xref: /linux/tools/lib/bpf/relo_core.c (revision 27b3f70553432114b3d26f4d9c72cf02f38b84ee)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2019 Facebook */
3 
4 #ifdef __KERNEL__
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/string.h>
8 #include <linux/bpf_verifier.h>
9 #include "relo_core.h"
10 
11 static const char *btf_kind_str(const struct btf_type *t)
12 {
13 	return btf_type_str(t);
14 }
15 
16 static bool is_ldimm64_insn(struct bpf_insn *insn)
17 {
18 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
19 }
20 
21 static const struct btf_type *
22 skip_mods_and_typedefs(const struct btf *btf, u32 id, u32 *res_id)
23 {
24 	return btf_type_skip_modifiers(btf, id, res_id);
25 }
26 
27 static const char *btf__name_by_offset(const struct btf *btf, u32 offset)
28 {
29 	return btf_name_by_offset(btf, offset);
30 }
31 
32 static s64 btf__resolve_size(const struct btf *btf, u32 type_id)
33 {
34 	const struct btf_type *t;
35 	int size;
36 
37 	t = btf_type_by_id(btf, type_id);
38 	t = btf_resolve_size(btf, t, &size);
39 	if (IS_ERR(t))
40 		return PTR_ERR(t);
41 	return size;
42 }
43 
44 enum libbpf_print_level {
45 	LIBBPF_WARN,
46 	LIBBPF_INFO,
47 	LIBBPF_DEBUG,
48 };
49 
50 #undef pr_warn
51 #undef pr_info
52 #undef pr_debug
53 #define pr_warn(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
54 #define pr_info(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
55 #define pr_debug(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
56 #define libbpf_print(level, fmt, ...)	bpf_log((void *)prog_name, fmt, ##__VA_ARGS__)
57 #else
58 #include <stdio.h>
59 #include <string.h>
60 #include <errno.h>
61 #include <ctype.h>
62 #include <linux/err.h>
63 
64 #include "libbpf.h"
65 #include "bpf.h"
66 #include "btf.h"
67 #include "str_error.h"
68 #include "libbpf_internal.h"
69 #endif
70 
71 static bool is_flex_arr(const struct btf *btf,
72 			const struct bpf_core_accessor *acc,
73 			const struct btf_array *arr)
74 {
75 	const struct btf_type *t;
76 
77 	/* not a flexible array, if not inside a struct or has non-zero size */
78 	if (!acc->name || arr->nelems > 0)
79 		return false;
80 
81 	/* has to be the last member of enclosing struct */
82 	t = btf_type_by_id(btf, acc->type_id);
83 	return acc->idx == btf_vlen(t) - 1;
84 }
85 
86 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
87 {
88 	switch (kind) {
89 	case BPF_CORE_FIELD_BYTE_OFFSET: return "byte_off";
90 	case BPF_CORE_FIELD_BYTE_SIZE: return "byte_sz";
91 	case BPF_CORE_FIELD_EXISTS: return "field_exists";
92 	case BPF_CORE_FIELD_SIGNED: return "signed";
93 	case BPF_CORE_FIELD_LSHIFT_U64: return "lshift_u64";
94 	case BPF_CORE_FIELD_RSHIFT_U64: return "rshift_u64";
95 	case BPF_CORE_TYPE_ID_LOCAL: return "local_type_id";
96 	case BPF_CORE_TYPE_ID_TARGET: return "target_type_id";
97 	case BPF_CORE_TYPE_EXISTS: return "type_exists";
98 	case BPF_CORE_TYPE_SIZE: return "type_size";
99 	case BPF_CORE_ENUMVAL_EXISTS: return "enumval_exists";
100 	case BPF_CORE_ENUMVAL_VALUE: return "enumval_value";
101 	default: return "unknown";
102 	}
103 }
104 
105 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
106 {
107 	switch (kind) {
108 	case BPF_CORE_FIELD_BYTE_OFFSET:
109 	case BPF_CORE_FIELD_BYTE_SIZE:
110 	case BPF_CORE_FIELD_EXISTS:
111 	case BPF_CORE_FIELD_SIGNED:
112 	case BPF_CORE_FIELD_LSHIFT_U64:
113 	case BPF_CORE_FIELD_RSHIFT_U64:
114 		return true;
115 	default:
116 		return false;
117 	}
118 }
119 
120 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
121 {
122 	switch (kind) {
123 	case BPF_CORE_TYPE_ID_LOCAL:
124 	case BPF_CORE_TYPE_ID_TARGET:
125 	case BPF_CORE_TYPE_EXISTS:
126 	case BPF_CORE_TYPE_SIZE:
127 		return true;
128 	default:
129 		return false;
130 	}
131 }
132 
133 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
134 {
135 	switch (kind) {
136 	case BPF_CORE_ENUMVAL_EXISTS:
137 	case BPF_CORE_ENUMVAL_VALUE:
138 		return true;
139 	default:
140 		return false;
141 	}
142 }
143 
144 int __bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
145 				const struct btf *targ_btf, __u32 targ_id, int level)
146 {
147 	const struct btf_type *local_type, *targ_type;
148 	int depth = 32; /* max recursion depth */
149 
150 	/* caller made sure that names match (ignoring flavor suffix) */
151 	local_type = btf_type_by_id(local_btf, local_id);
152 	targ_type = btf_type_by_id(targ_btf, targ_id);
153 	if (!btf_kind_core_compat(local_type, targ_type))
154 		return 0;
155 
156 recur:
157 	depth--;
158 	if (depth < 0)
159 		return -EINVAL;
160 
161 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
162 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
163 	if (!local_type || !targ_type)
164 		return -EINVAL;
165 
166 	if (!btf_kind_core_compat(local_type, targ_type))
167 		return 0;
168 
169 	switch (btf_kind(local_type)) {
170 	case BTF_KIND_UNKN:
171 	case BTF_KIND_STRUCT:
172 	case BTF_KIND_UNION:
173 	case BTF_KIND_ENUM:
174 	case BTF_KIND_FWD:
175 	case BTF_KIND_ENUM64:
176 		return 1;
177 	case BTF_KIND_INT:
178 		/* just reject deprecated bitfield-like integers; all other
179 		 * integers are by default compatible between each other
180 		 */
181 		return btf_int_offset(local_type) == 0 && btf_int_offset(targ_type) == 0;
182 	case BTF_KIND_PTR:
183 		local_id = local_type->type;
184 		targ_id = targ_type->type;
185 		goto recur;
186 	case BTF_KIND_ARRAY:
187 		local_id = btf_array(local_type)->type;
188 		targ_id = btf_array(targ_type)->type;
189 		goto recur;
190 	case BTF_KIND_FUNC_PROTO: {
191 		struct btf_param *local_p = btf_params(local_type);
192 		struct btf_param *targ_p = btf_params(targ_type);
193 		__u16 local_vlen = btf_vlen(local_type);
194 		__u16 targ_vlen = btf_vlen(targ_type);
195 		int i, err;
196 
197 		if (local_vlen != targ_vlen)
198 			return 0;
199 
200 		for (i = 0; i < local_vlen; i++, local_p++, targ_p++) {
201 			if (level <= 0)
202 				return -EINVAL;
203 
204 			skip_mods_and_typedefs(local_btf, local_p->type, &local_id);
205 			skip_mods_and_typedefs(targ_btf, targ_p->type, &targ_id);
206 			err = __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
207 							  level - 1);
208 			if (err <= 0)
209 				return err;
210 		}
211 
212 		/* tail recurse for return type check */
213 		skip_mods_and_typedefs(local_btf, local_type->type, &local_id);
214 		skip_mods_and_typedefs(targ_btf, targ_type->type, &targ_id);
215 		goto recur;
216 	}
217 	default:
218 		pr_warn("unexpected kind %s relocated, local [%d], target [%d]\n",
219 			btf_kind_str(local_type), local_id, targ_id);
220 		return 0;
221 	}
222 }
223 
224 /*
225  * Turn bpf_core_relo into a low- and high-level spec representation,
226  * validating correctness along the way, as well as calculating resulting
227  * field bit offset, specified by accessor string. Low-level spec captures
228  * every single level of nestedness, including traversing anonymous
229  * struct/union members. High-level one only captures semantically meaningful
230  * "turning points": named fields and array indicies.
231  * E.g., for this case:
232  *
233  *   struct sample {
234  *       int __unimportant;
235  *       struct {
236  *           int __1;
237  *           int __2;
238  *           int a[7];
239  *       };
240  *   };
241  *
242  *   struct sample *s = ...;
243  *
244  *   int x = &s->a[3]; // access string = '0:1:2:3'
245  *
246  * Low-level spec has 1:1 mapping with each element of access string (it's
247  * just a parsed access string representation): [0, 1, 2, 3].
248  *
249  * High-level spec will capture only 3 points:
250  *   - initial zero-index access by pointer (&s->... is the same as &s[0]...);
251  *   - field 'a' access (corresponds to '2' in low-level spec);
252  *   - array element #3 access (corresponds to '3' in low-level spec).
253  *
254  * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
255  * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
256  * spec and raw_spec are kept empty.
257  *
258  * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
259  * string to specify enumerator's value index that need to be relocated.
260  */
261 int bpf_core_parse_spec(const char *prog_name, const struct btf *btf,
262 			const struct bpf_core_relo *relo,
263 			struct bpf_core_spec *spec)
264 {
265 	int access_idx, parsed_len, i;
266 	struct bpf_core_accessor *acc;
267 	const struct btf_type *t;
268 	const char *name, *spec_str;
269 	__u32 id, name_off;
270 	__s64 sz;
271 
272 	spec_str = btf__name_by_offset(btf, relo->access_str_off);
273 	if (str_is_empty(spec_str) || *spec_str == ':')
274 		return -EINVAL;
275 
276 	memset(spec, 0, sizeof(*spec));
277 	spec->btf = btf;
278 	spec->root_type_id = relo->type_id;
279 	spec->relo_kind = relo->kind;
280 
281 	/* type-based relocations don't have a field access string */
282 	if (core_relo_is_type_based(relo->kind)) {
283 		if (strcmp(spec_str, "0"))
284 			return -EINVAL;
285 		return 0;
286 	}
287 
288 	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
289 	while (*spec_str) {
290 		if (*spec_str == ':')
291 			++spec_str;
292 		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
293 			return -EINVAL;
294 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
295 			return -E2BIG;
296 		spec_str += parsed_len;
297 		spec->raw_spec[spec->raw_len++] = access_idx;
298 	}
299 
300 	if (spec->raw_len == 0)
301 		return -EINVAL;
302 
303 	t = skip_mods_and_typedefs(btf, relo->type_id, &id);
304 	if (!t)
305 		return -EINVAL;
306 
307 	access_idx = spec->raw_spec[0];
308 	acc = &spec->spec[0];
309 	acc->type_id = id;
310 	acc->idx = access_idx;
311 	spec->len++;
312 
313 	if (core_relo_is_enumval_based(relo->kind)) {
314 		if (!btf_is_any_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
315 			return -EINVAL;
316 
317 		/* record enumerator name in a first accessor */
318 		name_off = btf_is_enum(t) ? btf_enum(t)[access_idx].name_off
319 					  : btf_enum64(t)[access_idx].name_off;
320 		acc->name = btf__name_by_offset(btf, name_off);
321 		return 0;
322 	}
323 
324 	if (!core_relo_is_field_based(relo->kind))
325 		return -EINVAL;
326 
327 	sz = btf__resolve_size(btf, id);
328 	if (sz < 0)
329 		return sz;
330 	spec->bit_offset = access_idx * sz * 8;
331 
332 	for (i = 1; i < spec->raw_len; i++) {
333 		t = skip_mods_and_typedefs(btf, id, &id);
334 		if (!t)
335 			return -EINVAL;
336 
337 		access_idx = spec->raw_spec[i];
338 		acc = &spec->spec[spec->len];
339 
340 		if (btf_is_composite(t)) {
341 			const struct btf_member *m;
342 			__u32 bit_offset;
343 
344 			if (access_idx >= btf_vlen(t))
345 				return -EINVAL;
346 
347 			bit_offset = btf_member_bit_offset(t, access_idx);
348 			spec->bit_offset += bit_offset;
349 
350 			m = btf_members(t) + access_idx;
351 			if (m->name_off) {
352 				name = btf__name_by_offset(btf, m->name_off);
353 				if (str_is_empty(name))
354 					return -EINVAL;
355 
356 				acc->type_id = id;
357 				acc->idx = access_idx;
358 				acc->name = name;
359 				spec->len++;
360 			}
361 
362 			id = m->type;
363 		} else if (btf_is_array(t)) {
364 			const struct btf_array *a = btf_array(t);
365 			bool flex;
366 
367 			t = skip_mods_and_typedefs(btf, a->type, &id);
368 			if (!t)
369 				return -EINVAL;
370 
371 			flex = is_flex_arr(btf, acc - 1, a);
372 			if (!flex && access_idx >= a->nelems)
373 				return -EINVAL;
374 
375 			spec->spec[spec->len].type_id = id;
376 			spec->spec[spec->len].idx = access_idx;
377 			spec->len++;
378 
379 			sz = btf__resolve_size(btf, id);
380 			if (sz < 0)
381 				return sz;
382 			spec->bit_offset += access_idx * sz * 8;
383 		} else {
384 			pr_warn("prog '%s': relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
385 				prog_name, relo->type_id, spec_str, i, id, btf_kind_str(t));
386 			return -EINVAL;
387 		}
388 	}
389 
390 	return 0;
391 }
392 
393 /* Check two types for compatibility for the purpose of field access
394  * relocation. const/volatile/restrict and typedefs are skipped to ensure we
395  * are relocating semantically compatible entities:
396  *   - any two STRUCTs/UNIONs are compatible and can be mixed;
397  *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
398  *   - any two PTRs are always compatible;
399  *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
400  *     least one of enums should be anonymous;
401  *   - for ENUMs, check sizes, names are ignored;
402  *   - for INT, size and signedness are ignored;
403  *   - any two FLOATs are always compatible;
404  *   - for ARRAY, dimensionality is ignored, element types are checked for
405  *     compatibility recursively;
406  *   - everything else shouldn't be ever a target of relocation.
407  * These rules are not set in stone and probably will be adjusted as we get
408  * more experience with using BPF CO-RE relocations.
409  */
410 static int bpf_core_fields_are_compat(const struct btf *local_btf,
411 				      __u32 local_id,
412 				      const struct btf *targ_btf,
413 				      __u32 targ_id)
414 {
415 	const struct btf_type *local_type, *targ_type;
416 
417 recur:
418 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
419 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
420 	if (!local_type || !targ_type)
421 		return -EINVAL;
422 
423 	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
424 		return 1;
425 	if (!btf_kind_core_compat(local_type, targ_type))
426 		return 0;
427 
428 	switch (btf_kind(local_type)) {
429 	case BTF_KIND_PTR:
430 	case BTF_KIND_FLOAT:
431 		return 1;
432 	case BTF_KIND_FWD:
433 	case BTF_KIND_ENUM64:
434 	case BTF_KIND_ENUM: {
435 		const char *local_name, *targ_name;
436 		size_t local_len, targ_len;
437 
438 		local_name = btf__name_by_offset(local_btf,
439 						 local_type->name_off);
440 		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
441 		local_len = bpf_core_essential_name_len(local_name);
442 		targ_len = bpf_core_essential_name_len(targ_name);
443 		/* one of them is anonymous or both w/ same flavor-less names */
444 		return local_len == 0 || targ_len == 0 ||
445 		       (local_len == targ_len &&
446 			strncmp(local_name, targ_name, local_len) == 0);
447 	}
448 	case BTF_KIND_INT:
449 		/* just reject deprecated bitfield-like integers; all other
450 		 * integers are by default compatible between each other
451 		 */
452 		return btf_int_offset(local_type) == 0 &&
453 		       btf_int_offset(targ_type) == 0;
454 	case BTF_KIND_ARRAY:
455 		local_id = btf_array(local_type)->type;
456 		targ_id = btf_array(targ_type)->type;
457 		goto recur;
458 	default:
459 		return 0;
460 	}
461 }
462 
463 /*
464  * Given single high-level named field accessor in local type, find
465  * corresponding high-level accessor for a target type. Along the way,
466  * maintain low-level spec for target as well. Also keep updating target
467  * bit offset.
468  *
469  * Searching is performed through recursive exhaustive enumeration of all
470  * fields of a struct/union. If there are any anonymous (embedded)
471  * structs/unions, they are recursively searched as well. If field with
472  * desired name is found, check compatibility between local and target types,
473  * before returning result.
474  *
475  * 1 is returned, if field is found.
476  * 0 is returned if no compatible field is found.
477  * <0 is returned on error.
478  */
479 static int bpf_core_match_member(const struct btf *local_btf,
480 				 const struct bpf_core_accessor *local_acc,
481 				 const struct btf *targ_btf,
482 				 __u32 targ_id,
483 				 struct bpf_core_spec *spec,
484 				 __u32 *next_targ_id)
485 {
486 	const struct btf_type *local_type, *targ_type;
487 	const struct btf_member *local_member, *m;
488 	const char *local_name, *targ_name;
489 	__u32 local_id;
490 	int i, n, found;
491 
492 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
493 	if (!targ_type)
494 		return -EINVAL;
495 	if (!btf_is_composite(targ_type))
496 		return 0;
497 
498 	local_id = local_acc->type_id;
499 	local_type = btf_type_by_id(local_btf, local_id);
500 	local_member = btf_members(local_type) + local_acc->idx;
501 	local_name = btf__name_by_offset(local_btf, local_member->name_off);
502 
503 	n = btf_vlen(targ_type);
504 	m = btf_members(targ_type);
505 	for (i = 0; i < n; i++, m++) {
506 		__u32 bit_offset;
507 
508 		bit_offset = btf_member_bit_offset(targ_type, i);
509 
510 		/* too deep struct/union/array nesting */
511 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
512 			return -E2BIG;
513 
514 		/* speculate this member will be the good one */
515 		spec->bit_offset += bit_offset;
516 		spec->raw_spec[spec->raw_len++] = i;
517 
518 		targ_name = btf__name_by_offset(targ_btf, m->name_off);
519 		if (str_is_empty(targ_name)) {
520 			/* embedded struct/union, we need to go deeper */
521 			found = bpf_core_match_member(local_btf, local_acc,
522 						      targ_btf, m->type,
523 						      spec, next_targ_id);
524 			if (found) /* either found or error */
525 				return found;
526 		} else if (strcmp(local_name, targ_name) == 0) {
527 			/* matching named field */
528 			struct bpf_core_accessor *targ_acc;
529 
530 			targ_acc = &spec->spec[spec->len++];
531 			targ_acc->type_id = targ_id;
532 			targ_acc->idx = i;
533 			targ_acc->name = targ_name;
534 
535 			*next_targ_id = m->type;
536 			found = bpf_core_fields_are_compat(local_btf,
537 							   local_member->type,
538 							   targ_btf, m->type);
539 			if (!found)
540 				spec->len--; /* pop accessor */
541 			return found;
542 		}
543 		/* member turned out not to be what we looked for */
544 		spec->bit_offset -= bit_offset;
545 		spec->raw_len--;
546 	}
547 
548 	return 0;
549 }
550 
551 /*
552  * Try to match local spec to a target type and, if successful, produce full
553  * target spec (high-level, low-level + bit offset).
554  */
555 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
556 			       const struct btf *targ_btf, __u32 targ_id,
557 			       struct bpf_core_spec *targ_spec)
558 {
559 	const struct btf_type *targ_type;
560 	const struct bpf_core_accessor *local_acc;
561 	struct bpf_core_accessor *targ_acc;
562 	int i, sz, matched;
563 	__u32 name_off;
564 
565 	memset(targ_spec, 0, sizeof(*targ_spec));
566 	targ_spec->btf = targ_btf;
567 	targ_spec->root_type_id = targ_id;
568 	targ_spec->relo_kind = local_spec->relo_kind;
569 
570 	if (core_relo_is_type_based(local_spec->relo_kind)) {
571 		return bpf_core_types_are_compat(local_spec->btf,
572 						 local_spec->root_type_id,
573 						 targ_btf, targ_id);
574 	}
575 
576 	local_acc = &local_spec->spec[0];
577 	targ_acc = &targ_spec->spec[0];
578 
579 	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
580 		size_t local_essent_len, targ_essent_len;
581 		const char *targ_name;
582 
583 		/* has to resolve to an enum */
584 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
585 		if (!btf_is_any_enum(targ_type))
586 			return 0;
587 
588 		local_essent_len = bpf_core_essential_name_len(local_acc->name);
589 
590 		for (i = 0; i < btf_vlen(targ_type); i++) {
591 			if (btf_is_enum(targ_type))
592 				name_off = btf_enum(targ_type)[i].name_off;
593 			else
594 				name_off = btf_enum64(targ_type)[i].name_off;
595 
596 			targ_name = btf__name_by_offset(targ_spec->btf, name_off);
597 			targ_essent_len = bpf_core_essential_name_len(targ_name);
598 			if (targ_essent_len != local_essent_len)
599 				continue;
600 			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
601 				targ_acc->type_id = targ_id;
602 				targ_acc->idx = i;
603 				targ_acc->name = targ_name;
604 				targ_spec->len++;
605 				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
606 				targ_spec->raw_len++;
607 				return 1;
608 			}
609 		}
610 		return 0;
611 	}
612 
613 	if (!core_relo_is_field_based(local_spec->relo_kind))
614 		return -EINVAL;
615 
616 	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
617 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
618 						   &targ_id);
619 		if (!targ_type)
620 			return -EINVAL;
621 
622 		if (local_acc->name) {
623 			matched = bpf_core_match_member(local_spec->btf,
624 							local_acc,
625 							targ_btf, targ_id,
626 							targ_spec, &targ_id);
627 			if (matched <= 0)
628 				return matched;
629 		} else {
630 			/* for i=0, targ_id is already treated as array element
631 			 * type (because it's the original struct), for others
632 			 * we should find array element type first
633 			 */
634 			if (i > 0) {
635 				const struct btf_array *a;
636 				bool flex;
637 
638 				if (!btf_is_array(targ_type))
639 					return 0;
640 
641 				a = btf_array(targ_type);
642 				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
643 				if (!flex && local_acc->idx >= a->nelems)
644 					return 0;
645 				if (!skip_mods_and_typedefs(targ_btf, a->type,
646 							    &targ_id))
647 					return -EINVAL;
648 			}
649 
650 			/* too deep struct/union/array nesting */
651 			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
652 				return -E2BIG;
653 
654 			targ_acc->type_id = targ_id;
655 			targ_acc->idx = local_acc->idx;
656 			targ_acc->name = NULL;
657 			targ_spec->len++;
658 			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
659 			targ_spec->raw_len++;
660 
661 			sz = btf__resolve_size(targ_btf, targ_id);
662 			if (sz < 0)
663 				return sz;
664 			targ_spec->bit_offset += local_acc->idx * sz * 8;
665 		}
666 	}
667 
668 	return 1;
669 }
670 
671 static int bpf_core_calc_field_relo(const char *prog_name,
672 				    const struct bpf_core_relo *relo,
673 				    const struct bpf_core_spec *spec,
674 				    __u64 *val, __u32 *field_sz, __u32 *type_id,
675 				    bool *validate)
676 {
677 	const struct bpf_core_accessor *acc;
678 	const struct btf_type *t;
679 	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
680 	const struct btf_member *m;
681 	const struct btf_type *mt;
682 	bool bitfield;
683 	__s64 sz;
684 
685 	*field_sz = 0;
686 
687 	if (relo->kind == BPF_CORE_FIELD_EXISTS) {
688 		*val = spec ? 1 : 0;
689 		return 0;
690 	}
691 
692 	if (!spec)
693 		return -EUCLEAN; /* request instruction poisoning */
694 
695 	acc = &spec->spec[spec->len - 1];
696 	t = btf_type_by_id(spec->btf, acc->type_id);
697 
698 	/* a[n] accessor needs special handling */
699 	if (!acc->name) {
700 		if (relo->kind == BPF_CORE_FIELD_BYTE_OFFSET) {
701 			*val = spec->bit_offset / 8;
702 			/* remember field size for load/store mem size */
703 			sz = btf__resolve_size(spec->btf, acc->type_id);
704 			if (sz < 0)
705 				return -EINVAL;
706 			*field_sz = sz;
707 			*type_id = acc->type_id;
708 		} else if (relo->kind == BPF_CORE_FIELD_BYTE_SIZE) {
709 			sz = btf__resolve_size(spec->btf, acc->type_id);
710 			if (sz < 0)
711 				return -EINVAL;
712 			*val = sz;
713 		} else {
714 			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
715 				prog_name, relo->kind, relo->insn_off / 8);
716 			return -EINVAL;
717 		}
718 		if (validate)
719 			*validate = true;
720 		return 0;
721 	}
722 
723 	m = btf_members(t) + acc->idx;
724 	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
725 	bit_off = spec->bit_offset;
726 	bit_sz = btf_member_bitfield_size(t, acc->idx);
727 
728 	bitfield = bit_sz > 0;
729 	if (bitfield) {
730 		byte_sz = mt->size;
731 		byte_off = bit_off / 8 / byte_sz * byte_sz;
732 		/* figure out smallest int size necessary for bitfield load */
733 		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
734 			if (byte_sz >= 8) {
735 				/* bitfield can't be read with 64-bit read */
736 				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
737 					prog_name, relo->kind, relo->insn_off / 8);
738 				return -E2BIG;
739 			}
740 			byte_sz *= 2;
741 			byte_off = bit_off / 8 / byte_sz * byte_sz;
742 		}
743 	} else {
744 		sz = btf__resolve_size(spec->btf, field_type_id);
745 		if (sz < 0)
746 			return -EINVAL;
747 		byte_sz = sz;
748 		byte_off = spec->bit_offset / 8;
749 		bit_sz = byte_sz * 8;
750 	}
751 
752 	/* for bitfields, all the relocatable aspects are ambiguous and we
753 	 * might disagree with compiler, so turn off validation of expected
754 	 * value, except for signedness
755 	 */
756 	if (validate)
757 		*validate = !bitfield;
758 
759 	switch (relo->kind) {
760 	case BPF_CORE_FIELD_BYTE_OFFSET:
761 		*val = byte_off;
762 		if (!bitfield) {
763 			*field_sz = byte_sz;
764 			*type_id = field_type_id;
765 		}
766 		break;
767 	case BPF_CORE_FIELD_BYTE_SIZE:
768 		*val = byte_sz;
769 		break;
770 	case BPF_CORE_FIELD_SIGNED:
771 		*val = (btf_is_any_enum(mt) && BTF_INFO_KFLAG(mt->info)) ||
772 		       (btf_int_encoding(mt) & BTF_INT_SIGNED);
773 		if (validate)
774 			*validate = true; /* signedness is never ambiguous */
775 		break;
776 	case BPF_CORE_FIELD_LSHIFT_U64:
777 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
778 		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
779 #else
780 		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
781 #endif
782 		break;
783 	case BPF_CORE_FIELD_RSHIFT_U64:
784 		*val = 64 - bit_sz;
785 		if (validate)
786 			*validate = true; /* right shift is never ambiguous */
787 		break;
788 	case BPF_CORE_FIELD_EXISTS:
789 	default:
790 		return -EOPNOTSUPP;
791 	}
792 
793 	return 0;
794 }
795 
796 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
797 				   const struct bpf_core_spec *spec,
798 				   __u64 *val, bool *validate)
799 {
800 	__s64 sz;
801 
802 	/* by default, always check expected value in bpf_insn */
803 	if (validate)
804 		*validate = true;
805 
806 	/* type-based relos return zero when target type is not found */
807 	if (!spec) {
808 		*val = 0;
809 		return 0;
810 	}
811 
812 	switch (relo->kind) {
813 	case BPF_CORE_TYPE_ID_TARGET:
814 		*val = spec->root_type_id;
815 		/* type ID, embedded in bpf_insn, might change during linking,
816 		 * so enforcing it is pointless
817 		 */
818 		if (validate)
819 			*validate = false;
820 		break;
821 	case BPF_CORE_TYPE_EXISTS:
822 		*val = 1;
823 		break;
824 	case BPF_CORE_TYPE_SIZE:
825 		sz = btf__resolve_size(spec->btf, spec->root_type_id);
826 		if (sz < 0)
827 			return -EINVAL;
828 		*val = sz;
829 		break;
830 	case BPF_CORE_TYPE_ID_LOCAL:
831 	/* BPF_CORE_TYPE_ID_LOCAL is handled specially and shouldn't get here */
832 	default:
833 		return -EOPNOTSUPP;
834 	}
835 
836 	return 0;
837 }
838 
839 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
840 				      const struct bpf_core_spec *spec,
841 				      __u64 *val)
842 {
843 	const struct btf_type *t;
844 
845 	switch (relo->kind) {
846 	case BPF_CORE_ENUMVAL_EXISTS:
847 		*val = spec ? 1 : 0;
848 		break;
849 	case BPF_CORE_ENUMVAL_VALUE:
850 		if (!spec)
851 			return -EUCLEAN; /* request instruction poisoning */
852 		t = btf_type_by_id(spec->btf, spec->spec[0].type_id);
853 		if (btf_is_enum(t))
854 			*val = btf_enum(t)[spec->spec[0].idx].val;
855 		else
856 			*val = btf_enum64_value(btf_enum64(t) + spec->spec[0].idx);
857 		break;
858 	default:
859 		return -EOPNOTSUPP;
860 	}
861 
862 	return 0;
863 }
864 
865 /* Calculate original and target relocation values, given local and target
866  * specs and relocation kind. These values are calculated for each candidate.
867  * If there are multiple candidates, resulting values should all be consistent
868  * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
869  * If instruction has to be poisoned, *poison will be set to true.
870  */
871 static int bpf_core_calc_relo(const char *prog_name,
872 			      const struct bpf_core_relo *relo,
873 			      int relo_idx,
874 			      const struct bpf_core_spec *local_spec,
875 			      const struct bpf_core_spec *targ_spec,
876 			      struct bpf_core_relo_res *res)
877 {
878 	int err = -EOPNOTSUPP;
879 
880 	res->orig_val = 0;
881 	res->new_val = 0;
882 	res->poison = false;
883 	res->validate = true;
884 	res->fail_memsz_adjust = false;
885 	res->orig_sz = res->new_sz = 0;
886 	res->orig_type_id = res->new_type_id = 0;
887 
888 	if (core_relo_is_field_based(relo->kind)) {
889 		err = bpf_core_calc_field_relo(prog_name, relo, local_spec,
890 					       &res->orig_val, &res->orig_sz,
891 					       &res->orig_type_id, &res->validate);
892 		err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec,
893 						      &res->new_val, &res->new_sz,
894 						      &res->new_type_id, NULL);
895 		if (err)
896 			goto done;
897 		/* Validate if it's safe to adjust load/store memory size.
898 		 * Adjustments are performed only if original and new memory
899 		 * sizes differ.
900 		 */
901 		res->fail_memsz_adjust = false;
902 		if (res->orig_sz != res->new_sz) {
903 			const struct btf_type *orig_t, *new_t;
904 
905 			orig_t = btf_type_by_id(local_spec->btf, res->orig_type_id);
906 			new_t = btf_type_by_id(targ_spec->btf, res->new_type_id);
907 
908 			/* There are two use cases in which it's safe to
909 			 * adjust load/store's mem size:
910 			 *   - reading a 32-bit kernel pointer, while on BPF
911 			 *   size pointers are always 64-bit; in this case
912 			 *   it's safe to "downsize" instruction size due to
913 			 *   pointer being treated as unsigned integer with
914 			 *   zero-extended upper 32-bits;
915 			 *   - reading unsigned integers, again due to
916 			 *   zero-extension is preserving the value correctly.
917 			 *
918 			 * In all other cases it's incorrect to attempt to
919 			 * load/store field because read value will be
920 			 * incorrect, so we poison relocated instruction.
921 			 */
922 			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
923 				goto done;
924 			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
925 			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
926 			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
927 				goto done;
928 
929 			/* mark as invalid mem size adjustment, but this will
930 			 * only be checked for LDX/STX/ST insns
931 			 */
932 			res->fail_memsz_adjust = true;
933 		}
934 	} else if (core_relo_is_type_based(relo->kind)) {
935 		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val, &res->validate);
936 		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val, NULL);
937 	} else if (core_relo_is_enumval_based(relo->kind)) {
938 		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
939 		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
940 	}
941 
942 done:
943 	if (err == -EUCLEAN) {
944 		/* EUCLEAN is used to signal instruction poisoning request */
945 		res->poison = true;
946 		err = 0;
947 	} else if (err == -EOPNOTSUPP) {
948 		/* EOPNOTSUPP means unknown/unsupported relocation */
949 		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
950 			prog_name, relo_idx, core_relo_kind_str(relo->kind),
951 			relo->kind, relo->insn_off / 8);
952 	}
953 
954 	return err;
955 }
956 
957 /*
958  * Turn instruction for which CO_RE relocation failed into invalid one with
959  * distinct signature.
960  */
961 static void bpf_core_poison_insn(const char *prog_name, int relo_idx,
962 				 int insn_idx, struct bpf_insn *insn)
963 {
964 	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
965 		 prog_name, relo_idx, insn_idx);
966 	insn->code = BPF_JMP | BPF_CALL;
967 	insn->dst_reg = 0;
968 	insn->src_reg = 0;
969 	insn->off = 0;
970 	/* if this instruction is reachable (not a dead code),
971 	 * verifier will complain with the following message:
972 	 * invalid func unknown#195896080
973 	 */
974 	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
975 }
976 
977 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
978 {
979 	switch (BPF_SIZE(insn->code)) {
980 	case BPF_DW: return 8;
981 	case BPF_W: return 4;
982 	case BPF_H: return 2;
983 	case BPF_B: return 1;
984 	default: return -1;
985 	}
986 }
987 
988 static int insn_bytes_to_bpf_size(__u32 sz)
989 {
990 	switch (sz) {
991 	case 8: return BPF_DW;
992 	case 4: return BPF_W;
993 	case 2: return BPF_H;
994 	case 1: return BPF_B;
995 	default: return -1;
996 	}
997 }
998 
999 /*
1000  * Patch relocatable BPF instruction.
1001  *
1002  * Patched value is determined by relocation kind and target specification.
1003  * For existence relocations target spec will be NULL if field/type is not found.
1004  * Expected insn->imm value is determined using relocation kind and local
1005  * spec, and is checked before patching instruction. If actual insn->imm value
1006  * is wrong, bail out with error.
1007  *
1008  * Currently supported classes of BPF instruction are:
1009  * 1. rX = <imm> (assignment with immediate operand);
1010  * 2. rX += <imm> (arithmetic operations with immediate operand);
1011  * 3. rX = <imm64> (load with 64-bit immediate value);
1012  * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
1013  * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
1014  * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
1015  */
1016 int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn,
1017 			int insn_idx, const struct bpf_core_relo *relo,
1018 			int relo_idx, const struct bpf_core_relo_res *res)
1019 {
1020 	__u64 orig_val, new_val;
1021 	__u8 class;
1022 
1023 	class = BPF_CLASS(insn->code);
1024 
1025 	if (res->poison) {
1026 poison:
1027 		/* poison second part of ldimm64 to avoid confusing error from
1028 		 * verifier about "unknown opcode 00"
1029 		 */
1030 		if (is_ldimm64_insn(insn))
1031 			bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1);
1032 		bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn);
1033 		return 0;
1034 	}
1035 
1036 	orig_val = res->orig_val;
1037 	new_val = res->new_val;
1038 
1039 	switch (class) {
1040 	case BPF_ALU:
1041 	case BPF_ALU64:
1042 		if (BPF_SRC(insn->code) != BPF_K)
1043 			return -EINVAL;
1044 		if (res->validate && insn->imm != orig_val) {
1045 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %llu -> %llu\n",
1046 				prog_name, relo_idx,
1047 				insn_idx, insn->imm, (unsigned long long)orig_val,
1048 				(unsigned long long)new_val);
1049 			return -EINVAL;
1050 		}
1051 		orig_val = insn->imm;
1052 		insn->imm = new_val;
1053 		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %llu -> %llu\n",
1054 			 prog_name, relo_idx, insn_idx,
1055 			 (unsigned long long)orig_val, (unsigned long long)new_val);
1056 		break;
1057 	case BPF_LDX:
1058 	case BPF_ST:
1059 	case BPF_STX:
1060 		if (res->validate && insn->off != orig_val) {
1061 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %llu -> %llu\n",
1062 				prog_name, relo_idx, insn_idx, insn->off, (unsigned long long)orig_val,
1063 				(unsigned long long)new_val);
1064 			return -EINVAL;
1065 		}
1066 		if (new_val > SHRT_MAX) {
1067 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %llu\n",
1068 				prog_name, relo_idx, insn_idx, (unsigned long long)new_val);
1069 			return -ERANGE;
1070 		}
1071 		if (res->fail_memsz_adjust) {
1072 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
1073 				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
1074 				prog_name, relo_idx, insn_idx);
1075 			goto poison;
1076 		}
1077 
1078 		orig_val = insn->off;
1079 		insn->off = new_val;
1080 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %llu -> %llu\n",
1081 			 prog_name, relo_idx, insn_idx, (unsigned long long)orig_val,
1082 			 (unsigned long long)new_val);
1083 
1084 		if (res->new_sz != res->orig_sz) {
1085 			int insn_bytes_sz, insn_bpf_sz;
1086 
1087 			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
1088 			if (insn_bytes_sz != res->orig_sz) {
1089 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
1090 					prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
1091 				return -EINVAL;
1092 			}
1093 
1094 			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
1095 			if (insn_bpf_sz < 0) {
1096 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
1097 					prog_name, relo_idx, insn_idx, res->new_sz);
1098 				return -EINVAL;
1099 			}
1100 
1101 			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
1102 			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
1103 				 prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
1104 		}
1105 		break;
1106 	case BPF_LD: {
1107 		__u64 imm;
1108 
1109 		if (!is_ldimm64_insn(insn) ||
1110 		    insn[0].src_reg != 0 || insn[0].off != 0 ||
1111 		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
1112 		    insn[1].src_reg != 0 || insn[1].off != 0) {
1113 			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
1114 				prog_name, relo_idx, insn_idx);
1115 			return -EINVAL;
1116 		}
1117 
1118 		imm = (__u32)insn[0].imm | ((__u64)insn[1].imm << 32);
1119 		if (res->validate && imm != orig_val) {
1120 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %llu -> %llu\n",
1121 				prog_name, relo_idx,
1122 				insn_idx, (unsigned long long)imm,
1123 				(unsigned long long)orig_val, (unsigned long long)new_val);
1124 			return -EINVAL;
1125 		}
1126 
1127 		insn[0].imm = new_val;
1128 		insn[1].imm = new_val >> 32;
1129 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %llu\n",
1130 			 prog_name, relo_idx, insn_idx,
1131 			 (unsigned long long)imm, (unsigned long long)new_val);
1132 		break;
1133 	}
1134 	default:
1135 		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
1136 			prog_name, relo_idx, insn_idx, insn->code,
1137 			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
1138 		return -EINVAL;
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 /* Output spec definition in the format:
1145  * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
1146  * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
1147  */
1148 int bpf_core_format_spec(char *buf, size_t buf_sz, const struct bpf_core_spec *spec)
1149 {
1150 	const struct btf_type *t;
1151 	const char *s;
1152 	__u32 type_id;
1153 	int i, len = 0;
1154 
1155 #define append_buf(fmt, args...)				\
1156 	({							\
1157 		int r;						\
1158 		r = snprintf(buf, buf_sz, fmt, ##args);		\
1159 		len += r;					\
1160 		if (r >= buf_sz)				\
1161 			r = buf_sz;				\
1162 		buf += r;					\
1163 		buf_sz -= r;					\
1164 	})
1165 
1166 	type_id = spec->root_type_id;
1167 	t = btf_type_by_id(spec->btf, type_id);
1168 	s = btf__name_by_offset(spec->btf, t->name_off);
1169 
1170 	append_buf("<%s> [%u] %s %s",
1171 		   core_relo_kind_str(spec->relo_kind),
1172 		   type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
1173 
1174 	if (core_relo_is_type_based(spec->relo_kind))
1175 		return len;
1176 
1177 	if (core_relo_is_enumval_based(spec->relo_kind)) {
1178 		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
1179 		if (btf_is_enum(t)) {
1180 			const struct btf_enum *e;
1181 			const char *fmt_str;
1182 
1183 			e = btf_enum(t) + spec->raw_spec[0];
1184 			s = btf__name_by_offset(spec->btf, e->name_off);
1185 			fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %d" : "::%s = %u";
1186 			append_buf(fmt_str, s, e->val);
1187 		} else {
1188 			const struct btf_enum64 *e;
1189 			const char *fmt_str;
1190 
1191 			e = btf_enum64(t) + spec->raw_spec[0];
1192 			s = btf__name_by_offset(spec->btf, e->name_off);
1193 			fmt_str = BTF_INFO_KFLAG(t->info) ? "::%s = %lld" : "::%s = %llu";
1194 			append_buf(fmt_str, s, (unsigned long long)btf_enum64_value(e));
1195 		}
1196 		return len;
1197 	}
1198 
1199 	if (core_relo_is_field_based(spec->relo_kind)) {
1200 		for (i = 0; i < spec->len; i++) {
1201 			if (spec->spec[i].name)
1202 				append_buf(".%s", spec->spec[i].name);
1203 			else if (i > 0 || spec->spec[i].idx > 0)
1204 				append_buf("[%u]", spec->spec[i].idx);
1205 		}
1206 
1207 		append_buf(" (");
1208 		for (i = 0; i < spec->raw_len; i++)
1209 			append_buf("%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
1210 
1211 		if (spec->bit_offset % 8)
1212 			append_buf(" @ offset %u.%u)", spec->bit_offset / 8, spec->bit_offset % 8);
1213 		else
1214 			append_buf(" @ offset %u)", spec->bit_offset / 8);
1215 		return len;
1216 	}
1217 
1218 	return len;
1219 #undef append_buf
1220 }
1221 
1222 /*
1223  * Calculate CO-RE relocation target result.
1224  *
1225  * The outline and important points of the algorithm:
1226  * 1. For given local type, find corresponding candidate target types.
1227  *    Candidate type is a type with the same "essential" name, ignoring
1228  *    everything after last triple underscore (___). E.g., `sample`,
1229  *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
1230  *    for each other. Names with triple underscore are referred to as
1231  *    "flavors" and are useful, among other things, to allow to
1232  *    specify/support incompatible variations of the same kernel struct, which
1233  *    might differ between different kernel versions and/or build
1234  *    configurations.
1235  *
1236  *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
1237  *    converter, when deduplicated BTF of a kernel still contains more than
1238  *    one different types with the same name. In that case, ___2, ___3, etc
1239  *    are appended starting from second name conflict. But start flavors are
1240  *    also useful to be defined "locally", in BPF program, to extract same
1241  *    data from incompatible changes between different kernel
1242  *    versions/configurations. For instance, to handle field renames between
1243  *    kernel versions, one can use two flavors of the struct name with the
1244  *    same common name and use conditional relocations to extract that field,
1245  *    depending on target kernel version.
1246  * 2. For each candidate type, try to match local specification to this
1247  *    candidate target type. Matching involves finding corresponding
1248  *    high-level spec accessors, meaning that all named fields should match,
1249  *    as well as all array accesses should be within the actual bounds. Also,
1250  *    types should be compatible (see bpf_core_fields_are_compat for details).
1251  * 3. It is supported and expected that there might be multiple flavors
1252  *    matching the spec. As long as all the specs resolve to the same set of
1253  *    offsets across all candidates, there is no error. If there is any
1254  *    ambiguity, CO-RE relocation will fail. This is necessary to accommodate
1255  *    imperfection of BTF deduplication, which can cause slight duplication of
1256  *    the same BTF type, if some directly or indirectly referenced (by
1257  *    pointer) type gets resolved to different actual types in different
1258  *    object files. If such a situation occurs, deduplicated BTF will end up
1259  *    with two (or more) structurally identical types, which differ only in
1260  *    types they refer to through pointer. This should be OK in most cases and
1261  *    is not an error.
1262  * 4. Candidate types search is performed by linearly scanning through all
1263  *    types in target BTF. It is anticipated that this is overall more
1264  *    efficient memory-wise and not significantly worse (if not better)
1265  *    CPU-wise compared to prebuilding a map from all local type names to
1266  *    a list of candidate type names. It's also sped up by caching resolved
1267  *    list of matching candidates per each local "root" type ID, that has at
1268  *    least one bpf_core_relo associated with it. This list is shared
1269  *    between multiple relocations for the same type ID and is updated as some
1270  *    of the candidates are pruned due to structural incompatibility.
1271  */
1272 int bpf_core_calc_relo_insn(const char *prog_name,
1273 			    const struct bpf_core_relo *relo,
1274 			    int relo_idx,
1275 			    const struct btf *local_btf,
1276 			    struct bpf_core_cand_list *cands,
1277 			    struct bpf_core_spec *specs_scratch,
1278 			    struct bpf_core_relo_res *targ_res)
1279 {
1280 	struct bpf_core_spec *local_spec = &specs_scratch[0];
1281 	struct bpf_core_spec *cand_spec = &specs_scratch[1];
1282 	struct bpf_core_spec *targ_spec = &specs_scratch[2];
1283 	struct bpf_core_relo_res cand_res;
1284 	const struct btf_type *local_type;
1285 	const char *local_name;
1286 	__u32 local_id;
1287 	char spec_buf[256];
1288 	int i, j, err;
1289 
1290 	local_id = relo->type_id;
1291 	local_type = btf_type_by_id(local_btf, local_id);
1292 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
1293 	if (!local_name)
1294 		return -EINVAL;
1295 
1296 	err = bpf_core_parse_spec(prog_name, local_btf, relo, local_spec);
1297 	if (err) {
1298 		const char *spec_str;
1299 
1300 		spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
1301 		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
1302 			prog_name, relo_idx, local_id, btf_kind_str(local_type),
1303 			str_is_empty(local_name) ? "<anon>" : local_name,
1304 			spec_str ?: "<?>", err);
1305 		return -EINVAL;
1306 	}
1307 
1308 	bpf_core_format_spec(spec_buf, sizeof(spec_buf), local_spec);
1309 	pr_debug("prog '%s': relo #%d: %s\n", prog_name, relo_idx, spec_buf);
1310 
1311 	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
1312 	if (relo->kind == BPF_CORE_TYPE_ID_LOCAL) {
1313 		/* bpf_insn's imm value could get out of sync during linking */
1314 		memset(targ_res, 0, sizeof(*targ_res));
1315 		targ_res->validate = false;
1316 		targ_res->poison = false;
1317 		targ_res->orig_val = local_spec->root_type_id;
1318 		targ_res->new_val = local_spec->root_type_id;
1319 		return 0;
1320 	}
1321 
1322 	/* libbpf doesn't support candidate search for anonymous types */
1323 	if (str_is_empty(local_name)) {
1324 		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
1325 			prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
1326 		return -EOPNOTSUPP;
1327 	}
1328 
1329 	for (i = 0, j = 0; i < cands->len; i++) {
1330 		err = bpf_core_spec_match(local_spec, cands->cands[i].btf,
1331 					  cands->cands[i].id, cand_spec);
1332 		if (err < 0) {
1333 			bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1334 			pr_warn("prog '%s': relo #%d: error matching candidate #%d %s: %d\n ",
1335 				prog_name, relo_idx, i, spec_buf, err);
1336 			return err;
1337 		}
1338 
1339 		bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1340 		pr_debug("prog '%s': relo #%d: %s candidate #%d %s\n", prog_name,
1341 			 relo_idx, err == 0 ? "non-matching" : "matching", i, spec_buf);
1342 
1343 		if (err == 0)
1344 			continue;
1345 
1346 		err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, cand_spec, &cand_res);
1347 		if (err)
1348 			return err;
1349 
1350 		if (j == 0) {
1351 			*targ_res = cand_res;
1352 			*targ_spec = *cand_spec;
1353 		} else if (cand_spec->bit_offset != targ_spec->bit_offset) {
1354 			/* if there are many field relo candidates, they
1355 			 * should all resolve to the same bit offset
1356 			 */
1357 			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
1358 				prog_name, relo_idx, cand_spec->bit_offset,
1359 				targ_spec->bit_offset);
1360 			return -EINVAL;
1361 		} else if (cand_res.poison != targ_res->poison ||
1362 			   cand_res.new_val != targ_res->new_val) {
1363 			/* all candidates should result in the same relocation
1364 			 * decision and value, otherwise it's dangerous to
1365 			 * proceed due to ambiguity
1366 			 */
1367 			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %llu != %s %llu\n",
1368 				prog_name, relo_idx,
1369 				cand_res.poison ? "failure" : "success",
1370 				(unsigned long long)cand_res.new_val,
1371 				targ_res->poison ? "failure" : "success",
1372 				(unsigned long long)targ_res->new_val);
1373 			return -EINVAL;
1374 		}
1375 
1376 		cands->cands[j++] = cands->cands[i];
1377 	}
1378 
1379 	/*
1380 	 * For BPF_CORE_FIELD_EXISTS relo or when used BPF program has field
1381 	 * existence checks or kernel version/config checks, it's expected
1382 	 * that we might not find any candidates. In this case, if field
1383 	 * wasn't found in any candidate, the list of candidates shouldn't
1384 	 * change at all, we'll just handle relocating appropriately,
1385 	 * depending on relo's kind.
1386 	 */
1387 	if (j > 0)
1388 		cands->len = j;
1389 
1390 	/*
1391 	 * If no candidates were found, it might be both a programmer error,
1392 	 * as well as expected case, depending whether instruction w/
1393 	 * relocation is guarded in some way that makes it unreachable (dead
1394 	 * code) if relocation can't be resolved. This is handled in
1395 	 * bpf_core_patch_insn() uniformly by replacing that instruction with
1396 	 * BPF helper call insn (using invalid helper ID). If that instruction
1397 	 * is indeed unreachable, then it will be ignored and eliminated by
1398 	 * verifier. If it was an error, then verifier will complain and point
1399 	 * to a specific instruction number in its log.
1400 	 */
1401 	if (j == 0) {
1402 		pr_debug("prog '%s': relo #%d: no matching targets found\n",
1403 			 prog_name, relo_idx);
1404 
1405 		/* calculate single target relo result explicitly */
1406 		err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, NULL, targ_res);
1407 		if (err)
1408 			return err;
1409 	}
1410 
1411 	return 0;
1412 }
1413