1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ 3 #include <ctype.h> 4 #include <stdio.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <libelf.h> 8 #include <gelf.h> 9 #include <unistd.h> 10 #include <linux/ptrace.h> 11 #include <linux/kernel.h> 12 13 /* s8 will be marked as poison while it's a reg of riscv */ 14 #if defined(__riscv) 15 #define rv_s8 s8 16 #endif 17 18 #include "bpf.h" 19 #include "libbpf.h" 20 #include "libbpf_common.h" 21 #include "libbpf_internal.h" 22 #include "hashmap.h" 23 24 /* libbpf's USDT support consists of BPF-side state/code and user-space 25 * state/code working together in concert. BPF-side parts are defined in 26 * usdt.bpf.h header library. User-space state is encapsulated by struct 27 * usdt_manager and all the supporting code centered around usdt_manager. 28 * 29 * usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map 30 * and IP-to-spec-ID map, which is auxiliary map necessary for kernels that 31 * don't support BPF cookie (see below). These two maps are implicitly 32 * embedded into user's end BPF object file when user's code included 33 * usdt.bpf.h. This means that libbpf doesn't do anything special to create 34 * these USDT support maps. They are created by normal libbpf logic of 35 * instantiating BPF maps when opening and loading BPF object. 36 * 37 * As such, libbpf is basically unaware of the need to do anything 38 * USDT-related until the very first call to bpf_program__attach_usdt(), which 39 * can be called by user explicitly or happen automatically during skeleton 40 * attach (or, equivalently, through generic bpf_program__attach() call). At 41 * this point, libbpf will instantiate and initialize struct usdt_manager and 42 * store it in bpf_object. USDT manager is per-BPF object construct, as each 43 * independent BPF object might or might not have USDT programs, and thus all 44 * the expected USDT-related state. There is no coordination between two 45 * bpf_object in parts of USDT attachment, they are oblivious of each other's 46 * existence and libbpf is just oblivious, dealing with bpf_object-specific 47 * USDT state. 48 * 49 * Quick crash course on USDTs. 50 * 51 * From user-space application's point of view, USDT is essentially just 52 * a slightly special function call that normally has zero overhead, unless it 53 * is being traced by some external entity (e.g, BPF-based tool). Here's how 54 * a typical application can trigger USDT probe: 55 * 56 * #include <sys/sdt.h> // provided by systemtap-sdt-devel package 57 * // folly also provide similar functionality in folly/tracing/StaticTracepoint.h 58 * 59 * STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y); 60 * 61 * USDT is identified by it's <provider-name>:<probe-name> pair of names. Each 62 * individual USDT has a fixed number of arguments (3 in the above example) 63 * and specifies values of each argument as if it was a function call. 64 * 65 * USDT call is actually not a function call, but is instead replaced by 66 * a single NOP instruction (thus zero overhead, effectively). But in addition 67 * to that, those USDT macros generate special SHT_NOTE ELF records in 68 * .note.stapsdt ELF section. Here's an example USDT definition as emitted by 69 * `readelf -n <binary>`: 70 * 71 * stapsdt 0x00000089 NT_STAPSDT (SystemTap probe descriptors) 72 * Provider: test 73 * Name: usdt12 74 * Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e 75 * Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil 76 * 77 * In this case we have USDT test:usdt12 with 12 arguments. 78 * 79 * Location and base are offsets used to calculate absolute IP address of that 80 * NOP instruction that kernel can replace with an interrupt instruction to 81 * trigger instrumentation code (BPF program for all that we care about). 82 * 83 * Semaphore above is and optional feature. It records an address of a 2-byte 84 * refcount variable (normally in '.probes' ELF section) used for signaling if 85 * there is anything that is attached to USDT. This is useful for user 86 * applications if, for example, they need to prepare some arguments that are 87 * passed only to USDTs and preparation is expensive. By checking if USDT is 88 * "activated", an application can avoid paying those costs unnecessarily. 89 * Recent enough kernel has built-in support for automatically managing this 90 * refcount, which libbpf expects and relies on. If USDT is defined without 91 * associated semaphore, this value will be zero. See selftests for semaphore 92 * examples. 93 * 94 * Arguments is the most interesting part. This USDT specification string is 95 * providing information about all the USDT arguments and their locations. The 96 * part before @ sign defined byte size of the argument (1, 2, 4, or 8) and 97 * whether the argument is signed or unsigned (negative size means signed). 98 * The part after @ sign is assembly-like definition of argument location 99 * (see [0] for more details). Technically, assembler can provide some pretty 100 * advanced definitions, but libbpf is currently supporting three most common 101 * cases: 102 * 1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9); 103 * 2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer 104 * whose value is in register %rdx"; 105 * 3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which 106 * specifies signed 32-bit integer stored at offset -1204 bytes from 107 * memory address stored in %rbp. 108 * 109 * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation 110 * 111 * During attachment, libbpf parses all the relevant USDT specifications and 112 * prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side 113 * code through spec map. This allows BPF applications to quickly fetch the 114 * actual value at runtime using a simple BPF-side code. 115 * 116 * With basics out of the way, let's go over less immediately obvious aspects 117 * of supporting USDTs. 118 * 119 * First, there is no special USDT BPF program type. It is actually just 120 * a uprobe BPF program (which for kernel, at least currently, is just a kprobe 121 * program, so BPF_PROG_TYPE_KPROBE program type). With the only difference 122 * that uprobe is usually attached at the function entry, while USDT will 123 * normally will be somewhere inside the function. But it should always be 124 * pointing to NOP instruction, which makes such uprobes the fastest uprobe 125 * kind. 126 * 127 * Second, it's important to realize that such STAP_PROBEn(provider, name, ...) 128 * macro invocations can end up being inlined many-many times, depending on 129 * specifics of each individual user application. So single conceptual USDT 130 * (identified by provider:name pair of identifiers) is, generally speaking, 131 * multiple uprobe locations (USDT call sites) in different places in user 132 * application. Further, again due to inlining, each USDT call site might end 133 * up having the same argument #N be located in a different place. In one call 134 * site it could be a constant, in another will end up in a register, and in 135 * yet another could be some other register or even somewhere on the stack. 136 * 137 * As such, "attaching to USDT" means (in general case) attaching the same 138 * uprobe BPF program to multiple target locations in user application, each 139 * potentially having a completely different USDT spec associated with it. 140 * To wire all this up together libbpf allocates a unique integer spec ID for 141 * each unique USDT spec. Spec IDs are allocated as sequential small integers 142 * so that they can be used as keys in array BPF map (for performance reasons). 143 * Spec ID allocation and accounting is big part of what usdt_manager is 144 * about. This state has to be maintained per-BPF object and coordinate 145 * between different USDT attachments within the same BPF object. 146 * 147 * Spec ID is the key in spec BPF map, value is the actual USDT spec layed out 148 * as struct usdt_spec. Each invocation of BPF program at runtime needs to 149 * know its associated spec ID. It gets it either through BPF cookie, which 150 * libbpf sets to spec ID during attach time, or, if kernel is too old to 151 * support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such 152 * case. The latter means that some modes of operation can't be supported 153 * without BPF cookie. Such mode is attaching to shared library "generically", 154 * without specifying target process. In such case, it's impossible to 155 * calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode 156 * is not supported without BPF cookie support. 157 * 158 * Note that libbpf is using BPF cookie functionality for its own internal 159 * needs, so user itself can't rely on BPF cookie feature. To that end, libbpf 160 * provides conceptually equivalent USDT cookie support. It's still u64 161 * user-provided value that can be associated with USDT attachment. Note that 162 * this will be the same value for all USDT call sites within the same single 163 * *logical* USDT attachment. This makes sense because to user attaching to 164 * USDT is a single BPF program triggered for singular USDT probe. The fact 165 * that this is done at multiple actual locations is a mostly hidden 166 * implementation details. This USDT cookie value can be fetched with 167 * bpf_usdt_cookie(ctx) API provided by usdt.bpf.h 168 * 169 * Lastly, while single USDT can have tons of USDT call sites, it doesn't 170 * necessarily have that many different USDT specs. It very well might be 171 * that 1000 USDT call sites only need 5 different USDT specs, because all the 172 * arguments are typically contained in a small set of registers or stack 173 * locations. As such, it's wasteful to allocate as many USDT spec IDs as 174 * there are USDT call sites. So libbpf tries to be frugal and performs 175 * on-the-fly deduplication during a single USDT attachment to only allocate 176 * the minimal required amount of unique USDT specs (and thus spec IDs). This 177 * is trivially achieved by using USDT spec string (Arguments string from USDT 178 * note) as a lookup key in a hashmap. USDT spec string uniquely defines 179 * everything about how to fetch USDT arguments, so two USDT call sites 180 * sharing USDT spec string can safely share the same USDT spec and spec ID. 181 * Note, this spec string deduplication is happening only during the same USDT 182 * attachment, so each USDT spec shares the same USDT cookie value. This is 183 * not generally true for other USDT attachments within the same BPF object, 184 * as even if USDT spec string is the same, USDT cookie value can be 185 * different. It was deemed excessive to try to deduplicate across independent 186 * USDT attachments by taking into account USDT spec string *and* USDT cookie 187 * value, which would complicated spec ID accounting significantly for little 188 * gain. 189 */ 190 191 #define USDT_BASE_SEC ".stapsdt.base" 192 #define USDT_SEMA_SEC ".probes" 193 #define USDT_NOTE_SEC ".note.stapsdt" 194 #define USDT_NOTE_TYPE 3 195 #define USDT_NOTE_NAME "stapsdt" 196 197 /* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */ 198 enum usdt_arg_type { 199 USDT_ARG_CONST, 200 USDT_ARG_REG, 201 USDT_ARG_REG_DEREF, 202 }; 203 204 /* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */ 205 struct usdt_arg_spec { 206 __u64 val_off; 207 enum usdt_arg_type arg_type; 208 short reg_off; 209 bool arg_signed; 210 char arg_bitshift; 211 }; 212 213 /* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */ 214 #define USDT_MAX_ARG_CNT 12 215 216 /* should match struct __bpf_usdt_spec from usdt.bpf.h */ 217 struct usdt_spec { 218 struct usdt_arg_spec args[USDT_MAX_ARG_CNT]; 219 __u64 usdt_cookie; 220 short arg_cnt; 221 }; 222 223 struct usdt_note { 224 const char *provider; 225 const char *name; 226 /* USDT args specification string, e.g.: 227 * "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx" 228 */ 229 const char *args; 230 long loc_addr; 231 long base_addr; 232 long sema_addr; 233 }; 234 235 struct usdt_target { 236 long abs_ip; 237 long rel_ip; 238 long sema_off; 239 struct usdt_spec spec; 240 const char *spec_str; 241 }; 242 243 struct usdt_manager { 244 struct bpf_map *specs_map; 245 struct bpf_map *ip_to_spec_id_map; 246 247 int *free_spec_ids; 248 size_t free_spec_cnt; 249 size_t next_free_spec_id; 250 251 bool has_bpf_cookie; 252 bool has_sema_refcnt; 253 bool has_uprobe_multi; 254 }; 255 256 struct usdt_manager *usdt_manager_new(struct bpf_object *obj) 257 { 258 static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset"; 259 struct usdt_manager *man; 260 struct bpf_map *specs_map, *ip_to_spec_id_map; 261 262 specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs"); 263 ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id"); 264 if (!specs_map || !ip_to_spec_id_map) { 265 pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n"); 266 return ERR_PTR(-ESRCH); 267 } 268 269 man = calloc(1, sizeof(*man)); 270 if (!man) 271 return ERR_PTR(-ENOMEM); 272 273 man->specs_map = specs_map; 274 man->ip_to_spec_id_map = ip_to_spec_id_map; 275 276 /* Detect if BPF cookie is supported for kprobes. 277 * We don't need IP-to-ID mapping if we can use BPF cookies. 278 * Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value") 279 */ 280 man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE); 281 282 /* Detect kernel support for automatic refcounting of USDT semaphore. 283 * If this is not supported, USDTs with semaphores will not be supported. 284 * Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe") 285 */ 286 man->has_sema_refcnt = faccessat(AT_FDCWD, ref_ctr_sysfs_path, F_OK, AT_EACCESS) == 0; 287 288 /* 289 * Detect kernel support for uprobe multi link to be used for attaching 290 * usdt probes. 291 */ 292 man->has_uprobe_multi = kernel_supports(obj, FEAT_UPROBE_MULTI_LINK); 293 return man; 294 } 295 296 void usdt_manager_free(struct usdt_manager *man) 297 { 298 if (IS_ERR_OR_NULL(man)) 299 return; 300 301 free(man->free_spec_ids); 302 free(man); 303 } 304 305 static int sanity_check_usdt_elf(Elf *elf, const char *path) 306 { 307 GElf_Ehdr ehdr; 308 int endianness; 309 310 if (elf_kind(elf) != ELF_K_ELF) { 311 pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path); 312 return -EBADF; 313 } 314 315 switch (gelf_getclass(elf)) { 316 case ELFCLASS64: 317 if (sizeof(void *) != 8) { 318 pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path); 319 return -EBADF; 320 } 321 break; 322 case ELFCLASS32: 323 if (sizeof(void *) != 4) { 324 pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path); 325 return -EBADF; 326 } 327 break; 328 default: 329 pr_warn("usdt: unsupported ELF class for '%s'\n", path); 330 return -EBADF; 331 } 332 333 if (!gelf_getehdr(elf, &ehdr)) 334 return -EINVAL; 335 336 if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) { 337 pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n", 338 path, ehdr.e_type); 339 return -EBADF; 340 } 341 342 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 343 endianness = ELFDATA2LSB; 344 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 345 endianness = ELFDATA2MSB; 346 #else 347 # error "Unrecognized __BYTE_ORDER__" 348 #endif 349 if (endianness != ehdr.e_ident[EI_DATA]) { 350 pr_warn("usdt: ELF endianness mismatch for '%s'\n", path); 351 return -EBADF; 352 } 353 354 return 0; 355 } 356 357 static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn) 358 { 359 Elf_Scn *sec = NULL; 360 size_t shstrndx; 361 362 if (elf_getshdrstrndx(elf, &shstrndx)) 363 return -EINVAL; 364 365 /* check if ELF is corrupted and avoid calling elf_strptr if yes */ 366 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) 367 return -EINVAL; 368 369 while ((sec = elf_nextscn(elf, sec)) != NULL) { 370 char *name; 371 372 if (!gelf_getshdr(sec, shdr)) 373 return -EINVAL; 374 375 name = elf_strptr(elf, shstrndx, shdr->sh_name); 376 if (name && strcmp(sec_name, name) == 0) { 377 *scn = sec; 378 return 0; 379 } 380 } 381 382 return -ENOENT; 383 } 384 385 struct elf_seg { 386 long start; 387 long end; 388 long offset; 389 bool is_exec; 390 }; 391 392 static int cmp_elf_segs(const void *_a, const void *_b) 393 { 394 const struct elf_seg *a = _a; 395 const struct elf_seg *b = _b; 396 397 return a->start < b->start ? -1 : 1; 398 } 399 400 static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt) 401 { 402 GElf_Phdr phdr; 403 size_t n; 404 int i, err; 405 struct elf_seg *seg; 406 void *tmp; 407 408 *seg_cnt = 0; 409 410 if (elf_getphdrnum(elf, &n)) { 411 err = -errno; 412 return err; 413 } 414 415 for (i = 0; i < n; i++) { 416 if (!gelf_getphdr(elf, i, &phdr)) { 417 err = -errno; 418 return err; 419 } 420 421 pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n", 422 i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset, 423 (long)phdr.p_type, (long)phdr.p_flags); 424 if (phdr.p_type != PT_LOAD) 425 continue; 426 427 tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs)); 428 if (!tmp) 429 return -ENOMEM; 430 431 *segs = tmp; 432 seg = *segs + *seg_cnt; 433 (*seg_cnt)++; 434 435 seg->start = phdr.p_vaddr; 436 seg->end = phdr.p_vaddr + phdr.p_memsz; 437 seg->offset = phdr.p_offset; 438 seg->is_exec = phdr.p_flags & PF_X; 439 } 440 441 if (*seg_cnt == 0) { 442 pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path); 443 return -ESRCH; 444 } 445 446 qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs); 447 return 0; 448 } 449 450 static int parse_vma_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt) 451 { 452 char path[PATH_MAX], line[PATH_MAX], mode[16]; 453 size_t seg_start, seg_end, seg_off; 454 struct elf_seg *seg; 455 int tmp_pid, i, err; 456 FILE *f; 457 458 *seg_cnt = 0; 459 460 /* Handle containerized binaries only accessible from 461 * /proc/<pid>/root/<path>. They will be reported as just /<path> in 462 * /proc/<pid>/maps. 463 */ 464 if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid) 465 goto proceed; 466 467 if (!realpath(lib_path, path)) { 468 pr_warn("usdt: failed to get absolute path of '%s' (err %d), using path as is...\n", 469 lib_path, -errno); 470 libbpf_strlcpy(path, lib_path, sizeof(path)); 471 } 472 473 proceed: 474 sprintf(line, "/proc/%d/maps", pid); 475 f = fopen(line, "re"); 476 if (!f) { 477 err = -errno; 478 pr_warn("usdt: failed to open '%s' to get base addr of '%s': %d\n", 479 line, lib_path, err); 480 return err; 481 } 482 483 /* We need to handle lines with no path at the end: 484 * 485 * 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613 /usr/lib64/libc-2.17.so 486 * 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0 487 * 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598 /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so 488 */ 489 while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n", 490 &seg_start, &seg_end, mode, &seg_off, line) == 5) { 491 void *tmp; 492 493 /* to handle no path case (see above) we need to capture line 494 * without skipping any whitespaces. So we need to strip 495 * leading whitespaces manually here 496 */ 497 i = 0; 498 while (isblank(line[i])) 499 i++; 500 if (strcmp(line + i, path) != 0) 501 continue; 502 503 pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n", 504 path, seg_start, seg_end, mode, seg_off); 505 506 /* ignore non-executable sections for shared libs */ 507 if (mode[2] != 'x') 508 continue; 509 510 tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs)); 511 if (!tmp) { 512 err = -ENOMEM; 513 goto err_out; 514 } 515 516 *segs = tmp; 517 seg = *segs + *seg_cnt; 518 *seg_cnt += 1; 519 520 seg->start = seg_start; 521 seg->end = seg_end; 522 seg->offset = seg_off; 523 seg->is_exec = true; 524 } 525 526 if (*seg_cnt == 0) { 527 pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n", 528 lib_path, path, pid); 529 err = -ESRCH; 530 goto err_out; 531 } 532 533 qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs); 534 err = 0; 535 err_out: 536 fclose(f); 537 return err; 538 } 539 540 static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long virtaddr) 541 { 542 struct elf_seg *seg; 543 int i; 544 545 /* for ELF binaries (both executables and shared libraries), we are 546 * given virtual address (absolute for executables, relative for 547 * libraries) which should match address range of [seg_start, seg_end) 548 */ 549 for (i = 0, seg = segs; i < seg_cnt; i++, seg++) { 550 if (seg->start <= virtaddr && virtaddr < seg->end) 551 return seg; 552 } 553 return NULL; 554 } 555 556 static struct elf_seg *find_vma_seg(struct elf_seg *segs, size_t seg_cnt, long offset) 557 { 558 struct elf_seg *seg; 559 int i; 560 561 /* for VMA segments from /proc/<pid>/maps file, provided "address" is 562 * actually a file offset, so should be fall within logical 563 * offset-based range of [offset_start, offset_end) 564 */ 565 for (i = 0, seg = segs; i < seg_cnt; i++, seg++) { 566 if (seg->offset <= offset && offset < seg->offset + (seg->end - seg->start)) 567 return seg; 568 } 569 return NULL; 570 } 571 572 static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr, 573 const char *data, size_t name_off, size_t desc_off, 574 struct usdt_note *usdt_note); 575 576 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie); 577 578 static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid, 579 const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie, 580 struct usdt_target **out_targets, size_t *out_target_cnt) 581 { 582 size_t off, name_off, desc_off, seg_cnt = 0, vma_seg_cnt = 0, target_cnt = 0; 583 struct elf_seg *segs = NULL, *vma_segs = NULL; 584 struct usdt_target *targets = NULL, *target; 585 long base_addr = 0; 586 Elf_Scn *notes_scn, *base_scn; 587 GElf_Shdr base_shdr, notes_shdr; 588 GElf_Ehdr ehdr; 589 GElf_Nhdr nhdr; 590 Elf_Data *data; 591 int err; 592 593 *out_targets = NULL; 594 *out_target_cnt = 0; 595 596 err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, ¬es_shdr, ¬es_scn); 597 if (err) { 598 pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path); 599 return err; 600 } 601 602 if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) { 603 pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path); 604 return -EINVAL; 605 } 606 607 err = parse_elf_segs(elf, path, &segs, &seg_cnt); 608 if (err) { 609 pr_warn("usdt: failed to process ELF program segments for '%s': %d\n", path, err); 610 goto err_out; 611 } 612 613 /* .stapsdt.base ELF section is optional, but is used for prelink 614 * offset compensation (see a big comment further below) 615 */ 616 if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0) 617 base_addr = base_shdr.sh_addr; 618 619 data = elf_getdata(notes_scn, 0); 620 off = 0; 621 while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) { 622 long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0; 623 struct usdt_note note; 624 struct elf_seg *seg = NULL; 625 void *tmp; 626 627 err = parse_usdt_note(elf, path, &nhdr, data->d_buf, name_off, desc_off, ¬e); 628 if (err) 629 goto err_out; 630 631 if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0) 632 continue; 633 634 /* We need to compensate "prelink effect". See [0] for details, 635 * relevant parts quoted here: 636 * 637 * Each SDT probe also expands into a non-allocated ELF note. You can 638 * find this by looking at SHT_NOTE sections and decoding the format; 639 * see below for details. Because the note is non-allocated, it means 640 * there is no runtime cost, and also preserved in both stripped files 641 * and .debug files. 642 * 643 * However, this means that prelink won't adjust the note's contents 644 * for address offsets. Instead, this is done via the .stapsdt.base 645 * section. This is a special section that is added to the text. We 646 * will only ever have one of these sections in a final link and it 647 * will only ever be one byte long. Nothing about this section itself 648 * matters, we just use it as a marker to detect prelink address 649 * adjustments. 650 * 651 * Each probe note records the link-time address of the .stapsdt.base 652 * section alongside the probe PC address. The decoder compares the 653 * base address stored in the note with the .stapsdt.base section's 654 * sh_addr. Initially these are the same, but the section header will 655 * be adjusted by prelink. So the decoder applies the difference to 656 * the probe PC address to get the correct prelinked PC address; the 657 * same adjustment is applied to the semaphore address, if any. 658 * 659 * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation 660 */ 661 usdt_abs_ip = note.loc_addr; 662 if (base_addr) 663 usdt_abs_ip += base_addr - note.base_addr; 664 665 /* When attaching uprobes (which is what USDTs basically are) 666 * kernel expects file offset to be specified, not a relative 667 * virtual address, so we need to translate virtual address to 668 * file offset, for both ET_EXEC and ET_DYN binaries. 669 */ 670 seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip); 671 if (!seg) { 672 err = -ESRCH; 673 pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n", 674 usdt_provider, usdt_name, path, usdt_abs_ip); 675 goto err_out; 676 } 677 if (!seg->is_exec) { 678 err = -ESRCH; 679 pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n", 680 path, seg->start, seg->end, usdt_provider, usdt_name, 681 usdt_abs_ip); 682 goto err_out; 683 } 684 /* translate from virtual address to file offset */ 685 usdt_rel_ip = usdt_abs_ip - seg->start + seg->offset; 686 687 if (ehdr.e_type == ET_DYN && !man->has_bpf_cookie) { 688 /* If we don't have BPF cookie support but need to 689 * attach to a shared library, we'll need to know and 690 * record absolute addresses of attach points due to 691 * the need to lookup USDT spec by absolute IP of 692 * triggered uprobe. Doing this resolution is only 693 * possible when we have a specific PID of the process 694 * that's using specified shared library. BPF cookie 695 * removes the absolute address limitation as we don't 696 * need to do this lookup (we just use BPF cookie as 697 * an index of USDT spec), so for newer kernels with 698 * BPF cookie support libbpf supports USDT attachment 699 * to shared libraries with no PID filter. 700 */ 701 if (pid < 0) { 702 pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n"); 703 err = -ENOTSUP; 704 goto err_out; 705 } 706 707 /* vma_segs are lazily initialized only if necessary */ 708 if (vma_seg_cnt == 0) { 709 err = parse_vma_segs(pid, path, &vma_segs, &vma_seg_cnt); 710 if (err) { 711 pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %d\n", 712 pid, path, err); 713 goto err_out; 714 } 715 } 716 717 seg = find_vma_seg(vma_segs, vma_seg_cnt, usdt_rel_ip); 718 if (!seg) { 719 err = -ESRCH; 720 pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n", 721 usdt_provider, usdt_name, path, usdt_rel_ip); 722 goto err_out; 723 } 724 725 usdt_abs_ip = seg->start - seg->offset + usdt_rel_ip; 726 } 727 728 pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n", 729 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path, 730 note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args, 731 seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0); 732 733 /* Adjust semaphore address to be a file offset */ 734 if (note.sema_addr) { 735 if (!man->has_sema_refcnt) { 736 pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n", 737 usdt_provider, usdt_name, path); 738 err = -ENOTSUP; 739 goto err_out; 740 } 741 742 seg = find_elf_seg(segs, seg_cnt, note.sema_addr); 743 if (!seg) { 744 err = -ESRCH; 745 pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n", 746 usdt_provider, usdt_name, path, note.sema_addr); 747 goto err_out; 748 } 749 if (seg->is_exec) { 750 err = -ESRCH; 751 pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n", 752 path, seg->start, seg->end, usdt_provider, usdt_name, 753 note.sema_addr); 754 goto err_out; 755 } 756 757 usdt_sema_off = note.sema_addr - seg->start + seg->offset; 758 759 pr_debug("usdt: sema for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n", 760 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", 761 path, note.sema_addr, note.base_addr, usdt_sema_off, 762 seg->start, seg->end, seg->offset); 763 } 764 765 /* Record adjusted addresses and offsets and parse USDT spec */ 766 tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets)); 767 if (!tmp) { 768 err = -ENOMEM; 769 goto err_out; 770 } 771 targets = tmp; 772 773 target = &targets[target_cnt]; 774 memset(target, 0, sizeof(*target)); 775 776 target->abs_ip = usdt_abs_ip; 777 target->rel_ip = usdt_rel_ip; 778 target->sema_off = usdt_sema_off; 779 780 /* notes.args references strings from ELF itself, so they can 781 * be referenced safely until elf_end() call 782 */ 783 target->spec_str = note.args; 784 785 err = parse_usdt_spec(&target->spec, ¬e, usdt_cookie); 786 if (err) 787 goto err_out; 788 789 target_cnt++; 790 } 791 792 *out_targets = targets; 793 *out_target_cnt = target_cnt; 794 err = target_cnt; 795 796 err_out: 797 free(segs); 798 free(vma_segs); 799 if (err < 0) 800 free(targets); 801 return err; 802 } 803 804 struct bpf_link_usdt { 805 struct bpf_link link; 806 807 struct usdt_manager *usdt_man; 808 809 size_t spec_cnt; 810 int *spec_ids; 811 812 size_t uprobe_cnt; 813 struct { 814 long abs_ip; 815 struct bpf_link *link; 816 } *uprobes; 817 818 struct bpf_link *multi_link; 819 }; 820 821 static int bpf_link_usdt_detach(struct bpf_link *link) 822 { 823 struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link); 824 struct usdt_manager *man = usdt_link->usdt_man; 825 int i; 826 827 bpf_link__destroy(usdt_link->multi_link); 828 829 /* When having multi_link, uprobe_cnt is 0 */ 830 for (i = 0; i < usdt_link->uprobe_cnt; i++) { 831 /* detach underlying uprobe link */ 832 bpf_link__destroy(usdt_link->uprobes[i].link); 833 /* there is no need to update specs map because it will be 834 * unconditionally overwritten on subsequent USDT attaches, 835 * but if BPF cookies are not used we need to remove entry 836 * from ip_to_spec_id map, otherwise we'll run into false 837 * conflicting IP errors 838 */ 839 if (!man->has_bpf_cookie) { 840 /* not much we can do about errors here */ 841 (void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map), 842 &usdt_link->uprobes[i].abs_ip); 843 } 844 } 845 846 /* try to return the list of previously used spec IDs to usdt_manager 847 * for future reuse for subsequent USDT attaches 848 */ 849 if (!man->free_spec_ids) { 850 /* if there were no free spec IDs yet, just transfer our IDs */ 851 man->free_spec_ids = usdt_link->spec_ids; 852 man->free_spec_cnt = usdt_link->spec_cnt; 853 usdt_link->spec_ids = NULL; 854 } else { 855 /* otherwise concat IDs */ 856 size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt; 857 int *new_free_ids; 858 859 new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt, 860 sizeof(*new_free_ids)); 861 /* If we couldn't resize free_spec_ids, we'll just leak 862 * a bunch of free IDs; this is very unlikely to happen and if 863 * system is so exhausted on memory, it's the least of user's 864 * concerns, probably. 865 * So just do our best here to return those IDs to usdt_manager. 866 * Another edge case when we can legitimately get NULL is when 867 * new_cnt is zero, which can happen in some edge cases, so we 868 * need to be careful about that. 869 */ 870 if (new_free_ids || new_cnt == 0) { 871 memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids, 872 usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids)); 873 man->free_spec_ids = new_free_ids; 874 man->free_spec_cnt = new_cnt; 875 } 876 } 877 878 return 0; 879 } 880 881 static void bpf_link_usdt_dealloc(struct bpf_link *link) 882 { 883 struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link); 884 885 free(usdt_link->spec_ids); 886 free(usdt_link->uprobes); 887 free(usdt_link); 888 } 889 890 static size_t specs_hash_fn(long key, void *ctx) 891 { 892 return str_hash((char *)key); 893 } 894 895 static bool specs_equal_fn(long key1, long key2, void *ctx) 896 { 897 return strcmp((char *)key1, (char *)key2) == 0; 898 } 899 900 static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash, 901 struct bpf_link_usdt *link, struct usdt_target *target, 902 int *spec_id, bool *is_new) 903 { 904 long tmp; 905 void *new_ids; 906 int err; 907 908 /* check if we already allocated spec ID for this spec string */ 909 if (hashmap__find(specs_hash, target->spec_str, &tmp)) { 910 *spec_id = tmp; 911 *is_new = false; 912 return 0; 913 } 914 915 /* otherwise it's a new ID that needs to be set up in specs map and 916 * returned back to usdt_manager when USDT link is detached 917 */ 918 new_ids = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids)); 919 if (!new_ids) 920 return -ENOMEM; 921 link->spec_ids = new_ids; 922 923 /* get next free spec ID, giving preference to free list, if not empty */ 924 if (man->free_spec_cnt) { 925 *spec_id = man->free_spec_ids[man->free_spec_cnt - 1]; 926 927 /* cache spec ID for current spec string for future lookups */ 928 err = hashmap__add(specs_hash, target->spec_str, *spec_id); 929 if (err) 930 return err; 931 932 man->free_spec_cnt--; 933 } else { 934 /* don't allocate spec ID bigger than what fits in specs map */ 935 if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map)) 936 return -E2BIG; 937 938 *spec_id = man->next_free_spec_id; 939 940 /* cache spec ID for current spec string for future lookups */ 941 err = hashmap__add(specs_hash, target->spec_str, *spec_id); 942 if (err) 943 return err; 944 945 man->next_free_spec_id++; 946 } 947 948 /* remember new spec ID in the link for later return back to free list on detach */ 949 link->spec_ids[link->spec_cnt] = *spec_id; 950 link->spec_cnt++; 951 *is_new = true; 952 return 0; 953 } 954 955 struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog, 956 pid_t pid, const char *path, 957 const char *usdt_provider, const char *usdt_name, 958 __u64 usdt_cookie) 959 { 960 unsigned long *offsets = NULL, *ref_ctr_offsets = NULL; 961 int i, err, spec_map_fd, ip_map_fd; 962 LIBBPF_OPTS(bpf_uprobe_opts, opts); 963 struct hashmap *specs_hash = NULL; 964 struct bpf_link_usdt *link = NULL; 965 struct usdt_target *targets = NULL; 966 __u64 *cookies = NULL; 967 struct elf_fd elf_fd; 968 size_t target_cnt; 969 970 spec_map_fd = bpf_map__fd(man->specs_map); 971 ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map); 972 973 err = elf_open(path, &elf_fd); 974 if (err) 975 return libbpf_err_ptr(err); 976 977 err = sanity_check_usdt_elf(elf_fd.elf, path); 978 if (err) 979 goto err_out; 980 981 /* normalize PID filter */ 982 if (pid < 0) 983 pid = -1; 984 else if (pid == 0) 985 pid = getpid(); 986 987 /* discover USDT in given binary, optionally limiting 988 * activations to a given PID, if pid > 0 989 */ 990 err = collect_usdt_targets(man, elf_fd.elf, path, pid, usdt_provider, usdt_name, 991 usdt_cookie, &targets, &target_cnt); 992 if (err <= 0) { 993 err = (err == 0) ? -ENOENT : err; 994 goto err_out; 995 } 996 997 specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL); 998 if (IS_ERR(specs_hash)) { 999 err = PTR_ERR(specs_hash); 1000 goto err_out; 1001 } 1002 1003 link = calloc(1, sizeof(*link)); 1004 if (!link) { 1005 err = -ENOMEM; 1006 goto err_out; 1007 } 1008 1009 link->usdt_man = man; 1010 link->link.detach = &bpf_link_usdt_detach; 1011 link->link.dealloc = &bpf_link_usdt_dealloc; 1012 1013 if (man->has_uprobe_multi) { 1014 offsets = calloc(target_cnt, sizeof(*offsets)); 1015 cookies = calloc(target_cnt, sizeof(*cookies)); 1016 ref_ctr_offsets = calloc(target_cnt, sizeof(*ref_ctr_offsets)); 1017 1018 if (!offsets || !ref_ctr_offsets || !cookies) { 1019 err = -ENOMEM; 1020 goto err_out; 1021 } 1022 } else { 1023 link->uprobes = calloc(target_cnt, sizeof(*link->uprobes)); 1024 if (!link->uprobes) { 1025 err = -ENOMEM; 1026 goto err_out; 1027 } 1028 } 1029 1030 for (i = 0; i < target_cnt; i++) { 1031 struct usdt_target *target = &targets[i]; 1032 struct bpf_link *uprobe_link; 1033 bool is_new; 1034 int spec_id; 1035 1036 /* Spec ID can be either reused or newly allocated. If it is 1037 * newly allocated, we'll need to fill out spec map, otherwise 1038 * entire spec should be valid and can be just used by a new 1039 * uprobe. We reuse spec when USDT arg spec is identical. We 1040 * also never share specs between two different USDT 1041 * attachments ("links"), so all the reused specs already 1042 * share USDT cookie value implicitly. 1043 */ 1044 err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new); 1045 if (err) 1046 goto err_out; 1047 1048 if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) { 1049 err = -errno; 1050 pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %d\n", 1051 spec_id, usdt_provider, usdt_name, path, err); 1052 goto err_out; 1053 } 1054 if (!man->has_bpf_cookie && 1055 bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) { 1056 err = -errno; 1057 if (err == -EEXIST) { 1058 pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n", 1059 spec_id, usdt_provider, usdt_name, path); 1060 } else { 1061 pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %d\n", 1062 target->abs_ip, spec_id, usdt_provider, usdt_name, 1063 path, err); 1064 } 1065 goto err_out; 1066 } 1067 1068 if (man->has_uprobe_multi) { 1069 offsets[i] = target->rel_ip; 1070 ref_ctr_offsets[i] = target->sema_off; 1071 cookies[i] = spec_id; 1072 } else { 1073 opts.ref_ctr_offset = target->sema_off; 1074 opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0; 1075 uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path, 1076 target->rel_ip, &opts); 1077 err = libbpf_get_error(uprobe_link); 1078 if (err) { 1079 pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %d\n", 1080 i, usdt_provider, usdt_name, path, err); 1081 goto err_out; 1082 } 1083 1084 link->uprobes[i].link = uprobe_link; 1085 link->uprobes[i].abs_ip = target->abs_ip; 1086 link->uprobe_cnt++; 1087 } 1088 } 1089 1090 if (man->has_uprobe_multi) { 1091 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts_multi, 1092 .ref_ctr_offsets = ref_ctr_offsets, 1093 .offsets = offsets, 1094 .cookies = cookies, 1095 .cnt = target_cnt, 1096 ); 1097 1098 link->multi_link = bpf_program__attach_uprobe_multi(prog, pid, path, 1099 NULL, &opts_multi); 1100 if (!link->multi_link) { 1101 err = -errno; 1102 pr_warn("usdt: failed to attach uprobe multi for '%s:%s' in '%s': %d\n", 1103 usdt_provider, usdt_name, path, err); 1104 goto err_out; 1105 } 1106 1107 free(offsets); 1108 free(ref_ctr_offsets); 1109 free(cookies); 1110 } 1111 1112 free(targets); 1113 hashmap__free(specs_hash); 1114 elf_close(&elf_fd); 1115 return &link->link; 1116 1117 err_out: 1118 free(offsets); 1119 free(ref_ctr_offsets); 1120 free(cookies); 1121 1122 if (link) 1123 bpf_link__destroy(&link->link); 1124 free(targets); 1125 hashmap__free(specs_hash); 1126 elf_close(&elf_fd); 1127 return libbpf_err_ptr(err); 1128 } 1129 1130 /* Parse out USDT ELF note from '.note.stapsdt' section. 1131 * Logic inspired by perf's code. 1132 */ 1133 static int parse_usdt_note(Elf *elf, const char *path, GElf_Nhdr *nhdr, 1134 const char *data, size_t name_off, size_t desc_off, 1135 struct usdt_note *note) 1136 { 1137 const char *provider, *name, *args; 1138 long addrs[3]; 1139 size_t len; 1140 1141 /* sanity check USDT note name and type first */ 1142 if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0) 1143 return -EINVAL; 1144 if (nhdr->n_type != USDT_NOTE_TYPE) 1145 return -EINVAL; 1146 1147 /* sanity check USDT note contents ("description" in ELF terminology) */ 1148 len = nhdr->n_descsz; 1149 data = data + desc_off; 1150 1151 /* +3 is the very minimum required to store three empty strings */ 1152 if (len < sizeof(addrs) + 3) 1153 return -EINVAL; 1154 1155 /* get location, base, and semaphore addrs */ 1156 memcpy(&addrs, data, sizeof(addrs)); 1157 1158 /* parse string fields: provider, name, args */ 1159 provider = data + sizeof(addrs); 1160 1161 name = (const char *)memchr(provider, '\0', data + len - provider); 1162 if (!name) /* non-zero-terminated provider */ 1163 return -EINVAL; 1164 name++; 1165 if (name >= data + len || *name == '\0') /* missing or empty name */ 1166 return -EINVAL; 1167 1168 args = memchr(name, '\0', data + len - name); 1169 if (!args) /* non-zero-terminated name */ 1170 return -EINVAL; 1171 ++args; 1172 if (args >= data + len) /* missing arguments spec */ 1173 return -EINVAL; 1174 1175 note->provider = provider; 1176 note->name = name; 1177 if (*args == '\0' || *args == ':') 1178 note->args = ""; 1179 else 1180 note->args = args; 1181 note->loc_addr = addrs[0]; 1182 note->base_addr = addrs[1]; 1183 note->sema_addr = addrs[2]; 1184 1185 return 0; 1186 } 1187 1188 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz); 1189 1190 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie) 1191 { 1192 struct usdt_arg_spec *arg; 1193 const char *s; 1194 int arg_sz, len; 1195 1196 spec->usdt_cookie = usdt_cookie; 1197 spec->arg_cnt = 0; 1198 1199 s = note->args; 1200 while (s[0]) { 1201 if (spec->arg_cnt >= USDT_MAX_ARG_CNT) { 1202 pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n", 1203 USDT_MAX_ARG_CNT, note->provider, note->name, note->args); 1204 return -E2BIG; 1205 } 1206 1207 arg = &spec->args[spec->arg_cnt]; 1208 len = parse_usdt_arg(s, spec->arg_cnt, arg, &arg_sz); 1209 if (len < 0) 1210 return len; 1211 1212 arg->arg_signed = arg_sz < 0; 1213 if (arg_sz < 0) 1214 arg_sz = -arg_sz; 1215 1216 switch (arg_sz) { 1217 case 1: case 2: case 4: case 8: 1218 arg->arg_bitshift = 64 - arg_sz * 8; 1219 break; 1220 default: 1221 pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n", 1222 spec->arg_cnt, s, arg_sz); 1223 return -EINVAL; 1224 } 1225 1226 s += len; 1227 spec->arg_cnt++; 1228 } 1229 1230 return 0; 1231 } 1232 1233 /* Architecture-specific logic for parsing USDT argument location specs */ 1234 1235 #if defined(__x86_64__) || defined(__i386__) 1236 1237 static int calc_pt_regs_off(const char *reg_name) 1238 { 1239 static struct { 1240 const char *names[4]; 1241 size_t pt_regs_off; 1242 } reg_map[] = { 1243 #ifdef __x86_64__ 1244 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64) 1245 #else 1246 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32) 1247 #endif 1248 { {"rip", "eip", "", ""}, reg_off(rip, eip) }, 1249 { {"rax", "eax", "ax", "al"}, reg_off(rax, eax) }, 1250 { {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) }, 1251 { {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) }, 1252 { {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) }, 1253 { {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) }, 1254 { {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) }, 1255 { {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) }, 1256 { {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) }, 1257 #undef reg_off 1258 #ifdef __x86_64__ 1259 { {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) }, 1260 { {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) }, 1261 { {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) }, 1262 { {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) }, 1263 { {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) }, 1264 { {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) }, 1265 { {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) }, 1266 { {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) }, 1267 #endif 1268 }; 1269 int i, j; 1270 1271 for (i = 0; i < ARRAY_SIZE(reg_map); i++) { 1272 for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) { 1273 if (strcmp(reg_name, reg_map[i].names[j]) == 0) 1274 return reg_map[i].pt_regs_off; 1275 } 1276 } 1277 1278 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1279 return -ENOENT; 1280 } 1281 1282 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1283 { 1284 char reg_name[16]; 1285 int len, reg_off; 1286 long off; 1287 1288 if (sscanf(arg_str, " %d @ %ld ( %%%15[^)] ) %n", arg_sz, &off, reg_name, &len) == 3) { 1289 /* Memory dereference case, e.g., -4@-20(%rbp) */ 1290 arg->arg_type = USDT_ARG_REG_DEREF; 1291 arg->val_off = off; 1292 reg_off = calc_pt_regs_off(reg_name); 1293 if (reg_off < 0) 1294 return reg_off; 1295 arg->reg_off = reg_off; 1296 } else if (sscanf(arg_str, " %d @ ( %%%15[^)] ) %n", arg_sz, reg_name, &len) == 2) { 1297 /* Memory dereference case without offset, e.g., 8@(%rsp) */ 1298 arg->arg_type = USDT_ARG_REG_DEREF; 1299 arg->val_off = 0; 1300 reg_off = calc_pt_regs_off(reg_name); 1301 if (reg_off < 0) 1302 return reg_off; 1303 arg->reg_off = reg_off; 1304 } else if (sscanf(arg_str, " %d @ %%%15s %n", arg_sz, reg_name, &len) == 2) { 1305 /* Register read case, e.g., -4@%eax */ 1306 arg->arg_type = USDT_ARG_REG; 1307 arg->val_off = 0; 1308 1309 reg_off = calc_pt_regs_off(reg_name); 1310 if (reg_off < 0) 1311 return reg_off; 1312 arg->reg_off = reg_off; 1313 } else if (sscanf(arg_str, " %d @ $%ld %n", arg_sz, &off, &len) == 2) { 1314 /* Constant value case, e.g., 4@$71 */ 1315 arg->arg_type = USDT_ARG_CONST; 1316 arg->val_off = off; 1317 arg->reg_off = 0; 1318 } else { 1319 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1320 return -EINVAL; 1321 } 1322 1323 return len; 1324 } 1325 1326 #elif defined(__s390x__) 1327 1328 /* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */ 1329 1330 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1331 { 1332 unsigned int reg; 1333 int len; 1334 long off; 1335 1336 if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", arg_sz, &off, ®, &len) == 3) { 1337 /* Memory dereference case, e.g., -2@-28(%r15) */ 1338 arg->arg_type = USDT_ARG_REG_DEREF; 1339 arg->val_off = off; 1340 if (reg > 15) { 1341 pr_warn("usdt: unrecognized register '%%r%u'\n", reg); 1342 return -EINVAL; 1343 } 1344 arg->reg_off = offsetof(user_pt_regs, gprs[reg]); 1345 } else if (sscanf(arg_str, " %d @ %%r%u %n", arg_sz, ®, &len) == 2) { 1346 /* Register read case, e.g., -8@%r0 */ 1347 arg->arg_type = USDT_ARG_REG; 1348 arg->val_off = 0; 1349 if (reg > 15) { 1350 pr_warn("usdt: unrecognized register '%%r%u'\n", reg); 1351 return -EINVAL; 1352 } 1353 arg->reg_off = offsetof(user_pt_regs, gprs[reg]); 1354 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { 1355 /* Constant value case, e.g., 4@71 */ 1356 arg->arg_type = USDT_ARG_CONST; 1357 arg->val_off = off; 1358 arg->reg_off = 0; 1359 } else { 1360 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1361 return -EINVAL; 1362 } 1363 1364 return len; 1365 } 1366 1367 #elif defined(__aarch64__) 1368 1369 static int calc_pt_regs_off(const char *reg_name) 1370 { 1371 int reg_num; 1372 1373 if (sscanf(reg_name, "x%d", ®_num) == 1) { 1374 if (reg_num >= 0 && reg_num < 31) 1375 return offsetof(struct user_pt_regs, regs[reg_num]); 1376 } else if (strcmp(reg_name, "sp") == 0) { 1377 return offsetof(struct user_pt_regs, sp); 1378 } 1379 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1380 return -ENOENT; 1381 } 1382 1383 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1384 { 1385 char reg_name[16]; 1386 int len, reg_off; 1387 long off; 1388 1389 if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , %ld ] %n", arg_sz, reg_name, &off, &len) == 3) { 1390 /* Memory dereference case, e.g., -4@[sp, 96] */ 1391 arg->arg_type = USDT_ARG_REG_DEREF; 1392 arg->val_off = off; 1393 reg_off = calc_pt_regs_off(reg_name); 1394 if (reg_off < 0) 1395 return reg_off; 1396 arg->reg_off = reg_off; 1397 } else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) { 1398 /* Memory dereference case, e.g., -4@[sp] */ 1399 arg->arg_type = USDT_ARG_REG_DEREF; 1400 arg->val_off = 0; 1401 reg_off = calc_pt_regs_off(reg_name); 1402 if (reg_off < 0) 1403 return reg_off; 1404 arg->reg_off = reg_off; 1405 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { 1406 /* Constant value case, e.g., 4@5 */ 1407 arg->arg_type = USDT_ARG_CONST; 1408 arg->val_off = off; 1409 arg->reg_off = 0; 1410 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { 1411 /* Register read case, e.g., -8@x4 */ 1412 arg->arg_type = USDT_ARG_REG; 1413 arg->val_off = 0; 1414 reg_off = calc_pt_regs_off(reg_name); 1415 if (reg_off < 0) 1416 return reg_off; 1417 arg->reg_off = reg_off; 1418 } else { 1419 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1420 return -EINVAL; 1421 } 1422 1423 return len; 1424 } 1425 1426 #elif defined(__riscv) 1427 1428 static int calc_pt_regs_off(const char *reg_name) 1429 { 1430 static struct { 1431 const char *name; 1432 size_t pt_regs_off; 1433 } reg_map[] = { 1434 { "ra", offsetof(struct user_regs_struct, ra) }, 1435 { "sp", offsetof(struct user_regs_struct, sp) }, 1436 { "gp", offsetof(struct user_regs_struct, gp) }, 1437 { "tp", offsetof(struct user_regs_struct, tp) }, 1438 { "a0", offsetof(struct user_regs_struct, a0) }, 1439 { "a1", offsetof(struct user_regs_struct, a1) }, 1440 { "a2", offsetof(struct user_regs_struct, a2) }, 1441 { "a3", offsetof(struct user_regs_struct, a3) }, 1442 { "a4", offsetof(struct user_regs_struct, a4) }, 1443 { "a5", offsetof(struct user_regs_struct, a5) }, 1444 { "a6", offsetof(struct user_regs_struct, a6) }, 1445 { "a7", offsetof(struct user_regs_struct, a7) }, 1446 { "s0", offsetof(struct user_regs_struct, s0) }, 1447 { "s1", offsetof(struct user_regs_struct, s1) }, 1448 { "s2", offsetof(struct user_regs_struct, s2) }, 1449 { "s3", offsetof(struct user_regs_struct, s3) }, 1450 { "s4", offsetof(struct user_regs_struct, s4) }, 1451 { "s5", offsetof(struct user_regs_struct, s5) }, 1452 { "s6", offsetof(struct user_regs_struct, s6) }, 1453 { "s7", offsetof(struct user_regs_struct, s7) }, 1454 { "s8", offsetof(struct user_regs_struct, rv_s8) }, 1455 { "s9", offsetof(struct user_regs_struct, s9) }, 1456 { "s10", offsetof(struct user_regs_struct, s10) }, 1457 { "s11", offsetof(struct user_regs_struct, s11) }, 1458 { "t0", offsetof(struct user_regs_struct, t0) }, 1459 { "t1", offsetof(struct user_regs_struct, t1) }, 1460 { "t2", offsetof(struct user_regs_struct, t2) }, 1461 { "t3", offsetof(struct user_regs_struct, t3) }, 1462 { "t4", offsetof(struct user_regs_struct, t4) }, 1463 { "t5", offsetof(struct user_regs_struct, t5) }, 1464 { "t6", offsetof(struct user_regs_struct, t6) }, 1465 }; 1466 int i; 1467 1468 for (i = 0; i < ARRAY_SIZE(reg_map); i++) { 1469 if (strcmp(reg_name, reg_map[i].name) == 0) 1470 return reg_map[i].pt_regs_off; 1471 } 1472 1473 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1474 return -ENOENT; 1475 } 1476 1477 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1478 { 1479 char reg_name[16]; 1480 int len, reg_off; 1481 long off; 1482 1483 if (sscanf(arg_str, " %d @ %ld ( %15[a-z0-9] ) %n", arg_sz, &off, reg_name, &len) == 3) { 1484 /* Memory dereference case, e.g., -8@-88(s0) */ 1485 arg->arg_type = USDT_ARG_REG_DEREF; 1486 arg->val_off = off; 1487 reg_off = calc_pt_regs_off(reg_name); 1488 if (reg_off < 0) 1489 return reg_off; 1490 arg->reg_off = reg_off; 1491 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { 1492 /* Constant value case, e.g., 4@5 */ 1493 arg->arg_type = USDT_ARG_CONST; 1494 arg->val_off = off; 1495 arg->reg_off = 0; 1496 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { 1497 /* Register read case, e.g., -8@a1 */ 1498 arg->arg_type = USDT_ARG_REG; 1499 arg->val_off = 0; 1500 reg_off = calc_pt_regs_off(reg_name); 1501 if (reg_off < 0) 1502 return reg_off; 1503 arg->reg_off = reg_off; 1504 } else { 1505 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1506 return -EINVAL; 1507 } 1508 1509 return len; 1510 } 1511 1512 #elif defined(__arm__) 1513 1514 static int calc_pt_regs_off(const char *reg_name) 1515 { 1516 static struct { 1517 const char *name; 1518 size_t pt_regs_off; 1519 } reg_map[] = { 1520 { "r0", offsetof(struct pt_regs, uregs[0]) }, 1521 { "r1", offsetof(struct pt_regs, uregs[1]) }, 1522 { "r2", offsetof(struct pt_regs, uregs[2]) }, 1523 { "r3", offsetof(struct pt_regs, uregs[3]) }, 1524 { "r4", offsetof(struct pt_regs, uregs[4]) }, 1525 { "r5", offsetof(struct pt_regs, uregs[5]) }, 1526 { "r6", offsetof(struct pt_regs, uregs[6]) }, 1527 { "r7", offsetof(struct pt_regs, uregs[7]) }, 1528 { "r8", offsetof(struct pt_regs, uregs[8]) }, 1529 { "r9", offsetof(struct pt_regs, uregs[9]) }, 1530 { "r10", offsetof(struct pt_regs, uregs[10]) }, 1531 { "fp", offsetof(struct pt_regs, uregs[11]) }, 1532 { "ip", offsetof(struct pt_regs, uregs[12]) }, 1533 { "sp", offsetof(struct pt_regs, uregs[13]) }, 1534 { "lr", offsetof(struct pt_regs, uregs[14]) }, 1535 { "pc", offsetof(struct pt_regs, uregs[15]) }, 1536 }; 1537 int i; 1538 1539 for (i = 0; i < ARRAY_SIZE(reg_map); i++) { 1540 if (strcmp(reg_name, reg_map[i].name) == 0) 1541 return reg_map[i].pt_regs_off; 1542 } 1543 1544 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1545 return -ENOENT; 1546 } 1547 1548 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1549 { 1550 char reg_name[16]; 1551 int len, reg_off; 1552 long off; 1553 1554 if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , #%ld ] %n", 1555 arg_sz, reg_name, &off, &len) == 3) { 1556 /* Memory dereference case, e.g., -4@[fp, #96] */ 1557 arg->arg_type = USDT_ARG_REG_DEREF; 1558 arg->val_off = off; 1559 reg_off = calc_pt_regs_off(reg_name); 1560 if (reg_off < 0) 1561 return reg_off; 1562 arg->reg_off = reg_off; 1563 } else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) { 1564 /* Memory dereference case, e.g., -4@[sp] */ 1565 arg->arg_type = USDT_ARG_REG_DEREF; 1566 arg->val_off = 0; 1567 reg_off = calc_pt_regs_off(reg_name); 1568 if (reg_off < 0) 1569 return reg_off; 1570 arg->reg_off = reg_off; 1571 } else if (sscanf(arg_str, " %d @ #%ld %n", arg_sz, &off, &len) == 2) { 1572 /* Constant value case, e.g., 4@#5 */ 1573 arg->arg_type = USDT_ARG_CONST; 1574 arg->val_off = off; 1575 arg->reg_off = 0; 1576 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { 1577 /* Register read case, e.g., -8@r4 */ 1578 arg->arg_type = USDT_ARG_REG; 1579 arg->val_off = 0; 1580 reg_off = calc_pt_regs_off(reg_name); 1581 if (reg_off < 0) 1582 return reg_off; 1583 arg->reg_off = reg_off; 1584 } else { 1585 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1586 return -EINVAL; 1587 } 1588 1589 return len; 1590 } 1591 1592 #else 1593 1594 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1595 { 1596 pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n"); 1597 return -ENOTSUP; 1598 } 1599 1600 #endif 1601