1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ 3 #include <ctype.h> 4 #include <stdio.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <libelf.h> 8 #include <gelf.h> 9 #include <unistd.h> 10 #include <linux/ptrace.h> 11 #include <linux/kernel.h> 12 13 /* s8 will be marked as poison while it's a reg of riscv */ 14 #if defined(__riscv) 15 #define rv_s8 s8 16 #endif 17 18 #include "bpf.h" 19 #include "libbpf.h" 20 #include "libbpf_common.h" 21 #include "libbpf_internal.h" 22 #include "hashmap.h" 23 24 /* libbpf's USDT support consists of BPF-side state/code and user-space 25 * state/code working together in concert. BPF-side parts are defined in 26 * usdt.bpf.h header library. User-space state is encapsulated by struct 27 * usdt_manager and all the supporting code centered around usdt_manager. 28 * 29 * usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map 30 * and IP-to-spec-ID map, which is auxiliary map necessary for kernels that 31 * don't support BPF cookie (see below). These two maps are implicitly 32 * embedded into user's end BPF object file when user's code included 33 * usdt.bpf.h. This means that libbpf doesn't do anything special to create 34 * these USDT support maps. They are created by normal libbpf logic of 35 * instantiating BPF maps when opening and loading BPF object. 36 * 37 * As such, libbpf is basically unaware of the need to do anything 38 * USDT-related until the very first call to bpf_program__attach_usdt(), which 39 * can be called by user explicitly or happen automatically during skeleton 40 * attach (or, equivalently, through generic bpf_program__attach() call). At 41 * this point, libbpf will instantiate and initialize struct usdt_manager and 42 * store it in bpf_object. USDT manager is per-BPF object construct, as each 43 * independent BPF object might or might not have USDT programs, and thus all 44 * the expected USDT-related state. There is no coordination between two 45 * bpf_object in parts of USDT attachment, they are oblivious of each other's 46 * existence and libbpf is just oblivious, dealing with bpf_object-specific 47 * USDT state. 48 * 49 * Quick crash course on USDTs. 50 * 51 * From user-space application's point of view, USDT is essentially just 52 * a slightly special function call that normally has zero overhead, unless it 53 * is being traced by some external entity (e.g, BPF-based tool). Here's how 54 * a typical application can trigger USDT probe: 55 * 56 * #include <sys/sdt.h> // provided by systemtap-sdt-devel package 57 * // folly also provide similar functionality in folly/tracing/StaticTracepoint.h 58 * 59 * STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y); 60 * 61 * USDT is identified by it's <provider-name>:<probe-name> pair of names. Each 62 * individual USDT has a fixed number of arguments (3 in the above example) 63 * and specifies values of each argument as if it was a function call. 64 * 65 * USDT call is actually not a function call, but is instead replaced by 66 * a single NOP instruction (thus zero overhead, effectively). But in addition 67 * to that, those USDT macros generate special SHT_NOTE ELF records in 68 * .note.stapsdt ELF section. Here's an example USDT definition as emitted by 69 * `readelf -n <binary>`: 70 * 71 * stapsdt 0x00000089 NT_STAPSDT (SystemTap probe descriptors) 72 * Provider: test 73 * Name: usdt12 74 * Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e 75 * Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil 76 * 77 * In this case we have USDT test:usdt12 with 12 arguments. 78 * 79 * Location and base are offsets used to calculate absolute IP address of that 80 * NOP instruction that kernel can replace with an interrupt instruction to 81 * trigger instrumentation code (BPF program for all that we care about). 82 * 83 * Semaphore above is and optional feature. It records an address of a 2-byte 84 * refcount variable (normally in '.probes' ELF section) used for signaling if 85 * there is anything that is attached to USDT. This is useful for user 86 * applications if, for example, they need to prepare some arguments that are 87 * passed only to USDTs and preparation is expensive. By checking if USDT is 88 * "activated", an application can avoid paying those costs unnecessarily. 89 * Recent enough kernel has built-in support for automatically managing this 90 * refcount, which libbpf expects and relies on. If USDT is defined without 91 * associated semaphore, this value will be zero. See selftests for semaphore 92 * examples. 93 * 94 * Arguments is the most interesting part. This USDT specification string is 95 * providing information about all the USDT arguments and their locations. The 96 * part before @ sign defined byte size of the argument (1, 2, 4, or 8) and 97 * whether the argument is signed or unsigned (negative size means signed). 98 * The part after @ sign is assembly-like definition of argument location 99 * (see [0] for more details). Technically, assembler can provide some pretty 100 * advanced definitions, but libbpf is currently supporting three most common 101 * cases: 102 * 1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9); 103 * 2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer 104 * whose value is in register %rdx"; 105 * 3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which 106 * specifies signed 32-bit integer stored at offset -1204 bytes from 107 * memory address stored in %rbp. 108 * 109 * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation 110 * 111 * During attachment, libbpf parses all the relevant USDT specifications and 112 * prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side 113 * code through spec map. This allows BPF applications to quickly fetch the 114 * actual value at runtime using a simple BPF-side code. 115 * 116 * With basics out of the way, let's go over less immediately obvious aspects 117 * of supporting USDTs. 118 * 119 * First, there is no special USDT BPF program type. It is actually just 120 * a uprobe BPF program (which for kernel, at least currently, is just a kprobe 121 * program, so BPF_PROG_TYPE_KPROBE program type). With the only difference 122 * that uprobe is usually attached at the function entry, while USDT will 123 * normally will be somewhere inside the function. But it should always be 124 * pointing to NOP instruction, which makes such uprobes the fastest uprobe 125 * kind. 126 * 127 * Second, it's important to realize that such STAP_PROBEn(provider, name, ...) 128 * macro invocations can end up being inlined many-many times, depending on 129 * specifics of each individual user application. So single conceptual USDT 130 * (identified by provider:name pair of identifiers) is, generally speaking, 131 * multiple uprobe locations (USDT call sites) in different places in user 132 * application. Further, again due to inlining, each USDT call site might end 133 * up having the same argument #N be located in a different place. In one call 134 * site it could be a constant, in another will end up in a register, and in 135 * yet another could be some other register or even somewhere on the stack. 136 * 137 * As such, "attaching to USDT" means (in general case) attaching the same 138 * uprobe BPF program to multiple target locations in user application, each 139 * potentially having a completely different USDT spec associated with it. 140 * To wire all this up together libbpf allocates a unique integer spec ID for 141 * each unique USDT spec. Spec IDs are allocated as sequential small integers 142 * so that they can be used as keys in array BPF map (for performance reasons). 143 * Spec ID allocation and accounting is big part of what usdt_manager is 144 * about. This state has to be maintained per-BPF object and coordinate 145 * between different USDT attachments within the same BPF object. 146 * 147 * Spec ID is the key in spec BPF map, value is the actual USDT spec layed out 148 * as struct usdt_spec. Each invocation of BPF program at runtime needs to 149 * know its associated spec ID. It gets it either through BPF cookie, which 150 * libbpf sets to spec ID during attach time, or, if kernel is too old to 151 * support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such 152 * case. The latter means that some modes of operation can't be supported 153 * without BPF cookie. Such mode is attaching to shared library "generically", 154 * without specifying target process. In such case, it's impossible to 155 * calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode 156 * is not supported without BPF cookie support. 157 * 158 * Note that libbpf is using BPF cookie functionality for its own internal 159 * needs, so user itself can't rely on BPF cookie feature. To that end, libbpf 160 * provides conceptually equivalent USDT cookie support. It's still u64 161 * user-provided value that can be associated with USDT attachment. Note that 162 * this will be the same value for all USDT call sites within the same single 163 * *logical* USDT attachment. This makes sense because to user attaching to 164 * USDT is a single BPF program triggered for singular USDT probe. The fact 165 * that this is done at multiple actual locations is a mostly hidden 166 * implementation details. This USDT cookie value can be fetched with 167 * bpf_usdt_cookie(ctx) API provided by usdt.bpf.h 168 * 169 * Lastly, while single USDT can have tons of USDT call sites, it doesn't 170 * necessarily have that many different USDT specs. It very well might be 171 * that 1000 USDT call sites only need 5 different USDT specs, because all the 172 * arguments are typically contained in a small set of registers or stack 173 * locations. As such, it's wasteful to allocate as many USDT spec IDs as 174 * there are USDT call sites. So libbpf tries to be frugal and performs 175 * on-the-fly deduplication during a single USDT attachment to only allocate 176 * the minimal required amount of unique USDT specs (and thus spec IDs). This 177 * is trivially achieved by using USDT spec string (Arguments string from USDT 178 * note) as a lookup key in a hashmap. USDT spec string uniquely defines 179 * everything about how to fetch USDT arguments, so two USDT call sites 180 * sharing USDT spec string can safely share the same USDT spec and spec ID. 181 * Note, this spec string deduplication is happening only during the same USDT 182 * attachment, so each USDT spec shares the same USDT cookie value. This is 183 * not generally true for other USDT attachments within the same BPF object, 184 * as even if USDT spec string is the same, USDT cookie value can be 185 * different. It was deemed excessive to try to deduplicate across independent 186 * USDT attachments by taking into account USDT spec string *and* USDT cookie 187 * value, which would complicated spec ID accounting significantly for little 188 * gain. 189 */ 190 191 #define USDT_BASE_SEC ".stapsdt.base" 192 #define USDT_SEMA_SEC ".probes" 193 #define USDT_NOTE_SEC ".note.stapsdt" 194 #define USDT_NOTE_TYPE 3 195 #define USDT_NOTE_NAME "stapsdt" 196 197 /* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */ 198 enum usdt_arg_type { 199 USDT_ARG_CONST, 200 USDT_ARG_REG, 201 USDT_ARG_REG_DEREF, 202 }; 203 204 /* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */ 205 struct usdt_arg_spec { 206 __u64 val_off; 207 enum usdt_arg_type arg_type; 208 short reg_off; 209 bool arg_signed; 210 char arg_bitshift; 211 }; 212 213 /* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */ 214 #define USDT_MAX_ARG_CNT 12 215 216 /* should match struct __bpf_usdt_spec from usdt.bpf.h */ 217 struct usdt_spec { 218 struct usdt_arg_spec args[USDT_MAX_ARG_CNT]; 219 __u64 usdt_cookie; 220 short arg_cnt; 221 }; 222 223 struct usdt_note { 224 const char *provider; 225 const char *name; 226 /* USDT args specification string, e.g.: 227 * "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx" 228 */ 229 const char *args; 230 long loc_addr; 231 long base_addr; 232 long sema_addr; 233 }; 234 235 struct usdt_target { 236 long abs_ip; 237 long rel_ip; 238 long sema_off; 239 struct usdt_spec spec; 240 const char *spec_str; 241 }; 242 243 struct usdt_manager { 244 struct bpf_map *specs_map; 245 struct bpf_map *ip_to_spec_id_map; 246 247 int *free_spec_ids; 248 size_t free_spec_cnt; 249 size_t next_free_spec_id; 250 251 bool has_bpf_cookie; 252 bool has_sema_refcnt; 253 }; 254 255 struct usdt_manager *usdt_manager_new(struct bpf_object *obj) 256 { 257 static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset"; 258 struct usdt_manager *man; 259 struct bpf_map *specs_map, *ip_to_spec_id_map; 260 261 specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs"); 262 ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id"); 263 if (!specs_map || !ip_to_spec_id_map) { 264 pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n"); 265 return ERR_PTR(-ESRCH); 266 } 267 268 man = calloc(1, sizeof(*man)); 269 if (!man) 270 return ERR_PTR(-ENOMEM); 271 272 man->specs_map = specs_map; 273 man->ip_to_spec_id_map = ip_to_spec_id_map; 274 275 /* Detect if BPF cookie is supported for kprobes. 276 * We don't need IP-to-ID mapping if we can use BPF cookies. 277 * Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value") 278 */ 279 man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE); 280 281 /* Detect kernel support for automatic refcounting of USDT semaphore. 282 * If this is not supported, USDTs with semaphores will not be supported. 283 * Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe") 284 */ 285 man->has_sema_refcnt = access(ref_ctr_sysfs_path, F_OK) == 0; 286 287 return man; 288 } 289 290 void usdt_manager_free(struct usdt_manager *man) 291 { 292 if (IS_ERR_OR_NULL(man)) 293 return; 294 295 free(man->free_spec_ids); 296 free(man); 297 } 298 299 static int sanity_check_usdt_elf(Elf *elf, const char *path) 300 { 301 GElf_Ehdr ehdr; 302 int endianness; 303 304 if (elf_kind(elf) != ELF_K_ELF) { 305 pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path); 306 return -EBADF; 307 } 308 309 switch (gelf_getclass(elf)) { 310 case ELFCLASS64: 311 if (sizeof(void *) != 8) { 312 pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path); 313 return -EBADF; 314 } 315 break; 316 case ELFCLASS32: 317 if (sizeof(void *) != 4) { 318 pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path); 319 return -EBADF; 320 } 321 break; 322 default: 323 pr_warn("usdt: unsupported ELF class for '%s'\n", path); 324 return -EBADF; 325 } 326 327 if (!gelf_getehdr(elf, &ehdr)) 328 return -EINVAL; 329 330 if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) { 331 pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n", 332 path, ehdr.e_type); 333 return -EBADF; 334 } 335 336 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 337 endianness = ELFDATA2LSB; 338 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 339 endianness = ELFDATA2MSB; 340 #else 341 # error "Unrecognized __BYTE_ORDER__" 342 #endif 343 if (endianness != ehdr.e_ident[EI_DATA]) { 344 pr_warn("usdt: ELF endianness mismatch for '%s'\n", path); 345 return -EBADF; 346 } 347 348 return 0; 349 } 350 351 static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn) 352 { 353 Elf_Scn *sec = NULL; 354 size_t shstrndx; 355 356 if (elf_getshdrstrndx(elf, &shstrndx)) 357 return -EINVAL; 358 359 /* check if ELF is corrupted and avoid calling elf_strptr if yes */ 360 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) 361 return -EINVAL; 362 363 while ((sec = elf_nextscn(elf, sec)) != NULL) { 364 char *name; 365 366 if (!gelf_getshdr(sec, shdr)) 367 return -EINVAL; 368 369 name = elf_strptr(elf, shstrndx, shdr->sh_name); 370 if (name && strcmp(sec_name, name) == 0) { 371 *scn = sec; 372 return 0; 373 } 374 } 375 376 return -ENOENT; 377 } 378 379 struct elf_seg { 380 long start; 381 long end; 382 long offset; 383 bool is_exec; 384 }; 385 386 static int cmp_elf_segs(const void *_a, const void *_b) 387 { 388 const struct elf_seg *a = _a; 389 const struct elf_seg *b = _b; 390 391 return a->start < b->start ? -1 : 1; 392 } 393 394 static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt) 395 { 396 GElf_Phdr phdr; 397 size_t n; 398 int i, err; 399 struct elf_seg *seg; 400 void *tmp; 401 402 *seg_cnt = 0; 403 404 if (elf_getphdrnum(elf, &n)) { 405 err = -errno; 406 return err; 407 } 408 409 for (i = 0; i < n; i++) { 410 if (!gelf_getphdr(elf, i, &phdr)) { 411 err = -errno; 412 return err; 413 } 414 415 pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n", 416 i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset, 417 (long)phdr.p_type, (long)phdr.p_flags); 418 if (phdr.p_type != PT_LOAD) 419 continue; 420 421 tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs)); 422 if (!tmp) 423 return -ENOMEM; 424 425 *segs = tmp; 426 seg = *segs + *seg_cnt; 427 (*seg_cnt)++; 428 429 seg->start = phdr.p_vaddr; 430 seg->end = phdr.p_vaddr + phdr.p_memsz; 431 seg->offset = phdr.p_offset; 432 seg->is_exec = phdr.p_flags & PF_X; 433 } 434 435 if (*seg_cnt == 0) { 436 pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path); 437 return -ESRCH; 438 } 439 440 qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs); 441 return 0; 442 } 443 444 static int parse_lib_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt) 445 { 446 char path[PATH_MAX], line[PATH_MAX], mode[16]; 447 size_t seg_start, seg_end, seg_off; 448 struct elf_seg *seg; 449 int tmp_pid, i, err; 450 FILE *f; 451 452 *seg_cnt = 0; 453 454 /* Handle containerized binaries only accessible from 455 * /proc/<pid>/root/<path>. They will be reported as just /<path> in 456 * /proc/<pid>/maps. 457 */ 458 if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid) 459 goto proceed; 460 461 if (!realpath(lib_path, path)) { 462 pr_warn("usdt: failed to get absolute path of '%s' (err %d), using path as is...\n", 463 lib_path, -errno); 464 libbpf_strlcpy(path, lib_path, sizeof(path)); 465 } 466 467 proceed: 468 sprintf(line, "/proc/%d/maps", pid); 469 f = fopen(line, "r"); 470 if (!f) { 471 err = -errno; 472 pr_warn("usdt: failed to open '%s' to get base addr of '%s': %d\n", 473 line, lib_path, err); 474 return err; 475 } 476 477 /* We need to handle lines with no path at the end: 478 * 479 * 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613 /usr/lib64/libc-2.17.so 480 * 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0 481 * 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598 /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so 482 */ 483 while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n", 484 &seg_start, &seg_end, mode, &seg_off, line) == 5) { 485 void *tmp; 486 487 /* to handle no path case (see above) we need to capture line 488 * without skipping any whitespaces. So we need to strip 489 * leading whitespaces manually here 490 */ 491 i = 0; 492 while (isblank(line[i])) 493 i++; 494 if (strcmp(line + i, path) != 0) 495 continue; 496 497 pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n", 498 path, seg_start, seg_end, mode, seg_off); 499 500 /* ignore non-executable sections for shared libs */ 501 if (mode[2] != 'x') 502 continue; 503 504 tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs)); 505 if (!tmp) { 506 err = -ENOMEM; 507 goto err_out; 508 } 509 510 *segs = tmp; 511 seg = *segs + *seg_cnt; 512 *seg_cnt += 1; 513 514 seg->start = seg_start; 515 seg->end = seg_end; 516 seg->offset = seg_off; 517 seg->is_exec = true; 518 } 519 520 if (*seg_cnt == 0) { 521 pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n", 522 lib_path, path, pid); 523 err = -ESRCH; 524 goto err_out; 525 } 526 527 qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs); 528 err = 0; 529 err_out: 530 fclose(f); 531 return err; 532 } 533 534 static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long addr, bool relative) 535 { 536 struct elf_seg *seg; 537 int i; 538 539 if (relative) { 540 /* for shared libraries, address is relative offset and thus 541 * should be fall within logical offset-based range of 542 * [offset_start, offset_end) 543 */ 544 for (i = 0, seg = segs; i < seg_cnt; i++, seg++) { 545 if (seg->offset <= addr && addr < seg->offset + (seg->end - seg->start)) 546 return seg; 547 } 548 } else { 549 /* for binaries, address is absolute and thus should be within 550 * absolute address range of [seg_start, seg_end) 551 */ 552 for (i = 0, seg = segs; i < seg_cnt; i++, seg++) { 553 if (seg->start <= addr && addr < seg->end) 554 return seg; 555 } 556 } 557 558 return NULL; 559 } 560 561 static int parse_usdt_note(Elf *elf, const char *path, long base_addr, 562 GElf_Nhdr *nhdr, const char *data, size_t name_off, size_t desc_off, 563 struct usdt_note *usdt_note); 564 565 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie); 566 567 static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid, 568 const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie, 569 struct usdt_target **out_targets, size_t *out_target_cnt) 570 { 571 size_t off, name_off, desc_off, seg_cnt = 0, lib_seg_cnt = 0, target_cnt = 0; 572 struct elf_seg *segs = NULL, *lib_segs = NULL; 573 struct usdt_target *targets = NULL, *target; 574 long base_addr = 0; 575 Elf_Scn *notes_scn, *base_scn; 576 GElf_Shdr base_shdr, notes_shdr; 577 GElf_Ehdr ehdr; 578 GElf_Nhdr nhdr; 579 Elf_Data *data; 580 int err; 581 582 *out_targets = NULL; 583 *out_target_cnt = 0; 584 585 err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, ¬es_shdr, ¬es_scn); 586 if (err) { 587 pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path); 588 return err; 589 } 590 591 if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) { 592 pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path); 593 return -EINVAL; 594 } 595 596 err = parse_elf_segs(elf, path, &segs, &seg_cnt); 597 if (err) { 598 pr_warn("usdt: failed to process ELF program segments for '%s': %d\n", path, err); 599 goto err_out; 600 } 601 602 /* .stapsdt.base ELF section is optional, but is used for prelink 603 * offset compensation (see a big comment further below) 604 */ 605 if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0) 606 base_addr = base_shdr.sh_addr; 607 608 data = elf_getdata(notes_scn, 0); 609 off = 0; 610 while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) { 611 long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0; 612 struct usdt_note note; 613 struct elf_seg *seg = NULL; 614 void *tmp; 615 616 err = parse_usdt_note(elf, path, base_addr, &nhdr, 617 data->d_buf, name_off, desc_off, ¬e); 618 if (err) 619 goto err_out; 620 621 if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0) 622 continue; 623 624 /* We need to compensate "prelink effect". See [0] for details, 625 * relevant parts quoted here: 626 * 627 * Each SDT probe also expands into a non-allocated ELF note. You can 628 * find this by looking at SHT_NOTE sections and decoding the format; 629 * see below for details. Because the note is non-allocated, it means 630 * there is no runtime cost, and also preserved in both stripped files 631 * and .debug files. 632 * 633 * However, this means that prelink won't adjust the note's contents 634 * for address offsets. Instead, this is done via the .stapsdt.base 635 * section. This is a special section that is added to the text. We 636 * will only ever have one of these sections in a final link and it 637 * will only ever be one byte long. Nothing about this section itself 638 * matters, we just use it as a marker to detect prelink address 639 * adjustments. 640 * 641 * Each probe note records the link-time address of the .stapsdt.base 642 * section alongside the probe PC address. The decoder compares the 643 * base address stored in the note with the .stapsdt.base section's 644 * sh_addr. Initially these are the same, but the section header will 645 * be adjusted by prelink. So the decoder applies the difference to 646 * the probe PC address to get the correct prelinked PC address; the 647 * same adjustment is applied to the semaphore address, if any. 648 * 649 * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation 650 */ 651 usdt_rel_ip = usdt_abs_ip = note.loc_addr; 652 if (base_addr) { 653 usdt_abs_ip += base_addr - note.base_addr; 654 usdt_rel_ip += base_addr - note.base_addr; 655 } 656 657 if (ehdr.e_type == ET_EXEC) { 658 /* When attaching uprobes (which what USDTs basically 659 * are) kernel expects a relative IP to be specified, 660 * so if we are attaching to an executable ELF binary 661 * (i.e., not a shared library), we need to calculate 662 * proper relative IP based on ELF's load address 663 */ 664 seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip, false /* relative */); 665 if (!seg) { 666 err = -ESRCH; 667 pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n", 668 usdt_provider, usdt_name, path, usdt_abs_ip); 669 goto err_out; 670 } 671 if (!seg->is_exec) { 672 err = -ESRCH; 673 pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n", 674 path, seg->start, seg->end, usdt_provider, usdt_name, 675 usdt_abs_ip); 676 goto err_out; 677 } 678 679 usdt_rel_ip = usdt_abs_ip - (seg->start - seg->offset); 680 } else if (!man->has_bpf_cookie) { /* ehdr.e_type == ET_DYN */ 681 /* If we don't have BPF cookie support but need to 682 * attach to a shared library, we'll need to know and 683 * record absolute addresses of attach points due to 684 * the need to lookup USDT spec by absolute IP of 685 * triggered uprobe. Doing this resolution is only 686 * possible when we have a specific PID of the process 687 * that's using specified shared library. BPF cookie 688 * removes the absolute address limitation as we don't 689 * need to do this lookup (we just use BPF cookie as 690 * an index of USDT spec), so for newer kernels with 691 * BPF cookie support libbpf supports USDT attachment 692 * to shared libraries with no PID filter. 693 */ 694 if (pid < 0) { 695 pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n"); 696 err = -ENOTSUP; 697 goto err_out; 698 } 699 700 /* lib_segs are lazily initialized only if necessary */ 701 if (lib_seg_cnt == 0) { 702 err = parse_lib_segs(pid, path, &lib_segs, &lib_seg_cnt); 703 if (err) { 704 pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %d\n", 705 pid, path, err); 706 goto err_out; 707 } 708 } 709 710 seg = find_elf_seg(lib_segs, lib_seg_cnt, usdt_rel_ip, true /* relative */); 711 if (!seg) { 712 err = -ESRCH; 713 pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n", 714 usdt_provider, usdt_name, path, usdt_rel_ip); 715 goto err_out; 716 } 717 718 usdt_abs_ip = seg->start + (usdt_rel_ip - seg->offset); 719 } 720 721 pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n", 722 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path, 723 note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args, 724 seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0); 725 726 /* Adjust semaphore address to be a relative offset */ 727 if (note.sema_addr) { 728 if (!man->has_sema_refcnt) { 729 pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n", 730 usdt_provider, usdt_name, path); 731 err = -ENOTSUP; 732 goto err_out; 733 } 734 735 seg = find_elf_seg(segs, seg_cnt, note.sema_addr, false /* relative */); 736 if (!seg) { 737 err = -ESRCH; 738 pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n", 739 usdt_provider, usdt_name, path, note.sema_addr); 740 goto err_out; 741 } 742 if (seg->is_exec) { 743 err = -ESRCH; 744 pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n", 745 path, seg->start, seg->end, usdt_provider, usdt_name, 746 note.sema_addr); 747 goto err_out; 748 } 749 750 usdt_sema_off = note.sema_addr - (seg->start - seg->offset); 751 752 pr_debug("usdt: sema for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n", 753 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", 754 path, note.sema_addr, note.base_addr, usdt_sema_off, 755 seg->start, seg->end, seg->offset); 756 } 757 758 /* Record adjusted addresses and offsets and parse USDT spec */ 759 tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets)); 760 if (!tmp) { 761 err = -ENOMEM; 762 goto err_out; 763 } 764 targets = tmp; 765 766 target = &targets[target_cnt]; 767 memset(target, 0, sizeof(*target)); 768 769 target->abs_ip = usdt_abs_ip; 770 target->rel_ip = usdt_rel_ip; 771 target->sema_off = usdt_sema_off; 772 773 /* notes->args references strings from Elf itself, so they can 774 * be referenced safely until elf_end() call 775 */ 776 target->spec_str = note.args; 777 778 err = parse_usdt_spec(&target->spec, ¬e, usdt_cookie); 779 if (err) 780 goto err_out; 781 782 target_cnt++; 783 } 784 785 *out_targets = targets; 786 *out_target_cnt = target_cnt; 787 err = target_cnt; 788 789 err_out: 790 free(segs); 791 free(lib_segs); 792 if (err < 0) 793 free(targets); 794 return err; 795 } 796 797 struct bpf_link_usdt { 798 struct bpf_link link; 799 800 struct usdt_manager *usdt_man; 801 802 size_t spec_cnt; 803 int *spec_ids; 804 805 size_t uprobe_cnt; 806 struct { 807 long abs_ip; 808 struct bpf_link *link; 809 } *uprobes; 810 }; 811 812 static int bpf_link_usdt_detach(struct bpf_link *link) 813 { 814 struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link); 815 struct usdt_manager *man = usdt_link->usdt_man; 816 int i; 817 818 for (i = 0; i < usdt_link->uprobe_cnt; i++) { 819 /* detach underlying uprobe link */ 820 bpf_link__destroy(usdt_link->uprobes[i].link); 821 /* there is no need to update specs map because it will be 822 * unconditionally overwritten on subsequent USDT attaches, 823 * but if BPF cookies are not used we need to remove entry 824 * from ip_to_spec_id map, otherwise we'll run into false 825 * conflicting IP errors 826 */ 827 if (!man->has_bpf_cookie) { 828 /* not much we can do about errors here */ 829 (void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map), 830 &usdt_link->uprobes[i].abs_ip); 831 } 832 } 833 834 /* try to return the list of previously used spec IDs to usdt_manager 835 * for future reuse for subsequent USDT attaches 836 */ 837 if (!man->free_spec_ids) { 838 /* if there were no free spec IDs yet, just transfer our IDs */ 839 man->free_spec_ids = usdt_link->spec_ids; 840 man->free_spec_cnt = usdt_link->spec_cnt; 841 usdt_link->spec_ids = NULL; 842 } else { 843 /* otherwise concat IDs */ 844 size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt; 845 int *new_free_ids; 846 847 new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt, 848 sizeof(*new_free_ids)); 849 /* If we couldn't resize free_spec_ids, we'll just leak 850 * a bunch of free IDs; this is very unlikely to happen and if 851 * system is so exhausted on memory, it's the least of user's 852 * concerns, probably. 853 * So just do our best here to return those IDs to usdt_manager. 854 */ 855 if (new_free_ids) { 856 memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids, 857 usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids)); 858 man->free_spec_ids = new_free_ids; 859 man->free_spec_cnt = new_cnt; 860 } 861 } 862 863 return 0; 864 } 865 866 static void bpf_link_usdt_dealloc(struct bpf_link *link) 867 { 868 struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link); 869 870 free(usdt_link->spec_ids); 871 free(usdt_link->uprobes); 872 free(usdt_link); 873 } 874 875 static size_t specs_hash_fn(const void *key, void *ctx) 876 { 877 const char *s = key; 878 879 return str_hash(s); 880 } 881 882 static bool specs_equal_fn(const void *key1, const void *key2, void *ctx) 883 { 884 const char *s1 = key1; 885 const char *s2 = key2; 886 887 return strcmp(s1, s2) == 0; 888 } 889 890 static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash, 891 struct bpf_link_usdt *link, struct usdt_target *target, 892 int *spec_id, bool *is_new) 893 { 894 void *tmp; 895 int err; 896 897 /* check if we already allocated spec ID for this spec string */ 898 if (hashmap__find(specs_hash, target->spec_str, &tmp)) { 899 *spec_id = (long)tmp; 900 *is_new = false; 901 return 0; 902 } 903 904 /* otherwise it's a new ID that needs to be set up in specs map and 905 * returned back to usdt_manager when USDT link is detached 906 */ 907 tmp = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids)); 908 if (!tmp) 909 return -ENOMEM; 910 link->spec_ids = tmp; 911 912 /* get next free spec ID, giving preference to free list, if not empty */ 913 if (man->free_spec_cnt) { 914 *spec_id = man->free_spec_ids[man->free_spec_cnt - 1]; 915 916 /* cache spec ID for current spec string for future lookups */ 917 err = hashmap__add(specs_hash, target->spec_str, (void *)(long)*spec_id); 918 if (err) 919 return err; 920 921 man->free_spec_cnt--; 922 } else { 923 /* don't allocate spec ID bigger than what fits in specs map */ 924 if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map)) 925 return -E2BIG; 926 927 *spec_id = man->next_free_spec_id; 928 929 /* cache spec ID for current spec string for future lookups */ 930 err = hashmap__add(specs_hash, target->spec_str, (void *)(long)*spec_id); 931 if (err) 932 return err; 933 934 man->next_free_spec_id++; 935 } 936 937 /* remember new spec ID in the link for later return back to free list on detach */ 938 link->spec_ids[link->spec_cnt] = *spec_id; 939 link->spec_cnt++; 940 *is_new = true; 941 return 0; 942 } 943 944 struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog, 945 pid_t pid, const char *path, 946 const char *usdt_provider, const char *usdt_name, 947 __u64 usdt_cookie) 948 { 949 int i, fd, err, spec_map_fd, ip_map_fd; 950 LIBBPF_OPTS(bpf_uprobe_opts, opts); 951 struct hashmap *specs_hash = NULL; 952 struct bpf_link_usdt *link = NULL; 953 struct usdt_target *targets = NULL; 954 size_t target_cnt; 955 Elf *elf; 956 957 spec_map_fd = bpf_map__fd(man->specs_map); 958 ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map); 959 960 /* TODO: perform path resolution similar to uprobe's */ 961 fd = open(path, O_RDONLY); 962 if (fd < 0) { 963 err = -errno; 964 pr_warn("usdt: failed to open ELF binary '%s': %d\n", path, err); 965 return libbpf_err_ptr(err); 966 } 967 968 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 969 if (!elf) { 970 err = -EBADF; 971 pr_warn("usdt: failed to parse ELF binary '%s': %s\n", path, elf_errmsg(-1)); 972 goto err_out; 973 } 974 975 err = sanity_check_usdt_elf(elf, path); 976 if (err) 977 goto err_out; 978 979 /* normalize PID filter */ 980 if (pid < 0) 981 pid = -1; 982 else if (pid == 0) 983 pid = getpid(); 984 985 /* discover USDT in given binary, optionally limiting 986 * activations to a given PID, if pid > 0 987 */ 988 err = collect_usdt_targets(man, elf, path, pid, usdt_provider, usdt_name, 989 usdt_cookie, &targets, &target_cnt); 990 if (err <= 0) { 991 err = (err == 0) ? -ENOENT : err; 992 goto err_out; 993 } 994 995 specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL); 996 if (IS_ERR(specs_hash)) { 997 err = PTR_ERR(specs_hash); 998 goto err_out; 999 } 1000 1001 link = calloc(1, sizeof(*link)); 1002 if (!link) { 1003 err = -ENOMEM; 1004 goto err_out; 1005 } 1006 1007 link->usdt_man = man; 1008 link->link.detach = &bpf_link_usdt_detach; 1009 link->link.dealloc = &bpf_link_usdt_dealloc; 1010 1011 link->uprobes = calloc(target_cnt, sizeof(*link->uprobes)); 1012 if (!link->uprobes) { 1013 err = -ENOMEM; 1014 goto err_out; 1015 } 1016 1017 for (i = 0; i < target_cnt; i++) { 1018 struct usdt_target *target = &targets[i]; 1019 struct bpf_link *uprobe_link; 1020 bool is_new; 1021 int spec_id; 1022 1023 /* Spec ID can be either reused or newly allocated. If it is 1024 * newly allocated, we'll need to fill out spec map, otherwise 1025 * entire spec should be valid and can be just used by a new 1026 * uprobe. We reuse spec when USDT arg spec is identical. We 1027 * also never share specs between two different USDT 1028 * attachments ("links"), so all the reused specs already 1029 * share USDT cookie value implicitly. 1030 */ 1031 err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new); 1032 if (err) 1033 goto err_out; 1034 1035 if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) { 1036 err = -errno; 1037 pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %d\n", 1038 spec_id, usdt_provider, usdt_name, path, err); 1039 goto err_out; 1040 } 1041 if (!man->has_bpf_cookie && 1042 bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) { 1043 err = -errno; 1044 if (err == -EEXIST) { 1045 pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n", 1046 spec_id, usdt_provider, usdt_name, path); 1047 } else { 1048 pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %d\n", 1049 target->abs_ip, spec_id, usdt_provider, usdt_name, 1050 path, err); 1051 } 1052 goto err_out; 1053 } 1054 1055 opts.ref_ctr_offset = target->sema_off; 1056 opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0; 1057 uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path, 1058 target->rel_ip, &opts); 1059 err = libbpf_get_error(uprobe_link); 1060 if (err) { 1061 pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %d\n", 1062 i, usdt_provider, usdt_name, path, err); 1063 goto err_out; 1064 } 1065 1066 link->uprobes[i].link = uprobe_link; 1067 link->uprobes[i].abs_ip = target->abs_ip; 1068 link->uprobe_cnt++; 1069 } 1070 1071 free(targets); 1072 hashmap__free(specs_hash); 1073 elf_end(elf); 1074 close(fd); 1075 1076 return &link->link; 1077 1078 err_out: 1079 if (link) 1080 bpf_link__destroy(&link->link); 1081 free(targets); 1082 hashmap__free(specs_hash); 1083 if (elf) 1084 elf_end(elf); 1085 close(fd); 1086 return libbpf_err_ptr(err); 1087 } 1088 1089 /* Parse out USDT ELF note from '.note.stapsdt' section. 1090 * Logic inspired by perf's code. 1091 */ 1092 static int parse_usdt_note(Elf *elf, const char *path, long base_addr, 1093 GElf_Nhdr *nhdr, const char *data, size_t name_off, size_t desc_off, 1094 struct usdt_note *note) 1095 { 1096 const char *provider, *name, *args; 1097 long addrs[3]; 1098 size_t len; 1099 1100 /* sanity check USDT note name and type first */ 1101 if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0) 1102 return -EINVAL; 1103 if (nhdr->n_type != USDT_NOTE_TYPE) 1104 return -EINVAL; 1105 1106 /* sanity check USDT note contents ("description" in ELF terminology) */ 1107 len = nhdr->n_descsz; 1108 data = data + desc_off; 1109 1110 /* +3 is the very minimum required to store three empty strings */ 1111 if (len < sizeof(addrs) + 3) 1112 return -EINVAL; 1113 1114 /* get location, base, and semaphore addrs */ 1115 memcpy(&addrs, data, sizeof(addrs)); 1116 1117 /* parse string fields: provider, name, args */ 1118 provider = data + sizeof(addrs); 1119 1120 name = (const char *)memchr(provider, '\0', data + len - provider); 1121 if (!name) /* non-zero-terminated provider */ 1122 return -EINVAL; 1123 name++; 1124 if (name >= data + len || *name == '\0') /* missing or empty name */ 1125 return -EINVAL; 1126 1127 args = memchr(name, '\0', data + len - name); 1128 if (!args) /* non-zero-terminated name */ 1129 return -EINVAL; 1130 ++args; 1131 if (args >= data + len) /* missing arguments spec */ 1132 return -EINVAL; 1133 1134 note->provider = provider; 1135 note->name = name; 1136 if (*args == '\0' || *args == ':') 1137 note->args = ""; 1138 else 1139 note->args = args; 1140 note->loc_addr = addrs[0]; 1141 note->base_addr = addrs[1]; 1142 note->sema_addr = addrs[2]; 1143 1144 return 0; 1145 } 1146 1147 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg); 1148 1149 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie) 1150 { 1151 const char *s; 1152 int len; 1153 1154 spec->usdt_cookie = usdt_cookie; 1155 spec->arg_cnt = 0; 1156 1157 s = note->args; 1158 while (s[0]) { 1159 if (spec->arg_cnt >= USDT_MAX_ARG_CNT) { 1160 pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n", 1161 USDT_MAX_ARG_CNT, note->provider, note->name, note->args); 1162 return -E2BIG; 1163 } 1164 1165 len = parse_usdt_arg(s, spec->arg_cnt, &spec->args[spec->arg_cnt]); 1166 if (len < 0) 1167 return len; 1168 1169 s += len; 1170 spec->arg_cnt++; 1171 } 1172 1173 return 0; 1174 } 1175 1176 /* Architecture-specific logic for parsing USDT argument location specs */ 1177 1178 #if defined(__x86_64__) || defined(__i386__) 1179 1180 static int calc_pt_regs_off(const char *reg_name) 1181 { 1182 static struct { 1183 const char *names[4]; 1184 size_t pt_regs_off; 1185 } reg_map[] = { 1186 #ifdef __x86_64__ 1187 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64) 1188 #else 1189 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32) 1190 #endif 1191 { {"rip", "eip", "", ""}, reg_off(rip, eip) }, 1192 { {"rax", "eax", "ax", "al"}, reg_off(rax, eax) }, 1193 { {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) }, 1194 { {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) }, 1195 { {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) }, 1196 { {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) }, 1197 { {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) }, 1198 { {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) }, 1199 { {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) }, 1200 #undef reg_off 1201 #ifdef __x86_64__ 1202 { {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) }, 1203 { {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) }, 1204 { {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) }, 1205 { {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) }, 1206 { {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) }, 1207 { {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) }, 1208 { {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) }, 1209 { {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) }, 1210 #endif 1211 }; 1212 int i, j; 1213 1214 for (i = 0; i < ARRAY_SIZE(reg_map); i++) { 1215 for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) { 1216 if (strcmp(reg_name, reg_map[i].names[j]) == 0) 1217 return reg_map[i].pt_regs_off; 1218 } 1219 } 1220 1221 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1222 return -ENOENT; 1223 } 1224 1225 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg) 1226 { 1227 char *reg_name = NULL; 1228 int arg_sz, len, reg_off; 1229 long off; 1230 1231 if (sscanf(arg_str, " %d @ %ld ( %%%m[^)] ) %n", &arg_sz, &off, ®_name, &len) == 3) { 1232 /* Memory dereference case, e.g., -4@-20(%rbp) */ 1233 arg->arg_type = USDT_ARG_REG_DEREF; 1234 arg->val_off = off; 1235 reg_off = calc_pt_regs_off(reg_name); 1236 free(reg_name); 1237 if (reg_off < 0) 1238 return reg_off; 1239 arg->reg_off = reg_off; 1240 } else if (sscanf(arg_str, " %d @ %%%ms %n", &arg_sz, ®_name, &len) == 2) { 1241 /* Register read case, e.g., -4@%eax */ 1242 arg->arg_type = USDT_ARG_REG; 1243 arg->val_off = 0; 1244 1245 reg_off = calc_pt_regs_off(reg_name); 1246 free(reg_name); 1247 if (reg_off < 0) 1248 return reg_off; 1249 arg->reg_off = reg_off; 1250 } else if (sscanf(arg_str, " %d @ $%ld %n", &arg_sz, &off, &len) == 2) { 1251 /* Constant value case, e.g., 4@$71 */ 1252 arg->arg_type = USDT_ARG_CONST; 1253 arg->val_off = off; 1254 arg->reg_off = 0; 1255 } else { 1256 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1257 return -EINVAL; 1258 } 1259 1260 arg->arg_signed = arg_sz < 0; 1261 if (arg_sz < 0) 1262 arg_sz = -arg_sz; 1263 1264 switch (arg_sz) { 1265 case 1: case 2: case 4: case 8: 1266 arg->arg_bitshift = 64 - arg_sz * 8; 1267 break; 1268 default: 1269 pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n", 1270 arg_num, arg_str, arg_sz); 1271 return -EINVAL; 1272 } 1273 1274 return len; 1275 } 1276 1277 #elif defined(__s390x__) 1278 1279 /* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */ 1280 1281 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg) 1282 { 1283 unsigned int reg; 1284 int arg_sz, len; 1285 long off; 1286 1287 if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", &arg_sz, &off, ®, &len) == 3) { 1288 /* Memory dereference case, e.g., -2@-28(%r15) */ 1289 arg->arg_type = USDT_ARG_REG_DEREF; 1290 arg->val_off = off; 1291 if (reg > 15) { 1292 pr_warn("usdt: unrecognized register '%%r%u'\n", reg); 1293 return -EINVAL; 1294 } 1295 arg->reg_off = offsetof(user_pt_regs, gprs[reg]); 1296 } else if (sscanf(arg_str, " %d @ %%r%u %n", &arg_sz, ®, &len) == 2) { 1297 /* Register read case, e.g., -8@%r0 */ 1298 arg->arg_type = USDT_ARG_REG; 1299 arg->val_off = 0; 1300 if (reg > 15) { 1301 pr_warn("usdt: unrecognized register '%%r%u'\n", reg); 1302 return -EINVAL; 1303 } 1304 arg->reg_off = offsetof(user_pt_regs, gprs[reg]); 1305 } else if (sscanf(arg_str, " %d @ %ld %n", &arg_sz, &off, &len) == 2) { 1306 /* Constant value case, e.g., 4@71 */ 1307 arg->arg_type = USDT_ARG_CONST; 1308 arg->val_off = off; 1309 arg->reg_off = 0; 1310 } else { 1311 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1312 return -EINVAL; 1313 } 1314 1315 arg->arg_signed = arg_sz < 0; 1316 if (arg_sz < 0) 1317 arg_sz = -arg_sz; 1318 1319 switch (arg_sz) { 1320 case 1: case 2: case 4: case 8: 1321 arg->arg_bitshift = 64 - arg_sz * 8; 1322 break; 1323 default: 1324 pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n", 1325 arg_num, arg_str, arg_sz); 1326 return -EINVAL; 1327 } 1328 1329 return len; 1330 } 1331 1332 #elif defined(__aarch64__) 1333 1334 static int calc_pt_regs_off(const char *reg_name) 1335 { 1336 int reg_num; 1337 1338 if (sscanf(reg_name, "x%d", ®_num) == 1) { 1339 if (reg_num >= 0 && reg_num < 31) 1340 return offsetof(struct user_pt_regs, regs[reg_num]); 1341 } else if (strcmp(reg_name, "sp") == 0) { 1342 return offsetof(struct user_pt_regs, sp); 1343 } 1344 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1345 return -ENOENT; 1346 } 1347 1348 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg) 1349 { 1350 char *reg_name = NULL; 1351 int arg_sz, len, reg_off; 1352 long off; 1353 1354 if (sscanf(arg_str, " %d @ \[ %m[a-z0-9], %ld ] %n", &arg_sz, ®_name, &off, &len) == 3) { 1355 /* Memory dereference case, e.g., -4@[sp, 96] */ 1356 arg->arg_type = USDT_ARG_REG_DEREF; 1357 arg->val_off = off; 1358 reg_off = calc_pt_regs_off(reg_name); 1359 free(reg_name); 1360 if (reg_off < 0) 1361 return reg_off; 1362 arg->reg_off = reg_off; 1363 } else if (sscanf(arg_str, " %d @ \[ %m[a-z0-9] ] %n", &arg_sz, ®_name, &len) == 2) { 1364 /* Memory dereference case, e.g., -4@[sp] */ 1365 arg->arg_type = USDT_ARG_REG_DEREF; 1366 arg->val_off = 0; 1367 reg_off = calc_pt_regs_off(reg_name); 1368 free(reg_name); 1369 if (reg_off < 0) 1370 return reg_off; 1371 arg->reg_off = reg_off; 1372 } else if (sscanf(arg_str, " %d @ %ld %n", &arg_sz, &off, &len) == 2) { 1373 /* Constant value case, e.g., 4@5 */ 1374 arg->arg_type = USDT_ARG_CONST; 1375 arg->val_off = off; 1376 arg->reg_off = 0; 1377 } else if (sscanf(arg_str, " %d @ %m[a-z0-9] %n", &arg_sz, ®_name, &len) == 2) { 1378 /* Register read case, e.g., -8@x4 */ 1379 arg->arg_type = USDT_ARG_REG; 1380 arg->val_off = 0; 1381 reg_off = calc_pt_regs_off(reg_name); 1382 free(reg_name); 1383 if (reg_off < 0) 1384 return reg_off; 1385 arg->reg_off = reg_off; 1386 } else { 1387 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1388 return -EINVAL; 1389 } 1390 1391 arg->arg_signed = arg_sz < 0; 1392 if (arg_sz < 0) 1393 arg_sz = -arg_sz; 1394 1395 switch (arg_sz) { 1396 case 1: case 2: case 4: case 8: 1397 arg->arg_bitshift = 64 - arg_sz * 8; 1398 break; 1399 default: 1400 pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n", 1401 arg_num, arg_str, arg_sz); 1402 return -EINVAL; 1403 } 1404 1405 return len; 1406 } 1407 1408 #elif defined(__riscv) 1409 1410 static int calc_pt_regs_off(const char *reg_name) 1411 { 1412 static struct { 1413 const char *name; 1414 size_t pt_regs_off; 1415 } reg_map[] = { 1416 { "ra", offsetof(struct user_regs_struct, ra) }, 1417 { "sp", offsetof(struct user_regs_struct, sp) }, 1418 { "gp", offsetof(struct user_regs_struct, gp) }, 1419 { "tp", offsetof(struct user_regs_struct, tp) }, 1420 { "a0", offsetof(struct user_regs_struct, a0) }, 1421 { "a1", offsetof(struct user_regs_struct, a1) }, 1422 { "a2", offsetof(struct user_regs_struct, a2) }, 1423 { "a3", offsetof(struct user_regs_struct, a3) }, 1424 { "a4", offsetof(struct user_regs_struct, a4) }, 1425 { "a5", offsetof(struct user_regs_struct, a5) }, 1426 { "a6", offsetof(struct user_regs_struct, a6) }, 1427 { "a7", offsetof(struct user_regs_struct, a7) }, 1428 { "s0", offsetof(struct user_regs_struct, s0) }, 1429 { "s1", offsetof(struct user_regs_struct, s1) }, 1430 { "s2", offsetof(struct user_regs_struct, s2) }, 1431 { "s3", offsetof(struct user_regs_struct, s3) }, 1432 { "s4", offsetof(struct user_regs_struct, s4) }, 1433 { "s5", offsetof(struct user_regs_struct, s5) }, 1434 { "s6", offsetof(struct user_regs_struct, s6) }, 1435 { "s7", offsetof(struct user_regs_struct, s7) }, 1436 { "s8", offsetof(struct user_regs_struct, rv_s8) }, 1437 { "s9", offsetof(struct user_regs_struct, s9) }, 1438 { "s10", offsetof(struct user_regs_struct, s10) }, 1439 { "s11", offsetof(struct user_regs_struct, s11) }, 1440 { "t0", offsetof(struct user_regs_struct, t0) }, 1441 { "t1", offsetof(struct user_regs_struct, t1) }, 1442 { "t2", offsetof(struct user_regs_struct, t2) }, 1443 { "t3", offsetof(struct user_regs_struct, t3) }, 1444 { "t4", offsetof(struct user_regs_struct, t4) }, 1445 { "t5", offsetof(struct user_regs_struct, t5) }, 1446 { "t6", offsetof(struct user_regs_struct, t6) }, 1447 }; 1448 int i; 1449 1450 for (i = 0; i < ARRAY_SIZE(reg_map); i++) { 1451 if (strcmp(reg_name, reg_map[i].name) == 0) 1452 return reg_map[i].pt_regs_off; 1453 } 1454 1455 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1456 return -ENOENT; 1457 } 1458 1459 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg) 1460 { 1461 char *reg_name = NULL; 1462 int arg_sz, len, reg_off; 1463 long off; 1464 1465 if (sscanf(arg_str, " %d @ %ld ( %m[a-z0-9] ) %n", &arg_sz, &off, ®_name, &len) == 3) { 1466 /* Memory dereference case, e.g., -8@-88(s0) */ 1467 arg->arg_type = USDT_ARG_REG_DEREF; 1468 arg->val_off = off; 1469 reg_off = calc_pt_regs_off(reg_name); 1470 free(reg_name); 1471 if (reg_off < 0) 1472 return reg_off; 1473 arg->reg_off = reg_off; 1474 } else if (sscanf(arg_str, " %d @ %ld %n", &arg_sz, &off, &len) == 2) { 1475 /* Constant value case, e.g., 4@5 */ 1476 arg->arg_type = USDT_ARG_CONST; 1477 arg->val_off = off; 1478 arg->reg_off = 0; 1479 } else if (sscanf(arg_str, " %d @ %m[a-z0-9] %n", &arg_sz, ®_name, &len) == 2) { 1480 /* Register read case, e.g., -8@a1 */ 1481 arg->arg_type = USDT_ARG_REG; 1482 arg->val_off = 0; 1483 reg_off = calc_pt_regs_off(reg_name); 1484 free(reg_name); 1485 if (reg_off < 0) 1486 return reg_off; 1487 arg->reg_off = reg_off; 1488 } else { 1489 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1490 return -EINVAL; 1491 } 1492 1493 arg->arg_signed = arg_sz < 0; 1494 if (arg_sz < 0) 1495 arg_sz = -arg_sz; 1496 1497 switch (arg_sz) { 1498 case 1: case 2: case 4: case 8: 1499 arg->arg_bitshift = 64 - arg_sz * 8; 1500 break; 1501 default: 1502 pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n", 1503 arg_num, arg_str, arg_sz); 1504 return -EINVAL; 1505 } 1506 1507 return len; 1508 } 1509 1510 #else 1511 1512 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg) 1513 { 1514 pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n"); 1515 return -ENOTSUP; 1516 } 1517 1518 #endif 1519