->is_exec) {
680 			err = -ESRCH;
681 			pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n",
682 				path, seg->start, seg->end, usdt_provider, usdt_name,
683 				usdt_abs_ip);
684 			goto err_out;
685 		}
686 		/* translate from virtual address to file offset */
687 		usdt_rel_ip = usdt_abs_ip - seg->start + seg->offset;
688 
689 		if (ehdr.e_type == ET_DYN && !man->has_bpf_cookie) {
690 			/* If we don't have BPF cookie support but need to
691 			 * attach to a shared library, we'll need to know and
692 			 * record absolute addresses of attach points due to
693 			 * the need to lookup USDT spec by absolute IP of
694 			 * triggered uprobe. Doing this resolution is only
695 			 * possible when we have a specific PID of the process
696 			 * that's using specified shared library. BPF cookie
697 			 * removes the absolute address limitation as we don't
698 			 * need to do this lookup (we just use BPF cookie as
699 			 * an index of USDT spec), so for newer kernels with
700 			 * BPF cookie support libbpf supports USDT attachment
701 			 * to shared libraries with no PID filter.
702 			 */
703 			if (pid < 0) {
704 				pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n");
705 				err = -ENOTSUP;
706 				goto err_out;
707 			}
708 
709 			/* vma_segs are lazily initialized only if necessary */
710 			if (vma_seg_cnt == 0) {
711 				err = parse_vma_segs(pid, path, &vma_segs, &vma_seg_cnt);
712 				if (err) {
713 					pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %s\n",
714 						pid, path, errstr(err));
715 					goto err_out;
716 				}
717 			}
718 
719 			seg = find_vma_seg(vma_segs, vma_seg_cnt, usdt_rel_ip);
720 			if (!seg) {
721 				err = -ESRCH;
722 				pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n",
723 					usdt_provider, usdt_name, path, usdt_rel_ip);
724 				goto err_out;
725 			}
726 
727 			usdt_abs_ip = seg->start - seg->offset + usdt_rel_ip;
728 		}
729 
730 		pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n",
731 			 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path,
732 			 note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args,
733 			 seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0);
734 
735 		/* Adjust semaphore address to be a file offset */
736 		if (note.sema_addr) {
737 			if (!man->has_sema_refcnt) {
738 				pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n",
739 					usdt_provider, usdt_name, path);
740 				err = -ENOTSUP;
741 				goto err_out;
742 			}
743 
744 			seg = find_elf_seg(segs, seg_cnt, note.sema_addr);
745 			if (!seg) {
746 				err = -ESRCH;
747 				pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n",
748 					usdt_provider, usdt_name, path, note.sema_addr);
749 				goto err_out;
750 			}
751 			if (seg->is_exec) {
752 				err = -ESRCH;
753 				pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n",
754 					path, seg->start, seg->end, usdt_provider, usdt_name,
755 					note.sema_addr);
756 				goto err_out;
757 			}
758 
759 			usdt_sema_off = note.sema_addr - seg->start + seg->offset;
760 
761 			pr_debug("usdt: sema  for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n",
762 				 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ",
763 				 path, note.sema_addr, note.base_addr, usdt_sema_off,
764 				 seg->start, seg->end, seg->offset);
765 		}
766 
767 		/* Record adjusted addresses and offsets and parse USDT spec */
768 		tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets));
769 		if (!tmp) {
770 			err = -ENOMEM;
771 			goto err_out;
772 		}
773 		targets = tmp;
774 
775 		target = &targets[target_cnt];
776 		memset(target, 0, sizeof(*target));
777 
778 		target->abs_ip = usdt_abs_ip;
779 		target->rel_ip = usdt_rel_ip;
780 		target->sema_off = usdt_sema_off;
781 
782 		/* notes.args references strings from ELF itself, so they can
783 		 * be referenced safely until elf_end() call
784 		 */
785 		target->spec_str = note.args;
786 
787 		err = parse_usdt_spec(&target->spec, &note, usdt_cookie);
788 		if (err)
789 			goto err_out;
790 
791 		target_cnt++;
792 	}
793 
794 	*out_targets = targets;
795 	*out_target_cnt = target_cnt;
796 	err = target_cnt;
797 
798 err_out:
799 	free(segs);
800 	free(vma_segs);
801 	if (err < 0)
802 		free(targets);
803 	return err;
804 }
805 
806 struct bpf_link_usdt {
807 	struct bpf_link link;
808 
809 	struct usdt_manager *usdt_man;
810 
811 	size_t spec_cnt;
812 	int *spec_ids;
813 
814 	size_t uprobe_cnt;
815 	struct {
816 		long abs_ip;
817 		struct bpf_link *link;
818 	} *uprobes;
819 
820 	struct bpf_link *multi_link;
821 };
822 
823 static int bpf_link_usdt_detach(struct bpf_link *link)
824 {
825 	struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
826 	struct usdt_manager *man = usdt_link->usdt_man;
827 	int i;
828 
829 	bpf_link__destroy(usdt_link->multi_link);
830 
831 	/* When having multi_link, uprobe_cnt is 0 */
832 	for (i = 0; i < usdt_link->uprobe_cnt; i++) {
833 		/* detach underlying uprobe link */
834 		bpf_link__destroy(usdt_link->uprobes[i].link);
835 		/* there is no need to update specs map because it will be
836 		 * unconditionally overwritten on subsequent USDT attaches,
837 		 * but if BPF cookies are not used we need to remove entry
838 		 * from ip_to_spec_id map, otherwise we'll run into false
839 		 * conflicting IP errors
840 		 */
841 		if (!man->has_bpf_cookie) {
842 			/* not much we can do about errors here */
843 			(void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map),
844 						  &usdt_link->uprobes[i].abs_ip);
845 		}
846 	}
847 
848 	/* try to return the list of previously used spec IDs to usdt_manager
849 	 * for future reuse for subsequent USDT attaches
850 	 */
851 	if (!man->free_spec_ids) {
852 		/* if there were no free spec IDs yet, just transfer our IDs */
853 		man->free_spec_ids = usdt_link->spec_ids;
854 		man->free_spec_cnt = usdt_link->spec_cnt;
855 		usdt_link->spec_ids = NULL;
856 	} else {
857 		/* otherwise concat IDs */
858 		size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt;
859 		int *new_free_ids;
860 
861 		new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt,
862 						   sizeof(*new_free_ids));
863 		/* If we couldn't resize free_spec_ids, we'll just leak
864 		 * a bunch of free IDs; this is very unlikely to happen and if
865 		 * system is so exhausted on memory, it's the least of user's
866 		 * concerns, probably.
867 		 * So just do our best here to return those IDs to usdt_manager.
868 		 * Another edge case when we can legitimately get NULL is when
869 		 * new_cnt is zero, which can happen in some edge cases, so we
870 		 * need to be careful about that.
871 		 */
872 		if (new_free_ids || new_cnt == 0) {
873 			memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids,
874 			       usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids));
875 			man->free_spec_ids = new_free_ids;
876 			man->free_spec_cnt = new_cnt;
877 		}
878 	}
879 
880 	return 0;
881 }
882 
883 static void bpf_link_usdt_dealloc(struct bpf_link *link)
884 {
885 	struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
886 
887 	free(usdt_link->spec_ids);
888 	free(usdt_link->uprobes);
889 	free(usdt_link);
890 }
891 
892 static size_t specs_hash_fn(long key, void *ctx)
893 {
894 	return str_hash((char *)key);
895 }
896 
897 static bool specs_equal_fn(long key1, long key2, void *ctx)
898 {
899 	return strcmp((char *)key1, (char *)key2) == 0;
900 }
901 
902 static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash,
903 			    struct bpf_link_usdt *link, struct usdt_target *target,
904 			    int *spec_id, bool *is_new)
905 {
906 	long tmp;
907 	void *new_ids;
908 	int err;
909 
910 	/* check if we already allocated spec ID for this spec string */
911 	if (hashmap__find(specs_hash, target->spec_str, &tmp)) {
912 		*spec_id = tmp;
913 		*is_new = false;
914 		return 0;
915 	}
916 
917 	/* otherwise it's a new ID that needs to be set up in specs map and
918 	 * returned back to usdt_manager when USDT link is detached
919 	 */
920 	new_ids = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids));
921 	if (!new_ids)
922 		return -ENOMEM;
923 	link->spec_ids = new_ids;
924 
925 	/* get next free spec ID, giving preference to free list, if not empty */
926 	if (man->free_spec_cnt) {
927 		*spec_id = man->free_spec_ids[man->free_spec_cnt - 1];
928 
929 		/* cache spec ID for current spec string for future lookups */
930 		err = hashmap__add(specs_hash, target->spec_str, *spec_id);
931 		if (err)
932 			 return err;
933 
934 		man->free_spec_cnt--;
935 	} else {
936 		/* don't allocate spec ID bigger than what fits in specs map */
937 		if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map))
938 			return -E2BIG;
939 
940 		*spec_id = man->next_free_spec_id;
941 
942 		/* cache spec ID for current spec string for future lookups */
943 		err = hashmap__add(specs_hash, target->spec_str, *spec_id);
944 		if (err)
945 			 return err;
946 
947 		man->next_free_spec_id++;
948 	}
949 
950 	/* remember new spec ID in the link for later return back to free list on detach */
951 	link->spec_ids[link->spec_cnt] = *spec_id;
952 	link->spec_cnt++;
953 	*is_new = true;
954 	return 0;
955 }
956 
957 struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog,
958 					  pid_t pid, const char *path,
959 					  const char *usdt_provider, const char *usdt_name,
960 					  __u64 usdt_cookie)
961 {
962 	unsigned long *offsets = NULL, *ref_ctr_offsets = NULL;
963 	int i, err, spec_map_fd, ip_map_fd;
964 	LIBBPF_OPTS(bpf_uprobe_opts, opts);
965 	struct hashmap *specs_hash = NULL;
966 	struct bpf_link_usdt *link = NULL;
967 	struct usdt_target *targets = NULL;
968 	__u64 *cookies = NULL;
969 	struct elf_fd elf_fd;
970 	size_t target_cnt;
971 
972 	spec_map_fd = bpf_map__fd(man->specs_map);
973 	ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map);
974 
975 	err = elf_open(path, &elf_fd);
976 	if (err)
977 		return libbpf_err_ptr(err);
978 
979 	err = sanity_check_usdt_elf(elf_fd.elf, path);
980 	if (err)
981 		goto err_out;
982 
983 	/* normalize PID filter */
984 	if (pid < 0)
985 		pid = -1;
986 	else if (pid == 0)
987 		pid = getpid();
988 
989 	/* discover USDT in given binary, optionally limiting
990 	 * activations to a given PID, if pid > 0
991 	 */
992 	err = collect_usdt_targets(man, elf_fd.elf, path, pid, usdt_provider, usdt_name,
993 				   usdt_cookie, &targets, &target_cnt);
994 	if (err <= 0) {
995 		err = (err == 0) ? -ENOENT : err;
996 		goto err_out;
997 	}
998 
999 	specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL);
1000 	if (IS_ERR(specs_hash)) {
1001 		err = PTR_ERR(specs_hash);
1002 		goto err_out;
1003 	}
1004 
1005 	link = calloc(1, sizeof(*link));
1006 	if (!link) {
1007 		err = -ENOMEM;
1008 		goto err_out;
1009 	}
1010 
1011 	link->usdt_man = man;
1012 	link->link.detach = &bpf_link_usdt_detach;
1013 	link->link.dealloc = &bpf_link_usdt_dealloc;
1014 
1015 	if (man->has_uprobe_multi) {
1016 		offsets = calloc(target_cnt, sizeof(*offsets));
1017 		cookies = calloc(target_cnt, sizeof(*cookies));
1018 		ref_ctr_offsets = calloc(target_cnt, sizeof(*ref_ctr_offsets));
1019 
1020 		if (!offsets || !ref_ctr_offsets || !cookies) {
1021 			err = -ENOMEM;
1022 			goto err_out;
1023 		}
1024 	} else {
1025 		link->uprobes = calloc(target_cnt, sizeof(*link->uprobes));
1026 		if (!link->uprobes) {
1027 			err = -ENOMEM;
1028 			goto err_out;
1029 		}
1030 	}
1031 
1032 	for (i = 0; i < target_cnt; i++) {
1033 		struct usdt_target *target = &targets[i];
1034 		struct bpf_link *uprobe_link;
1035 		bool is_new;
1036 		int spec_id;
1037 
1038 		/* Spec ID can be either reused or newly allocated. If it is
1039 		 * newly allocated, we'll need to fill out spec map, otherwise
1040 		 * entire spec should be valid and can be just used by a new
1041 		 * uprobe. We reuse spec when USDT arg spec is identical. We
1042 		 * also never share specs between two different USDT
1043 		 * attachments ("links"), so all the reused specs already
1044 		 * share USDT cookie value implicitly.
1045 		 */
1046 		err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new);
1047 		if (err)
1048 			goto err_out;
1049 
1050 		if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) {
1051 			err = -errno;
1052 			pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %s\n",
1053 				spec_id, usdt_provider, usdt_name, path, errstr(err));
1054 			goto err_out;
1055 		}
1056 		if (!man->has_bpf_cookie &&
1057 		    bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) {
1058 			err = -errno;
1059 			if (err == -EEXIST) {
1060 				pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n",
1061 				        spec_id, usdt_provider, usdt_name, path);
1062 			} else {
1063 				pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %s\n",
1064 					target->abs_ip, spec_id, usdt_provider, usdt_name,
1065 					path, errstr(err));
1066 			}
1067 			goto err_out;
1068 		}
1069 
1070 		if (man->has_uprobe_multi) {
1071 			offsets[i] = target->rel_ip;
1072 			ref_ctr_offsets[i] = target->sema_off;
1073 			cookies[i] = spec_id;
1074 		} else {
1075 			opts.ref_ctr_offset = target->sema_off;
1076 			opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0;
1077 			uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path,
1078 								      target->rel_ip, &opts);
1079 			err = libbpf_get_error(uprobe_link);
1080 			if (err) {
1081 				pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %s\n",
1082 					i, usdt_provider, usdt_name, path, errstr(err));
1083 				goto err_out;
1084 			}
1085 
1086 			link->uprobes[i].link = uprobe_link;
1087 			link->uprobes[i].abs_ip = target->abs_ip;
1088 			link->uprobe_cnt++;
1089 		}
1090 	}
1091 
1092 	if (man->has_uprobe_multi) {
1093 		LIBBPF_OPTS(bpf_uprobe_multi_opts, opts_multi,
1094 			.ref_ctr_offsets = ref_ctr_offsets,
1095 			.offsets = offsets,
1096 			.cookies = cookies,
1097 			.cnt = target_cnt,
1098 		);
1099 
1100 		link->multi_link = bpf_program__attach_uprobe_multi(prog, pid, path,
1101 								    NULL, &opts_multi);
1102 		if (!link->multi_link) {
1103 			err = -errno;
1104 			pr_warn("usdt: failed to attach uprobe multi for '%s:%s' in '%s': %s\n",
1105 				usdt_provider, usdt_name, path, errstr(err));
1106 			goto err_out;
1107 		}
1108 
1109 		free(offsets);
1110 		free(ref_ctr_offsets);
1111 		free(cookies);
1112 	}
1113 
1114 	free(targets);
1115 	hashmap__free(specs_hash);
1116 	elf_close(&elf_fd);
1117 	return &link->link;
1118 
1119 err_out:
1120 	free(offsets);
1121 	free(ref_ctr_offsets);
1122 	free(cookies);
1123 
1124 	if (link)
1125 		bpf_link__destroy(&link->link);
1126 	free(targets);
1127 	hashmap__free(specs_hash);
1128 	elf_close(&elf_fd);
1129 	return libbpf_err_ptr(err);
1130 }
1131 
1132 /* Parse out USDT ELF note from '.note.stapsdt' section.
1133  * Logic inspired by perf's code.
1134  */
1135 static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr,
1136 			   const char *data, size_t name_off, size_t desc_off,
1137 			   struct usdt_note *note)
1138 {
1139 	const char *provider, *name, *args;
1140 	long addrs[3];
1141 	size_t len;
1142 
1143 	/* sanity check USDT note name and type first */
1144 	if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0)
1145 		return -EINVAL;
1146 	if (nhdr->n_type != USDT_NOTE_TYPE)
1147 		return -EINVAL;
1148 
1149 	/* sanity check USDT note contents ("description" in ELF terminology) */
1150 	len = nhdr->n_descsz;
1151 	data = data + desc_off;
1152 
1153 	/* +3 is the very minimum required to store three empty strings */
1154 	if (len < sizeof(addrs) + 3)
1155 		return -EINVAL;
1156 
1157 	/* get location, base, and semaphore addrs */
1158 	memcpy(&addrs, data, sizeof(addrs));
1159 
1160 	/* parse string fields: provider, name, args */
1161 	provider = data + sizeof(addrs);
1162 
1163 	name = (const char *)memchr(provider, '\0', data + len - provider);
1164 	if (!name) /* non-zero-terminated provider */
1165 		return -EINVAL;
1166 	name++;
1167 	if (name >= data + len || *name == '\0') /* missing or empty name */
1168 		return -EINVAL;
1169 
1170 	args = memchr(name, '\0', data + len - name);
1171 	if (!args) /* non-zero-terminated name */
1172 		return -EINVAL;
1173 	++args;
1174 	if (args >= data + len) /* missing arguments spec */
1175 		return -EINVAL;
1176 
1177 	note->provider = provider;
1178 	note->name = name;
1179 	if (*args == '\0' || *args == ':')
1180 		note->args = "";
1181 	else
1182 		note->args = args;
1183 	note->loc_addr = addrs[0];
1184 	note->base_addr = addrs[1];
1185 	note->sema_addr = addrs[2];
1186 
1187 	return 0;
1188 }
1189 
1190 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz);
1191 
1192 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie)
1193 {
1194 	struct usdt_arg_spec *arg;
1195 	const char *s;
1196 	int arg_sz, len;
1197 
1198 	spec->usdt_cookie = usdt_cookie;
1199 	spec->arg_cnt = 0;
1200 
1201 	s = note->args;
1202 	while (s[0]) {
1203 		if (spec->arg_cnt >= USDT_MAX_ARG_CNT) {
1204 			pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n",
1205 				USDT_MAX_ARG_CNT, note->provider, note->name, note->args);
1206 			return -E2BIG;
1207 		}
1208 
1209 		arg = &spec->args[spec->arg_cnt];
1210 		len = parse_usdt_arg(s, spec->arg_cnt, arg, &arg_sz);
1211 		if (len < 0)
1212 			return len;
1213 
1214 		arg->arg_signed = arg_sz < 0;
1215 		if (arg_sz < 0)
1216 			arg_sz = -arg_sz;
1217 
1218 		switch (arg_sz) {
1219 		case 1: case 2: case 4: case 8:
1220 			arg->arg_bitshift = 64 - arg_sz * 8;
1221 			break;
1222 		default:
1223 			pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n",
1224 				spec->arg_cnt, s, arg_sz);
1225 			return -EINVAL;
1226 		}
1227 
1228 		s += len;
1229 		spec->arg_cnt++;
1230 	}
1231 
1232 	return 0;
1233 }
1234 
1235 /* Architecture-specific logic for parsing USDT argument location specs */
1236 
1237 #if defined(__x86_64__) || defined(__i386__)
1238 
1239 static int calc_pt_regs_off(const char *reg_name)
1240 {
1241 	static struct {
1242 		const char *names[4];
1243 		size_t pt_regs_off;
1244 	} reg_map[] = {
1245 #ifdef __x86_64__
1246 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64)
1247 #else
1248 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32)
1249 #endif
1250 		{ {"rip", "eip", "", ""}, reg_off(rip, eip) },
1251 		{ {"rax", "eax", "ax", "al"}, reg_off(rax, eax) },
1252 		{ {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) },
1253 		{ {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) },
1254 		{ {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) },
1255 		{ {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) },
1256 		{ {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) },
1257 		{ {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) },
1258 		{ {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) },
1259 #undef reg_off
1260 #ifdef __x86_64__
1261 		{ {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) },
1262 		{ {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) },
1263 		{ {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) },
1264 		{ {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) },
1265 		{ {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) },
1266 		{ {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) },
1267 		{ {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) },
1268 		{ {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) },
1269 #endif
1270 	};
1271 	int i, j;
1272 
1273 	for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1274 		for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) {
1275 			if (strcmp(reg_name, reg_map[i].names[j]) == 0)
1276 				return reg_map[i].pt_regs_off;
1277 		}
1278 	}
1279 
1280 	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1281 	return -ENOENT;
1282 }
1283 
1284 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1285 {
1286 	char reg_name[16];
1287 	int len, reg_off;
1288 	long off;
1289 
1290 	if (sscanf(arg_str, " %d @ %ld ( %%%15[^)] ) %n", arg_sz, &off, reg_name, &len) == 3) {
1291 		/* Memory dereference case, e.g., -4@-20(%rbp) */
1292 		arg->arg_type = USDT_ARG_REG_DEREF;
1293 		arg->val_off = off;
1294 		reg_off = calc_pt_regs_off(reg_name);
1295 		if (reg_off < 0)
1296 			return reg_off;
1297 		arg->reg_off = reg_off;
1298 	} else if (sscanf(arg_str, " %d @ ( %%%15[^)] ) %n", arg_sz, reg_name, &len) == 2) {
1299 		/* Memory dereference case without offset, e.g., 8@(%rsp) */
1300 		arg->arg_type = USDT_ARG_REG_DEREF;
1301 		arg->val_off = 0;
1302 		reg_off = calc_pt_regs_off(reg_name);
1303 		if (reg_off < 0)
1304 			return reg_off;
1305 		arg->reg_off = reg_off;
1306 	} else if (sscanf(arg_str, " %d @ %%%15s %n", arg_sz, reg_name, &len) == 2) {
1307 		/* Register read case, e.g., -4@%eax */
1308 		arg->arg_type = USDT_ARG_REG;
1309 		arg->val_off = 0;
1310 
1311 		reg_off = calc_pt_regs_off(reg_name);
1312 		if (reg_off < 0)
1313 			return reg_off;
1314 		arg->reg_off = reg_off;
1315 	} else if (sscanf(arg_str, " %d @ $%ld %n", arg_sz, &off, &len) == 2) {
1316 		/* Constant value case, e.g., 4@$71 */
1317 		arg->arg_type = USDT_ARG_CONST;
1318 		arg->val_off = off;
1319 		arg->reg_off = 0;
1320 	} else {
1321 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1322 		return -EINVAL;
1323 	}
1324 
1325 	return len;
1326 }
1327 
1328 #elif defined(__s390x__)
1329 
1330 /* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */
1331 
1332 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1333 {
1334 	unsigned int reg;
1335 	int len;
1336 	long off;
1337 
1338 	if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", arg_sz, &off, &reg, &len) == 3) {
1339 		/* Memory dereference case, e.g., -2@-28(%r15) */
1340 		arg->arg_type = USDT_ARG_REG_DEREF;
1341 		arg->val_off = off;
1342 		if (reg > 15) {
1343 			pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1344 			return -EINVAL;
1345 		}
1346 		arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1347 	} else if (sscanf(arg_str, " %d @ %%r%u %n", arg_sz, &reg, &len) == 2) {
1348 		/* Register read case, e.g., -8@%r0 */
1349 		arg->arg_type = USDT_ARG_REG;
1350 		arg->val_off = 0;
1351 		if (reg > 15) {
1352 			pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1353 			return -EINVAL;
1354 		}
1355 		arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1356 	} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1357 		/* Constant value case, e.g., 4@71 */
1358 		arg->arg_type = USDT_ARG_CONST;
1359 		arg->val_off = off;
1360 		arg->reg_off = 0;
1361 	} else {
1362 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1363 		return -EINVAL;
1364 	}
1365 
1366 	return len;
1367 }
1368 
1369 #elif defined(__aarch64__)
1370 
1371 static int calc_pt_regs_off(const char *reg_name)
1372 {
1373 	int reg_num;
1374 
1375 	if (sscanf(reg_name, "x%d", &reg_num) == 1) {
1376 		if (reg_num >= 0 && reg_num < 31)
1377 			return offsetof(struct user_pt_regs, regs[reg_num]);
1378 	} else if (strcmp(reg_name, "sp") == 0) {
1379 		return offsetof(struct user_pt_regs, sp);
1380 	}
1381 	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1382 	return -ENOENT;
1383 }
1384 
1385 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1386 {
1387 	char reg_name[16];
1388 	int len, reg_off;
1389 	long off;
1390 
1391 	if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , %ld ] %n", arg_sz, reg_name, &off, &len) == 3) {
1392 		/* Memory dereference case, e.g., -4@[sp, 96] */
1393 		arg->arg_type = USDT_ARG_REG_DEREF;
1394 		arg->val_off = off;
1395 		reg_off = calc_pt_regs_off(reg_name);
1396 		if (reg_off < 0)
1397 			return reg_off;
1398 		arg->reg_off = reg_off;
1399 	} else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1400 		/* Memory dereference case, e.g., -4@[sp] */
1401 		arg->arg_type = USDT_ARG_REG_DEREF;
1402 		arg->val_off = 0;
1403 		reg_off = calc_pt_regs_off(reg_name);
1404 		if (reg_off < 0)
1405 			return reg_off;
1406 		arg->reg_off = reg_off;
1407 	} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1408 		/* Constant value case, e.g., 4@5 */
1409 		arg->arg_type = USDT_ARG_CONST;
1410 		arg->val_off = off;
1411 		arg->reg_off = 0;
1412 	} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1413 		/* Register read case, e.g., -8@x4 */
1414 		arg->arg_type = USDT_ARG_REG;
1415 		arg->val_off = 0;
1416 		reg_off = calc_pt_regs_off(reg_name);
1417 		if (reg_off < 0)
1418 			return reg_off;
1419 		arg->reg_off = reg_off;
1420 	} else {
1421 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1422 		return -EINVAL;
1423 	}
1424 
1425 	return len;
1426 }
1427 
1428 #elif defined(__riscv)
1429 
1430 static int calc_pt_regs_off(const char *reg_name)
1431 {
1432 	static struct {
1433 		const char *name;
1434 		size_t pt_regs_off;
1435 	} reg_map[] = {
1436 		{ "ra", offsetof(struct user_regs_struct, ra) },
1437 		{ "sp", offsetof(struct user_regs_struct, sp) },
1438 		{ "gp", offsetof(struct user_regs_struct, gp) },
1439 		{ "tp", offsetof(struct user_regs_struct, tp) },
1440 		{ "a0", offsetof(struct user_regs_struct, a0) },
1441 		{ "a1", offsetof(struct user_regs_struct, a1) },
1442 		{ "a2", offsetof(struct user_regs_struct, a2) },
1443 		{ "a3", offsetof(struct user_regs_struct, a3) },
1444 		{ "a4", offsetof(struct user_regs_struct, a4) },
1445 		{ "a5", offsetof(struct user_regs_struct, a5) },
1446 		{ "a6", offsetof(struct user_regs_struct, a6) },
1447 		{ "a7", offsetof(struct user_regs_struct, a7) },
1448 		{ "s0", offsetof(struct user_regs_struct, s0) },
1449 		{ "s1", offsetof(struct user_regs_struct, s1) },
1450 		{ "s2", offsetof(struct user_regs_struct, s2) },
1451 		{ "s3", offsetof(struct user_regs_struct, s3) },
1452 		{ "s4", offsetof(struct user_regs_struct, s4) },
1453 		{ "s5", offsetof(struct user_regs_struct, s5) },
1454 		{ "s6", offsetof(struct user_regs_struct, s6) },
1455 		{ "s7", offsetof(struct user_regs_struct, s7) },
1456 		{ "s8", offsetof(struct user_regs_struct, rv_s8) },
1457 		{ "s9", offsetof(struct user_regs_struct, s9) },
1458 		{ "s10", offsetof(struct user_regs_struct, s10) },
1459 		{ "s11", offsetof(struct user_regs_struct, s11) },
1460 		{ "t0", offsetof(struct user_regs_struct, t0) },
1461 		{ "t1", offsetof(struct user_regs_struct, t1) },
1462 		{ "t2", offsetof(struct user_regs_struct, t2) },
1463 		{ "t3", offsetof(struct user_regs_struct, t3) },
1464 		{ "t4", offsetof(struct user_regs_struct, t4) },
1465 		{ "t5", offsetof(struct user_regs_struct, t5) },
1466 		{ "t6", offsetof(struct user_regs_struct, t6) },
1467 	};
1468 	int i;
1469 
1470 	for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1471 		if (strcmp(reg_name, reg_map[i].name) == 0)
1472 			return reg_map[i].pt_regs_off;
1473 	}
1474 
1475 	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1476 	return -ENOENT;
1477 }
1478 
1479 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1480 {
1481 	char reg_name[16];
1482 	int len, reg_off;
1483 	long off;
1484 
1485 	if (sscanf(arg_str, " %d @ %ld ( %15[a-z0-9] ) %n", arg_sz, &off, reg_name, &len) == 3) {
1486 		/* Memory dereference case, e.g., -8@-88(s0) */
1487 		arg->arg_type = USDT_ARG_REG_DEREF;
1488 		arg->val_off = off;
1489 		reg_off = calc_pt_regs_off(reg_name);
1490 		if (reg_off < 0)
1491 			return reg_off;
1492 		arg->reg_off = reg_off;
1493 	} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1494 		/* Constant value case, e.g., 4@5 */
1495 		arg->arg_type = USDT_ARG_CONST;
1496 		arg->val_off = off;
1497 		arg->reg_off = 0;
1498 	} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1499 		/* Register read case, e.g., -8@a1 */
1500 		arg->arg_type = USDT_ARG_REG;
1501 		arg->val_off = 0;
1502 		reg_off = calc_pt_regs_off(reg_name);
1503 		if (reg_off < 0)
1504 			return reg_off;
1505 		arg->reg_off = reg_off;
1506 	} else {
1507 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1508 		return -EINVAL;
1509 	}
1510 
1511 	return len;
1512 }
1513 
1514 #elif defined(__arm__)
1515 
1516 static int calc_pt_regs_off(const char *reg_name)
1517 {
1518 	static struct {
1519 		const char *name;
1520 		size_t pt_regs_off;
1521 	} reg_map[] = {
1522 		{ "r0", offsetof(struct pt_regs, uregs[0]) },
1523 		{ "r1", offsetof(struct pt_regs, uregs[1]) },
1524 		{ "r2", offsetof(struct pt_regs, uregs[2]) },
1525 		{ "r3", offsetof(struct pt_regs, uregs[3]) },
1526 		{ "r4", offsetof(struct pt_regs, uregs[4]) },
1527 		{ "r5", offsetof(struct pt_regs, uregs[5]) },
1528 		{ "r6", offsetof(struct pt_regs, uregs[6]) },
1529 		{ "r7", offsetof(struct pt_regs, uregs[7]) },
1530 		{ "r8", offsetof(struct pt_regs, uregs[8]) },
1531 		{ "r9", offsetof(struct pt_regs, uregs[9]) },
1532 		{ "r10", offsetof(struct pt_regs, uregs[10]) },
1533 		{ "fp", offsetof(struct pt_regs, uregs[11]) },
1534 		{ "ip", offsetof(struct pt_regs, uregs[12]) },
1535 		{ "sp", offsetof(struct pt_regs, uregs[13]) },
1536 		{ "lr", offsetof(struct pt_regs, uregs[14]) },
1537 		{ "pc", offsetof(struct pt_regs, uregs[15]) },
1538 	};
1539 	int i;
1540 
1541 	for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1542 		if (strcmp(reg_name, reg_map[i].name) == 0)
1543 			return reg_map[i].pt_regs_off;
1544 	}
1545 
1546 	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1547 	return -ENOENT;
1548 }
1549 
1550 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1551 {
1552 	char reg_name[16];
1553 	int len, reg_off;
1554 	long off;
1555 
1556 	if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , #%ld ] %n",
1557 		   arg_sz, reg_name, &off, &len) == 3) {
1558 		/* Memory dereference case, e.g., -4@[fp, #96] */
1559 		arg->arg_type = USDT_ARG_REG_DEREF;
1560 		arg->val_off = off;
1561 		reg_off = calc_pt_regs_off(reg_name);
1562 		if (reg_off < 0)
1563 			return reg_off;
1564 		arg->reg_off = reg_off;
1565 	} else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1566 		/* Memory dereference case, e.g., -4@[sp] */
1567 		arg->arg_type = USDT_ARG_REG_DEREF;
1568 		arg->val_off = 0;
1569 		reg_off = calc_pt_regs_off(reg_name);
1570 		if (reg_off < 0)
1571 			return reg_off;
1572 		arg->reg_off = reg_off;
1573 	} else if (sscanf(arg_str, " %d @ #%ld %n", arg_sz, &off, &len) == 2) {
1574 		/* Constant value case, e.g., 4@#5 */
1575 		arg->arg_type = USDT_ARG_CONST;
1576 		arg->val_off = off;
1577 		arg->reg_off = 0;
1578 	} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1579 		/* Register read case, e.g., -8@r4 */
1580 		arg->arg_type = USDT_ARG_REG;
1581 		arg->val_off = 0;
1582 		reg_off = calc_pt_regs_off(reg_name);
1583 		if (reg_off < 0)
1584 			return reg_off;
1585 		arg->reg_off = reg_off;
1586 	} else {
1587 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1588 		return -EINVAL;
1589 	}
1590 
1591 	return len;
1592 }
1593 
1594 #else
1595 
1596 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1597 {
1598 	pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n");
1599 	return -ENOTSUP;
1600 }
1601 
1602 #endif
1603