1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2019 Facebook */ 3 4 #ifdef __KERNEL__ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/string.h> 8 #include <linux/bpf_verifier.h> 9 #include "relo_core.h" 10 11 static const char *btf_kind_str(const struct btf_type *t) 12 { 13 return btf_type_str(t); 14 } 15 16 static bool is_ldimm64_insn(struct bpf_insn *insn) 17 { 18 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 19 } 20 21 static const struct btf_type * 22 skip_mods_and_typedefs(const struct btf *btf, u32 id, u32 *res_id) 23 { 24 return btf_type_skip_modifiers(btf, id, res_id); 25 } 26 27 static const char *btf__name_by_offset(const struct btf *btf, u32 offset) 28 { 29 return btf_name_by_offset(btf, offset); 30 } 31 32 static s64 btf__resolve_size(const struct btf *btf, u32 type_id) 33 { 34 const struct btf_type *t; 35 int size; 36 37 t = btf_type_by_id(btf, type_id); 38 t = btf_resolve_size(btf, t, &size); 39 if (IS_ERR(t)) 40 return PTR_ERR(t); 41 return size; 42 } 43 44 enum libbpf_print_level { 45 LIBBPF_WARN, 46 LIBBPF_INFO, 47 LIBBPF_DEBUG, 48 }; 49 50 #undef pr_warn 51 #undef pr_info 52 #undef pr_debug 53 #define pr_warn(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__) 54 #define pr_info(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__) 55 #define pr_debug(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__) 56 #define libbpf_print(level, fmt, ...) bpf_log((void *)prog_name, fmt, ##__VA_ARGS__) 57 #else 58 #include <stdio.h> 59 #include <string.h> 60 #include <errno.h> 61 #include <ctype.h> 62 #include <linux/err.h> 63 64 #include "libbpf.h" 65 #include "bpf.h" 66 #include "btf.h" 67 #include "str_error.h" 68 #include "libbpf_internal.h" 69 #endif 70 71 static bool is_flex_arr(const struct btf *btf, 72 const struct bpf_core_accessor *acc, 73 const struct btf_array *arr) 74 { 75 const struct btf_type *t; 76 77 /* not a flexible array, if not inside a struct or has non-zero size */ 78 if (!acc->name || arr->nelems > 0) 79 return false; 80 81 /* has to be the last member of enclosing struct */ 82 t = btf_type_by_id(btf, acc->type_id); 83 return acc->idx == btf_vlen(t) - 1; 84 } 85 86 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 87 { 88 switch (kind) { 89 case BPF_CORE_FIELD_BYTE_OFFSET: return "byte_off"; 90 case BPF_CORE_FIELD_BYTE_SIZE: return "byte_sz"; 91 case BPF_CORE_FIELD_EXISTS: return "field_exists"; 92 case BPF_CORE_FIELD_SIGNED: return "signed"; 93 case BPF_CORE_FIELD_LSHIFT_U64: return "lshift_u64"; 94 case BPF_CORE_FIELD_RSHIFT_U64: return "rshift_u64"; 95 case BPF_CORE_TYPE_ID_LOCAL: return "local_type_id"; 96 case BPF_CORE_TYPE_ID_TARGET: return "target_type_id"; 97 case BPF_CORE_TYPE_EXISTS: return "type_exists"; 98 case BPF_CORE_TYPE_MATCHES: return "type_matches"; 99 case BPF_CORE_TYPE_SIZE: return "type_size"; 100 case BPF_CORE_ENUMVAL_EXISTS: return "enumval_exists"; 101 case BPF_CORE_ENUMVAL_VALUE: return "enumval_value"; 102 default: return "unknown"; 103 } 104 } 105 106 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 107 { 108 switch (kind) { 109 case BPF_CORE_FIELD_BYTE_OFFSET: 110 case BPF_CORE_FIELD_BYTE_SIZE: 111 case BPF_CORE_FIELD_EXISTS: 112 case BPF_CORE_FIELD_SIGNED: 113 case BPF_CORE_FIELD_LSHIFT_U64: 114 case BPF_CORE_FIELD_RSHIFT_U64: 115 return true; 116 default: 117 return false; 118 } 119 } 120 121 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 122 { 123 switch (kind) { 124 case BPF_CORE_TYPE_ID_LOCAL: 125 case BPF_CORE_TYPE_ID_TARGET: 126 case BPF_CORE_TYPE_EXISTS: 127 case BPF_CORE_TYPE_MATCHES: 128 case BPF_CORE_TYPE_SIZE: 129 return true; 130 default: 131 return false; 132 } 133 } 134 135 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 136 { 137 switch (kind) { 138 case BPF_CORE_ENUMVAL_EXISTS: 139 case BPF_CORE_ENUMVAL_VALUE: 140 return true; 141 default: 142 return false; 143 } 144 } 145 146 int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 147 const struct btf *targ_btf, __u32 targ_id, int level) 148 { 149 const struct btf_type *local_type, *targ_type; 150 int depth = 32; /* max recursion depth */ 151 152 /* caller made sure that names match (ignoring flavor suffix) */ 153 local_type = btf_type_by_id(local_btf, local_id); 154 targ_type = btf_type_by_id(targ_btf, targ_id); 155 if (!btf_kind_core_compat(local_type, targ_type)) 156 return 0; 157 158 recur: 159 depth--; 160 if (depth < 0) 161 return -EINVAL; 162 163 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 164 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 165 if (!local_type || !targ_type) 166 return -EINVAL; 167 168 if (!btf_kind_core_compat(local_type, targ_type)) 169 return 0; 170 171 switch (btf_kind(local_type)) { 172 case BTF_KIND_UNKN: 173 case BTF_KIND_STRUCT: 174 case BTF_KIND_UNION: 175 case BTF_KIND_ENUM: 176 case BTF_KIND_FWD: 177 case BTF_KIND_ENUM64: 178 return 1; 179 case BTF_KIND_INT: 180 /* just reject deprecated bitfield-like integers; all other 181 * integers are by default compatible between each other 182 */ 183 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 184 case BTF_KIND_PTR: 185 local_id = local_type->type; 186 targ_id = targ_type->type; 187 goto recur; 188 case BTF_KIND_ARRAY: 189 local_id = btf_array(local_type)->type; 190 targ_id = btf_array(targ_type)->type; 191 goto recur; 192 case BTF_KIND_FUNC_PROTO: { 193 struct btf_param *local_p = btf_params(local_type); 194 struct btf_param *targ_p = btf_params(targ_type); 195 __u16 local_vlen = btf_vlen(local_type); 196 __u16 targ_vlen = btf_vlen(targ_type); 197 int i, err; 198 199 if (local_vlen != targ_vlen) 200 return 0; 201 202 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 203 if (level <= 0) 204 return -EINVAL; 205 206 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 207 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 208 err = __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 209 level - 1); 210 if (err <= 0) 211 return err; 212 } 213 214 /* tail recurse for return type check */ 215 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 216 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 217 goto recur; 218 } 219 default: 220 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 221 btf_kind_str(local_type), local_id, targ_id); 222 return 0; 223 } 224 } 225 226 /* 227 * Turn bpf_core_relo into a low- and high-level spec representation, 228 * validating correctness along the way, as well as calculating resulting 229 * field bit offset, specified by accessor string. Low-level spec captures 230 * every single level of nestedness, including traversing anonymous 231 * struct/union members. High-level one only captures semantically meaningful 232 * "turning points": named fields and array indicies. 233 * E.g., for this case: 234 * 235 * struct sample { 236 * int __unimportant; 237 * struct { 238 * int __1; 239 * int __2; 240 * int a[7]; 241 * }; 242 * }; 243 * 244 * struct sample *s = ...; 245 * 246 * int x = &s->a[3]; // access string = '0:1:2:3' 247 * 248 * Low-level spec has 1:1 mapping with each element of access string (it's 249 * just a parsed access string representation): [0, 1, 2, 3]. 250 * 251 * High-level spec will capture only 3 points: 252 * - initial zero-index access by pointer (&s->... is the same as &s[0]...); 253 * - field 'a' access (corresponds to '2' in low-level spec); 254 * - array element #3 access (corresponds to '3' in low-level spec). 255 * 256 * Type-based relocations (TYPE_EXISTS/TYPE_MATCHES/TYPE_SIZE, 257 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 258 * spec and raw_spec are kept empty. 259 * 260 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 261 * string to specify enumerator's value index that need to be relocated. 262 */ 263 int bpf_core_parse_spec(const char *prog_name, const struct btf *btf, 264 const struct bpf_core_relo *relo, 265 struct bpf_core_spec *spec) 266 { 267 int access_idx, parsed_len, i; 268 struct bpf_core_accessor *acc; 269 const struct btf_type *t; 270 const char *name, *spec_str; 271 __u32 id, name_off; 272 __s64 sz; 273 274 spec_str = btf__name_by_offset(btf, relo->access_str_off); 275 if (str_is_empty(spec_str) || *spec_str == ':') 276 return -EINVAL; 277 278 memset(spec, 0, sizeof(*spec)); 279 spec->btf = btf; 280 spec->root_type_id = relo->type_id; 281 spec->relo_kind = relo->kind; 282 283 /* type-based relocations don't have a field access string */ 284 if (core_relo_is_type_based(relo->kind)) { 285 if (strcmp(spec_str, "0")) 286 return -EINVAL; 287 return 0; 288 } 289 290 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 291 while (*spec_str) { 292 if (*spec_str == ':') 293 ++spec_str; 294 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 295 return -EINVAL; 296 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 297 return -E2BIG; 298 spec_str += parsed_len; 299 spec->raw_spec[spec->raw_len++] = access_idx; 300 } 301 302 if (spec->raw_len == 0) 303 return -EINVAL; 304 305 t = skip_mods_and_typedefs(btf, relo->type_id, &id); 306 if (!t) 307 return -EINVAL; 308 309 access_idx = spec->raw_spec[0]; 310 acc = &spec->spec[0]; 311 acc->type_id = id; 312 acc->idx = access_idx; 313 spec->len++; 314 315 if (core_relo_is_enumval_based(relo->kind)) { 316 if (!btf_is_any_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 317 return -EINVAL; 318 319 /* record enumerator name in a first accessor */ 320 name_off = btf_is_enum(t) ? btf_enum(t)[access_idx].name_off 321 : btf_enum64(t)[access_idx].name_off; 322 acc->name = btf__name_by_offset(btf, name_off); 323 return 0; 324 } 325 326 if (!core_relo_is_field_based(relo->kind)) 327 return -EINVAL; 328 329 sz = btf__resolve_size(btf, id); 330 if (sz < 0) 331 return sz; 332 spec->bit_offset = access_idx * sz * 8; 333 334 for (i = 1; i < spec->raw_len; i++) { 335 t = skip_mods_and_typedefs(btf, id, &id); 336 if (!t) 337 return -EINVAL; 338 339 access_idx = spec->raw_spec[i]; 340 acc = &spec->spec[spec->len]; 341 342 if (btf_is_composite(t)) { 343 const struct btf_member *m; 344 __u32 bit_offset; 345 346 if (access_idx >= btf_vlen(t)) 347 return -EINVAL; 348 349 bit_offset = btf_member_bit_offset(t, access_idx); 350 spec->bit_offset += bit_offset; 351 352 m = btf_members(t) + access_idx; 353 if (m->name_off) { 354 name = btf__name_by_offset(btf, m->name_off); 355 if (str_is_empty(name)) 356 return -EINVAL; 357 358 acc->type_id = id; 359 acc->idx = access_idx; 360 acc->name = name; 361 spec->len++; 362 } 363 364 id = m->type; 365 } else if (btf_is_array(t)) { 366 const struct btf_array *a = btf_array(t); 367 bool flex; 368 369 t = skip_mods_and_typedefs(btf, a->type, &id); 370 if (!t) 371 return -EINVAL; 372 373 flex = is_flex_arr(btf, acc - 1, a); 374 if (!flex && access_idx >= a->nelems) 375 return -EINVAL; 376 377 spec->spec[spec->len].type_id = id; 378 spec->spec[spec->len].idx = access_idx; 379 spec->len++; 380 381 sz = btf__resolve_size(btf, id); 382 if (sz < 0) 383 return sz; 384 spec->bit_offset += access_idx * sz * 8; 385 } else { 386 pr_warn("prog '%s': relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 387 prog_name, relo->type_id, spec_str, i, id, btf_kind_str(t)); 388 return -EINVAL; 389 } 390 } 391 392 return 0; 393 } 394 395 /* Check two types for compatibility for the purpose of field access 396 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 397 * are relocating semantically compatible entities: 398 * - any two STRUCTs/UNIONs are compatible and can be mixed; 399 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 400 * - any two PTRs are always compatible; 401 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 402 * least one of enums should be anonymous; 403 * - for ENUMs, check sizes, names are ignored; 404 * - for INT, size and signedness are ignored; 405 * - any two FLOATs are always compatible; 406 * - for ARRAY, dimensionality is ignored, element types are checked for 407 * compatibility recursively; 408 * - everything else shouldn't be ever a target of relocation. 409 * These rules are not set in stone and probably will be adjusted as we get 410 * more experience with using BPF CO-RE relocations. 411 */ 412 static int bpf_core_fields_are_compat(const struct btf *local_btf, 413 __u32 local_id, 414 const struct btf *targ_btf, 415 __u32 targ_id) 416 { 417 const struct btf_type *local_type, *targ_type; 418 419 recur: 420 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 421 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 422 if (!local_type || !targ_type) 423 return -EINVAL; 424 425 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 426 return 1; 427 if (!btf_kind_core_compat(local_type, targ_type)) 428 return 0; 429 430 switch (btf_kind(local_type)) { 431 case BTF_KIND_PTR: 432 case BTF_KIND_FLOAT: 433 return 1; 434 case BTF_KIND_FWD: 435 case BTF_KIND_ENUM64: 436 case BTF_KIND_ENUM: { 437 const char *local_name, *targ_name; 438 size_t local_len, targ_len; 439 440 local_name = btf__name_by_offset(local_btf, 441 local_type->name_off); 442 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 443 local_len = bpf_core_essential_name_len(local_name); 444 targ_len = bpf_core_essential_name_len(targ_name); 445 /* one of them is anonymous or both w/ same flavor-less names */ 446 return local_len == 0 || targ_len == 0 || 447 (local_len == targ_len && 448 strncmp(local_name, targ_name, local_len) == 0); 449 } 450 case BTF_KIND_INT: 451 /* just reject deprecated bitfield-like integers; all other 452 * integers are by default compatible between each other 453 */ 454 return btf_int_offset(local_type) == 0 && 455 btf_int_offset(targ_type) == 0; 456 case BTF_KIND_ARRAY: 457 local_id = btf_array(local_type)->type; 458 targ_id = btf_array(targ_type)->type; 459 goto recur; 460 default: 461 return 0; 462 } 463 } 464 465 /* 466 * Given single high-level named field accessor in local type, find 467 * corresponding high-level accessor for a target type. Along the way, 468 * maintain low-level spec for target as well. Also keep updating target 469 * bit offset. 470 * 471 * Searching is performed through recursive exhaustive enumeration of all 472 * fields of a struct/union. If there are any anonymous (embedded) 473 * structs/unions, they are recursively searched as well. If field with 474 * desired name is found, check compatibility between local and target types, 475 * before returning result. 476 * 477 * 1 is returned, if field is found. 478 * 0 is returned if no compatible field is found. 479 * <0 is returned on error. 480 */ 481 static int bpf_core_match_member(const struct btf *local_btf, 482 const struct bpf_core_accessor *local_acc, 483 const struct btf *targ_btf, 484 __u32 targ_id, 485 struct bpf_core_spec *spec, 486 __u32 *next_targ_id) 487 { 488 const struct btf_type *local_type, *targ_type; 489 const struct btf_member *local_member, *m; 490 const char *local_name, *targ_name; 491 __u32 local_id; 492 int i, n, found; 493 494 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 495 if (!targ_type) 496 return -EINVAL; 497 if (!btf_is_composite(targ_type)) 498 return 0; 499 500 local_id = local_acc->type_id; 501 local_type = btf_type_by_id(local_btf, local_id); 502 local_member = btf_members(local_type) + local_acc->idx; 503 local_name = btf__name_by_offset(local_btf, local_member->name_off); 504 505 n = btf_vlen(targ_type); 506 m = btf_members(targ_type); 507 for (i = 0; i < n; i++, m++) { 508 __u32 bit_offset; 509 510 bit_offset = btf_member_bit_offset(targ_type, i); 511 512 /* too deep struct/union/array nesting */ 513 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 514 return -E2BIG; 515 516 /* speculate this member will be the good one */ 517 spec->bit_offset += bit_offset; 518 spec->raw_spec[spec->raw_len++] = i; 519 520 targ_name = btf__name_by_offset(targ_btf, m->name_off); 521 if (str_is_empty(targ_name)) { 522 /* embedded struct/union, we need to go deeper */ 523 found = bpf_core_match_member(local_btf, local_acc, 524 targ_btf, m->type, 525 spec, next_targ_id); 526 if (found) /* either found or error */ 527 return found; 528 } else if (strcmp(local_name, targ_name) == 0) { 529 /* matching named field */ 530 struct bpf_core_accessor *targ_acc; 531 532 targ_acc = &spec->spec[spec->len++]; 533 targ_acc->type_id = targ_id; 534 targ_acc->idx = i; 535 targ_acc->name = targ_name; 536 537 *next_targ_id = m->type; 538 found = bpf_core_fields_are_compat(local_btf, 539 local_member->type, 540 targ_btf, m->type); 541 if (!found) 542 spec->len--; /* pop accessor */ 543 return found; 544 } 545 /* member turned out not to be what we looked for */ 546 spec->bit_offset -= bit_offset; 547 spec->raw_len--; 548 } 549 550 return 0; 551 } 552 553 /* 554 * Try to match local spec to a target type and, if successful, produce full 555 * target spec (high-level, low-level + bit offset). 556 */ 557 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 558 const struct btf *targ_btf, __u32 targ_id, 559 struct bpf_core_spec *targ_spec) 560 { 561 const struct btf_type *targ_type; 562 const struct bpf_core_accessor *local_acc; 563 struct bpf_core_accessor *targ_acc; 564 int i, sz, matched; 565 __u32 name_off; 566 567 memset(targ_spec, 0, sizeof(*targ_spec)); 568 targ_spec->btf = targ_btf; 569 targ_spec->root_type_id = targ_id; 570 targ_spec->relo_kind = local_spec->relo_kind; 571 572 if (core_relo_is_type_based(local_spec->relo_kind)) { 573 if (local_spec->relo_kind == BPF_CORE_TYPE_MATCHES) 574 return bpf_core_types_match(local_spec->btf, 575 local_spec->root_type_id, 576 targ_btf, targ_id); 577 else 578 return bpf_core_types_are_compat(local_spec->btf, 579 local_spec->root_type_id, 580 targ_btf, targ_id); 581 } 582 583 local_acc = &local_spec->spec[0]; 584 targ_acc = &targ_spec->spec[0]; 585 586 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 587 size_t local_essent_len, targ_essent_len; 588 const char *targ_name; 589 590 /* has to resolve to an enum */ 591 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 592 if (!btf_is_any_enum(targ_type)) 593 return 0; 594 595 local_essent_len = bpf_core_essential_name_len(local_acc->name); 596 597 for (i = 0; i < btf_vlen(targ_type); i++) { 598 if (btf_is_enum(targ_type)) 599 name_off = btf_enum(targ_type)[i].name_off; 600 else 601 name_off = btf_enum64(targ_type)[i].name_off; 602 603 targ_name = btf__name_by_offset(targ_spec->btf, name_off); 604 targ_essent_len = bpf_core_essential_name_len(targ_name); 605 if (targ_essent_len != local_essent_len) 606 continue; 607 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 608 targ_acc->type_id = targ_id; 609 targ_acc->idx = i; 610 targ_acc->name = targ_name; 611 targ_spec->len++; 612 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 613 targ_spec->raw_len++; 614 return 1; 615 } 616 } 617 return 0; 618 } 619 620 if (!core_relo_is_field_based(local_spec->relo_kind)) 621 return -EINVAL; 622 623 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 624 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 625 &targ_id); 626 if (!targ_type) 627 return -EINVAL; 628 629 if (local_acc->name) { 630 matched = bpf_core_match_member(local_spec->btf, 631 local_acc, 632 targ_btf, targ_id, 633 targ_spec, &targ_id); 634 if (matched <= 0) 635 return matched; 636 } else { 637 /* for i=0, targ_id is already treated as array element 638 * type (because it's the original struct), for others 639 * we should find array element type first 640 */ 641 if (i > 0) { 642 const struct btf_array *a; 643 bool flex; 644 645 if (!btf_is_array(targ_type)) 646 return 0; 647 648 a = btf_array(targ_type); 649 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 650 if (!flex && local_acc->idx >= a->nelems) 651 return 0; 652 if (!skip_mods_and_typedefs(targ_btf, a->type, 653 &targ_id)) 654 return -EINVAL; 655 } 656 657 /* too deep struct/union/array nesting */ 658 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 659 return -E2BIG; 660 661 targ_acc->type_id = targ_id; 662 targ_acc->idx = local_acc->idx; 663 targ_acc->name = NULL; 664 targ_spec->len++; 665 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 666 targ_spec->raw_len++; 667 668 sz = btf__resolve_size(targ_btf, targ_id); 669 if (sz < 0) 670 return sz; 671 targ_spec->bit_offset += local_acc->idx * sz * 8; 672 } 673 } 674 675 return 1; 676 } 677 678 static int bpf_core_calc_field_relo(const char *prog_name, 679 const struct bpf_core_relo *relo, 680 const struct bpf_core_spec *spec, 681 __u64 *val, __u32 *field_sz, __u32 *type_id, 682 bool *validate) 683 { 684 const struct bpf_core_accessor *acc; 685 const struct btf_type *t; 686 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id, elem_id; 687 const struct btf_member *m; 688 const struct btf_type *mt; 689 bool bitfield; 690 __s64 sz; 691 692 *field_sz = 0; 693 694 if (relo->kind == BPF_CORE_FIELD_EXISTS) { 695 *val = spec ? 1 : 0; 696 return 0; 697 } 698 699 if (!spec) 700 return -EUCLEAN; /* request instruction poisoning */ 701 702 acc = &spec->spec[spec->len - 1]; 703 t = btf_type_by_id(spec->btf, acc->type_id); 704 705 /* a[n] accessor needs special handling */ 706 if (!acc->name) { 707 if (relo->kind == BPF_CORE_FIELD_BYTE_OFFSET) { 708 *val = spec->bit_offset / 8; 709 /* remember field size for load/store mem size; 710 * note, for arrays we care about individual element 711 * sizes, not the overall array size 712 */ 713 t = skip_mods_and_typedefs(spec->btf, acc->type_id, &elem_id); 714 while (btf_is_array(t)) 715 t = skip_mods_and_typedefs(spec->btf, btf_array(t)->type, &elem_id); 716 sz = btf__resolve_size(spec->btf, elem_id); 717 if (sz < 0) 718 return -EINVAL; 719 *field_sz = sz; 720 *type_id = acc->type_id; 721 } else if (relo->kind == BPF_CORE_FIELD_BYTE_SIZE) { 722 sz = btf__resolve_size(spec->btf, acc->type_id); 723 if (sz < 0) 724 return -EINVAL; 725 *val = sz; 726 } else { 727 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 728 prog_name, relo->kind, relo->insn_off / 8); 729 return -EINVAL; 730 } 731 if (validate) 732 *validate = true; 733 return 0; 734 } 735 736 m = btf_members(t) + acc->idx; 737 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 738 bit_off = spec->bit_offset; 739 bit_sz = btf_member_bitfield_size(t, acc->idx); 740 741 bitfield = bit_sz > 0; 742 if (bitfield) { 743 byte_sz = mt->size; 744 byte_off = bit_off / 8 / byte_sz * byte_sz; 745 /* figure out smallest int size necessary for bitfield load */ 746 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 747 if (byte_sz >= 8) { 748 /* bitfield can't be read with 64-bit read */ 749 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 750 prog_name, relo->kind, relo->insn_off / 8); 751 return -E2BIG; 752 } 753 byte_sz *= 2; 754 byte_off = bit_off / 8 / byte_sz * byte_sz; 755 } 756 } else { 757 sz = btf__resolve_size(spec->btf, field_type_id); 758 if (sz < 0) 759 return -EINVAL; 760 byte_sz = sz; 761 byte_off = spec->bit_offset / 8; 762 bit_sz = byte_sz * 8; 763 } 764 765 /* for bitfields, all the relocatable aspects are ambiguous and we 766 * might disagree with compiler, so turn off validation of expected 767 * value, except for signedness 768 */ 769 if (validate) 770 *validate = !bitfield; 771 772 switch (relo->kind) { 773 case BPF_CORE_FIELD_BYTE_OFFSET: 774 *val = byte_off; 775 if (!bitfield) { 776 /* remember field size for load/store mem size; 777 * note, for arrays we care about individual element 778 * sizes, not the overall array size 779 */ 780 t = skip_mods_and_typedefs(spec->btf, field_type_id, &elem_id); 781 while (btf_is_array(t)) 782 t = skip_mods_and_typedefs(spec->btf, btf_array(t)->type, &elem_id); 783 sz = btf__resolve_size(spec->btf, elem_id); 784 if (sz < 0) 785 return -EINVAL; 786 *field_sz = sz; 787 *type_id = field_type_id; 788 } 789 break; 790 case BPF_CORE_FIELD_BYTE_SIZE: 791 *val = byte_sz; 792 break; 793 case BPF_CORE_FIELD_SIGNED: 794 *val = (btf_is_any_enum(mt) && BTF_INFO_KFLAG(mt->info)) || 795 (btf_is_int(mt) && (btf_int_encoding(mt) & BTF_INT_SIGNED)); 796 if (validate) 797 *validate = true; /* signedness is never ambiguous */ 798 break; 799 case BPF_CORE_FIELD_LSHIFT_U64: 800 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 801 *val = 64 - (bit_off + bit_sz - byte_off * 8); 802 #else 803 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 804 #endif 805 break; 806 case BPF_CORE_FIELD_RSHIFT_U64: 807 *val = 64 - bit_sz; 808 if (validate) 809 *validate = true; /* right shift is never ambiguous */ 810 break; 811 case BPF_CORE_FIELD_EXISTS: 812 default: 813 return -EOPNOTSUPP; 814 } 815 816 return 0; 817 } 818 819 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 820 const struct bpf_core_spec *spec, 821 __u64 *val, bool *validate) 822 { 823 __s64 sz; 824 825 /* by default, always check expected value in bpf_insn */ 826 if (validate) 827 *validate = true; 828 829 /* type-based relos return zero when target type is not found */ 830 if (!spec) { 831 *val = 0; 832 return 0; 833 } 834 835 switch (relo->kind) { 836 case BPF_CORE_TYPE_ID_TARGET: 837 *val = spec->root_type_id; 838 /* type ID, embedded in bpf_insn, might change during linking, 839 * so enforcing it is pointless 840 */ 841 if (validate) 842 *validate = false; 843 break; 844 case BPF_CORE_TYPE_EXISTS: 845 case BPF_CORE_TYPE_MATCHES: 846 *val = 1; 847 break; 848 case BPF_CORE_TYPE_SIZE: 849 sz = btf__resolve_size(spec->btf, spec->root_type_id); 850 if (sz < 0) 851 return -EINVAL; 852 *val = sz; 853 break; 854 case BPF_CORE_TYPE_ID_LOCAL: 855 /* BPF_CORE_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 856 default: 857 return -EOPNOTSUPP; 858 } 859 860 return 0; 861 } 862 863 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 864 const struct bpf_core_spec *spec, 865 __u64 *val) 866 { 867 const struct btf_type *t; 868 869 switch (relo->kind) { 870 case BPF_CORE_ENUMVAL_EXISTS: 871 *val = spec ? 1 : 0; 872 break; 873 case BPF_CORE_ENUMVAL_VALUE: 874 if (!spec) 875 return -EUCLEAN; /* request instruction poisoning */ 876 t = btf_type_by_id(spec->btf, spec->spec[0].type_id); 877 if (btf_is_enum(t)) 878 *val = btf_enum(t)[spec->spec[0].idx].val; 879 else 880 *val = btf_enum64_value(btf_enum64(t) + spec->spec[0].idx); 881 break; 882 default: 883 return -EOPNOTSUPP; 884 } 885 886 return 0; 887 } 888 889 /* Calculate original and target relocation values, given local and target 890 * specs and relocation kind. These values are calculated for each candidate. 891 * If there are multiple candidates, resulting values should all be consistent 892 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 893 * If instruction has to be poisoned, *poison will be set to true. 894 */ 895 static int bpf_core_calc_relo(const char *prog_name, 896 const struct bpf_core_relo *relo, 897 int relo_idx, 898 const struct bpf_core_spec *local_spec, 899 const struct bpf_core_spec *targ_spec, 900 struct bpf_core_relo_res *res) 901 { 902 int err = -EOPNOTSUPP; 903 904 res->orig_val = 0; 905 res->new_val = 0; 906 res->poison = false; 907 res->validate = true; 908 res->fail_memsz_adjust = false; 909 res->orig_sz = res->new_sz = 0; 910 res->orig_type_id = res->new_type_id = 0; 911 912 if (core_relo_is_field_based(relo->kind)) { 913 err = bpf_core_calc_field_relo(prog_name, relo, local_spec, 914 &res->orig_val, &res->orig_sz, 915 &res->orig_type_id, &res->validate); 916 err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec, 917 &res->new_val, &res->new_sz, 918 &res->new_type_id, NULL); 919 if (err) 920 goto done; 921 /* Validate if it's safe to adjust load/store memory size. 922 * Adjustments are performed only if original and new memory 923 * sizes differ. 924 */ 925 res->fail_memsz_adjust = false; 926 if (res->orig_sz != res->new_sz) { 927 const struct btf_type *orig_t, *new_t; 928 929 orig_t = btf_type_by_id(local_spec->btf, res->orig_type_id); 930 new_t = btf_type_by_id(targ_spec->btf, res->new_type_id); 931 932 /* There are two use cases in which it's safe to 933 * adjust load/store's mem size: 934 * - reading a 32-bit kernel pointer, while on BPF 935 * size pointers are always 64-bit; in this case 936 * it's safe to "downsize" instruction size due to 937 * pointer being treated as unsigned integer with 938 * zero-extended upper 32-bits; 939 * - reading unsigned integers, again due to 940 * zero-extension is preserving the value correctly. 941 * 942 * In all other cases it's incorrect to attempt to 943 * load/store field because read value will be 944 * incorrect, so we poison relocated instruction. 945 */ 946 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 947 goto done; 948 if (btf_is_int(orig_t) && btf_is_int(new_t) && 949 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 950 btf_int_encoding(new_t) != BTF_INT_SIGNED) 951 goto done; 952 953 /* mark as invalid mem size adjustment, but this will 954 * only be checked for LDX/STX/ST insns 955 */ 956 res->fail_memsz_adjust = true; 957 } 958 } else if (core_relo_is_type_based(relo->kind)) { 959 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val, &res->validate); 960 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val, NULL); 961 } else if (core_relo_is_enumval_based(relo->kind)) { 962 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 963 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 964 } 965 966 done: 967 if (err == -EUCLEAN) { 968 /* EUCLEAN is used to signal instruction poisoning request */ 969 res->poison = true; 970 err = 0; 971 } else if (err == -EOPNOTSUPP) { 972 /* EOPNOTSUPP means unknown/unsupported relocation */ 973 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 974 prog_name, relo_idx, core_relo_kind_str(relo->kind), 975 relo->kind, relo->insn_off / 8); 976 } 977 978 return err; 979 } 980 981 /* 982 * Turn instruction for which CO_RE relocation failed into invalid one with 983 * distinct signature. 984 */ 985 static void bpf_core_poison_insn(const char *prog_name, int relo_idx, 986 int insn_idx, struct bpf_insn *insn) 987 { 988 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 989 prog_name, relo_idx, insn_idx); 990 insn->code = BPF_JMP | BPF_CALL; 991 insn->dst_reg = 0; 992 insn->src_reg = 0; 993 insn->off = 0; 994 /* if this instruction is reachable (not a dead code), 995 * verifier will complain with the following message: 996 * invalid func unknown#195896080 997 */ 998 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 999 } 1000 1001 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 1002 { 1003 switch (BPF_SIZE(insn->code)) { 1004 case BPF_DW: return 8; 1005 case BPF_W: return 4; 1006 case BPF_H: return 2; 1007 case BPF_B: return 1; 1008 default: return -1; 1009 } 1010 } 1011 1012 static int insn_bytes_to_bpf_size(__u32 sz) 1013 { 1014 switch (sz) { 1015 case 8: return BPF_DW; 1016 case 4: return BPF_W; 1017 case 2: return BPF_H; 1018 case 1: return BPF_B; 1019 default: return -1; 1020 } 1021 } 1022 1023 /* 1024 * Patch relocatable BPF instruction. 1025 * 1026 * Patched value is determined by relocation kind and target specification. 1027 * For existence relocations target spec will be NULL if field/type is not found. 1028 * Expected insn->imm value is determined using relocation kind and local 1029 * spec, and is checked before patching instruction. If actual insn->imm value 1030 * is wrong, bail out with error. 1031 * 1032 * Currently supported classes of BPF instruction are: 1033 * 1. rX = <imm> (assignment with immediate operand); 1034 * 2. rX += <imm> (arithmetic operations with immediate operand); 1035 * 3. rX = <imm64> (load with 64-bit immediate value); 1036 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 1037 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 1038 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 1039 */ 1040 int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn, 1041 int insn_idx, const struct bpf_core_relo *relo, 1042 int relo_idx, const struct bpf_core_relo_res *res) 1043 { 1044 __u64 orig_val, new_val; 1045 __u8 class; 1046 1047 class = BPF_CLASS(insn->code); 1048 1049 if (res->poison) { 1050 poison: 1051 /* poison second part of ldimm64 to avoid confusing error from 1052 * verifier about "unknown opcode 00" 1053 */ 1054 if (is_ldimm64_insn(insn)) 1055 bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1); 1056 bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn); 1057 return 0; 1058 } 1059 1060 orig_val = res->orig_val; 1061 new_val = res->new_val; 1062 1063 switch (class) { 1064 case BPF_ALU: 1065 case BPF_ALU64: 1066 if (BPF_SRC(insn->code) != BPF_K) 1067 return -EINVAL; 1068 if (res->validate && insn->imm != orig_val) { 1069 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %llu -> %llu\n", 1070 prog_name, relo_idx, 1071 insn_idx, insn->imm, (unsigned long long)orig_val, 1072 (unsigned long long)new_val); 1073 return -EINVAL; 1074 } 1075 orig_val = insn->imm; 1076 insn->imm = new_val; 1077 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %llu -> %llu\n", 1078 prog_name, relo_idx, insn_idx, 1079 (unsigned long long)orig_val, (unsigned long long)new_val); 1080 break; 1081 case BPF_LDX: 1082 case BPF_ST: 1083 case BPF_STX: 1084 if (res->validate && insn->off != orig_val) { 1085 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %llu -> %llu\n", 1086 prog_name, relo_idx, insn_idx, insn->off, (unsigned long long)orig_val, 1087 (unsigned long long)new_val); 1088 return -EINVAL; 1089 } 1090 if (new_val > SHRT_MAX) { 1091 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %llu\n", 1092 prog_name, relo_idx, insn_idx, (unsigned long long)new_val); 1093 return -ERANGE; 1094 } 1095 if (res->fail_memsz_adjust) { 1096 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 1097 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 1098 prog_name, relo_idx, insn_idx); 1099 goto poison; 1100 } 1101 1102 orig_val = insn->off; 1103 insn->off = new_val; 1104 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %llu -> %llu\n", 1105 prog_name, relo_idx, insn_idx, (unsigned long long)orig_val, 1106 (unsigned long long)new_val); 1107 1108 if (res->new_sz != res->orig_sz) { 1109 int insn_bytes_sz, insn_bpf_sz; 1110 1111 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 1112 if (insn_bytes_sz != res->orig_sz) { 1113 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 1114 prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 1115 return -EINVAL; 1116 } 1117 1118 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 1119 if (insn_bpf_sz < 0) { 1120 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 1121 prog_name, relo_idx, insn_idx, res->new_sz); 1122 return -EINVAL; 1123 } 1124 1125 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 1126 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 1127 prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 1128 } 1129 break; 1130 case BPF_LD: { 1131 __u64 imm; 1132 1133 if (!is_ldimm64_insn(insn) || 1134 insn[0].src_reg != 0 || insn[0].off != 0 || 1135 insn[1].code != 0 || insn[1].dst_reg != 0 || 1136 insn[1].src_reg != 0 || insn[1].off != 0) { 1137 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 1138 prog_name, relo_idx, insn_idx); 1139 return -EINVAL; 1140 } 1141 1142 imm = (__u32)insn[0].imm | ((__u64)insn[1].imm << 32); 1143 if (res->validate && imm != orig_val) { 1144 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %llu -> %llu\n", 1145 prog_name, relo_idx, 1146 insn_idx, (unsigned long long)imm, 1147 (unsigned long long)orig_val, (unsigned long long)new_val); 1148 return -EINVAL; 1149 } 1150 1151 insn[0].imm = new_val; 1152 insn[1].imm = new_val >> 32; 1153 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %llu\n", 1154 prog_name, relo_idx, insn_idx, 1155 (unsigned long long)imm, (unsigned long long)new_val); 1156 break; 1157 } 1158 default: 1159 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 1160 prog_name, relo_idx, insn_idx, insn->code, 1161 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 1162 return -EINVAL; 1163 } 1164 1165 return 0; 1166 } 1167 1168 /* Output spec definition in the format: 1169 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 1170 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 1171 */ 1172 int bpf_core_format_spec(char *buf, size_t buf_sz, const struct bpf_core_spec *spec) 1173 { 1174 const struct btf_type *t; 1175 const char *s; 1176 __u32 type_id; 1177 int i, len = 0; 1178 1179 #define append_buf(fmt, args...) \ 1180 ({ \ 1181 int r; \ 1182 r = snprintf(buf, buf_sz, fmt, ##args); \ 1183 len += r; \ 1184 if (r >= buf_sz) \ 1185 r = buf_sz; \ 1186 buf += r; \ 1187 buf_sz -= r; \ 1188 }) 1189 1190 type_id = spec->root_type_id; 1191 t = btf_type_by_id(spec->btf, type_id); 1192 s = btf__name_by_offset(spec->btf, t->name_off); 1193 1194 append_buf("<%s> [%u] %s %s", 1195 core_relo_kind_str(spec->relo_kind), 1196 type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 1197 1198 if (core_relo_is_type_based(spec->relo_kind)) 1199 return len; 1200 1201 if (core_relo_is_enumval_based(spec->relo_kind)) { 1202 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 1203 if (btf_is_enum(t)) { 1204 const struct btf_enum *e; 1205 const char *fmt_str; 1206 1207 e = btf_enum(t) + spec->raw_spec[0]; 1208 s = btf__name_by_offset(spec->btf, e->name_off); 1209 fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %d" : "::%s = %u"; 1210 append_buf(fmt_str, s, e->val); 1211 } else { 1212 const struct btf_enum64 *e; 1213 const char *fmt_str; 1214 1215 e = btf_enum64(t) + spec->raw_spec[0]; 1216 s = btf__name_by_offset(spec->btf, e->name_off); 1217 fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %lld" : "::%s = %llu"; 1218 append_buf(fmt_str, s, (unsigned long long)btf_enum64_value(e)); 1219 } 1220 return len; 1221 } 1222 1223 if (core_relo_is_field_based(spec->relo_kind)) { 1224 for (i = 0; i < spec->len; i++) { 1225 if (spec->spec[i].name) 1226 append_buf(".%s", spec->spec[i].name); 1227 else if (i > 0 || spec->spec[i].idx > 0) 1228 append_buf("[%u]", spec->spec[i].idx); 1229 } 1230 1231 append_buf(" ("); 1232 for (i = 0; i < spec->raw_len; i++) 1233 append_buf("%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 1234 1235 if (spec->bit_offset % 8) 1236 append_buf(" @ offset %u.%u)", spec->bit_offset / 8, spec->bit_offset % 8); 1237 else 1238 append_buf(" @ offset %u)", spec->bit_offset / 8); 1239 return len; 1240 } 1241 1242 return len; 1243 #undef append_buf 1244 } 1245 1246 /* 1247 * Calculate CO-RE relocation target result. 1248 * 1249 * The outline and important points of the algorithm: 1250 * 1. For given local type, find corresponding candidate target types. 1251 * Candidate type is a type with the same "essential" name, ignoring 1252 * everything after last triple underscore (___). E.g., `sample`, 1253 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 1254 * for each other. Names with triple underscore are referred to as 1255 * "flavors" and are useful, among other things, to allow to 1256 * specify/support incompatible variations of the same kernel struct, which 1257 * might differ between different kernel versions and/or build 1258 * configurations. 1259 * 1260 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 1261 * converter, when deduplicated BTF of a kernel still contains more than 1262 * one different types with the same name. In that case, ___2, ___3, etc 1263 * are appended starting from second name conflict. But start flavors are 1264 * also useful to be defined "locally", in BPF program, to extract same 1265 * data from incompatible changes between different kernel 1266 * versions/configurations. For instance, to handle field renames between 1267 * kernel versions, one can use two flavors of the struct name with the 1268 * same common name and use conditional relocations to extract that field, 1269 * depending on target kernel version. 1270 * 2. For each candidate type, try to match local specification to this 1271 * candidate target type. Matching involves finding corresponding 1272 * high-level spec accessors, meaning that all named fields should match, 1273 * as well as all array accesses should be within the actual bounds. Also, 1274 * types should be compatible (see bpf_core_fields_are_compat for details). 1275 * 3. It is supported and expected that there might be multiple flavors 1276 * matching the spec. As long as all the specs resolve to the same set of 1277 * offsets across all candidates, there is no error. If there is any 1278 * ambiguity, CO-RE relocation will fail. This is necessary to accommodate 1279 * imperfection of BTF deduplication, which can cause slight duplication of 1280 * the same BTF type, if some directly or indirectly referenced (by 1281 * pointer) type gets resolved to different actual types in different 1282 * object files. If such a situation occurs, deduplicated BTF will end up 1283 * with two (or more) structurally identical types, which differ only in 1284 * types they refer to through pointer. This should be OK in most cases and 1285 * is not an error. 1286 * 4. Candidate types search is performed by linearly scanning through all 1287 * types in target BTF. It is anticipated that this is overall more 1288 * efficient memory-wise and not significantly worse (if not better) 1289 * CPU-wise compared to prebuilding a map from all local type names to 1290 * a list of candidate type names. It's also sped up by caching resolved 1291 * list of matching candidates per each local "root" type ID, that has at 1292 * least one bpf_core_relo associated with it. This list is shared 1293 * between multiple relocations for the same type ID and is updated as some 1294 * of the candidates are pruned due to structural incompatibility. 1295 */ 1296 int bpf_core_calc_relo_insn(const char *prog_name, 1297 const struct bpf_core_relo *relo, 1298 int relo_idx, 1299 const struct btf *local_btf, 1300 struct bpf_core_cand_list *cands, 1301 struct bpf_core_spec *specs_scratch, 1302 struct bpf_core_relo_res *targ_res) 1303 { 1304 struct bpf_core_spec *local_spec = &specs_scratch[0]; 1305 struct bpf_core_spec *cand_spec = &specs_scratch[1]; 1306 struct bpf_core_spec *targ_spec = &specs_scratch[2]; 1307 struct bpf_core_relo_res cand_res; 1308 const struct btf_type *local_type; 1309 const char *local_name; 1310 __u32 local_id; 1311 char spec_buf[256]; 1312 int i, j, err; 1313 1314 local_id = relo->type_id; 1315 local_type = btf_type_by_id(local_btf, local_id); 1316 local_name = btf__name_by_offset(local_btf, local_type->name_off); 1317 if (!local_name) 1318 return -EINVAL; 1319 1320 err = bpf_core_parse_spec(prog_name, local_btf, relo, local_spec); 1321 if (err) { 1322 const char *spec_str; 1323 1324 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 1325 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 1326 prog_name, relo_idx, local_id, btf_kind_str(local_type), 1327 str_is_empty(local_name) ? "<anon>" : local_name, 1328 spec_str ?: "<?>", err); 1329 return -EINVAL; 1330 } 1331 1332 bpf_core_format_spec(spec_buf, sizeof(spec_buf), local_spec); 1333 pr_debug("prog '%s': relo #%d: %s\n", prog_name, relo_idx, spec_buf); 1334 1335 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 1336 if (relo->kind == BPF_CORE_TYPE_ID_LOCAL) { 1337 /* bpf_insn's imm value could get out of sync during linking */ 1338 memset(targ_res, 0, sizeof(*targ_res)); 1339 targ_res->validate = false; 1340 targ_res->poison = false; 1341 targ_res->orig_val = local_spec->root_type_id; 1342 targ_res->new_val = local_spec->root_type_id; 1343 return 0; 1344 } 1345 1346 /* libbpf doesn't support candidate search for anonymous types */ 1347 if (str_is_empty(local_name)) { 1348 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 1349 prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 1350 return -EOPNOTSUPP; 1351 } 1352 1353 for (i = 0, j = 0; i < cands->len; i++) { 1354 err = bpf_core_spec_match(local_spec, cands->cands[i].btf, 1355 cands->cands[i].id, cand_spec); 1356 if (err < 0) { 1357 bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec); 1358 pr_warn("prog '%s': relo #%d: error matching candidate #%d %s: %d\n", 1359 prog_name, relo_idx, i, spec_buf, err); 1360 return err; 1361 } 1362 1363 bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec); 1364 pr_debug("prog '%s': relo #%d: %s candidate #%d %s\n", prog_name, 1365 relo_idx, err == 0 ? "non-matching" : "matching", i, spec_buf); 1366 1367 if (err == 0) 1368 continue; 1369 1370 err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, cand_spec, &cand_res); 1371 if (err) 1372 return err; 1373 1374 if (j == 0) { 1375 *targ_res = cand_res; 1376 *targ_spec = *cand_spec; 1377 } else if (cand_spec->bit_offset != targ_spec->bit_offset) { 1378 /* if there are many field relo candidates, they 1379 * should all resolve to the same bit offset 1380 */ 1381 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 1382 prog_name, relo_idx, cand_spec->bit_offset, 1383 targ_spec->bit_offset); 1384 return -EINVAL; 1385 } else if (cand_res.poison != targ_res->poison || 1386 cand_res.new_val != targ_res->new_val) { 1387 /* all candidates should result in the same relocation 1388 * decision and value, otherwise it's dangerous to 1389 * proceed due to ambiguity 1390 */ 1391 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %llu != %s %llu\n", 1392 prog_name, relo_idx, 1393 cand_res.poison ? "failure" : "success", 1394 (unsigned long long)cand_res.new_val, 1395 targ_res->poison ? "failure" : "success", 1396 (unsigned long long)targ_res->new_val); 1397 return -EINVAL; 1398 } 1399 1400 cands->cands[j++] = cands->cands[i]; 1401 } 1402 1403 /* 1404 * For BPF_CORE_FIELD_EXISTS relo or when used BPF program has field 1405 * existence checks or kernel version/config checks, it's expected 1406 * that we might not find any candidates. In this case, if field 1407 * wasn't found in any candidate, the list of candidates shouldn't 1408 * change at all, we'll just handle relocating appropriately, 1409 * depending on relo's kind. 1410 */ 1411 if (j > 0) 1412 cands->len = j; 1413 1414 /* 1415 * If no candidates were found, it might be both a programmer error, 1416 * as well as expected case, depending whether instruction w/ 1417 * relocation is guarded in some way that makes it unreachable (dead 1418 * code) if relocation can't be resolved. This is handled in 1419 * bpf_core_patch_insn() uniformly by replacing that instruction with 1420 * BPF helper call insn (using invalid helper ID). If that instruction 1421 * is indeed unreachable, then it will be ignored and eliminated by 1422 * verifier. If it was an error, then verifier will complain and point 1423 * to a specific instruction number in its log. 1424 */ 1425 if (j == 0) { 1426 pr_debug("prog '%s': relo #%d: no matching targets found\n", 1427 prog_name, relo_idx); 1428 1429 /* calculate single target relo result explicitly */ 1430 err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, NULL, targ_res); 1431 if (err) 1432 return err; 1433 } 1434 1435 return 0; 1436 } 1437 1438 static bool bpf_core_names_match(const struct btf *local_btf, size_t local_name_off, 1439 const struct btf *targ_btf, size_t targ_name_off) 1440 { 1441 const char *local_n, *targ_n; 1442 size_t local_len, targ_len; 1443 1444 local_n = btf__name_by_offset(local_btf, local_name_off); 1445 targ_n = btf__name_by_offset(targ_btf, targ_name_off); 1446 1447 if (str_is_empty(targ_n)) 1448 return str_is_empty(local_n); 1449 1450 targ_len = bpf_core_essential_name_len(targ_n); 1451 local_len = bpf_core_essential_name_len(local_n); 1452 1453 return targ_len == local_len && strncmp(local_n, targ_n, local_len) == 0; 1454 } 1455 1456 static int bpf_core_enums_match(const struct btf *local_btf, const struct btf_type *local_t, 1457 const struct btf *targ_btf, const struct btf_type *targ_t) 1458 { 1459 __u16 local_vlen = btf_vlen(local_t); 1460 __u16 targ_vlen = btf_vlen(targ_t); 1461 int i, j; 1462 1463 if (local_t->size != targ_t->size) 1464 return 0; 1465 1466 if (local_vlen > targ_vlen) 1467 return 0; 1468 1469 /* iterate over the local enum's variants and make sure each has 1470 * a symbolic name correspondent in the target 1471 */ 1472 for (i = 0; i < local_vlen; i++) { 1473 bool matched = false; 1474 __u32 local_n_off, targ_n_off; 1475 1476 local_n_off = btf_is_enum(local_t) ? btf_enum(local_t)[i].name_off : 1477 btf_enum64(local_t)[i].name_off; 1478 1479 for (j = 0; j < targ_vlen; j++) { 1480 targ_n_off = btf_is_enum(targ_t) ? btf_enum(targ_t)[j].name_off : 1481 btf_enum64(targ_t)[j].name_off; 1482 1483 if (bpf_core_names_match(local_btf, local_n_off, targ_btf, targ_n_off)) { 1484 matched = true; 1485 break; 1486 } 1487 } 1488 1489 if (!matched) 1490 return 0; 1491 } 1492 return 1; 1493 } 1494 1495 static int bpf_core_composites_match(const struct btf *local_btf, const struct btf_type *local_t, 1496 const struct btf *targ_btf, const struct btf_type *targ_t, 1497 bool behind_ptr, int level) 1498 { 1499 const struct btf_member *local_m = btf_members(local_t); 1500 __u16 local_vlen = btf_vlen(local_t); 1501 __u16 targ_vlen = btf_vlen(targ_t); 1502 int i, j, err; 1503 1504 if (local_vlen > targ_vlen) 1505 return 0; 1506 1507 /* check that all local members have a match in the target */ 1508 for (i = 0; i < local_vlen; i++, local_m++) { 1509 const struct btf_member *targ_m = btf_members(targ_t); 1510 bool matched = false; 1511 1512 for (j = 0; j < targ_vlen; j++, targ_m++) { 1513 if (!bpf_core_names_match(local_btf, local_m->name_off, 1514 targ_btf, targ_m->name_off)) 1515 continue; 1516 1517 err = __bpf_core_types_match(local_btf, local_m->type, targ_btf, 1518 targ_m->type, behind_ptr, level - 1); 1519 if (err < 0) 1520 return err; 1521 if (err > 0) { 1522 matched = true; 1523 break; 1524 } 1525 } 1526 1527 if (!matched) 1528 return 0; 1529 } 1530 return 1; 1531 } 1532 1533 /* Check that two types "match". This function assumes that root types were 1534 * already checked for name match. 1535 * 1536 * The matching relation is defined as follows: 1537 * - modifiers and typedefs are stripped (and, hence, effectively ignored) 1538 * - generally speaking types need to be of same kind (struct vs. struct, union 1539 * vs. union, etc.) 1540 * - exceptions are struct/union behind a pointer which could also match a 1541 * forward declaration of a struct or union, respectively, and enum vs. 1542 * enum64 (see below) 1543 * Then, depending on type: 1544 * - integers: 1545 * - match if size and signedness match 1546 * - arrays & pointers: 1547 * - target types are recursively matched 1548 * - structs & unions: 1549 * - local members need to exist in target with the same name 1550 * - for each member we recursively check match unless it is already behind a 1551 * pointer, in which case we only check matching names and compatible kind 1552 * - enums: 1553 * - local variants have to have a match in target by symbolic name (but not 1554 * numeric value) 1555 * - size has to match (but enum may match enum64 and vice versa) 1556 * - function pointers: 1557 * - number and position of arguments in local type has to match target 1558 * - for each argument and the return value we recursively check match 1559 */ 1560 int __bpf_core_types_match(const struct btf *local_btf, __u32 local_id, const struct btf *targ_btf, 1561 __u32 targ_id, bool behind_ptr, int level) 1562 { 1563 const struct btf_type *local_t, *targ_t; 1564 int depth = 32; /* max recursion depth */ 1565 __u16 local_k, targ_k; 1566 1567 if (level <= 0) 1568 return -EINVAL; 1569 1570 recur: 1571 depth--; 1572 if (depth < 0) 1573 return -EINVAL; 1574 1575 local_t = skip_mods_and_typedefs(local_btf, local_id, &local_id); 1576 targ_t = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 1577 if (!local_t || !targ_t) 1578 return -EINVAL; 1579 1580 /* While the name check happens after typedefs are skipped, root-level 1581 * typedefs would still be name-matched as that's the contract with 1582 * callers. 1583 */ 1584 if (!bpf_core_names_match(local_btf, local_t->name_off, targ_btf, targ_t->name_off)) 1585 return 0; 1586 1587 local_k = btf_kind(local_t); 1588 targ_k = btf_kind(targ_t); 1589 1590 switch (local_k) { 1591 case BTF_KIND_UNKN: 1592 return local_k == targ_k; 1593 case BTF_KIND_FWD: { 1594 bool local_f = BTF_INFO_KFLAG(local_t->info); 1595 1596 if (behind_ptr) { 1597 if (local_k == targ_k) 1598 return local_f == BTF_INFO_KFLAG(targ_t->info); 1599 1600 /* for forward declarations kflag dictates whether the 1601 * target is a struct (0) or union (1) 1602 */ 1603 return (targ_k == BTF_KIND_STRUCT && !local_f) || 1604 (targ_k == BTF_KIND_UNION && local_f); 1605 } else { 1606 if (local_k != targ_k) 1607 return 0; 1608 1609 /* match if the forward declaration is for the same kind */ 1610 return local_f == BTF_INFO_KFLAG(targ_t->info); 1611 } 1612 } 1613 case BTF_KIND_ENUM: 1614 case BTF_KIND_ENUM64: 1615 if (!btf_is_any_enum(targ_t)) 1616 return 0; 1617 1618 return bpf_core_enums_match(local_btf, local_t, targ_btf, targ_t); 1619 case BTF_KIND_STRUCT: 1620 case BTF_KIND_UNION: 1621 if (behind_ptr) { 1622 bool targ_f = BTF_INFO_KFLAG(targ_t->info); 1623 1624 if (local_k == targ_k) 1625 return 1; 1626 1627 if (targ_k != BTF_KIND_FWD) 1628 return 0; 1629 1630 return (local_k == BTF_KIND_UNION) == targ_f; 1631 } else { 1632 if (local_k != targ_k) 1633 return 0; 1634 1635 return bpf_core_composites_match(local_btf, local_t, targ_btf, targ_t, 1636 behind_ptr, level); 1637 } 1638 case BTF_KIND_INT: { 1639 __u8 local_sgn; 1640 __u8 targ_sgn; 1641 1642 if (local_k != targ_k) 1643 return 0; 1644 1645 local_sgn = btf_int_encoding(local_t) & BTF_INT_SIGNED; 1646 targ_sgn = btf_int_encoding(targ_t) & BTF_INT_SIGNED; 1647 1648 return local_t->size == targ_t->size && local_sgn == targ_sgn; 1649 } 1650 case BTF_KIND_PTR: 1651 if (local_k != targ_k) 1652 return 0; 1653 1654 behind_ptr = true; 1655 1656 local_id = local_t->type; 1657 targ_id = targ_t->type; 1658 goto recur; 1659 case BTF_KIND_ARRAY: { 1660 const struct btf_array *local_array = btf_array(local_t); 1661 const struct btf_array *targ_array = btf_array(targ_t); 1662 1663 if (local_k != targ_k) 1664 return 0; 1665 1666 if (local_array->nelems != targ_array->nelems) 1667 return 0; 1668 1669 local_id = local_array->type; 1670 targ_id = targ_array->type; 1671 goto recur; 1672 } 1673 case BTF_KIND_FUNC_PROTO: { 1674 struct btf_param *local_p = btf_params(local_t); 1675 struct btf_param *targ_p = btf_params(targ_t); 1676 __u16 local_vlen = btf_vlen(local_t); 1677 __u16 targ_vlen = btf_vlen(targ_t); 1678 int i, err; 1679 1680 if (local_k != targ_k) 1681 return 0; 1682 1683 if (local_vlen != targ_vlen) 1684 return 0; 1685 1686 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 1687 err = __bpf_core_types_match(local_btf, local_p->type, targ_btf, 1688 targ_p->type, behind_ptr, level - 1); 1689 if (err <= 0) 1690 return err; 1691 } 1692 1693 /* tail recurse for return type check */ 1694 local_id = local_t->type; 1695 targ_id = targ_t->type; 1696 goto recur; 1697 } 1698 default: 1699 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 1700 btf_kind_str(local_t), local_id, targ_id); 1701 return 0; 1702 } 1703 } 1704