xref: /linux/tools/lib/bpf/usdt.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */
3 #include <ctype.h>
4 #include <stdio.h>
5 #include <stdlib.h>
6 #include <string.h>
7 #include <libelf.h>
8 #include <gelf.h>
9 #include <unistd.h>
10 #include <linux/ptrace.h>
11 #include <linux/kernel.h>
12 
13 /* s8 will be marked as poison while it's a reg of riscv */
14 #if defined(__riscv)
15 #define rv_s8 s8
16 #endif
17 
18 #include "bpf.h"
19 #include "libbpf.h"
20 #include "libbpf_common.h"
21 #include "libbpf_internal.h"
22 #include "hashmap.h"
23 
24 /* libbpf's USDT support consists of BPF-side state/code and user-space
25  * state/code working together in concert. BPF-side parts are defined in
26  * usdt.bpf.h header library. User-space state is encapsulated by struct
27  * usdt_manager and all the supporting code centered around usdt_manager.
28  *
29  * usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map
30  * and IP-to-spec-ID map, which is auxiliary map necessary for kernels that
31  * don't support BPF cookie (see below). These two maps are implicitly
32  * embedded into user's end BPF object file when user's code included
33  * usdt.bpf.h. This means that libbpf doesn't do anything special to create
34  * these USDT support maps. They are created by normal libbpf logic of
35  * instantiating BPF maps when opening and loading BPF object.
36  *
37  * As such, libbpf is basically unaware of the need to do anything
38  * USDT-related until the very first call to bpf_program__attach_usdt(), which
39  * can be called by user explicitly or happen automatically during skeleton
40  * attach (or, equivalently, through generic bpf_program__attach() call). At
41  * this point, libbpf will instantiate and initialize struct usdt_manager and
42  * store it in bpf_object. USDT manager is per-BPF object construct, as each
43  * independent BPF object might or might not have USDT programs, and thus all
44  * the expected USDT-related state. There is no coordination between two
45  * bpf_object in parts of USDT attachment, they are oblivious of each other's
46  * existence and libbpf is just oblivious, dealing with bpf_object-specific
47  * USDT state.
48  *
49  * Quick crash course on USDTs.
50  *
51  * From user-space application's point of view, USDT is essentially just
52  * a slightly special function call that normally has zero overhead, unless it
53  * is being traced by some external entity (e.g, BPF-based tool). Here's how
54  * a typical application can trigger USDT probe:
55  *
56  * #include <sys/sdt.h>  // provided by systemtap-sdt-devel package
57  * // folly also provide similar functionality in folly/tracing/StaticTracepoint.h
58  *
59  * STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y);
60  *
61  * USDT is identified by it's <provider-name>:<probe-name> pair of names. Each
62  * individual USDT has a fixed number of arguments (3 in the above example)
63  * and specifies values of each argument as if it was a function call.
64  *
65  * USDT call is actually not a function call, but is instead replaced by
66  * a single NOP instruction (thus zero overhead, effectively). But in addition
67  * to that, those USDT macros generate special SHT_NOTE ELF records in
68  * .note.stapsdt ELF section. Here's an example USDT definition as emitted by
69  * `readelf -n <binary>`:
70  *
71  *   stapsdt              0x00000089       NT_STAPSDT (SystemTap probe descriptors)
72  *   Provider: test
73  *   Name: usdt12
74  *   Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e
75  *   Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil
76  *
77  * In this case we have USDT test:usdt12 with 12 arguments.
78  *
79  * Location and base are offsets used to calculate absolute IP address of that
80  * NOP instruction that kernel can replace with an interrupt instruction to
81  * trigger instrumentation code (BPF program for all that we care about).
82  *
83  * Semaphore above is and optional feature. It records an address of a 2-byte
84  * refcount variable (normally in '.probes' ELF section) used for signaling if
85  * there is anything that is attached to USDT. This is useful for user
86  * applications if, for example, they need to prepare some arguments that are
87  * passed only to USDTs and preparation is expensive. By checking if USDT is
88  * "activated", an application can avoid paying those costs unnecessarily.
89  * Recent enough kernel has built-in support for automatically managing this
90  * refcount, which libbpf expects and relies on. If USDT is defined without
91  * associated semaphore, this value will be zero. See selftests for semaphore
92  * examples.
93  *
94  * Arguments is the most interesting part. This USDT specification string is
95  * providing information about all the USDT arguments and their locations. The
96  * part before @ sign defined byte size of the argument (1, 2, 4, or 8) and
97  * whether the argument is signed or unsigned (negative size means signed).
98  * The part after @ sign is assembly-like definition of argument location
99  * (see [0] for more details). Technically, assembler can provide some pretty
100  * advanced definitions, but libbpf is currently supporting three most common
101  * cases:
102  *   1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9);
103  *   2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer
104  *      whose value is in register %rdx";
105  *   3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which
106  *      specifies signed 32-bit integer stored at offset -1204 bytes from
107  *      memory address stored in %rbp.
108  *
109  *   [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
110  *
111  * During attachment, libbpf parses all the relevant USDT specifications and
112  * prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side
113  * code through spec map. This allows BPF applications to quickly fetch the
114  * actual value at runtime using a simple BPF-side code.
115  *
116  * With basics out of the way, let's go over less immediately obvious aspects
117  * of supporting USDTs.
118  *
119  * First, there is no special USDT BPF program type. It is actually just
120  * a uprobe BPF program (which for kernel, at least currently, is just a kprobe
121  * program, so BPF_PROG_TYPE_KPROBE program type). With the only difference
122  * that uprobe is usually attached at the function entry, while USDT will
123  * normally will be somewhere inside the function. But it should always be
124  * pointing to NOP instruction, which makes such uprobes the fastest uprobe
125  * kind.
126  *
127  * Second, it's important to realize that such STAP_PROBEn(provider, name, ...)
128  * macro invocations can end up being inlined many-many times, depending on
129  * specifics of each individual user application. So single conceptual USDT
130  * (identified by provider:name pair of identifiers) is, generally speaking,
131  * multiple uprobe locations (USDT call sites) in different places in user
132  * application. Further, again due to inlining, each USDT call site might end
133  * up having the same argument #N be located in a different place. In one call
134  * site it could be a constant, in another will end up in a register, and in
135  * yet another could be some other register or even somewhere on the stack.
136  *
137  * As such, "attaching to USDT" means (in general case) attaching the same
138  * uprobe BPF program to multiple target locations in user application, each
139  * potentially having a completely different USDT spec associated with it.
140  * To wire all this up together libbpf allocates a unique integer spec ID for
141  * each unique USDT spec. Spec IDs are allocated as sequential small integers
142  * so that they can be used as keys in array BPF map (for performance reasons).
143  * Spec ID allocation and accounting is big part of what usdt_manager is
144  * about. This state has to be maintained per-BPF object and coordinate
145  * between different USDT attachments within the same BPF object.
146  *
147  * Spec ID is the key in spec BPF map, value is the actual USDT spec layed out
148  * as struct usdt_spec. Each invocation of BPF program at runtime needs to
149  * know its associated spec ID. It gets it either through BPF cookie, which
150  * libbpf sets to spec ID during attach time, or, if kernel is too old to
151  * support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such
152  * case. The latter means that some modes of operation can't be supported
153  * without BPF cookie. Such mode is attaching to shared library "generically",
154  * without specifying target process. In such case, it's impossible to
155  * calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode
156  * is not supported without BPF cookie support.
157  *
158  * Note that libbpf is using BPF cookie functionality for its own internal
159  * needs, so user itself can't rely on BPF cookie feature. To that end, libbpf
160  * provides conceptually equivalent USDT cookie support. It's still u64
161  * user-provided value that can be associated with USDT attachment. Note that
162  * this will be the same value for all USDT call sites within the same single
163  * *logical* USDT attachment. This makes sense because to user attaching to
164  * USDT is a single BPF program triggered for singular USDT probe. The fact
165  * that this is done at multiple actual locations is a mostly hidden
166  * implementation details. This USDT cookie value can be fetched with
167  * bpf_usdt_cookie(ctx) API provided by usdt.bpf.h
168  *
169  * Lastly, while single USDT can have tons of USDT call sites, it doesn't
170  * necessarily have that many different USDT specs. It very well might be
171  * that 1000 USDT call sites only need 5 different USDT specs, because all the
172  * arguments are typically contained in a small set of registers or stack
173  * locations. As such, it's wasteful to allocate as many USDT spec IDs as
174  * there are USDT call sites. So libbpf tries to be frugal and performs
175  * on-the-fly deduplication during a single USDT attachment to only allocate
176  * the minimal required amount of unique USDT specs (and thus spec IDs). This
177  * is trivially achieved by using USDT spec string (Arguments string from USDT
178  * note) as a lookup key in a hashmap. USDT spec string uniquely defines
179  * everything about how to fetch USDT arguments, so two USDT call sites
180  * sharing USDT spec string can safely share the same USDT spec and spec ID.
181  * Note, this spec string deduplication is happening only during the same USDT
182  * attachment, so each USDT spec shares the same USDT cookie value. This is
183  * not generally true for other USDT attachments within the same BPF object,
184  * as even if USDT spec string is the same, USDT cookie value can be
185  * different. It was deemed excessive to try to deduplicate across independent
186  * USDT attachments by taking into account USDT spec string *and* USDT cookie
187  * value, which would complicated spec ID accounting significantly for little
188  * gain.
189  */
190 
191 #define USDT_BASE_SEC ".stapsdt.base"
192 #define USDT_SEMA_SEC ".probes"
193 #define USDT_NOTE_SEC  ".note.stapsdt"
194 #define USDT_NOTE_TYPE 3
195 #define USDT_NOTE_NAME "stapsdt"
196 
197 /* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */
198 enum usdt_arg_type {
199 	USDT_ARG_CONST,
200 	USDT_ARG_REG,
201 	USDT_ARG_REG_DEREF,
202 };
203 
204 /* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */
205 struct usdt_arg_spec {
206 	__u64 val_off;
207 	enum usdt_arg_type arg_type;
208 	short reg_off;
209 	bool arg_signed;
210 	char arg_bitshift;
211 };
212 
213 /* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */
214 #define USDT_MAX_ARG_CNT 12
215 
216 /* should match struct __bpf_usdt_spec from usdt.bpf.h */
217 struct usdt_spec {
218 	struct usdt_arg_spec args[USDT_MAX_ARG_CNT];
219 	__u64 usdt_cookie;
220 	short arg_cnt;
221 };
222 
223 struct usdt_note {
224 	const char *provider;
225 	const char *name;
226 	/* USDT args specification string, e.g.:
227 	 * "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx"
228 	 */
229 	const char *args;
230 	long loc_addr;
231 	long base_addr;
232 	long sema_addr;
233 };
234 
235 struct usdt_target {
236 	long abs_ip;
237 	long rel_ip;
238 	long sema_off;
239 	struct usdt_spec spec;
240 	const char *spec_str;
241 };
242 
243 struct usdt_manager {
244 	struct bpf_map *specs_map;
245 	struct bpf_map *ip_to_spec_id_map;
246 
247 	int *free_spec_ids;
248 	size_t free_spec_cnt;
249 	size_t next_free_spec_id;
250 
251 	bool has_bpf_cookie;
252 	bool has_sema_refcnt;
253 	bool has_uprobe_multi;
254 };
255 
256 struct usdt_manager *usdt_manager_new(struct bpf_object *obj)
257 {
258 	static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset";
259 	struct usdt_manager *man;
260 	struct bpf_map *specs_map, *ip_to_spec_id_map;
261 
262 	specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs");
263 	ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id");
264 	if (!specs_map || !ip_to_spec_id_map) {
265 		pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n");
266 		return ERR_PTR(-ESRCH);
267 	}
268 
269 	man = calloc(1, sizeof(*man));
270 	if (!man)
271 		return ERR_PTR(-ENOMEM);
272 
273 	man->specs_map = specs_map;
274 	man->ip_to_spec_id_map = ip_to_spec_id_map;
275 
276 	/* Detect if BPF cookie is supported for kprobes.
277 	 * We don't need IP-to-ID mapping if we can use BPF cookies.
278 	 * Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value")
279 	 */
280 	man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE);
281 
282 	/* Detect kernel support for automatic refcounting of USDT semaphore.
283 	 * If this is not supported, USDTs with semaphores will not be supported.
284 	 * Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe")
285 	 */
286 	man->has_sema_refcnt = faccessat(AT_FDCWD, ref_ctr_sysfs_path, F_OK, AT_EACCESS) == 0;
287 
288 	/*
289 	 * Detect kernel support for uprobe multi link to be used for attaching
290 	 * usdt probes.
291 	 */
292 	man->has_uprobe_multi = kernel_supports(obj, FEAT_UPROBE_MULTI_LINK);
293 	return man;
294 }
295 
296 void usdt_manager_free(struct usdt_manager *man)
297 {
298 	if (IS_ERR_OR_NULL(man))
299 		return;
300 
301 	free(man->free_spec_ids);
302 	free(man);
303 }
304 
305 static int sanity_check_usdt_elf(Elf *elf, const char *path)
306 {
307 	GElf_Ehdr ehdr;
308 	int endianness;
309 
310 	if (elf_kind(elf) != ELF_K_ELF) {
311 		pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path);
312 		return -EBADF;
313 	}
314 
315 	switch (gelf_getclass(elf)) {
316 	case ELFCLASS64:
317 		if (sizeof(void *) != 8) {
318 			pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path);
319 			return -EBADF;
320 		}
321 		break;
322 	case ELFCLASS32:
323 		if (sizeof(void *) != 4) {
324 			pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path);
325 			return -EBADF;
326 		}
327 		break;
328 	default:
329 		pr_warn("usdt: unsupported ELF class for '%s'\n", path);
330 		return -EBADF;
331 	}
332 
333 	if (!gelf_getehdr(elf, &ehdr))
334 		return -EINVAL;
335 
336 	if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) {
337 		pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n",
338 			path, ehdr.e_type);
339 		return -EBADF;
340 	}
341 
342 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
343 	endianness = ELFDATA2LSB;
344 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
345 	endianness = ELFDATA2MSB;
346 #else
347 # error "Unrecognized __BYTE_ORDER__"
348 #endif
349 	if (endianness != ehdr.e_ident[EI_DATA]) {
350 		pr_warn("usdt: ELF endianness mismatch for '%s'\n", path);
351 		return -EBADF;
352 	}
353 
354 	return 0;
355 }
356 
357 static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn)
358 {
359 	Elf_Scn *sec = NULL;
360 	size_t shstrndx;
361 
362 	if (elf_getshdrstrndx(elf, &shstrndx))
363 		return -EINVAL;
364 
365 	/* check if ELF is corrupted and avoid calling elf_strptr if yes */
366 	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL))
367 		return -EINVAL;
368 
369 	while ((sec = elf_nextscn(elf, sec)) != NULL) {
370 		char *name;
371 
372 		if (!gelf_getshdr(sec, shdr))
373 			return -EINVAL;
374 
375 		name = elf_strptr(elf, shstrndx, shdr->sh_name);
376 		if (name && strcmp(sec_name, name) == 0) {
377 			*scn = sec;
378 			return 0;
379 		}
380 	}
381 
382 	return -ENOENT;
383 }
384 
385 struct elf_seg {
386 	long start;
387 	long end;
388 	long offset;
389 	bool is_exec;
390 };
391 
392 static int cmp_elf_segs(const void *_a, const void *_b)
393 {
394 	const struct elf_seg *a = _a;
395 	const struct elf_seg *b = _b;
396 
397 	return a->start < b->start ? -1 : 1;
398 }
399 
400 static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt)
401 {
402 	GElf_Phdr phdr;
403 	size_t n;
404 	int i, err;
405 	struct elf_seg *seg;
406 	void *tmp;
407 
408 	*seg_cnt = 0;
409 
410 	if (elf_getphdrnum(elf, &n)) {
411 		err = -errno;
412 		return err;
413 	}
414 
415 	for (i = 0; i < n; i++) {
416 		if (!gelf_getphdr(elf, i, &phdr)) {
417 			err = -errno;
418 			return err;
419 		}
420 
421 		pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n",
422 			 i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset,
423 			 (long)phdr.p_type, (long)phdr.p_flags);
424 		if (phdr.p_type != PT_LOAD)
425 			continue;
426 
427 		tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
428 		if (!tmp)
429 			return -ENOMEM;
430 
431 		*segs = tmp;
432 		seg = *segs + *seg_cnt;
433 		(*seg_cnt)++;
434 
435 		seg->start = phdr.p_vaddr;
436 		seg->end = phdr.p_vaddr + phdr.p_memsz;
437 		seg->offset = phdr.p_offset;
438 		seg->is_exec = phdr.p_flags & PF_X;
439 	}
440 
441 	if (*seg_cnt == 0) {
442 		pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path);
443 		return -ESRCH;
444 	}
445 
446 	qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
447 	return 0;
448 }
449 
450 static int parse_vma_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt)
451 {
452 	char path[PATH_MAX], line[PATH_MAX], mode[16];
453 	size_t seg_start, seg_end, seg_off;
454 	struct elf_seg *seg;
455 	int tmp_pid, i, err;
456 	FILE *f;
457 
458 	*seg_cnt = 0;
459 
460 	/* Handle containerized binaries only accessible from
461 	 * /proc/<pid>/root/<path>. They will be reported as just /<path> in
462 	 * /proc/<pid>/maps.
463 	 */
464 	if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid)
465 		goto proceed;
466 
467 	if (!realpath(lib_path, path)) {
468 		pr_warn("usdt: failed to get absolute path of '%s' (err %d), using path as is...\n",
469 			lib_path, -errno);
470 		libbpf_strlcpy(path, lib_path, sizeof(path));
471 	}
472 
473 proceed:
474 	sprintf(line, "/proc/%d/maps", pid);
475 	f = fopen(line, "re");
476 	if (!f) {
477 		err = -errno;
478 		pr_warn("usdt: failed to open '%s' to get base addr of '%s': %d\n",
479 			line, lib_path, err);
480 		return err;
481 	}
482 
483 	/* We need to handle lines with no path at the end:
484 	 *
485 	 * 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613      /usr/lib64/libc-2.17.so
486 	 * 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0
487 	 * 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598    /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so
488 	 */
489 	while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n",
490 		      &seg_start, &seg_end, mode, &seg_off, line) == 5) {
491 		void *tmp;
492 
493 		/* to handle no path case (see above) we need to capture line
494 		 * without skipping any whitespaces. So we need to strip
495 		 * leading whitespaces manually here
496 		 */
497 		i = 0;
498 		while (isblank(line[i]))
499 			i++;
500 		if (strcmp(line + i, path) != 0)
501 			continue;
502 
503 		pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n",
504 			 path, seg_start, seg_end, mode, seg_off);
505 
506 		/* ignore non-executable sections for shared libs */
507 		if (mode[2] != 'x')
508 			continue;
509 
510 		tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs));
511 		if (!tmp) {
512 			err = -ENOMEM;
513 			goto err_out;
514 		}
515 
516 		*segs = tmp;
517 		seg = *segs + *seg_cnt;
518 		*seg_cnt += 1;
519 
520 		seg->start = seg_start;
521 		seg->end = seg_end;
522 		seg->offset = seg_off;
523 		seg->is_exec = true;
524 	}
525 
526 	if (*seg_cnt == 0) {
527 		pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n",
528 			lib_path, path, pid);
529 		err = -ESRCH;
530 		goto err_out;
531 	}
532 
533 	qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs);
534 	err = 0;
535 err_out:
536 	fclose(f);
537 	return err;
538 }
539 
540 static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long virtaddr)
541 {
542 	struct elf_seg *seg;
543 	int i;
544 
545 	/* for ELF binaries (both executables and shared libraries), we are
546 	 * given virtual address (absolute for executables, relative for
547 	 * libraries) which should match address range of [seg_start, seg_end)
548 	 */
549 	for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
550 		if (seg->start <= virtaddr && virtaddr < seg->end)
551 			return seg;
552 	}
553 	return NULL;
554 }
555 
556 static struct elf_seg *find_vma_seg(struct elf_seg *segs, size_t seg_cnt, long offset)
557 {
558 	struct elf_seg *seg;
559 	int i;
560 
561 	/* for VMA segments from /proc/<pid>/maps file, provided "address" is
562 	 * actually a file offset, so should be fall within logical
563 	 * offset-based range of [offset_start, offset_end)
564 	 */
565 	for (i = 0, seg = segs; i < seg_cnt; i++, seg++) {
566 		if (seg->offset <= offset && offset < seg->offset + (seg->end - seg->start))
567 			return seg;
568 	}
569 	return NULL;
570 }
571 
572 static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr,
573 			   const char *data, size_t name_off, size_t desc_off,
574 			   struct usdt_note *usdt_note);
575 
576 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie);
577 
578 static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid,
579 				const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie,
580 				struct usdt_target **out_targets, size_t *out_target_cnt)
581 {
582 	size_t off, name_off, desc_off, seg_cnt = 0, vma_seg_cnt = 0, target_cnt = 0;
583 	struct elf_seg *segs = NULL, *vma_segs = NULL;
584 	struct usdt_target *targets = NULL, *target;
585 	long base_addr = 0;
586 	Elf_Scn *notes_scn, *base_scn;
587 	GElf_Shdr base_shdr, notes_shdr;
588 	GElf_Ehdr ehdr;
589 	GElf_Nhdr nhdr;
590 	Elf_Data *data;
591 	int err;
592 
593 	*out_targets = NULL;
594 	*out_target_cnt = 0;
595 
596 	err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, &notes_shdr, &notes_scn);
597 	if (err) {
598 		pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path);
599 		return err;
600 	}
601 
602 	if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) {
603 		pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path);
604 		return -EINVAL;
605 	}
606 
607 	err = parse_elf_segs(elf, path, &segs, &seg_cnt);
608 	if (err) {
609 		pr_warn("usdt: failed to process ELF program segments for '%s': %d\n", path, err);
610 		goto err_out;
611 	}
612 
613 	/* .stapsdt.base ELF section is optional, but is used for prelink
614 	 * offset compensation (see a big comment further below)
615 	 */
616 	if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0)
617 		base_addr = base_shdr.sh_addr;
618 
619 	data = elf_getdata(notes_scn, 0);
620 	off = 0;
621 	while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) {
622 		long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0;
623 		struct usdt_note note;
624 		struct elf_seg *seg = NULL;
625 		void *tmp;
626 
627 		err = parse_usdt_note(elf, path, &nhdr, data->d_buf, name_off, desc_off, &note);
628 		if (err)
629 			goto err_out;
630 
631 		if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0)
632 			continue;
633 
634 		/* We need to compensate "prelink effect". See [0] for details,
635 		 * relevant parts quoted here:
636 		 *
637 		 * Each SDT probe also expands into a non-allocated ELF note. You can
638 		 * find this by looking at SHT_NOTE sections and decoding the format;
639 		 * see below for details. Because the note is non-allocated, it means
640 		 * there is no runtime cost, and also preserved in both stripped files
641 		 * and .debug files.
642 		 *
643 		 * However, this means that prelink won't adjust the note's contents
644 		 * for address offsets. Instead, this is done via the .stapsdt.base
645 		 * section. This is a special section that is added to the text. We
646 		 * will only ever have one of these sections in a final link and it
647 		 * will only ever be one byte long. Nothing about this section itself
648 		 * matters, we just use it as a marker to detect prelink address
649 		 * adjustments.
650 		 *
651 		 * Each probe note records the link-time address of the .stapsdt.base
652 		 * section alongside the probe PC address. The decoder compares the
653 		 * base address stored in the note with the .stapsdt.base section's
654 		 * sh_addr. Initially these are the same, but the section header will
655 		 * be adjusted by prelink. So the decoder applies the difference to
656 		 * the probe PC address to get the correct prelinked PC address; the
657 		 * same adjustment is applied to the semaphore address, if any.
658 		 *
659 		 *   [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation
660 		 */
661 		usdt_abs_ip = note.loc_addr;
662 		if (base_addr)
663 			usdt_abs_ip += base_addr - note.base_addr;
664 
665 		/* When attaching uprobes (which is what USDTs basically are)
666 		 * kernel expects file offset to be specified, not a relative
667 		 * virtual address, so we need to translate virtual address to
668 		 * file offset, for both ET_EXEC and ET_DYN binaries.
669 		 */
670 		seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip);
671 		if (!seg) {
672 			err = -ESRCH;
673 			pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n",
674 				usdt_provider, usdt_name, path, usdt_abs_ip);
675 			goto err_out;
676 		}
677 		if (!seg->is_exec) {
678 			err = -ESRCH;
679 			pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n",
680 				path, seg->start, seg->end, usdt_provider, usdt_name,
681 				usdt_abs_ip);
682 			goto err_out;
683 		}
684 		/* translate from virtual address to file offset */
685 		usdt_rel_ip = usdt_abs_ip - seg->start + seg->offset;
686 
687 		if (ehdr.e_type == ET_DYN && !man->has_bpf_cookie) {
688 			/* If we don't have BPF cookie support but need to
689 			 * attach to a shared library, we'll need to know and
690 			 * record absolute addresses of attach points due to
691 			 * the need to lookup USDT spec by absolute IP of
692 			 * triggered uprobe. Doing this resolution is only
693 			 * possible when we have a specific PID of the process
694 			 * that's using specified shared library. BPF cookie
695 			 * removes the absolute address limitation as we don't
696 			 * need to do this lookup (we just use BPF cookie as
697 			 * an index of USDT spec), so for newer kernels with
698 			 * BPF cookie support libbpf supports USDT attachment
699 			 * to shared libraries with no PID filter.
700 			 */
701 			if (pid < 0) {
702 				pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n");
703 				err = -ENOTSUP;
704 				goto err_out;
705 			}
706 
707 			/* vma_segs are lazily initialized only if necessary */
708 			if (vma_seg_cnt == 0) {
709 				err = parse_vma_segs(pid, path, &vma_segs, &vma_seg_cnt);
710 				if (err) {
711 					pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %d\n",
712 						pid, path, err);
713 					goto err_out;
714 				}
715 			}
716 
717 			seg = find_vma_seg(vma_segs, vma_seg_cnt, usdt_rel_ip);
718 			if (!seg) {
719 				err = -ESRCH;
720 				pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n",
721 					usdt_provider, usdt_name, path, usdt_rel_ip);
722 				goto err_out;
723 			}
724 
725 			usdt_abs_ip = seg->start - seg->offset + usdt_rel_ip;
726 		}
727 
728 		pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n",
729 			 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path,
730 			 note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args,
731 			 seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0);
732 
733 		/* Adjust semaphore address to be a file offset */
734 		if (note.sema_addr) {
735 			if (!man->has_sema_refcnt) {
736 				pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n",
737 					usdt_provider, usdt_name, path);
738 				err = -ENOTSUP;
739 				goto err_out;
740 			}
741 
742 			seg = find_elf_seg(segs, seg_cnt, note.sema_addr);
743 			if (!seg) {
744 				err = -ESRCH;
745 				pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n",
746 					usdt_provider, usdt_name, path, note.sema_addr);
747 				goto err_out;
748 			}
749 			if (seg->is_exec) {
750 				err = -ESRCH;
751 				pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n",
752 					path, seg->start, seg->end, usdt_provider, usdt_name,
753 					note.sema_addr);
754 				goto err_out;
755 			}
756 
757 			usdt_sema_off = note.sema_addr - seg->start + seg->offset;
758 
759 			pr_debug("usdt: sema  for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n",
760 				 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ",
761 				 path, note.sema_addr, note.base_addr, usdt_sema_off,
762 				 seg->start, seg->end, seg->offset);
763 		}
764 
765 		/* Record adjusted addresses and offsets and parse USDT spec */
766 		tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets));
767 		if (!tmp) {
768 			err = -ENOMEM;
769 			goto err_out;
770 		}
771 		targets = tmp;
772 
773 		target = &targets[target_cnt];
774 		memset(target, 0, sizeof(*target));
775 
776 		target->abs_ip = usdt_abs_ip;
777 		target->rel_ip = usdt_rel_ip;
778 		target->sema_off = usdt_sema_off;
779 
780 		/* notes.args references strings from ELF itself, so they can
781 		 * be referenced safely until elf_end() call
782 		 */
783 		target->spec_str = note.args;
784 
785 		err = parse_usdt_spec(&target->spec, &note, usdt_cookie);
786 		if (err)
787 			goto err_out;
788 
789 		target_cnt++;
790 	}
791 
792 	*out_targets = targets;
793 	*out_target_cnt = target_cnt;
794 	err = target_cnt;
795 
796 err_out:
797 	free(segs);
798 	free(vma_segs);
799 	if (err < 0)
800 		free(targets);
801 	return err;
802 }
803 
804 struct bpf_link_usdt {
805 	struct bpf_link link;
806 
807 	struct usdt_manager *usdt_man;
808 
809 	size_t spec_cnt;
810 	int *spec_ids;
811 
812 	size_t uprobe_cnt;
813 	struct {
814 		long abs_ip;
815 		struct bpf_link *link;
816 	} *uprobes;
817 
818 	struct bpf_link *multi_link;
819 };
820 
821 static int bpf_link_usdt_detach(struct bpf_link *link)
822 {
823 	struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
824 	struct usdt_manager *man = usdt_link->usdt_man;
825 	int i;
826 
827 	bpf_link__destroy(usdt_link->multi_link);
828 
829 	/* When having multi_link, uprobe_cnt is 0 */
830 	for (i = 0; i < usdt_link->uprobe_cnt; i++) {
831 		/* detach underlying uprobe link */
832 		bpf_link__destroy(usdt_link->uprobes[i].link);
833 		/* there is no need to update specs map because it will be
834 		 * unconditionally overwritten on subsequent USDT attaches,
835 		 * but if BPF cookies are not used we need to remove entry
836 		 * from ip_to_spec_id map, otherwise we'll run into false
837 		 * conflicting IP errors
838 		 */
839 		if (!man->has_bpf_cookie) {
840 			/* not much we can do about errors here */
841 			(void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map),
842 						  &usdt_link->uprobes[i].abs_ip);
843 		}
844 	}
845 
846 	/* try to return the list of previously used spec IDs to usdt_manager
847 	 * for future reuse for subsequent USDT attaches
848 	 */
849 	if (!man->free_spec_ids) {
850 		/* if there were no free spec IDs yet, just transfer our IDs */
851 		man->free_spec_ids = usdt_link->spec_ids;
852 		man->free_spec_cnt = usdt_link->spec_cnt;
853 		usdt_link->spec_ids = NULL;
854 	} else {
855 		/* otherwise concat IDs */
856 		size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt;
857 		int *new_free_ids;
858 
859 		new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt,
860 						   sizeof(*new_free_ids));
861 		/* If we couldn't resize free_spec_ids, we'll just leak
862 		 * a bunch of free IDs; this is very unlikely to happen and if
863 		 * system is so exhausted on memory, it's the least of user's
864 		 * concerns, probably.
865 		 * So just do our best here to return those IDs to usdt_manager.
866 		 * Another edge case when we can legitimately get NULL is when
867 		 * new_cnt is zero, which can happen in some edge cases, so we
868 		 * need to be careful about that.
869 		 */
870 		if (new_free_ids || new_cnt == 0) {
871 			memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids,
872 			       usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids));
873 			man->free_spec_ids = new_free_ids;
874 			man->free_spec_cnt = new_cnt;
875 		}
876 	}
877 
878 	return 0;
879 }
880 
881 static void bpf_link_usdt_dealloc(struct bpf_link *link)
882 {
883 	struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link);
884 
885 	free(usdt_link->spec_ids);
886 	free(usdt_link->uprobes);
887 	free(usdt_link);
888 }
889 
890 static size_t specs_hash_fn(long key, void *ctx)
891 {
892 	return str_hash((char *)key);
893 }
894 
895 static bool specs_equal_fn(long key1, long key2, void *ctx)
896 {
897 	return strcmp((char *)key1, (char *)key2) == 0;
898 }
899 
900 static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash,
901 			    struct bpf_link_usdt *link, struct usdt_target *target,
902 			    int *spec_id, bool *is_new)
903 {
904 	long tmp;
905 	void *new_ids;
906 	int err;
907 
908 	/* check if we already allocated spec ID for this spec string */
909 	if (hashmap__find(specs_hash, target->spec_str, &tmp)) {
910 		*spec_id = tmp;
911 		*is_new = false;
912 		return 0;
913 	}
914 
915 	/* otherwise it's a new ID that needs to be set up in specs map and
916 	 * returned back to usdt_manager when USDT link is detached
917 	 */
918 	new_ids = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids));
919 	if (!new_ids)
920 		return -ENOMEM;
921 	link->spec_ids = new_ids;
922 
923 	/* get next free spec ID, giving preference to free list, if not empty */
924 	if (man->free_spec_cnt) {
925 		*spec_id = man->free_spec_ids[man->free_spec_cnt - 1];
926 
927 		/* cache spec ID for current spec string for future lookups */
928 		err = hashmap__add(specs_hash, target->spec_str, *spec_id);
929 		if (err)
930 			 return err;
931 
932 		man->free_spec_cnt--;
933 	} else {
934 		/* don't allocate spec ID bigger than what fits in specs map */
935 		if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map))
936 			return -E2BIG;
937 
938 		*spec_id = man->next_free_spec_id;
939 
940 		/* cache spec ID for current spec string for future lookups */
941 		err = hashmap__add(specs_hash, target->spec_str, *spec_id);
942 		if (err)
943 			 return err;
944 
945 		man->next_free_spec_id++;
946 	}
947 
948 	/* remember new spec ID in the link for later return back to free list on detach */
949 	link->spec_ids[link->spec_cnt] = *spec_id;
950 	link->spec_cnt++;
951 	*is_new = true;
952 	return 0;
953 }
954 
955 struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog,
956 					  pid_t pid, const char *path,
957 					  const char *usdt_provider, const char *usdt_name,
958 					  __u64 usdt_cookie)
959 {
960 	unsigned long *offsets = NULL, *ref_ctr_offsets = NULL;
961 	int i, err, spec_map_fd, ip_map_fd;
962 	LIBBPF_OPTS(bpf_uprobe_opts, opts);
963 	struct hashmap *specs_hash = NULL;
964 	struct bpf_link_usdt *link = NULL;
965 	struct usdt_target *targets = NULL;
966 	__u64 *cookies = NULL;
967 	struct elf_fd elf_fd;
968 	size_t target_cnt;
969 
970 	spec_map_fd = bpf_map__fd(man->specs_map);
971 	ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map);
972 
973 	err = elf_open(path, &elf_fd);
974 	if (err)
975 		return libbpf_err_ptr(err);
976 
977 	err = sanity_check_usdt_elf(elf_fd.elf, path);
978 	if (err)
979 		goto err_out;
980 
981 	/* normalize PID filter */
982 	if (pid < 0)
983 		pid = -1;
984 	else if (pid == 0)
985 		pid = getpid();
986 
987 	/* discover USDT in given binary, optionally limiting
988 	 * activations to a given PID, if pid > 0
989 	 */
990 	err = collect_usdt_targets(man, elf_fd.elf, path, pid, usdt_provider, usdt_name,
991 				   usdt_cookie, &targets, &target_cnt);
992 	if (err <= 0) {
993 		err = (err == 0) ? -ENOENT : err;
994 		goto err_out;
995 	}
996 
997 	specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL);
998 	if (IS_ERR(specs_hash)) {
999 		err = PTR_ERR(specs_hash);
1000 		goto err_out;
1001 	}
1002 
1003 	link = calloc(1, sizeof(*link));
1004 	if (!link) {
1005 		err = -ENOMEM;
1006 		goto err_out;
1007 	}
1008 
1009 	link->usdt_man = man;
1010 	link->link.detach = &bpf_link_usdt_detach;
1011 	link->link.dealloc = &bpf_link_usdt_dealloc;
1012 
1013 	if (man->has_uprobe_multi) {
1014 		offsets = calloc(target_cnt, sizeof(*offsets));
1015 		cookies = calloc(target_cnt, sizeof(*cookies));
1016 		ref_ctr_offsets = calloc(target_cnt, sizeof(*ref_ctr_offsets));
1017 
1018 		if (!offsets || !ref_ctr_offsets || !cookies) {
1019 			err = -ENOMEM;
1020 			goto err_out;
1021 		}
1022 	} else {
1023 		link->uprobes = calloc(target_cnt, sizeof(*link->uprobes));
1024 		if (!link->uprobes) {
1025 			err = -ENOMEM;
1026 			goto err_out;
1027 		}
1028 	}
1029 
1030 	for (i = 0; i < target_cnt; i++) {
1031 		struct usdt_target *target = &targets[i];
1032 		struct bpf_link *uprobe_link;
1033 		bool is_new;
1034 		int spec_id;
1035 
1036 		/* Spec ID can be either reused or newly allocated. If it is
1037 		 * newly allocated, we'll need to fill out spec map, otherwise
1038 		 * entire spec should be valid and can be just used by a new
1039 		 * uprobe. We reuse spec when USDT arg spec is identical. We
1040 		 * also never share specs between two different USDT
1041 		 * attachments ("links"), so all the reused specs already
1042 		 * share USDT cookie value implicitly.
1043 		 */
1044 		err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new);
1045 		if (err)
1046 			goto err_out;
1047 
1048 		if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) {
1049 			err = -errno;
1050 			pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %d\n",
1051 				spec_id, usdt_provider, usdt_name, path, err);
1052 			goto err_out;
1053 		}
1054 		if (!man->has_bpf_cookie &&
1055 		    bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) {
1056 			err = -errno;
1057 			if (err == -EEXIST) {
1058 				pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n",
1059 				        spec_id, usdt_provider, usdt_name, path);
1060 			} else {
1061 				pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %d\n",
1062 					target->abs_ip, spec_id, usdt_provider, usdt_name,
1063 					path, err);
1064 			}
1065 			goto err_out;
1066 		}
1067 
1068 		if (man->has_uprobe_multi) {
1069 			offsets[i] = target->rel_ip;
1070 			ref_ctr_offsets[i] = target->sema_off;
1071 			cookies[i] = spec_id;
1072 		} else {
1073 			opts.ref_ctr_offset = target->sema_off;
1074 			opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0;
1075 			uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path,
1076 								      target->rel_ip, &opts);
1077 			err = libbpf_get_error(uprobe_link);
1078 			if (err) {
1079 				pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %d\n",
1080 					i, usdt_provider, usdt_name, path, err);
1081 				goto err_out;
1082 			}
1083 
1084 			link->uprobes[i].link = uprobe_link;
1085 			link->uprobes[i].abs_ip = target->abs_ip;
1086 			link->uprobe_cnt++;
1087 		}
1088 	}
1089 
1090 	if (man->has_uprobe_multi) {
1091 		LIBBPF_OPTS(bpf_uprobe_multi_opts, opts_multi,
1092 			.ref_ctr_offsets = ref_ctr_offsets,
1093 			.offsets = offsets,
1094 			.cookies = cookies,
1095 			.cnt = target_cnt,
1096 		);
1097 
1098 		link->multi_link = bpf_program__attach_uprobe_multi(prog, pid, path,
1099 								    NULL, &opts_multi);
1100 		if (!link->multi_link) {
1101 			err = -errno;
1102 			pr_warn("usdt: failed to attach uprobe multi for '%s:%s' in '%s': %d\n",
1103 				usdt_provider, usdt_name, path, err);
1104 			goto err_out;
1105 		}
1106 
1107 		free(offsets);
1108 		free(ref_ctr_offsets);
1109 		free(cookies);
1110 	}
1111 
1112 	free(targets);
1113 	hashmap__free(specs_hash);
1114 	elf_close(&elf_fd);
1115 	return &link->link;
1116 
1117 err_out:
1118 	free(offsets);
1119 	free(ref_ctr_offsets);
1120 	free(cookies);
1121 
1122 	if (link)
1123 		bpf_link__destroy(&link->link);
1124 	free(targets);
1125 	hashmap__free(specs_hash);
1126 	elf_close(&elf_fd);
1127 	return libbpf_err_ptr(err);
1128 }
1129 
1130 /* Parse out USDT ELF note from '.note.stapsdt' section.
1131  * Logic inspired by perf's code.
1132  */
1133 static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr,
1134 			   const char *data, size_t name_off, size_t desc_off,
1135 			   struct usdt_note *note)
1136 {
1137 	const char *provider, *name, *args;
1138 	long addrs[3];
1139 	size_t len;
1140 
1141 	/* sanity check USDT note name and type first */
1142 	if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0)
1143 		return -EINVAL;
1144 	if (nhdr->n_type != USDT_NOTE_TYPE)
1145 		return -EINVAL;
1146 
1147 	/* sanity check USDT note contents ("description" in ELF terminology) */
1148 	len = nhdr->n_descsz;
1149 	data = data + desc_off;
1150 
1151 	/* +3 is the very minimum required to store three empty strings */
1152 	if (len < sizeof(addrs) + 3)
1153 		return -EINVAL;
1154 
1155 	/* get location, base, and semaphore addrs */
1156 	memcpy(&addrs, data, sizeof(addrs));
1157 
1158 	/* parse string fields: provider, name, args */
1159 	provider = data + sizeof(addrs);
1160 
1161 	name = (const char *)memchr(provider, '\0', data + len - provider);
1162 	if (!name) /* non-zero-terminated provider */
1163 		return -EINVAL;
1164 	name++;
1165 	if (name >= data + len || *name == '\0') /* missing or empty name */
1166 		return -EINVAL;
1167 
1168 	args = memchr(name, '\0', data + len - name);
1169 	if (!args) /* non-zero-terminated name */
1170 		return -EINVAL;
1171 	++args;
1172 	if (args >= data + len) /* missing arguments spec */
1173 		return -EINVAL;
1174 
1175 	note->provider = provider;
1176 	note->name = name;
1177 	if (*args == '\0' || *args == ':')
1178 		note->args = "";
1179 	else
1180 		note->args = args;
1181 	note->loc_addr = addrs[0];
1182 	note->base_addr = addrs[1];
1183 	note->sema_addr = addrs[2];
1184 
1185 	return 0;
1186 }
1187 
1188 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz);
1189 
1190 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie)
1191 {
1192 	struct usdt_arg_spec *arg;
1193 	const char *s;
1194 	int arg_sz, len;
1195 
1196 	spec->usdt_cookie = usdt_cookie;
1197 	spec->arg_cnt = 0;
1198 
1199 	s = note->args;
1200 	while (s[0]) {
1201 		if (spec->arg_cnt >= USDT_MAX_ARG_CNT) {
1202 			pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n",
1203 				USDT_MAX_ARG_CNT, note->provider, note->name, note->args);
1204 			return -E2BIG;
1205 		}
1206 
1207 		arg = &spec->args[spec->arg_cnt];
1208 		len = parse_usdt_arg(s, spec->arg_cnt, arg, &arg_sz);
1209 		if (len < 0)
1210 			return len;
1211 
1212 		arg->arg_signed = arg_sz < 0;
1213 		if (arg_sz < 0)
1214 			arg_sz = -arg_sz;
1215 
1216 		switch (arg_sz) {
1217 		case 1: case 2: case 4: case 8:
1218 			arg->arg_bitshift = 64 - arg_sz * 8;
1219 			break;
1220 		default:
1221 			pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n",
1222 				spec->arg_cnt, s, arg_sz);
1223 			return -EINVAL;
1224 		}
1225 
1226 		s += len;
1227 		spec->arg_cnt++;
1228 	}
1229 
1230 	return 0;
1231 }
1232 
1233 /* Architecture-specific logic for parsing USDT argument location specs */
1234 
1235 #if defined(__x86_64__) || defined(__i386__)
1236 
1237 static int calc_pt_regs_off(const char *reg_name)
1238 {
1239 	static struct {
1240 		const char *names[4];
1241 		size_t pt_regs_off;
1242 	} reg_map[] = {
1243 #ifdef __x86_64__
1244 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64)
1245 #else
1246 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32)
1247 #endif
1248 		{ {"rip", "eip", "", ""}, reg_off(rip, eip) },
1249 		{ {"rax", "eax", "ax", "al"}, reg_off(rax, eax) },
1250 		{ {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) },
1251 		{ {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) },
1252 		{ {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) },
1253 		{ {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) },
1254 		{ {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) },
1255 		{ {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) },
1256 		{ {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) },
1257 #undef reg_off
1258 #ifdef __x86_64__
1259 		{ {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) },
1260 		{ {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) },
1261 		{ {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) },
1262 		{ {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) },
1263 		{ {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) },
1264 		{ {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) },
1265 		{ {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) },
1266 		{ {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) },
1267 #endif
1268 	};
1269 	int i, j;
1270 
1271 	for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1272 		for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) {
1273 			if (strcmp(reg_name, reg_map[i].names[j]) == 0)
1274 				return reg_map[i].pt_regs_off;
1275 		}
1276 	}
1277 
1278 	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1279 	return -ENOENT;
1280 }
1281 
1282 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1283 {
1284 	char reg_name[16];
1285 	int len, reg_off;
1286 	long off;
1287 
1288 	if (sscanf(arg_str, " %d @ %ld ( %%%15[^)] ) %n", arg_sz, &off, reg_name, &len) == 3) {
1289 		/* Memory dereference case, e.g., -4@-20(%rbp) */
1290 		arg->arg_type = USDT_ARG_REG_DEREF;
1291 		arg->val_off = off;
1292 		reg_off = calc_pt_regs_off(reg_name);
1293 		if (reg_off < 0)
1294 			return reg_off;
1295 		arg->reg_off = reg_off;
1296 	} else if (sscanf(arg_str, " %d @ ( %%%15[^)] ) %n", arg_sz, reg_name, &len) == 2) {
1297 		/* Memory dereference case without offset, e.g., 8@(%rsp) */
1298 		arg->arg_type = USDT_ARG_REG_DEREF;
1299 		arg->val_off = 0;
1300 		reg_off = calc_pt_regs_off(reg_name);
1301 		if (reg_off < 0)
1302 			return reg_off;
1303 		arg->reg_off = reg_off;
1304 	} else if (sscanf(arg_str, " %d @ %%%15s %n", arg_sz, reg_name, &len) == 2) {
1305 		/* Register read case, e.g., -4@%eax */
1306 		arg->arg_type = USDT_ARG_REG;
1307 		arg->val_off = 0;
1308 
1309 		reg_off = calc_pt_regs_off(reg_name);
1310 		if (reg_off < 0)
1311 			return reg_off;
1312 		arg->reg_off = reg_off;
1313 	} else if (sscanf(arg_str, " %d @ $%ld %n", arg_sz, &off, &len) == 2) {
1314 		/* Constant value case, e.g., 4@$71 */
1315 		arg->arg_type = USDT_ARG_CONST;
1316 		arg->val_off = off;
1317 		arg->reg_off = 0;
1318 	} else {
1319 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1320 		return -EINVAL;
1321 	}
1322 
1323 	return len;
1324 }
1325 
1326 #elif defined(__s390x__)
1327 
1328 /* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */
1329 
1330 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1331 {
1332 	unsigned int reg;
1333 	int len;
1334 	long off;
1335 
1336 	if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", arg_sz, &off, &reg, &len) == 3) {
1337 		/* Memory dereference case, e.g., -2@-28(%r15) */
1338 		arg->arg_type = USDT_ARG_REG_DEREF;
1339 		arg->val_off = off;
1340 		if (reg > 15) {
1341 			pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1342 			return -EINVAL;
1343 		}
1344 		arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1345 	} else if (sscanf(arg_str, " %d @ %%r%u %n", arg_sz, &reg, &len) == 2) {
1346 		/* Register read case, e.g., -8@%r0 */
1347 		arg->arg_type = USDT_ARG_REG;
1348 		arg->val_off = 0;
1349 		if (reg > 15) {
1350 			pr_warn("usdt: unrecognized register '%%r%u'\n", reg);
1351 			return -EINVAL;
1352 		}
1353 		arg->reg_off = offsetof(user_pt_regs, gprs[reg]);
1354 	} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1355 		/* Constant value case, e.g., 4@71 */
1356 		arg->arg_type = USDT_ARG_CONST;
1357 		arg->val_off = off;
1358 		arg->reg_off = 0;
1359 	} else {
1360 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1361 		return -EINVAL;
1362 	}
1363 
1364 	return len;
1365 }
1366 
1367 #elif defined(__aarch64__)
1368 
1369 static int calc_pt_regs_off(const char *reg_name)
1370 {
1371 	int reg_num;
1372 
1373 	if (sscanf(reg_name, "x%d", &reg_num) == 1) {
1374 		if (reg_num >= 0 && reg_num < 31)
1375 			return offsetof(struct user_pt_regs, regs[reg_num]);
1376 	} else if (strcmp(reg_name, "sp") == 0) {
1377 		return offsetof(struct user_pt_regs, sp);
1378 	}
1379 	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1380 	return -ENOENT;
1381 }
1382 
1383 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1384 {
1385 	char reg_name[16];
1386 	int len, reg_off;
1387 	long off;
1388 
1389 	if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , %ld ] %n", arg_sz, reg_name, &off, &len) == 3) {
1390 		/* Memory dereference case, e.g., -4@[sp, 96] */
1391 		arg->arg_type = USDT_ARG_REG_DEREF;
1392 		arg->val_off = off;
1393 		reg_off = calc_pt_regs_off(reg_name);
1394 		if (reg_off < 0)
1395 			return reg_off;
1396 		arg->reg_off = reg_off;
1397 	} else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1398 		/* Memory dereference case, e.g., -4@[sp] */
1399 		arg->arg_type = USDT_ARG_REG_DEREF;
1400 		arg->val_off = 0;
1401 		reg_off = calc_pt_regs_off(reg_name);
1402 		if (reg_off < 0)
1403 			return reg_off;
1404 		arg->reg_off = reg_off;
1405 	} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1406 		/* Constant value case, e.g., 4@5 */
1407 		arg->arg_type = USDT_ARG_CONST;
1408 		arg->val_off = off;
1409 		arg->reg_off = 0;
1410 	} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1411 		/* Register read case, e.g., -8@x4 */
1412 		arg->arg_type = USDT_ARG_REG;
1413 		arg->val_off = 0;
1414 		reg_off = calc_pt_regs_off(reg_name);
1415 		if (reg_off < 0)
1416 			return reg_off;
1417 		arg->reg_off = reg_off;
1418 	} else {
1419 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1420 		return -EINVAL;
1421 	}
1422 
1423 	return len;
1424 }
1425 
1426 #elif defined(__riscv)
1427 
1428 static int calc_pt_regs_off(const char *reg_name)
1429 {
1430 	static struct {
1431 		const char *name;
1432 		size_t pt_regs_off;
1433 	} reg_map[] = {
1434 		{ "ra", offsetof(struct user_regs_struct, ra) },
1435 		{ "sp", offsetof(struct user_regs_struct, sp) },
1436 		{ "gp", offsetof(struct user_regs_struct, gp) },
1437 		{ "tp", offsetof(struct user_regs_struct, tp) },
1438 		{ "a0", offsetof(struct user_regs_struct, a0) },
1439 		{ "a1", offsetof(struct user_regs_struct, a1) },
1440 		{ "a2", offsetof(struct user_regs_struct, a2) },
1441 		{ "a3", offsetof(struct user_regs_struct, a3) },
1442 		{ "a4", offsetof(struct user_regs_struct, a4) },
1443 		{ "a5", offsetof(struct user_regs_struct, a5) },
1444 		{ "a6", offsetof(struct user_regs_struct, a6) },
1445 		{ "a7", offsetof(struct user_regs_struct, a7) },
1446 		{ "s0", offsetof(struct user_regs_struct, s0) },
1447 		{ "s1", offsetof(struct user_regs_struct, s1) },
1448 		{ "s2", offsetof(struct user_regs_struct, s2) },
1449 		{ "s3", offsetof(struct user_regs_struct, s3) },
1450 		{ "s4", offsetof(struct user_regs_struct, s4) },
1451 		{ "s5", offsetof(struct user_regs_struct, s5) },
1452 		{ "s6", offsetof(struct user_regs_struct, s6) },
1453 		{ "s7", offsetof(struct user_regs_struct, s7) },
1454 		{ "s8", offsetof(struct user_regs_struct, rv_s8) },
1455 		{ "s9", offsetof(struct user_regs_struct, s9) },
1456 		{ "s10", offsetof(struct user_regs_struct, s10) },
1457 		{ "s11", offsetof(struct user_regs_struct, s11) },
1458 		{ "t0", offsetof(struct user_regs_struct, t0) },
1459 		{ "t1", offsetof(struct user_regs_struct, t1) },
1460 		{ "t2", offsetof(struct user_regs_struct, t2) },
1461 		{ "t3", offsetof(struct user_regs_struct, t3) },
1462 		{ "t4", offsetof(struct user_regs_struct, t4) },
1463 		{ "t5", offsetof(struct user_regs_struct, t5) },
1464 		{ "t6", offsetof(struct user_regs_struct, t6) },
1465 	};
1466 	int i;
1467 
1468 	for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1469 		if (strcmp(reg_name, reg_map[i].name) == 0)
1470 			return reg_map[i].pt_regs_off;
1471 	}
1472 
1473 	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1474 	return -ENOENT;
1475 }
1476 
1477 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1478 {
1479 	char reg_name[16];
1480 	int len, reg_off;
1481 	long off;
1482 
1483 	if (sscanf(arg_str, " %d @ %ld ( %15[a-z0-9] ) %n", arg_sz, &off, reg_name, &len) == 3) {
1484 		/* Memory dereference case, e.g., -8@-88(s0) */
1485 		arg->arg_type = USDT_ARG_REG_DEREF;
1486 		arg->val_off = off;
1487 		reg_off = calc_pt_regs_off(reg_name);
1488 		if (reg_off < 0)
1489 			return reg_off;
1490 		arg->reg_off = reg_off;
1491 	} else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) {
1492 		/* Constant value case, e.g., 4@5 */
1493 		arg->arg_type = USDT_ARG_CONST;
1494 		arg->val_off = off;
1495 		arg->reg_off = 0;
1496 	} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1497 		/* Register read case, e.g., -8@a1 */
1498 		arg->arg_type = USDT_ARG_REG;
1499 		arg->val_off = 0;
1500 		reg_off = calc_pt_regs_off(reg_name);
1501 		if (reg_off < 0)
1502 			return reg_off;
1503 		arg->reg_off = reg_off;
1504 	} else {
1505 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1506 		return -EINVAL;
1507 	}
1508 
1509 	return len;
1510 }
1511 
1512 #elif defined(__arm__)
1513 
1514 static int calc_pt_regs_off(const char *reg_name)
1515 {
1516 	static struct {
1517 		const char *name;
1518 		size_t pt_regs_off;
1519 	} reg_map[] = {
1520 		{ "r0", offsetof(struct pt_regs, uregs[0]) },
1521 		{ "r1", offsetof(struct pt_regs, uregs[1]) },
1522 		{ "r2", offsetof(struct pt_regs, uregs[2]) },
1523 		{ "r3", offsetof(struct pt_regs, uregs[3]) },
1524 		{ "r4", offsetof(struct pt_regs, uregs[4]) },
1525 		{ "r5", offsetof(struct pt_regs, uregs[5]) },
1526 		{ "r6", offsetof(struct pt_regs, uregs[6]) },
1527 		{ "r7", offsetof(struct pt_regs, uregs[7]) },
1528 		{ "r8", offsetof(struct pt_regs, uregs[8]) },
1529 		{ "r9", offsetof(struct pt_regs, uregs[9]) },
1530 		{ "r10", offsetof(struct pt_regs, uregs[10]) },
1531 		{ "fp", offsetof(struct pt_regs, uregs[11]) },
1532 		{ "ip", offsetof(struct pt_regs, uregs[12]) },
1533 		{ "sp", offsetof(struct pt_regs, uregs[13]) },
1534 		{ "lr", offsetof(struct pt_regs, uregs[14]) },
1535 		{ "pc", offsetof(struct pt_regs, uregs[15]) },
1536 	};
1537 	int i;
1538 
1539 	for (i = 0; i < ARRAY_SIZE(reg_map); i++) {
1540 		if (strcmp(reg_name, reg_map[i].name) == 0)
1541 			return reg_map[i].pt_regs_off;
1542 	}
1543 
1544 	pr_warn("usdt: unrecognized register '%s'\n", reg_name);
1545 	return -ENOENT;
1546 }
1547 
1548 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1549 {
1550 	char reg_name[16];
1551 	int len, reg_off;
1552 	long off;
1553 
1554 	if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , #%ld ] %n",
1555 		   arg_sz, reg_name, &off, &len) == 3) {
1556 		/* Memory dereference case, e.g., -4@[fp, #96] */
1557 		arg->arg_type = USDT_ARG_REG_DEREF;
1558 		arg->val_off = off;
1559 		reg_off = calc_pt_regs_off(reg_name);
1560 		if (reg_off < 0)
1561 			return reg_off;
1562 		arg->reg_off = reg_off;
1563 	} else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) {
1564 		/* Memory dereference case, e.g., -4@[sp] */
1565 		arg->arg_type = USDT_ARG_REG_DEREF;
1566 		arg->val_off = 0;
1567 		reg_off = calc_pt_regs_off(reg_name);
1568 		if (reg_off < 0)
1569 			return reg_off;
1570 		arg->reg_off = reg_off;
1571 	} else if (sscanf(arg_str, " %d @ #%ld %n", arg_sz, &off, &len) == 2) {
1572 		/* Constant value case, e.g., 4@#5 */
1573 		arg->arg_type = USDT_ARG_CONST;
1574 		arg->val_off = off;
1575 		arg->reg_off = 0;
1576 	} else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) {
1577 		/* Register read case, e.g., -8@r4 */
1578 		arg->arg_type = USDT_ARG_REG;
1579 		arg->val_off = 0;
1580 		reg_off = calc_pt_regs_off(reg_name);
1581 		if (reg_off < 0)
1582 			return reg_off;
1583 		arg->reg_off = reg_off;
1584 	} else {
1585 		pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str);
1586 		return -EINVAL;
1587 	}
1588 
1589 	return len;
1590 }
1591 
1592 #else
1593 
1594 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz)
1595 {
1596 	pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n");
1597 	return -ENOTSUP;
1598 }
1599 
1600 #endif
1601