1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 /* Copyright (c) 2019 Facebook */ 3 4 #ifdef __KERNEL__ 5 #include <linux/bpf.h> 6 #include <linux/btf.h> 7 #include <linux/string.h> 8 #include <linux/bpf_verifier.h> 9 #include "relo_core.h" 10 11 static const char *btf_kind_str(const struct btf_type *t) 12 { 13 return btf_type_str(t); 14 } 15 16 static bool is_ldimm64_insn(struct bpf_insn *insn) 17 { 18 return insn->code == (BPF_LD | BPF_IMM | BPF_DW); 19 } 20 21 static const struct btf_type * 22 skip_mods_and_typedefs(const struct btf *btf, u32 id, u32 *res_id) 23 { 24 return btf_type_skip_modifiers(btf, id, res_id); 25 } 26 27 static const char *btf__name_by_offset(const struct btf *btf, u32 offset) 28 { 29 return btf_name_by_offset(btf, offset); 30 } 31 32 static s64 btf__resolve_size(const struct btf *btf, u32 type_id) 33 { 34 const struct btf_type *t; 35 int size; 36 37 t = btf_type_by_id(btf, type_id); 38 t = btf_resolve_size(btf, t, &size); 39 if (IS_ERR(t)) 40 return PTR_ERR(t); 41 return size; 42 } 43 44 enum libbpf_print_level { 45 LIBBPF_WARN, 46 LIBBPF_INFO, 47 LIBBPF_DEBUG, 48 }; 49 50 #undef pr_warn 51 #undef pr_info 52 #undef pr_debug 53 #define pr_warn(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__) 54 #define pr_info(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__) 55 #define pr_debug(fmt, log, ...) bpf_log((void *)log, fmt, "", ##__VA_ARGS__) 56 #define libbpf_print(level, fmt, ...) bpf_log((void *)prog_name, fmt, ##__VA_ARGS__) 57 #else 58 #include <stdio.h> 59 #include <string.h> 60 #include <errno.h> 61 #include <ctype.h> 62 #include <linux/err.h> 63 64 #include "libbpf.h" 65 #include "bpf.h" 66 #include "btf.h" 67 #include "str_error.h" 68 #include "libbpf_internal.h" 69 #endif 70 71 static bool is_flex_arr(const struct btf *btf, 72 const struct bpf_core_accessor *acc, 73 const struct btf_array *arr) 74 { 75 const struct btf_type *t; 76 77 /* not a flexible array, if not inside a struct or has non-zero size */ 78 if (!acc->name || arr->nelems > 0) 79 return false; 80 81 /* has to be the last member of enclosing struct */ 82 t = btf_type_by_id(btf, acc->type_id); 83 return acc->idx == btf_vlen(t) - 1; 84 } 85 86 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind) 87 { 88 switch (kind) { 89 case BPF_CORE_FIELD_BYTE_OFFSET: return "byte_off"; 90 case BPF_CORE_FIELD_BYTE_SIZE: return "byte_sz"; 91 case BPF_CORE_FIELD_EXISTS: return "field_exists"; 92 case BPF_CORE_FIELD_SIGNED: return "signed"; 93 case BPF_CORE_FIELD_LSHIFT_U64: return "lshift_u64"; 94 case BPF_CORE_FIELD_RSHIFT_U64: return "rshift_u64"; 95 case BPF_CORE_TYPE_ID_LOCAL: return "local_type_id"; 96 case BPF_CORE_TYPE_ID_TARGET: return "target_type_id"; 97 case BPF_CORE_TYPE_EXISTS: return "type_exists"; 98 case BPF_CORE_TYPE_SIZE: return "type_size"; 99 case BPF_CORE_ENUMVAL_EXISTS: return "enumval_exists"; 100 case BPF_CORE_ENUMVAL_VALUE: return "enumval_value"; 101 default: return "unknown"; 102 } 103 } 104 105 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind) 106 { 107 switch (kind) { 108 case BPF_CORE_FIELD_BYTE_OFFSET: 109 case BPF_CORE_FIELD_BYTE_SIZE: 110 case BPF_CORE_FIELD_EXISTS: 111 case BPF_CORE_FIELD_SIGNED: 112 case BPF_CORE_FIELD_LSHIFT_U64: 113 case BPF_CORE_FIELD_RSHIFT_U64: 114 return true; 115 default: 116 return false; 117 } 118 } 119 120 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind) 121 { 122 switch (kind) { 123 case BPF_CORE_TYPE_ID_LOCAL: 124 case BPF_CORE_TYPE_ID_TARGET: 125 case BPF_CORE_TYPE_EXISTS: 126 case BPF_CORE_TYPE_SIZE: 127 return true; 128 default: 129 return false; 130 } 131 } 132 133 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind) 134 { 135 switch (kind) { 136 case BPF_CORE_ENUMVAL_EXISTS: 137 case BPF_CORE_ENUMVAL_VALUE: 138 return true; 139 default: 140 return false; 141 } 142 } 143 144 int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 145 const struct btf *targ_btf, __u32 targ_id, int level) 146 { 147 const struct btf_type *local_type, *targ_type; 148 int depth = 32; /* max recursion depth */ 149 150 /* caller made sure that names match (ignoring flavor suffix) */ 151 local_type = btf_type_by_id(local_btf, local_id); 152 targ_type = btf_type_by_id(targ_btf, targ_id); 153 if (!btf_kind_core_compat(local_type, targ_type)) 154 return 0; 155 156 recur: 157 depth--; 158 if (depth < 0) 159 return -EINVAL; 160 161 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 162 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 163 if (!local_type || !targ_type) 164 return -EINVAL; 165 166 if (!btf_kind_core_compat(local_type, targ_type)) 167 return 0; 168 169 switch (btf_kind(local_type)) { 170 case BTF_KIND_UNKN: 171 case BTF_KIND_STRUCT: 172 case BTF_KIND_UNION: 173 case BTF_KIND_ENUM: 174 case BTF_KIND_FWD: 175 case BTF_KIND_ENUM64: 176 return 1; 177 case BTF_KIND_INT: 178 /* just reject deprecated bitfield-like integers; all other 179 * integers are by default compatible between each other 180 */ 181 return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0; 182 case BTF_KIND_PTR: 183 local_id = local_type->type; 184 targ_id = targ_type->type; 185 goto recur; 186 case BTF_KIND_ARRAY: 187 local_id = btf_array(local_type)->type; 188 targ_id = btf_array(targ_type)->type; 189 goto recur; 190 case BTF_KIND_FUNC_PROTO: { 191 struct btf_param *local_p = btf_params(local_type); 192 struct btf_param *targ_p = btf_params(targ_type); 193 __u16 local_vlen = btf_vlen(local_type); 194 __u16 targ_vlen = btf_vlen(targ_type); 195 int i, err; 196 197 if (local_vlen != targ_vlen) 198 return 0; 199 200 for (i = 0; i < local_vlen; i++, local_p++, targ_p++) { 201 if (level <= 0) 202 return -EINVAL; 203 204 skip_mods_and_typedefs(local_btf, local_p->type, &local_id); 205 skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id); 206 err = __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 207 level - 1); 208 if (err <= 0) 209 return err; 210 } 211 212 /* tail recurse for return type check */ 213 skip_mods_and_typedefs(local_btf, local_type->type, &local_id); 214 skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id); 215 goto recur; 216 } 217 default: 218 pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n", 219 btf_kind_str(local_type), local_id, targ_id); 220 return 0; 221 } 222 } 223 224 /* 225 * Turn bpf_core_relo into a low- and high-level spec representation, 226 * validating correctness along the way, as well as calculating resulting 227 * field bit offset, specified by accessor string. Low-level spec captures 228 * every single level of nestedness, including traversing anonymous 229 * struct/union members. High-level one only captures semantically meaningful 230 * "turning points": named fields and array indicies. 231 * E.g., for this case: 232 * 233 * struct sample { 234 * int __unimportant; 235 * struct { 236 * int __1; 237 * int __2; 238 * int a[7]; 239 * }; 240 * }; 241 * 242 * struct sample *s = ...; 243 * 244 * int x = &s->a[3]; // access string = '0:1:2:3' 245 * 246 * Low-level spec has 1:1 mapping with each element of access string (it's 247 * just a parsed access string representation): [0, 1, 2, 3]. 248 * 249 * High-level spec will capture only 3 points: 250 * - initial zero-index access by pointer (&s->... is the same as &s[0]...); 251 * - field 'a' access (corresponds to '2' in low-level spec); 252 * - array element #3 access (corresponds to '3' in low-level spec). 253 * 254 * Type-based relocations (TYPE_EXISTS/TYPE_SIZE, 255 * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their 256 * spec and raw_spec are kept empty. 257 * 258 * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access 259 * string to specify enumerator's value index that need to be relocated. 260 */ 261 int bpf_core_parse_spec(const char *prog_name, const struct btf *btf, 262 const struct bpf_core_relo *relo, 263 struct bpf_core_spec *spec) 264 { 265 int access_idx, parsed_len, i; 266 struct bpf_core_accessor *acc; 267 const struct btf_type *t; 268 const char *name, *spec_str; 269 __u32 id, name_off; 270 __s64 sz; 271 272 spec_str = btf__name_by_offset(btf, relo->access_str_off); 273 if (str_is_empty(spec_str) || *spec_str == ':') 274 return -EINVAL; 275 276 memset(spec, 0, sizeof(*spec)); 277 spec->btf = btf; 278 spec->root_type_id = relo->type_id; 279 spec->relo_kind = relo->kind; 280 281 /* type-based relocations don't have a field access string */ 282 if (core_relo_is_type_based(relo->kind)) { 283 if (strcmp(spec_str, "0")) 284 return -EINVAL; 285 return 0; 286 } 287 288 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 289 while (*spec_str) { 290 if (*spec_str == ':') 291 ++spec_str; 292 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 293 return -EINVAL; 294 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 295 return -E2BIG; 296 spec_str += parsed_len; 297 spec->raw_spec[spec->raw_len++] = access_idx; 298 } 299 300 if (spec->raw_len == 0) 301 return -EINVAL; 302 303 t = skip_mods_and_typedefs(btf, relo->type_id, &id); 304 if (!t) 305 return -EINVAL; 306 307 access_idx = spec->raw_spec[0]; 308 acc = &spec->spec[0]; 309 acc->type_id = id; 310 acc->idx = access_idx; 311 spec->len++; 312 313 if (core_relo_is_enumval_based(relo->kind)) { 314 if (!btf_is_any_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t)) 315 return -EINVAL; 316 317 /* record enumerator name in a first accessor */ 318 name_off = btf_is_enum(t) ? btf_enum(t)[access_idx].name_off 319 : btf_enum64(t)[access_idx].name_off; 320 acc->name = btf__name_by_offset(btf, name_off); 321 return 0; 322 } 323 324 if (!core_relo_is_field_based(relo->kind)) 325 return -EINVAL; 326 327 sz = btf__resolve_size(btf, id); 328 if (sz < 0) 329 return sz; 330 spec->bit_offset = access_idx * sz * 8; 331 332 for (i = 1; i < spec->raw_len; i++) { 333 t = skip_mods_and_typedefs(btf, id, &id); 334 if (!t) 335 return -EINVAL; 336 337 access_idx = spec->raw_spec[i]; 338 acc = &spec->spec[spec->len]; 339 340 if (btf_is_composite(t)) { 341 const struct btf_member *m; 342 __u32 bit_offset; 343 344 if (access_idx >= btf_vlen(t)) 345 return -EINVAL; 346 347 bit_offset = btf_member_bit_offset(t, access_idx); 348 spec->bit_offset += bit_offset; 349 350 m = btf_members(t) + access_idx; 351 if (m->name_off) { 352 name = btf__name_by_offset(btf, m->name_off); 353 if (str_is_empty(name)) 354 return -EINVAL; 355 356 acc->type_id = id; 357 acc->idx = access_idx; 358 acc->name = name; 359 spec->len++; 360 } 361 362 id = m->type; 363 } else if (btf_is_array(t)) { 364 const struct btf_array *a = btf_array(t); 365 bool flex; 366 367 t = skip_mods_and_typedefs(btf, a->type, &id); 368 if (!t) 369 return -EINVAL; 370 371 flex = is_flex_arr(btf, acc - 1, a); 372 if (!flex && access_idx >= a->nelems) 373 return -EINVAL; 374 375 spec->spec[spec->len].type_id = id; 376 spec->spec[spec->len].idx = access_idx; 377 spec->len++; 378 379 sz = btf__resolve_size(btf, id); 380 if (sz < 0) 381 return sz; 382 spec->bit_offset += access_idx * sz * 8; 383 } else { 384 pr_warn("prog '%s': relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n", 385 prog_name, relo->type_id, spec_str, i, id, btf_kind_str(t)); 386 return -EINVAL; 387 } 388 } 389 390 return 0; 391 } 392 393 /* Check two types for compatibility for the purpose of field access 394 * relocation. const/volatile/restrict and typedefs are skipped to ensure we 395 * are relocating semantically compatible entities: 396 * - any two STRUCTs/UNIONs are compatible and can be mixed; 397 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 398 * - any two PTRs are always compatible; 399 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 400 * least one of enums should be anonymous; 401 * - for ENUMs, check sizes, names are ignored; 402 * - for INT, size and signedness are ignored; 403 * - any two FLOATs are always compatible; 404 * - for ARRAY, dimensionality is ignored, element types are checked for 405 * compatibility recursively; 406 * - everything else shouldn't be ever a target of relocation. 407 * These rules are not set in stone and probably will be adjusted as we get 408 * more experience with using BPF CO-RE relocations. 409 */ 410 static int bpf_core_fields_are_compat(const struct btf *local_btf, 411 __u32 local_id, 412 const struct btf *targ_btf, 413 __u32 targ_id) 414 { 415 const struct btf_type *local_type, *targ_type; 416 417 recur: 418 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 419 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 420 if (!local_type || !targ_type) 421 return -EINVAL; 422 423 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 424 return 1; 425 if (!btf_kind_core_compat(local_type, targ_type)) 426 return 0; 427 428 switch (btf_kind(local_type)) { 429 case BTF_KIND_PTR: 430 case BTF_KIND_FLOAT: 431 return 1; 432 case BTF_KIND_FWD: 433 case BTF_KIND_ENUM64: 434 case BTF_KIND_ENUM: { 435 const char *local_name, *targ_name; 436 size_t local_len, targ_len; 437 438 local_name = btf__name_by_offset(local_btf, 439 local_type->name_off); 440 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 441 local_len = bpf_core_essential_name_len(local_name); 442 targ_len = bpf_core_essential_name_len(targ_name); 443 /* one of them is anonymous or both w/ same flavor-less names */ 444 return local_len == 0 || targ_len == 0 || 445 (local_len == targ_len && 446 strncmp(local_name, targ_name, local_len) == 0); 447 } 448 case BTF_KIND_INT: 449 /* just reject deprecated bitfield-like integers; all other 450 * integers are by default compatible between each other 451 */ 452 return btf_int_offset(local_type) == 0 && 453 btf_int_offset(targ_type) == 0; 454 case BTF_KIND_ARRAY: 455 local_id = btf_array(local_type)->type; 456 targ_id = btf_array(targ_type)->type; 457 goto recur; 458 default: 459 return 0; 460 } 461 } 462 463 /* 464 * Given single high-level named field accessor in local type, find 465 * corresponding high-level accessor for a target type. Along the way, 466 * maintain low-level spec for target as well. Also keep updating target 467 * bit offset. 468 * 469 * Searching is performed through recursive exhaustive enumeration of all 470 * fields of a struct/union. If there are any anonymous (embedded) 471 * structs/unions, they are recursively searched as well. If field with 472 * desired name is found, check compatibility between local and target types, 473 * before returning result. 474 * 475 * 1 is returned, if field is found. 476 * 0 is returned if no compatible field is found. 477 * <0 is returned on error. 478 */ 479 static int bpf_core_match_member(const struct btf *local_btf, 480 const struct bpf_core_accessor *local_acc, 481 const struct btf *targ_btf, 482 __u32 targ_id, 483 struct bpf_core_spec *spec, 484 __u32 *next_targ_id) 485 { 486 const struct btf_type *local_type, *targ_type; 487 const struct btf_member *local_member, *m; 488 const char *local_name, *targ_name; 489 __u32 local_id; 490 int i, n, found; 491 492 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 493 if (!targ_type) 494 return -EINVAL; 495 if (!btf_is_composite(targ_type)) 496 return 0; 497 498 local_id = local_acc->type_id; 499 local_type = btf_type_by_id(local_btf, local_id); 500 local_member = btf_members(local_type) + local_acc->idx; 501 local_name = btf__name_by_offset(local_btf, local_member->name_off); 502 503 n = btf_vlen(targ_type); 504 m = btf_members(targ_type); 505 for (i = 0; i < n; i++, m++) { 506 __u32 bit_offset; 507 508 bit_offset = btf_member_bit_offset(targ_type, i); 509 510 /* too deep struct/union/array nesting */ 511 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 512 return -E2BIG; 513 514 /* speculate this member will be the good one */ 515 spec->bit_offset += bit_offset; 516 spec->raw_spec[spec->raw_len++] = i; 517 518 targ_name = btf__name_by_offset(targ_btf, m->name_off); 519 if (str_is_empty(targ_name)) { 520 /* embedded struct/union, we need to go deeper */ 521 found = bpf_core_match_member(local_btf, local_acc, 522 targ_btf, m->type, 523 spec, next_targ_id); 524 if (found) /* either found or error */ 525 return found; 526 } else if (strcmp(local_name, targ_name) == 0) { 527 /* matching named field */ 528 struct bpf_core_accessor *targ_acc; 529 530 targ_acc = &spec->spec[spec->len++]; 531 targ_acc->type_id = targ_id; 532 targ_acc->idx = i; 533 targ_acc->name = targ_name; 534 535 *next_targ_id = m->type; 536 found = bpf_core_fields_are_compat(local_btf, 537 local_member->type, 538 targ_btf, m->type); 539 if (!found) 540 spec->len--; /* pop accessor */ 541 return found; 542 } 543 /* member turned out not to be what we looked for */ 544 spec->bit_offset -= bit_offset; 545 spec->raw_len--; 546 } 547 548 return 0; 549 } 550 551 /* 552 * Try to match local spec to a target type and, if successful, produce full 553 * target spec (high-level, low-level + bit offset). 554 */ 555 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 556 const struct btf *targ_btf, __u32 targ_id, 557 struct bpf_core_spec *targ_spec) 558 { 559 const struct btf_type *targ_type; 560 const struct bpf_core_accessor *local_acc; 561 struct bpf_core_accessor *targ_acc; 562 int i, sz, matched; 563 __u32 name_off; 564 565 memset(targ_spec, 0, sizeof(*targ_spec)); 566 targ_spec->btf = targ_btf; 567 targ_spec->root_type_id = targ_id; 568 targ_spec->relo_kind = local_spec->relo_kind; 569 570 if (core_relo_is_type_based(local_spec->relo_kind)) { 571 return bpf_core_types_are_compat(local_spec->btf, 572 local_spec->root_type_id, 573 targ_btf, targ_id); 574 } 575 576 local_acc = &local_spec->spec[0]; 577 targ_acc = &targ_spec->spec[0]; 578 579 if (core_relo_is_enumval_based(local_spec->relo_kind)) { 580 size_t local_essent_len, targ_essent_len; 581 const char *targ_name; 582 583 /* has to resolve to an enum */ 584 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id); 585 if (!btf_is_any_enum(targ_type)) 586 return 0; 587 588 local_essent_len = bpf_core_essential_name_len(local_acc->name); 589 590 for (i = 0; i < btf_vlen(targ_type); i++) { 591 if (btf_is_enum(targ_type)) 592 name_off = btf_enum(targ_type)[i].name_off; 593 else 594 name_off = btf_enum64(targ_type)[i].name_off; 595 596 targ_name = btf__name_by_offset(targ_spec->btf, name_off); 597 targ_essent_len = bpf_core_essential_name_len(targ_name); 598 if (targ_essent_len != local_essent_len) 599 continue; 600 if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) { 601 targ_acc->type_id = targ_id; 602 targ_acc->idx = i; 603 targ_acc->name = targ_name; 604 targ_spec->len++; 605 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 606 targ_spec->raw_len++; 607 return 1; 608 } 609 } 610 return 0; 611 } 612 613 if (!core_relo_is_field_based(local_spec->relo_kind)) 614 return -EINVAL; 615 616 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 617 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 618 &targ_id); 619 if (!targ_type) 620 return -EINVAL; 621 622 if (local_acc->name) { 623 matched = bpf_core_match_member(local_spec->btf, 624 local_acc, 625 targ_btf, targ_id, 626 targ_spec, &targ_id); 627 if (matched <= 0) 628 return matched; 629 } else { 630 /* for i=0, targ_id is already treated as array element 631 * type (because it's the original struct), for others 632 * we should find array element type first 633 */ 634 if (i > 0) { 635 const struct btf_array *a; 636 bool flex; 637 638 if (!btf_is_array(targ_type)) 639 return 0; 640 641 a = btf_array(targ_type); 642 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 643 if (!flex && local_acc->idx >= a->nelems) 644 return 0; 645 if (!skip_mods_and_typedefs(targ_btf, a->type, 646 &targ_id)) 647 return -EINVAL; 648 } 649 650 /* too deep struct/union/array nesting */ 651 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 652 return -E2BIG; 653 654 targ_acc->type_id = targ_id; 655 targ_acc->idx = local_acc->idx; 656 targ_acc->name = NULL; 657 targ_spec->len++; 658 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 659 targ_spec->raw_len++; 660 661 sz = btf__resolve_size(targ_btf, targ_id); 662 if (sz < 0) 663 return sz; 664 targ_spec->bit_offset += local_acc->idx * sz * 8; 665 } 666 } 667 668 return 1; 669 } 670 671 static int bpf_core_calc_field_relo(const char *prog_name, 672 const struct bpf_core_relo *relo, 673 const struct bpf_core_spec *spec, 674 __u64 *val, __u32 *field_sz, __u32 *type_id, 675 bool *validate) 676 { 677 const struct bpf_core_accessor *acc; 678 const struct btf_type *t; 679 __u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id; 680 const struct btf_member *m; 681 const struct btf_type *mt; 682 bool bitfield; 683 __s64 sz; 684 685 *field_sz = 0; 686 687 if (relo->kind == BPF_CORE_FIELD_EXISTS) { 688 *val = spec ? 1 : 0; 689 return 0; 690 } 691 692 if (!spec) 693 return -EUCLEAN; /* request instruction poisoning */ 694 695 acc = &spec->spec[spec->len - 1]; 696 t = btf_type_by_id(spec->btf, acc->type_id); 697 698 /* a[n] accessor needs special handling */ 699 if (!acc->name) { 700 if (relo->kind == BPF_CORE_FIELD_BYTE_OFFSET) { 701 *val = spec->bit_offset / 8; 702 /* remember field size for load/store mem size */ 703 sz = btf__resolve_size(spec->btf, acc->type_id); 704 if (sz < 0) 705 return -EINVAL; 706 *field_sz = sz; 707 *type_id = acc->type_id; 708 } else if (relo->kind == BPF_CORE_FIELD_BYTE_SIZE) { 709 sz = btf__resolve_size(spec->btf, acc->type_id); 710 if (sz < 0) 711 return -EINVAL; 712 *val = sz; 713 } else { 714 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 715 prog_name, relo->kind, relo->insn_off / 8); 716 return -EINVAL; 717 } 718 if (validate) 719 *validate = true; 720 return 0; 721 } 722 723 m = btf_members(t) + acc->idx; 724 mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id); 725 bit_off = spec->bit_offset; 726 bit_sz = btf_member_bitfield_size(t, acc->idx); 727 728 bitfield = bit_sz > 0; 729 if (bitfield) { 730 byte_sz = mt->size; 731 byte_off = bit_off / 8 / byte_sz * byte_sz; 732 /* figure out smallest int size necessary for bitfield load */ 733 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 734 if (byte_sz >= 8) { 735 /* bitfield can't be read with 64-bit read */ 736 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 737 prog_name, relo->kind, relo->insn_off / 8); 738 return -E2BIG; 739 } 740 byte_sz *= 2; 741 byte_off = bit_off / 8 / byte_sz * byte_sz; 742 } 743 } else { 744 sz = btf__resolve_size(spec->btf, field_type_id); 745 if (sz < 0) 746 return -EINVAL; 747 byte_sz = sz; 748 byte_off = spec->bit_offset / 8; 749 bit_sz = byte_sz * 8; 750 } 751 752 /* for bitfields, all the relocatable aspects are ambiguous and we 753 * might disagree with compiler, so turn off validation of expected 754 * value, except for signedness 755 */ 756 if (validate) 757 *validate = !bitfield; 758 759 switch (relo->kind) { 760 case BPF_CORE_FIELD_BYTE_OFFSET: 761 *val = byte_off; 762 if (!bitfield) { 763 *field_sz = byte_sz; 764 *type_id = field_type_id; 765 } 766 break; 767 case BPF_CORE_FIELD_BYTE_SIZE: 768 *val = byte_sz; 769 break; 770 case BPF_CORE_FIELD_SIGNED: 771 *val = (btf_is_any_enum(mt) && BTF_INFO_KFLAG(mt->info)) || 772 (btf_int_encoding(mt) & BTF_INT_SIGNED); 773 if (validate) 774 *validate = true; /* signedness is never ambiguous */ 775 break; 776 case BPF_CORE_FIELD_LSHIFT_U64: 777 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 778 *val = 64 - (bit_off + bit_sz - byte_off * 8); 779 #else 780 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 781 #endif 782 break; 783 case BPF_CORE_FIELD_RSHIFT_U64: 784 *val = 64 - bit_sz; 785 if (validate) 786 *validate = true; /* right shift is never ambiguous */ 787 break; 788 case BPF_CORE_FIELD_EXISTS: 789 default: 790 return -EOPNOTSUPP; 791 } 792 793 return 0; 794 } 795 796 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo, 797 const struct bpf_core_spec *spec, 798 __u64 *val, bool *validate) 799 { 800 __s64 sz; 801 802 /* by default, always check expected value in bpf_insn */ 803 if (validate) 804 *validate = true; 805 806 /* type-based relos return zero when target type is not found */ 807 if (!spec) { 808 *val = 0; 809 return 0; 810 } 811 812 switch (relo->kind) { 813 case BPF_CORE_TYPE_ID_TARGET: 814 *val = spec->root_type_id; 815 /* type ID, embedded in bpf_insn, might change during linking, 816 * so enforcing it is pointless 817 */ 818 if (validate) 819 *validate = false; 820 break; 821 case BPF_CORE_TYPE_EXISTS: 822 *val = 1; 823 break; 824 case BPF_CORE_TYPE_SIZE: 825 sz = btf__resolve_size(spec->btf, spec->root_type_id); 826 if (sz < 0) 827 return -EINVAL; 828 *val = sz; 829 break; 830 case BPF_CORE_TYPE_ID_LOCAL: 831 /* BPF_CORE_TYPE_ID_LOCAL is handled specially and shouldn't get here */ 832 default: 833 return -EOPNOTSUPP; 834 } 835 836 return 0; 837 } 838 839 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo, 840 const struct bpf_core_spec *spec, 841 __u64 *val) 842 { 843 const struct btf_type *t; 844 845 switch (relo->kind) { 846 case BPF_CORE_ENUMVAL_EXISTS: 847 *val = spec ? 1 : 0; 848 break; 849 case BPF_CORE_ENUMVAL_VALUE: 850 if (!spec) 851 return -EUCLEAN; /* request instruction poisoning */ 852 t = btf_type_by_id(spec->btf, spec->spec[0].type_id); 853 if (btf_is_enum(t)) 854 *val = btf_enum(t)[spec->spec[0].idx].val; 855 else 856 *val = btf_enum64_value(btf_enum64(t) + spec->spec[0].idx); 857 break; 858 default: 859 return -EOPNOTSUPP; 860 } 861 862 return 0; 863 } 864 865 /* Calculate original and target relocation values, given local and target 866 * specs and relocation kind. These values are calculated for each candidate. 867 * If there are multiple candidates, resulting values should all be consistent 868 * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity. 869 * If instruction has to be poisoned, *poison will be set to true. 870 */ 871 static int bpf_core_calc_relo(const char *prog_name, 872 const struct bpf_core_relo *relo, 873 int relo_idx, 874 const struct bpf_core_spec *local_spec, 875 const struct bpf_core_spec *targ_spec, 876 struct bpf_core_relo_res *res) 877 { 878 int err = -EOPNOTSUPP; 879 880 res->orig_val = 0; 881 res->new_val = 0; 882 res->poison = false; 883 res->validate = true; 884 res->fail_memsz_adjust = false; 885 res->orig_sz = res->new_sz = 0; 886 res->orig_type_id = res->new_type_id = 0; 887 888 if (core_relo_is_field_based(relo->kind)) { 889 err = bpf_core_calc_field_relo(prog_name, relo, local_spec, 890 &res->orig_val, &res->orig_sz, 891 &res->orig_type_id, &res->validate); 892 err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec, 893 &res->new_val, &res->new_sz, 894 &res->new_type_id, NULL); 895 if (err) 896 goto done; 897 /* Validate if it's safe to adjust load/store memory size. 898 * Adjustments are performed only if original and new memory 899 * sizes differ. 900 */ 901 res->fail_memsz_adjust = false; 902 if (res->orig_sz != res->new_sz) { 903 const struct btf_type *orig_t, *new_t; 904 905 orig_t = btf_type_by_id(local_spec->btf, res->orig_type_id); 906 new_t = btf_type_by_id(targ_spec->btf, res->new_type_id); 907 908 /* There are two use cases in which it's safe to 909 * adjust load/store's mem size: 910 * - reading a 32-bit kernel pointer, while on BPF 911 * size pointers are always 64-bit; in this case 912 * it's safe to "downsize" instruction size due to 913 * pointer being treated as unsigned integer with 914 * zero-extended upper 32-bits; 915 * - reading unsigned integers, again due to 916 * zero-extension is preserving the value correctly. 917 * 918 * In all other cases it's incorrect to attempt to 919 * load/store field because read value will be 920 * incorrect, so we poison relocated instruction. 921 */ 922 if (btf_is_ptr(orig_t) && btf_is_ptr(new_t)) 923 goto done; 924 if (btf_is_int(orig_t) && btf_is_int(new_t) && 925 btf_int_encoding(orig_t) != BTF_INT_SIGNED && 926 btf_int_encoding(new_t) != BTF_INT_SIGNED) 927 goto done; 928 929 /* mark as invalid mem size adjustment, but this will 930 * only be checked for LDX/STX/ST insns 931 */ 932 res->fail_memsz_adjust = true; 933 } 934 } else if (core_relo_is_type_based(relo->kind)) { 935 err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val, &res->validate); 936 err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val, NULL); 937 } else if (core_relo_is_enumval_based(relo->kind)) { 938 err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val); 939 err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val); 940 } 941 942 done: 943 if (err == -EUCLEAN) { 944 /* EUCLEAN is used to signal instruction poisoning request */ 945 res->poison = true; 946 err = 0; 947 } else if (err == -EOPNOTSUPP) { 948 /* EOPNOTSUPP means unknown/unsupported relocation */ 949 pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n", 950 prog_name, relo_idx, core_relo_kind_str(relo->kind), 951 relo->kind, relo->insn_off / 8); 952 } 953 954 return err; 955 } 956 957 /* 958 * Turn instruction for which CO_RE relocation failed into invalid one with 959 * distinct signature. 960 */ 961 static void bpf_core_poison_insn(const char *prog_name, int relo_idx, 962 int insn_idx, struct bpf_insn *insn) 963 { 964 pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n", 965 prog_name, relo_idx, insn_idx); 966 insn->code = BPF_JMP | BPF_CALL; 967 insn->dst_reg = 0; 968 insn->src_reg = 0; 969 insn->off = 0; 970 /* if this instruction is reachable (not a dead code), 971 * verifier will complain with the following message: 972 * invalid func unknown#195896080 973 */ 974 insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */ 975 } 976 977 static int insn_bpf_size_to_bytes(struct bpf_insn *insn) 978 { 979 switch (BPF_SIZE(insn->code)) { 980 case BPF_DW: return 8; 981 case BPF_W: return 4; 982 case BPF_H: return 2; 983 case BPF_B: return 1; 984 default: return -1; 985 } 986 } 987 988 static int insn_bytes_to_bpf_size(__u32 sz) 989 { 990 switch (sz) { 991 case 8: return BPF_DW; 992 case 4: return BPF_W; 993 case 2: return BPF_H; 994 case 1: return BPF_B; 995 default: return -1; 996 } 997 } 998 999 /* 1000 * Patch relocatable BPF instruction. 1001 * 1002 * Patched value is determined by relocation kind and target specification. 1003 * For existence relocations target spec will be NULL if field/type is not found. 1004 * Expected insn->imm value is determined using relocation kind and local 1005 * spec, and is checked before patching instruction. If actual insn->imm value 1006 * is wrong, bail out with error. 1007 * 1008 * Currently supported classes of BPF instruction are: 1009 * 1. rX = <imm> (assignment with immediate operand); 1010 * 2. rX += <imm> (arithmetic operations with immediate operand); 1011 * 3. rX = <imm64> (load with 64-bit immediate value); 1012 * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64}; 1013 * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64}; 1014 * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}. 1015 */ 1016 int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn, 1017 int insn_idx, const struct bpf_core_relo *relo, 1018 int relo_idx, const struct bpf_core_relo_res *res) 1019 { 1020 __u64 orig_val, new_val; 1021 __u8 class; 1022 1023 class = BPF_CLASS(insn->code); 1024 1025 if (res->poison) { 1026 poison: 1027 /* poison second part of ldimm64 to avoid confusing error from 1028 * verifier about "unknown opcode 00" 1029 */ 1030 if (is_ldimm64_insn(insn)) 1031 bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1); 1032 bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn); 1033 return 0; 1034 } 1035 1036 orig_val = res->orig_val; 1037 new_val = res->new_val; 1038 1039 switch (class) { 1040 case BPF_ALU: 1041 case BPF_ALU64: 1042 if (BPF_SRC(insn->code) != BPF_K) 1043 return -EINVAL; 1044 if (res->validate && insn->imm != orig_val) { 1045 pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %llu -> %llu\n", 1046 prog_name, relo_idx, 1047 insn_idx, insn->imm, (unsigned long long)orig_val, 1048 (unsigned long long)new_val); 1049 return -EINVAL; 1050 } 1051 orig_val = insn->imm; 1052 insn->imm = new_val; 1053 pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %llu -> %llu\n", 1054 prog_name, relo_idx, insn_idx, 1055 (unsigned long long)orig_val, (unsigned long long)new_val); 1056 break; 1057 case BPF_LDX: 1058 case BPF_ST: 1059 case BPF_STX: 1060 if (res->validate && insn->off != orig_val) { 1061 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %llu -> %llu\n", 1062 prog_name, relo_idx, insn_idx, insn->off, (unsigned long long)orig_val, 1063 (unsigned long long)new_val); 1064 return -EINVAL; 1065 } 1066 if (new_val > SHRT_MAX) { 1067 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %llu\n", 1068 prog_name, relo_idx, insn_idx, (unsigned long long)new_val); 1069 return -ERANGE; 1070 } 1071 if (res->fail_memsz_adjust) { 1072 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. " 1073 "Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n", 1074 prog_name, relo_idx, insn_idx); 1075 goto poison; 1076 } 1077 1078 orig_val = insn->off; 1079 insn->off = new_val; 1080 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %llu -> %llu\n", 1081 prog_name, relo_idx, insn_idx, (unsigned long long)orig_val, 1082 (unsigned long long)new_val); 1083 1084 if (res->new_sz != res->orig_sz) { 1085 int insn_bytes_sz, insn_bpf_sz; 1086 1087 insn_bytes_sz = insn_bpf_size_to_bytes(insn); 1088 if (insn_bytes_sz != res->orig_sz) { 1089 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n", 1090 prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz); 1091 return -EINVAL; 1092 } 1093 1094 insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz); 1095 if (insn_bpf_sz < 0) { 1096 pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n", 1097 prog_name, relo_idx, insn_idx, res->new_sz); 1098 return -EINVAL; 1099 } 1100 1101 insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code); 1102 pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n", 1103 prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz); 1104 } 1105 break; 1106 case BPF_LD: { 1107 __u64 imm; 1108 1109 if (!is_ldimm64_insn(insn) || 1110 insn[0].src_reg != 0 || insn[0].off != 0 || 1111 insn[1].code != 0 || insn[1].dst_reg != 0 || 1112 insn[1].src_reg != 0 || insn[1].off != 0) { 1113 pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n", 1114 prog_name, relo_idx, insn_idx); 1115 return -EINVAL; 1116 } 1117 1118 imm = (__u32)insn[0].imm | ((__u64)insn[1].imm << 32); 1119 if (res->validate && imm != orig_val) { 1120 pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %llu -> %llu\n", 1121 prog_name, relo_idx, 1122 insn_idx, (unsigned long long)imm, 1123 (unsigned long long)orig_val, (unsigned long long)new_val); 1124 return -EINVAL; 1125 } 1126 1127 insn[0].imm = new_val; 1128 insn[1].imm = new_val >> 32; 1129 pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %llu\n", 1130 prog_name, relo_idx, insn_idx, 1131 (unsigned long long)imm, (unsigned long long)new_val); 1132 break; 1133 } 1134 default: 1135 pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n", 1136 prog_name, relo_idx, insn_idx, insn->code, 1137 insn->src_reg, insn->dst_reg, insn->off, insn->imm); 1138 return -EINVAL; 1139 } 1140 1141 return 0; 1142 } 1143 1144 /* Output spec definition in the format: 1145 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 1146 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 1147 */ 1148 int bpf_core_format_spec(char *buf, size_t buf_sz, const struct bpf_core_spec *spec) 1149 { 1150 const struct btf_type *t; 1151 const char *s; 1152 __u32 type_id; 1153 int i, len = 0; 1154 1155 #define append_buf(fmt, args...) \ 1156 ({ \ 1157 int r; \ 1158 r = snprintf(buf, buf_sz, fmt, ##args); \ 1159 len += r; \ 1160 if (r >= buf_sz) \ 1161 r = buf_sz; \ 1162 buf += r; \ 1163 buf_sz -= r; \ 1164 }) 1165 1166 type_id = spec->root_type_id; 1167 t = btf_type_by_id(spec->btf, type_id); 1168 s = btf__name_by_offset(spec->btf, t->name_off); 1169 1170 append_buf("<%s> [%u] %s %s", 1171 core_relo_kind_str(spec->relo_kind), 1172 type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s); 1173 1174 if (core_relo_is_type_based(spec->relo_kind)) 1175 return len; 1176 1177 if (core_relo_is_enumval_based(spec->relo_kind)) { 1178 t = skip_mods_and_typedefs(spec->btf, type_id, NULL); 1179 if (btf_is_enum(t)) { 1180 const struct btf_enum *e; 1181 const char *fmt_str; 1182 1183 e = btf_enum(t) + spec->raw_spec[0]; 1184 s = btf__name_by_offset(spec->btf, e->name_off); 1185 fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %d" : "::%s = %u"; 1186 append_buf(fmt_str, s, e->val); 1187 } else { 1188 const struct btf_enum64 *e; 1189 const char *fmt_str; 1190 1191 e = btf_enum64(t) + spec->raw_spec[0]; 1192 s = btf__name_by_offset(spec->btf, e->name_off); 1193 fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %lld" : "::%s = %llu"; 1194 append_buf(fmt_str, s, (unsigned long long)btf_enum64_value(e)); 1195 } 1196 return len; 1197 } 1198 1199 if (core_relo_is_field_based(spec->relo_kind)) { 1200 for (i = 0; i < spec->len; i++) { 1201 if (spec->spec[i].name) 1202 append_buf(".%s", spec->spec[i].name); 1203 else if (i > 0 || spec->spec[i].idx > 0) 1204 append_buf("[%u]", spec->spec[i].idx); 1205 } 1206 1207 append_buf(" ("); 1208 for (i = 0; i < spec->raw_len; i++) 1209 append_buf("%s%d", i == 0 ? "" : ":", spec->raw_spec[i]); 1210 1211 if (spec->bit_offset % 8) 1212 append_buf(" @ offset %u.%u)", spec->bit_offset / 8, spec->bit_offset % 8); 1213 else 1214 append_buf(" @ offset %u)", spec->bit_offset / 8); 1215 return len; 1216 } 1217 1218 return len; 1219 #undef append_buf 1220 } 1221 1222 /* 1223 * Calculate CO-RE relocation target result. 1224 * 1225 * The outline and important points of the algorithm: 1226 * 1. For given local type, find corresponding candidate target types. 1227 * Candidate type is a type with the same "essential" name, ignoring 1228 * everything after last triple underscore (___). E.g., `sample`, 1229 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 1230 * for each other. Names with triple underscore are referred to as 1231 * "flavors" and are useful, among other things, to allow to 1232 * specify/support incompatible variations of the same kernel struct, which 1233 * might differ between different kernel versions and/or build 1234 * configurations. 1235 * 1236 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 1237 * converter, when deduplicated BTF of a kernel still contains more than 1238 * one different types with the same name. In that case, ___2, ___3, etc 1239 * are appended starting from second name conflict. But start flavors are 1240 * also useful to be defined "locally", in BPF program, to extract same 1241 * data from incompatible changes between different kernel 1242 * versions/configurations. For instance, to handle field renames between 1243 * kernel versions, one can use two flavors of the struct name with the 1244 * same common name and use conditional relocations to extract that field, 1245 * depending on target kernel version. 1246 * 2. For each candidate type, try to match local specification to this 1247 * candidate target type. Matching involves finding corresponding 1248 * high-level spec accessors, meaning that all named fields should match, 1249 * as well as all array accesses should be within the actual bounds. Also, 1250 * types should be compatible (see bpf_core_fields_are_compat for details). 1251 * 3. It is supported and expected that there might be multiple flavors 1252 * matching the spec. As long as all the specs resolve to the same set of 1253 * offsets across all candidates, there is no error. If there is any 1254 * ambiguity, CO-RE relocation will fail. This is necessary to accommodate 1255 * imperfection of BTF deduplication, which can cause slight duplication of 1256 * the same BTF type, if some directly or indirectly referenced (by 1257 * pointer) type gets resolved to different actual types in different 1258 * object files. If such a situation occurs, deduplicated BTF will end up 1259 * with two (or more) structurally identical types, which differ only in 1260 * types they refer to through pointer. This should be OK in most cases and 1261 * is not an error. 1262 * 4. Candidate types search is performed by linearly scanning through all 1263 * types in target BTF. It is anticipated that this is overall more 1264 * efficient memory-wise and not significantly worse (if not better) 1265 * CPU-wise compared to prebuilding a map from all local type names to 1266 * a list of candidate type names. It's also sped up by caching resolved 1267 * list of matching candidates per each local "root" type ID, that has at 1268 * least one bpf_core_relo associated with it. This list is shared 1269 * between multiple relocations for the same type ID and is updated as some 1270 * of the candidates are pruned due to structural incompatibility. 1271 */ 1272 int bpf_core_calc_relo_insn(const char *prog_name, 1273 const struct bpf_core_relo *relo, 1274 int relo_idx, 1275 const struct btf *local_btf, 1276 struct bpf_core_cand_list *cands, 1277 struct bpf_core_spec *specs_scratch, 1278 struct bpf_core_relo_res *targ_res) 1279 { 1280 struct bpf_core_spec *local_spec = &specs_scratch[0]; 1281 struct bpf_core_spec *cand_spec = &specs_scratch[1]; 1282 struct bpf_core_spec *targ_spec = &specs_scratch[2]; 1283 struct bpf_core_relo_res cand_res; 1284 const struct btf_type *local_type; 1285 const char *local_name; 1286 __u32 local_id; 1287 char spec_buf[256]; 1288 int i, j, err; 1289 1290 local_id = relo->type_id; 1291 local_type = btf_type_by_id(local_btf, local_id); 1292 local_name = btf__name_by_offset(local_btf, local_type->name_off); 1293 if (!local_name) 1294 return -EINVAL; 1295 1296 err = bpf_core_parse_spec(prog_name, local_btf, relo, local_spec); 1297 if (err) { 1298 const char *spec_str; 1299 1300 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 1301 pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n", 1302 prog_name, relo_idx, local_id, btf_kind_str(local_type), 1303 str_is_empty(local_name) ? "<anon>" : local_name, 1304 spec_str ?: "<?>", err); 1305 return -EINVAL; 1306 } 1307 1308 bpf_core_format_spec(spec_buf, sizeof(spec_buf), local_spec); 1309 pr_debug("prog '%s': relo #%d: %s\n", prog_name, relo_idx, spec_buf); 1310 1311 /* TYPE_ID_LOCAL relo is special and doesn't need candidate search */ 1312 if (relo->kind == BPF_CORE_TYPE_ID_LOCAL) { 1313 /* bpf_insn's imm value could get out of sync during linking */ 1314 memset(targ_res, 0, sizeof(*targ_res)); 1315 targ_res->validate = false; 1316 targ_res->poison = false; 1317 targ_res->orig_val = local_spec->root_type_id; 1318 targ_res->new_val = local_spec->root_type_id; 1319 return 0; 1320 } 1321 1322 /* libbpf doesn't support candidate search for anonymous types */ 1323 if (str_is_empty(local_name)) { 1324 pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n", 1325 prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind); 1326 return -EOPNOTSUPP; 1327 } 1328 1329 for (i = 0, j = 0; i < cands->len; i++) { 1330 err = bpf_core_spec_match(local_spec, cands->cands[i].btf, 1331 cands->cands[i].id, cand_spec); 1332 if (err < 0) { 1333 bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec); 1334 pr_warn("prog '%s': relo #%d: error matching candidate #%d %s: %d\n ", 1335 prog_name, relo_idx, i, spec_buf, err); 1336 return err; 1337 } 1338 1339 bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec); 1340 pr_debug("prog '%s': relo #%d: %s candidate #%d %s\n", prog_name, 1341 relo_idx, err == 0 ? "non-matching" : "matching", i, spec_buf); 1342 1343 if (err == 0) 1344 continue; 1345 1346 err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, cand_spec, &cand_res); 1347 if (err) 1348 return err; 1349 1350 if (j == 0) { 1351 *targ_res = cand_res; 1352 *targ_spec = *cand_spec; 1353 } else if (cand_spec->bit_offset != targ_spec->bit_offset) { 1354 /* if there are many field relo candidates, they 1355 * should all resolve to the same bit offset 1356 */ 1357 pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n", 1358 prog_name, relo_idx, cand_spec->bit_offset, 1359 targ_spec->bit_offset); 1360 return -EINVAL; 1361 } else if (cand_res.poison != targ_res->poison || 1362 cand_res.new_val != targ_res->new_val) { 1363 /* all candidates should result in the same relocation 1364 * decision and value, otherwise it's dangerous to 1365 * proceed due to ambiguity 1366 */ 1367 pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %llu != %s %llu\n", 1368 prog_name, relo_idx, 1369 cand_res.poison ? "failure" : "success", 1370 (unsigned long long)cand_res.new_val, 1371 targ_res->poison ? "failure" : "success", 1372 (unsigned long long)targ_res->new_val); 1373 return -EINVAL; 1374 } 1375 1376 cands->cands[j++] = cands->cands[i]; 1377 } 1378 1379 /* 1380 * For BPF_CORE_FIELD_EXISTS relo or when used BPF program has field 1381 * existence checks or kernel version/config checks, it's expected 1382 * that we might not find any candidates. In this case, if field 1383 * wasn't found in any candidate, the list of candidates shouldn't 1384 * change at all, we'll just handle relocating appropriately, 1385 * depending on relo's kind. 1386 */ 1387 if (j > 0) 1388 cands->len = j; 1389 1390 /* 1391 * If no candidates were found, it might be both a programmer error, 1392 * as well as expected case, depending whether instruction w/ 1393 * relocation is guarded in some way that makes it unreachable (dead 1394 * code) if relocation can't be resolved. This is handled in 1395 * bpf_core_patch_insn() uniformly by replacing that instruction with 1396 * BPF helper call insn (using invalid helper ID). If that instruction 1397 * is indeed unreachable, then it will be ignored and eliminated by 1398 * verifier. If it was an error, then verifier will complain and point 1399 * to a specific instruction number in its log. 1400 */ 1401 if (j == 0) { 1402 pr_debug("prog '%s': relo #%d: no matching targets found\n", 1403 prog_name, relo_idx); 1404 1405 /* calculate single target relo result explicitly */ 1406 err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, NULL, targ_res); 1407 if (err) 1408 return err; 1409 } 1410 1411 return 0; 1412 } 1413