1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2022 Meta Platforms, Inc. and affiliates. */ 3 #include <ctype.h> 4 #include <stdio.h> 5 #include <stdlib.h> 6 #include <string.h> 7 #include <libelf.h> 8 #include <gelf.h> 9 #include <unistd.h> 10 #include <linux/ptrace.h> 11 #include <linux/kernel.h> 12 13 /* s8 will be marked as poison while it's a reg of riscv */ 14 #if defined(__riscv) 15 #define rv_s8 s8 16 #endif 17 18 #include "bpf.h" 19 #include "libbpf.h" 20 #include "libbpf_common.h" 21 #include "libbpf_internal.h" 22 #include "hashmap.h" 23 #include "str_error.h" 24 25 /* libbpf's USDT support consists of BPF-side state/code and user-space 26 * state/code working together in concert. BPF-side parts are defined in 27 * usdt.bpf.h header library. User-space state is encapsulated by struct 28 * usdt_manager and all the supporting code centered around usdt_manager. 29 * 30 * usdt.bpf.h defines two BPF maps that usdt_manager expects: USDT spec map 31 * and IP-to-spec-ID map, which is auxiliary map necessary for kernels that 32 * don't support BPF cookie (see below). These two maps are implicitly 33 * embedded into user's end BPF object file when user's code included 34 * usdt.bpf.h. This means that libbpf doesn't do anything special to create 35 * these USDT support maps. They are created by normal libbpf logic of 36 * instantiating BPF maps when opening and loading BPF object. 37 * 38 * As such, libbpf is basically unaware of the need to do anything 39 * USDT-related until the very first call to bpf_program__attach_usdt(), which 40 * can be called by user explicitly or happen automatically during skeleton 41 * attach (or, equivalently, through generic bpf_program__attach() call). At 42 * this point, libbpf will instantiate and initialize struct usdt_manager and 43 * store it in bpf_object. USDT manager is per-BPF object construct, as each 44 * independent BPF object might or might not have USDT programs, and thus all 45 * the expected USDT-related state. There is no coordination between two 46 * bpf_object in parts of USDT attachment, they are oblivious of each other's 47 * existence and libbpf is just oblivious, dealing with bpf_object-specific 48 * USDT state. 49 * 50 * Quick crash course on USDTs. 51 * 52 * From user-space application's point of view, USDT is essentially just 53 * a slightly special function call that normally has zero overhead, unless it 54 * is being traced by some external entity (e.g, BPF-based tool). Here's how 55 * a typical application can trigger USDT probe: 56 * 57 * #include <sys/sdt.h> // provided by systemtap-sdt-devel package 58 * // folly also provide similar functionality in folly/tracing/StaticTracepoint.h 59 * 60 * STAP_PROBE3(my_usdt_provider, my_usdt_probe_name, 123, x, &y); 61 * 62 * USDT is identified by its <provider-name>:<probe-name> pair of names. Each 63 * individual USDT has a fixed number of arguments (3 in the above example) 64 * and specifies values of each argument as if it was a function call. 65 * 66 * USDT call is actually not a function call, but is instead replaced by 67 * a single NOP instruction (thus zero overhead, effectively). But in addition 68 * to that, those USDT macros generate special SHT_NOTE ELF records in 69 * .note.stapsdt ELF section. Here's an example USDT definition as emitted by 70 * `readelf -n <binary>`: 71 * 72 * stapsdt 0x00000089 NT_STAPSDT (SystemTap probe descriptors) 73 * Provider: test 74 * Name: usdt12 75 * Location: 0x0000000000549df3, Base: 0x00000000008effa4, Semaphore: 0x0000000000a4606e 76 * Arguments: -4@-1204(%rbp) -4@%edi -8@-1216(%rbp) -8@%r8 -4@$5 -8@%r9 8@%rdx 8@%r10 -4@$-9 -2@%cx -2@%ax -1@%sil 77 * 78 * In this case we have USDT test:usdt12 with 12 arguments. 79 * 80 * Location and base are offsets used to calculate absolute IP address of that 81 * NOP instruction that kernel can replace with an interrupt instruction to 82 * trigger instrumentation code (BPF program for all that we care about). 83 * 84 * Semaphore above is an optional feature. It records an address of a 2-byte 85 * refcount variable (normally in '.probes' ELF section) used for signaling if 86 * there is anything that is attached to USDT. This is useful for user 87 * applications if, for example, they need to prepare some arguments that are 88 * passed only to USDTs and preparation is expensive. By checking if USDT is 89 * "activated", an application can avoid paying those costs unnecessarily. 90 * Recent enough kernel has built-in support for automatically managing this 91 * refcount, which libbpf expects and relies on. If USDT is defined without 92 * associated semaphore, this value will be zero. See selftests for semaphore 93 * examples. 94 * 95 * Arguments is the most interesting part. This USDT specification string is 96 * providing information about all the USDT arguments and their locations. The 97 * part before @ sign defined byte size of the argument (1, 2, 4, or 8) and 98 * whether the argument is signed or unsigned (negative size means signed). 99 * The part after @ sign is assembly-like definition of argument location 100 * (see [0] for more details). Technically, assembler can provide some pretty 101 * advanced definitions, but libbpf is currently supporting three most common 102 * cases: 103 * 1) immediate constant, see 5th and 9th args above (-4@$5 and -4@-9); 104 * 2) register value, e.g., 8@%rdx, which means "unsigned 8-byte integer 105 * whose value is in register %rdx"; 106 * 3) memory dereference addressed by register, e.g., -4@-1204(%rbp), which 107 * specifies signed 32-bit integer stored at offset -1204 bytes from 108 * memory address stored in %rbp. 109 * 110 * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation 111 * 112 * During attachment, libbpf parses all the relevant USDT specifications and 113 * prepares `struct usdt_spec` (USDT spec), which is then provided to BPF-side 114 * code through spec map. This allows BPF applications to quickly fetch the 115 * actual value at runtime using a simple BPF-side code. 116 * 117 * With basics out of the way, let's go over less immediately obvious aspects 118 * of supporting USDTs. 119 * 120 * First, there is no special USDT BPF program type. It is actually just 121 * a uprobe BPF program (which for kernel, at least currently, is just a kprobe 122 * program, so BPF_PROG_TYPE_KPROBE program type). With the only difference 123 * that uprobe is usually attached at the function entry, while USDT will 124 * normally be somewhere inside the function. But it should always be 125 * pointing to NOP instruction, which makes such uprobes the fastest uprobe 126 * kind. 127 * 128 * Second, it's important to realize that such STAP_PROBEn(provider, name, ...) 129 * macro invocations can end up being inlined many-many times, depending on 130 * specifics of each individual user application. So single conceptual USDT 131 * (identified by provider:name pair of identifiers) is, generally speaking, 132 * multiple uprobe locations (USDT call sites) in different places in user 133 * application. Further, again due to inlining, each USDT call site might end 134 * up having the same argument #N be located in a different place. In one call 135 * site it could be a constant, in another will end up in a register, and in 136 * yet another could be some other register or even somewhere on the stack. 137 * 138 * As such, "attaching to USDT" means (in general case) attaching the same 139 * uprobe BPF program to multiple target locations in user application, each 140 * potentially having a completely different USDT spec associated with it. 141 * To wire all this up together libbpf allocates a unique integer spec ID for 142 * each unique USDT spec. Spec IDs are allocated as sequential small integers 143 * so that they can be used as keys in array BPF map (for performance reasons). 144 * Spec ID allocation and accounting is big part of what usdt_manager is 145 * about. This state has to be maintained per-BPF object and coordinate 146 * between different USDT attachments within the same BPF object. 147 * 148 * Spec ID is the key in spec BPF map, value is the actual USDT spec layed out 149 * as struct usdt_spec. Each invocation of BPF program at runtime needs to 150 * know its associated spec ID. It gets it either through BPF cookie, which 151 * libbpf sets to spec ID during attach time, or, if kernel is too old to 152 * support BPF cookie, through IP-to-spec-ID map that libbpf maintains in such 153 * case. The latter means that some modes of operation can't be supported 154 * without BPF cookie. Such a mode is attaching to shared library "generically", 155 * without specifying target process. In such case, it's impossible to 156 * calculate absolute IP addresses for IP-to-spec-ID map, and thus such mode 157 * is not supported without BPF cookie support. 158 * 159 * Note that libbpf is using BPF cookie functionality for its own internal 160 * needs, so user itself can't rely on BPF cookie feature. To that end, libbpf 161 * provides conceptually equivalent USDT cookie support. It's still u64 162 * user-provided value that can be associated with USDT attachment. Note that 163 * this will be the same value for all USDT call sites within the same single 164 * *logical* USDT attachment. This makes sense because to user attaching to 165 * USDT is a single BPF program triggered for singular USDT probe. The fact 166 * that this is done at multiple actual locations is a mostly hidden 167 * implementation details. This USDT cookie value can be fetched with 168 * bpf_usdt_cookie(ctx) API provided by usdt.bpf.h 169 * 170 * Lastly, while single USDT can have tons of USDT call sites, it doesn't 171 * necessarily have that many different USDT specs. It very well might be 172 * that 1000 USDT call sites only need 5 different USDT specs, because all the 173 * arguments are typically contained in a small set of registers or stack 174 * locations. As such, it's wasteful to allocate as many USDT spec IDs as 175 * there are USDT call sites. So libbpf tries to be frugal and performs 176 * on-the-fly deduplication during a single USDT attachment to only allocate 177 * the minimal required amount of unique USDT specs (and thus spec IDs). This 178 * is trivially achieved by using USDT spec string (Arguments string from USDT 179 * note) as a lookup key in a hashmap. USDT spec string uniquely defines 180 * everything about how to fetch USDT arguments, so two USDT call sites 181 * sharing USDT spec string can safely share the same USDT spec and spec ID. 182 * Note, this spec string deduplication is happening only during the same USDT 183 * attachment, so each USDT spec shares the same USDT cookie value. This is 184 * not generally true for other USDT attachments within the same BPF object, 185 * as even if USDT spec string is the same, USDT cookie value can be 186 * different. It was deemed excessive to try to deduplicate across independent 187 * USDT attachments by taking into account USDT spec string *and* USDT cookie 188 * value, which would complicate spec ID accounting significantly for little 189 * gain. 190 */ 191 192 #define USDT_BASE_SEC ".stapsdt.base" 193 #define USDT_SEMA_SEC ".probes" 194 #define USDT_NOTE_SEC ".note.stapsdt" 195 #define USDT_NOTE_TYPE 3 196 #define USDT_NOTE_NAME "stapsdt" 197 198 /* should match exactly enum __bpf_usdt_arg_type from usdt.bpf.h */ 199 enum usdt_arg_type { 200 USDT_ARG_CONST, 201 USDT_ARG_REG, 202 USDT_ARG_REG_DEREF, 203 USDT_ARG_SIB, 204 }; 205 206 /* should match exactly struct __bpf_usdt_arg_spec from usdt.bpf.h */ 207 struct usdt_arg_spec { 208 __u64 val_off; 209 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 210 enum usdt_arg_type arg_type: 8; 211 __u16 idx_reg_off: 12; 212 __u16 scale_bitshift: 4; 213 __u8 __reserved: 8; /* keep reg_off offset stable */ 214 #else 215 __u8 __reserved: 8; /* keep reg_off offset stable */ 216 __u16 idx_reg_off: 12; 217 __u16 scale_bitshift: 4; 218 enum usdt_arg_type arg_type: 8; 219 #endif 220 short reg_off; 221 bool arg_signed; 222 char arg_bitshift; 223 }; 224 225 /* should match BPF_USDT_MAX_ARG_CNT in usdt.bpf.h */ 226 #define USDT_MAX_ARG_CNT 12 227 228 /* should match struct __bpf_usdt_spec from usdt.bpf.h */ 229 struct usdt_spec { 230 struct usdt_arg_spec args[USDT_MAX_ARG_CNT]; 231 __u64 usdt_cookie; 232 short arg_cnt; 233 }; 234 235 struct usdt_note { 236 const char *provider; 237 const char *name; 238 /* USDT args specification string, e.g.: 239 * "-4@%esi -4@-24(%rbp) -4@%ecx 2@%ax 8@%rdx" 240 */ 241 const char *args; 242 long loc_addr; 243 long base_addr; 244 long sema_addr; 245 }; 246 247 struct usdt_target { 248 long abs_ip; 249 long rel_ip; 250 long sema_off; 251 struct usdt_spec spec; 252 const char *spec_str; 253 }; 254 255 struct usdt_manager { 256 struct bpf_map *specs_map; 257 struct bpf_map *ip_to_spec_id_map; 258 259 int *free_spec_ids; 260 size_t free_spec_cnt; 261 size_t next_free_spec_id; 262 263 bool has_bpf_cookie; 264 bool has_sema_refcnt; 265 bool has_uprobe_multi; 266 }; 267 268 struct usdt_manager *usdt_manager_new(struct bpf_object *obj) 269 { 270 static const char *ref_ctr_sysfs_path = "/sys/bus/event_source/devices/uprobe/format/ref_ctr_offset"; 271 struct usdt_manager *man; 272 struct bpf_map *specs_map, *ip_to_spec_id_map; 273 274 specs_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_specs"); 275 ip_to_spec_id_map = bpf_object__find_map_by_name(obj, "__bpf_usdt_ip_to_spec_id"); 276 if (!specs_map || !ip_to_spec_id_map) { 277 pr_warn("usdt: failed to find USDT support BPF maps, did you forget to include bpf/usdt.bpf.h?\n"); 278 return ERR_PTR(-ESRCH); 279 } 280 281 man = calloc(1, sizeof(*man)); 282 if (!man) 283 return ERR_PTR(-ENOMEM); 284 285 man->specs_map = specs_map; 286 man->ip_to_spec_id_map = ip_to_spec_id_map; 287 288 /* Detect if BPF cookie is supported for kprobes. 289 * We don't need IP-to-ID mapping if we can use BPF cookies. 290 * Added in: 7adfc6c9b315 ("bpf: Add bpf_get_attach_cookie() BPF helper to access bpf_cookie value") 291 */ 292 man->has_bpf_cookie = kernel_supports(obj, FEAT_BPF_COOKIE); 293 294 /* Detect kernel support for automatic refcounting of USDT semaphore. 295 * If this is not supported, USDTs with semaphores will not be supported. 296 * Added in: a6ca88b241d5 ("trace_uprobe: support reference counter in fd-based uprobe") 297 */ 298 man->has_sema_refcnt = faccessat(AT_FDCWD, ref_ctr_sysfs_path, F_OK, AT_EACCESS) == 0; 299 300 /* 301 * Detect kernel support for uprobe multi link to be used for attaching 302 * usdt probes. 303 */ 304 man->has_uprobe_multi = kernel_supports(obj, FEAT_UPROBE_MULTI_LINK); 305 return man; 306 } 307 308 void usdt_manager_free(struct usdt_manager *man) 309 { 310 if (IS_ERR_OR_NULL(man)) 311 return; 312 313 free(man->free_spec_ids); 314 free(man); 315 } 316 317 static int sanity_check_usdt_elf(Elf *elf, const char *path) 318 { 319 GElf_Ehdr ehdr; 320 int endianness; 321 322 if (elf_kind(elf) != ELF_K_ELF) { 323 pr_warn("usdt: unrecognized ELF kind %d for '%s'\n", elf_kind(elf), path); 324 return -EBADF; 325 } 326 327 switch (gelf_getclass(elf)) { 328 case ELFCLASS64: 329 if (sizeof(void *) != 8) { 330 pr_warn("usdt: attaching to 64-bit ELF binary '%s' is not supported\n", path); 331 return -EBADF; 332 } 333 break; 334 case ELFCLASS32: 335 if (sizeof(void *) != 4) { 336 pr_warn("usdt: attaching to 32-bit ELF binary '%s' is not supported\n", path); 337 return -EBADF; 338 } 339 break; 340 default: 341 pr_warn("usdt: unsupported ELF class for '%s'\n", path); 342 return -EBADF; 343 } 344 345 if (!gelf_getehdr(elf, &ehdr)) 346 return -EINVAL; 347 348 if (ehdr.e_type != ET_EXEC && ehdr.e_type != ET_DYN) { 349 pr_warn("usdt: unsupported type of ELF binary '%s' (%d), only ET_EXEC and ET_DYN are supported\n", 350 path, ehdr.e_type); 351 return -EBADF; 352 } 353 354 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 355 endianness = ELFDATA2LSB; 356 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 357 endianness = ELFDATA2MSB; 358 #else 359 # error "Unrecognized __BYTE_ORDER__" 360 #endif 361 if (endianness != ehdr.e_ident[EI_DATA]) { 362 pr_warn("usdt: ELF endianness mismatch for '%s'\n", path); 363 return -EBADF; 364 } 365 366 return 0; 367 } 368 369 static int find_elf_sec_by_name(Elf *elf, const char *sec_name, GElf_Shdr *shdr, Elf_Scn **scn) 370 { 371 Elf_Scn *sec = NULL; 372 size_t shstrndx; 373 374 if (elf_getshdrstrndx(elf, &shstrndx)) 375 return -EINVAL; 376 377 /* check if ELF is corrupted and avoid calling elf_strptr if yes */ 378 if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) 379 return -EINVAL; 380 381 while ((sec = elf_nextscn(elf, sec)) != NULL) { 382 char *name; 383 384 if (!gelf_getshdr(sec, shdr)) 385 return -EINVAL; 386 387 name = elf_strptr(elf, shstrndx, shdr->sh_name); 388 if (name && strcmp(sec_name, name) == 0) { 389 *scn = sec; 390 return 0; 391 } 392 } 393 394 return -ENOENT; 395 } 396 397 struct elf_seg { 398 long start; 399 long end; 400 long offset; 401 bool is_exec; 402 }; 403 404 static int cmp_elf_segs(const void *_a, const void *_b) 405 { 406 const struct elf_seg *a = _a; 407 const struct elf_seg *b = _b; 408 409 return a->start < b->start ? -1 : 1; 410 } 411 412 static int parse_elf_segs(Elf *elf, const char *path, struct elf_seg **segs, size_t *seg_cnt) 413 { 414 GElf_Phdr phdr; 415 size_t n; 416 int i, err; 417 struct elf_seg *seg; 418 void *tmp; 419 420 *seg_cnt = 0; 421 422 if (elf_getphdrnum(elf, &n)) { 423 err = -errno; 424 return err; 425 } 426 427 for (i = 0; i < n; i++) { 428 if (!gelf_getphdr(elf, i, &phdr)) { 429 err = -errno; 430 return err; 431 } 432 433 pr_debug("usdt: discovered PHDR #%d in '%s': vaddr 0x%lx memsz 0x%lx offset 0x%lx type 0x%lx flags 0x%lx\n", 434 i, path, (long)phdr.p_vaddr, (long)phdr.p_memsz, (long)phdr.p_offset, 435 (long)phdr.p_type, (long)phdr.p_flags); 436 if (phdr.p_type != PT_LOAD) 437 continue; 438 439 tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs)); 440 if (!tmp) 441 return -ENOMEM; 442 443 *segs = tmp; 444 seg = *segs + *seg_cnt; 445 (*seg_cnt)++; 446 447 seg->start = phdr.p_vaddr; 448 seg->end = phdr.p_vaddr + phdr.p_memsz; 449 seg->offset = phdr.p_offset; 450 seg->is_exec = phdr.p_flags & PF_X; 451 } 452 453 if (*seg_cnt == 0) { 454 pr_warn("usdt: failed to find PT_LOAD program headers in '%s'\n", path); 455 return -ESRCH; 456 } 457 458 qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs); 459 return 0; 460 } 461 462 static int parse_vma_segs(int pid, const char *lib_path, struct elf_seg **segs, size_t *seg_cnt) 463 { 464 char path[PATH_MAX], line[PATH_MAX], mode[16]; 465 size_t seg_start, seg_end, seg_off; 466 struct elf_seg *seg; 467 int tmp_pid, i, err; 468 FILE *f; 469 470 *seg_cnt = 0; 471 472 /* Handle containerized binaries only accessible from 473 * /proc/<pid>/root/<path>. They will be reported as just /<path> in 474 * /proc/<pid>/maps. 475 */ 476 if (sscanf(lib_path, "/proc/%d/root%s", &tmp_pid, path) == 2 && pid == tmp_pid) 477 goto proceed; 478 479 if (!realpath(lib_path, path)) { 480 pr_warn("usdt: failed to get absolute path of '%s' (err %s), using path as is...\n", 481 lib_path, errstr(-errno)); 482 libbpf_strlcpy(path, lib_path, sizeof(path)); 483 } 484 485 proceed: 486 sprintf(line, "/proc/%d/maps", pid); 487 f = fopen(line, "re"); 488 if (!f) { 489 err = -errno; 490 pr_warn("usdt: failed to open '%s' to get base addr of '%s': %s\n", 491 line, lib_path, errstr(err)); 492 return err; 493 } 494 495 /* We need to handle lines with no path at the end: 496 * 497 * 7f5c6f5d1000-7f5c6f5d3000 rw-p 001c7000 08:04 21238613 /usr/lib64/libc-2.17.so 498 * 7f5c6f5d3000-7f5c6f5d8000 rw-p 00000000 00:00 0 499 * 7f5c6f5d8000-7f5c6f5d9000 r-xp 00000000 103:01 362990598 /data/users/andriin/linux/tools/bpf/usdt/libhello_usdt.so 500 */ 501 while (fscanf(f, "%zx-%zx %s %zx %*s %*d%[^\n]\n", 502 &seg_start, &seg_end, mode, &seg_off, line) == 5) { 503 void *tmp; 504 505 /* to handle no path case (see above) we need to capture line 506 * without skipping any whitespaces. So we need to strip 507 * leading whitespaces manually here 508 */ 509 i = 0; 510 while (isblank(line[i])) 511 i++; 512 if (strcmp(line + i, path) != 0) 513 continue; 514 515 pr_debug("usdt: discovered segment for lib '%s': addrs %zx-%zx mode %s offset %zx\n", 516 path, seg_start, seg_end, mode, seg_off); 517 518 /* ignore non-executable sections for shared libs */ 519 if (mode[2] != 'x') 520 continue; 521 522 tmp = libbpf_reallocarray(*segs, *seg_cnt + 1, sizeof(**segs)); 523 if (!tmp) { 524 err = -ENOMEM; 525 goto err_out; 526 } 527 528 *segs = tmp; 529 seg = *segs + *seg_cnt; 530 *seg_cnt += 1; 531 532 seg->start = seg_start; 533 seg->end = seg_end; 534 seg->offset = seg_off; 535 seg->is_exec = true; 536 } 537 538 if (*seg_cnt == 0) { 539 pr_warn("usdt: failed to find '%s' (resolved to '%s') within PID %d memory mappings\n", 540 lib_path, path, pid); 541 err = -ESRCH; 542 goto err_out; 543 } 544 545 qsort(*segs, *seg_cnt, sizeof(**segs), cmp_elf_segs); 546 err = 0; 547 err_out: 548 fclose(f); 549 return err; 550 } 551 552 static struct elf_seg *find_elf_seg(struct elf_seg *segs, size_t seg_cnt, long virtaddr) 553 { 554 struct elf_seg *seg; 555 int i; 556 557 /* for ELF binaries (both executables and shared libraries), we are 558 * given virtual address (absolute for executables, relative for 559 * libraries) which should match address range of [seg_start, seg_end) 560 */ 561 for (i = 0, seg = segs; i < seg_cnt; i++, seg++) { 562 if (seg->start <= virtaddr && virtaddr < seg->end) 563 return seg; 564 } 565 return NULL; 566 } 567 568 static struct elf_seg *find_vma_seg(struct elf_seg *segs, size_t seg_cnt, long offset) 569 { 570 struct elf_seg *seg; 571 int i; 572 573 /* for VMA segments from /proc/<pid>/maps file, provided "address" is 574 * actually a file offset, so should be fall within logical 575 * offset-based range of [offset_start, offset_end) 576 */ 577 for (i = 0, seg = segs; i < seg_cnt; i++, seg++) { 578 if (seg->offset <= offset && offset < seg->offset + (seg->end - seg->start)) 579 return seg; 580 } 581 return NULL; 582 } 583 584 static int parse_usdt_note(GElf_Nhdr *nhdr, const char *data, size_t name_off, 585 size_t desc_off, struct usdt_note *usdt_note); 586 587 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie); 588 589 static int collect_usdt_targets(struct usdt_manager *man, Elf *elf, const char *path, pid_t pid, 590 const char *usdt_provider, const char *usdt_name, __u64 usdt_cookie, 591 struct usdt_target **out_targets, size_t *out_target_cnt) 592 { 593 size_t off, name_off, desc_off, seg_cnt = 0, vma_seg_cnt = 0, target_cnt = 0; 594 struct elf_seg *segs = NULL, *vma_segs = NULL; 595 struct usdt_target *targets = NULL, *target; 596 long base_addr = 0; 597 Elf_Scn *notes_scn, *base_scn; 598 GElf_Shdr base_shdr, notes_shdr; 599 GElf_Ehdr ehdr; 600 GElf_Nhdr nhdr; 601 Elf_Data *data; 602 int err; 603 604 *out_targets = NULL; 605 *out_target_cnt = 0; 606 607 err = find_elf_sec_by_name(elf, USDT_NOTE_SEC, ¬es_shdr, ¬es_scn); 608 if (err) { 609 pr_warn("usdt: no USDT notes section (%s) found in '%s'\n", USDT_NOTE_SEC, path); 610 return err; 611 } 612 613 if (notes_shdr.sh_type != SHT_NOTE || !gelf_getehdr(elf, &ehdr)) { 614 pr_warn("usdt: invalid USDT notes section (%s) in '%s'\n", USDT_NOTE_SEC, path); 615 return -EINVAL; 616 } 617 618 err = parse_elf_segs(elf, path, &segs, &seg_cnt); 619 if (err) { 620 pr_warn("usdt: failed to process ELF program segments for '%s': %s\n", 621 path, errstr(err)); 622 goto err_out; 623 } 624 625 /* .stapsdt.base ELF section is optional, but is used for prelink 626 * offset compensation (see a big comment further below) 627 */ 628 if (find_elf_sec_by_name(elf, USDT_BASE_SEC, &base_shdr, &base_scn) == 0) 629 base_addr = base_shdr.sh_addr; 630 631 data = elf_getdata(notes_scn, 0); 632 off = 0; 633 while ((off = gelf_getnote(data, off, &nhdr, &name_off, &desc_off)) > 0) { 634 long usdt_abs_ip, usdt_rel_ip, usdt_sema_off = 0; 635 struct usdt_note note; 636 struct elf_seg *seg = NULL; 637 void *tmp; 638 639 err = parse_usdt_note(&nhdr, data->d_buf, name_off, desc_off, ¬e); 640 if (err) 641 goto err_out; 642 643 if (strcmp(note.provider, usdt_provider) != 0 || strcmp(note.name, usdt_name) != 0) 644 continue; 645 646 /* We need to compensate "prelink effect". See [0] for details, 647 * relevant parts quoted here: 648 * 649 * Each SDT probe also expands into a non-allocated ELF note. You can 650 * find this by looking at SHT_NOTE sections and decoding the format; 651 * see below for details. Because the note is non-allocated, it means 652 * there is no runtime cost, and also preserved in both stripped files 653 * and .debug files. 654 * 655 * However, this means that prelink won't adjust the note's contents 656 * for address offsets. Instead, this is done via the .stapsdt.base 657 * section. This is a special section that is added to the text. We 658 * will only ever have one of these sections in a final link and it 659 * will only ever be one byte long. Nothing about this section itself 660 * matters, we just use it as a marker to detect prelink address 661 * adjustments. 662 * 663 * Each probe note records the link-time address of the .stapsdt.base 664 * section alongside the probe PC address. The decoder compares the 665 * base address stored in the note with the .stapsdt.base section's 666 * sh_addr. Initially these are the same, but the section header will 667 * be adjusted by prelink. So the decoder applies the difference to 668 * the probe PC address to get the correct prelinked PC address; the 669 * same adjustment is applied to the semaphore address, if any. 670 * 671 * [0] https://sourceware.org/systemtap/wiki/UserSpaceProbeImplementation 672 */ 673 usdt_abs_ip = note.loc_addr; 674 if (base_addr && note.base_addr) 675 usdt_abs_ip += base_addr - note.base_addr; 676 677 /* When attaching uprobes (which is what USDTs basically are) 678 * kernel expects file offset to be specified, not a relative 679 * virtual address, so we need to translate virtual address to 680 * file offset, for both ET_EXEC and ET_DYN binaries. 681 */ 682 seg = find_elf_seg(segs, seg_cnt, usdt_abs_ip); 683 if (!seg) { 684 err = -ESRCH; 685 pr_warn("usdt: failed to find ELF program segment for '%s:%s' in '%s' at IP 0x%lx\n", 686 usdt_provider, usdt_name, path, usdt_abs_ip); 687 goto err_out; 688 } 689 if (!seg->is_exec) { 690 err = -ESRCH; 691 pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx) for '%s:%s' at IP 0x%lx is not executable\n", 692 path, seg->start, seg->end, usdt_provider, usdt_name, 693 usdt_abs_ip); 694 goto err_out; 695 } 696 /* translate from virtual address to file offset */ 697 usdt_rel_ip = usdt_abs_ip - seg->start + seg->offset; 698 699 if (ehdr.e_type == ET_DYN && !man->has_bpf_cookie) { 700 /* If we don't have BPF cookie support but need to 701 * attach to a shared library, we'll need to know and 702 * record absolute addresses of attach points due to 703 * the need to lookup USDT spec by absolute IP of 704 * triggered uprobe. Doing this resolution is only 705 * possible when we have a specific PID of the process 706 * that's using specified shared library. BPF cookie 707 * removes the absolute address limitation as we don't 708 * need to do this lookup (we just use BPF cookie as 709 * an index of USDT spec), so for newer kernels with 710 * BPF cookie support libbpf supports USDT attachment 711 * to shared libraries with no PID filter. 712 */ 713 if (pid < 0) { 714 pr_warn("usdt: attaching to shared libraries without specific PID is not supported on current kernel\n"); 715 err = -ENOTSUP; 716 goto err_out; 717 } 718 719 /* vma_segs are lazily initialized only if necessary */ 720 if (vma_seg_cnt == 0) { 721 err = parse_vma_segs(pid, path, &vma_segs, &vma_seg_cnt); 722 if (err) { 723 pr_warn("usdt: failed to get memory segments in PID %d for shared library '%s': %s\n", 724 pid, path, errstr(err)); 725 goto err_out; 726 } 727 } 728 729 seg = find_vma_seg(vma_segs, vma_seg_cnt, usdt_rel_ip); 730 if (!seg) { 731 err = -ESRCH; 732 pr_warn("usdt: failed to find shared lib memory segment for '%s:%s' in '%s' at relative IP 0x%lx\n", 733 usdt_provider, usdt_name, path, usdt_rel_ip); 734 goto err_out; 735 } 736 737 usdt_abs_ip = seg->start - seg->offset + usdt_rel_ip; 738 } 739 740 pr_debug("usdt: probe for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved abs_ip 0x%lx rel_ip 0x%lx) args '%s' in segment [0x%lx, 0x%lx) at offset 0x%lx\n", 741 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", path, 742 note.loc_addr, note.base_addr, usdt_abs_ip, usdt_rel_ip, note.args, 743 seg ? seg->start : 0, seg ? seg->end : 0, seg ? seg->offset : 0); 744 745 /* Adjust semaphore address to be a file offset */ 746 if (note.sema_addr) { 747 if (!man->has_sema_refcnt) { 748 pr_warn("usdt: kernel doesn't support USDT semaphore refcounting for '%s:%s' in '%s'\n", 749 usdt_provider, usdt_name, path); 750 err = -ENOTSUP; 751 goto err_out; 752 } 753 754 seg = find_elf_seg(segs, seg_cnt, note.sema_addr); 755 if (!seg) { 756 err = -ESRCH; 757 pr_warn("usdt: failed to find ELF loadable segment with semaphore of '%s:%s' in '%s' at 0x%lx\n", 758 usdt_provider, usdt_name, path, note.sema_addr); 759 goto err_out; 760 } 761 if (seg->is_exec) { 762 err = -ESRCH; 763 pr_warn("usdt: matched ELF binary '%s' segment [0x%lx, 0x%lx] for semaphore of '%s:%s' at 0x%lx is executable\n", 764 path, seg->start, seg->end, usdt_provider, usdt_name, 765 note.sema_addr); 766 goto err_out; 767 } 768 769 usdt_sema_off = note.sema_addr - seg->start + seg->offset; 770 771 pr_debug("usdt: sema for '%s:%s' in %s '%s': addr 0x%lx base 0x%lx (resolved 0x%lx) in segment [0x%lx, 0x%lx] at offset 0x%lx\n", 772 usdt_provider, usdt_name, ehdr.e_type == ET_EXEC ? "exec" : "lib ", 773 path, note.sema_addr, note.base_addr, usdt_sema_off, 774 seg->start, seg->end, seg->offset); 775 } 776 777 /* Record adjusted addresses and offsets and parse USDT spec */ 778 tmp = libbpf_reallocarray(targets, target_cnt + 1, sizeof(*targets)); 779 if (!tmp) { 780 err = -ENOMEM; 781 goto err_out; 782 } 783 targets = tmp; 784 785 target = &targets[target_cnt]; 786 memset(target, 0, sizeof(*target)); 787 788 target->abs_ip = usdt_abs_ip; 789 target->rel_ip = usdt_rel_ip; 790 target->sema_off = usdt_sema_off; 791 792 /* notes.args references strings from ELF itself, so they can 793 * be referenced safely until elf_end() call 794 */ 795 target->spec_str = note.args; 796 797 err = parse_usdt_spec(&target->spec, ¬e, usdt_cookie); 798 if (err) 799 goto err_out; 800 801 target_cnt++; 802 } 803 804 *out_targets = targets; 805 *out_target_cnt = target_cnt; 806 err = target_cnt; 807 808 err_out: 809 free(segs); 810 free(vma_segs); 811 if (err < 0) 812 free(targets); 813 return err; 814 } 815 816 struct bpf_link_usdt { 817 struct bpf_link link; 818 819 struct usdt_manager *usdt_man; 820 821 size_t spec_cnt; 822 int *spec_ids; 823 824 size_t uprobe_cnt; 825 struct { 826 long abs_ip; 827 struct bpf_link *link; 828 } *uprobes; 829 830 struct bpf_link *multi_link; 831 }; 832 833 static int bpf_link_usdt_detach(struct bpf_link *link) 834 { 835 struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link); 836 struct usdt_manager *man = usdt_link->usdt_man; 837 int i; 838 839 bpf_link__destroy(usdt_link->multi_link); 840 841 /* When having multi_link, uprobe_cnt is 0 */ 842 for (i = 0; i < usdt_link->uprobe_cnt; i++) { 843 /* detach underlying uprobe link */ 844 bpf_link__destroy(usdt_link->uprobes[i].link); 845 /* there is no need to update specs map because it will be 846 * unconditionally overwritten on subsequent USDT attaches, 847 * but if BPF cookies are not used we need to remove entry 848 * from ip_to_spec_id map, otherwise we'll run into false 849 * conflicting IP errors 850 */ 851 if (!man->has_bpf_cookie) { 852 /* not much we can do about errors here */ 853 (void)bpf_map_delete_elem(bpf_map__fd(man->ip_to_spec_id_map), 854 &usdt_link->uprobes[i].abs_ip); 855 } 856 } 857 858 /* try to return the list of previously used spec IDs to usdt_manager 859 * for future reuse for subsequent USDT attaches 860 */ 861 if (!man->free_spec_ids) { 862 /* if there were no free spec IDs yet, just transfer our IDs */ 863 man->free_spec_ids = usdt_link->spec_ids; 864 man->free_spec_cnt = usdt_link->spec_cnt; 865 usdt_link->spec_ids = NULL; 866 } else { 867 /* otherwise concat IDs */ 868 size_t new_cnt = man->free_spec_cnt + usdt_link->spec_cnt; 869 int *new_free_ids; 870 871 new_free_ids = libbpf_reallocarray(man->free_spec_ids, new_cnt, 872 sizeof(*new_free_ids)); 873 /* If we couldn't resize free_spec_ids, we'll just leak 874 * a bunch of free IDs; this is very unlikely to happen and if 875 * system is so exhausted on memory, it's the least of user's 876 * concerns, probably. 877 * So just do our best here to return those IDs to usdt_manager. 878 * Another edge case when we can legitimately get NULL is when 879 * new_cnt is zero, which can happen in some edge cases, so we 880 * need to be careful about that. 881 */ 882 if (new_free_ids || new_cnt == 0) { 883 memcpy(new_free_ids + man->free_spec_cnt, usdt_link->spec_ids, 884 usdt_link->spec_cnt * sizeof(*usdt_link->spec_ids)); 885 man->free_spec_ids = new_free_ids; 886 man->free_spec_cnt = new_cnt; 887 } 888 } 889 890 return 0; 891 } 892 893 static void bpf_link_usdt_dealloc(struct bpf_link *link) 894 { 895 struct bpf_link_usdt *usdt_link = container_of(link, struct bpf_link_usdt, link); 896 897 free(usdt_link->spec_ids); 898 free(usdt_link->uprobes); 899 free(usdt_link); 900 } 901 902 static size_t specs_hash_fn(long key, void *ctx) 903 { 904 return str_hash((char *)key); 905 } 906 907 static bool specs_equal_fn(long key1, long key2, void *ctx) 908 { 909 return strcmp((char *)key1, (char *)key2) == 0; 910 } 911 912 static int allocate_spec_id(struct usdt_manager *man, struct hashmap *specs_hash, 913 struct bpf_link_usdt *link, struct usdt_target *target, 914 int *spec_id, bool *is_new) 915 { 916 long tmp; 917 void *new_ids; 918 int err; 919 920 /* check if we already allocated spec ID for this spec string */ 921 if (hashmap__find(specs_hash, target->spec_str, &tmp)) { 922 *spec_id = tmp; 923 *is_new = false; 924 return 0; 925 } 926 927 /* otherwise it's a new ID that needs to be set up in specs map and 928 * returned back to usdt_manager when USDT link is detached 929 */ 930 new_ids = libbpf_reallocarray(link->spec_ids, link->spec_cnt + 1, sizeof(*link->spec_ids)); 931 if (!new_ids) 932 return -ENOMEM; 933 link->spec_ids = new_ids; 934 935 /* get next free spec ID, giving preference to free list, if not empty */ 936 if (man->free_spec_cnt) { 937 *spec_id = man->free_spec_ids[man->free_spec_cnt - 1]; 938 939 /* cache spec ID for current spec string for future lookups */ 940 err = hashmap__add(specs_hash, target->spec_str, *spec_id); 941 if (err) 942 return err; 943 944 man->free_spec_cnt--; 945 } else { 946 /* don't allocate spec ID bigger than what fits in specs map */ 947 if (man->next_free_spec_id >= bpf_map__max_entries(man->specs_map)) 948 return -E2BIG; 949 950 *spec_id = man->next_free_spec_id; 951 952 /* cache spec ID for current spec string for future lookups */ 953 err = hashmap__add(specs_hash, target->spec_str, *spec_id); 954 if (err) 955 return err; 956 957 man->next_free_spec_id++; 958 } 959 960 /* remember new spec ID in the link for later return back to free list on detach */ 961 link->spec_ids[link->spec_cnt] = *spec_id; 962 link->spec_cnt++; 963 *is_new = true; 964 return 0; 965 } 966 967 struct bpf_link *usdt_manager_attach_usdt(struct usdt_manager *man, const struct bpf_program *prog, 968 pid_t pid, const char *path, 969 const char *usdt_provider, const char *usdt_name, 970 __u64 usdt_cookie) 971 { 972 unsigned long *offsets = NULL, *ref_ctr_offsets = NULL; 973 int i, err, spec_map_fd, ip_map_fd; 974 LIBBPF_OPTS(bpf_uprobe_opts, opts); 975 struct hashmap *specs_hash = NULL; 976 struct bpf_link_usdt *link = NULL; 977 struct usdt_target *targets = NULL; 978 __u64 *cookies = NULL; 979 struct elf_fd elf_fd; 980 size_t target_cnt; 981 982 spec_map_fd = bpf_map__fd(man->specs_map); 983 ip_map_fd = bpf_map__fd(man->ip_to_spec_id_map); 984 985 err = elf_open(path, &elf_fd); 986 if (err) 987 return libbpf_err_ptr(err); 988 989 err = sanity_check_usdt_elf(elf_fd.elf, path); 990 if (err) 991 goto err_out; 992 993 /* normalize PID filter */ 994 if (pid < 0) 995 pid = -1; 996 else if (pid == 0) 997 pid = getpid(); 998 999 /* discover USDT in given binary, optionally limiting 1000 * activations to a given PID, if pid > 0 1001 */ 1002 err = collect_usdt_targets(man, elf_fd.elf, path, pid, usdt_provider, usdt_name, 1003 usdt_cookie, &targets, &target_cnt); 1004 if (err <= 0) { 1005 err = (err == 0) ? -ENOENT : err; 1006 goto err_out; 1007 } 1008 1009 specs_hash = hashmap__new(specs_hash_fn, specs_equal_fn, NULL); 1010 if (IS_ERR(specs_hash)) { 1011 err = PTR_ERR(specs_hash); 1012 goto err_out; 1013 } 1014 1015 link = calloc(1, sizeof(*link)); 1016 if (!link) { 1017 err = -ENOMEM; 1018 goto err_out; 1019 } 1020 1021 link->usdt_man = man; 1022 link->link.detach = &bpf_link_usdt_detach; 1023 link->link.dealloc = &bpf_link_usdt_dealloc; 1024 1025 if (man->has_uprobe_multi) { 1026 offsets = calloc(target_cnt, sizeof(*offsets)); 1027 cookies = calloc(target_cnt, sizeof(*cookies)); 1028 ref_ctr_offsets = calloc(target_cnt, sizeof(*ref_ctr_offsets)); 1029 1030 if (!offsets || !ref_ctr_offsets || !cookies) { 1031 err = -ENOMEM; 1032 goto err_out; 1033 } 1034 } else { 1035 link->uprobes = calloc(target_cnt, sizeof(*link->uprobes)); 1036 if (!link->uprobes) { 1037 err = -ENOMEM; 1038 goto err_out; 1039 } 1040 } 1041 1042 for (i = 0; i < target_cnt; i++) { 1043 struct usdt_target *target = &targets[i]; 1044 struct bpf_link *uprobe_link; 1045 bool is_new; 1046 int spec_id; 1047 1048 /* Spec ID can be either reused or newly allocated. If it is 1049 * newly allocated, we'll need to fill out spec map, otherwise 1050 * entire spec should be valid and can be just used by a new 1051 * uprobe. We reuse spec when USDT arg spec is identical. We 1052 * also never share specs between two different USDT 1053 * attachments ("links"), so all the reused specs already 1054 * share USDT cookie value implicitly. 1055 */ 1056 err = allocate_spec_id(man, specs_hash, link, target, &spec_id, &is_new); 1057 if (err) 1058 goto err_out; 1059 1060 if (is_new && bpf_map_update_elem(spec_map_fd, &spec_id, &target->spec, BPF_ANY)) { 1061 err = -errno; 1062 pr_warn("usdt: failed to set USDT spec #%d for '%s:%s' in '%s': %s\n", 1063 spec_id, usdt_provider, usdt_name, path, errstr(err)); 1064 goto err_out; 1065 } 1066 if (!man->has_bpf_cookie && 1067 bpf_map_update_elem(ip_map_fd, &target->abs_ip, &spec_id, BPF_NOEXIST)) { 1068 err = -errno; 1069 if (err == -EEXIST) { 1070 pr_warn("usdt: IP collision detected for spec #%d for '%s:%s' in '%s'\n", 1071 spec_id, usdt_provider, usdt_name, path); 1072 } else { 1073 pr_warn("usdt: failed to map IP 0x%lx to spec #%d for '%s:%s' in '%s': %s\n", 1074 target->abs_ip, spec_id, usdt_provider, usdt_name, 1075 path, errstr(err)); 1076 } 1077 goto err_out; 1078 } 1079 1080 if (man->has_uprobe_multi) { 1081 offsets[i] = target->rel_ip; 1082 ref_ctr_offsets[i] = target->sema_off; 1083 cookies[i] = spec_id; 1084 } else { 1085 opts.ref_ctr_offset = target->sema_off; 1086 opts.bpf_cookie = man->has_bpf_cookie ? spec_id : 0; 1087 uprobe_link = bpf_program__attach_uprobe_opts(prog, pid, path, 1088 target->rel_ip, &opts); 1089 err = libbpf_get_error(uprobe_link); 1090 if (err) { 1091 pr_warn("usdt: failed to attach uprobe #%d for '%s:%s' in '%s': %s\n", 1092 i, usdt_provider, usdt_name, path, errstr(err)); 1093 goto err_out; 1094 } 1095 1096 link->uprobes[i].link = uprobe_link; 1097 link->uprobes[i].abs_ip = target->abs_ip; 1098 link->uprobe_cnt++; 1099 } 1100 } 1101 1102 if (man->has_uprobe_multi) { 1103 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts_multi, 1104 .ref_ctr_offsets = ref_ctr_offsets, 1105 .offsets = offsets, 1106 .cookies = cookies, 1107 .cnt = target_cnt, 1108 ); 1109 1110 link->multi_link = bpf_program__attach_uprobe_multi(prog, pid, path, 1111 NULL, &opts_multi); 1112 if (!link->multi_link) { 1113 err = -errno; 1114 pr_warn("usdt: failed to attach uprobe multi for '%s:%s' in '%s': %s\n", 1115 usdt_provider, usdt_name, path, errstr(err)); 1116 goto err_out; 1117 } 1118 1119 free(offsets); 1120 free(ref_ctr_offsets); 1121 free(cookies); 1122 } 1123 1124 free(targets); 1125 hashmap__free(specs_hash); 1126 elf_close(&elf_fd); 1127 return &link->link; 1128 1129 err_out: 1130 free(offsets); 1131 free(ref_ctr_offsets); 1132 free(cookies); 1133 1134 if (link) 1135 bpf_link__destroy(&link->link); 1136 free(targets); 1137 hashmap__free(specs_hash); 1138 elf_close(&elf_fd); 1139 return libbpf_err_ptr(err); 1140 } 1141 1142 /* Parse out USDT ELF note from '.note.stapsdt' section. 1143 * Logic inspired by perf's code. 1144 */ 1145 static int parse_usdt_note(GElf_Nhdr *nhdr, const char *data, size_t name_off, size_t desc_off, 1146 struct usdt_note *note) 1147 { 1148 const char *provider, *name, *args; 1149 long addrs[3]; 1150 size_t len; 1151 1152 /* sanity check USDT note name and type first */ 1153 if (strncmp(data + name_off, USDT_NOTE_NAME, nhdr->n_namesz) != 0) 1154 return -EINVAL; 1155 if (nhdr->n_type != USDT_NOTE_TYPE) 1156 return -EINVAL; 1157 1158 /* sanity check USDT note contents ("description" in ELF terminology) */ 1159 len = nhdr->n_descsz; 1160 data = data + desc_off; 1161 1162 /* +3 is the very minimum required to store three empty strings */ 1163 if (len < sizeof(addrs) + 3) 1164 return -EINVAL; 1165 1166 /* get location, base, and semaphore addrs */ 1167 memcpy(&addrs, data, sizeof(addrs)); 1168 1169 /* parse string fields: provider, name, args */ 1170 provider = data + sizeof(addrs); 1171 1172 name = (const char *)memchr(provider, '\0', data + len - provider); 1173 if (!name) /* non-zero-terminated provider */ 1174 return -EINVAL; 1175 name++; 1176 if (name >= data + len || *name == '\0') /* missing or empty name */ 1177 return -EINVAL; 1178 1179 args = memchr(name, '\0', data + len - name); 1180 if (!args) /* non-zero-terminated name */ 1181 return -EINVAL; 1182 ++args; 1183 if (args >= data + len) /* missing arguments spec */ 1184 return -EINVAL; 1185 1186 note->provider = provider; 1187 note->name = name; 1188 if (*args == '\0' || *args == ':') 1189 note->args = ""; 1190 else 1191 note->args = args; 1192 note->loc_addr = addrs[0]; 1193 note->base_addr = addrs[1]; 1194 note->sema_addr = addrs[2]; 1195 1196 return 0; 1197 } 1198 1199 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz); 1200 1201 static int parse_usdt_spec(struct usdt_spec *spec, const struct usdt_note *note, __u64 usdt_cookie) 1202 { 1203 struct usdt_arg_spec *arg; 1204 const char *s; 1205 int arg_sz, len; 1206 1207 spec->usdt_cookie = usdt_cookie; 1208 spec->arg_cnt = 0; 1209 1210 s = note->args; 1211 while (s[0]) { 1212 if (spec->arg_cnt >= USDT_MAX_ARG_CNT) { 1213 pr_warn("usdt: too many USDT arguments (> %d) for '%s:%s' with args spec '%s'\n", 1214 USDT_MAX_ARG_CNT, note->provider, note->name, note->args); 1215 return -E2BIG; 1216 } 1217 1218 arg = &spec->args[spec->arg_cnt]; 1219 len = parse_usdt_arg(s, spec->arg_cnt, arg, &arg_sz); 1220 if (len < 0) 1221 return len; 1222 1223 arg->arg_signed = arg_sz < 0; 1224 if (arg_sz < 0) 1225 arg_sz = -arg_sz; 1226 1227 switch (arg_sz) { 1228 case 1: case 2: case 4: case 8: 1229 arg->arg_bitshift = 64 - arg_sz * 8; 1230 break; 1231 default: 1232 pr_warn("usdt: unsupported arg #%d (spec '%s') size: %d\n", 1233 spec->arg_cnt, s, arg_sz); 1234 return -EINVAL; 1235 } 1236 1237 s += len; 1238 spec->arg_cnt++; 1239 } 1240 1241 return 0; 1242 } 1243 1244 /* Architecture-specific logic for parsing USDT argument location specs */ 1245 1246 #if defined(__x86_64__) || defined(__i386__) 1247 1248 static int calc_pt_regs_off(const char *reg_name) 1249 { 1250 static struct { 1251 const char *names[4]; 1252 size_t pt_regs_off; 1253 } reg_map[] = { 1254 #ifdef __x86_64__ 1255 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg64) 1256 #else 1257 #define reg_off(reg64, reg32) offsetof(struct pt_regs, reg32) 1258 #endif 1259 { {"rip", "eip", "", ""}, reg_off(rip, eip) }, 1260 { {"rax", "eax", "ax", "al"}, reg_off(rax, eax) }, 1261 { {"rbx", "ebx", "bx", "bl"}, reg_off(rbx, ebx) }, 1262 { {"rcx", "ecx", "cx", "cl"}, reg_off(rcx, ecx) }, 1263 { {"rdx", "edx", "dx", "dl"}, reg_off(rdx, edx) }, 1264 { {"rsi", "esi", "si", "sil"}, reg_off(rsi, esi) }, 1265 { {"rdi", "edi", "di", "dil"}, reg_off(rdi, edi) }, 1266 { {"rbp", "ebp", "bp", "bpl"}, reg_off(rbp, ebp) }, 1267 { {"rsp", "esp", "sp", "spl"}, reg_off(rsp, esp) }, 1268 #undef reg_off 1269 #ifdef __x86_64__ 1270 { {"r8", "r8d", "r8w", "r8b"}, offsetof(struct pt_regs, r8) }, 1271 { {"r9", "r9d", "r9w", "r9b"}, offsetof(struct pt_regs, r9) }, 1272 { {"r10", "r10d", "r10w", "r10b"}, offsetof(struct pt_regs, r10) }, 1273 { {"r11", "r11d", "r11w", "r11b"}, offsetof(struct pt_regs, r11) }, 1274 { {"r12", "r12d", "r12w", "r12b"}, offsetof(struct pt_regs, r12) }, 1275 { {"r13", "r13d", "r13w", "r13b"}, offsetof(struct pt_regs, r13) }, 1276 { {"r14", "r14d", "r14w", "r14b"}, offsetof(struct pt_regs, r14) }, 1277 { {"r15", "r15d", "r15w", "r15b"}, offsetof(struct pt_regs, r15) }, 1278 #endif 1279 }; 1280 int i, j; 1281 1282 for (i = 0; i < ARRAY_SIZE(reg_map); i++) { 1283 for (j = 0; j < ARRAY_SIZE(reg_map[i].names); j++) { 1284 if (strcmp(reg_name, reg_map[i].names[j]) == 0) 1285 return reg_map[i].pt_regs_off; 1286 } 1287 } 1288 1289 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1290 return -ENOENT; 1291 } 1292 1293 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1294 { 1295 char reg_name[16] = {0}, idx_reg_name[16] = {0}; 1296 int len, reg_off, idx_reg_off, scale = 1; 1297 long off = 0; 1298 1299 if (sscanf(arg_str, " %d @ %ld ( %%%15[^,] , %%%15[^,] , %d ) %n", 1300 arg_sz, &off, reg_name, idx_reg_name, &scale, &len) == 5 || 1301 sscanf(arg_str, " %d @ ( %%%15[^,] , %%%15[^,] , %d ) %n", 1302 arg_sz, reg_name, idx_reg_name, &scale, &len) == 4 || 1303 sscanf(arg_str, " %d @ %ld ( %%%15[^,] , %%%15[^)] ) %n", 1304 arg_sz, &off, reg_name, idx_reg_name, &len) == 4 || 1305 sscanf(arg_str, " %d @ ( %%%15[^,] , %%%15[^)] ) %n", 1306 arg_sz, reg_name, idx_reg_name, &len) == 3 1307 ) { 1308 /* 1309 * Scale Index Base case: 1310 * 1@-96(%rbp,%rax,8) 1311 * 1@(%rbp,%rax,8) 1312 * 1@-96(%rbp,%rax) 1313 * 1@(%rbp,%rax) 1314 */ 1315 arg->arg_type = USDT_ARG_SIB; 1316 arg->val_off = off; 1317 1318 reg_off = calc_pt_regs_off(reg_name); 1319 if (reg_off < 0) 1320 return reg_off; 1321 arg->reg_off = reg_off; 1322 1323 idx_reg_off = calc_pt_regs_off(idx_reg_name); 1324 if (idx_reg_off < 0) 1325 return idx_reg_off; 1326 arg->idx_reg_off = idx_reg_off; 1327 1328 /* validate scale factor and set fields directly */ 1329 switch (scale) { 1330 case 1: arg->scale_bitshift = 0; break; 1331 case 2: arg->scale_bitshift = 1; break; 1332 case 4: arg->scale_bitshift = 2; break; 1333 case 8: arg->scale_bitshift = 3; break; 1334 default: 1335 pr_warn("usdt: invalid SIB scale %d, expected 1, 2, 4, 8\n", scale); 1336 return -EINVAL; 1337 } 1338 } else if (sscanf(arg_str, " %d @ %ld ( %%%15[^)] ) %n", 1339 arg_sz, &off, reg_name, &len) == 3) { 1340 /* Memory dereference case, e.g., -4@-20(%rbp) */ 1341 arg->arg_type = USDT_ARG_REG_DEREF; 1342 arg->val_off = off; 1343 reg_off = calc_pt_regs_off(reg_name); 1344 if (reg_off < 0) 1345 return reg_off; 1346 arg->reg_off = reg_off; 1347 } else if (sscanf(arg_str, " %d @ ( %%%15[^)] ) %n", arg_sz, reg_name, &len) == 2) { 1348 /* Memory dereference case without offset, e.g., 8@(%rsp) */ 1349 arg->arg_type = USDT_ARG_REG_DEREF; 1350 arg->val_off = 0; 1351 reg_off = calc_pt_regs_off(reg_name); 1352 if (reg_off < 0) 1353 return reg_off; 1354 arg->reg_off = reg_off; 1355 } else if (sscanf(arg_str, " %d @ %%%15s %n", arg_sz, reg_name, &len) == 2) { 1356 /* Register read case, e.g., -4@%eax */ 1357 arg->arg_type = USDT_ARG_REG; 1358 /* register read has no memory offset */ 1359 arg->val_off = 0; 1360 1361 reg_off = calc_pt_regs_off(reg_name); 1362 if (reg_off < 0) 1363 return reg_off; 1364 arg->reg_off = reg_off; 1365 } else if (sscanf(arg_str, " %d @ $%ld %n", arg_sz, &off, &len) == 2) { 1366 /* Constant value case, e.g., 4@$71 */ 1367 arg->arg_type = USDT_ARG_CONST; 1368 arg->val_off = off; 1369 arg->reg_off = 0; 1370 } else { 1371 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1372 return -EINVAL; 1373 } 1374 1375 return len; 1376 } 1377 1378 #elif defined(__s390x__) 1379 1380 /* Do not support __s390__ for now, since user_pt_regs is broken with -m31. */ 1381 1382 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1383 { 1384 unsigned int reg; 1385 int len; 1386 long off; 1387 1388 if (sscanf(arg_str, " %d @ %ld ( %%r%u ) %n", arg_sz, &off, ®, &len) == 3) { 1389 /* Memory dereference case, e.g., -2@-28(%r15) */ 1390 arg->arg_type = USDT_ARG_REG_DEREF; 1391 arg->val_off = off; 1392 if (reg > 15) { 1393 pr_warn("usdt: unrecognized register '%%r%u'\n", reg); 1394 return -EINVAL; 1395 } 1396 arg->reg_off = offsetof(user_pt_regs, gprs[reg]); 1397 } else if (sscanf(arg_str, " %d @ %%r%u %n", arg_sz, ®, &len) == 2) { 1398 /* Register read case, e.g., -8@%r0 */ 1399 arg->arg_type = USDT_ARG_REG; 1400 arg->val_off = 0; 1401 if (reg > 15) { 1402 pr_warn("usdt: unrecognized register '%%r%u'\n", reg); 1403 return -EINVAL; 1404 } 1405 arg->reg_off = offsetof(user_pt_regs, gprs[reg]); 1406 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { 1407 /* Constant value case, e.g., 4@71 */ 1408 arg->arg_type = USDT_ARG_CONST; 1409 arg->val_off = off; 1410 arg->reg_off = 0; 1411 } else { 1412 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1413 return -EINVAL; 1414 } 1415 1416 return len; 1417 } 1418 1419 #elif defined(__aarch64__) 1420 1421 static int calc_pt_regs_off(const char *reg_name) 1422 { 1423 int reg_num; 1424 1425 if (sscanf(reg_name, "x%d", ®_num) == 1) { 1426 if (reg_num >= 0 && reg_num < 31) 1427 return offsetof(struct user_pt_regs, regs[reg_num]); 1428 } else if (strcmp(reg_name, "sp") == 0) { 1429 return offsetof(struct user_pt_regs, sp); 1430 } 1431 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1432 return -ENOENT; 1433 } 1434 1435 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1436 { 1437 char reg_name[16]; 1438 int len, reg_off; 1439 long off; 1440 1441 if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , %ld ] %n", arg_sz, reg_name, &off, &len) == 3) { 1442 /* Memory dereference case, e.g., -4@[sp, 96] */ 1443 arg->arg_type = USDT_ARG_REG_DEREF; 1444 arg->val_off = off; 1445 reg_off = calc_pt_regs_off(reg_name); 1446 if (reg_off < 0) 1447 return reg_off; 1448 arg->reg_off = reg_off; 1449 } else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) { 1450 /* Memory dereference case, e.g., -4@[sp] */ 1451 arg->arg_type = USDT_ARG_REG_DEREF; 1452 arg->val_off = 0; 1453 reg_off = calc_pt_regs_off(reg_name); 1454 if (reg_off < 0) 1455 return reg_off; 1456 arg->reg_off = reg_off; 1457 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { 1458 /* Constant value case, e.g., 4@5 */ 1459 arg->arg_type = USDT_ARG_CONST; 1460 arg->val_off = off; 1461 arg->reg_off = 0; 1462 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { 1463 /* Register read case, e.g., -8@x4 */ 1464 arg->arg_type = USDT_ARG_REG; 1465 arg->val_off = 0; 1466 reg_off = calc_pt_regs_off(reg_name); 1467 if (reg_off < 0) 1468 return reg_off; 1469 arg->reg_off = reg_off; 1470 } else { 1471 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1472 return -EINVAL; 1473 } 1474 1475 return len; 1476 } 1477 1478 #elif defined(__riscv) 1479 1480 static int calc_pt_regs_off(const char *reg_name) 1481 { 1482 static struct { 1483 const char *name; 1484 size_t pt_regs_off; 1485 } reg_map[] = { 1486 { "ra", offsetof(struct user_regs_struct, ra) }, 1487 { "sp", offsetof(struct user_regs_struct, sp) }, 1488 { "gp", offsetof(struct user_regs_struct, gp) }, 1489 { "tp", offsetof(struct user_regs_struct, tp) }, 1490 { "a0", offsetof(struct user_regs_struct, a0) }, 1491 { "a1", offsetof(struct user_regs_struct, a1) }, 1492 { "a2", offsetof(struct user_regs_struct, a2) }, 1493 { "a3", offsetof(struct user_regs_struct, a3) }, 1494 { "a4", offsetof(struct user_regs_struct, a4) }, 1495 { "a5", offsetof(struct user_regs_struct, a5) }, 1496 { "a6", offsetof(struct user_regs_struct, a6) }, 1497 { "a7", offsetof(struct user_regs_struct, a7) }, 1498 { "s0", offsetof(struct user_regs_struct, s0) }, 1499 { "s1", offsetof(struct user_regs_struct, s1) }, 1500 { "s2", offsetof(struct user_regs_struct, s2) }, 1501 { "s3", offsetof(struct user_regs_struct, s3) }, 1502 { "s4", offsetof(struct user_regs_struct, s4) }, 1503 { "s5", offsetof(struct user_regs_struct, s5) }, 1504 { "s6", offsetof(struct user_regs_struct, s6) }, 1505 { "s7", offsetof(struct user_regs_struct, s7) }, 1506 { "s8", offsetof(struct user_regs_struct, rv_s8) }, 1507 { "s9", offsetof(struct user_regs_struct, s9) }, 1508 { "s10", offsetof(struct user_regs_struct, s10) }, 1509 { "s11", offsetof(struct user_regs_struct, s11) }, 1510 { "t0", offsetof(struct user_regs_struct, t0) }, 1511 { "t1", offsetof(struct user_regs_struct, t1) }, 1512 { "t2", offsetof(struct user_regs_struct, t2) }, 1513 { "t3", offsetof(struct user_regs_struct, t3) }, 1514 { "t4", offsetof(struct user_regs_struct, t4) }, 1515 { "t5", offsetof(struct user_regs_struct, t5) }, 1516 { "t6", offsetof(struct user_regs_struct, t6) }, 1517 }; 1518 int i; 1519 1520 for (i = 0; i < ARRAY_SIZE(reg_map); i++) { 1521 if (strcmp(reg_name, reg_map[i].name) == 0) 1522 return reg_map[i].pt_regs_off; 1523 } 1524 1525 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1526 return -ENOENT; 1527 } 1528 1529 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1530 { 1531 char reg_name[16]; 1532 int len, reg_off; 1533 long off; 1534 1535 if (sscanf(arg_str, " %d @ %ld ( %15[a-z0-9] ) %n", arg_sz, &off, reg_name, &len) == 3) { 1536 /* Memory dereference case, e.g., -8@-88(s0) */ 1537 arg->arg_type = USDT_ARG_REG_DEREF; 1538 arg->val_off = off; 1539 reg_off = calc_pt_regs_off(reg_name); 1540 if (reg_off < 0) 1541 return reg_off; 1542 arg->reg_off = reg_off; 1543 } else if (sscanf(arg_str, " %d @ %ld %n", arg_sz, &off, &len) == 2) { 1544 /* Constant value case, e.g., 4@5 */ 1545 arg->arg_type = USDT_ARG_CONST; 1546 arg->val_off = off; 1547 arg->reg_off = 0; 1548 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { 1549 /* Register read case, e.g., -8@a1 */ 1550 arg->arg_type = USDT_ARG_REG; 1551 arg->val_off = 0; 1552 reg_off = calc_pt_regs_off(reg_name); 1553 if (reg_off < 0) 1554 return reg_off; 1555 arg->reg_off = reg_off; 1556 } else { 1557 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1558 return -EINVAL; 1559 } 1560 1561 return len; 1562 } 1563 1564 #elif defined(__arm__) 1565 1566 static int calc_pt_regs_off(const char *reg_name) 1567 { 1568 static struct { 1569 const char *name; 1570 size_t pt_regs_off; 1571 } reg_map[] = { 1572 { "r0", offsetof(struct pt_regs, uregs[0]) }, 1573 { "r1", offsetof(struct pt_regs, uregs[1]) }, 1574 { "r2", offsetof(struct pt_regs, uregs[2]) }, 1575 { "r3", offsetof(struct pt_regs, uregs[3]) }, 1576 { "r4", offsetof(struct pt_regs, uregs[4]) }, 1577 { "r5", offsetof(struct pt_regs, uregs[5]) }, 1578 { "r6", offsetof(struct pt_regs, uregs[6]) }, 1579 { "r7", offsetof(struct pt_regs, uregs[7]) }, 1580 { "r8", offsetof(struct pt_regs, uregs[8]) }, 1581 { "r9", offsetof(struct pt_regs, uregs[9]) }, 1582 { "r10", offsetof(struct pt_regs, uregs[10]) }, 1583 { "fp", offsetof(struct pt_regs, uregs[11]) }, 1584 { "ip", offsetof(struct pt_regs, uregs[12]) }, 1585 { "sp", offsetof(struct pt_regs, uregs[13]) }, 1586 { "lr", offsetof(struct pt_regs, uregs[14]) }, 1587 { "pc", offsetof(struct pt_regs, uregs[15]) }, 1588 }; 1589 int i; 1590 1591 for (i = 0; i < ARRAY_SIZE(reg_map); i++) { 1592 if (strcmp(reg_name, reg_map[i].name) == 0) 1593 return reg_map[i].pt_regs_off; 1594 } 1595 1596 pr_warn("usdt: unrecognized register '%s'\n", reg_name); 1597 return -ENOENT; 1598 } 1599 1600 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1601 { 1602 char reg_name[16]; 1603 int len, reg_off; 1604 long off; 1605 1606 if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] , #%ld ] %n", 1607 arg_sz, reg_name, &off, &len) == 3) { 1608 /* Memory dereference case, e.g., -4@[fp, #96] */ 1609 arg->arg_type = USDT_ARG_REG_DEREF; 1610 arg->val_off = off; 1611 reg_off = calc_pt_regs_off(reg_name); 1612 if (reg_off < 0) 1613 return reg_off; 1614 arg->reg_off = reg_off; 1615 } else if (sscanf(arg_str, " %d @ \[ %15[a-z0-9] ] %n", arg_sz, reg_name, &len) == 2) { 1616 /* Memory dereference case, e.g., -4@[sp] */ 1617 arg->arg_type = USDT_ARG_REG_DEREF; 1618 arg->val_off = 0; 1619 reg_off = calc_pt_regs_off(reg_name); 1620 if (reg_off < 0) 1621 return reg_off; 1622 arg->reg_off = reg_off; 1623 } else if (sscanf(arg_str, " %d @ #%ld %n", arg_sz, &off, &len) == 2) { 1624 /* Constant value case, e.g., 4@#5 */ 1625 arg->arg_type = USDT_ARG_CONST; 1626 arg->val_off = off; 1627 arg->reg_off = 0; 1628 } else if (sscanf(arg_str, " %d @ %15[a-z0-9] %n", arg_sz, reg_name, &len) == 2) { 1629 /* Register read case, e.g., -8@r4 */ 1630 arg->arg_type = USDT_ARG_REG; 1631 arg->val_off = 0; 1632 reg_off = calc_pt_regs_off(reg_name); 1633 if (reg_off < 0) 1634 return reg_off; 1635 arg->reg_off = reg_off; 1636 } else { 1637 pr_warn("usdt: unrecognized arg #%d spec '%s'\n", arg_num, arg_str); 1638 return -EINVAL; 1639 } 1640 1641 return len; 1642 } 1643 1644 #else 1645 1646 static int parse_usdt_arg(const char *arg_str, int arg_num, struct usdt_arg_spec *arg, int *arg_sz) 1647 { 1648 pr_warn("usdt: libbpf doesn't support USDTs on current architecture\n"); 1649 return -ENOTSUP; 1650 } 1651 1652 #endif 1653