1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ 3 #include <ctype.h> 4 #include <stdio.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <libelf.h> 8 #include <gelf.h> 9 #include <unistd.h> 10 #include <linux/ptrace.h> 11 #include <linux/kernel.h> 12 13 /* s8 will be marked as poison while it's a reg of riscv */ 14 #if defined(__riscv) 15 #define rv_s8 s8 16 #endif 17 18 #include "bpf.h" 19 #include "libbpf.h" 20 #include "libbpf_common.h" 21 #include "libbpf_internal.h" 22 #include "hashmap.h" 23 #include "str_error.h" 24 25 /* libbpf's USDT support consists of BPF-side state/code and user-space 26 * state/code working together in concert. BPF-side parts are defined in 27 * usdt.bpf.h header library. User-space state is encapsulated by struct 28 * usdt_manager and all the supporting code centered around usdt_manager. 29 * 30 * usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map 31 * and IP-to-spec-ID map, which is auxiliary map necessary for kernels that 32 * don't support BPF cookie (see below). These two maps are implicitly 33 * embedded into user's end BPF object file when user's code included 34 * usdt.bpf.h. This means that libbpf doesn't do anything special to create 35 * these USDT support maps. They are created by normal libbpf logic of 36 * instantiating BPF maps when opening and loading BPF object. 37 * 38 * As such, libbpf is basically unaware of the need to do anything 39 * USDT-related until the very first call to bpf_program__attach_usdt(), which 40 * can be called by user explicitly or happen automatically during skeleton 41 * attach (or, equivalently, through generic bpf_program__attach() call). At 42 * this point, libbpf will instantiate and initialize struct usdt_manager and 43 * store it in bpf_object. USDT manager is per-BPF object construct, as each 44 * independent BPF object might or might not have USDT programs, and thus all 45 * the expected USDT-related state. There is no coordination between two 46 * bpf_object in parts of USDT attachment, they are oblivious of each other's 47 * existence and libbpf is just oblivious, dealing with bpf_object-specific 48 * USDT state. 49 * 50 * Quick crash course on USDTs. 51 * 52 * From user-space application's point of view, USDT is essentially just 53 * a slightly special function call that normally has zero overhead, unless it 54 * is being traced by some external entity (e.g, BPF-based tool). Here's how 55 * a typical application can trigger USDT probe: 56 * 57 * #include <sys/sdt.h> // provided by systemtap-sdt-devel package 58 * // folly also provide similar functionality in folly/tracing/StaticTracepoint.h 59 * 60 * STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y); 61 * 62 * USDT is identified by it's <provider-name>:<probe-name> pair of names. Each 63 * individual USDT has a fixed number of arguments (3 in the above example) 64 * and specifies values of each argument as if it was a function call. 65 * 66 * USDT call is actually not a function call, but is instead replaced by 67 * a single NOP instruction (thus zero overhead, effectively). But in addition 68 * to that, those USDT macros generate special SHT_NOTE ELF records in 69 * .note.stapsdt ELF section. Here's an example USDT definition as emitted by 70 * `readelf -n <binary>`: 71 * 72 * stapsdt 0x00000089 NT_STAPSDT (SystemTap probe descriptors) 73 * Provider: test 74 * Name: usdt12 75 * Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e 76 * Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil 77 * 78 * In this case we have USDT test:usdt12 with 12 arguments. 79 * 80 * Location and base are offsets used to calculate absolute IP address of that 81 * NOP instruction that kernel can replace with an interrupt instruction to 82 * trigger instrumentation code (BPF program for all that we care about). 83 * 84 * Semaphore above is and optional feature. It records an address of a 2-byte 85 * refcount variable (normally in '.probes' ELF section) used for signaling if 86 * there is anything that is attached to USDT. This is useful for user 87 * applications if, for example, they need to prepare some arguments that are 88 * passed only to USDTs and preparation is expensive. By checking if USDT is 89 * "activated", an application can avoid paying those costs unnecessarily. 90 * Recent enough kernel has built-in support for automatically managing this 91 * refcount, which libbpf expects and relies on. If USDT is defined without 92 * associated semaphore, this value will be zero. See selftests for semaphore 93 * examples. 94 * 95 * Arguments is the most interesting part. This USDT specification string is 96 * providing information about all the USDT arguments and their locations. The 97 * part before @ sign defined byte size of the argument (1, 2, 4, or 8) and 98 * whether the argument is signed or unsigned (negative size means signed). 99 * The part after @ sign is assembly-like definition of argument location 100 * (see [0] for more details). Technically, assembler can provide some pretty 101 * advanced definitions, but libbpf is currently supporting three most common 102 * cases: 103 * 1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9); 104 * 2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer 105 * whose value is in register %rdx"; 106 * 3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which 107 * specifies signed 32-bit integer stored at offset -1204 bytes from 108 * memory address stored in %rbp. 109 * 110 * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation 111 * 112 * During attachment, libbpf parses all the relevant USDT specifications and 113 * prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side 114 * code through spec map. This allows BPF applications to quickly fetch the 115 * actual value at runtime using a simple BPF-side code. 116 * 117 * With basics out of the way, let's go over less immediately obvious aspects 118 * of supporting USDTs. 119 * 120 * First, there is no special USDT BPF program type. It is actually just 121 * a uprobe BPF program (which for kernel, at least currently, is just a kprobe 122 * program, so BPF_PROG_TYPE_KPROBE program type). With the only difference 123 * that uprobe is usually attached at the function entry, while USDT will 124 * normally will be somewhere inside the function. But it should always be 125 * pointing to NOP instruction, which makes such uprobes the fastest uprobe 126 * kind. 127 * 128 * Second, it's important to realize that such STAP_PROBEn(provider, name, ...) 129 * macro invocations can end up being inlined many-many times, depending on 130 * specifics of each individual user application. So single conceptual USDT 131 * (identified by provider:name pair of identifiers) is, generally speaking, 132 * multiple uprobe locations (USDT call sites) in different places in user 133 * application. Further, again due to inlining, each USDT call site might end 134 * up having the same argument #N be located in a different place. In one call 135 * site it could be a constant, in another will end up in a register, and in 136 * yet another could be some other register or even somewhere on the stack. 137 * 138 * As such, "attaching to USDT" means (in general case) attaching the same 139 * uprobe BPF program to multiple target locations in user application, each 140 * potentially having a completely different USDT spec associated with it. 141 * To wire all this up together libbpf allocates a unique integer spec ID for 142 * each unique USDT spec. Spec IDs are allocated as sequential small integers 143 * so that they can be used as keys in array BPF map (for performance reasons). 144 * Spec ID allocation and accounting is big part of what usdt_manager is 145 * about. This state has to be maintained per-BPF object and coordinate 146 * between different USDT attachments within the same BPF object. 147 * 148 * Spec ID is the key in spec BPF map, value is the actual USDT spec layed out 149 * as struct usdt_spec. Each invocation of BPF program at runtime needs to 150 * know its associated spec ID. It gets it either through BPF cookie, which 151 * libbpf sets to spec ID during attach time, or, if kernel is too old to 152 * support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such 153 * case. The latter means that some modes of operation can't be supported 154 * without BPF cookie. Such mode is attaching to shared library "generically", 155 * without specifying target process. In such case, it's impossible to 156 * calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode 157 * is not supported without BPF cookie support. 158 * 159 * Note that libbpf is using BPF cookie functionality for its own internal 160 * needs, so user itself can't rely on BPF cookie feature. To that end, libbpf 161 * provides conceptually equivalent USDT cookie support. It's still u64 162 * user-provided value that can be associated with USDT attachment. Note that 163 * this will be the same value for all USDT call sites within the same single 164 * *logical* USDT attachment. This makes sense because to user attaching to 165 * USDT is a single BPF program triggered for singular USDT probe. The fact 166 * that this is done at multiple actual locations is a mostly hidden 167 * implementation details. This USDT cookie value can be fetched with 168 * bpf_usdt_cookie(ctx) API provided by usdt.bpf.h 169 * 170 * Lastly, while single USDT can have tons of USDT call sites, it doesn't 171 * necessarily have that many different USDT specs. It very well might be 172 * that 1000 USDT call sites only need 5 different USDT specs, because all the 173 * arguments are typically contained in a small set of registers or stack 174 * locations. As such, it's wasteful to allocate as many USDT spec IDs as 175 * there are USDT call sites. So libbpf tries to be frugal and performs 176 * on-the-fly deduplication during a single USDT attachment to only allocate 177 * the minimal required amount of unique USDT specs (and thus spec IDs). This 178 * is trivially achieved by using USDT spec string (Arguments string from USDT 179 * note) as a lookup key in a hashmap. USDT spec string uniquely defines 180 * everything about how to fetch USDT arguments, so two USDT call sites 181 * sharing USDT spec string can safely share the same USDT spec and spec ID. 182 * Note, this spec string deduplication is happening only during the same USDT 183 * attachment, so each USDT spec shares the same USDT cookie value. This is 184 * not generally true for other USDT attachments within the same BPF object, 185 * as even if USDT spec string is the same, USDT cookie value can be 186 * different. It was deemed excessive to try to deduplicate across independent 187 * USDT attachments by taking into account USDT spec string *and* USDT cookie 188 * value, which would complicated spec ID accounting significantly for little 189 * gain. 190 */ 191 192 #define USDT_BASE_SEC ".stapsdt.base" 193 #define USDT_SEMA_SEC ".probes" 194 #define USDT_NOTE_SEC ".note.stapsdt" 195 #define USDT_NOTE_TYPE 3 196 #define USDT_NOTE_NAME "stapsdt" 197 198 /* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */ 199 enum usdt_arg_type { 200 USDT_ARG_CONST, 201 USDT_ARG_REG, 202 USDT_ARG_REG_DEREF, 203 }; 204 205 /* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */ 206 struct usdt_arg_spec { 207 __u64 val_off; 208 enum usdt_arg_type arg_type; 209 short reg_off; 210 bool arg_signed; 211 char arg_bitshift; 212 }; 213 214 /* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */ 215 #define USDT_MAX_ARG_CNT 12 216 217 /* should match struct __bpf_usdt_spec from usdt.bpf.h */ 218 struct usdt_spec { 219 struct usdt_arg_spec args[USDT_MAX_ARG_CNT]; 220 __u64 usdt_cookie; 221 short arg_cnt; 222 }; 223 224 struct usdt_note { 225 const char *provider; 226 const char *name; 227 /* USDT args specification string, e.g.: 228 * "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx" 229 */ 230 const char *args; 231 long loc_addr; 232 long base_addr; 233 long sema_addr; 234 }; 235 236 struct usdt_target { 237 long abs_ip; 238 long rel_ip; 239 long sema_off; 240 struct usdt_spec spec; 241 const char *spec_str; 242 }; 243 244 struct usdt_manager { 245 struct bpf_map *specs_map; 246 struct bpf_map *ip_to_spec_id_map; 247 248 int *free_spec_ids; 249 size_t free_spec_cnt; 250 size_t next_free_spec_id; 251 252 bool has_bpf_cookie; 253 bool has_sema_refcnt; 254 bool has_uprobe_multi; 255 }; 256 257 struct usdt_manager *usdt_manager_new(struct bpf_object *obj) 258 { 259 static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset"; 260 struct usdt_manager *man; 261 struct bpf_map *specs_map, *ip_to_spec_id_map; 262 263 specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs"); 264 ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id"); 265 if (!specs_map || !ip_to_spec_id_map) { 266 pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n"); 267 return ERR_PTR(-ESRCH); 268 } 269 270 man = calloc(1, sizeof(*man)); 271 if (!man) 272 return ERR_PTR(-ENOMEM); 273 274 man->specs_map = specs_map; 275 man->ip_to_spec_id_map = ip_to_spec_id_map; 276 277 /* Detect if BPF cookie is supported for kprobes. 278 * We don't need IP-to-ID mapping if we can use BPF cookies. 279 * Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value") 280 */ 281 man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE); 282 283 /* Detect kernel support for automatic refcounting of USDT semaphore. 284 * If this is not supported, USDTs with semaphores will not be supported. 285 * Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe") 286 */ 287 man->has_sema_refcnt = faccessat(AT_FDCWD, ref_ctr_sysfs_path, F_OK, AT_EACCESS) == 0; 288 289 /* 290 * Detect kernel support for uprobe multi link to be used for attaching 291 * usdt probes. 292 */ 293 man->has_uprobe_multi = kernel_supports(obj, FEAT_UPROBE_MULTI_LINK); 294 return man; 295 } 296 297 void usdt_manager_free(struct usdt_manager *man) 298 { 299 if (IS_ERR_OR_NULL(man)) 300 return; 301 302 free(man->free_spec_ids); 303 free(man); 304 } 305 306 static int sanity_check_usdt_elf(Elf *elf, const char *path) 307 { 308 GElf_Ehdr ehdr; 309 int endianness; 310 311 if (elf_kind(elf) != ELF_K_ELF) { 312 pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path); 313 return -EBADF; 314 } 315 316 switch (gelf_getclass(elf)) { 317 case ELFCLASS64: 318 if (sizeof(void *) != 8) { 319 pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path); 320 return -EBADF; 321 } 322 break; 323 case ELFCLASS32: 324 if (sizeof(void *) != 4) { 325 pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path); 326 return -EBADF; 327 } 328 break; 329 default: 330 pr_warn("usdt: unsupported ELF class for '%s'\n", path); 331 return -EBADF; 332 } 333 334 if (!gelf_getehdr(elf, &ehdr)) 335 return -EINVAL; 336 337 if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) { 338 pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n", 339 path, ehdr.e_type); 340 return -EBADF; 341 } 342 343 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 344 endianness = ELFDATA2LSB; 345 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 346 endianness = ELFDATA2MSB; 347 #else 348 # error "Unrecognized __BYTE_ORDER__" 349 #endif 350 if (endianness != ehdr.e_ident[EI_DATA]) { 351 pr_warn("usdt: ELF endianness mismatch for '%s'\n", path); 352 return -EBADF; 353 } 354 355 return 0; 356 } 357 358 static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn) 359 { 360 Elf_Scn *sec = NULL; 361 size_t shstrndx; 362 363 if (elf_getshdrstrndx(elf, &shstrndx)) 364 return -EINVAL; 365 366 /* check if ELF is corrupted and avoid calling elf_strptr if yes */ 367 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) 368 return -EINVAL; 369 370 while ((sec = elf_nextscn(elf, sec)) != NULL) { 371 char *name; 372 373 if (!gelf_getshdr(sec, shdr)) 374 return -EINVAL; 375 376 name = elf_strptr(elf, shstrndx, shdr->sh_name); 377 if (name && strcmp(sec_name, name) == 0) { 378 *scn = sec; 379 return 0; 380 } 381 } 382 383 return -ENOENT; 384 } 385 386 struct elf_seg { 387 long start; 388 long end; 389 long offset; 390 bool is_exec; 391 }; 392 393 static int cmp_elf_segs(const void *_a, const void *_b) 394 { 395 const struct elf_seg *a = _a; 396 const struct elf_seg *b = _b; 397 398 return a->start < b->start ? -1 : 1; 399 } 400 401 static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt) 402 { 403 GElf_Phdr phdr; 404 size_t n; 405 int i, err; 406 struct elf_seg *seg; 407 void *tmp; 408 409 *seg_cnt = 0; 410 411 if (elf_getphdrnum(elf, &n)) { 412 err = -errno; 413 return err; 414 } 415 416 for (i = 0; i < n; i++) { 417 if (!gelf_getphdr(elf, i, &phdr)) { 418 err = -errno; 419 return err; 420 } 421 422 pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n", 423 i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset, 424 (long)phdr.p_type, (long)phdr.p_flags); 425 if (phdr.p_type != PT_LOAD) 426 continue; 427 428 tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs)); 429 if (!tmp) 430 return -ENOMEM; 431 432 *segs = tmp; 433 seg = *segs + *seg_cnt; 434 (*seg_cnt)++; 435 436 seg->start = phdr.p_vaddr; 437 seg->end = phdr.p_vaddr + phdr.p_memsz; 438 seg->offset = phdr.p_offset; 439 seg->is_exec = phdr.p_flags & PF_X; 440 } 441 442 if (*seg_cnt == 0) { 443 pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path); 444 return -ESRCH; 445 } 446 447 qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs); 448 return 0; 449 } 450 451 static int parse_vma_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt) 452 { 453 char path[PATH_MAX], line[PATH_MAX], mode[16]; 454 size_t seg_start, seg_end, seg_off; 455 struct elf_seg *seg; 456 int tmp_pid, i, err; 457 FILE *f; 458 459 *seg_cnt = 0; 460 461 /* Handle containerized binaries only accessible from 462 * /proc/<pid>/root/<path>. They will be reported as just /<path> in 463 * /proc/<pid>/maps. 464 */ 465 if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid) 466 goto proceed; 467 468 if (!realpath(lib_path, path)) { 469 pr_warn("usdt: failed to get absolute path of '%s' (err %s), using path as is...\n", 470 lib_path, errstr(-errno)); 471 libbpf_strlcpy(path, lib_path, sizeof(path)); 472 } 473 474 proceed: 475 sprintf(line, "/proc/%d/maps", pid); 476 f = fopen(line, "re"); 477 if (!f) { 478 err = -errno; 479 pr_warn("usdt: failed to open '%s' to get base addr of '%s': %s\n", 480 line, lib_path, errstr(err)); 481 return err; 482 } 483 484 /* We need to handle lines with no path at the end: 485 * 486 * 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613 /usr/lib64/libc-2.17.so 487 * 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0 488 * 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598 /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so 489 */ 490 while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n", 491 &seg_start, &seg_end, mode, &seg_off, line) == 5) { 492 void *tmp; 493 494 /* to handle no path case (see above) we need to capture line 495 * without skipping any whitespaces. So we need to strip 496 * leading whitespaces manually here 497 */ 498 i = 0; 499 while (isblank(line[i])) 500 i++; 501 if (strcmp(line + i, path) != 0) 502 continue; 503 504 pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n", 505 path, seg_start, seg_end, mode, seg_off); 506 507 /* ignore non-executable sections for shared libs */ 508 if (mode[2] != 'x') 509 continue; 510 511 tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs)); 512 if (!tmp) { 513 err = -ENOMEM; 514 goto err_out; 515 } 516 517 *segs = tmp; 518 seg = *segs + *seg_cnt; 519 *seg_cnt += 1; 520 521 seg->start = seg_start; 522 seg->end = seg_end; 523 seg->offset = seg_off; 524 seg->is_exec = true; 525 } 526 527 if (*seg_cnt == 0) { 528 pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n", 529 lib_path, path, pid); 530 err = -ESRCH; 531 goto err_out; 532 } 533 534 qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs); 535 err = 0; 536 err_out: 537 fclose(f); 538 return err; 539 } 540 541 static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long virtaddr) 542 { 543 struct elf_seg *seg; 544 int i; 545 546 /* for ELF binaries (both executables and shared libraries), we are 547 * given virtual address (absolute for executables, relative for 548 * libraries) which should match address range of [seg_start, seg_end) 549 */ 550 for (i = 0, seg = segs; i < seg_cnt; i++, seg++) { 551 if (seg->start <= virtaddr && virtaddr < seg->end) 552 return seg; 553 } 554 return NULL; 555 } 556 557 static struct elf_seg *find_vma_seg(struct elf_seg *segs, size_t seg_cnt, long offset) 558 { 559 struct elf_seg *seg; 560 int i; 561 562 /* for VMA segments from /proc/<pid>/maps file, provided "address" is 563 * actually a file offset, so should be fall within logical 564 * offset-based range of [offset_start, offset_end) 565 */ 566 for (i = 0, seg = segs; i < seg_cnt; i++, seg++) { 567 if (seg->offset <= offset && offset < seg->offset + (seg->end - seg->start)) 568 return seg; 569 } 570 return NULL; 571 } 572 573 static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr, 574 const char *data, size_t name_off, size_t desc_off, 575 struct usdt_note *usdt_note); 576 577 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie); 578 579 static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid, 580 const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie, 581 struct usdt_target **out_targets, size_t *out_target_cnt) 582 { 583 size_t off, name_off, desc_off, seg_cnt = 0, vma_seg_cnt = 0, target_cnt = 0; 584 struct elf_seg *segs = NULL, *vma_segs = NULL; 585 struct usdt_target *targets = NULL, *target; 586 long base_addr = 0; 587 Elf_Scn *notes_scn, *base_scn; 588 GElf_Shdr base_shdr, notes_shdr; 589 GElf_Ehdr ehdr; 590 GElf_Nhdr nhdr; 591 Elf_Data *data; 592 int err; 593 594 *out_targets = NULL; 595 *out_target_cnt = 0; 596 597 err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, ¬es_shdr, ¬es_scn); 598 if (err) { 599 pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path); 600 return err; 601 } 602 603 if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) { 604 pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path); 605 return -EINVAL; 606 } 607 608 err = parse_elf_segs(elf, path, &segs, &seg_cnt); 609 if (err) { 610 pr_warn("usdt: failed to process ELF program segments for '%s': %s\n", 611 path, errstr(err)); 612 goto err_out; 613 } 614 615 /* .stapsdt.base ELF section is optional, but is used for prelink 616 * offset compensation (see a big comment further below) 617 */ 618 if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0) 619 base_addr = base_shdr.sh_addr; 620 621 data = elf_getdata(notes_scn, 0); 622 off = 0; 623 while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) { 624 long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0; 625 struct usdt_note note; 626 struct elf_seg *seg = NULL; 627 void *tmp; 628 629 err = parse_usdt_note(elf, path, &nhdr, data->d_buf, name_off, desc_off, ¬e); 630 if (err) 631 goto err_out; 632 633 if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0) 634 continue; 635 636 /* We need to compensate "prelink effect". See [0] for details, 637 * relevant parts quoted here: 638 * 639 * Each SDT probe also expands into a non-allocated ELF note. You can 640 * find this by looking at SHT_NOTE sections and decoding the format; 641 * see below for details. Because the note is non-allocated, it means 642 * there is no runtime cost, and also preserved in both stripped files 643 * and .debug files. 644 * 645 * However, this means that prelink won't adjust the note's contents 646 * for address offsets. Instead, this is done via the .stapsdt.base 647 * section. This is a special section that is added to the text. We 648 * will only ever have one of these sections in a final link and it 649 * will only ever be one byte long. Nothing about this section itself 650 * matters, we just use it as a marker to detect prelink address 651 * adjustments. 652 * 653 * Each probe note records the link-time address of the .stapsdt.base 654 * section alongside the probe PC address. The decoder compares the 655 * base address stored in the note with the .stapsdt.base section's 656 * sh_addr. Initially these are the same, but the section header will 657 * be adjusted by prelink. So the decoder applies the difference to 658 * the probe PC address to get the correct prelinked PC address; the 659 * same adjustment is applied to the semaphore address, if any. 660 * 661 * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation 662 */ 663 usdt_abs_ip = note.loc_addr; 664 if (base_addr) 665 usdt_abs_ip += base_addr - note.base_addr; 666 667 /* When attaching uprobes (which is what USDTs basically are) 668 * kernel expects file offset to be specified, not a relative 669 * virtual address, so we need to translate virtual address to 670 * file offset, for both ET_EXEC and ET_DYN binaries. 671 */ 672 seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip); 673 if (!seg) { 674 err = -ESRCH; 675 pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n", 676 usdt_provider, usdt_name, path, usdt_abs_ip); 677 goto err_out; 678 } 679 if (!seg->is_exec) { 680 err = -ESRCH; 681 pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n", 682 path, seg->start, seg->end, usdt_provider, usdt_name, 683 usdt_abs_ip); 684 goto err_out; 685 } 686 /* translate from virtual address to file offset */ 687 usdt_rel_ip = usdt_abs_ip - seg->start + seg->offset; 688 689 if (ehdr.e_type == ET_DYN && !man->has_bpf_cookie) { 690 /* If we don't have BPF cookie support but need to 691 * attach to a shared library, we'll need to know and 692 * record absolute addresses of attach points due to 693 * the need to lookup USDT spec by absolute IP of 694 * triggered uprobe. Doing this resolution is only 695 * possible when we have a specific PID of the process 696 * that's using specified shared library. BPF cookie 697 * removes the absolute address limitation as we don't 698 * need to do this lookup (we just use BPF cookie as 699 * an index of USDT spec), so for newer kernels with 700 * BPF cookie support libbpf supports USDT attachment 701 * to shared libraries with no PID filter. 702 */ 703 if (pid < 0) { 704 pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n"); 705 err = -ENOTSUP; 706 goto err_out; 707 } 708 709 /* vma_segs are lazily initialized only if necessary */ 710 if (vma_seg_cnt == 0) { 711 err = parse_vma_segs(pid, path, &vma_segs, &vma_seg_cnt); 712 if (err) { 713 pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %s\n", 714 pid, path, errstr(err)); 715 goto err_out; 716 } 717 } 718 719 seg = find_vma_seg(vma_segs, vma_seg_cnt, usdt_rel_ip); 720 if (!seg) { 721 err = -ESRCH; 722 pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n", 723 usdt_provider, usdt_name, path, usdt_rel_ip); 724 goto err_out; 725 } 726 727 usdt_abs_ip = seg->start - seg->offset + usdt_rel_ip; 728 } 729 730 pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n", 731 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path, 732 note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args, 733 seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0); 734 735 /* Adjust semaphore address to be a file offset */ 736 if (note.sema_addr) { 737 if (!man->has_sema_refcnt) { 738 pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n", 739 usdt_provider, usdt_name, path); 740 err = -ENOTSUP; 741 goto err_out; 742 } 743 744 seg = find_elf_seg(segs, seg_cnt, note.sema_addr); 745 if (!seg) { 746 err = -ESRCH; 747 pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n", 748 usdt_provider, usdt_name, path, note.sema_addr); 749 goto err_out; 750 } 751 if (seg->is_exec) { 752 err = -ESRCH; 753 pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n", 754 path, seg->start, seg->end, usdt_provider, usdt_name, 755 note.sema_addr); 756 goto err_out; 757 } 758 759 usdt_sema_off = note.sema_addr - seg->start + seg->offset; 760 761 pr_debug("usdt: sema for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n", 762 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", 763 path, note.sema_addr, note.base_addr, usdt_sema_off, 764 seg->start, seg->end, seg->offset); 765 } 766 767 /* Record adjusted addresses and offsets and parse USDT spec */ 768 tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets)); 769 if (!tmp) { 770 err = -ENOMEM; 771 goto err_out; 772 } 773 targets = tmp; 774 775 target = &targets[target_cnt]; 776 memset(target, 0, sizeof(*target)); 777 778 target->abs_ip = usdt_abs_ip; 779 target->rel_ip = usdt_rel_ip; 780 target->sema_off = usdt_sema_off; 781 782 /* notes.args references strings from ELF itself, so they can 783 * be referenced safely until elf_end() call 784 */ 785 target->spec_str = note.args; 786 787 err = parse_usdt_spec(&target->spec, ¬e, usdt_cookie); 788 if (err) 789 goto err_out; 790 791 target_cnt++; 792 } 793 794 *out_targets = targets; 795 *out_target_cnt = target_cnt; 796 err = target_cnt; 797 798 err_out: 799 free(segs); 800 free(vma_segs); 801 if (err < 0) 802 free(targets); 803 return err; 804 } 805 806 struct bpf_link_usdt { 807 struct bpf_link link; 808 809 struct usdt_manager *usdt_man; 810 811 size_t spec_cnt; 812 int *spec_ids; 813 814 size_t uprobe_cnt; 815 struct { 816 long abs_ip; 817 struct bpf_link *link; 818 } *uprobes; 819 820 struct bpf_link *multi_link; 821 }; 822 823 static int bpf_link_usdt_detach(struct bpf_link *link) 824 { 825 struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link); 826 struct usdt_manager *man = usdt_link->usdt_man; 827 int i; 828 829 bpf_link__destroy(usdt_link->multi_link); 830 831 /* When having multi_link, uprobe_cnt is 0 */ 832 for (i = 0; i < usdt_link->uprobe_cnt; i++) { 833 /* detach underlying uprobe link */ 834 bpf_link__destroy(usdt_link->uprobes[i].link); 835 /* there is no need to update specs map because it will be 836 * unconditionally overwritten on subsequent USDT attaches, 837 * but if BPF cookies are not used we need to remove entry 838 * from ip_to_spec_id map, otherwise we'll run into false 839 * conflicting IP errors 840 */ 841 if (!man->has_bpf_cookie) { 842 /* not much we can do about errors here */ 843 (void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map), 844 &usdt_link->uprobes[i].abs_ip); 845 } 846 } 847 848 /* try to return the list of previously used spec IDs to usdt_manager 849 * for future reuse for subsequent USDT attaches 850 */ 851 if (!man->free_spec_ids) { 852 /* if there were no free spec IDs yet, just transfer our IDs */ 853 man->free_spec_ids = usdt_link->spec_ids; 854 man->free_spec_cnt = usdt_link->spec_cnt; 855 usdt_link->spec_ids = NULL; 856 } else { 857 /* otherwise concat IDs */ 858 size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt; 859 int *new_free_ids; 860 861 new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt, 862 sizeof(*new_free_ids)); 863 /* If we couldn't resize free_spec_ids, we'll just leak 864 * a bunch of free IDs; this is very unlikely to happen and if 865 * system is so exhausted on memory, it's the least of user's 866 * concerns, probably. 867 * So just do our best here to return those IDs to usdt_manager. 868 * Another edge case when we can legitimately get NULL is when 869 * new_cnt is zero, which can happen in some edge cases, so we 870 * need to be careful about that. 871 */ 872 if (new_free_ids || new_cnt == 0) { 873 memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids, 874 usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids)); 875 man->free_spec_ids = new_free_ids; 876 man->free_spec_cnt = new_cnt; 877 } 878 } 879 880 return 0; 881 } 882 883 static void bpf_link_usdt_dealloc(struct bpf_link *link) 884 { 885 struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link); 886 887 free(usdt_link->spec_ids); 888 free(usdt_link->uprobes); 889 free(usdt_link); 890 } 891 892 static size_t specs_hash_fn(long key, void *ctx) 893 { 894 return str_hash((char *)key); 895 } 896 897 static bool specs_equal_fn(long key1, long key2, void *ctx) 898 { 899 return strcmp((char *)key1, (char *)key2) == 0; 900 } 901 902 static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash, 903 struct bpf_link_usdt *link, struct usdt_target *target, 904 int *spec_id, bool *is_new) 905 { 906 long tmp; 907 void *new_ids; 908 int err; 909 910 /* check if we already allocated spec ID for this spec string */ 911 if (hashmap__find(specs_hash, target->spec_str, &tmp)) { 912 *spec_id = tmp; 913 *is_new = false; 914 return 0; 915 } 916 917 /* otherwise it's a new ID that needs to be set up in specs map and 918 * returned back to usdt_manager when USDT link is detached 919 */ 920 new_ids = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids)); 921 if (!new_ids) 922 return -ENOMEM; 923 link->spec_ids = new_ids; 924 925 /* get next free spec ID, giving preference to free list, if not empty */ 926 if (man->free_spec_cnt) { 927 *spec_id = man->free_spec_ids[man->free_spec_cnt - 1]; 928 929 /* cache spec ID for current spec string for future lookups */ 930 err = hashmap__add(specs_hash, target->spec_str, *spec_id); 931 if (err) 932 return err; 933 934 man->free_spec_cnt--; 935 } else { 936 /* don't allocate spec ID bigger than what fits in specs map */ 937 if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map)) 938 return -E2BIG; 939 940 *spec_id = man->next_free_spec_id; 941 942 /* cache spec ID for current spec string for future lookups */ 943 err = hashmap__add(specs_hash, target->spec_str, *spec_id); 944 if (err) 945 return err; 946 947 man->next_free_spec_id++; 948 } 949 950 /* remember new spec ID in the link for later return back to free list on detach */ 951 link->spec_ids[link->spec_cnt] = *spec_id; 952 link->spec_cnt++; 953 *is_new = true; 954 return 0; 955 } 956 957 struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog, 958 pid_t pid, const char *path, 959 const char *usdt_provider, const char *usdt_name, 960 __u64 usdt_cookie) 961 { 962 unsigned long *offsets = NULL, *ref_ctr_offsets = NULL; 963 int i, err, spec_map_fd, ip_map_fd; 964 LIBBPF_OPTS(bpf_uprobe_opts, opts); 965 struct hashmap *specs_hash = NULL; 966 struct bpf_link_usdt *link = NULL; 967 struct usdt_target *targets = NULL; 968 __u64 *cookies = NULL; 969 struct elf_fd elf_fd; 970 size_t target_cnt; 971 972 spec_map_fd = bpf_map__fd(man->specs_map); 973 ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map); 974 975 err = elf_open(path, &elf_fd); 976 if (err) 977 return libbpf_err_ptr(err); 978 979 err = sanity_check_usdt_elf(elf_fd.elf, path); 980 if (err) 981 goto err_out; 982 983 /* normalize PID filter */ 984 if (pid < 0) 985 pid = -1; 986 else if (pid == 0) 987 pid = getpid(); 988 989 /* discover USDT in given binary, optionally limiting 990 * activations to a given PID, if pid > 0 991 */ 992 err = collect_usdt_targets(man, elf_fd.elf, path, pid, usdt_provider, usdt_name, 993 usdt_cookie, &targets, &target_cnt); 994 if (err <= 0) { 995 err = (err == 0) ? -ENOENT : err; 996 goto err_out; 997 } 998 999 specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL); 1000 if (IS_ERR(specs_hash)) { 1001 err = PTR_ERR(specs_hash); 1002 goto err_out; 1003 } 1004 1005 link = calloc(1, sizeof(*link)); 1006 if (!link) { 1007 err = -ENOMEM; 1008 goto err_out; 1009 } 1010 1011 link->usdt_man = man; 1012 link->link.detach = &bpf_link_usdt_detach; 1013 link->link.dealloc = &bpf_link_usdt_dealloc; 1014 1015 if (man->has_uprobe_multi) { 1016 offsets = calloc(target_cnt, sizeof(*offsets)); 1017 cookies = calloc(target_cnt, sizeof(*cookies)); 1018 ref_ctr_offsets = calloc(target_cnt, sizeof(*ref_ctr_offsets)); 1019 1020 if (!offsets || !ref_ctr_offsets || !cookies) { 1021 err = -ENOMEM; 1022 goto err_out; 1023 } 1024 } else { 1025 link->uprobes = calloc(target_cnt, sizeof(*link->uprobes)); 1026 if (!link->uprobes) { 1027 err = -ENOMEM; 1028 goto err_out; 1029 } 1030 } 1031 1032 for (i = 0; i < target_cnt; i++) { 1033 struct usdt_target *target = &targets[i]; 1034 struct bpf_link *uprobe_link; 1035 bool is_new; 1036 int spec_id; 1037 1038 /* Spec ID can be either reused or newly allocated. If it is 1039 * newly allocated, we'll need to fill out spec map, otherwise 1040 * entire spec should be valid and can be just used by a new 1041 * uprobe. We reuse spec when USDT arg spec is identical. We 1042 * also never share specs between two different USDT 1043 * attachments ("links"), so all the reused specs already 1044 * share USDT cookie value implicitly. 1045 */ 1046 err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new); 1047 if (err) 1048 goto err_out; 1049 1050 if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) { 1051 err = -errno; 1052 pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %s\n", 1053 spec_id, usdt_provider, usdt_name, path, errstr(err)); 1054 goto err_out; 1055 } 1056 if (!man->has_bpf_cookie && 1057 bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) { 1058 err = -errno; 1059 if (err == -EEXIST) { 1060 pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n", 1061 spec_id, usdt_provider, usdt_name, path); 1062 } else { 1063 pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %s\n", 1064 target->abs_ip, spec_id, usdt_provider, usdt_name, 1065 path, errstr(err)); 1066 } 1067 goto err_out; 1068 } 1069 1070 if (man->has_uprobe_multi) { 1071 offsets[i] = target->rel_ip; 1072 ref_ctr_offsets[i] = target->sema_off; 1073 cookies[i] = spec_id; 1074 } else { 1075 opts.ref_ctr_offset = target->sema_off; 1076 opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0; 1077 uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path, 1078 target->rel_ip, &opts); 1079 err = libbpf_get_error(uprobe_link); 1080 if (err) { 1081 pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %s\n", 1082 i, usdt_provider, usdt_name, path, errstr(err)); 1083 goto err_out; 1084 } 1085 1086 link->uprobes[i].link = uprobe_link; 1087 link->uprobes[i].abs_ip = target->abs_ip; 1088 link->uprobe_cnt++; 1089 } 1090 } 1091 1092 if (man->has_uprobe_multi) { 1093 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts_multi, 1094 .ref_ctr_offsets = ref_ctr_offsets, 1095 .offsets = offsets, 1096 .cookies = cookies, 1097 .cnt = target_cnt, 1098 ); 1099 1100 link->multi_link = bpf_program__attach_uprobe_multi(prog, pid, path, 1101 NULL, &opts_multi); 1102 if (!link->multi_link) { 1103 err = -errno; 1104 pr_warn("usdt: failed to attach uprobe multi for '%s:%s' in '%s': %s\n", 1105 usdt_provider, usdt_name, path, errstr(err)); 1106 goto err_out; 1107 } 1108 1109 free(offsets); 1110 free(ref_ctr_offsets); 1111 free(cookies); 1112 } 1113 1114 free(targets); 1115 hashmap__free(specs_hash); 1116 elf_close(&elf_fd); 1117 return &link->link; 1118 1119 err_out: 1120 free(offsets); 1121 free(ref_ctr_offsets); 1122 free(cookies); 1123 1124 if (link) 1125 bpf_link__destroy(&link->link); 1126 free(targets); 1127 hashmap__free(specs_hash); 1128 elf_close(&elf_fd); 1129 return libbpf_err_ptr(err); 1130 } 1131 1132 /* Parse out USDT ELF note from '.note.stapsdt' section. 1133 * Logic inspired by perf's code. 1134 */ 1135 static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr, 1136 const char *data, size_t name_off, size_t desc_off, 1137 struct usdt_note *note) 1138 { 1139 const char *provider, *name, *args; 1140 long addrs[3]; 1141 size_t len; 1142 1143 /* sanity check USDT note name and type first */ 1144 if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0) 1145 return -EINVAL; 1146 if (nhdr->n_type != USDT_NOTE_TYPE) 1147 return -EINVAL; 1148 1149 /* sanity check USDT note contents ("description" in ELF terminology) */ 1150 len = nhdr->n_descsz; 1151 data = data + desc_off; 1152 1153 /* +3 is the very minimum required to store three empty strings */ 1154 if (len < sizeof(addrs) + 3) 1155 return -EINVAL; 1156 1157 /* get location, base, and semaphore addrs */ 1158 memcpy(&addrs, data, sizeof(addrs)); 1159 1160 /* parse string fields: provider, name, args */ 1161 provider = data + sizeof(addrs); 1162 1163 name = (const char *)memchr(provider, '\0', data + len - provider); 1164 if (!name) /* non-zero-terminated provider */ 1165 return -EINVAL; 1166 name++; 1167 if (name >= data + len || *name == '\0') /* missing or empty name */ 1168 return -EINVAL; 1169 1170 args = memchr(name, '\0', data + len - name); 1171 if (!args) /* non-zero-terminated name */ 1172 return -EINVAL; 1173 ++args; 1174 if (args >= data + len) /* missing arguments spec */ 1175 return -EINVAL; 1176 1177 note->provider = provider; 1178 note->name = name; 1179 if (*args == '\0' || *args == ':') 1180 note->args = ""; 1181 else 1182 note->args = args; 1183 note->loc_addr = addrs[0]; 1184 note->base_addr = addrs[1]; 1185 note->sema_addr = addrs[2]; 1186 1187 return 0; 1188 } 1189 1190 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz); 1191 1192 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie) 1193 { 1194 struct usdt_arg_spec *arg; 1195 const char *s; 1196 int arg_sz, len; 1197 1198 spec->usdt_cookie = usdt_cookie; 1199 spec->arg_cnt = 0; 1200 1201 s = note->args; 1202 while (s[0]) { 1203 if (spec->arg_cnt >= USDT_MAX_ARG_CNT) { 1204 pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n", 1205 USDT_MAX_ARG_CNT, note->provider, note->name, note->args); 1206 return -E2BIG; 1207 } 1208 1209 arg = &spec->args[spec->arg_cnt]; 1210 len = parse_usdt_arg(s, spec->arg_cnt, arg, &arg_sz); 1211 if (len < 0) 1212 return len; 1213 1214 arg->arg_signed = arg_sz < 0; 1215 if (arg_sz < 0) 1216 arg_sz = -arg_sz; 1217 1218 switch (arg_sz) { 1219 case 1: case 2: case 4: case 8: 1220 arg->arg_bitshift = 64 - arg_sz * 8; 1221 break; 1222 default: 1223 pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n", 1224 spec->arg_cnt, s, arg_sz); 1225 return -EINVAL; 1226 } 1227 1228 s += len; 1229 spec->arg_cnt++; 1230 } 1231 1232 return 0; 1233 } 1234 1235 /* Architecture-specific logic for parsing USDT argument location specs */ 1236 1237 #if defined(__x86_64__) || defined(__i386__) 1238 1239 static int calc_pt_regs_off(const char *reg_name) 1240 { 1241 static struct { 1242 const char *names[4]; 1243 size_t pt_regs_off; 1244 } reg_map[] = { 1245 #ifdef __x86_64__ 1246 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64) 1247 #else 1248 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32) 1249 #endif 1250 { {"rip", "eip", "", ""}, reg_off(rip, eip) }, 1251 { {"rax", "eax", "ax", "al"}, reg_off(rax, eax) }, 1252 { {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) }, 1253 { {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) }, 1254 { {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) }, 1255 { {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) }, 1256 { {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) }, 1257 { {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) }, 1258 { {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) }, 1259 #undef reg_off 1260 #ifdef __x86_64__ 1261 { {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) }, 1262 { {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) }, 1263 { {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) }, 1264 { {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) }, 1265 { {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) }, 1266 { {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) }, 1267 { {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) }, 1268 { {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) }, 1269 #endif 1270 }; 1271 int i, j; 1272 1273 for (i = 0; i < ARRAY_SIZE(reg_map); i++) { 1274 for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) { 1275 if (strcmp(reg_name, reg_map[i].names[j]) == 0) 1276 return reg_map[i].pt_regs_off; 1277 } 1278 } 1279 1280 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1281 return -ENOENT; 1282 } 1283 1284 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1285 { 1286 char reg_name[16]; 1287 int len, reg_off; 1288 long off; 1289 1290 if (sscanf(arg_str, " %d @ %ld ( %%%15[^)] ) %n", arg_sz, &off, reg_name, &len) == 3) { 1291 /* Memory dereference case, e.g., -4@-20(%rbp) */ 1292 arg->arg_type = USDT_ARG_REG_DEREF; 1293 arg->val_off = off; 1294 reg_off = calc_pt_regs_off(reg_name); 1295 if (reg_off < 0) 1296 return reg_off; 1297 arg->reg_off = reg_off; 1298 } else if (sscanf(arg_str, " %d @ ( %%%15[^)] ) %n", arg_sz, reg_name, &len) == 2) { 1299 /* Memory dereference case without offset, e.g., 8@(%rsp) */ 1300 arg->arg_type = USDT_ARG_REG_DEREF; 1301 arg->val_off = 0; 1302 reg_off = calc_pt_regs_off(reg_name); 1303 if (reg_off < 0) 1304 return reg_off; 1305 arg->reg_off = reg_off; 1306 } else if (sscanf(arg_str, " %d @ %%%15s %n", arg_sz, reg_name, &len) == 2) { 1307 /* Register read case, e.g., -4@%eax */ 1308 arg->arg_type = USDT_ARG_REG; 1309 arg->val_off = 0; 1310 1311 reg_off = calc_pt_regs_off(reg_name); 1312 if (reg_off < 0) 1313 return reg_off; 1314 arg->reg_off = reg_off; 1315 } else if (sscanf(arg_str, " %d @ $%ld %n", arg_sz, &off, &len) == 2) { 1316 /* Constant value case, e.g., 4@$71 */ 1317 arg->arg_type = USDT_ARG_CONST; 1318 arg->val_off = off; 1319 arg->reg_off = 0; 1320 } else { 1321 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1322 return -EINVAL; 1323 } 1324 1325 return len; 1326 } 1327 1328 #elif defined(__s390x__) 1329 1330 /* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */ 1331 1332 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1333 { 1334 unsigned int reg; 1335 int len; 1336 long off; 1337 1338 if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", arg_sz, &off, ®, &len) == 3) { 1339 /* Memory dereference case, e.g., -2@-28(%r15) */ 1340 arg->arg_type = USDT_ARG_REG_DEREF; 1341 arg->val_off = off; 1342 if (reg > 15) { 1343 pr_warn("usdt: unrecognized register '%%r%u'\n", reg); 1344 return -EINVAL; 1345 } 1346 arg->reg_off = offsetof(user_pt_regs, gprs[reg]); 1347 } else if (sscanf(arg_str, " %d @ %%r%u %n", arg_sz, ®, &len) == 2) { 1348 /* Register read case, e.g., -8@%r0 */ 1349 arg->arg_type = USDT_ARG_REG; 1350 arg->val_off = 0; 1351 if (reg > 15) { 1352 pr_warn("usdt: unrecognized register '%%r%u'\n", reg); 1353 return -EINVAL; 1354 } 1355 arg->reg_off = offsetof(user_pt_regs, gprs[reg]); 1356 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { 1357 /* Constant value case, e.g., 4@71 */ 1358 arg->arg_type = USDT_ARG_CONST; 1359 arg->val_off = off; 1360 arg->reg_off = 0; 1361 } else { 1362 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1363 return -EINVAL; 1364 } 1365 1366 return len; 1367 } 1368 1369 #elif defined(__aarch64__) 1370 1371 static int calc_pt_regs_off(const char *reg_name) 1372 { 1373 int reg_num; 1374 1375 if (sscanf(reg_name, "x%d", ®_num) == 1) { 1376 if (reg_num >= 0 && reg_num < 31) 1377 return offsetof(struct user_pt_regs, regs[reg_num]); 1378 } else if (strcmp(reg_name, "sp") == 0) { 1379 return offsetof(struct user_pt_regs, sp); 1380 } 1381 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1382 return -ENOENT; 1383 } 1384 1385 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1386 { 1387 char reg_name[16]; 1388 int len, reg_off; 1389 long off; 1390 1391 if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , %ld ] %n", arg_sz, reg_name, &off, &len) == 3) { 1392 /* Memory dereference case, e.g., -4@[sp, 96] */ 1393 arg->arg_type = USDT_ARG_REG_DEREF; 1394 arg->val_off = off; 1395 reg_off = calc_pt_regs_off(reg_name); 1396 if (reg_off < 0) 1397 return reg_off; 1398 arg->reg_off = reg_off; 1399 } else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) { 1400 /* Memory dereference case, e.g., -4@[sp] */ 1401 arg->arg_type = USDT_ARG_REG_DEREF; 1402 arg->val_off = 0; 1403 reg_off = calc_pt_regs_off(reg_name); 1404 if (reg_off < 0) 1405 return reg_off; 1406 arg->reg_off = reg_off; 1407 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { 1408 /* Constant value case, e.g., 4@5 */ 1409 arg->arg_type = USDT_ARG_CONST; 1410 arg->val_off = off; 1411 arg->reg_off = 0; 1412 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { 1413 /* Register read case, e.g., -8@x4 */ 1414 arg->arg_type = USDT_ARG_REG; 1415 arg->val_off = 0; 1416 reg_off = calc_pt_regs_off(reg_name); 1417 if (reg_off < 0) 1418 return reg_off; 1419 arg->reg_off = reg_off; 1420 } else { 1421 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1422 return -EINVAL; 1423 } 1424 1425 return len; 1426 } 1427 1428 #elif defined(__riscv) 1429 1430 static int calc_pt_regs_off(const char *reg_name) 1431 { 1432 static struct { 1433 const char *name; 1434 size_t pt_regs_off; 1435 } reg_map[] = { 1436 { "ra", offsetof(struct user_regs_struct, ra) }, 1437 { "sp", offsetof(struct user_regs_struct, sp) }, 1438 { "gp", offsetof(struct user_regs_struct, gp) }, 1439 { "tp", offsetof(struct user_regs_struct, tp) }, 1440 { "a0", offsetof(struct user_regs_struct, a0) }, 1441 { "a1", offsetof(struct user_regs_struct, a1) }, 1442 { "a2", offsetof(struct user_regs_struct, a2) }, 1443 { "a3", offsetof(struct user_regs_struct, a3) }, 1444 { "a4", offsetof(struct user_regs_struct, a4) }, 1445 { "a5", offsetof(struct user_regs_struct, a5) }, 1446 { "a6", offsetof(struct user_regs_struct, a6) }, 1447 { "a7", offsetof(struct user_regs_struct, a7) }, 1448 { "s0", offsetof(struct user_regs_struct, s0) }, 1449 { "s1", offsetof(struct user_regs_struct, s1) }, 1450 { "s2", offsetof(struct user_regs_struct, s2) }, 1451 { "s3", offsetof(struct user_regs_struct, s3) }, 1452 { "s4", offsetof(struct user_regs_struct, s4) }, 1453 { "s5", offsetof(struct user_regs_struct, s5) }, 1454 { "s6", offsetof(struct user_regs_struct, s6) }, 1455 { "s7", offsetof(struct user_regs_struct, s7) }, 1456 { "s8", offsetof(struct user_regs_struct, rv_s8) }, 1457 { "s9", offsetof(struct user_regs_struct, s9) }, 1458 { "s10", offsetof(struct user_regs_struct, s10) }, 1459 { "s11", offsetof(struct user_regs_struct, s11) }, 1460 { "t0", offsetof(struct user_regs_struct, t0) }, 1461 { "t1", offsetof(struct user_regs_struct, t1) }, 1462 { "t2", offsetof(struct user_regs_struct, t2) }, 1463 { "t3", offsetof(struct user_regs_struct, t3) }, 1464 { "t4", offsetof(struct user_regs_struct, t4) }, 1465 { "t5", offsetof(struct user_regs_struct, t5) }, 1466 { "t6", offsetof(struct user_regs_struct, t6) }, 1467 }; 1468 int i; 1469 1470 for (i = 0; i < ARRAY_SIZE(reg_map); i++) { 1471 if (strcmp(reg_name, reg_map[i].name) == 0) 1472 return reg_map[i].pt_regs_off; 1473 } 1474 1475 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1476 return -ENOENT; 1477 } 1478 1479 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1480 { 1481 char reg_name[16]; 1482 int len, reg_off; 1483 long off; 1484 1485 if (sscanf(arg_str, " %d @ %ld ( %15[a-z0-9] ) %n", arg_sz, &off, reg_name, &len) == 3) { 1486 /* Memory dereference case, e.g., -8@-88(s0) */ 1487 arg->arg_type = USDT_ARG_REG_DEREF; 1488 arg->val_off = off; 1489 reg_off = calc_pt_regs_off(reg_name); 1490 if (reg_off < 0) 1491 return reg_off; 1492 arg->reg_off = reg_off; 1493 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { 1494 /* Constant value case, e.g., 4@5 */ 1495 arg->arg_type = USDT_ARG_CONST; 1496 arg->val_off = off; 1497 arg->reg_off = 0; 1498 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { 1499 /* Register read case, e.g., -8@a1 */ 1500 arg->arg_type = USDT_ARG_REG; 1501 arg->val_off = 0; 1502 reg_off = calc_pt_regs_off(reg_name); 1503 if (reg_off < 0) 1504 return reg_off; 1505 arg->reg_off = reg_off; 1506 } else { 1507 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1508 return -EINVAL; 1509 } 1510 1511 return len; 1512 } 1513 1514 #elif defined(__arm__) 1515 1516 static int calc_pt_regs_off(const char *reg_name) 1517 { 1518 static struct { 1519 const char *name; 1520 size_t pt_regs_off; 1521 } reg_map[] = { 1522 { "r0", offsetof(struct pt_regs, uregs[0]) }, 1523 { "r1", offsetof(struct pt_regs, uregs[1]) }, 1524 { "r2", offsetof(struct pt_regs, uregs[2]) }, 1525 { "r3", offsetof(struct pt_regs, uregs[3]) }, 1526 { "r4", offsetof(struct pt_regs, uregs[4]) }, 1527 { "r5", offsetof(struct pt_regs, uregs[5]) }, 1528 { "r6", offsetof(struct pt_regs, uregs[6]) }, 1529 { "r7", offsetof(struct pt_regs, uregs[7]) }, 1530 { "r8", offsetof(struct pt_regs, uregs[8]) }, 1531 { "r9", offsetof(struct pt_regs, uregs[9]) }, 1532 { "r10", offsetof(struct pt_regs, uregs[10]) }, 1533 { "fp", offsetof(struct pt_regs, uregs[11]) }, 1534 { "ip", offsetof(struct pt_regs, uregs[12]) }, 1535 { "sp", offsetof(struct pt_regs, uregs[13]) }, 1536 { "lr", offsetof(struct pt_regs, uregs[14]) }, 1537 { "pc", offsetof(struct pt_regs, uregs[15]) }, 1538 }; 1539 int i; 1540 1541 for (i = 0; i < ARRAY_SIZE(reg_map); i++) { 1542 if (strcmp(reg_name, reg_map[i].name) == 0) 1543 return reg_map[i].pt_regs_off; 1544 } 1545 1546 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1547 return -ENOENT; 1548 } 1549 1550 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1551 { 1552 char reg_name[16]; 1553 int len, reg_off; 1554 long off; 1555 1556 if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , #%ld ] %n", 1557 arg_sz, reg_name, &off, &len) == 3) { 1558 /* Memory dereference case, e.g., -4@[fp, #96] */ 1559 arg->arg_type = USDT_ARG_REG_DEREF; 1560 arg->val_off = off; 1561 reg_off = calc_pt_regs_off(reg_name); 1562 if (reg_off < 0) 1563 return reg_off; 1564 arg->reg_off = reg_off; 1565 } else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) { 1566 /* Memory dereference case, e.g., -4@[sp] */ 1567 arg->arg_type = USDT_ARG_REG_DEREF; 1568 arg->val_off = 0; 1569 reg_off = calc_pt_regs_off(reg_name); 1570 if (reg_off < 0) 1571 return reg_off; 1572 arg->reg_off = reg_off; 1573 } else if (sscanf(arg_str, " %d @ #%ld %n", arg_sz, &off, &len) == 2) { 1574 /* Constant value case, e.g., 4@#5 */ 1575 arg->arg_type = USDT_ARG_CONST; 1576 arg->val_off = off; 1577 arg->reg_off = 0; 1578 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { 1579 /* Register read case, e.g., -8@r4 */ 1580 arg->arg_type = USDT_ARG_REG; 1581 arg->val_off = 0; 1582 reg_off = calc_pt_regs_off(reg_name); 1583 if (reg_off < 0) 1584 return reg_off; 1585 arg->reg_off = reg_off; 1586 } else { 1587 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1588 return -EINVAL; 1589 } 1590 1591 return len; 1592 } 1593 1594 #else 1595 1596 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1597 { 1598 pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n"); 1599 return -ENOTSUP; 1600 } 1601 1602 #endif 1603