xref: /linux/tools/lib/bpf/relo_core.c (revision 6093a688a07da07808f0122f9aa2a3eed250d853)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2019 Facebook */
3 
4 #ifdef __KERNEL__
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/string.h>
8 #include <linux/bpf_verifier.h>
9 #include "relo_core.h"
10 
11 static const char *btf_kind_str(const struct btf_type *t)
12 {
13 	return btf_type_str(t);
14 }
15 
16 static bool is_ldimm64_insn(struct bpf_insn *insn)
17 {
18 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
19 }
20 
21 static const struct btf_type *
22 skip_mods_and_typedefs(const struct btf *btf, u32 id, u32 *res_id)
23 {
24 	return btf_type_skip_modifiers(btf, id, res_id);
25 }
26 
27 static const char *btf__name_by_offset(const struct btf *btf, u32 offset)
28 {
29 	return btf_name_by_offset(btf, offset);
30 }
31 
32 static s64 btf__resolve_size(const struct btf *btf, u32 type_id)
33 {
34 	const struct btf_type *t;
35 	int size;
36 
37 	t = btf_type_by_id(btf, type_id);
38 	t = btf_resolve_size(btf, t, &size);
39 	if (IS_ERR(t))
40 		return PTR_ERR(t);
41 	return size;
42 }
43 
44 enum libbpf_print_level {
45 	LIBBPF_WARN,
46 	LIBBPF_INFO,
47 	LIBBPF_DEBUG,
48 };
49 
50 #undef pr_warn
51 #undef pr_info
52 #undef pr_debug
53 #define pr_warn(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
54 #define pr_info(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
55 #define pr_debug(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
56 #define libbpf_print(level, fmt, ...)	bpf_log((void *)prog_name, fmt, ##__VA_ARGS__)
57 #else
58 #include <stdio.h>
59 #include <string.h>
60 #include <errno.h>
61 #include <ctype.h>
62 #include <linux/err.h>
63 
64 #include "libbpf.h"
65 #include "bpf.h"
66 #include "btf.h"
67 #include "libbpf_internal.h"
68 #endif
69 
70 static bool is_flex_arr(const struct btf *btf,
71 			const struct bpf_core_accessor *acc,
72 			const struct btf_array *arr)
73 {
74 	const struct btf_type *t;
75 
76 	/* not a flexible array, if not inside a struct or has non-zero size */
77 	if (!acc->name || arr->nelems > 0)
78 		return false;
79 
80 	/* has to be the last member of enclosing struct */
81 	t = btf_type_by_id(btf, acc->type_id);
82 	return acc->idx == btf_vlen(t) - 1;
83 }
84 
85 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
86 {
87 	switch (kind) {
88 	case BPF_CORE_FIELD_BYTE_OFFSET: return "byte_off";
89 	case BPF_CORE_FIELD_BYTE_SIZE: return "byte_sz";
90 	case BPF_CORE_FIELD_EXISTS: return "field_exists";
91 	case BPF_CORE_FIELD_SIGNED: return "signed";
92 	case BPF_CORE_FIELD_LSHIFT_U64: return "lshift_u64";
93 	case BPF_CORE_FIELD_RSHIFT_U64: return "rshift_u64";
94 	case BPF_CORE_TYPE_ID_LOCAL: return "local_type_id";
95 	case BPF_CORE_TYPE_ID_TARGET: return "target_type_id";
96 	case BPF_CORE_TYPE_EXISTS: return "type_exists";
97 	case BPF_CORE_TYPE_MATCHES: return "type_matches";
98 	case BPF_CORE_TYPE_SIZE: return "type_size";
99 	case BPF_CORE_ENUMVAL_EXISTS: return "enumval_exists";
100 	case BPF_CORE_ENUMVAL_VALUE: return "enumval_value";
101 	default: return "unknown";
102 	}
103 }
104 
105 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
106 {
107 	switch (kind) {
108 	case BPF_CORE_FIELD_BYTE_OFFSET:
109 	case BPF_CORE_FIELD_BYTE_SIZE:
110 	case BPF_CORE_FIELD_EXISTS:
111 	case BPF_CORE_FIELD_SIGNED:
112 	case BPF_CORE_FIELD_LSHIFT_U64:
113 	case BPF_CORE_FIELD_RSHIFT_U64:
114 		return true;
115 	default:
116 		return false;
117 	}
118 }
119 
120 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
121 {
122 	switch (kind) {
123 	case BPF_CORE_TYPE_ID_LOCAL:
124 	case BPF_CORE_TYPE_ID_TARGET:
125 	case BPF_CORE_TYPE_EXISTS:
126 	case BPF_CORE_TYPE_MATCHES:
127 	case BPF_CORE_TYPE_SIZE:
128 		return true;
129 	default:
130 		return false;
131 	}
132 }
133 
134 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
135 {
136 	switch (kind) {
137 	case BPF_CORE_ENUMVAL_EXISTS:
138 	case BPF_CORE_ENUMVAL_VALUE:
139 		return true;
140 	default:
141 		return false;
142 	}
143 }
144 
145 int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
146 				const struct btf *targ_btf, __u32 targ_id, int level)
147 {
148 	const struct btf_type *local_type, *targ_type;
149 	int depth = 32; /* max recursion depth */
150 
151 	/* caller made sure that names match (ignoring flavor suffix) */
152 	local_type = btf_type_by_id(local_btf, local_id);
153 	targ_type = btf_type_by_id(targ_btf, targ_id);
154 	if (!btf_kind_core_compat(local_type, targ_type))
155 		return 0;
156 
157 recur:
158 	depth--;
159 	if (depth < 0)
160 		return -EINVAL;
161 
162 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
163 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
164 	if (!local_type || !targ_type)
165 		return -EINVAL;
166 
167 	if (!btf_kind_core_compat(local_type, targ_type))
168 		return 0;
169 
170 	switch (btf_kind(local_type)) {
171 	case BTF_KIND_UNKN:
172 	case BTF_KIND_STRUCT:
173 	case BTF_KIND_UNION:
174 	case BTF_KIND_ENUM:
175 	case BTF_KIND_FWD:
176 	case BTF_KIND_ENUM64:
177 		return 1;
178 	case BTF_KIND_INT:
179 		/* just reject deprecated bitfield-like integers; all other
180 		 * integers are by default compatible between each other
181 		 */
182 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
183 	case BTF_KIND_PTR:
184 		local_id = local_type->type;
185 		targ_id = targ_type->type;
186 		goto recur;
187 	case BTF_KIND_ARRAY:
188 		local_id = btf_array(local_type)->type;
189 		targ_id = btf_array(targ_type)->type;
190 		goto recur;
191 	case BTF_KIND_FUNC_PROTO: {
192 		struct btf_param *local_p = btf_params(local_type);
193 		struct btf_param *targ_p = btf_params(targ_type);
194 		__u16 local_vlen = btf_vlen(local_type);
195 		__u16 targ_vlen = btf_vlen(targ_type);
196 		int i, err;
197 
198 		if (local_vlen != targ_vlen)
199 			return 0;
200 
201 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
202 			if (level <= 0)
203 				return -EINVAL;
204 
205 			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
206 			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
207 			err = __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
208 							  level - 1);
209 			if (err <= 0)
210 				return err;
211 		}
212 
213 		/* tail recurse for return type check */
214 		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
215 		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
216 		goto recur;
217 	}
218 	default:
219 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
220 			btf_kind_str(local_type), local_id, targ_id);
221 		return 0;
222 	}
223 }
224 
225 /*
226  * Turn bpf_core_relo into a low- and high-level spec representation,
227  * validating correctness along the way, as well as calculating resulting
228  * field bit offset, specified by accessor string. Low-level spec captures
229  * every single level of nestedness, including traversing anonymous
230  * struct/union members. High-level one only captures semantically meaningful
231  * "turning points": named fields and array indicies.
232  * E.g., for this case:
233  *
234  *   struct sample {
235  *       int __unimportant;
236  *       struct {
237  *           int __1;
238  *           int __2;
239  *           int a[7];
240  *       };
241  *   };
242  *
243  *   struct sample *s = ...;
244  *
245  *   int x = &s->a[3]; // access string = '0:1:2:3'
246  *
247  * Low-level spec has 1:1 mapping with each element of access string (it's
248  * just a parsed access string representation): [0, 1, 2, 3].
249  *
250  * High-level spec will capture only 3 points:
251  *   - initial zero-index access by pointer (&s->... is the same as &s[0]...);
252  *   - field 'a' access (corresponds to '2' in low-level spec);
253  *   - array element #3 access (corresponds to '3' in low-level spec).
254  *
255  * Type-based relocations (TYPE_EXISTS/TYPE_MATCHES/TYPE_SIZE,
256  * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
257  * spec and raw_spec are kept empty.
258  *
259  * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
260  * string to specify enumerator's value index that need to be relocated.
261  */
262 int bpf_core_parse_spec(const char *prog_name, const struct btf *btf,
263 			const struct bpf_core_relo *relo,
264 			struct bpf_core_spec *spec)
265 {
266 	int access_idx, parsed_len, i;
267 	struct bpf_core_accessor *acc;
268 	const struct btf_type *t;
269 	const char *name, *spec_str;
270 	__u32 id, name_off;
271 	__s64 sz;
272 
273 	spec_str = btf__name_by_offset(btf, relo->access_str_off);
274 	if (str_is_empty(spec_str) || *spec_str == ':')
275 		return -EINVAL;
276 
277 	memset(spec, 0, sizeof(*spec));
278 	spec->btf = btf;
279 	spec->root_type_id = relo->type_id;
280 	spec->relo_kind = relo->kind;
281 
282 	/* type-based relocations don't have a field access string */
283 	if (core_relo_is_type_based(relo->kind)) {
284 		if (strcmp(spec_str, "0"))
285 			return -EINVAL;
286 		return 0;
287 	}
288 
289 	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
290 	while (*spec_str) {
291 		if (*spec_str == ':')
292 			++spec_str;
293 		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
294 			return -EINVAL;
295 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
296 			return -E2BIG;
297 		spec_str += parsed_len;
298 		spec->raw_spec[spec->raw_len++] = access_idx;
299 	}
300 
301 	if (spec->raw_len == 0)
302 		return -EINVAL;
303 
304 	t = skip_mods_and_typedefs(btf, relo->type_id, &id);
305 	if (!t)
306 		return -EINVAL;
307 
308 	access_idx = spec->raw_spec[0];
309 	acc = &spec->spec[0];
310 	acc->type_id = id;
311 	acc->idx = access_idx;
312 	spec->len++;
313 
314 	if (core_relo_is_enumval_based(relo->kind)) {
315 		if (!btf_is_any_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
316 			return -EINVAL;
317 
318 		/* record enumerator name in a first accessor */
319 		name_off = btf_is_enum(t) ? btf_enum(t)[access_idx].name_off
320 					  : btf_enum64(t)[access_idx].name_off;
321 		acc->name = btf__name_by_offset(btf, name_off);
322 		return 0;
323 	}
324 
325 	if (!core_relo_is_field_based(relo->kind))
326 		return -EINVAL;
327 
328 	sz = btf__resolve_size(btf, id);
329 	if (sz < 0)
330 		return sz;
331 	spec->bit_offset = access_idx * sz * 8;
332 
333 	for (i = 1; i < spec->raw_len; i++) {
334 		t = skip_mods_and_typedefs(btf, id, &id);
335 		if (!t)
336 			return -EINVAL;
337 
338 		access_idx = spec->raw_spec[i];
339 		acc = &spec->spec[spec->len];
340 
341 		if (btf_is_composite(t)) {
342 			const struct btf_member *m;
343 			__u32 bit_offset;
344 
345 			if (access_idx >= btf_vlen(t))
346 				return -EINVAL;
347 
348 			bit_offset = btf_member_bit_offset(t, access_idx);
349 			spec->bit_offset += bit_offset;
350 
351 			m = btf_members(t) + access_idx;
352 			if (m->name_off) {
353 				name = btf__name_by_offset(btf, m->name_off);
354 				if (str_is_empty(name))
355 					return -EINVAL;
356 
357 				acc->type_id = id;
358 				acc->idx = access_idx;
359 				acc->name = name;
360 				spec->len++;
361 			}
362 
363 			id = m->type;
364 		} else if (btf_is_array(t)) {
365 			const struct btf_array *a = btf_array(t);
366 			bool flex;
367 
368 			t = skip_mods_and_typedefs(btf, a->type, &id);
369 			if (!t)
370 				return -EINVAL;
371 
372 			flex = is_flex_arr(btf, acc - 1, a);
373 			if (!flex && access_idx >= a->nelems)
374 				return -EINVAL;
375 
376 			spec->spec[spec->len].type_id = id;
377 			spec->spec[spec->len].idx = access_idx;
378 			spec->len++;
379 
380 			sz = btf__resolve_size(btf, id);
381 			if (sz < 0)
382 				return sz;
383 			spec->bit_offset += access_idx * sz * 8;
384 		} else {
385 			pr_warn("prog '%s': relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
386 				prog_name, relo->type_id, spec_str, i, id, btf_kind_str(t));
387 			return -EINVAL;
388 		}
389 	}
390 
391 	return 0;
392 }
393 
394 /* Check two types for compatibility for the purpose of field access
395  * relocation. const/volatile/restrict and typedefs are skipped to ensure we
396  * are relocating semantically compatible entities:
397  *   - any two STRUCTs/UNIONs are compatible and can be mixed;
398  *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
399  *   - any two PTRs are always compatible;
400  *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
401  *     least one of enums should be anonymous;
402  *   - for ENUMs, check sizes, names are ignored;
403  *   - for INT, size and signedness are ignored;
404  *   - any two FLOATs are always compatible;
405  *   - for ARRAY, dimensionality is ignored, element types are checked for
406  *     compatibility recursively;
407  *   - everything else shouldn't be ever a target of relocation.
408  * These rules are not set in stone and probably will be adjusted as we get
409  * more experience with using BPF CO-RE relocations.
410  */
411 static int bpf_core_fields_are_compat(const struct btf *local_btf,
412 				      __u32 local_id,
413 				      const struct btf *targ_btf,
414 				      __u32 targ_id)
415 {
416 	const struct btf_type *local_type, *targ_type;
417 
418 recur:
419 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
420 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
421 	if (!local_type || !targ_type)
422 		return -EINVAL;
423 
424 	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
425 		return 1;
426 	if (!btf_kind_core_compat(local_type, targ_type))
427 		return 0;
428 
429 	switch (btf_kind(local_type)) {
430 	case BTF_KIND_PTR:
431 	case BTF_KIND_FLOAT:
432 		return 1;
433 	case BTF_KIND_FWD:
434 	case BTF_KIND_ENUM64:
435 	case BTF_KIND_ENUM: {
436 		const char *local_name, *targ_name;
437 		size_t local_len, targ_len;
438 
439 		local_name = btf__name_by_offset(local_btf,
440 						 local_type->name_off);
441 		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
442 		local_len = bpf_core_essential_name_len(local_name);
443 		targ_len = bpf_core_essential_name_len(targ_name);
444 		/* one of them is anonymous or both w/ same flavor-less names */
445 		return local_len == 0 || targ_len == 0 ||
446 		       (local_len == targ_len &&
447 			strncmp(local_name, targ_name, local_len) == 0);
448 	}
449 	case BTF_KIND_INT:
450 		/* just reject deprecated bitfield-like integers; all other
451 		 * integers are by default compatible between each other
452 		 */
453 		return btf_int_offset(local_type) == 0 &&
454 		       btf_int_offset(targ_type) == 0;
455 	case BTF_KIND_ARRAY:
456 		local_id = btf_array(local_type)->type;
457 		targ_id = btf_array(targ_type)->type;
458 		goto recur;
459 	default:
460 		return 0;
461 	}
462 }
463 
464 /*
465  * Given single high-level named field accessor in local type, find
466  * corresponding high-level accessor for a target type. Along the way,
467  * maintain low-level spec for target as well. Also keep updating target
468  * bit offset.
469  *
470  * Searching is performed through recursive exhaustive enumeration of all
471  * fields of a struct/union. If there are any anonymous (embedded)
472  * structs/unions, they are recursively searched as well. If field with
473  * desired name is found, check compatibility between local and target types,
474  * before returning result.
475  *
476  * 1 is returned, if field is found.
477  * 0 is returned if no compatible field is found.
478  * <0 is returned on error.
479  */
480 static int bpf_core_match_member(const struct btf *local_btf,
481 				 const struct bpf_core_accessor *local_acc,
482 				 const struct btf *targ_btf,
483 				 __u32 targ_id,
484 				 struct bpf_core_spec *spec,
485 				 __u32 *next_targ_id)
486 {
487 	const struct btf_type *local_type, *targ_type;
488 	const struct btf_member *local_member, *m;
489 	const char *local_name, *targ_name;
490 	__u32 local_id;
491 	int i, n, found;
492 
493 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
494 	if (!targ_type)
495 		return -EINVAL;
496 	if (!btf_is_composite(targ_type))
497 		return 0;
498 
499 	local_id = local_acc->type_id;
500 	local_type = btf_type_by_id(local_btf, local_id);
501 	local_member = btf_members(local_type) + local_acc->idx;
502 	local_name = btf__name_by_offset(local_btf, local_member->name_off);
503 
504 	n = btf_vlen(targ_type);
505 	m = btf_members(targ_type);
506 	for (i = 0; i < n; i++, m++) {
507 		__u32 bit_offset;
508 
509 		bit_offset = btf_member_bit_offset(targ_type, i);
510 
511 		/* too deep struct/union/array nesting */
512 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
513 			return -E2BIG;
514 
515 		/* speculate this member will be the good one */
516 		spec->bit_offset += bit_offset;
517 		spec->raw_spec[spec->raw_len++] = i;
518 
519 		targ_name = btf__name_by_offset(targ_btf, m->name_off);
520 		if (str_is_empty(targ_name)) {
521 			/* embedded struct/union, we need to go deeper */
522 			found = bpf_core_match_member(local_btf, local_acc,
523 						      targ_btf, m->type,
524 						      spec, next_targ_id);
525 			if (found) /* either found or error */
526 				return found;
527 		} else if (strcmp(local_name, targ_name) == 0) {
528 			/* matching named field */
529 			struct bpf_core_accessor *targ_acc;
530 
531 			targ_acc = &spec->spec[spec->len++];
532 			targ_acc->type_id = targ_id;
533 			targ_acc->idx = i;
534 			targ_acc->name = targ_name;
535 
536 			*next_targ_id = m->type;
537 			found = bpf_core_fields_are_compat(local_btf,
538 							   local_member->type,
539 							   targ_btf, m->type);
540 			if (!found)
541 				spec->len--; /* pop accessor */
542 			return found;
543 		}
544 		/* member turned out not to be what we looked for */
545 		spec->bit_offset -= bit_offset;
546 		spec->raw_len--;
547 	}
548 
549 	return 0;
550 }
551 
552 /*
553  * Try to match local spec to a target type and, if successful, produce full
554  * target spec (high-level, low-level + bit offset).
555  */
556 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
557 			       const struct btf *targ_btf, __u32 targ_id,
558 			       struct bpf_core_spec *targ_spec)
559 {
560 	const struct btf_type *targ_type;
561 	const struct bpf_core_accessor *local_acc;
562 	struct bpf_core_accessor *targ_acc;
563 	int i, sz, matched;
564 	__u32 name_off;
565 
566 	memset(targ_spec, 0, sizeof(*targ_spec));
567 	targ_spec->btf = targ_btf;
568 	targ_spec->root_type_id = targ_id;
569 	targ_spec->relo_kind = local_spec->relo_kind;
570 
571 	if (core_relo_is_type_based(local_spec->relo_kind)) {
572 		if (local_spec->relo_kind == BPF_CORE_TYPE_MATCHES)
573 			return bpf_core_types_match(local_spec->btf,
574 						    local_spec->root_type_id,
575 						    targ_btf, targ_id);
576 		else
577 			return bpf_core_types_are_compat(local_spec->btf,
578 							 local_spec->root_type_id,
579 							 targ_btf, targ_id);
580 	}
581 
582 	local_acc = &local_spec->spec[0];
583 	targ_acc = &targ_spec->spec[0];
584 
585 	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
586 		size_t local_essent_len, targ_essent_len;
587 		const char *targ_name;
588 
589 		/* has to resolve to an enum */
590 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
591 		if (!btf_is_any_enum(targ_type))
592 			return 0;
593 
594 		local_essent_len = bpf_core_essential_name_len(local_acc->name);
595 
596 		for (i = 0; i < btf_vlen(targ_type); i++) {
597 			if (btf_is_enum(targ_type))
598 				name_off = btf_enum(targ_type)[i].name_off;
599 			else
600 				name_off = btf_enum64(targ_type)[i].name_off;
601 
602 			targ_name = btf__name_by_offset(targ_spec->btf, name_off);
603 			targ_essent_len = bpf_core_essential_name_len(targ_name);
604 			if (targ_essent_len != local_essent_len)
605 				continue;
606 			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
607 				targ_acc->type_id = targ_id;
608 				targ_acc->idx = i;
609 				targ_acc->name = targ_name;
610 				targ_spec->len++;
611 				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
612 				targ_spec->raw_len++;
613 				return 1;
614 			}
615 		}
616 		return 0;
617 	}
618 
619 	if (!core_relo_is_field_based(local_spec->relo_kind))
620 		return -EINVAL;
621 
622 	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
623 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
624 						   &targ_id);
625 		if (!targ_type)
626 			return -EINVAL;
627 
628 		if (local_acc->name) {
629 			matched = bpf_core_match_member(local_spec->btf,
630 							local_acc,
631 							targ_btf, targ_id,
632 							targ_spec, &targ_id);
633 			if (matched <= 0)
634 				return matched;
635 		} else {
636 			/* for i=0, targ_id is already treated as array element
637 			 * type (because it's the original struct), for others
638 			 * we should find array element type first
639 			 */
640 			if (i > 0) {
641 				const struct btf_array *a;
642 				bool flex;
643 
644 				if (!btf_is_array(targ_type))
645 					return 0;
646 
647 				a = btf_array(targ_type);
648 				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
649 				if (!flex && local_acc->idx >= a->nelems)
650 					return 0;
651 				if (!skip_mods_and_typedefs(targ_btf, a->type,
652 							    &targ_id))
653 					return -EINVAL;
654 			}
655 
656 			/* too deep struct/union/array nesting */
657 			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
658 				return -E2BIG;
659 
660 			targ_acc->type_id = targ_id;
661 			targ_acc->idx = local_acc->idx;
662 			targ_acc->name = NULL;
663 			targ_spec->len++;
664 			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
665 			targ_spec->raw_len++;
666 
667 			sz = btf__resolve_size(targ_btf, targ_id);
668 			if (sz < 0)
669 				return sz;
670 			targ_spec->bit_offset += local_acc->idx * sz * 8;
671 		}
672 	}
673 
674 	return 1;
675 }
676 
677 static int bpf_core_calc_field_relo(const char *prog_name,
678 				    const struct bpf_core_relo *relo,
679 				    const struct bpf_core_spec *spec,
680 				    __u64 *val, __u32 *field_sz, __u32 *type_id,
681 				    bool *validate)
682 {
683 	const struct bpf_core_accessor *acc;
684 	const struct btf_type *t;
685 	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id, elem_id;
686 	const struct btf_member *m;
687 	const struct btf_type *mt;
688 	bool bitfield;
689 	__s64 sz;
690 
691 	*field_sz = 0;
692 
693 	if (relo->kind == BPF_CORE_FIELD_EXISTS) {
694 		*val = spec ? 1 : 0;
695 		return 0;
696 	}
697 
698 	if (!spec)
699 		return -EUCLEAN; /* request instruction poisoning */
700 
701 	acc = &spec->spec[spec->len - 1];
702 	t = btf_type_by_id(spec->btf, acc->type_id);
703 
704 	/* a[n] accessor needs special handling */
705 	if (!acc->name) {
706 		if (relo->kind == BPF_CORE_FIELD_BYTE_OFFSET) {
707 			*val = spec->bit_offset / 8;
708 			/* remember field size for load/store mem size;
709 			 * note, for arrays we care about individual element
710 			 * sizes, not the overall array size
711 			 */
712 			t = skip_mods_and_typedefs(spec->btf, acc->type_id, &elem_id);
713 			while (btf_is_array(t))
714 				t = skip_mods_and_typedefs(spec->btf, btf_array(t)->type, &elem_id);
715 			sz = btf__resolve_size(spec->btf, elem_id);
716 			if (sz < 0)
717 				return -EINVAL;
718 			*field_sz = sz;
719 			*type_id = acc->type_id;
720 		} else if (relo->kind == BPF_CORE_FIELD_BYTE_SIZE) {
721 			sz = btf__resolve_size(spec->btf, acc->type_id);
722 			if (sz < 0)
723 				return -EINVAL;
724 			*val = sz;
725 		} else {
726 			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
727 				prog_name, relo->kind, relo->insn_off / 8);
728 			return -EINVAL;
729 		}
730 		if (validate)
731 			*validate = true;
732 		return 0;
733 	}
734 
735 	m = btf_members(t) + acc->idx;
736 	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
737 	bit_off = spec->bit_offset;
738 	bit_sz = btf_member_bitfield_size(t, acc->idx);
739 
740 	bitfield = bit_sz > 0;
741 	if (bitfield) {
742 		byte_sz = mt->size;
743 		byte_off = bit_off / 8 / byte_sz * byte_sz;
744 		/* figure out smallest int size necessary for bitfield load */
745 		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
746 			if (byte_sz >= 8) {
747 				/* bitfield can't be read with 64-bit read */
748 				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
749 					prog_name, relo->kind, relo->insn_off / 8);
750 				return -E2BIG;
751 			}
752 			byte_sz *= 2;
753 			byte_off = bit_off / 8 / byte_sz * byte_sz;
754 		}
755 	} else {
756 		sz = btf__resolve_size(spec->btf, field_type_id);
757 		if (sz < 0)
758 			return -EINVAL;
759 		byte_sz = sz;
760 		byte_off = spec->bit_offset / 8;
761 		bit_sz = byte_sz * 8;
762 	}
763 
764 	/* for bitfields, all the relocatable aspects are ambiguous and we
765 	 * might disagree with compiler, so turn off validation of expected
766 	 * value, except for signedness
767 	 */
768 	if (validate)
769 		*validate = !bitfield;
770 
771 	switch (relo->kind) {
772 	case BPF_CORE_FIELD_BYTE_OFFSET:
773 		*val = byte_off;
774 		if (!bitfield) {
775 			/* remember field size for load/store mem size;
776 			 * note, for arrays we care about individual element
777 			 * sizes, not the overall array size
778 			 */
779 			t = skip_mods_and_typedefs(spec->btf, field_type_id, &elem_id);
780 			while (btf_is_array(t))
781 				t = skip_mods_and_typedefs(spec->btf, btf_array(t)->type, &elem_id);
782 			sz = btf__resolve_size(spec->btf, elem_id);
783 			if (sz < 0)
784 				return -EINVAL;
785 			*field_sz = sz;
786 			*type_id = field_type_id;
787 		}
788 		break;
789 	case BPF_CORE_FIELD_BYTE_SIZE:
790 		*val = byte_sz;
791 		break;
792 	case BPF_CORE_FIELD_SIGNED:
793 		*val = (btf_is_any_enum(mt) && BTF_INFO_KFLAG(mt->info)) ||
794 		       (btf_is_int(mt) && (btf_int_encoding(mt) & BTF_INT_SIGNED));
795 		if (validate)
796 			*validate = true; /* signedness is never ambiguous */
797 		break;
798 	case BPF_CORE_FIELD_LSHIFT_U64:
799 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
800 		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
801 #else
802 		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
803 #endif
804 		break;
805 	case BPF_CORE_FIELD_RSHIFT_U64:
806 		*val = 64 - bit_sz;
807 		if (validate)
808 			*validate = true; /* right shift is never ambiguous */
809 		break;
810 	case BPF_CORE_FIELD_EXISTS:
811 	default:
812 		return -EOPNOTSUPP;
813 	}
814 
815 	return 0;
816 }
817 
818 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
819 				   const struct bpf_core_spec *spec,
820 				   __u64 *val, bool *validate)
821 {
822 	__s64 sz;
823 
824 	/* by default, always check expected value in bpf_insn */
825 	if (validate)
826 		*validate = true;
827 
828 	/* type-based relos return zero when target type is not found */
829 	if (!spec) {
830 		*val = 0;
831 		return 0;
832 	}
833 
834 	switch (relo->kind) {
835 	case BPF_CORE_TYPE_ID_TARGET:
836 		*val = spec->root_type_id;
837 		/* type ID, embedded in bpf_insn, might change during linking,
838 		 * so enforcing it is pointless
839 		 */
840 		if (validate)
841 			*validate = false;
842 		break;
843 	case BPF_CORE_TYPE_EXISTS:
844 	case BPF_CORE_TYPE_MATCHES:
845 		*val = 1;
846 		break;
847 	case BPF_CORE_TYPE_SIZE:
848 		sz = btf__resolve_size(spec->btf, spec->root_type_id);
849 		if (sz < 0)
850 			return -EINVAL;
851 		*val = sz;
852 		break;
853 	case BPF_CORE_TYPE_ID_LOCAL:
854 	/* BPF_CORE_TYPE_ID_LOCAL is handled specially and shouldn't get here */
855 	default:
856 		return -EOPNOTSUPP;
857 	}
858 
859 	return 0;
860 }
861 
862 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
863 				      const struct bpf_core_spec *spec,
864 				      __u64 *val)
865 {
866 	const struct btf_type *t;
867 
868 	switch (relo->kind) {
869 	case BPF_CORE_ENUMVAL_EXISTS:
870 		*val = spec ? 1 : 0;
871 		break;
872 	case BPF_CORE_ENUMVAL_VALUE:
873 		if (!spec)
874 			return -EUCLEAN; /* request instruction poisoning */
875 		t = btf_type_by_id(spec->btf, spec->spec[0].type_id);
876 		if (btf_is_enum(t))
877 			*val = btf_enum(t)[spec->spec[0].idx].val;
878 		else
879 			*val = btf_enum64_value(btf_enum64(t) + spec->spec[0].idx);
880 		break;
881 	default:
882 		return -EOPNOTSUPP;
883 	}
884 
885 	return 0;
886 }
887 
888 /* Calculate original and target relocation values, given local and target
889  * specs and relocation kind. These values are calculated for each candidate.
890  * If there are multiple candidates, resulting values should all be consistent
891  * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
892  * If instruction has to be poisoned, *poison will be set to true.
893  */
894 static int bpf_core_calc_relo(const char *prog_name,
895 			      const struct bpf_core_relo *relo,
896 			      int relo_idx,
897 			      const struct bpf_core_spec *local_spec,
898 			      const struct bpf_core_spec *targ_spec,
899 			      struct bpf_core_relo_res *res)
900 {
901 	int err = -EOPNOTSUPP;
902 
903 	res->orig_val = 0;
904 	res->new_val = 0;
905 	res->poison = false;
906 	res->validate = true;
907 	res->fail_memsz_adjust = false;
908 	res->orig_sz = res->new_sz = 0;
909 	res->orig_type_id = res->new_type_id = 0;
910 
911 	if (core_relo_is_field_based(relo->kind)) {
912 		err = bpf_core_calc_field_relo(prog_name, relo, local_spec,
913 					       &res->orig_val, &res->orig_sz,
914 					       &res->orig_type_id, &res->validate);
915 		err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec,
916 						      &res->new_val, &res->new_sz,
917 						      &res->new_type_id, NULL);
918 		if (err)
919 			goto done;
920 		/* Validate if it's safe to adjust load/store memory size.
921 		 * Adjustments are performed only if original and new memory
922 		 * sizes differ.
923 		 */
924 		res->fail_memsz_adjust = false;
925 		if (res->orig_sz != res->new_sz) {
926 			const struct btf_type *orig_t, *new_t;
927 
928 			orig_t = btf_type_by_id(local_spec->btf, res->orig_type_id);
929 			new_t = btf_type_by_id(targ_spec->btf, res->new_type_id);
930 
931 			/* There are two use cases in which it's safe to
932 			 * adjust load/store's mem size:
933 			 *   - reading a 32-bit kernel pointer, while on BPF
934 			 *   size pointers are always 64-bit; in this case
935 			 *   it's safe to "downsize" instruction size due to
936 			 *   pointer being treated as unsigned integer with
937 			 *   zero-extended upper 32-bits;
938 			 *   - reading unsigned integers, again due to
939 			 *   zero-extension is preserving the value correctly.
940 			 *
941 			 * In all other cases it's incorrect to attempt to
942 			 * load/store field because read value will be
943 			 * incorrect, so we poison relocated instruction.
944 			 */
945 			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
946 				goto done;
947 			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
948 			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
949 			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
950 				goto done;
951 
952 			/* mark as invalid mem size adjustment, but this will
953 			 * only be checked for LDX/STX/ST insns
954 			 */
955 			res->fail_memsz_adjust = true;
956 		}
957 	} else if (core_relo_is_type_based(relo->kind)) {
958 		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val, &res->validate);
959 		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val, NULL);
960 	} else if (core_relo_is_enumval_based(relo->kind)) {
961 		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
962 		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
963 	}
964 
965 done:
966 	if (err == -EUCLEAN) {
967 		/* EUCLEAN is used to signal instruction poisoning request */
968 		res->poison = true;
969 		err = 0;
970 	} else if (err == -EOPNOTSUPP) {
971 		/* EOPNOTSUPP means unknown/unsupported relocation */
972 		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
973 			prog_name, relo_idx, core_relo_kind_str(relo->kind),
974 			relo->kind, relo->insn_off / 8);
975 	}
976 
977 	return err;
978 }
979 
980 /*
981  * Turn instruction for which CO_RE relocation failed into invalid one with
982  * distinct signature.
983  */
984 static void bpf_core_poison_insn(const char *prog_name, int relo_idx,
985 				 int insn_idx, struct bpf_insn *insn)
986 {
987 	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
988 		 prog_name, relo_idx, insn_idx);
989 	insn->code = BPF_JMP | BPF_CALL;
990 	insn->dst_reg = 0;
991 	insn->src_reg = 0;
992 	insn->off = 0;
993 	/* if this instruction is reachable (not a dead code),
994 	 * verifier will complain with the following message:
995 	 * invalid func unknown#195896080
996 	 */
997 	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
998 }
999 
1000 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
1001 {
1002 	switch (BPF_SIZE(insn->code)) {
1003 	case BPF_DW: return 8;
1004 	case BPF_W: return 4;
1005 	case BPF_H: return 2;
1006 	case BPF_B: return 1;
1007 	default: return -1;
1008 	}
1009 }
1010 
1011 static int insn_bytes_to_bpf_size(__u32 sz)
1012 {
1013 	switch (sz) {
1014 	case 8: return BPF_DW;
1015 	case 4: return BPF_W;
1016 	case 2: return BPF_H;
1017 	case 1: return BPF_B;
1018 	default: return -1;
1019 	}
1020 }
1021 
1022 /*
1023  * Patch relocatable BPF instruction.
1024  *
1025  * Patched value is determined by relocation kind and target specification.
1026  * For existence relocations target spec will be NULL if field/type is not found.
1027  * Expected insn->imm value is determined using relocation kind and local
1028  * spec, and is checked before patching instruction. If actual insn->imm value
1029  * is wrong, bail out with error.
1030  *
1031  * Currently supported classes of BPF instruction are:
1032  * 1. rX = <imm> (assignment with immediate operand);
1033  * 2. rX += <imm> (arithmetic operations with immediate operand);
1034  * 3. rX = <imm64> (load with 64-bit immediate value);
1035  * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
1036  * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
1037  * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
1038  */
1039 int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn,
1040 			int insn_idx, const struct bpf_core_relo *relo,
1041 			int relo_idx, const struct bpf_core_relo_res *res)
1042 {
1043 	__u64 orig_val, new_val;
1044 	__u8 class;
1045 
1046 	class = BPF_CLASS(insn->code);
1047 
1048 	if (res->poison) {
1049 poison:
1050 		/* poison second part of ldimm64 to avoid confusing error from
1051 		 * verifier about "unknown opcode 00"
1052 		 */
1053 		if (is_ldimm64_insn(insn))
1054 			bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1);
1055 		bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn);
1056 		return 0;
1057 	}
1058 
1059 	orig_val = res->orig_val;
1060 	new_val = res->new_val;
1061 
1062 	switch (class) {
1063 	case BPF_ALU:
1064 	case BPF_ALU64:
1065 		if (BPF_SRC(insn->code) != BPF_K)
1066 			return -EINVAL;
1067 		if (res->validate && insn->imm != orig_val) {
1068 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %llu -> %llu\n",
1069 				prog_name, relo_idx,
1070 				insn_idx, insn->imm, (unsigned long long)orig_val,
1071 				(unsigned long long)new_val);
1072 			return -EINVAL;
1073 		}
1074 		orig_val = insn->imm;
1075 		insn->imm = new_val;
1076 		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %llu -> %llu\n",
1077 			 prog_name, relo_idx, insn_idx,
1078 			 (unsigned long long)orig_val, (unsigned long long)new_val);
1079 		break;
1080 	case BPF_LDX:
1081 	case BPF_ST:
1082 	case BPF_STX:
1083 		if (res->validate && insn->off != orig_val) {
1084 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %llu -> %llu\n",
1085 				prog_name, relo_idx, insn_idx, insn->off, (unsigned long long)orig_val,
1086 				(unsigned long long)new_val);
1087 			return -EINVAL;
1088 		}
1089 		if (new_val > SHRT_MAX) {
1090 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %llu\n",
1091 				prog_name, relo_idx, insn_idx, (unsigned long long)new_val);
1092 			return -ERANGE;
1093 		}
1094 		if (res->fail_memsz_adjust) {
1095 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
1096 				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
1097 				prog_name, relo_idx, insn_idx);
1098 			goto poison;
1099 		}
1100 
1101 		orig_val = insn->off;
1102 		insn->off = new_val;
1103 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %llu -> %llu\n",
1104 			 prog_name, relo_idx, insn_idx, (unsigned long long)orig_val,
1105 			 (unsigned long long)new_val);
1106 
1107 		if (res->new_sz != res->orig_sz) {
1108 			int insn_bytes_sz, insn_bpf_sz;
1109 
1110 			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
1111 			if (insn_bytes_sz != res->orig_sz) {
1112 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
1113 					prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
1114 				return -EINVAL;
1115 			}
1116 
1117 			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
1118 			if (insn_bpf_sz < 0) {
1119 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
1120 					prog_name, relo_idx, insn_idx, res->new_sz);
1121 				return -EINVAL;
1122 			}
1123 
1124 			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
1125 			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
1126 				 prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
1127 		}
1128 		break;
1129 	case BPF_LD: {
1130 		__u64 imm;
1131 
1132 		if (!is_ldimm64_insn(insn) ||
1133 		    insn[0].src_reg != 0 || insn[0].off != 0 ||
1134 		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
1135 		    insn[1].src_reg != 0 || insn[1].off != 0) {
1136 			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
1137 				prog_name, relo_idx, insn_idx);
1138 			return -EINVAL;
1139 		}
1140 
1141 		imm = (__u32)insn[0].imm | ((__u64)insn[1].imm << 32);
1142 		if (res->validate && imm != orig_val) {
1143 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %llu -> %llu\n",
1144 				prog_name, relo_idx,
1145 				insn_idx, (unsigned long long)imm,
1146 				(unsigned long long)orig_val, (unsigned long long)new_val);
1147 			return -EINVAL;
1148 		}
1149 
1150 		insn[0].imm = new_val;
1151 		insn[1].imm = new_val >> 32;
1152 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %llu\n",
1153 			 prog_name, relo_idx, insn_idx,
1154 			 (unsigned long long)imm, (unsigned long long)new_val);
1155 		break;
1156 	}
1157 	default:
1158 		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
1159 			prog_name, relo_idx, insn_idx, insn->code,
1160 			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
1161 		return -EINVAL;
1162 	}
1163 
1164 	return 0;
1165 }
1166 
1167 /* Output spec definition in the format:
1168  * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
1169  * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
1170  */
1171 int bpf_core_format_spec(char *buf, size_t buf_sz, const struct bpf_core_spec *spec)
1172 {
1173 	const struct btf_type *t;
1174 	const char *s;
1175 	__u32 type_id;
1176 	int i, len = 0;
1177 
1178 #define append_buf(fmt, args...)				\
1179 	({							\
1180 		int r;						\
1181 		r = snprintf(buf, buf_sz, fmt, ##args);		\
1182 		len += r;					\
1183 		if (r >= buf_sz)				\
1184 			r = buf_sz;				\
1185 		buf += r;					\
1186 		buf_sz -= r;					\
1187 	})
1188 
1189 	type_id = spec->root_type_id;
1190 	t = btf_type_by_id(spec->btf, type_id);
1191 	s = btf__name_by_offset(spec->btf, t->name_off);
1192 
1193 	append_buf("<%s> [%u] %s %s",
1194 		   core_relo_kind_str(spec->relo_kind),
1195 		   type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
1196 
1197 	if (core_relo_is_type_based(spec->relo_kind))
1198 		return len;
1199 
1200 	if (core_relo_is_enumval_based(spec->relo_kind)) {
1201 		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
1202 		if (btf_is_enum(t)) {
1203 			const struct btf_enum *e;
1204 			const char *fmt_str;
1205 
1206 			e = btf_enum(t) + spec->raw_spec[0];
1207 			s = btf__name_by_offset(spec->btf, e->name_off);
1208 			fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %d" : "::%s = %u";
1209 			append_buf(fmt_str, s, e->val);
1210 		} else {
1211 			const struct btf_enum64 *e;
1212 			const char *fmt_str;
1213 
1214 			e = btf_enum64(t) + spec->raw_spec[0];
1215 			s = btf__name_by_offset(spec->btf, e->name_off);
1216 			fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %lld" : "::%s = %llu";
1217 			append_buf(fmt_str, s, (unsigned long long)btf_enum64_value(e));
1218 		}
1219 		return len;
1220 	}
1221 
1222 	if (core_relo_is_field_based(spec->relo_kind)) {
1223 		for (i = 0; i < spec->len; i++) {
1224 			if (spec->spec[i].name)
1225 				append_buf(".%s", spec->spec[i].name);
1226 			else if (i > 0 || spec->spec[i].idx > 0)
1227 				append_buf("[%u]", spec->spec[i].idx);
1228 		}
1229 
1230 		append_buf(" (");
1231 		for (i = 0; i < spec->raw_len; i++)
1232 			append_buf("%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
1233 
1234 		if (spec->bit_offset % 8)
1235 			append_buf(" @ offset %u.%u)", spec->bit_offset / 8, spec->bit_offset % 8);
1236 		else
1237 			append_buf(" @ offset %u)", spec->bit_offset / 8);
1238 		return len;
1239 	}
1240 
1241 	return len;
1242 #undef append_buf
1243 }
1244 
1245 /*
1246  * Calculate CO-RE relocation target result.
1247  *
1248  * The outline and important points of the algorithm:
1249  * 1. For given local type, find corresponding candidate target types.
1250  *    Candidate type is a type with the same "essential" name, ignoring
1251  *    everything after last triple underscore (___). E.g., `sample`,
1252  *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
1253  *    for each other. Names with triple underscore are referred to as
1254  *    "flavors" and are useful, among other things, to allow to
1255  *    specify/support incompatible variations of the same kernel struct, which
1256  *    might differ between different kernel versions and/or build
1257  *    configurations.
1258  *
1259  *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
1260  *    converter, when deduplicated BTF of a kernel still contains more than
1261  *    one different types with the same name. In that case, ___2, ___3, etc
1262  *    are appended starting from second name conflict. But start flavors are
1263  *    also useful to be defined "locally", in BPF program, to extract same
1264  *    data from incompatible changes between different kernel
1265  *    versions/configurations. For instance, to handle field renames between
1266  *    kernel versions, one can use two flavors of the struct name with the
1267  *    same common name and use conditional relocations to extract that field,
1268  *    depending on target kernel version.
1269  * 2. For each candidate type, try to match local specification to this
1270  *    candidate target type. Matching involves finding corresponding
1271  *    high-level spec accessors, meaning that all named fields should match,
1272  *    as well as all array accesses should be within the actual bounds. Also,
1273  *    types should be compatible (see bpf_core_fields_are_compat for details).
1274  * 3. It is supported and expected that there might be multiple flavors
1275  *    matching the spec. As long as all the specs resolve to the same set of
1276  *    offsets across all candidates, there is no error. If there is any
1277  *    ambiguity, CO-RE relocation will fail. This is necessary to accommodate
1278  *    imperfection of BTF deduplication, which can cause slight duplication of
1279  *    the same BTF type, if some directly or indirectly referenced (by
1280  *    pointer) type gets resolved to different actual types in different
1281  *    object files. If such a situation occurs, deduplicated BTF will end up
1282  *    with two (or more) structurally identical types, which differ only in
1283  *    types they refer to through pointer. This should be OK in most cases and
1284  *    is not an error.
1285  * 4. Candidate types search is performed by linearly scanning through all
1286  *    types in target BTF. It is anticipated that this is overall more
1287  *    efficient memory-wise and not significantly worse (if not better)
1288  *    CPU-wise compared to prebuilding a map from all local type names to
1289  *    a list of candidate type names. It's also sped up by caching resolved
1290  *    list of matching candidates per each local "root" type ID, that has at
1291  *    least one bpf_core_relo associated with it. This list is shared
1292  *    between multiple relocations for the same type ID and is updated as some
1293  *    of the candidates are pruned due to structural incompatibility.
1294  */
1295 int bpf_core_calc_relo_insn(const char *prog_name,
1296 			    const struct bpf_core_relo *relo,
1297 			    int relo_idx,
1298 			    const struct btf *local_btf,
1299 			    struct bpf_core_cand_list *cands,
1300 			    struct bpf_core_spec *specs_scratch,
1301 			    struct bpf_core_relo_res *targ_res)
1302 {
1303 	struct bpf_core_spec *local_spec = &specs_scratch[0];
1304 	struct bpf_core_spec *cand_spec = &specs_scratch[1];
1305 	struct bpf_core_spec *targ_spec = &specs_scratch[2];
1306 	struct bpf_core_relo_res cand_res;
1307 	const struct btf_type *local_type;
1308 	const char *local_name;
1309 	__u32 local_id;
1310 	char spec_buf[256];
1311 	int i, j, err;
1312 
1313 	local_id = relo->type_id;
1314 	local_type = btf_type_by_id(local_btf, local_id);
1315 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
1316 	if (!local_name)
1317 		return -EINVAL;
1318 
1319 	err = bpf_core_parse_spec(prog_name, local_btf, relo, local_spec);
1320 	if (err) {
1321 		const char *spec_str;
1322 
1323 		spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
1324 		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
1325 			prog_name, relo_idx, local_id, btf_kind_str(local_type),
1326 			str_is_empty(local_name) ? "<anon>" : local_name,
1327 			spec_str ?: "<?>", err);
1328 		return -EINVAL;
1329 	}
1330 
1331 	bpf_core_format_spec(spec_buf, sizeof(spec_buf), local_spec);
1332 	pr_debug("prog '%s': relo #%d: %s\n", prog_name, relo_idx, spec_buf);
1333 
1334 	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
1335 	if (relo->kind == BPF_CORE_TYPE_ID_LOCAL) {
1336 		/* bpf_insn's imm value could get out of sync during linking */
1337 		memset(targ_res, 0, sizeof(*targ_res));
1338 		targ_res->validate = false;
1339 		targ_res->poison = false;
1340 		targ_res->orig_val = local_spec->root_type_id;
1341 		targ_res->new_val = local_spec->root_type_id;
1342 		return 0;
1343 	}
1344 
1345 	/* libbpf doesn't support candidate search for anonymous types */
1346 	if (str_is_empty(local_name)) {
1347 		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
1348 			prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
1349 		return -EOPNOTSUPP;
1350 	}
1351 
1352 	for (i = 0, j = 0; i < cands->len; i++) {
1353 		err = bpf_core_spec_match(local_spec, cands->cands[i].btf,
1354 					  cands->cands[i].id, cand_spec);
1355 		if (err < 0) {
1356 			bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1357 			pr_warn("prog '%s': relo #%d: error matching candidate #%d %s: %d\n",
1358 				prog_name, relo_idx, i, spec_buf, err);
1359 			return err;
1360 		}
1361 
1362 		bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1363 		pr_debug("prog '%s': relo #%d: %s candidate #%d %s\n", prog_name,
1364 			 relo_idx, err == 0 ? "non-matching" : "matching", i, spec_buf);
1365 
1366 		if (err == 0)
1367 			continue;
1368 
1369 		err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, cand_spec, &cand_res);
1370 		if (err)
1371 			return err;
1372 
1373 		if (j == 0) {
1374 			*targ_res = cand_res;
1375 			*targ_spec = *cand_spec;
1376 		} else if (cand_spec->bit_offset != targ_spec->bit_offset) {
1377 			/* if there are many field relo candidates, they
1378 			 * should all resolve to the same bit offset
1379 			 */
1380 			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
1381 				prog_name, relo_idx, cand_spec->bit_offset,
1382 				targ_spec->bit_offset);
1383 			return -EINVAL;
1384 		} else if (cand_res.poison != targ_res->poison ||
1385 			   cand_res.new_val != targ_res->new_val) {
1386 			/* all candidates should result in the same relocation
1387 			 * decision and value, otherwise it's dangerous to
1388 			 * proceed due to ambiguity
1389 			 */
1390 			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %llu != %s %llu\n",
1391 				prog_name, relo_idx,
1392 				cand_res.poison ? "failure" : "success",
1393 				(unsigned long long)cand_res.new_val,
1394 				targ_res->poison ? "failure" : "success",
1395 				(unsigned long long)targ_res->new_val);
1396 			return -EINVAL;
1397 		}
1398 
1399 		cands->cands[j++] = cands->cands[i];
1400 	}
1401 
1402 	/*
1403 	 * For BPF_CORE_FIELD_EXISTS relo or when used BPF program has field
1404 	 * existence checks or kernel version/config checks, it's expected
1405 	 * that we might not find any candidates. In this case, if field
1406 	 * wasn't found in any candidate, the list of candidates shouldn't
1407 	 * change at all, we'll just handle relocating appropriately,
1408 	 * depending on relo's kind.
1409 	 */
1410 	if (j > 0)
1411 		cands->len = j;
1412 
1413 	/*
1414 	 * If no candidates were found, it might be both a programmer error,
1415 	 * as well as expected case, depending whether instruction w/
1416 	 * relocation is guarded in some way that makes it unreachable (dead
1417 	 * code) if relocation can't be resolved. This is handled in
1418 	 * bpf_core_patch_insn() uniformly by replacing that instruction with
1419 	 * BPF helper call insn (using invalid helper ID). If that instruction
1420 	 * is indeed unreachable, then it will be ignored and eliminated by
1421 	 * verifier. If it was an error, then verifier will complain and point
1422 	 * to a specific instruction number in its log.
1423 	 */
1424 	if (j == 0) {
1425 		pr_debug("prog '%s': relo #%d: no matching targets found\n",
1426 			 prog_name, relo_idx);
1427 
1428 		/* calculate single target relo result explicitly */
1429 		err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, NULL, targ_res);
1430 		if (err)
1431 			return err;
1432 	}
1433 
1434 	return 0;
1435 }
1436 
1437 static bool bpf_core_names_match(const struct btf *local_btf, size_t local_name_off,
1438 				 const struct btf *targ_btf, size_t targ_name_off)
1439 {
1440 	const char *local_n, *targ_n;
1441 	size_t local_len, targ_len;
1442 
1443 	local_n = btf__name_by_offset(local_btf, local_name_off);
1444 	targ_n = btf__name_by_offset(targ_btf, targ_name_off);
1445 
1446 	if (str_is_empty(targ_n))
1447 		return str_is_empty(local_n);
1448 
1449 	targ_len = bpf_core_essential_name_len(targ_n);
1450 	local_len = bpf_core_essential_name_len(local_n);
1451 
1452 	return targ_len == local_len && strncmp(local_n, targ_n, local_len) == 0;
1453 }
1454 
1455 static int bpf_core_enums_match(const struct btf *local_btf, const struct btf_type *local_t,
1456 				const struct btf *targ_btf, const struct btf_type *targ_t)
1457 {
1458 	__u16 local_vlen = btf_vlen(local_t);
1459 	__u16 targ_vlen = btf_vlen(targ_t);
1460 	int i, j;
1461 
1462 	if (local_t->size != targ_t->size)
1463 		return 0;
1464 
1465 	if (local_vlen > targ_vlen)
1466 		return 0;
1467 
1468 	/* iterate over the local enum's variants and make sure each has
1469 	 * a symbolic name correspondent in the target
1470 	 */
1471 	for (i = 0; i < local_vlen; i++) {
1472 		bool matched = false;
1473 		__u32 local_n_off, targ_n_off;
1474 
1475 		local_n_off = btf_is_enum(local_t) ? btf_enum(local_t)[i].name_off :
1476 						     btf_enum64(local_t)[i].name_off;
1477 
1478 		for (j = 0; j < targ_vlen; j++) {
1479 			targ_n_off = btf_is_enum(targ_t) ? btf_enum(targ_t)[j].name_off :
1480 							   btf_enum64(targ_t)[j].name_off;
1481 
1482 			if (bpf_core_names_match(local_btf, local_n_off, targ_btf, targ_n_off)) {
1483 				matched = true;
1484 				break;
1485 			}
1486 		}
1487 
1488 		if (!matched)
1489 			return 0;
1490 	}
1491 	return 1;
1492 }
1493 
1494 static int bpf_core_composites_match(const struct btf *local_btf, const struct btf_type *local_t,
1495 				     const struct btf *targ_btf, const struct btf_type *targ_t,
1496 				     bool behind_ptr, int level)
1497 {
1498 	const struct btf_member *local_m = btf_members(local_t);
1499 	__u16 local_vlen = btf_vlen(local_t);
1500 	__u16 targ_vlen = btf_vlen(targ_t);
1501 	int i, j, err;
1502 
1503 	if (local_vlen > targ_vlen)
1504 		return 0;
1505 
1506 	/* check that all local members have a match in the target */
1507 	for (i = 0; i < local_vlen; i++, local_m++) {
1508 		const struct btf_member *targ_m = btf_members(targ_t);
1509 		bool matched = false;
1510 
1511 		for (j = 0; j < targ_vlen; j++, targ_m++) {
1512 			if (!bpf_core_names_match(local_btf, local_m->name_off,
1513 						  targ_btf, targ_m->name_off))
1514 				continue;
1515 
1516 			err = __bpf_core_types_match(local_btf, local_m->type, targ_btf,
1517 						     targ_m->type, behind_ptr, level - 1);
1518 			if (err < 0)
1519 				return err;
1520 			if (err > 0) {
1521 				matched = true;
1522 				break;
1523 			}
1524 		}
1525 
1526 		if (!matched)
1527 			return 0;
1528 	}
1529 	return 1;
1530 }
1531 
1532 /* Check that two types "match". This function assumes that root types were
1533  * already checked for name match.
1534  *
1535  * The matching relation is defined as follows:
1536  * - modifiers and typedefs are stripped (and, hence, effectively ignored)
1537  * - generally speaking types need to be of same kind (struct vs. struct, union
1538  *   vs. union, etc.)
1539  *   - exceptions are struct/union behind a pointer which could also match a
1540  *     forward declaration of a struct or union, respectively, and enum vs.
1541  *     enum64 (see below)
1542  * Then, depending on type:
1543  * - integers:
1544  *   - match if size and signedness match
1545  * - arrays & pointers:
1546  *   - target types are recursively matched
1547  * - structs & unions:
1548  *   - local members need to exist in target with the same name
1549  *   - for each member we recursively check match unless it is already behind a
1550  *     pointer, in which case we only check matching names and compatible kind
1551  * - enums:
1552  *   - local variants have to have a match in target by symbolic name (but not
1553  *     numeric value)
1554  *   - size has to match (but enum may match enum64 and vice versa)
1555  * - function pointers:
1556  *   - number and position of arguments in local type has to match target
1557  *   - for each argument and the return value we recursively check match
1558  */
1559 int __bpf_core_types_match(const struct btf *local_btf, __u32 local_id, const struct btf *targ_btf,
1560 			   __u32 targ_id, bool behind_ptr, int level)
1561 {
1562 	const struct btf_type *local_t, *targ_t;
1563 	int depth = 32; /* max recursion depth */
1564 	__u16 local_k, targ_k;
1565 
1566 	if (level <= 0)
1567 		return -EINVAL;
1568 
1569 recur:
1570 	depth--;
1571 	if (depth < 0)
1572 		return -EINVAL;
1573 
1574 	local_t = skip_mods_and_typedefs(local_btf, local_id, &local_id);
1575 	targ_t = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
1576 	if (!local_t || !targ_t)
1577 		return -EINVAL;
1578 
1579 	/* While the name check happens after typedefs are skipped, root-level
1580 	 * typedefs would still be name-matched as that's the contract with
1581 	 * callers.
1582 	 */
1583 	if (!bpf_core_names_match(local_btf, local_t->name_off, targ_btf, targ_t->name_off))
1584 		return 0;
1585 
1586 	local_k = btf_kind(local_t);
1587 	targ_k = btf_kind(targ_t);
1588 
1589 	switch (local_k) {
1590 	case BTF_KIND_UNKN:
1591 		return local_k == targ_k;
1592 	case BTF_KIND_FWD: {
1593 		bool local_f = BTF_INFO_KFLAG(local_t->info);
1594 
1595 		if (behind_ptr) {
1596 			if (local_k == targ_k)
1597 				return local_f == BTF_INFO_KFLAG(targ_t->info);
1598 
1599 			/* for forward declarations kflag dictates whether the
1600 			 * target is a struct (0) or union (1)
1601 			 */
1602 			return (targ_k == BTF_KIND_STRUCT && !local_f) ||
1603 			       (targ_k == BTF_KIND_UNION && local_f);
1604 		} else {
1605 			if (local_k != targ_k)
1606 				return 0;
1607 
1608 			/* match if the forward declaration is for the same kind */
1609 			return local_f == BTF_INFO_KFLAG(targ_t->info);
1610 		}
1611 	}
1612 	case BTF_KIND_ENUM:
1613 	case BTF_KIND_ENUM64:
1614 		if (!btf_is_any_enum(targ_t))
1615 			return 0;
1616 
1617 		return bpf_core_enums_match(local_btf, local_t, targ_btf, targ_t);
1618 	case BTF_KIND_STRUCT:
1619 	case BTF_KIND_UNION:
1620 		if (behind_ptr) {
1621 			bool targ_f = BTF_INFO_KFLAG(targ_t->info);
1622 
1623 			if (local_k == targ_k)
1624 				return 1;
1625 
1626 			if (targ_k != BTF_KIND_FWD)
1627 				return 0;
1628 
1629 			return (local_k == BTF_KIND_UNION) == targ_f;
1630 		} else {
1631 			if (local_k != targ_k)
1632 				return 0;
1633 
1634 			return bpf_core_composites_match(local_btf, local_t, targ_btf, targ_t,
1635 							 behind_ptr, level);
1636 		}
1637 	case BTF_KIND_INT: {
1638 		__u8 local_sgn;
1639 		__u8 targ_sgn;
1640 
1641 		if (local_k != targ_k)
1642 			return 0;
1643 
1644 		local_sgn = btf_int_encoding(local_t) & BTF_INT_SIGNED;
1645 		targ_sgn = btf_int_encoding(targ_t) & BTF_INT_SIGNED;
1646 
1647 		return local_t->size == targ_t->size && local_sgn == targ_sgn;
1648 	}
1649 	case BTF_KIND_PTR:
1650 		if (local_k != targ_k)
1651 			return 0;
1652 
1653 		behind_ptr = true;
1654 
1655 		local_id = local_t->type;
1656 		targ_id = targ_t->type;
1657 		goto recur;
1658 	case BTF_KIND_ARRAY: {
1659 		const struct btf_array *local_array = btf_array(local_t);
1660 		const struct btf_array *targ_array = btf_array(targ_t);
1661 
1662 		if (local_k != targ_k)
1663 			return 0;
1664 
1665 		if (local_array->nelems != targ_array->nelems)
1666 			return 0;
1667 
1668 		local_id = local_array->type;
1669 		targ_id = targ_array->type;
1670 		goto recur;
1671 	}
1672 	case BTF_KIND_FUNC_PROTO: {
1673 		struct btf_param *local_p = btf_params(local_t);
1674 		struct btf_param *targ_p = btf_params(targ_t);
1675 		__u16 local_vlen = btf_vlen(local_t);
1676 		__u16 targ_vlen = btf_vlen(targ_t);
1677 		int i, err;
1678 
1679 		if (local_k != targ_k)
1680 			return 0;
1681 
1682 		if (local_vlen != targ_vlen)
1683 			return 0;
1684 
1685 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
1686 			err = __bpf_core_types_match(local_btf, local_p->type, targ_btf,
1687 						     targ_p->type, behind_ptr, level - 1);
1688 			if (err <= 0)
1689 				return err;
1690 		}
1691 
1692 		/* tail recurse for return type check */
1693 		local_id = local_t->type;
1694 		targ_id = targ_t->type;
1695 		goto recur;
1696 	}
1697 	default:
1698 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
1699 			btf_kind_str(local_t), local_id, targ_id);
1700 		return 0;
1701 	}
1702 }
1703