xref: /linux/tools/lib/bpf/relo_core.c (revision 24bce201d79807b668bf9d9e0aca801c5c0d5f78)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 /* Copyright (c) 2019 Facebook */
3 
4 #ifdef __KERNEL__
5 #include <linux/bpf.h>
6 #include <linux/btf.h>
7 #include <linux/string.h>
8 #include <linux/bpf_verifier.h>
9 #include "relo_core.h"
10 
11 static const char *btf_kind_str(const struct btf_type *t)
12 {
13 	return btf_type_str(t);
14 }
15 
16 static bool is_ldimm64_insn(struct bpf_insn *insn)
17 {
18 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
19 }
20 
21 static const struct btf_type *
22 skip_mods_and_typedefs(const struct btf *btf, u32 id, u32 *res_id)
23 {
24 	return btf_type_skip_modifiers(btf, id, res_id);
25 }
26 
27 static const char *btf__name_by_offset(const struct btf *btf, u32 offset)
28 {
29 	return btf_name_by_offset(btf, offset);
30 }
31 
32 static s64 btf__resolve_size(const struct btf *btf, u32 type_id)
33 {
34 	const struct btf_type *t;
35 	int size;
36 
37 	t = btf_type_by_id(btf, type_id);
38 	t = btf_resolve_size(btf, t, &size);
39 	if (IS_ERR(t))
40 		return PTR_ERR(t);
41 	return size;
42 }
43 
44 enum libbpf_print_level {
45 	LIBBPF_WARN,
46 	LIBBPF_INFO,
47 	LIBBPF_DEBUG,
48 };
49 
50 #undef pr_warn
51 #undef pr_info
52 #undef pr_debug
53 #define pr_warn(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
54 #define pr_info(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
55 #define pr_debug(fmt, log, ...)	bpf_log((void *)log, fmt, "", ##__VA_ARGS__)
56 #define libbpf_print(level, fmt, ...)	bpf_log((void *)prog_name, fmt, ##__VA_ARGS__)
57 #else
58 #include <stdio.h>
59 #include <string.h>
60 #include <errno.h>
61 #include <ctype.h>
62 #include <linux/err.h>
63 
64 #include "libbpf.h"
65 #include "bpf.h"
66 #include "btf.h"
67 #include "str_error.h"
68 #include "libbpf_internal.h"
69 #endif
70 
71 static bool is_flex_arr(const struct btf *btf,
72 			const struct bpf_core_accessor *acc,
73 			const struct btf_array *arr)
74 {
75 	const struct btf_type *t;
76 
77 	/* not a flexible array, if not inside a struct or has non-zero size */
78 	if (!acc->name || arr->nelems > 0)
79 		return false;
80 
81 	/* has to be the last member of enclosing struct */
82 	t = btf_type_by_id(btf, acc->type_id);
83 	return acc->idx == btf_vlen(t) - 1;
84 }
85 
86 static const char *core_relo_kind_str(enum bpf_core_relo_kind kind)
87 {
88 	switch (kind) {
89 	case BPF_CORE_FIELD_BYTE_OFFSET: return "byte_off";
90 	case BPF_CORE_FIELD_BYTE_SIZE: return "byte_sz";
91 	case BPF_CORE_FIELD_EXISTS: return "field_exists";
92 	case BPF_CORE_FIELD_SIGNED: return "signed";
93 	case BPF_CORE_FIELD_LSHIFT_U64: return "lshift_u64";
94 	case BPF_CORE_FIELD_RSHIFT_U64: return "rshift_u64";
95 	case BPF_CORE_TYPE_ID_LOCAL: return "local_type_id";
96 	case BPF_CORE_TYPE_ID_TARGET: return "target_type_id";
97 	case BPF_CORE_TYPE_EXISTS: return "type_exists";
98 	case BPF_CORE_TYPE_SIZE: return "type_size";
99 	case BPF_CORE_ENUMVAL_EXISTS: return "enumval_exists";
100 	case BPF_CORE_ENUMVAL_VALUE: return "enumval_value";
101 	default: return "unknown";
102 	}
103 }
104 
105 static bool core_relo_is_field_based(enum bpf_core_relo_kind kind)
106 {
107 	switch (kind) {
108 	case BPF_CORE_FIELD_BYTE_OFFSET:
109 	case BPF_CORE_FIELD_BYTE_SIZE:
110 	case BPF_CORE_FIELD_EXISTS:
111 	case BPF_CORE_FIELD_SIGNED:
112 	case BPF_CORE_FIELD_LSHIFT_U64:
113 	case BPF_CORE_FIELD_RSHIFT_U64:
114 		return true;
115 	default:
116 		return false;
117 	}
118 }
119 
120 static bool core_relo_is_type_based(enum bpf_core_relo_kind kind)
121 {
122 	switch (kind) {
123 	case BPF_CORE_TYPE_ID_LOCAL:
124 	case BPF_CORE_TYPE_ID_TARGET:
125 	case BPF_CORE_TYPE_EXISTS:
126 	case BPF_CORE_TYPE_SIZE:
127 		return true;
128 	default:
129 		return false;
130 	}
131 }
132 
133 static bool core_relo_is_enumval_based(enum bpf_core_relo_kind kind)
134 {
135 	switch (kind) {
136 	case BPF_CORE_ENUMVAL_EXISTS:
137 	case BPF_CORE_ENUMVAL_VALUE:
138 		return true;
139 	default:
140 		return false;
141 	}
142 }
143 
144 /*
145  * Turn bpf_core_relo into a low- and high-level spec representation,
146  * validating correctness along the way, as well as calculating resulting
147  * field bit offset, specified by accessor string. Low-level spec captures
148  * every single level of nestedness, including traversing anonymous
149  * struct/union members. High-level one only captures semantically meaningful
150  * "turning points": named fields and array indicies.
151  * E.g., for this case:
152  *
153  *   struct sample {
154  *       int __unimportant;
155  *       struct {
156  *           int __1;
157  *           int __2;
158  *           int a[7];
159  *       };
160  *   };
161  *
162  *   struct sample *s = ...;
163  *
164  *   int x = &s->a[3]; // access string = '0:1:2:3'
165  *
166  * Low-level spec has 1:1 mapping with each element of access string (it's
167  * just a parsed access string representation): [0, 1, 2, 3].
168  *
169  * High-level spec will capture only 3 points:
170  *   - intial zero-index access by pointer (&s->... is the same as &s[0]...);
171  *   - field 'a' access (corresponds to '2' in low-level spec);
172  *   - array element #3 access (corresponds to '3' in low-level spec).
173  *
174  * Type-based relocations (TYPE_EXISTS/TYPE_SIZE,
175  * TYPE_ID_LOCAL/TYPE_ID_TARGET) don't capture any field information. Their
176  * spec and raw_spec are kept empty.
177  *
178  * Enum value-based relocations (ENUMVAL_EXISTS/ENUMVAL_VALUE) use access
179  * string to specify enumerator's value index that need to be relocated.
180  */
181 int bpf_core_parse_spec(const char *prog_name, const struct btf *btf,
182 			const struct bpf_core_relo *relo,
183 			struct bpf_core_spec *spec)
184 {
185 	int access_idx, parsed_len, i;
186 	struct bpf_core_accessor *acc;
187 	const struct btf_type *t;
188 	const char *name, *spec_str;
189 	__u32 id;
190 	__s64 sz;
191 
192 	spec_str = btf__name_by_offset(btf, relo->access_str_off);
193 	if (str_is_empty(spec_str) || *spec_str == ':')
194 		return -EINVAL;
195 
196 	memset(spec, 0, sizeof(*spec));
197 	spec->btf = btf;
198 	spec->root_type_id = relo->type_id;
199 	spec->relo_kind = relo->kind;
200 
201 	/* type-based relocations don't have a field access string */
202 	if (core_relo_is_type_based(relo->kind)) {
203 		if (strcmp(spec_str, "0"))
204 			return -EINVAL;
205 		return 0;
206 	}
207 
208 	/* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */
209 	while (*spec_str) {
210 		if (*spec_str == ':')
211 			++spec_str;
212 		if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1)
213 			return -EINVAL;
214 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
215 			return -E2BIG;
216 		spec_str += parsed_len;
217 		spec->raw_spec[spec->raw_len++] = access_idx;
218 	}
219 
220 	if (spec->raw_len == 0)
221 		return -EINVAL;
222 
223 	t = skip_mods_and_typedefs(btf, relo->type_id, &id);
224 	if (!t)
225 		return -EINVAL;
226 
227 	access_idx = spec->raw_spec[0];
228 	acc = &spec->spec[0];
229 	acc->type_id = id;
230 	acc->idx = access_idx;
231 	spec->len++;
232 
233 	if (core_relo_is_enumval_based(relo->kind)) {
234 		if (!btf_is_enum(t) || spec->raw_len > 1 || access_idx >= btf_vlen(t))
235 			return -EINVAL;
236 
237 		/* record enumerator name in a first accessor */
238 		acc->name = btf__name_by_offset(btf, btf_enum(t)[access_idx].name_off);
239 		return 0;
240 	}
241 
242 	if (!core_relo_is_field_based(relo->kind))
243 		return -EINVAL;
244 
245 	sz = btf__resolve_size(btf, id);
246 	if (sz < 0)
247 		return sz;
248 	spec->bit_offset = access_idx * sz * 8;
249 
250 	for (i = 1; i < spec->raw_len; i++) {
251 		t = skip_mods_and_typedefs(btf, id, &id);
252 		if (!t)
253 			return -EINVAL;
254 
255 		access_idx = spec->raw_spec[i];
256 		acc = &spec->spec[spec->len];
257 
258 		if (btf_is_composite(t)) {
259 			const struct btf_member *m;
260 			__u32 bit_offset;
261 
262 			if (access_idx >= btf_vlen(t))
263 				return -EINVAL;
264 
265 			bit_offset = btf_member_bit_offset(t, access_idx);
266 			spec->bit_offset += bit_offset;
267 
268 			m = btf_members(t) + access_idx;
269 			if (m->name_off) {
270 				name = btf__name_by_offset(btf, m->name_off);
271 				if (str_is_empty(name))
272 					return -EINVAL;
273 
274 				acc->type_id = id;
275 				acc->idx = access_idx;
276 				acc->name = name;
277 				spec->len++;
278 			}
279 
280 			id = m->type;
281 		} else if (btf_is_array(t)) {
282 			const struct btf_array *a = btf_array(t);
283 			bool flex;
284 
285 			t = skip_mods_and_typedefs(btf, a->type, &id);
286 			if (!t)
287 				return -EINVAL;
288 
289 			flex = is_flex_arr(btf, acc - 1, a);
290 			if (!flex && access_idx >= a->nelems)
291 				return -EINVAL;
292 
293 			spec->spec[spec->len].type_id = id;
294 			spec->spec[spec->len].idx = access_idx;
295 			spec->len++;
296 
297 			sz = btf__resolve_size(btf, id);
298 			if (sz < 0)
299 				return sz;
300 			spec->bit_offset += access_idx * sz * 8;
301 		} else {
302 			pr_warn("prog '%s': relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %s\n",
303 				prog_name, relo->type_id, spec_str, i, id, btf_kind_str(t));
304 			return -EINVAL;
305 		}
306 	}
307 
308 	return 0;
309 }
310 
311 /* Check two types for compatibility for the purpose of field access
312  * relocation. const/volatile/restrict and typedefs are skipped to ensure we
313  * are relocating semantically compatible entities:
314  *   - any two STRUCTs/UNIONs are compatible and can be mixed;
315  *   - any two FWDs are compatible, if their names match (modulo flavor suffix);
316  *   - any two PTRs are always compatible;
317  *   - for ENUMs, names should be the same (ignoring flavor suffix) or at
318  *     least one of enums should be anonymous;
319  *   - for ENUMs, check sizes, names are ignored;
320  *   - for INT, size and signedness are ignored;
321  *   - any two FLOATs are always compatible;
322  *   - for ARRAY, dimensionality is ignored, element types are checked for
323  *     compatibility recursively;
324  *   - everything else shouldn't be ever a target of relocation.
325  * These rules are not set in stone and probably will be adjusted as we get
326  * more experience with using BPF CO-RE relocations.
327  */
328 static int bpf_core_fields_are_compat(const struct btf *local_btf,
329 				      __u32 local_id,
330 				      const struct btf *targ_btf,
331 				      __u32 targ_id)
332 {
333 	const struct btf_type *local_type, *targ_type;
334 
335 recur:
336 	local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id);
337 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
338 	if (!local_type || !targ_type)
339 		return -EINVAL;
340 
341 	if (btf_is_composite(local_type) && btf_is_composite(targ_type))
342 		return 1;
343 	if (btf_kind(local_type) != btf_kind(targ_type))
344 		return 0;
345 
346 	switch (btf_kind(local_type)) {
347 	case BTF_KIND_PTR:
348 	case BTF_KIND_FLOAT:
349 		return 1;
350 	case BTF_KIND_FWD:
351 	case BTF_KIND_ENUM: {
352 		const char *local_name, *targ_name;
353 		size_t local_len, targ_len;
354 
355 		local_name = btf__name_by_offset(local_btf,
356 						 local_type->name_off);
357 		targ_name = btf__name_by_offset(targ_btf, targ_type->name_off);
358 		local_len = bpf_core_essential_name_len(local_name);
359 		targ_len = bpf_core_essential_name_len(targ_name);
360 		/* one of them is anonymous or both w/ same flavor-less names */
361 		return local_len == 0 || targ_len == 0 ||
362 		       (local_len == targ_len &&
363 			strncmp(local_name, targ_name, local_len) == 0);
364 	}
365 	case BTF_KIND_INT:
366 		/* just reject deprecated bitfield-like integers; all other
367 		 * integers are by default compatible between each other
368 		 */
369 		return btf_int_offset(local_type) == 0 &&
370 		       btf_int_offset(targ_type) == 0;
371 	case BTF_KIND_ARRAY:
372 		local_id = btf_array(local_type)->type;
373 		targ_id = btf_array(targ_type)->type;
374 		goto recur;
375 	default:
376 		return 0;
377 	}
378 }
379 
380 /*
381  * Given single high-level named field accessor in local type, find
382  * corresponding high-level accessor for a target type. Along the way,
383  * maintain low-level spec for target as well. Also keep updating target
384  * bit offset.
385  *
386  * Searching is performed through recursive exhaustive enumeration of all
387  * fields of a struct/union. If there are any anonymous (embedded)
388  * structs/unions, they are recursively searched as well. If field with
389  * desired name is found, check compatibility between local and target types,
390  * before returning result.
391  *
392  * 1 is returned, if field is found.
393  * 0 is returned if no compatible field is found.
394  * <0 is returned on error.
395  */
396 static int bpf_core_match_member(const struct btf *local_btf,
397 				 const struct bpf_core_accessor *local_acc,
398 				 const struct btf *targ_btf,
399 				 __u32 targ_id,
400 				 struct bpf_core_spec *spec,
401 				 __u32 *next_targ_id)
402 {
403 	const struct btf_type *local_type, *targ_type;
404 	const struct btf_member *local_member, *m;
405 	const char *local_name, *targ_name;
406 	__u32 local_id;
407 	int i, n, found;
408 
409 	targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id);
410 	if (!targ_type)
411 		return -EINVAL;
412 	if (!btf_is_composite(targ_type))
413 		return 0;
414 
415 	local_id = local_acc->type_id;
416 	local_type = btf_type_by_id(local_btf, local_id);
417 	local_member = btf_members(local_type) + local_acc->idx;
418 	local_name = btf__name_by_offset(local_btf, local_member->name_off);
419 
420 	n = btf_vlen(targ_type);
421 	m = btf_members(targ_type);
422 	for (i = 0; i < n; i++, m++) {
423 		__u32 bit_offset;
424 
425 		bit_offset = btf_member_bit_offset(targ_type, i);
426 
427 		/* too deep struct/union/array nesting */
428 		if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
429 			return -E2BIG;
430 
431 		/* speculate this member will be the good one */
432 		spec->bit_offset += bit_offset;
433 		spec->raw_spec[spec->raw_len++] = i;
434 
435 		targ_name = btf__name_by_offset(targ_btf, m->name_off);
436 		if (str_is_empty(targ_name)) {
437 			/* embedded struct/union, we need to go deeper */
438 			found = bpf_core_match_member(local_btf, local_acc,
439 						      targ_btf, m->type,
440 						      spec, next_targ_id);
441 			if (found) /* either found or error */
442 				return found;
443 		} else if (strcmp(local_name, targ_name) == 0) {
444 			/* matching named field */
445 			struct bpf_core_accessor *targ_acc;
446 
447 			targ_acc = &spec->spec[spec->len++];
448 			targ_acc->type_id = targ_id;
449 			targ_acc->idx = i;
450 			targ_acc->name = targ_name;
451 
452 			*next_targ_id = m->type;
453 			found = bpf_core_fields_are_compat(local_btf,
454 							   local_member->type,
455 							   targ_btf, m->type);
456 			if (!found)
457 				spec->len--; /* pop accessor */
458 			return found;
459 		}
460 		/* member turned out not to be what we looked for */
461 		spec->bit_offset -= bit_offset;
462 		spec->raw_len--;
463 	}
464 
465 	return 0;
466 }
467 
468 /*
469  * Try to match local spec to a target type and, if successful, produce full
470  * target spec (high-level, low-level + bit offset).
471  */
472 static int bpf_core_spec_match(struct bpf_core_spec *local_spec,
473 			       const struct btf *targ_btf, __u32 targ_id,
474 			       struct bpf_core_spec *targ_spec)
475 {
476 	const struct btf_type *targ_type;
477 	const struct bpf_core_accessor *local_acc;
478 	struct bpf_core_accessor *targ_acc;
479 	int i, sz, matched;
480 
481 	memset(targ_spec, 0, sizeof(*targ_spec));
482 	targ_spec->btf = targ_btf;
483 	targ_spec->root_type_id = targ_id;
484 	targ_spec->relo_kind = local_spec->relo_kind;
485 
486 	if (core_relo_is_type_based(local_spec->relo_kind)) {
487 		return bpf_core_types_are_compat(local_spec->btf,
488 						 local_spec->root_type_id,
489 						 targ_btf, targ_id);
490 	}
491 
492 	local_acc = &local_spec->spec[0];
493 	targ_acc = &targ_spec->spec[0];
494 
495 	if (core_relo_is_enumval_based(local_spec->relo_kind)) {
496 		size_t local_essent_len, targ_essent_len;
497 		const struct btf_enum *e;
498 		const char *targ_name;
499 
500 		/* has to resolve to an enum */
501 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, &targ_id);
502 		if (!btf_is_enum(targ_type))
503 			return 0;
504 
505 		local_essent_len = bpf_core_essential_name_len(local_acc->name);
506 
507 		for (i = 0, e = btf_enum(targ_type); i < btf_vlen(targ_type); i++, e++) {
508 			targ_name = btf__name_by_offset(targ_spec->btf, e->name_off);
509 			targ_essent_len = bpf_core_essential_name_len(targ_name);
510 			if (targ_essent_len != local_essent_len)
511 				continue;
512 			if (strncmp(local_acc->name, targ_name, local_essent_len) == 0) {
513 				targ_acc->type_id = targ_id;
514 				targ_acc->idx = i;
515 				targ_acc->name = targ_name;
516 				targ_spec->len++;
517 				targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
518 				targ_spec->raw_len++;
519 				return 1;
520 			}
521 		}
522 		return 0;
523 	}
524 
525 	if (!core_relo_is_field_based(local_spec->relo_kind))
526 		return -EINVAL;
527 
528 	for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) {
529 		targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id,
530 						   &targ_id);
531 		if (!targ_type)
532 			return -EINVAL;
533 
534 		if (local_acc->name) {
535 			matched = bpf_core_match_member(local_spec->btf,
536 							local_acc,
537 							targ_btf, targ_id,
538 							targ_spec, &targ_id);
539 			if (matched <= 0)
540 				return matched;
541 		} else {
542 			/* for i=0, targ_id is already treated as array element
543 			 * type (because it's the original struct), for others
544 			 * we should find array element type first
545 			 */
546 			if (i > 0) {
547 				const struct btf_array *a;
548 				bool flex;
549 
550 				if (!btf_is_array(targ_type))
551 					return 0;
552 
553 				a = btf_array(targ_type);
554 				flex = is_flex_arr(targ_btf, targ_acc - 1, a);
555 				if (!flex && local_acc->idx >= a->nelems)
556 					return 0;
557 				if (!skip_mods_and_typedefs(targ_btf, a->type,
558 							    &targ_id))
559 					return -EINVAL;
560 			}
561 
562 			/* too deep struct/union/array nesting */
563 			if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN)
564 				return -E2BIG;
565 
566 			targ_acc->type_id = targ_id;
567 			targ_acc->idx = local_acc->idx;
568 			targ_acc->name = NULL;
569 			targ_spec->len++;
570 			targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx;
571 			targ_spec->raw_len++;
572 
573 			sz = btf__resolve_size(targ_btf, targ_id);
574 			if (sz < 0)
575 				return sz;
576 			targ_spec->bit_offset += local_acc->idx * sz * 8;
577 		}
578 	}
579 
580 	return 1;
581 }
582 
583 static int bpf_core_calc_field_relo(const char *prog_name,
584 				    const struct bpf_core_relo *relo,
585 				    const struct bpf_core_spec *spec,
586 				    __u32 *val, __u32 *field_sz, __u32 *type_id,
587 				    bool *validate)
588 {
589 	const struct bpf_core_accessor *acc;
590 	const struct btf_type *t;
591 	__u32 byte_off, byte_sz, bit_off, bit_sz, field_type_id;
592 	const struct btf_member *m;
593 	const struct btf_type *mt;
594 	bool bitfield;
595 	__s64 sz;
596 
597 	*field_sz = 0;
598 
599 	if (relo->kind == BPF_CORE_FIELD_EXISTS) {
600 		*val = spec ? 1 : 0;
601 		return 0;
602 	}
603 
604 	if (!spec)
605 		return -EUCLEAN; /* request instruction poisoning */
606 
607 	acc = &spec->spec[spec->len - 1];
608 	t = btf_type_by_id(spec->btf, acc->type_id);
609 
610 	/* a[n] accessor needs special handling */
611 	if (!acc->name) {
612 		if (relo->kind == BPF_CORE_FIELD_BYTE_OFFSET) {
613 			*val = spec->bit_offset / 8;
614 			/* remember field size for load/store mem size */
615 			sz = btf__resolve_size(spec->btf, acc->type_id);
616 			if (sz < 0)
617 				return -EINVAL;
618 			*field_sz = sz;
619 			*type_id = acc->type_id;
620 		} else if (relo->kind == BPF_CORE_FIELD_BYTE_SIZE) {
621 			sz = btf__resolve_size(spec->btf, acc->type_id);
622 			if (sz < 0)
623 				return -EINVAL;
624 			*val = sz;
625 		} else {
626 			pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n",
627 				prog_name, relo->kind, relo->insn_off / 8);
628 			return -EINVAL;
629 		}
630 		if (validate)
631 			*validate = true;
632 		return 0;
633 	}
634 
635 	m = btf_members(t) + acc->idx;
636 	mt = skip_mods_and_typedefs(spec->btf, m->type, &field_type_id);
637 	bit_off = spec->bit_offset;
638 	bit_sz = btf_member_bitfield_size(t, acc->idx);
639 
640 	bitfield = bit_sz > 0;
641 	if (bitfield) {
642 		byte_sz = mt->size;
643 		byte_off = bit_off / 8 / byte_sz * byte_sz;
644 		/* figure out smallest int size necessary for bitfield load */
645 		while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) {
646 			if (byte_sz >= 8) {
647 				/* bitfield can't be read with 64-bit read */
648 				pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n",
649 					prog_name, relo->kind, relo->insn_off / 8);
650 				return -E2BIG;
651 			}
652 			byte_sz *= 2;
653 			byte_off = bit_off / 8 / byte_sz * byte_sz;
654 		}
655 	} else {
656 		sz = btf__resolve_size(spec->btf, field_type_id);
657 		if (sz < 0)
658 			return -EINVAL;
659 		byte_sz = sz;
660 		byte_off = spec->bit_offset / 8;
661 		bit_sz = byte_sz * 8;
662 	}
663 
664 	/* for bitfields, all the relocatable aspects are ambiguous and we
665 	 * might disagree with compiler, so turn off validation of expected
666 	 * value, except for signedness
667 	 */
668 	if (validate)
669 		*validate = !bitfield;
670 
671 	switch (relo->kind) {
672 	case BPF_CORE_FIELD_BYTE_OFFSET:
673 		*val = byte_off;
674 		if (!bitfield) {
675 			*field_sz = byte_sz;
676 			*type_id = field_type_id;
677 		}
678 		break;
679 	case BPF_CORE_FIELD_BYTE_SIZE:
680 		*val = byte_sz;
681 		break;
682 	case BPF_CORE_FIELD_SIGNED:
683 		/* enums will be assumed unsigned */
684 		*val = btf_is_enum(mt) ||
685 		       (btf_int_encoding(mt) & BTF_INT_SIGNED);
686 		if (validate)
687 			*validate = true; /* signedness is never ambiguous */
688 		break;
689 	case BPF_CORE_FIELD_LSHIFT_U64:
690 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
691 		*val = 64 - (bit_off + bit_sz - byte_off  * 8);
692 #else
693 		*val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8);
694 #endif
695 		break;
696 	case BPF_CORE_FIELD_RSHIFT_U64:
697 		*val = 64 - bit_sz;
698 		if (validate)
699 			*validate = true; /* right shift is never ambiguous */
700 		break;
701 	case BPF_CORE_FIELD_EXISTS:
702 	default:
703 		return -EOPNOTSUPP;
704 	}
705 
706 	return 0;
707 }
708 
709 static int bpf_core_calc_type_relo(const struct bpf_core_relo *relo,
710 				   const struct bpf_core_spec *spec,
711 				   __u32 *val, bool *validate)
712 {
713 	__s64 sz;
714 
715 	/* by default, always check expected value in bpf_insn */
716 	if (validate)
717 		*validate = true;
718 
719 	/* type-based relos return zero when target type is not found */
720 	if (!spec) {
721 		*val = 0;
722 		return 0;
723 	}
724 
725 	switch (relo->kind) {
726 	case BPF_CORE_TYPE_ID_TARGET:
727 		*val = spec->root_type_id;
728 		/* type ID, embedded in bpf_insn, might change during linking,
729 		 * so enforcing it is pointless
730 		 */
731 		if (validate)
732 			*validate = false;
733 		break;
734 	case BPF_CORE_TYPE_EXISTS:
735 		*val = 1;
736 		break;
737 	case BPF_CORE_TYPE_SIZE:
738 		sz = btf__resolve_size(spec->btf, spec->root_type_id);
739 		if (sz < 0)
740 			return -EINVAL;
741 		*val = sz;
742 		break;
743 	case BPF_CORE_TYPE_ID_LOCAL:
744 	/* BPF_CORE_TYPE_ID_LOCAL is handled specially and shouldn't get here */
745 	default:
746 		return -EOPNOTSUPP;
747 	}
748 
749 	return 0;
750 }
751 
752 static int bpf_core_calc_enumval_relo(const struct bpf_core_relo *relo,
753 				      const struct bpf_core_spec *spec,
754 				      __u32 *val)
755 {
756 	const struct btf_type *t;
757 	const struct btf_enum *e;
758 
759 	switch (relo->kind) {
760 	case BPF_CORE_ENUMVAL_EXISTS:
761 		*val = spec ? 1 : 0;
762 		break;
763 	case BPF_CORE_ENUMVAL_VALUE:
764 		if (!spec)
765 			return -EUCLEAN; /* request instruction poisoning */
766 		t = btf_type_by_id(spec->btf, spec->spec[0].type_id);
767 		e = btf_enum(t) + spec->spec[0].idx;
768 		*val = e->val;
769 		break;
770 	default:
771 		return -EOPNOTSUPP;
772 	}
773 
774 	return 0;
775 }
776 
777 /* Calculate original and target relocation values, given local and target
778  * specs and relocation kind. These values are calculated for each candidate.
779  * If there are multiple candidates, resulting values should all be consistent
780  * with each other. Otherwise, libbpf will refuse to proceed due to ambiguity.
781  * If instruction has to be poisoned, *poison will be set to true.
782  */
783 static int bpf_core_calc_relo(const char *prog_name,
784 			      const struct bpf_core_relo *relo,
785 			      int relo_idx,
786 			      const struct bpf_core_spec *local_spec,
787 			      const struct bpf_core_spec *targ_spec,
788 			      struct bpf_core_relo_res *res)
789 {
790 	int err = -EOPNOTSUPP;
791 
792 	res->orig_val = 0;
793 	res->new_val = 0;
794 	res->poison = false;
795 	res->validate = true;
796 	res->fail_memsz_adjust = false;
797 	res->orig_sz = res->new_sz = 0;
798 	res->orig_type_id = res->new_type_id = 0;
799 
800 	if (core_relo_is_field_based(relo->kind)) {
801 		err = bpf_core_calc_field_relo(prog_name, relo, local_spec,
802 					       &res->orig_val, &res->orig_sz,
803 					       &res->orig_type_id, &res->validate);
804 		err = err ?: bpf_core_calc_field_relo(prog_name, relo, targ_spec,
805 						      &res->new_val, &res->new_sz,
806 						      &res->new_type_id, NULL);
807 		if (err)
808 			goto done;
809 		/* Validate if it's safe to adjust load/store memory size.
810 		 * Adjustments are performed only if original and new memory
811 		 * sizes differ.
812 		 */
813 		res->fail_memsz_adjust = false;
814 		if (res->orig_sz != res->new_sz) {
815 			const struct btf_type *orig_t, *new_t;
816 
817 			orig_t = btf_type_by_id(local_spec->btf, res->orig_type_id);
818 			new_t = btf_type_by_id(targ_spec->btf, res->new_type_id);
819 
820 			/* There are two use cases in which it's safe to
821 			 * adjust load/store's mem size:
822 			 *   - reading a 32-bit kernel pointer, while on BPF
823 			 *   size pointers are always 64-bit; in this case
824 			 *   it's safe to "downsize" instruction size due to
825 			 *   pointer being treated as unsigned integer with
826 			 *   zero-extended upper 32-bits;
827 			 *   - reading unsigned integers, again due to
828 			 *   zero-extension is preserving the value correctly.
829 			 *
830 			 * In all other cases it's incorrect to attempt to
831 			 * load/store field because read value will be
832 			 * incorrect, so we poison relocated instruction.
833 			 */
834 			if (btf_is_ptr(orig_t) && btf_is_ptr(new_t))
835 				goto done;
836 			if (btf_is_int(orig_t) && btf_is_int(new_t) &&
837 			    btf_int_encoding(orig_t) != BTF_INT_SIGNED &&
838 			    btf_int_encoding(new_t) != BTF_INT_SIGNED)
839 				goto done;
840 
841 			/* mark as invalid mem size adjustment, but this will
842 			 * only be checked for LDX/STX/ST insns
843 			 */
844 			res->fail_memsz_adjust = true;
845 		}
846 	} else if (core_relo_is_type_based(relo->kind)) {
847 		err = bpf_core_calc_type_relo(relo, local_spec, &res->orig_val, &res->validate);
848 		err = err ?: bpf_core_calc_type_relo(relo, targ_spec, &res->new_val, NULL);
849 	} else if (core_relo_is_enumval_based(relo->kind)) {
850 		err = bpf_core_calc_enumval_relo(relo, local_spec, &res->orig_val);
851 		err = err ?: bpf_core_calc_enumval_relo(relo, targ_spec, &res->new_val);
852 	}
853 
854 done:
855 	if (err == -EUCLEAN) {
856 		/* EUCLEAN is used to signal instruction poisoning request */
857 		res->poison = true;
858 		err = 0;
859 	} else if (err == -EOPNOTSUPP) {
860 		/* EOPNOTSUPP means unknown/unsupported relocation */
861 		pr_warn("prog '%s': relo #%d: unrecognized CO-RE relocation %s (%d) at insn #%d\n",
862 			prog_name, relo_idx, core_relo_kind_str(relo->kind),
863 			relo->kind, relo->insn_off / 8);
864 	}
865 
866 	return err;
867 }
868 
869 /*
870  * Turn instruction for which CO_RE relocation failed into invalid one with
871  * distinct signature.
872  */
873 static void bpf_core_poison_insn(const char *prog_name, int relo_idx,
874 				 int insn_idx, struct bpf_insn *insn)
875 {
876 	pr_debug("prog '%s': relo #%d: substituting insn #%d w/ invalid insn\n",
877 		 prog_name, relo_idx, insn_idx);
878 	insn->code = BPF_JMP | BPF_CALL;
879 	insn->dst_reg = 0;
880 	insn->src_reg = 0;
881 	insn->off = 0;
882 	/* if this instruction is reachable (not a dead code),
883 	 * verifier will complain with the following message:
884 	 * invalid func unknown#195896080
885 	 */
886 	insn->imm = 195896080; /* => 0xbad2310 => "bad relo" */
887 }
888 
889 static int insn_bpf_size_to_bytes(struct bpf_insn *insn)
890 {
891 	switch (BPF_SIZE(insn->code)) {
892 	case BPF_DW: return 8;
893 	case BPF_W: return 4;
894 	case BPF_H: return 2;
895 	case BPF_B: return 1;
896 	default: return -1;
897 	}
898 }
899 
900 static int insn_bytes_to_bpf_size(__u32 sz)
901 {
902 	switch (sz) {
903 	case 8: return BPF_DW;
904 	case 4: return BPF_W;
905 	case 2: return BPF_H;
906 	case 1: return BPF_B;
907 	default: return -1;
908 	}
909 }
910 
911 /*
912  * Patch relocatable BPF instruction.
913  *
914  * Patched value is determined by relocation kind and target specification.
915  * For existence relocations target spec will be NULL if field/type is not found.
916  * Expected insn->imm value is determined using relocation kind and local
917  * spec, and is checked before patching instruction. If actual insn->imm value
918  * is wrong, bail out with error.
919  *
920  * Currently supported classes of BPF instruction are:
921  * 1. rX = <imm> (assignment with immediate operand);
922  * 2. rX += <imm> (arithmetic operations with immediate operand);
923  * 3. rX = <imm64> (load with 64-bit immediate value);
924  * 4. rX = *(T *)(rY + <off>), where T is one of {u8, u16, u32, u64};
925  * 5. *(T *)(rX + <off>) = rY, where T is one of {u8, u16, u32, u64};
926  * 6. *(T *)(rX + <off>) = <imm>, where T is one of {u8, u16, u32, u64}.
927  */
928 int bpf_core_patch_insn(const char *prog_name, struct bpf_insn *insn,
929 			int insn_idx, const struct bpf_core_relo *relo,
930 			int relo_idx, const struct bpf_core_relo_res *res)
931 {
932 	__u32 orig_val, new_val;
933 	__u8 class;
934 
935 	class = BPF_CLASS(insn->code);
936 
937 	if (res->poison) {
938 poison:
939 		/* poison second part of ldimm64 to avoid confusing error from
940 		 * verifier about "unknown opcode 00"
941 		 */
942 		if (is_ldimm64_insn(insn))
943 			bpf_core_poison_insn(prog_name, relo_idx, insn_idx + 1, insn + 1);
944 		bpf_core_poison_insn(prog_name, relo_idx, insn_idx, insn);
945 		return 0;
946 	}
947 
948 	orig_val = res->orig_val;
949 	new_val = res->new_val;
950 
951 	switch (class) {
952 	case BPF_ALU:
953 	case BPF_ALU64:
954 		if (BPF_SRC(insn->code) != BPF_K)
955 			return -EINVAL;
956 		if (res->validate && insn->imm != orig_val) {
957 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (ALU/ALU64) value: got %u, exp %u -> %u\n",
958 				prog_name, relo_idx,
959 				insn_idx, insn->imm, orig_val, new_val);
960 			return -EINVAL;
961 		}
962 		orig_val = insn->imm;
963 		insn->imm = new_val;
964 		pr_debug("prog '%s': relo #%d: patched insn #%d (ALU/ALU64) imm %u -> %u\n",
965 			 prog_name, relo_idx, insn_idx,
966 			 orig_val, new_val);
967 		break;
968 	case BPF_LDX:
969 	case BPF_ST:
970 	case BPF_STX:
971 		if (res->validate && insn->off != orig_val) {
972 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDX/ST/STX) value: got %u, exp %u -> %u\n",
973 				prog_name, relo_idx, insn_idx, insn->off, orig_val, new_val);
974 			return -EINVAL;
975 		}
976 		if (new_val > SHRT_MAX) {
977 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) value too big: %u\n",
978 				prog_name, relo_idx, insn_idx, new_val);
979 			return -ERANGE;
980 		}
981 		if (res->fail_memsz_adjust) {
982 			pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) accesses field incorrectly. "
983 				"Make sure you are accessing pointers, unsigned integers, or fields of matching type and size.\n",
984 				prog_name, relo_idx, insn_idx);
985 			goto poison;
986 		}
987 
988 		orig_val = insn->off;
989 		insn->off = new_val;
990 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) off %u -> %u\n",
991 			 prog_name, relo_idx, insn_idx, orig_val, new_val);
992 
993 		if (res->new_sz != res->orig_sz) {
994 			int insn_bytes_sz, insn_bpf_sz;
995 
996 			insn_bytes_sz = insn_bpf_size_to_bytes(insn);
997 			if (insn_bytes_sz != res->orig_sz) {
998 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) unexpected mem size: got %d, exp %u\n",
999 					prog_name, relo_idx, insn_idx, insn_bytes_sz, res->orig_sz);
1000 				return -EINVAL;
1001 			}
1002 
1003 			insn_bpf_sz = insn_bytes_to_bpf_size(res->new_sz);
1004 			if (insn_bpf_sz < 0) {
1005 				pr_warn("prog '%s': relo #%d: insn #%d (LDX/ST/STX) invalid new mem size: %u\n",
1006 					prog_name, relo_idx, insn_idx, res->new_sz);
1007 				return -EINVAL;
1008 			}
1009 
1010 			insn->code = BPF_MODE(insn->code) | insn_bpf_sz | BPF_CLASS(insn->code);
1011 			pr_debug("prog '%s': relo #%d: patched insn #%d (LDX/ST/STX) mem_sz %u -> %u\n",
1012 				 prog_name, relo_idx, insn_idx, res->orig_sz, res->new_sz);
1013 		}
1014 		break;
1015 	case BPF_LD: {
1016 		__u64 imm;
1017 
1018 		if (!is_ldimm64_insn(insn) ||
1019 		    insn[0].src_reg != 0 || insn[0].off != 0 ||
1020 		    insn[1].code != 0 || insn[1].dst_reg != 0 ||
1021 		    insn[1].src_reg != 0 || insn[1].off != 0) {
1022 			pr_warn("prog '%s': relo #%d: insn #%d (LDIMM64) has unexpected form\n",
1023 				prog_name, relo_idx, insn_idx);
1024 			return -EINVAL;
1025 		}
1026 
1027 		imm = insn[0].imm + ((__u64)insn[1].imm << 32);
1028 		if (res->validate && imm != orig_val) {
1029 			pr_warn("prog '%s': relo #%d: unexpected insn #%d (LDIMM64) value: got %llu, exp %u -> %u\n",
1030 				prog_name, relo_idx,
1031 				insn_idx, (unsigned long long)imm,
1032 				orig_val, new_val);
1033 			return -EINVAL;
1034 		}
1035 
1036 		insn[0].imm = new_val;
1037 		insn[1].imm = 0; /* currently only 32-bit values are supported */
1038 		pr_debug("prog '%s': relo #%d: patched insn #%d (LDIMM64) imm64 %llu -> %u\n",
1039 			 prog_name, relo_idx, insn_idx,
1040 			 (unsigned long long)imm, new_val);
1041 		break;
1042 	}
1043 	default:
1044 		pr_warn("prog '%s': relo #%d: trying to relocate unrecognized insn #%d, code:0x%x, src:0x%x, dst:0x%x, off:0x%x, imm:0x%x\n",
1045 			prog_name, relo_idx, insn_idx, insn->code,
1046 			insn->src_reg, insn->dst_reg, insn->off, insn->imm);
1047 		return -EINVAL;
1048 	}
1049 
1050 	return 0;
1051 }
1052 
1053 /* Output spec definition in the format:
1054  * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>,
1055  * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b
1056  */
1057 int bpf_core_format_spec(char *buf, size_t buf_sz, const struct bpf_core_spec *spec)
1058 {
1059 	const struct btf_type *t;
1060 	const struct btf_enum *e;
1061 	const char *s;
1062 	__u32 type_id;
1063 	int i, len = 0;
1064 
1065 #define append_buf(fmt, args...)				\
1066 	({							\
1067 		int r;						\
1068 		r = snprintf(buf, buf_sz, fmt, ##args);		\
1069 		len += r;					\
1070 		if (r >= buf_sz)				\
1071 			r = buf_sz;				\
1072 		buf += r;					\
1073 		buf_sz -= r;					\
1074 	})
1075 
1076 	type_id = spec->root_type_id;
1077 	t = btf_type_by_id(spec->btf, type_id);
1078 	s = btf__name_by_offset(spec->btf, t->name_off);
1079 
1080 	append_buf("<%s> [%u] %s %s",
1081 		   core_relo_kind_str(spec->relo_kind),
1082 		   type_id, btf_kind_str(t), str_is_empty(s) ? "<anon>" : s);
1083 
1084 	if (core_relo_is_type_based(spec->relo_kind))
1085 		return len;
1086 
1087 	if (core_relo_is_enumval_based(spec->relo_kind)) {
1088 		t = skip_mods_and_typedefs(spec->btf, type_id, NULL);
1089 		e = btf_enum(t) + spec->raw_spec[0];
1090 		s = btf__name_by_offset(spec->btf, e->name_off);
1091 
1092 		append_buf("::%s = %u", s, e->val);
1093 		return len;
1094 	}
1095 
1096 	if (core_relo_is_field_based(spec->relo_kind)) {
1097 		for (i = 0; i < spec->len; i++) {
1098 			if (spec->spec[i].name)
1099 				append_buf(".%s", spec->spec[i].name);
1100 			else if (i > 0 || spec->spec[i].idx > 0)
1101 				append_buf("[%u]", spec->spec[i].idx);
1102 		}
1103 
1104 		append_buf(" (");
1105 		for (i = 0; i < spec->raw_len; i++)
1106 			append_buf("%s%d", i == 0 ? "" : ":", spec->raw_spec[i]);
1107 
1108 		if (spec->bit_offset % 8)
1109 			append_buf(" @ offset %u.%u)", spec->bit_offset / 8, spec->bit_offset % 8);
1110 		else
1111 			append_buf(" @ offset %u)", spec->bit_offset / 8);
1112 		return len;
1113 	}
1114 
1115 	return len;
1116 #undef append_buf
1117 }
1118 
1119 /*
1120  * Calculate CO-RE relocation target result.
1121  *
1122  * The outline and important points of the algorithm:
1123  * 1. For given local type, find corresponding candidate target types.
1124  *    Candidate type is a type with the same "essential" name, ignoring
1125  *    everything after last triple underscore (___). E.g., `sample`,
1126  *    `sample___flavor_one`, `sample___flavor_another_one`, are all candidates
1127  *    for each other. Names with triple underscore are referred to as
1128  *    "flavors" and are useful, among other things, to allow to
1129  *    specify/support incompatible variations of the same kernel struct, which
1130  *    might differ between different kernel versions and/or build
1131  *    configurations.
1132  *
1133  *    N.B. Struct "flavors" could be generated by bpftool's BTF-to-C
1134  *    converter, when deduplicated BTF of a kernel still contains more than
1135  *    one different types with the same name. In that case, ___2, ___3, etc
1136  *    are appended starting from second name conflict. But start flavors are
1137  *    also useful to be defined "locally", in BPF program, to extract same
1138  *    data from incompatible changes between different kernel
1139  *    versions/configurations. For instance, to handle field renames between
1140  *    kernel versions, one can use two flavors of the struct name with the
1141  *    same common name and use conditional relocations to extract that field,
1142  *    depending on target kernel version.
1143  * 2. For each candidate type, try to match local specification to this
1144  *    candidate target type. Matching involves finding corresponding
1145  *    high-level spec accessors, meaning that all named fields should match,
1146  *    as well as all array accesses should be within the actual bounds. Also,
1147  *    types should be compatible (see bpf_core_fields_are_compat for details).
1148  * 3. It is supported and expected that there might be multiple flavors
1149  *    matching the spec. As long as all the specs resolve to the same set of
1150  *    offsets across all candidates, there is no error. If there is any
1151  *    ambiguity, CO-RE relocation will fail. This is necessary to accomodate
1152  *    imprefection of BTF deduplication, which can cause slight duplication of
1153  *    the same BTF type, if some directly or indirectly referenced (by
1154  *    pointer) type gets resolved to different actual types in different
1155  *    object files. If such situation occurs, deduplicated BTF will end up
1156  *    with two (or more) structurally identical types, which differ only in
1157  *    types they refer to through pointer. This should be OK in most cases and
1158  *    is not an error.
1159  * 4. Candidate types search is performed by linearly scanning through all
1160  *    types in target BTF. It is anticipated that this is overall more
1161  *    efficient memory-wise and not significantly worse (if not better)
1162  *    CPU-wise compared to prebuilding a map from all local type names to
1163  *    a list of candidate type names. It's also sped up by caching resolved
1164  *    list of matching candidates per each local "root" type ID, that has at
1165  *    least one bpf_core_relo associated with it. This list is shared
1166  *    between multiple relocations for the same type ID and is updated as some
1167  *    of the candidates are pruned due to structural incompatibility.
1168  */
1169 int bpf_core_calc_relo_insn(const char *prog_name,
1170 			    const struct bpf_core_relo *relo,
1171 			    int relo_idx,
1172 			    const struct btf *local_btf,
1173 			    struct bpf_core_cand_list *cands,
1174 			    struct bpf_core_spec *specs_scratch,
1175 			    struct bpf_core_relo_res *targ_res)
1176 {
1177 	struct bpf_core_spec *local_spec = &specs_scratch[0];
1178 	struct bpf_core_spec *cand_spec = &specs_scratch[1];
1179 	struct bpf_core_spec *targ_spec = &specs_scratch[2];
1180 	struct bpf_core_relo_res cand_res;
1181 	const struct btf_type *local_type;
1182 	const char *local_name;
1183 	__u32 local_id;
1184 	char spec_buf[256];
1185 	int i, j, err;
1186 
1187 	local_id = relo->type_id;
1188 	local_type = btf_type_by_id(local_btf, local_id);
1189 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
1190 	if (!local_name)
1191 		return -EINVAL;
1192 
1193 	err = bpf_core_parse_spec(prog_name, local_btf, relo, local_spec);
1194 	if (err) {
1195 		const char *spec_str;
1196 
1197 		spec_str = btf__name_by_offset(local_btf, relo->access_str_off);
1198 		pr_warn("prog '%s': relo #%d: parsing [%d] %s %s + %s failed: %d\n",
1199 			prog_name, relo_idx, local_id, btf_kind_str(local_type),
1200 			str_is_empty(local_name) ? "<anon>" : local_name,
1201 			spec_str ?: "<?>", err);
1202 		return -EINVAL;
1203 	}
1204 
1205 	bpf_core_format_spec(spec_buf, sizeof(spec_buf), local_spec);
1206 	pr_debug("prog '%s': relo #%d: %s\n", prog_name, relo_idx, spec_buf);
1207 
1208 	/* TYPE_ID_LOCAL relo is special and doesn't need candidate search */
1209 	if (relo->kind == BPF_CORE_TYPE_ID_LOCAL) {
1210 		/* bpf_insn's imm value could get out of sync during linking */
1211 		memset(targ_res, 0, sizeof(*targ_res));
1212 		targ_res->validate = false;
1213 		targ_res->poison = false;
1214 		targ_res->orig_val = local_spec->root_type_id;
1215 		targ_res->new_val = local_spec->root_type_id;
1216 		return 0;
1217 	}
1218 
1219 	/* libbpf doesn't support candidate search for anonymous types */
1220 	if (str_is_empty(local_name)) {
1221 		pr_warn("prog '%s': relo #%d: <%s> (%d) relocation doesn't support anonymous types\n",
1222 			prog_name, relo_idx, core_relo_kind_str(relo->kind), relo->kind);
1223 		return -EOPNOTSUPP;
1224 	}
1225 
1226 	for (i = 0, j = 0; i < cands->len; i++) {
1227 		err = bpf_core_spec_match(local_spec, cands->cands[i].btf,
1228 					  cands->cands[i].id, cand_spec);
1229 		if (err < 0) {
1230 			bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1231 			pr_warn("prog '%s': relo #%d: error matching candidate #%d %s: %d\n ",
1232 				prog_name, relo_idx, i, spec_buf, err);
1233 			return err;
1234 		}
1235 
1236 		bpf_core_format_spec(spec_buf, sizeof(spec_buf), cand_spec);
1237 		pr_debug("prog '%s': relo #%d: %s candidate #%d %s\n", prog_name,
1238 			 relo_idx, err == 0 ? "non-matching" : "matching", i, spec_buf);
1239 
1240 		if (err == 0)
1241 			continue;
1242 
1243 		err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, cand_spec, &cand_res);
1244 		if (err)
1245 			return err;
1246 
1247 		if (j == 0) {
1248 			*targ_res = cand_res;
1249 			*targ_spec = *cand_spec;
1250 		} else if (cand_spec->bit_offset != targ_spec->bit_offset) {
1251 			/* if there are many field relo candidates, they
1252 			 * should all resolve to the same bit offset
1253 			 */
1254 			pr_warn("prog '%s': relo #%d: field offset ambiguity: %u != %u\n",
1255 				prog_name, relo_idx, cand_spec->bit_offset,
1256 				targ_spec->bit_offset);
1257 			return -EINVAL;
1258 		} else if (cand_res.poison != targ_res->poison ||
1259 			   cand_res.new_val != targ_res->new_val) {
1260 			/* all candidates should result in the same relocation
1261 			 * decision and value, otherwise it's dangerous to
1262 			 * proceed due to ambiguity
1263 			 */
1264 			pr_warn("prog '%s': relo #%d: relocation decision ambiguity: %s %u != %s %u\n",
1265 				prog_name, relo_idx,
1266 				cand_res.poison ? "failure" : "success", cand_res.new_val,
1267 				targ_res->poison ? "failure" : "success", targ_res->new_val);
1268 			return -EINVAL;
1269 		}
1270 
1271 		cands->cands[j++] = cands->cands[i];
1272 	}
1273 
1274 	/*
1275 	 * For BPF_CORE_FIELD_EXISTS relo or when used BPF program has field
1276 	 * existence checks or kernel version/config checks, it's expected
1277 	 * that we might not find any candidates. In this case, if field
1278 	 * wasn't found in any candidate, the list of candidates shouldn't
1279 	 * change at all, we'll just handle relocating appropriately,
1280 	 * depending on relo's kind.
1281 	 */
1282 	if (j > 0)
1283 		cands->len = j;
1284 
1285 	/*
1286 	 * If no candidates were found, it might be both a programmer error,
1287 	 * as well as expected case, depending whether instruction w/
1288 	 * relocation is guarded in some way that makes it unreachable (dead
1289 	 * code) if relocation can't be resolved. This is handled in
1290 	 * bpf_core_patch_insn() uniformly by replacing that instruction with
1291 	 * BPF helper call insn (using invalid helper ID). If that instruction
1292 	 * is indeed unreachable, then it will be ignored and eliminated by
1293 	 * verifier. If it was an error, then verifier will complain and point
1294 	 * to a specific instruction number in its log.
1295 	 */
1296 	if (j == 0) {
1297 		pr_debug("prog '%s': relo #%d: no matching targets found\n",
1298 			 prog_name, relo_idx);
1299 
1300 		/* calculate single target relo result explicitly */
1301 		err = bpf_core_calc_relo(prog_name, relo, relo_idx, local_spec, NULL, targ_res);
1302 		if (err)
1303 			return err;
1304 	}
1305 
1306 	return 0;
1307 }
1308