1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 #include "zip.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 64 65 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 66 67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 68 * compilation if user enables corresponding warning. Disable it explicitly. 69 */ 70 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 71 72 #define __printf(a, b) __attribute__((format(printf, a, b))) 73 74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 76 static int map_set_def_max_entries(struct bpf_map *map); 77 78 static const char * const attach_type_name[] = { 79 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 80 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 81 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 82 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 83 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 84 [BPF_CGROUP_DEVICE] = "cgroup_device", 85 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 86 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 87 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 88 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 89 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 90 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 91 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 92 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 93 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 94 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 95 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 96 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 97 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 98 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 99 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 100 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 101 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 102 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 103 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 104 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 105 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 106 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 107 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 108 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 109 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 110 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 111 [BPF_LIRC_MODE2] = "lirc_mode2", 112 [BPF_FLOW_DISSECTOR] = "flow_dissector", 113 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 114 [BPF_TRACE_FENTRY] = "trace_fentry", 115 [BPF_TRACE_FEXIT] = "trace_fexit", 116 [BPF_MODIFY_RETURN] = "modify_return", 117 [BPF_LSM_MAC] = "lsm_mac", 118 [BPF_LSM_CGROUP] = "lsm_cgroup", 119 [BPF_SK_LOOKUP] = "sk_lookup", 120 [BPF_TRACE_ITER] = "trace_iter", 121 [BPF_XDP_DEVMAP] = "xdp_devmap", 122 [BPF_XDP_CPUMAP] = "xdp_cpumap", 123 [BPF_XDP] = "xdp", 124 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 125 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 126 [BPF_PERF_EVENT] = "perf_event", 127 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 128 [BPF_STRUCT_OPS] = "struct_ops", 129 [BPF_NETFILTER] = "netfilter", 130 [BPF_TCX_INGRESS] = "tcx_ingress", 131 [BPF_TCX_EGRESS] = "tcx_egress", 132 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 133 [BPF_NETKIT_PRIMARY] = "netkit_primary", 134 [BPF_NETKIT_PEER] = "netkit_peer", 135 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session", 136 [BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session", 137 }; 138 139 static const char * const link_type_name[] = { 140 [BPF_LINK_TYPE_UNSPEC] = "unspec", 141 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 142 [BPF_LINK_TYPE_TRACING] = "tracing", 143 [BPF_LINK_TYPE_CGROUP] = "cgroup", 144 [BPF_LINK_TYPE_ITER] = "iter", 145 [BPF_LINK_TYPE_NETNS] = "netns", 146 [BPF_LINK_TYPE_XDP] = "xdp", 147 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 148 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 149 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 150 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 151 [BPF_LINK_TYPE_TCX] = "tcx", 152 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 153 [BPF_LINK_TYPE_NETKIT] = "netkit", 154 [BPF_LINK_TYPE_SOCKMAP] = "sockmap", 155 }; 156 157 static const char * const map_type_name[] = { 158 [BPF_MAP_TYPE_UNSPEC] = "unspec", 159 [BPF_MAP_TYPE_HASH] = "hash", 160 [BPF_MAP_TYPE_ARRAY] = "array", 161 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 162 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 163 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 164 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 165 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 166 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 167 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 168 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 169 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 170 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 171 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 172 [BPF_MAP_TYPE_DEVMAP] = "devmap", 173 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 174 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 175 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 176 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 177 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 178 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 179 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 180 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 181 [BPF_MAP_TYPE_QUEUE] = "queue", 182 [BPF_MAP_TYPE_STACK] = "stack", 183 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 184 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 185 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 186 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 187 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 188 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 189 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 190 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 191 [BPF_MAP_TYPE_ARENA] = "arena", 192 }; 193 194 static const char * const prog_type_name[] = { 195 [BPF_PROG_TYPE_UNSPEC] = "unspec", 196 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 197 [BPF_PROG_TYPE_KPROBE] = "kprobe", 198 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 199 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 200 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 201 [BPF_PROG_TYPE_XDP] = "xdp", 202 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 203 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 204 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 205 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 206 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 207 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 208 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 209 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 210 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 211 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 212 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 213 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 214 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 215 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 216 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 217 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 218 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 219 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 220 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 221 [BPF_PROG_TYPE_TRACING] = "tracing", 222 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 223 [BPF_PROG_TYPE_EXT] = "ext", 224 [BPF_PROG_TYPE_LSM] = "lsm", 225 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 226 [BPF_PROG_TYPE_SYSCALL] = "syscall", 227 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 228 }; 229 230 static int __base_pr(enum libbpf_print_level level, const char *format, 231 va_list args) 232 { 233 const char *env_var = "LIBBPF_LOG_LEVEL"; 234 static enum libbpf_print_level min_level = LIBBPF_INFO; 235 static bool initialized; 236 237 if (!initialized) { 238 char *verbosity; 239 240 initialized = true; 241 verbosity = getenv(env_var); 242 if (verbosity) { 243 if (strcasecmp(verbosity, "warn") == 0) 244 min_level = LIBBPF_WARN; 245 else if (strcasecmp(verbosity, "debug") == 0) 246 min_level = LIBBPF_DEBUG; 247 else if (strcasecmp(verbosity, "info") == 0) 248 min_level = LIBBPF_INFO; 249 else 250 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n", 251 env_var, verbosity); 252 } 253 } 254 255 /* if too verbose, skip logging */ 256 if (level > min_level) 257 return 0; 258 259 return vfprintf(stderr, format, args); 260 } 261 262 static libbpf_print_fn_t __libbpf_pr = __base_pr; 263 264 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 265 { 266 libbpf_print_fn_t old_print_fn; 267 268 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 269 270 return old_print_fn; 271 } 272 273 __printf(2, 3) 274 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 275 { 276 va_list args; 277 int old_errno; 278 libbpf_print_fn_t print_fn; 279 280 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 281 if (!print_fn) 282 return; 283 284 old_errno = errno; 285 286 va_start(args, format); 287 __libbpf_pr(level, format, args); 288 va_end(args); 289 290 errno = old_errno; 291 } 292 293 static void pr_perm_msg(int err) 294 { 295 struct rlimit limit; 296 char buf[100]; 297 298 if (err != -EPERM || geteuid() != 0) 299 return; 300 301 err = getrlimit(RLIMIT_MEMLOCK, &limit); 302 if (err) 303 return; 304 305 if (limit.rlim_cur == RLIM_INFINITY) 306 return; 307 308 if (limit.rlim_cur < 1024) 309 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 310 else if (limit.rlim_cur < 1024*1024) 311 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 312 else 313 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 314 315 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 316 buf); 317 } 318 319 #define STRERR_BUFSIZE 128 320 321 /* Copied from tools/perf/util/util.h */ 322 #ifndef zfree 323 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 324 #endif 325 326 #ifndef zclose 327 # define zclose(fd) ({ \ 328 int ___err = 0; \ 329 if ((fd) >= 0) \ 330 ___err = close((fd)); \ 331 fd = -1; \ 332 ___err; }) 333 #endif 334 335 static inline __u64 ptr_to_u64(const void *ptr) 336 { 337 return (__u64) (unsigned long) ptr; 338 } 339 340 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 341 { 342 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 343 return 0; 344 } 345 346 __u32 libbpf_major_version(void) 347 { 348 return LIBBPF_MAJOR_VERSION; 349 } 350 351 __u32 libbpf_minor_version(void) 352 { 353 return LIBBPF_MINOR_VERSION; 354 } 355 356 const char *libbpf_version_string(void) 357 { 358 #define __S(X) #X 359 #define _S(X) __S(X) 360 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 361 #undef _S 362 #undef __S 363 } 364 365 enum reloc_type { 366 RELO_LD64, 367 RELO_CALL, 368 RELO_DATA, 369 RELO_EXTERN_LD64, 370 RELO_EXTERN_CALL, 371 RELO_SUBPROG_ADDR, 372 RELO_CORE, 373 }; 374 375 struct reloc_desc { 376 enum reloc_type type; 377 int insn_idx; 378 union { 379 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 380 struct { 381 int map_idx; 382 int sym_off; 383 int ext_idx; 384 }; 385 }; 386 }; 387 388 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 389 enum sec_def_flags { 390 SEC_NONE = 0, 391 /* expected_attach_type is optional, if kernel doesn't support that */ 392 SEC_EXP_ATTACH_OPT = 1, 393 /* legacy, only used by libbpf_get_type_names() and 394 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 395 * This used to be associated with cgroup (and few other) BPF programs 396 * that were attachable through BPF_PROG_ATTACH command. Pretty 397 * meaningless nowadays, though. 398 */ 399 SEC_ATTACHABLE = 2, 400 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 401 /* attachment target is specified through BTF ID in either kernel or 402 * other BPF program's BTF object 403 */ 404 SEC_ATTACH_BTF = 4, 405 /* BPF program type allows sleeping/blocking in kernel */ 406 SEC_SLEEPABLE = 8, 407 /* BPF program support non-linear XDP buffer */ 408 SEC_XDP_FRAGS = 16, 409 /* Setup proper attach type for usdt probes. */ 410 SEC_USDT = 32, 411 }; 412 413 struct bpf_sec_def { 414 char *sec; 415 enum bpf_prog_type prog_type; 416 enum bpf_attach_type expected_attach_type; 417 long cookie; 418 int handler_id; 419 420 libbpf_prog_setup_fn_t prog_setup_fn; 421 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 422 libbpf_prog_attach_fn_t prog_attach_fn; 423 }; 424 425 /* 426 * bpf_prog should be a better name but it has been used in 427 * linux/filter.h. 428 */ 429 struct bpf_program { 430 char *name; 431 char *sec_name; 432 size_t sec_idx; 433 const struct bpf_sec_def *sec_def; 434 /* this program's instruction offset (in number of instructions) 435 * within its containing ELF section 436 */ 437 size_t sec_insn_off; 438 /* number of original instructions in ELF section belonging to this 439 * program, not taking into account subprogram instructions possible 440 * appended later during relocation 441 */ 442 size_t sec_insn_cnt; 443 /* Offset (in number of instructions) of the start of instruction 444 * belonging to this BPF program within its containing main BPF 445 * program. For the entry-point (main) BPF program, this is always 446 * zero. For a sub-program, this gets reset before each of main BPF 447 * programs are processed and relocated and is used to determined 448 * whether sub-program was already appended to the main program, and 449 * if yes, at which instruction offset. 450 */ 451 size_t sub_insn_off; 452 453 /* instructions that belong to BPF program; insns[0] is located at 454 * sec_insn_off instruction within its ELF section in ELF file, so 455 * when mapping ELF file instruction index to the local instruction, 456 * one needs to subtract sec_insn_off; and vice versa. 457 */ 458 struct bpf_insn *insns; 459 /* actual number of instruction in this BPF program's image; for 460 * entry-point BPF programs this includes the size of main program 461 * itself plus all the used sub-programs, appended at the end 462 */ 463 size_t insns_cnt; 464 465 struct reloc_desc *reloc_desc; 466 int nr_reloc; 467 468 /* BPF verifier log settings */ 469 char *log_buf; 470 size_t log_size; 471 __u32 log_level; 472 473 struct bpf_object *obj; 474 475 int fd; 476 bool autoload; 477 bool autoattach; 478 bool sym_global; 479 bool mark_btf_static; 480 enum bpf_prog_type type; 481 enum bpf_attach_type expected_attach_type; 482 int exception_cb_idx; 483 484 int prog_ifindex; 485 __u32 attach_btf_obj_fd; 486 __u32 attach_btf_id; 487 __u32 attach_prog_fd; 488 489 void *func_info; 490 __u32 func_info_rec_size; 491 __u32 func_info_cnt; 492 493 void *line_info; 494 __u32 line_info_rec_size; 495 __u32 line_info_cnt; 496 __u32 prog_flags; 497 }; 498 499 struct bpf_struct_ops { 500 struct bpf_program **progs; 501 __u32 *kern_func_off; 502 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 503 void *data; 504 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 505 * btf_vmlinux's format. 506 * struct bpf_struct_ops_tcp_congestion_ops { 507 * [... some other kernel fields ...] 508 * struct tcp_congestion_ops data; 509 * } 510 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 511 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 512 * from "data". 513 */ 514 void *kern_vdata; 515 __u32 type_id; 516 }; 517 518 #define DATA_SEC ".data" 519 #define BSS_SEC ".bss" 520 #define RODATA_SEC ".rodata" 521 #define KCONFIG_SEC ".kconfig" 522 #define KSYMS_SEC ".ksyms" 523 #define STRUCT_OPS_SEC ".struct_ops" 524 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 525 #define ARENA_SEC ".addr_space.1" 526 527 enum libbpf_map_type { 528 LIBBPF_MAP_UNSPEC, 529 LIBBPF_MAP_DATA, 530 LIBBPF_MAP_BSS, 531 LIBBPF_MAP_RODATA, 532 LIBBPF_MAP_KCONFIG, 533 }; 534 535 struct bpf_map_def { 536 unsigned int type; 537 unsigned int key_size; 538 unsigned int value_size; 539 unsigned int max_entries; 540 unsigned int map_flags; 541 }; 542 543 struct bpf_map { 544 struct bpf_object *obj; 545 char *name; 546 /* real_name is defined for special internal maps (.rodata*, 547 * .data*, .bss, .kconfig) and preserves their original ELF section 548 * name. This is important to be able to find corresponding BTF 549 * DATASEC information. 550 */ 551 char *real_name; 552 int fd; 553 int sec_idx; 554 size_t sec_offset; 555 int map_ifindex; 556 int inner_map_fd; 557 struct bpf_map_def def; 558 __u32 numa_node; 559 __u32 btf_var_idx; 560 int mod_btf_fd; 561 __u32 btf_key_type_id; 562 __u32 btf_value_type_id; 563 __u32 btf_vmlinux_value_type_id; 564 enum libbpf_map_type libbpf_type; 565 void *mmaped; 566 struct bpf_struct_ops *st_ops; 567 struct bpf_map *inner_map; 568 void **init_slots; 569 int init_slots_sz; 570 char *pin_path; 571 bool pinned; 572 bool reused; 573 bool autocreate; 574 bool autoattach; 575 __u64 map_extra; 576 }; 577 578 enum extern_type { 579 EXT_UNKNOWN, 580 EXT_KCFG, 581 EXT_KSYM, 582 }; 583 584 enum kcfg_type { 585 KCFG_UNKNOWN, 586 KCFG_CHAR, 587 KCFG_BOOL, 588 KCFG_INT, 589 KCFG_TRISTATE, 590 KCFG_CHAR_ARR, 591 }; 592 593 struct extern_desc { 594 enum extern_type type; 595 int sym_idx; 596 int btf_id; 597 int sec_btf_id; 598 const char *name; 599 char *essent_name; 600 bool is_set; 601 bool is_weak; 602 union { 603 struct { 604 enum kcfg_type type; 605 int sz; 606 int align; 607 int data_off; 608 bool is_signed; 609 } kcfg; 610 struct { 611 unsigned long long addr; 612 613 /* target btf_id of the corresponding kernel var. */ 614 int kernel_btf_obj_fd; 615 int kernel_btf_id; 616 617 /* local btf_id of the ksym extern's type. */ 618 __u32 type_id; 619 /* BTF fd index to be patched in for insn->off, this is 620 * 0 for vmlinux BTF, index in obj->fd_array for module 621 * BTF 622 */ 623 __s16 btf_fd_idx; 624 } ksym; 625 }; 626 }; 627 628 struct module_btf { 629 struct btf *btf; 630 char *name; 631 __u32 id; 632 int fd; 633 int fd_array_idx; 634 }; 635 636 enum sec_type { 637 SEC_UNUSED = 0, 638 SEC_RELO, 639 SEC_BSS, 640 SEC_DATA, 641 SEC_RODATA, 642 SEC_ST_OPS, 643 }; 644 645 struct elf_sec_desc { 646 enum sec_type sec_type; 647 Elf64_Shdr *shdr; 648 Elf_Data *data; 649 }; 650 651 struct elf_state { 652 int fd; 653 const void *obj_buf; 654 size_t obj_buf_sz; 655 Elf *elf; 656 Elf64_Ehdr *ehdr; 657 Elf_Data *symbols; 658 Elf_Data *arena_data; 659 size_t shstrndx; /* section index for section name strings */ 660 size_t strtabidx; 661 struct elf_sec_desc *secs; 662 size_t sec_cnt; 663 int btf_maps_shndx; 664 __u32 btf_maps_sec_btf_id; 665 int text_shndx; 666 int symbols_shndx; 667 bool has_st_ops; 668 int arena_data_shndx; 669 }; 670 671 struct usdt_manager; 672 673 struct bpf_object { 674 char name[BPF_OBJ_NAME_LEN]; 675 char license[64]; 676 __u32 kern_version; 677 678 struct bpf_program *programs; 679 size_t nr_programs; 680 struct bpf_map *maps; 681 size_t nr_maps; 682 size_t maps_cap; 683 684 char *kconfig; 685 struct extern_desc *externs; 686 int nr_extern; 687 int kconfig_map_idx; 688 689 bool loaded; 690 bool has_subcalls; 691 bool has_rodata; 692 693 struct bpf_gen *gen_loader; 694 695 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 696 struct elf_state efile; 697 698 unsigned char byteorder; 699 700 struct btf *btf; 701 struct btf_ext *btf_ext; 702 703 /* Parse and load BTF vmlinux if any of the programs in the object need 704 * it at load time. 705 */ 706 struct btf *btf_vmlinux; 707 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 708 * override for vmlinux BTF. 709 */ 710 char *btf_custom_path; 711 /* vmlinux BTF override for CO-RE relocations */ 712 struct btf *btf_vmlinux_override; 713 /* Lazily initialized kernel module BTFs */ 714 struct module_btf *btf_modules; 715 bool btf_modules_loaded; 716 size_t btf_module_cnt; 717 size_t btf_module_cap; 718 719 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 720 char *log_buf; 721 size_t log_size; 722 __u32 log_level; 723 724 int *fd_array; 725 size_t fd_array_cap; 726 size_t fd_array_cnt; 727 728 struct usdt_manager *usdt_man; 729 730 struct bpf_map *arena_map; 731 void *arena_data; 732 size_t arena_data_sz; 733 734 struct kern_feature_cache *feat_cache; 735 char *token_path; 736 int token_fd; 737 738 char path[]; 739 }; 740 741 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 742 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 743 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 744 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 745 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 746 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 747 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 748 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 749 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 750 751 void bpf_program__unload(struct bpf_program *prog) 752 { 753 if (!prog) 754 return; 755 756 zclose(prog->fd); 757 758 zfree(&prog->func_info); 759 zfree(&prog->line_info); 760 } 761 762 static void bpf_program__exit(struct bpf_program *prog) 763 { 764 if (!prog) 765 return; 766 767 bpf_program__unload(prog); 768 zfree(&prog->name); 769 zfree(&prog->sec_name); 770 zfree(&prog->insns); 771 zfree(&prog->reloc_desc); 772 773 prog->nr_reloc = 0; 774 prog->insns_cnt = 0; 775 prog->sec_idx = -1; 776 } 777 778 static bool insn_is_subprog_call(const struct bpf_insn *insn) 779 { 780 return BPF_CLASS(insn->code) == BPF_JMP && 781 BPF_OP(insn->code) == BPF_CALL && 782 BPF_SRC(insn->code) == BPF_K && 783 insn->src_reg == BPF_PSEUDO_CALL && 784 insn->dst_reg == 0 && 785 insn->off == 0; 786 } 787 788 static bool is_call_insn(const struct bpf_insn *insn) 789 { 790 return insn->code == (BPF_JMP | BPF_CALL); 791 } 792 793 static bool insn_is_pseudo_func(struct bpf_insn *insn) 794 { 795 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 796 } 797 798 static int 799 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 800 const char *name, size_t sec_idx, const char *sec_name, 801 size_t sec_off, void *insn_data, size_t insn_data_sz) 802 { 803 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 804 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 805 sec_name, name, sec_off, insn_data_sz); 806 return -EINVAL; 807 } 808 809 memset(prog, 0, sizeof(*prog)); 810 prog->obj = obj; 811 812 prog->sec_idx = sec_idx; 813 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 814 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 815 /* insns_cnt can later be increased by appending used subprograms */ 816 prog->insns_cnt = prog->sec_insn_cnt; 817 818 prog->type = BPF_PROG_TYPE_UNSPEC; 819 prog->fd = -1; 820 prog->exception_cb_idx = -1; 821 822 /* libbpf's convention for SEC("?abc...") is that it's just like 823 * SEC("abc...") but the corresponding bpf_program starts out with 824 * autoload set to false. 825 */ 826 if (sec_name[0] == '?') { 827 prog->autoload = false; 828 /* from now on forget there was ? in section name */ 829 sec_name++; 830 } else { 831 prog->autoload = true; 832 } 833 834 prog->autoattach = true; 835 836 /* inherit object's log_level */ 837 prog->log_level = obj->log_level; 838 839 prog->sec_name = strdup(sec_name); 840 if (!prog->sec_name) 841 goto errout; 842 843 prog->name = strdup(name); 844 if (!prog->name) 845 goto errout; 846 847 prog->insns = malloc(insn_data_sz); 848 if (!prog->insns) 849 goto errout; 850 memcpy(prog->insns, insn_data, insn_data_sz); 851 852 return 0; 853 errout: 854 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 855 bpf_program__exit(prog); 856 return -ENOMEM; 857 } 858 859 static int 860 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 861 const char *sec_name, int sec_idx) 862 { 863 Elf_Data *symbols = obj->efile.symbols; 864 struct bpf_program *prog, *progs; 865 void *data = sec_data->d_buf; 866 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 867 int nr_progs, err, i; 868 const char *name; 869 Elf64_Sym *sym; 870 871 progs = obj->programs; 872 nr_progs = obj->nr_programs; 873 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 874 875 for (i = 0; i < nr_syms; i++) { 876 sym = elf_sym_by_idx(obj, i); 877 878 if (sym->st_shndx != sec_idx) 879 continue; 880 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 881 continue; 882 883 prog_sz = sym->st_size; 884 sec_off = sym->st_value; 885 886 name = elf_sym_str(obj, sym->st_name); 887 if (!name) { 888 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 889 sec_name, sec_off); 890 return -LIBBPF_ERRNO__FORMAT; 891 } 892 893 if (sec_off + prog_sz > sec_sz) { 894 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 895 sec_name, sec_off); 896 return -LIBBPF_ERRNO__FORMAT; 897 } 898 899 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 900 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 901 return -ENOTSUP; 902 } 903 904 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 905 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 906 907 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 908 if (!progs) { 909 /* 910 * In this case the original obj->programs 911 * is still valid, so don't need special treat for 912 * bpf_close_object(). 913 */ 914 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 915 sec_name, name); 916 return -ENOMEM; 917 } 918 obj->programs = progs; 919 920 prog = &progs[nr_progs]; 921 922 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 923 sec_off, data + sec_off, prog_sz); 924 if (err) 925 return err; 926 927 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 928 prog->sym_global = true; 929 930 /* if function is a global/weak symbol, but has restricted 931 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 932 * as static to enable more permissive BPF verification mode 933 * with more outside context available to BPF verifier 934 */ 935 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 936 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 937 prog->mark_btf_static = true; 938 939 nr_progs++; 940 obj->nr_programs = nr_progs; 941 } 942 943 return 0; 944 } 945 946 static void bpf_object_bswap_progs(struct bpf_object *obj) 947 { 948 struct bpf_program *prog = obj->programs; 949 struct bpf_insn *insn; 950 int p, i; 951 952 for (p = 0; p < obj->nr_programs; p++, prog++) { 953 insn = prog->insns; 954 for (i = 0; i < prog->insns_cnt; i++, insn++) 955 bpf_insn_bswap(insn); 956 } 957 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs); 958 } 959 960 static const struct btf_member * 961 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 962 { 963 struct btf_member *m; 964 int i; 965 966 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 967 if (btf_member_bit_offset(t, i) == bit_offset) 968 return m; 969 } 970 971 return NULL; 972 } 973 974 static const struct btf_member * 975 find_member_by_name(const struct btf *btf, const struct btf_type *t, 976 const char *name) 977 { 978 struct btf_member *m; 979 int i; 980 981 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 982 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 983 return m; 984 } 985 986 return NULL; 987 } 988 989 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 990 __u16 kind, struct btf **res_btf, 991 struct module_btf **res_mod_btf); 992 993 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 994 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 995 const char *name, __u32 kind); 996 997 static int 998 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 999 struct module_btf **mod_btf, 1000 const struct btf_type **type, __u32 *type_id, 1001 const struct btf_type **vtype, __u32 *vtype_id, 1002 const struct btf_member **data_member) 1003 { 1004 const struct btf_type *kern_type, *kern_vtype; 1005 const struct btf_member *kern_data_member; 1006 struct btf *btf = NULL; 1007 __s32 kern_vtype_id, kern_type_id; 1008 char tname[256]; 1009 __u32 i; 1010 1011 snprintf(tname, sizeof(tname), "%.*s", 1012 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 1013 1014 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT, 1015 &btf, mod_btf); 1016 if (kern_type_id < 0) { 1017 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 1018 tname); 1019 return kern_type_id; 1020 } 1021 kern_type = btf__type_by_id(btf, kern_type_id); 1022 1023 /* Find the corresponding "map_value" type that will be used 1024 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 1025 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 1026 * btf_vmlinux. 1027 */ 1028 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 1029 tname, BTF_KIND_STRUCT); 1030 if (kern_vtype_id < 0) { 1031 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 1032 STRUCT_OPS_VALUE_PREFIX, tname); 1033 return kern_vtype_id; 1034 } 1035 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1036 1037 /* Find "struct tcp_congestion_ops" from 1038 * struct bpf_struct_ops_tcp_congestion_ops { 1039 * [ ... ] 1040 * struct tcp_congestion_ops data; 1041 * } 1042 */ 1043 kern_data_member = btf_members(kern_vtype); 1044 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1045 if (kern_data_member->type == kern_type_id) 1046 break; 1047 } 1048 if (i == btf_vlen(kern_vtype)) { 1049 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1050 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1051 return -EINVAL; 1052 } 1053 1054 *type = kern_type; 1055 *type_id = kern_type_id; 1056 *vtype = kern_vtype; 1057 *vtype_id = kern_vtype_id; 1058 *data_member = kern_data_member; 1059 1060 return 0; 1061 } 1062 1063 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1064 { 1065 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1066 } 1067 1068 static bool is_valid_st_ops_program(struct bpf_object *obj, 1069 const struct bpf_program *prog) 1070 { 1071 int i; 1072 1073 for (i = 0; i < obj->nr_programs; i++) { 1074 if (&obj->programs[i] == prog) 1075 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1076 } 1077 1078 return false; 1079 } 1080 1081 /* For each struct_ops program P, referenced from some struct_ops map M, 1082 * enable P.autoload if there are Ms for which M.autocreate is true, 1083 * disable P.autoload if for all Ms M.autocreate is false. 1084 * Don't change P.autoload for programs that are not referenced from any maps. 1085 */ 1086 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1087 { 1088 struct bpf_program *prog, *slot_prog; 1089 struct bpf_map *map; 1090 int i, j, k, vlen; 1091 1092 for (i = 0; i < obj->nr_programs; ++i) { 1093 int should_load = false; 1094 int use_cnt = 0; 1095 1096 prog = &obj->programs[i]; 1097 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1098 continue; 1099 1100 for (j = 0; j < obj->nr_maps; ++j) { 1101 const struct btf_type *type; 1102 1103 map = &obj->maps[j]; 1104 if (!bpf_map__is_struct_ops(map)) 1105 continue; 1106 1107 type = btf__type_by_id(obj->btf, map->st_ops->type_id); 1108 vlen = btf_vlen(type); 1109 for (k = 0; k < vlen; ++k) { 1110 slot_prog = map->st_ops->progs[k]; 1111 if (prog != slot_prog) 1112 continue; 1113 1114 use_cnt++; 1115 if (map->autocreate) 1116 should_load = true; 1117 } 1118 } 1119 if (use_cnt) 1120 prog->autoload = should_load; 1121 } 1122 1123 return 0; 1124 } 1125 1126 /* Init the map's fields that depend on kern_btf */ 1127 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1128 { 1129 const struct btf_member *member, *kern_member, *kern_data_member; 1130 const struct btf_type *type, *kern_type, *kern_vtype; 1131 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1132 struct bpf_object *obj = map->obj; 1133 const struct btf *btf = obj->btf; 1134 struct bpf_struct_ops *st_ops; 1135 const struct btf *kern_btf; 1136 struct module_btf *mod_btf = NULL; 1137 void *data, *kern_data; 1138 const char *tname; 1139 int err; 1140 1141 st_ops = map->st_ops; 1142 type = btf__type_by_id(btf, st_ops->type_id); 1143 tname = btf__name_by_offset(btf, type->name_off); 1144 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1145 &kern_type, &kern_type_id, 1146 &kern_vtype, &kern_vtype_id, 1147 &kern_data_member); 1148 if (err) 1149 return err; 1150 1151 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1152 1153 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1154 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1155 1156 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1157 map->def.value_size = kern_vtype->size; 1158 map->btf_vmlinux_value_type_id = kern_vtype_id; 1159 1160 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1161 if (!st_ops->kern_vdata) 1162 return -ENOMEM; 1163 1164 data = st_ops->data; 1165 kern_data_off = kern_data_member->offset / 8; 1166 kern_data = st_ops->kern_vdata + kern_data_off; 1167 1168 member = btf_members(type); 1169 for (i = 0; i < btf_vlen(type); i++, member++) { 1170 const struct btf_type *mtype, *kern_mtype; 1171 __u32 mtype_id, kern_mtype_id; 1172 void *mdata, *kern_mdata; 1173 struct bpf_program *prog; 1174 __s64 msize, kern_msize; 1175 __u32 moff, kern_moff; 1176 __u32 kern_member_idx; 1177 const char *mname; 1178 1179 mname = btf__name_by_offset(btf, member->name_off); 1180 moff = member->offset / 8; 1181 mdata = data + moff; 1182 msize = btf__resolve_size(btf, member->type); 1183 if (msize < 0) { 1184 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n", 1185 map->name, mname); 1186 return msize; 1187 } 1188 1189 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1190 if (!kern_member) { 1191 if (!libbpf_is_mem_zeroed(mdata, msize)) { 1192 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1193 map->name, mname); 1194 return -ENOTSUP; 1195 } 1196 1197 if (st_ops->progs[i]) { 1198 /* If we had declaratively set struct_ops callback, we need to 1199 * force its autoload to false, because it doesn't have 1200 * a chance of succeeding from POV of the current struct_ops map. 1201 * If this program is still referenced somewhere else, though, 1202 * then bpf_object_adjust_struct_ops_autoload() will update its 1203 * autoload accordingly. 1204 */ 1205 st_ops->progs[i]->autoload = false; 1206 st_ops->progs[i] = NULL; 1207 } 1208 1209 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */ 1210 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n", 1211 map->name, mname); 1212 continue; 1213 } 1214 1215 kern_member_idx = kern_member - btf_members(kern_type); 1216 if (btf_member_bitfield_size(type, i) || 1217 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1218 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1219 map->name, mname); 1220 return -ENOTSUP; 1221 } 1222 1223 kern_moff = kern_member->offset / 8; 1224 kern_mdata = kern_data + kern_moff; 1225 1226 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1227 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1228 &kern_mtype_id); 1229 if (BTF_INFO_KIND(mtype->info) != 1230 BTF_INFO_KIND(kern_mtype->info)) { 1231 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1232 map->name, mname, BTF_INFO_KIND(mtype->info), 1233 BTF_INFO_KIND(kern_mtype->info)); 1234 return -ENOTSUP; 1235 } 1236 1237 if (btf_is_ptr(mtype)) { 1238 prog = *(void **)mdata; 1239 /* just like for !kern_member case above, reset declaratively 1240 * set (at compile time) program's autload to false, 1241 * if user replaced it with another program or NULL 1242 */ 1243 if (st_ops->progs[i] && st_ops->progs[i] != prog) 1244 st_ops->progs[i]->autoload = false; 1245 1246 /* Update the value from the shadow type */ 1247 st_ops->progs[i] = prog; 1248 if (!prog) 1249 continue; 1250 1251 if (!is_valid_st_ops_program(obj, prog)) { 1252 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1253 map->name, mname); 1254 return -ENOTSUP; 1255 } 1256 1257 kern_mtype = skip_mods_and_typedefs(kern_btf, 1258 kern_mtype->type, 1259 &kern_mtype_id); 1260 1261 /* mtype->type must be a func_proto which was 1262 * guaranteed in bpf_object__collect_st_ops_relos(), 1263 * so only check kern_mtype for func_proto here. 1264 */ 1265 if (!btf_is_func_proto(kern_mtype)) { 1266 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1267 map->name, mname); 1268 return -ENOTSUP; 1269 } 1270 1271 if (mod_btf) 1272 prog->attach_btf_obj_fd = mod_btf->fd; 1273 1274 /* if we haven't yet processed this BPF program, record proper 1275 * attach_btf_id and member_idx 1276 */ 1277 if (!prog->attach_btf_id) { 1278 prog->attach_btf_id = kern_type_id; 1279 prog->expected_attach_type = kern_member_idx; 1280 } 1281 1282 /* struct_ops BPF prog can be re-used between multiple 1283 * .struct_ops & .struct_ops.link as long as it's the 1284 * same struct_ops struct definition and the same 1285 * function pointer field 1286 */ 1287 if (prog->attach_btf_id != kern_type_id) { 1288 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1289 map->name, mname, prog->name, prog->sec_name, prog->type, 1290 prog->attach_btf_id, kern_type_id); 1291 return -EINVAL; 1292 } 1293 if (prog->expected_attach_type != kern_member_idx) { 1294 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1295 map->name, mname, prog->name, prog->sec_name, prog->type, 1296 prog->expected_attach_type, kern_member_idx); 1297 return -EINVAL; 1298 } 1299 1300 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1301 1302 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1303 map->name, mname, prog->name, moff, 1304 kern_moff); 1305 1306 continue; 1307 } 1308 1309 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1310 if (kern_msize < 0 || msize != kern_msize) { 1311 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1312 map->name, mname, (ssize_t)msize, 1313 (ssize_t)kern_msize); 1314 return -ENOTSUP; 1315 } 1316 1317 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1318 map->name, mname, (unsigned int)msize, 1319 moff, kern_moff); 1320 memcpy(kern_mdata, mdata, msize); 1321 } 1322 1323 return 0; 1324 } 1325 1326 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1327 { 1328 struct bpf_map *map; 1329 size_t i; 1330 int err; 1331 1332 for (i = 0; i < obj->nr_maps; i++) { 1333 map = &obj->maps[i]; 1334 1335 if (!bpf_map__is_struct_ops(map)) 1336 continue; 1337 1338 if (!map->autocreate) 1339 continue; 1340 1341 err = bpf_map__init_kern_struct_ops(map); 1342 if (err) 1343 return err; 1344 } 1345 1346 return 0; 1347 } 1348 1349 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1350 int shndx, Elf_Data *data) 1351 { 1352 const struct btf_type *type, *datasec; 1353 const struct btf_var_secinfo *vsi; 1354 struct bpf_struct_ops *st_ops; 1355 const char *tname, *var_name; 1356 __s32 type_id, datasec_id; 1357 const struct btf *btf; 1358 struct bpf_map *map; 1359 __u32 i; 1360 1361 if (shndx == -1) 1362 return 0; 1363 1364 btf = obj->btf; 1365 datasec_id = btf__find_by_name_kind(btf, sec_name, 1366 BTF_KIND_DATASEC); 1367 if (datasec_id < 0) { 1368 pr_warn("struct_ops init: DATASEC %s not found\n", 1369 sec_name); 1370 return -EINVAL; 1371 } 1372 1373 datasec = btf__type_by_id(btf, datasec_id); 1374 vsi = btf_var_secinfos(datasec); 1375 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1376 type = btf__type_by_id(obj->btf, vsi->type); 1377 var_name = btf__name_by_offset(obj->btf, type->name_off); 1378 1379 type_id = btf__resolve_type(obj->btf, vsi->type); 1380 if (type_id < 0) { 1381 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1382 vsi->type, sec_name); 1383 return -EINVAL; 1384 } 1385 1386 type = btf__type_by_id(obj->btf, type_id); 1387 tname = btf__name_by_offset(obj->btf, type->name_off); 1388 if (!tname[0]) { 1389 pr_warn("struct_ops init: anonymous type is not supported\n"); 1390 return -ENOTSUP; 1391 } 1392 if (!btf_is_struct(type)) { 1393 pr_warn("struct_ops init: %s is not a struct\n", tname); 1394 return -EINVAL; 1395 } 1396 1397 map = bpf_object__add_map(obj); 1398 if (IS_ERR(map)) 1399 return PTR_ERR(map); 1400 1401 map->sec_idx = shndx; 1402 map->sec_offset = vsi->offset; 1403 map->name = strdup(var_name); 1404 if (!map->name) 1405 return -ENOMEM; 1406 map->btf_value_type_id = type_id; 1407 1408 /* Follow same convention as for programs autoload: 1409 * SEC("?.struct_ops") means map is not created by default. 1410 */ 1411 if (sec_name[0] == '?') { 1412 map->autocreate = false; 1413 /* from now on forget there was ? in section name */ 1414 sec_name++; 1415 } 1416 1417 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1418 map->def.key_size = sizeof(int); 1419 map->def.value_size = type->size; 1420 map->def.max_entries = 1; 1421 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1422 map->autoattach = true; 1423 1424 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1425 if (!map->st_ops) 1426 return -ENOMEM; 1427 st_ops = map->st_ops; 1428 st_ops->data = malloc(type->size); 1429 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1430 st_ops->kern_func_off = malloc(btf_vlen(type) * 1431 sizeof(*st_ops->kern_func_off)); 1432 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1433 return -ENOMEM; 1434 1435 if (vsi->offset + type->size > data->d_size) { 1436 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1437 var_name, sec_name); 1438 return -EINVAL; 1439 } 1440 1441 memcpy(st_ops->data, 1442 data->d_buf + vsi->offset, 1443 type->size); 1444 st_ops->type_id = type_id; 1445 1446 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1447 tname, type_id, var_name, vsi->offset); 1448 } 1449 1450 return 0; 1451 } 1452 1453 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1454 { 1455 const char *sec_name; 1456 int sec_idx, err; 1457 1458 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1459 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1460 1461 if (desc->sec_type != SEC_ST_OPS) 1462 continue; 1463 1464 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1465 if (!sec_name) 1466 return -LIBBPF_ERRNO__FORMAT; 1467 1468 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1469 if (err) 1470 return err; 1471 } 1472 1473 return 0; 1474 } 1475 1476 static struct bpf_object *bpf_object__new(const char *path, 1477 const void *obj_buf, 1478 size_t obj_buf_sz, 1479 const char *obj_name) 1480 { 1481 struct bpf_object *obj; 1482 char *end; 1483 1484 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1485 if (!obj) { 1486 pr_warn("alloc memory failed for %s\n", path); 1487 return ERR_PTR(-ENOMEM); 1488 } 1489 1490 strcpy(obj->path, path); 1491 if (obj_name) { 1492 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1493 } else { 1494 /* Using basename() GNU version which doesn't modify arg. */ 1495 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1496 end = strchr(obj->name, '.'); 1497 if (end) 1498 *end = 0; 1499 } 1500 1501 obj->efile.fd = -1; 1502 /* 1503 * Caller of this function should also call 1504 * bpf_object__elf_finish() after data collection to return 1505 * obj_buf to user. If not, we should duplicate the buffer to 1506 * avoid user freeing them before elf finish. 1507 */ 1508 obj->efile.obj_buf = obj_buf; 1509 obj->efile.obj_buf_sz = obj_buf_sz; 1510 obj->efile.btf_maps_shndx = -1; 1511 obj->kconfig_map_idx = -1; 1512 1513 obj->kern_version = get_kernel_version(); 1514 obj->loaded = false; 1515 1516 return obj; 1517 } 1518 1519 static void bpf_object__elf_finish(struct bpf_object *obj) 1520 { 1521 if (!obj->efile.elf) 1522 return; 1523 1524 elf_end(obj->efile.elf); 1525 obj->efile.elf = NULL; 1526 obj->efile.ehdr = NULL; 1527 obj->efile.symbols = NULL; 1528 obj->efile.arena_data = NULL; 1529 1530 zfree(&obj->efile.secs); 1531 obj->efile.sec_cnt = 0; 1532 zclose(obj->efile.fd); 1533 obj->efile.obj_buf = NULL; 1534 obj->efile.obj_buf_sz = 0; 1535 } 1536 1537 static int bpf_object__elf_init(struct bpf_object *obj) 1538 { 1539 Elf64_Ehdr *ehdr; 1540 int err = 0; 1541 Elf *elf; 1542 1543 if (obj->efile.elf) { 1544 pr_warn("elf: init internal error\n"); 1545 return -LIBBPF_ERRNO__LIBELF; 1546 } 1547 1548 if (obj->efile.obj_buf_sz > 0) { 1549 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1550 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1551 } else { 1552 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1553 if (obj->efile.fd < 0) { 1554 err = -errno; 1555 pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err)); 1556 return err; 1557 } 1558 1559 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1560 } 1561 1562 if (!elf) { 1563 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1564 err = -LIBBPF_ERRNO__LIBELF; 1565 goto errout; 1566 } 1567 1568 obj->efile.elf = elf; 1569 1570 if (elf_kind(elf) != ELF_K_ELF) { 1571 err = -LIBBPF_ERRNO__FORMAT; 1572 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1573 goto errout; 1574 } 1575 1576 if (gelf_getclass(elf) != ELFCLASS64) { 1577 err = -LIBBPF_ERRNO__FORMAT; 1578 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1579 goto errout; 1580 } 1581 1582 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1583 if (!obj->efile.ehdr) { 1584 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1585 err = -LIBBPF_ERRNO__FORMAT; 1586 goto errout; 1587 } 1588 1589 /* Validate ELF object endianness... */ 1590 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB && 1591 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { 1592 err = -LIBBPF_ERRNO__ENDIAN; 1593 pr_warn("elf: '%s' has unknown byte order\n", obj->path); 1594 goto errout; 1595 } 1596 /* and save after bpf_object_open() frees ELF data */ 1597 obj->byteorder = ehdr->e_ident[EI_DATA]; 1598 1599 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1600 pr_warn("elf: failed to get section names section index for %s: %s\n", 1601 obj->path, elf_errmsg(-1)); 1602 err = -LIBBPF_ERRNO__FORMAT; 1603 goto errout; 1604 } 1605 1606 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1607 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1608 pr_warn("elf: failed to get section names strings from %s: %s\n", 1609 obj->path, elf_errmsg(-1)); 1610 err = -LIBBPF_ERRNO__FORMAT; 1611 goto errout; 1612 } 1613 1614 /* Old LLVM set e_machine to EM_NONE */ 1615 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1616 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1617 err = -LIBBPF_ERRNO__FORMAT; 1618 goto errout; 1619 } 1620 1621 return 0; 1622 errout: 1623 bpf_object__elf_finish(obj); 1624 return err; 1625 } 1626 1627 static bool is_native_endianness(struct bpf_object *obj) 1628 { 1629 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1630 return obj->byteorder == ELFDATA2LSB; 1631 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1632 return obj->byteorder == ELFDATA2MSB; 1633 #else 1634 # error "Unrecognized __BYTE_ORDER__" 1635 #endif 1636 } 1637 1638 static int 1639 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1640 { 1641 if (!data) { 1642 pr_warn("invalid license section in %s\n", obj->path); 1643 return -LIBBPF_ERRNO__FORMAT; 1644 } 1645 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1646 * go over allowed ELF data section buffer 1647 */ 1648 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1649 pr_debug("license of %s is %s\n", obj->path, obj->license); 1650 return 0; 1651 } 1652 1653 static int 1654 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1655 { 1656 __u32 kver; 1657 1658 if (!data || size != sizeof(kver)) { 1659 pr_warn("invalid kver section in %s\n", obj->path); 1660 return -LIBBPF_ERRNO__FORMAT; 1661 } 1662 memcpy(&kver, data, sizeof(kver)); 1663 obj->kern_version = kver; 1664 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1665 return 0; 1666 } 1667 1668 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1669 { 1670 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1671 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1672 return true; 1673 return false; 1674 } 1675 1676 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1677 { 1678 Elf_Data *data; 1679 Elf_Scn *scn; 1680 1681 if (!name) 1682 return -EINVAL; 1683 1684 scn = elf_sec_by_name(obj, name); 1685 data = elf_sec_data(obj, scn); 1686 if (data) { 1687 *size = data->d_size; 1688 return 0; /* found it */ 1689 } 1690 1691 return -ENOENT; 1692 } 1693 1694 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1695 { 1696 Elf_Data *symbols = obj->efile.symbols; 1697 const char *sname; 1698 size_t si; 1699 1700 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1701 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1702 1703 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1704 continue; 1705 1706 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1707 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1708 continue; 1709 1710 sname = elf_sym_str(obj, sym->st_name); 1711 if (!sname) { 1712 pr_warn("failed to get sym name string for var %s\n", name); 1713 return ERR_PTR(-EIO); 1714 } 1715 if (strcmp(name, sname) == 0) 1716 return sym; 1717 } 1718 1719 return ERR_PTR(-ENOENT); 1720 } 1721 1722 /* Some versions of Android don't provide memfd_create() in their libc 1723 * implementation, so avoid complications and just go straight to Linux 1724 * syscall. 1725 */ 1726 static int sys_memfd_create(const char *name, unsigned flags) 1727 { 1728 return syscall(__NR_memfd_create, name, flags); 1729 } 1730 1731 #ifndef MFD_CLOEXEC 1732 #define MFD_CLOEXEC 0x0001U 1733 #endif 1734 1735 static int create_placeholder_fd(void) 1736 { 1737 int fd; 1738 1739 fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC)); 1740 if (fd < 0) 1741 return -errno; 1742 return fd; 1743 } 1744 1745 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1746 { 1747 struct bpf_map *map; 1748 int err; 1749 1750 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1751 sizeof(*obj->maps), obj->nr_maps + 1); 1752 if (err) 1753 return ERR_PTR(err); 1754 1755 map = &obj->maps[obj->nr_maps++]; 1756 map->obj = obj; 1757 /* Preallocate map FD without actually creating BPF map just yet. 1758 * These map FD "placeholders" will be reused later without changing 1759 * FD value when map is actually created in the kernel. 1760 * 1761 * This is useful to be able to perform BPF program relocations 1762 * without having to create BPF maps before that step. This allows us 1763 * to finalize and load BTF very late in BPF object's loading phase, 1764 * right before BPF maps have to be created and BPF programs have to 1765 * be loaded. By having these map FD placeholders we can perform all 1766 * the sanitizations, relocations, and any other adjustments before we 1767 * start creating actual BPF kernel objects (BTF, maps, progs). 1768 */ 1769 map->fd = create_placeholder_fd(); 1770 if (map->fd < 0) 1771 return ERR_PTR(map->fd); 1772 map->inner_map_fd = -1; 1773 map->autocreate = true; 1774 1775 return map; 1776 } 1777 1778 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1779 { 1780 const long page_sz = sysconf(_SC_PAGE_SIZE); 1781 size_t map_sz; 1782 1783 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1784 map_sz = roundup(map_sz, page_sz); 1785 return map_sz; 1786 } 1787 1788 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1789 { 1790 const long page_sz = sysconf(_SC_PAGE_SIZE); 1791 1792 switch (map->def.type) { 1793 case BPF_MAP_TYPE_ARRAY: 1794 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1795 case BPF_MAP_TYPE_ARENA: 1796 return page_sz * map->def.max_entries; 1797 default: 1798 return 0; /* not supported */ 1799 } 1800 } 1801 1802 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1803 { 1804 void *mmaped; 1805 1806 if (!map->mmaped) 1807 return -EINVAL; 1808 1809 if (old_sz == new_sz) 1810 return 0; 1811 1812 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1813 if (mmaped == MAP_FAILED) 1814 return -errno; 1815 1816 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1817 munmap(map->mmaped, old_sz); 1818 map->mmaped = mmaped; 1819 return 0; 1820 } 1821 1822 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1823 { 1824 char map_name[BPF_OBJ_NAME_LEN], *p; 1825 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1826 1827 /* This is one of the more confusing parts of libbpf for various 1828 * reasons, some of which are historical. The original idea for naming 1829 * internal names was to include as much of BPF object name prefix as 1830 * possible, so that it can be distinguished from similar internal 1831 * maps of a different BPF object. 1832 * As an example, let's say we have bpf_object named 'my_object_name' 1833 * and internal map corresponding to '.rodata' ELF section. The final 1834 * map name advertised to user and to the kernel will be 1835 * 'my_objec.rodata', taking first 8 characters of object name and 1836 * entire 7 characters of '.rodata'. 1837 * Somewhat confusingly, if internal map ELF section name is shorter 1838 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1839 * for the suffix, even though we only have 4 actual characters, and 1840 * resulting map will be called 'my_objec.bss', not even using all 15 1841 * characters allowed by the kernel. Oh well, at least the truncated 1842 * object name is somewhat consistent in this case. But if the map 1843 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1844 * (8 chars) and thus will be left with only first 7 characters of the 1845 * object name ('my_obje'). Happy guessing, user, that the final map 1846 * name will be "my_obje.kconfig". 1847 * Now, with libbpf starting to support arbitrarily named .rodata.* 1848 * and .data.* data sections, it's possible that ELF section name is 1849 * longer than allowed 15 chars, so we now need to be careful to take 1850 * only up to 15 first characters of ELF name, taking no BPF object 1851 * name characters at all. So '.rodata.abracadabra' will result in 1852 * '.rodata.abracad' kernel and user-visible name. 1853 * We need to keep this convoluted logic intact for .data, .bss and 1854 * .rodata maps, but for new custom .data.custom and .rodata.custom 1855 * maps we use their ELF names as is, not prepending bpf_object name 1856 * in front. We still need to truncate them to 15 characters for the 1857 * kernel. Full name can be recovered for such maps by using DATASEC 1858 * BTF type associated with such map's value type, though. 1859 */ 1860 if (sfx_len >= BPF_OBJ_NAME_LEN) 1861 sfx_len = BPF_OBJ_NAME_LEN - 1; 1862 1863 /* if there are two or more dots in map name, it's a custom dot map */ 1864 if (strchr(real_name + 1, '.') != NULL) 1865 pfx_len = 0; 1866 else 1867 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1868 1869 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1870 sfx_len, real_name); 1871 1872 /* sanities map name to characters allowed by kernel */ 1873 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1874 if (!isalnum(*p) && *p != '_' && *p != '.') 1875 *p = '_'; 1876 1877 return strdup(map_name); 1878 } 1879 1880 static int 1881 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1882 1883 /* Internal BPF map is mmap()'able only if at least one of corresponding 1884 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1885 * variable and it's not marked as __hidden (which turns it into, effectively, 1886 * a STATIC variable). 1887 */ 1888 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1889 { 1890 const struct btf_type *t, *vt; 1891 struct btf_var_secinfo *vsi; 1892 int i, n; 1893 1894 if (!map->btf_value_type_id) 1895 return false; 1896 1897 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1898 if (!btf_is_datasec(t)) 1899 return false; 1900 1901 vsi = btf_var_secinfos(t); 1902 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1903 vt = btf__type_by_id(obj->btf, vsi->type); 1904 if (!btf_is_var(vt)) 1905 continue; 1906 1907 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1908 return true; 1909 } 1910 1911 return false; 1912 } 1913 1914 static int 1915 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1916 const char *real_name, int sec_idx, void *data, size_t data_sz) 1917 { 1918 struct bpf_map_def *def; 1919 struct bpf_map *map; 1920 size_t mmap_sz; 1921 int err; 1922 1923 map = bpf_object__add_map(obj); 1924 if (IS_ERR(map)) 1925 return PTR_ERR(map); 1926 1927 map->libbpf_type = type; 1928 map->sec_idx = sec_idx; 1929 map->sec_offset = 0; 1930 map->real_name = strdup(real_name); 1931 map->name = internal_map_name(obj, real_name); 1932 if (!map->real_name || !map->name) { 1933 zfree(&map->real_name); 1934 zfree(&map->name); 1935 return -ENOMEM; 1936 } 1937 1938 def = &map->def; 1939 def->type = BPF_MAP_TYPE_ARRAY; 1940 def->key_size = sizeof(int); 1941 def->value_size = data_sz; 1942 def->max_entries = 1; 1943 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1944 ? BPF_F_RDONLY_PROG : 0; 1945 1946 /* failures are fine because of maps like .rodata.str1.1 */ 1947 (void) map_fill_btf_type_info(obj, map); 1948 1949 if (map_is_mmapable(obj, map)) 1950 def->map_flags |= BPF_F_MMAPABLE; 1951 1952 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1953 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1954 1955 mmap_sz = bpf_map_mmap_sz(map); 1956 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1957 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1958 if (map->mmaped == MAP_FAILED) { 1959 err = -errno; 1960 map->mmaped = NULL; 1961 pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err)); 1962 zfree(&map->real_name); 1963 zfree(&map->name); 1964 return err; 1965 } 1966 1967 if (data) 1968 memcpy(map->mmaped, data, data_sz); 1969 1970 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1971 return 0; 1972 } 1973 1974 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1975 { 1976 struct elf_sec_desc *sec_desc; 1977 const char *sec_name; 1978 int err = 0, sec_idx; 1979 1980 /* 1981 * Populate obj->maps with libbpf internal maps. 1982 */ 1983 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1984 sec_desc = &obj->efile.secs[sec_idx]; 1985 1986 /* Skip recognized sections with size 0. */ 1987 if (!sec_desc->data || sec_desc->data->d_size == 0) 1988 continue; 1989 1990 switch (sec_desc->sec_type) { 1991 case SEC_DATA: 1992 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1993 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1994 sec_name, sec_idx, 1995 sec_desc->data->d_buf, 1996 sec_desc->data->d_size); 1997 break; 1998 case SEC_RODATA: 1999 obj->has_rodata = true; 2000 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2001 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 2002 sec_name, sec_idx, 2003 sec_desc->data->d_buf, 2004 sec_desc->data->d_size); 2005 break; 2006 case SEC_BSS: 2007 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2008 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 2009 sec_name, sec_idx, 2010 NULL, 2011 sec_desc->data->d_size); 2012 break; 2013 default: 2014 /* skip */ 2015 break; 2016 } 2017 if (err) 2018 return err; 2019 } 2020 return 0; 2021 } 2022 2023 2024 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 2025 const void *name) 2026 { 2027 int i; 2028 2029 for (i = 0; i < obj->nr_extern; i++) { 2030 if (strcmp(obj->externs[i].name, name) == 0) 2031 return &obj->externs[i]; 2032 } 2033 return NULL; 2034 } 2035 2036 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj, 2037 const void *name, int len) 2038 { 2039 const char *ext_name; 2040 int i; 2041 2042 for (i = 0; i < obj->nr_extern; i++) { 2043 ext_name = obj->externs[i].name; 2044 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0) 2045 return &obj->externs[i]; 2046 } 2047 return NULL; 2048 } 2049 2050 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 2051 char value) 2052 { 2053 switch (ext->kcfg.type) { 2054 case KCFG_BOOL: 2055 if (value == 'm') { 2056 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 2057 ext->name, value); 2058 return -EINVAL; 2059 } 2060 *(bool *)ext_val = value == 'y' ? true : false; 2061 break; 2062 case KCFG_TRISTATE: 2063 if (value == 'y') 2064 *(enum libbpf_tristate *)ext_val = TRI_YES; 2065 else if (value == 'm') 2066 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 2067 else /* value == 'n' */ 2068 *(enum libbpf_tristate *)ext_val = TRI_NO; 2069 break; 2070 case KCFG_CHAR: 2071 *(char *)ext_val = value; 2072 break; 2073 case KCFG_UNKNOWN: 2074 case KCFG_INT: 2075 case KCFG_CHAR_ARR: 2076 default: 2077 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 2078 ext->name, value); 2079 return -EINVAL; 2080 } 2081 ext->is_set = true; 2082 return 0; 2083 } 2084 2085 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 2086 const char *value) 2087 { 2088 size_t len; 2089 2090 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2091 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2092 ext->name, value); 2093 return -EINVAL; 2094 } 2095 2096 len = strlen(value); 2097 if (value[len - 1] != '"') { 2098 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2099 ext->name, value); 2100 return -EINVAL; 2101 } 2102 2103 /* strip quotes */ 2104 len -= 2; 2105 if (len >= ext->kcfg.sz) { 2106 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2107 ext->name, value, len, ext->kcfg.sz - 1); 2108 len = ext->kcfg.sz - 1; 2109 } 2110 memcpy(ext_val, value + 1, len); 2111 ext_val[len] = '\0'; 2112 ext->is_set = true; 2113 return 0; 2114 } 2115 2116 static int parse_u64(const char *value, __u64 *res) 2117 { 2118 char *value_end; 2119 int err; 2120 2121 errno = 0; 2122 *res = strtoull(value, &value_end, 0); 2123 if (errno) { 2124 err = -errno; 2125 pr_warn("failed to parse '%s': %s\n", value, errstr(err)); 2126 return err; 2127 } 2128 if (*value_end) { 2129 pr_warn("failed to parse '%s' as integer completely\n", value); 2130 return -EINVAL; 2131 } 2132 return 0; 2133 } 2134 2135 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2136 { 2137 int bit_sz = ext->kcfg.sz * 8; 2138 2139 if (ext->kcfg.sz == 8) 2140 return true; 2141 2142 /* Validate that value stored in u64 fits in integer of `ext->sz` 2143 * bytes size without any loss of information. If the target integer 2144 * is signed, we rely on the following limits of integer type of 2145 * Y bits and subsequent transformation: 2146 * 2147 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2148 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2149 * 0 <= X + 2^(Y-1) < 2^Y 2150 * 2151 * For unsigned target integer, check that all the (64 - Y) bits are 2152 * zero. 2153 */ 2154 if (ext->kcfg.is_signed) 2155 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2156 else 2157 return (v >> bit_sz) == 0; 2158 } 2159 2160 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2161 __u64 value) 2162 { 2163 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2164 ext->kcfg.type != KCFG_BOOL) { 2165 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2166 ext->name, (unsigned long long)value); 2167 return -EINVAL; 2168 } 2169 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2170 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2171 ext->name, (unsigned long long)value); 2172 return -EINVAL; 2173 2174 } 2175 if (!is_kcfg_value_in_range(ext, value)) { 2176 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2177 ext->name, (unsigned long long)value, ext->kcfg.sz); 2178 return -ERANGE; 2179 } 2180 switch (ext->kcfg.sz) { 2181 case 1: 2182 *(__u8 *)ext_val = value; 2183 break; 2184 case 2: 2185 *(__u16 *)ext_val = value; 2186 break; 2187 case 4: 2188 *(__u32 *)ext_val = value; 2189 break; 2190 case 8: 2191 *(__u64 *)ext_val = value; 2192 break; 2193 default: 2194 return -EINVAL; 2195 } 2196 ext->is_set = true; 2197 return 0; 2198 } 2199 2200 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2201 char *buf, void *data) 2202 { 2203 struct extern_desc *ext; 2204 char *sep, *value; 2205 int len, err = 0; 2206 void *ext_val; 2207 __u64 num; 2208 2209 if (!str_has_pfx(buf, "CONFIG_")) 2210 return 0; 2211 2212 sep = strchr(buf, '='); 2213 if (!sep) { 2214 pr_warn("failed to parse '%s': no separator\n", buf); 2215 return -EINVAL; 2216 } 2217 2218 /* Trim ending '\n' */ 2219 len = strlen(buf); 2220 if (buf[len - 1] == '\n') 2221 buf[len - 1] = '\0'; 2222 /* Split on '=' and ensure that a value is present. */ 2223 *sep = '\0'; 2224 if (!sep[1]) { 2225 *sep = '='; 2226 pr_warn("failed to parse '%s': no value\n", buf); 2227 return -EINVAL; 2228 } 2229 2230 ext = find_extern_by_name(obj, buf); 2231 if (!ext || ext->is_set) 2232 return 0; 2233 2234 ext_val = data + ext->kcfg.data_off; 2235 value = sep + 1; 2236 2237 switch (*value) { 2238 case 'y': case 'n': case 'm': 2239 err = set_kcfg_value_tri(ext, ext_val, *value); 2240 break; 2241 case '"': 2242 err = set_kcfg_value_str(ext, ext_val, value); 2243 break; 2244 default: 2245 /* assume integer */ 2246 err = parse_u64(value, &num); 2247 if (err) { 2248 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2249 return err; 2250 } 2251 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2252 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2253 return -EINVAL; 2254 } 2255 err = set_kcfg_value_num(ext, ext_val, num); 2256 break; 2257 } 2258 if (err) 2259 return err; 2260 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2261 return 0; 2262 } 2263 2264 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2265 { 2266 char buf[PATH_MAX]; 2267 struct utsname uts; 2268 int len, err = 0; 2269 gzFile file; 2270 2271 uname(&uts); 2272 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2273 if (len < 0) 2274 return -EINVAL; 2275 else if (len >= PATH_MAX) 2276 return -ENAMETOOLONG; 2277 2278 /* gzopen also accepts uncompressed files. */ 2279 file = gzopen(buf, "re"); 2280 if (!file) 2281 file = gzopen("/proc/config.gz", "re"); 2282 2283 if (!file) { 2284 pr_warn("failed to open system Kconfig\n"); 2285 return -ENOENT; 2286 } 2287 2288 while (gzgets(file, buf, sizeof(buf))) { 2289 err = bpf_object__process_kconfig_line(obj, buf, data); 2290 if (err) { 2291 pr_warn("error parsing system Kconfig line '%s': %s\n", 2292 buf, errstr(err)); 2293 goto out; 2294 } 2295 } 2296 2297 out: 2298 gzclose(file); 2299 return err; 2300 } 2301 2302 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2303 const char *config, void *data) 2304 { 2305 char buf[PATH_MAX]; 2306 int err = 0; 2307 FILE *file; 2308 2309 file = fmemopen((void *)config, strlen(config), "r"); 2310 if (!file) { 2311 err = -errno; 2312 pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err)); 2313 return err; 2314 } 2315 2316 while (fgets(buf, sizeof(buf), file)) { 2317 err = bpf_object__process_kconfig_line(obj, buf, data); 2318 if (err) { 2319 pr_warn("error parsing in-memory Kconfig line '%s': %s\n", 2320 buf, errstr(err)); 2321 break; 2322 } 2323 } 2324 2325 fclose(file); 2326 return err; 2327 } 2328 2329 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2330 { 2331 struct extern_desc *last_ext = NULL, *ext; 2332 size_t map_sz; 2333 int i, err; 2334 2335 for (i = 0; i < obj->nr_extern; i++) { 2336 ext = &obj->externs[i]; 2337 if (ext->type == EXT_KCFG) 2338 last_ext = ext; 2339 } 2340 2341 if (!last_ext) 2342 return 0; 2343 2344 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2345 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2346 ".kconfig", obj->efile.symbols_shndx, 2347 NULL, map_sz); 2348 if (err) 2349 return err; 2350 2351 obj->kconfig_map_idx = obj->nr_maps - 1; 2352 2353 return 0; 2354 } 2355 2356 const struct btf_type * 2357 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2358 { 2359 const struct btf_type *t = btf__type_by_id(btf, id); 2360 2361 if (res_id) 2362 *res_id = id; 2363 2364 while (btf_is_mod(t) || btf_is_typedef(t)) { 2365 if (res_id) 2366 *res_id = t->type; 2367 t = btf__type_by_id(btf, t->type); 2368 } 2369 2370 return t; 2371 } 2372 2373 static const struct btf_type * 2374 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2375 { 2376 const struct btf_type *t; 2377 2378 t = skip_mods_and_typedefs(btf, id, NULL); 2379 if (!btf_is_ptr(t)) 2380 return NULL; 2381 2382 t = skip_mods_and_typedefs(btf, t->type, res_id); 2383 2384 return btf_is_func_proto(t) ? t : NULL; 2385 } 2386 2387 static const char *__btf_kind_str(__u16 kind) 2388 { 2389 switch (kind) { 2390 case BTF_KIND_UNKN: return "void"; 2391 case BTF_KIND_INT: return "int"; 2392 case BTF_KIND_PTR: return "ptr"; 2393 case BTF_KIND_ARRAY: return "array"; 2394 case BTF_KIND_STRUCT: return "struct"; 2395 case BTF_KIND_UNION: return "union"; 2396 case BTF_KIND_ENUM: return "enum"; 2397 case BTF_KIND_FWD: return "fwd"; 2398 case BTF_KIND_TYPEDEF: return "typedef"; 2399 case BTF_KIND_VOLATILE: return "volatile"; 2400 case BTF_KIND_CONST: return "const"; 2401 case BTF_KIND_RESTRICT: return "restrict"; 2402 case BTF_KIND_FUNC: return "func"; 2403 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2404 case BTF_KIND_VAR: return "var"; 2405 case BTF_KIND_DATASEC: return "datasec"; 2406 case BTF_KIND_FLOAT: return "float"; 2407 case BTF_KIND_DECL_TAG: return "decl_tag"; 2408 case BTF_KIND_TYPE_TAG: return "type_tag"; 2409 case BTF_KIND_ENUM64: return "enum64"; 2410 default: return "unknown"; 2411 } 2412 } 2413 2414 const char *btf_kind_str(const struct btf_type *t) 2415 { 2416 return __btf_kind_str(btf_kind(t)); 2417 } 2418 2419 /* 2420 * Fetch integer attribute of BTF map definition. Such attributes are 2421 * represented using a pointer to an array, in which dimensionality of array 2422 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2423 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2424 * type definition, while using only sizeof(void *) space in ELF data section. 2425 */ 2426 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2427 const struct btf_member *m, __u32 *res) 2428 { 2429 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2430 const char *name = btf__name_by_offset(btf, m->name_off); 2431 const struct btf_array *arr_info; 2432 const struct btf_type *arr_t; 2433 2434 if (!btf_is_ptr(t)) { 2435 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2436 map_name, name, btf_kind_str(t)); 2437 return false; 2438 } 2439 2440 arr_t = btf__type_by_id(btf, t->type); 2441 if (!arr_t) { 2442 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2443 map_name, name, t->type); 2444 return false; 2445 } 2446 if (!btf_is_array(arr_t)) { 2447 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2448 map_name, name, btf_kind_str(arr_t)); 2449 return false; 2450 } 2451 arr_info = btf_array(arr_t); 2452 *res = arr_info->nelems; 2453 return true; 2454 } 2455 2456 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2457 const struct btf_member *m, __u64 *res) 2458 { 2459 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2460 const char *name = btf__name_by_offset(btf, m->name_off); 2461 2462 if (btf_is_ptr(t)) { 2463 __u32 res32; 2464 bool ret; 2465 2466 ret = get_map_field_int(map_name, btf, m, &res32); 2467 if (ret) 2468 *res = (__u64)res32; 2469 return ret; 2470 } 2471 2472 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2473 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2474 map_name, name, btf_kind_str(t)); 2475 return false; 2476 } 2477 2478 if (btf_vlen(t) != 1) { 2479 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2480 map_name, name); 2481 return false; 2482 } 2483 2484 if (btf_is_enum(t)) { 2485 const struct btf_enum *e = btf_enum(t); 2486 2487 *res = e->val; 2488 } else { 2489 const struct btf_enum64 *e = btf_enum64(t); 2490 2491 *res = btf_enum64_value(e); 2492 } 2493 return true; 2494 } 2495 2496 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2497 { 2498 int len; 2499 2500 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2501 if (len < 0) 2502 return -EINVAL; 2503 if (len >= buf_sz) 2504 return -ENAMETOOLONG; 2505 2506 return 0; 2507 } 2508 2509 static int build_map_pin_path(struct bpf_map *map, const char *path) 2510 { 2511 char buf[PATH_MAX]; 2512 int err; 2513 2514 if (!path) 2515 path = BPF_FS_DEFAULT_PATH; 2516 2517 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2518 if (err) 2519 return err; 2520 2521 return bpf_map__set_pin_path(map, buf); 2522 } 2523 2524 /* should match definition in bpf_helpers.h */ 2525 enum libbpf_pin_type { 2526 LIBBPF_PIN_NONE, 2527 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2528 LIBBPF_PIN_BY_NAME, 2529 }; 2530 2531 int parse_btf_map_def(const char *map_name, struct btf *btf, 2532 const struct btf_type *def_t, bool strict, 2533 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2534 { 2535 const struct btf_type *t; 2536 const struct btf_member *m; 2537 bool is_inner = inner_def == NULL; 2538 int vlen, i; 2539 2540 vlen = btf_vlen(def_t); 2541 m = btf_members(def_t); 2542 for (i = 0; i < vlen; i++, m++) { 2543 const char *name = btf__name_by_offset(btf, m->name_off); 2544 2545 if (!name) { 2546 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2547 return -EINVAL; 2548 } 2549 if (strcmp(name, "type") == 0) { 2550 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2551 return -EINVAL; 2552 map_def->parts |= MAP_DEF_MAP_TYPE; 2553 } else if (strcmp(name, "max_entries") == 0) { 2554 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2555 return -EINVAL; 2556 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2557 } else if (strcmp(name, "map_flags") == 0) { 2558 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2559 return -EINVAL; 2560 map_def->parts |= MAP_DEF_MAP_FLAGS; 2561 } else if (strcmp(name, "numa_node") == 0) { 2562 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2563 return -EINVAL; 2564 map_def->parts |= MAP_DEF_NUMA_NODE; 2565 } else if (strcmp(name, "key_size") == 0) { 2566 __u32 sz; 2567 2568 if (!get_map_field_int(map_name, btf, m, &sz)) 2569 return -EINVAL; 2570 if (map_def->key_size && map_def->key_size != sz) { 2571 pr_warn("map '%s': conflicting key size %u != %u.\n", 2572 map_name, map_def->key_size, sz); 2573 return -EINVAL; 2574 } 2575 map_def->key_size = sz; 2576 map_def->parts |= MAP_DEF_KEY_SIZE; 2577 } else if (strcmp(name, "key") == 0) { 2578 __s64 sz; 2579 2580 t = btf__type_by_id(btf, m->type); 2581 if (!t) { 2582 pr_warn("map '%s': key type [%d] not found.\n", 2583 map_name, m->type); 2584 return -EINVAL; 2585 } 2586 if (!btf_is_ptr(t)) { 2587 pr_warn("map '%s': key spec is not PTR: %s.\n", 2588 map_name, btf_kind_str(t)); 2589 return -EINVAL; 2590 } 2591 sz = btf__resolve_size(btf, t->type); 2592 if (sz < 0) { 2593 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2594 map_name, t->type, (ssize_t)sz); 2595 return sz; 2596 } 2597 if (map_def->key_size && map_def->key_size != sz) { 2598 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2599 map_name, map_def->key_size, (ssize_t)sz); 2600 return -EINVAL; 2601 } 2602 map_def->key_size = sz; 2603 map_def->key_type_id = t->type; 2604 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2605 } else if (strcmp(name, "value_size") == 0) { 2606 __u32 sz; 2607 2608 if (!get_map_field_int(map_name, btf, m, &sz)) 2609 return -EINVAL; 2610 if (map_def->value_size && map_def->value_size != sz) { 2611 pr_warn("map '%s': conflicting value size %u != %u.\n", 2612 map_name, map_def->value_size, sz); 2613 return -EINVAL; 2614 } 2615 map_def->value_size = sz; 2616 map_def->parts |= MAP_DEF_VALUE_SIZE; 2617 } else if (strcmp(name, "value") == 0) { 2618 __s64 sz; 2619 2620 t = btf__type_by_id(btf, m->type); 2621 if (!t) { 2622 pr_warn("map '%s': value type [%d] not found.\n", 2623 map_name, m->type); 2624 return -EINVAL; 2625 } 2626 if (!btf_is_ptr(t)) { 2627 pr_warn("map '%s': value spec is not PTR: %s.\n", 2628 map_name, btf_kind_str(t)); 2629 return -EINVAL; 2630 } 2631 sz = btf__resolve_size(btf, t->type); 2632 if (sz < 0) { 2633 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2634 map_name, t->type, (ssize_t)sz); 2635 return sz; 2636 } 2637 if (map_def->value_size && map_def->value_size != sz) { 2638 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2639 map_name, map_def->value_size, (ssize_t)sz); 2640 return -EINVAL; 2641 } 2642 map_def->value_size = sz; 2643 map_def->value_type_id = t->type; 2644 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2645 } 2646 else if (strcmp(name, "values") == 0) { 2647 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2648 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2649 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2650 char inner_map_name[128]; 2651 int err; 2652 2653 if (is_inner) { 2654 pr_warn("map '%s': multi-level inner maps not supported.\n", 2655 map_name); 2656 return -ENOTSUP; 2657 } 2658 if (i != vlen - 1) { 2659 pr_warn("map '%s': '%s' member should be last.\n", 2660 map_name, name); 2661 return -EINVAL; 2662 } 2663 if (!is_map_in_map && !is_prog_array) { 2664 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2665 map_name); 2666 return -ENOTSUP; 2667 } 2668 if (map_def->value_size && map_def->value_size != 4) { 2669 pr_warn("map '%s': conflicting value size %u != 4.\n", 2670 map_name, map_def->value_size); 2671 return -EINVAL; 2672 } 2673 map_def->value_size = 4; 2674 t = btf__type_by_id(btf, m->type); 2675 if (!t) { 2676 pr_warn("map '%s': %s type [%d] not found.\n", 2677 map_name, desc, m->type); 2678 return -EINVAL; 2679 } 2680 if (!btf_is_array(t) || btf_array(t)->nelems) { 2681 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2682 map_name, desc); 2683 return -EINVAL; 2684 } 2685 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2686 if (!btf_is_ptr(t)) { 2687 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2688 map_name, desc, btf_kind_str(t)); 2689 return -EINVAL; 2690 } 2691 t = skip_mods_and_typedefs(btf, t->type, NULL); 2692 if (is_prog_array) { 2693 if (!btf_is_func_proto(t)) { 2694 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2695 map_name, btf_kind_str(t)); 2696 return -EINVAL; 2697 } 2698 continue; 2699 } 2700 if (!btf_is_struct(t)) { 2701 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2702 map_name, btf_kind_str(t)); 2703 return -EINVAL; 2704 } 2705 2706 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2707 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2708 if (err) 2709 return err; 2710 2711 map_def->parts |= MAP_DEF_INNER_MAP; 2712 } else if (strcmp(name, "pinning") == 0) { 2713 __u32 val; 2714 2715 if (is_inner) { 2716 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2717 return -EINVAL; 2718 } 2719 if (!get_map_field_int(map_name, btf, m, &val)) 2720 return -EINVAL; 2721 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2722 pr_warn("map '%s': invalid pinning value %u.\n", 2723 map_name, val); 2724 return -EINVAL; 2725 } 2726 map_def->pinning = val; 2727 map_def->parts |= MAP_DEF_PINNING; 2728 } else if (strcmp(name, "map_extra") == 0) { 2729 __u64 map_extra; 2730 2731 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2732 return -EINVAL; 2733 map_def->map_extra = map_extra; 2734 map_def->parts |= MAP_DEF_MAP_EXTRA; 2735 } else { 2736 if (strict) { 2737 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2738 return -ENOTSUP; 2739 } 2740 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2741 } 2742 } 2743 2744 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2745 pr_warn("map '%s': map type isn't specified.\n", map_name); 2746 return -EINVAL; 2747 } 2748 2749 return 0; 2750 } 2751 2752 static size_t adjust_ringbuf_sz(size_t sz) 2753 { 2754 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2755 __u32 mul; 2756 2757 /* if user forgot to set any size, make sure they see error */ 2758 if (sz == 0) 2759 return 0; 2760 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2761 * a power-of-2 multiple of kernel's page size. If user diligently 2762 * satisified these conditions, pass the size through. 2763 */ 2764 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2765 return sz; 2766 2767 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2768 * user-set size to satisfy both user size request and kernel 2769 * requirements and substitute correct max_entries for map creation. 2770 */ 2771 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2772 if (mul * page_sz > sz) 2773 return mul * page_sz; 2774 } 2775 2776 /* if it's impossible to satisfy the conditions (i.e., user size is 2777 * very close to UINT_MAX but is not a power-of-2 multiple of 2778 * page_size) then just return original size and let kernel reject it 2779 */ 2780 return sz; 2781 } 2782 2783 static bool map_is_ringbuf(const struct bpf_map *map) 2784 { 2785 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2786 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2787 } 2788 2789 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2790 { 2791 map->def.type = def->map_type; 2792 map->def.key_size = def->key_size; 2793 map->def.value_size = def->value_size; 2794 map->def.max_entries = def->max_entries; 2795 map->def.map_flags = def->map_flags; 2796 map->map_extra = def->map_extra; 2797 2798 map->numa_node = def->numa_node; 2799 map->btf_key_type_id = def->key_type_id; 2800 map->btf_value_type_id = def->value_type_id; 2801 2802 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2803 if (map_is_ringbuf(map)) 2804 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2805 2806 if (def->parts & MAP_DEF_MAP_TYPE) 2807 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2808 2809 if (def->parts & MAP_DEF_KEY_TYPE) 2810 pr_debug("map '%s': found key [%u], sz = %u.\n", 2811 map->name, def->key_type_id, def->key_size); 2812 else if (def->parts & MAP_DEF_KEY_SIZE) 2813 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2814 2815 if (def->parts & MAP_DEF_VALUE_TYPE) 2816 pr_debug("map '%s': found value [%u], sz = %u.\n", 2817 map->name, def->value_type_id, def->value_size); 2818 else if (def->parts & MAP_DEF_VALUE_SIZE) 2819 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2820 2821 if (def->parts & MAP_DEF_MAX_ENTRIES) 2822 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2823 if (def->parts & MAP_DEF_MAP_FLAGS) 2824 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2825 if (def->parts & MAP_DEF_MAP_EXTRA) 2826 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2827 (unsigned long long)def->map_extra); 2828 if (def->parts & MAP_DEF_PINNING) 2829 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2830 if (def->parts & MAP_DEF_NUMA_NODE) 2831 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2832 2833 if (def->parts & MAP_DEF_INNER_MAP) 2834 pr_debug("map '%s': found inner map definition.\n", map->name); 2835 } 2836 2837 static const char *btf_var_linkage_str(__u32 linkage) 2838 { 2839 switch (linkage) { 2840 case BTF_VAR_STATIC: return "static"; 2841 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2842 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2843 default: return "unknown"; 2844 } 2845 } 2846 2847 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2848 const struct btf_type *sec, 2849 int var_idx, int sec_idx, 2850 const Elf_Data *data, bool strict, 2851 const char *pin_root_path) 2852 { 2853 struct btf_map_def map_def = {}, inner_def = {}; 2854 const struct btf_type *var, *def; 2855 const struct btf_var_secinfo *vi; 2856 const struct btf_var *var_extra; 2857 const char *map_name; 2858 struct bpf_map *map; 2859 int err; 2860 2861 vi = btf_var_secinfos(sec) + var_idx; 2862 var = btf__type_by_id(obj->btf, vi->type); 2863 var_extra = btf_var(var); 2864 map_name = btf__name_by_offset(obj->btf, var->name_off); 2865 2866 if (map_name == NULL || map_name[0] == '\0') { 2867 pr_warn("map #%d: empty name.\n", var_idx); 2868 return -EINVAL; 2869 } 2870 if ((__u64)vi->offset + vi->size > data->d_size) { 2871 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2872 return -EINVAL; 2873 } 2874 if (!btf_is_var(var)) { 2875 pr_warn("map '%s': unexpected var kind %s.\n", 2876 map_name, btf_kind_str(var)); 2877 return -EINVAL; 2878 } 2879 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2880 pr_warn("map '%s': unsupported map linkage %s.\n", 2881 map_name, btf_var_linkage_str(var_extra->linkage)); 2882 return -EOPNOTSUPP; 2883 } 2884 2885 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2886 if (!btf_is_struct(def)) { 2887 pr_warn("map '%s': unexpected def kind %s.\n", 2888 map_name, btf_kind_str(var)); 2889 return -EINVAL; 2890 } 2891 if (def->size > vi->size) { 2892 pr_warn("map '%s': invalid def size.\n", map_name); 2893 return -EINVAL; 2894 } 2895 2896 map = bpf_object__add_map(obj); 2897 if (IS_ERR(map)) 2898 return PTR_ERR(map); 2899 map->name = strdup(map_name); 2900 if (!map->name) { 2901 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2902 return -ENOMEM; 2903 } 2904 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2905 map->def.type = BPF_MAP_TYPE_UNSPEC; 2906 map->sec_idx = sec_idx; 2907 map->sec_offset = vi->offset; 2908 map->btf_var_idx = var_idx; 2909 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2910 map_name, map->sec_idx, map->sec_offset); 2911 2912 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2913 if (err) 2914 return err; 2915 2916 fill_map_from_def(map, &map_def); 2917 2918 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2919 err = build_map_pin_path(map, pin_root_path); 2920 if (err) { 2921 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2922 return err; 2923 } 2924 } 2925 2926 if (map_def.parts & MAP_DEF_INNER_MAP) { 2927 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2928 if (!map->inner_map) 2929 return -ENOMEM; 2930 map->inner_map->fd = create_placeholder_fd(); 2931 if (map->inner_map->fd < 0) 2932 return map->inner_map->fd; 2933 map->inner_map->sec_idx = sec_idx; 2934 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2935 if (!map->inner_map->name) 2936 return -ENOMEM; 2937 sprintf(map->inner_map->name, "%s.inner", map_name); 2938 2939 fill_map_from_def(map->inner_map, &inner_def); 2940 } 2941 2942 err = map_fill_btf_type_info(obj, map); 2943 if (err) 2944 return err; 2945 2946 return 0; 2947 } 2948 2949 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2950 const char *sec_name, int sec_idx, 2951 void *data, size_t data_sz) 2952 { 2953 const long page_sz = sysconf(_SC_PAGE_SIZE); 2954 size_t mmap_sz; 2955 2956 mmap_sz = bpf_map_mmap_sz(obj->arena_map); 2957 if (roundup(data_sz, page_sz) > mmap_sz) { 2958 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2959 sec_name, mmap_sz, data_sz); 2960 return -E2BIG; 2961 } 2962 2963 obj->arena_data = malloc(data_sz); 2964 if (!obj->arena_data) 2965 return -ENOMEM; 2966 memcpy(obj->arena_data, data, data_sz); 2967 obj->arena_data_sz = data_sz; 2968 2969 /* make bpf_map__init_value() work for ARENA maps */ 2970 map->mmaped = obj->arena_data; 2971 2972 return 0; 2973 } 2974 2975 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2976 const char *pin_root_path) 2977 { 2978 const struct btf_type *sec = NULL; 2979 int nr_types, i, vlen, err; 2980 const struct btf_type *t; 2981 const char *name; 2982 Elf_Data *data; 2983 Elf_Scn *scn; 2984 2985 if (obj->efile.btf_maps_shndx < 0) 2986 return 0; 2987 2988 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2989 data = elf_sec_data(obj, scn); 2990 if (!scn || !data) { 2991 pr_warn("elf: failed to get %s map definitions for %s\n", 2992 MAPS_ELF_SEC, obj->path); 2993 return -EINVAL; 2994 } 2995 2996 nr_types = btf__type_cnt(obj->btf); 2997 for (i = 1; i < nr_types; i++) { 2998 t = btf__type_by_id(obj->btf, i); 2999 if (!btf_is_datasec(t)) 3000 continue; 3001 name = btf__name_by_offset(obj->btf, t->name_off); 3002 if (strcmp(name, MAPS_ELF_SEC) == 0) { 3003 sec = t; 3004 obj->efile.btf_maps_sec_btf_id = i; 3005 break; 3006 } 3007 } 3008 3009 if (!sec) { 3010 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 3011 return -ENOENT; 3012 } 3013 3014 vlen = btf_vlen(sec); 3015 for (i = 0; i < vlen; i++) { 3016 err = bpf_object__init_user_btf_map(obj, sec, i, 3017 obj->efile.btf_maps_shndx, 3018 data, strict, 3019 pin_root_path); 3020 if (err) 3021 return err; 3022 } 3023 3024 for (i = 0; i < obj->nr_maps; i++) { 3025 struct bpf_map *map = &obj->maps[i]; 3026 3027 if (map->def.type != BPF_MAP_TYPE_ARENA) 3028 continue; 3029 3030 if (obj->arena_map) { 3031 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 3032 map->name, obj->arena_map->name); 3033 return -EINVAL; 3034 } 3035 obj->arena_map = map; 3036 3037 if (obj->efile.arena_data) { 3038 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 3039 obj->efile.arena_data->d_buf, 3040 obj->efile.arena_data->d_size); 3041 if (err) 3042 return err; 3043 } 3044 } 3045 if (obj->efile.arena_data && !obj->arena_map) { 3046 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 3047 ARENA_SEC); 3048 return -ENOENT; 3049 } 3050 3051 return 0; 3052 } 3053 3054 static int bpf_object__init_maps(struct bpf_object *obj, 3055 const struct bpf_object_open_opts *opts) 3056 { 3057 const char *pin_root_path; 3058 bool strict; 3059 int err = 0; 3060 3061 strict = !OPTS_GET(opts, relaxed_maps, false); 3062 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 3063 3064 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 3065 err = err ?: bpf_object__init_global_data_maps(obj); 3066 err = err ?: bpf_object__init_kconfig_map(obj); 3067 err = err ?: bpf_object_init_struct_ops(obj); 3068 3069 return err; 3070 } 3071 3072 static bool section_have_execinstr(struct bpf_object *obj, int idx) 3073 { 3074 Elf64_Shdr *sh; 3075 3076 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 3077 if (!sh) 3078 return false; 3079 3080 return sh->sh_flags & SHF_EXECINSTR; 3081 } 3082 3083 static bool starts_with_qmark(const char *s) 3084 { 3085 return s && s[0] == '?'; 3086 } 3087 3088 static bool btf_needs_sanitization(struct bpf_object *obj) 3089 { 3090 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3091 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3092 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3093 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3094 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3095 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3096 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3097 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3098 3099 return !has_func || !has_datasec || !has_func_global || !has_float || 3100 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3101 } 3102 3103 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3104 { 3105 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3106 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3107 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3108 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3109 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3110 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3111 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3112 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3113 int enum64_placeholder_id = 0; 3114 struct btf_type *t; 3115 int i, j, vlen; 3116 3117 for (i = 1; i < btf__type_cnt(btf); i++) { 3118 t = (struct btf_type *)btf__type_by_id(btf, i); 3119 3120 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3121 /* replace VAR/DECL_TAG with INT */ 3122 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3123 /* 3124 * using size = 1 is the safest choice, 4 will be too 3125 * big and cause kernel BTF validation failure if 3126 * original variable took less than 4 bytes 3127 */ 3128 t->size = 1; 3129 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3130 } else if (!has_datasec && btf_is_datasec(t)) { 3131 /* replace DATASEC with STRUCT */ 3132 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3133 struct btf_member *m = btf_members(t); 3134 struct btf_type *vt; 3135 char *name; 3136 3137 name = (char *)btf__name_by_offset(btf, t->name_off); 3138 while (*name) { 3139 if (*name == '.' || *name == '?') 3140 *name = '_'; 3141 name++; 3142 } 3143 3144 vlen = btf_vlen(t); 3145 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3146 for (j = 0; j < vlen; j++, v++, m++) { 3147 /* order of field assignments is important */ 3148 m->offset = v->offset * 8; 3149 m->type = v->type; 3150 /* preserve variable name as member name */ 3151 vt = (void *)btf__type_by_id(btf, v->type); 3152 m->name_off = vt->name_off; 3153 } 3154 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3155 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3156 /* replace '?' prefix with '_' for DATASEC names */ 3157 char *name; 3158 3159 name = (char *)btf__name_by_offset(btf, t->name_off); 3160 if (name[0] == '?') 3161 name[0] = '_'; 3162 } else if (!has_func && btf_is_func_proto(t)) { 3163 /* replace FUNC_PROTO with ENUM */ 3164 vlen = btf_vlen(t); 3165 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3166 t->size = sizeof(__u32); /* kernel enforced */ 3167 } else if (!has_func && btf_is_func(t)) { 3168 /* replace FUNC with TYPEDEF */ 3169 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3170 } else if (!has_func_global && btf_is_func(t)) { 3171 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3172 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3173 } else if (!has_float && btf_is_float(t)) { 3174 /* replace FLOAT with an equally-sized empty STRUCT; 3175 * since C compilers do not accept e.g. "float" as a 3176 * valid struct name, make it anonymous 3177 */ 3178 t->name_off = 0; 3179 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3180 } else if (!has_type_tag && btf_is_type_tag(t)) { 3181 /* replace TYPE_TAG with a CONST */ 3182 t->name_off = 0; 3183 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3184 } else if (!has_enum64 && btf_is_enum(t)) { 3185 /* clear the kflag */ 3186 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3187 } else if (!has_enum64 && btf_is_enum64(t)) { 3188 /* replace ENUM64 with a union */ 3189 struct btf_member *m; 3190 3191 if (enum64_placeholder_id == 0) { 3192 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3193 if (enum64_placeholder_id < 0) 3194 return enum64_placeholder_id; 3195 3196 t = (struct btf_type *)btf__type_by_id(btf, i); 3197 } 3198 3199 m = btf_members(t); 3200 vlen = btf_vlen(t); 3201 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3202 for (j = 0; j < vlen; j++, m++) { 3203 m->type = enum64_placeholder_id; 3204 m->offset = 0; 3205 } 3206 } 3207 } 3208 3209 return 0; 3210 } 3211 3212 static bool libbpf_needs_btf(const struct bpf_object *obj) 3213 { 3214 return obj->efile.btf_maps_shndx >= 0 || 3215 obj->efile.has_st_ops || 3216 obj->nr_extern > 0; 3217 } 3218 3219 static bool kernel_needs_btf(const struct bpf_object *obj) 3220 { 3221 return obj->efile.has_st_ops; 3222 } 3223 3224 static int bpf_object__init_btf(struct bpf_object *obj, 3225 Elf_Data *btf_data, 3226 Elf_Data *btf_ext_data) 3227 { 3228 int err = -ENOENT; 3229 3230 if (btf_data) { 3231 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3232 err = libbpf_get_error(obj->btf); 3233 if (err) { 3234 obj->btf = NULL; 3235 pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err)); 3236 goto out; 3237 } 3238 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3239 btf__set_pointer_size(obj->btf, 8); 3240 } 3241 if (btf_ext_data) { 3242 struct btf_ext_info *ext_segs[3]; 3243 int seg_num, sec_num; 3244 3245 if (!obj->btf) { 3246 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3247 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3248 goto out; 3249 } 3250 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3251 err = libbpf_get_error(obj->btf_ext); 3252 if (err) { 3253 pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n", 3254 BTF_EXT_ELF_SEC, errstr(err)); 3255 obj->btf_ext = NULL; 3256 goto out; 3257 } 3258 3259 /* setup .BTF.ext to ELF section mapping */ 3260 ext_segs[0] = &obj->btf_ext->func_info; 3261 ext_segs[1] = &obj->btf_ext->line_info; 3262 ext_segs[2] = &obj->btf_ext->core_relo_info; 3263 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3264 struct btf_ext_info *seg = ext_segs[seg_num]; 3265 const struct btf_ext_info_sec *sec; 3266 const char *sec_name; 3267 Elf_Scn *scn; 3268 3269 if (seg->sec_cnt == 0) 3270 continue; 3271 3272 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3273 if (!seg->sec_idxs) { 3274 err = -ENOMEM; 3275 goto out; 3276 } 3277 3278 sec_num = 0; 3279 for_each_btf_ext_sec(seg, sec) { 3280 /* preventively increment index to avoid doing 3281 * this before every continue below 3282 */ 3283 sec_num++; 3284 3285 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3286 if (str_is_empty(sec_name)) 3287 continue; 3288 scn = elf_sec_by_name(obj, sec_name); 3289 if (!scn) 3290 continue; 3291 3292 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3293 } 3294 } 3295 } 3296 out: 3297 if (err && libbpf_needs_btf(obj)) { 3298 pr_warn("BTF is required, but is missing or corrupted.\n"); 3299 return err; 3300 } 3301 return 0; 3302 } 3303 3304 static int compare_vsi_off(const void *_a, const void *_b) 3305 { 3306 const struct btf_var_secinfo *a = _a; 3307 const struct btf_var_secinfo *b = _b; 3308 3309 return a->offset - b->offset; 3310 } 3311 3312 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3313 struct btf_type *t) 3314 { 3315 __u32 size = 0, i, vars = btf_vlen(t); 3316 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3317 struct btf_var_secinfo *vsi; 3318 bool fixup_offsets = false; 3319 int err; 3320 3321 if (!sec_name) { 3322 pr_debug("No name found in string section for DATASEC kind.\n"); 3323 return -ENOENT; 3324 } 3325 3326 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3327 * variable offsets set at the previous step. Further, not every 3328 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3329 * all fixups altogether for such sections and go straight to sorting 3330 * VARs within their DATASEC. 3331 */ 3332 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3333 goto sort_vars; 3334 3335 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3336 * fix this up. But BPF static linker already fixes this up and fills 3337 * all the sizes and offsets during static linking. So this step has 3338 * to be optional. But the STV_HIDDEN handling is non-optional for any 3339 * non-extern DATASEC, so the variable fixup loop below handles both 3340 * functions at the same time, paying the cost of BTF VAR <-> ELF 3341 * symbol matching just once. 3342 */ 3343 if (t->size == 0) { 3344 err = find_elf_sec_sz(obj, sec_name, &size); 3345 if (err || !size) { 3346 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n", 3347 sec_name, size, errstr(err)); 3348 return -ENOENT; 3349 } 3350 3351 t->size = size; 3352 fixup_offsets = true; 3353 } 3354 3355 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3356 const struct btf_type *t_var; 3357 struct btf_var *var; 3358 const char *var_name; 3359 Elf64_Sym *sym; 3360 3361 t_var = btf__type_by_id(btf, vsi->type); 3362 if (!t_var || !btf_is_var(t_var)) { 3363 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3364 return -EINVAL; 3365 } 3366 3367 var = btf_var(t_var); 3368 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3369 continue; 3370 3371 var_name = btf__name_by_offset(btf, t_var->name_off); 3372 if (!var_name) { 3373 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3374 sec_name, i); 3375 return -ENOENT; 3376 } 3377 3378 sym = find_elf_var_sym(obj, var_name); 3379 if (IS_ERR(sym)) { 3380 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3381 sec_name, var_name); 3382 return -ENOENT; 3383 } 3384 3385 if (fixup_offsets) 3386 vsi->offset = sym->st_value; 3387 3388 /* if variable is a global/weak symbol, but has restricted 3389 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3390 * as static. This follows similar logic for functions (BPF 3391 * subprogs) and influences libbpf's further decisions about 3392 * whether to make global data BPF array maps as 3393 * BPF_F_MMAPABLE. 3394 */ 3395 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3396 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3397 var->linkage = BTF_VAR_STATIC; 3398 } 3399 3400 sort_vars: 3401 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3402 return 0; 3403 } 3404 3405 static int bpf_object_fixup_btf(struct bpf_object *obj) 3406 { 3407 int i, n, err = 0; 3408 3409 if (!obj->btf) 3410 return 0; 3411 3412 n = btf__type_cnt(obj->btf); 3413 for (i = 1; i < n; i++) { 3414 struct btf_type *t = btf_type_by_id(obj->btf, i); 3415 3416 /* Loader needs to fix up some of the things compiler 3417 * couldn't get its hands on while emitting BTF. This 3418 * is section size and global variable offset. We use 3419 * the info from the ELF itself for this purpose. 3420 */ 3421 if (btf_is_datasec(t)) { 3422 err = btf_fixup_datasec(obj, obj->btf, t); 3423 if (err) 3424 return err; 3425 } 3426 } 3427 3428 return 0; 3429 } 3430 3431 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3432 { 3433 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3434 prog->type == BPF_PROG_TYPE_LSM) 3435 return true; 3436 3437 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3438 * also need vmlinux BTF 3439 */ 3440 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3441 return true; 3442 3443 return false; 3444 } 3445 3446 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3447 { 3448 return bpf_map__is_struct_ops(map); 3449 } 3450 3451 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3452 { 3453 struct bpf_program *prog; 3454 struct bpf_map *map; 3455 int i; 3456 3457 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3458 * is not specified 3459 */ 3460 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3461 return true; 3462 3463 /* Support for typed ksyms needs kernel BTF */ 3464 for (i = 0; i < obj->nr_extern; i++) { 3465 const struct extern_desc *ext; 3466 3467 ext = &obj->externs[i]; 3468 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3469 return true; 3470 } 3471 3472 bpf_object__for_each_program(prog, obj) { 3473 if (!prog->autoload) 3474 continue; 3475 if (prog_needs_vmlinux_btf(prog)) 3476 return true; 3477 } 3478 3479 bpf_object__for_each_map(map, obj) { 3480 if (map_needs_vmlinux_btf(map)) 3481 return true; 3482 } 3483 3484 return false; 3485 } 3486 3487 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3488 { 3489 int err; 3490 3491 /* btf_vmlinux could be loaded earlier */ 3492 if (obj->btf_vmlinux || obj->gen_loader) 3493 return 0; 3494 3495 if (!force && !obj_needs_vmlinux_btf(obj)) 3496 return 0; 3497 3498 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3499 err = libbpf_get_error(obj->btf_vmlinux); 3500 if (err) { 3501 pr_warn("Error loading vmlinux BTF: %s\n", errstr(err)); 3502 obj->btf_vmlinux = NULL; 3503 return err; 3504 } 3505 return 0; 3506 } 3507 3508 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3509 { 3510 struct btf *kern_btf = obj->btf; 3511 bool btf_mandatory, sanitize; 3512 int i, err = 0; 3513 3514 if (!obj->btf) 3515 return 0; 3516 3517 if (!kernel_supports(obj, FEAT_BTF)) { 3518 if (kernel_needs_btf(obj)) { 3519 err = -EOPNOTSUPP; 3520 goto report; 3521 } 3522 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3523 return 0; 3524 } 3525 3526 /* Even though some subprogs are global/weak, user might prefer more 3527 * permissive BPF verification process that BPF verifier performs for 3528 * static functions, taking into account more context from the caller 3529 * functions. In such case, they need to mark such subprogs with 3530 * __attribute__((visibility("hidden"))) and libbpf will adjust 3531 * corresponding FUNC BTF type to be marked as static and trigger more 3532 * involved BPF verification process. 3533 */ 3534 for (i = 0; i < obj->nr_programs; i++) { 3535 struct bpf_program *prog = &obj->programs[i]; 3536 struct btf_type *t; 3537 const char *name; 3538 int j, n; 3539 3540 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3541 continue; 3542 3543 n = btf__type_cnt(obj->btf); 3544 for (j = 1; j < n; j++) { 3545 t = btf_type_by_id(obj->btf, j); 3546 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3547 continue; 3548 3549 name = btf__str_by_offset(obj->btf, t->name_off); 3550 if (strcmp(name, prog->name) != 0) 3551 continue; 3552 3553 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3554 break; 3555 } 3556 } 3557 3558 sanitize = btf_needs_sanitization(obj); 3559 if (sanitize) { 3560 const void *raw_data; 3561 __u32 sz; 3562 3563 /* clone BTF to sanitize a copy and leave the original intact */ 3564 raw_data = btf__raw_data(obj->btf, &sz); 3565 kern_btf = btf__new(raw_data, sz); 3566 err = libbpf_get_error(kern_btf); 3567 if (err) 3568 return err; 3569 3570 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3571 btf__set_pointer_size(obj->btf, 8); 3572 err = bpf_object__sanitize_btf(obj, kern_btf); 3573 if (err) 3574 return err; 3575 } 3576 3577 if (obj->gen_loader) { 3578 __u32 raw_size = 0; 3579 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3580 3581 if (!raw_data) 3582 return -ENOMEM; 3583 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3584 /* Pretend to have valid FD to pass various fd >= 0 checks. 3585 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3586 */ 3587 btf__set_fd(kern_btf, 0); 3588 } else { 3589 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3590 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3591 obj->log_level ? 1 : 0, obj->token_fd); 3592 } 3593 if (sanitize) { 3594 if (!err) { 3595 /* move fd to libbpf's BTF */ 3596 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3597 btf__set_fd(kern_btf, -1); 3598 } 3599 btf__free(kern_btf); 3600 } 3601 report: 3602 if (err) { 3603 btf_mandatory = kernel_needs_btf(obj); 3604 if (btf_mandatory) { 3605 pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n", 3606 errstr(err)); 3607 } else { 3608 pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n", 3609 errstr(err)); 3610 err = 0; 3611 } 3612 } 3613 return err; 3614 } 3615 3616 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3617 { 3618 const char *name; 3619 3620 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3621 if (!name) { 3622 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3623 off, obj->path, elf_errmsg(-1)); 3624 return NULL; 3625 } 3626 3627 return name; 3628 } 3629 3630 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3631 { 3632 const char *name; 3633 3634 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3635 if (!name) { 3636 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3637 off, obj->path, elf_errmsg(-1)); 3638 return NULL; 3639 } 3640 3641 return name; 3642 } 3643 3644 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3645 { 3646 Elf_Scn *scn; 3647 3648 scn = elf_getscn(obj->efile.elf, idx); 3649 if (!scn) { 3650 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3651 idx, obj->path, elf_errmsg(-1)); 3652 return NULL; 3653 } 3654 return scn; 3655 } 3656 3657 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3658 { 3659 Elf_Scn *scn = NULL; 3660 Elf *elf = obj->efile.elf; 3661 const char *sec_name; 3662 3663 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3664 sec_name = elf_sec_name(obj, scn); 3665 if (!sec_name) 3666 return NULL; 3667 3668 if (strcmp(sec_name, name) != 0) 3669 continue; 3670 3671 return scn; 3672 } 3673 return NULL; 3674 } 3675 3676 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3677 { 3678 Elf64_Shdr *shdr; 3679 3680 if (!scn) 3681 return NULL; 3682 3683 shdr = elf64_getshdr(scn); 3684 if (!shdr) { 3685 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3686 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3687 return NULL; 3688 } 3689 3690 return shdr; 3691 } 3692 3693 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3694 { 3695 const char *name; 3696 Elf64_Shdr *sh; 3697 3698 if (!scn) 3699 return NULL; 3700 3701 sh = elf_sec_hdr(obj, scn); 3702 if (!sh) 3703 return NULL; 3704 3705 name = elf_sec_str(obj, sh->sh_name); 3706 if (!name) { 3707 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3708 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3709 return NULL; 3710 } 3711 3712 return name; 3713 } 3714 3715 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3716 { 3717 Elf_Data *data; 3718 3719 if (!scn) 3720 return NULL; 3721 3722 data = elf_getdata(scn, 0); 3723 if (!data) { 3724 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3725 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3726 obj->path, elf_errmsg(-1)); 3727 return NULL; 3728 } 3729 3730 return data; 3731 } 3732 3733 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3734 { 3735 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3736 return NULL; 3737 3738 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3739 } 3740 3741 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3742 { 3743 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3744 return NULL; 3745 3746 return (Elf64_Rel *)data->d_buf + idx; 3747 } 3748 3749 static bool is_sec_name_dwarf(const char *name) 3750 { 3751 /* approximation, but the actual list is too long */ 3752 return str_has_pfx(name, ".debug_"); 3753 } 3754 3755 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3756 { 3757 /* no special handling of .strtab */ 3758 if (hdr->sh_type == SHT_STRTAB) 3759 return true; 3760 3761 /* ignore .llvm_addrsig section as well */ 3762 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3763 return true; 3764 3765 /* no subprograms will lead to an empty .text section, ignore it */ 3766 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3767 strcmp(name, ".text") == 0) 3768 return true; 3769 3770 /* DWARF sections */ 3771 if (is_sec_name_dwarf(name)) 3772 return true; 3773 3774 if (str_has_pfx(name, ".rel")) { 3775 name += sizeof(".rel") - 1; 3776 /* DWARF section relocations */ 3777 if (is_sec_name_dwarf(name)) 3778 return true; 3779 3780 /* .BTF and .BTF.ext don't need relocations */ 3781 if (strcmp(name, BTF_ELF_SEC) == 0 || 3782 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3783 return true; 3784 } 3785 3786 return false; 3787 } 3788 3789 static int cmp_progs(const void *_a, const void *_b) 3790 { 3791 const struct bpf_program *a = _a; 3792 const struct bpf_program *b = _b; 3793 3794 if (a->sec_idx != b->sec_idx) 3795 return a->sec_idx < b->sec_idx ? -1 : 1; 3796 3797 /* sec_insn_off can't be the same within the section */ 3798 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3799 } 3800 3801 static int bpf_object__elf_collect(struct bpf_object *obj) 3802 { 3803 struct elf_sec_desc *sec_desc; 3804 Elf *elf = obj->efile.elf; 3805 Elf_Data *btf_ext_data = NULL; 3806 Elf_Data *btf_data = NULL; 3807 int idx = 0, err = 0; 3808 const char *name; 3809 Elf_Data *data; 3810 Elf_Scn *scn; 3811 Elf64_Shdr *sh; 3812 3813 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3814 * section. Since section count retrieved by elf_getshdrnum() does 3815 * include sec #0, it is already the necessary size of an array to keep 3816 * all the sections. 3817 */ 3818 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3819 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3820 obj->path, elf_errmsg(-1)); 3821 return -LIBBPF_ERRNO__FORMAT; 3822 } 3823 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3824 if (!obj->efile.secs) 3825 return -ENOMEM; 3826 3827 /* a bunch of ELF parsing functionality depends on processing symbols, 3828 * so do the first pass and find the symbol table 3829 */ 3830 scn = NULL; 3831 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3832 sh = elf_sec_hdr(obj, scn); 3833 if (!sh) 3834 return -LIBBPF_ERRNO__FORMAT; 3835 3836 if (sh->sh_type == SHT_SYMTAB) { 3837 if (obj->efile.symbols) { 3838 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3839 return -LIBBPF_ERRNO__FORMAT; 3840 } 3841 3842 data = elf_sec_data(obj, scn); 3843 if (!data) 3844 return -LIBBPF_ERRNO__FORMAT; 3845 3846 idx = elf_ndxscn(scn); 3847 3848 obj->efile.symbols = data; 3849 obj->efile.symbols_shndx = idx; 3850 obj->efile.strtabidx = sh->sh_link; 3851 } 3852 } 3853 3854 if (!obj->efile.symbols) { 3855 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3856 obj->path); 3857 return -ENOENT; 3858 } 3859 3860 scn = NULL; 3861 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3862 idx = elf_ndxscn(scn); 3863 sec_desc = &obj->efile.secs[idx]; 3864 3865 sh = elf_sec_hdr(obj, scn); 3866 if (!sh) 3867 return -LIBBPF_ERRNO__FORMAT; 3868 3869 name = elf_sec_str(obj, sh->sh_name); 3870 if (!name) 3871 return -LIBBPF_ERRNO__FORMAT; 3872 3873 if (ignore_elf_section(sh, name)) 3874 continue; 3875 3876 data = elf_sec_data(obj, scn); 3877 if (!data) 3878 return -LIBBPF_ERRNO__FORMAT; 3879 3880 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3881 idx, name, (unsigned long)data->d_size, 3882 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3883 (int)sh->sh_type); 3884 3885 if (strcmp(name, "license") == 0) { 3886 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3887 if (err) 3888 return err; 3889 } else if (strcmp(name, "version") == 0) { 3890 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3891 if (err) 3892 return err; 3893 } else if (strcmp(name, "maps") == 0) { 3894 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3895 return -ENOTSUP; 3896 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3897 obj->efile.btf_maps_shndx = idx; 3898 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3899 if (sh->sh_type != SHT_PROGBITS) 3900 return -LIBBPF_ERRNO__FORMAT; 3901 btf_data = data; 3902 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3903 if (sh->sh_type != SHT_PROGBITS) 3904 return -LIBBPF_ERRNO__FORMAT; 3905 btf_ext_data = data; 3906 } else if (sh->sh_type == SHT_SYMTAB) { 3907 /* already processed during the first pass above */ 3908 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3909 if (sh->sh_flags & SHF_EXECINSTR) { 3910 if (strcmp(name, ".text") == 0) 3911 obj->efile.text_shndx = idx; 3912 err = bpf_object__add_programs(obj, data, name, idx); 3913 if (err) 3914 return err; 3915 } else if (strcmp(name, DATA_SEC) == 0 || 3916 str_has_pfx(name, DATA_SEC ".")) { 3917 sec_desc->sec_type = SEC_DATA; 3918 sec_desc->shdr = sh; 3919 sec_desc->data = data; 3920 } else if (strcmp(name, RODATA_SEC) == 0 || 3921 str_has_pfx(name, RODATA_SEC ".")) { 3922 sec_desc->sec_type = SEC_RODATA; 3923 sec_desc->shdr = sh; 3924 sec_desc->data = data; 3925 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3926 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3927 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3928 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3929 sec_desc->sec_type = SEC_ST_OPS; 3930 sec_desc->shdr = sh; 3931 sec_desc->data = data; 3932 obj->efile.has_st_ops = true; 3933 } else if (strcmp(name, ARENA_SEC) == 0) { 3934 obj->efile.arena_data = data; 3935 obj->efile.arena_data_shndx = idx; 3936 } else { 3937 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3938 idx, name); 3939 } 3940 } else if (sh->sh_type == SHT_REL) { 3941 int targ_sec_idx = sh->sh_info; /* points to other section */ 3942 3943 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3944 targ_sec_idx >= obj->efile.sec_cnt) 3945 return -LIBBPF_ERRNO__FORMAT; 3946 3947 /* Only do relo for section with exec instructions */ 3948 if (!section_have_execinstr(obj, targ_sec_idx) && 3949 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3950 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3951 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3952 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3953 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3954 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3955 idx, name, targ_sec_idx, 3956 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3957 continue; 3958 } 3959 3960 sec_desc->sec_type = SEC_RELO; 3961 sec_desc->shdr = sh; 3962 sec_desc->data = data; 3963 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3964 str_has_pfx(name, BSS_SEC "."))) { 3965 sec_desc->sec_type = SEC_BSS; 3966 sec_desc->shdr = sh; 3967 sec_desc->data = data; 3968 } else { 3969 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3970 (size_t)sh->sh_size); 3971 } 3972 } 3973 3974 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3975 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3976 return -LIBBPF_ERRNO__FORMAT; 3977 } 3978 3979 /* change BPF program insns to native endianness for introspection */ 3980 if (!is_native_endianness(obj)) 3981 bpf_object_bswap_progs(obj); 3982 3983 /* sort BPF programs by section name and in-section instruction offset 3984 * for faster search 3985 */ 3986 if (obj->nr_programs) 3987 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3988 3989 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3990 } 3991 3992 static bool sym_is_extern(const Elf64_Sym *sym) 3993 { 3994 int bind = ELF64_ST_BIND(sym->st_info); 3995 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3996 return sym->st_shndx == SHN_UNDEF && 3997 (bind == STB_GLOBAL || bind == STB_WEAK) && 3998 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3999 } 4000 4001 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 4002 { 4003 int bind = ELF64_ST_BIND(sym->st_info); 4004 int type = ELF64_ST_TYPE(sym->st_info); 4005 4006 /* in .text section */ 4007 if (sym->st_shndx != text_shndx) 4008 return false; 4009 4010 /* local function */ 4011 if (bind == STB_LOCAL && type == STT_SECTION) 4012 return true; 4013 4014 /* global function */ 4015 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC; 4016 } 4017 4018 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 4019 { 4020 const struct btf_type *t; 4021 const char *tname; 4022 int i, n; 4023 4024 if (!btf) 4025 return -ESRCH; 4026 4027 n = btf__type_cnt(btf); 4028 for (i = 1; i < n; i++) { 4029 t = btf__type_by_id(btf, i); 4030 4031 if (!btf_is_var(t) && !btf_is_func(t)) 4032 continue; 4033 4034 tname = btf__name_by_offset(btf, t->name_off); 4035 if (strcmp(tname, ext_name)) 4036 continue; 4037 4038 if (btf_is_var(t) && 4039 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 4040 return -EINVAL; 4041 4042 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 4043 return -EINVAL; 4044 4045 return i; 4046 } 4047 4048 return -ENOENT; 4049 } 4050 4051 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 4052 const struct btf_var_secinfo *vs; 4053 const struct btf_type *t; 4054 int i, j, n; 4055 4056 if (!btf) 4057 return -ESRCH; 4058 4059 n = btf__type_cnt(btf); 4060 for (i = 1; i < n; i++) { 4061 t = btf__type_by_id(btf, i); 4062 4063 if (!btf_is_datasec(t)) 4064 continue; 4065 4066 vs = btf_var_secinfos(t); 4067 for (j = 0; j < btf_vlen(t); j++, vs++) { 4068 if (vs->type == ext_btf_id) 4069 return i; 4070 } 4071 } 4072 4073 return -ENOENT; 4074 } 4075 4076 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 4077 bool *is_signed) 4078 { 4079 const struct btf_type *t; 4080 const char *name; 4081 4082 t = skip_mods_and_typedefs(btf, id, NULL); 4083 name = btf__name_by_offset(btf, t->name_off); 4084 4085 if (is_signed) 4086 *is_signed = false; 4087 switch (btf_kind(t)) { 4088 case BTF_KIND_INT: { 4089 int enc = btf_int_encoding(t); 4090 4091 if (enc & BTF_INT_BOOL) 4092 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 4093 if (is_signed) 4094 *is_signed = enc & BTF_INT_SIGNED; 4095 if (t->size == 1) 4096 return KCFG_CHAR; 4097 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4098 return KCFG_UNKNOWN; 4099 return KCFG_INT; 4100 } 4101 case BTF_KIND_ENUM: 4102 if (t->size != 4) 4103 return KCFG_UNKNOWN; 4104 if (strcmp(name, "libbpf_tristate")) 4105 return KCFG_UNKNOWN; 4106 return KCFG_TRISTATE; 4107 case BTF_KIND_ENUM64: 4108 if (strcmp(name, "libbpf_tristate")) 4109 return KCFG_UNKNOWN; 4110 return KCFG_TRISTATE; 4111 case BTF_KIND_ARRAY: 4112 if (btf_array(t)->nelems == 0) 4113 return KCFG_UNKNOWN; 4114 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4115 return KCFG_UNKNOWN; 4116 return KCFG_CHAR_ARR; 4117 default: 4118 return KCFG_UNKNOWN; 4119 } 4120 } 4121 4122 static int cmp_externs(const void *_a, const void *_b) 4123 { 4124 const struct extern_desc *a = _a; 4125 const struct extern_desc *b = _b; 4126 4127 if (a->type != b->type) 4128 return a->type < b->type ? -1 : 1; 4129 4130 if (a->type == EXT_KCFG) { 4131 /* descending order by alignment requirements */ 4132 if (a->kcfg.align != b->kcfg.align) 4133 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4134 /* ascending order by size, within same alignment class */ 4135 if (a->kcfg.sz != b->kcfg.sz) 4136 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4137 } 4138 4139 /* resolve ties by name */ 4140 return strcmp(a->name, b->name); 4141 } 4142 4143 static int find_int_btf_id(const struct btf *btf) 4144 { 4145 const struct btf_type *t; 4146 int i, n; 4147 4148 n = btf__type_cnt(btf); 4149 for (i = 1; i < n; i++) { 4150 t = btf__type_by_id(btf, i); 4151 4152 if (btf_is_int(t) && btf_int_bits(t) == 32) 4153 return i; 4154 } 4155 4156 return 0; 4157 } 4158 4159 static int add_dummy_ksym_var(struct btf *btf) 4160 { 4161 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4162 const struct btf_var_secinfo *vs; 4163 const struct btf_type *sec; 4164 4165 if (!btf) 4166 return 0; 4167 4168 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4169 BTF_KIND_DATASEC); 4170 if (sec_btf_id < 0) 4171 return 0; 4172 4173 sec = btf__type_by_id(btf, sec_btf_id); 4174 vs = btf_var_secinfos(sec); 4175 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4176 const struct btf_type *vt; 4177 4178 vt = btf__type_by_id(btf, vs->type); 4179 if (btf_is_func(vt)) 4180 break; 4181 } 4182 4183 /* No func in ksyms sec. No need to add dummy var. */ 4184 if (i == btf_vlen(sec)) 4185 return 0; 4186 4187 int_btf_id = find_int_btf_id(btf); 4188 dummy_var_btf_id = btf__add_var(btf, 4189 "dummy_ksym", 4190 BTF_VAR_GLOBAL_ALLOCATED, 4191 int_btf_id); 4192 if (dummy_var_btf_id < 0) 4193 pr_warn("cannot create a dummy_ksym var\n"); 4194 4195 return dummy_var_btf_id; 4196 } 4197 4198 static int bpf_object__collect_externs(struct bpf_object *obj) 4199 { 4200 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4201 const struct btf_type *t; 4202 struct extern_desc *ext; 4203 int i, n, off, dummy_var_btf_id; 4204 const char *ext_name, *sec_name; 4205 size_t ext_essent_len; 4206 Elf_Scn *scn; 4207 Elf64_Shdr *sh; 4208 4209 if (!obj->efile.symbols) 4210 return 0; 4211 4212 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4213 sh = elf_sec_hdr(obj, scn); 4214 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4215 return -LIBBPF_ERRNO__FORMAT; 4216 4217 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4218 if (dummy_var_btf_id < 0) 4219 return dummy_var_btf_id; 4220 4221 n = sh->sh_size / sh->sh_entsize; 4222 pr_debug("looking for externs among %d symbols...\n", n); 4223 4224 for (i = 0; i < n; i++) { 4225 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4226 4227 if (!sym) 4228 return -LIBBPF_ERRNO__FORMAT; 4229 if (!sym_is_extern(sym)) 4230 continue; 4231 ext_name = elf_sym_str(obj, sym->st_name); 4232 if (!ext_name || !ext_name[0]) 4233 continue; 4234 4235 ext = obj->externs; 4236 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4237 if (!ext) 4238 return -ENOMEM; 4239 obj->externs = ext; 4240 ext = &ext[obj->nr_extern]; 4241 memset(ext, 0, sizeof(*ext)); 4242 obj->nr_extern++; 4243 4244 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4245 if (ext->btf_id <= 0) { 4246 pr_warn("failed to find BTF for extern '%s': %d\n", 4247 ext_name, ext->btf_id); 4248 return ext->btf_id; 4249 } 4250 t = btf__type_by_id(obj->btf, ext->btf_id); 4251 ext->name = btf__name_by_offset(obj->btf, t->name_off); 4252 ext->sym_idx = i; 4253 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4254 4255 ext_essent_len = bpf_core_essential_name_len(ext->name); 4256 ext->essent_name = NULL; 4257 if (ext_essent_len != strlen(ext->name)) { 4258 ext->essent_name = strndup(ext->name, ext_essent_len); 4259 if (!ext->essent_name) 4260 return -ENOMEM; 4261 } 4262 4263 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4264 if (ext->sec_btf_id <= 0) { 4265 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4266 ext_name, ext->btf_id, ext->sec_btf_id); 4267 return ext->sec_btf_id; 4268 } 4269 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4270 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4271 4272 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4273 if (btf_is_func(t)) { 4274 pr_warn("extern function %s is unsupported under %s section\n", 4275 ext->name, KCONFIG_SEC); 4276 return -ENOTSUP; 4277 } 4278 kcfg_sec = sec; 4279 ext->type = EXT_KCFG; 4280 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4281 if (ext->kcfg.sz <= 0) { 4282 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4283 ext_name, ext->kcfg.sz); 4284 return ext->kcfg.sz; 4285 } 4286 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4287 if (ext->kcfg.align <= 0) { 4288 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4289 ext_name, ext->kcfg.align); 4290 return -EINVAL; 4291 } 4292 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4293 &ext->kcfg.is_signed); 4294 if (ext->kcfg.type == KCFG_UNKNOWN) { 4295 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4296 return -ENOTSUP; 4297 } 4298 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4299 ksym_sec = sec; 4300 ext->type = EXT_KSYM; 4301 skip_mods_and_typedefs(obj->btf, t->type, 4302 &ext->ksym.type_id); 4303 } else { 4304 pr_warn("unrecognized extern section '%s'\n", sec_name); 4305 return -ENOTSUP; 4306 } 4307 } 4308 pr_debug("collected %d externs total\n", obj->nr_extern); 4309 4310 if (!obj->nr_extern) 4311 return 0; 4312 4313 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4314 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4315 4316 /* for .ksyms section, we need to turn all externs into allocated 4317 * variables in BTF to pass kernel verification; we do this by 4318 * pretending that each extern is a 8-byte variable 4319 */ 4320 if (ksym_sec) { 4321 /* find existing 4-byte integer type in BTF to use for fake 4322 * extern variables in DATASEC 4323 */ 4324 int int_btf_id = find_int_btf_id(obj->btf); 4325 /* For extern function, a dummy_var added earlier 4326 * will be used to replace the vs->type and 4327 * its name string will be used to refill 4328 * the missing param's name. 4329 */ 4330 const struct btf_type *dummy_var; 4331 4332 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4333 for (i = 0; i < obj->nr_extern; i++) { 4334 ext = &obj->externs[i]; 4335 if (ext->type != EXT_KSYM) 4336 continue; 4337 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4338 i, ext->sym_idx, ext->name); 4339 } 4340 4341 sec = ksym_sec; 4342 n = btf_vlen(sec); 4343 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4344 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4345 struct btf_type *vt; 4346 4347 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4348 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4349 ext = find_extern_by_name(obj, ext_name); 4350 if (!ext) { 4351 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4352 btf_kind_str(vt), ext_name); 4353 return -ESRCH; 4354 } 4355 if (btf_is_func(vt)) { 4356 const struct btf_type *func_proto; 4357 struct btf_param *param; 4358 int j; 4359 4360 func_proto = btf__type_by_id(obj->btf, 4361 vt->type); 4362 param = btf_params(func_proto); 4363 /* Reuse the dummy_var string if the 4364 * func proto does not have param name. 4365 */ 4366 for (j = 0; j < btf_vlen(func_proto); j++) 4367 if (param[j].type && !param[j].name_off) 4368 param[j].name_off = 4369 dummy_var->name_off; 4370 vs->type = dummy_var_btf_id; 4371 vt->info &= ~0xffff; 4372 vt->info |= BTF_FUNC_GLOBAL; 4373 } else { 4374 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4375 vt->type = int_btf_id; 4376 } 4377 vs->offset = off; 4378 vs->size = sizeof(int); 4379 } 4380 sec->size = off; 4381 } 4382 4383 if (kcfg_sec) { 4384 sec = kcfg_sec; 4385 /* for kcfg externs calculate their offsets within a .kconfig map */ 4386 off = 0; 4387 for (i = 0; i < obj->nr_extern; i++) { 4388 ext = &obj->externs[i]; 4389 if (ext->type != EXT_KCFG) 4390 continue; 4391 4392 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4393 off = ext->kcfg.data_off + ext->kcfg.sz; 4394 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4395 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4396 } 4397 sec->size = off; 4398 n = btf_vlen(sec); 4399 for (i = 0; i < n; i++) { 4400 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4401 4402 t = btf__type_by_id(obj->btf, vs->type); 4403 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4404 ext = find_extern_by_name(obj, ext_name); 4405 if (!ext) { 4406 pr_warn("failed to find extern definition for BTF var '%s'\n", 4407 ext_name); 4408 return -ESRCH; 4409 } 4410 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4411 vs->offset = ext->kcfg.data_off; 4412 } 4413 } 4414 return 0; 4415 } 4416 4417 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4418 { 4419 return prog->sec_idx == obj->efile.text_shndx; 4420 } 4421 4422 struct bpf_program * 4423 bpf_object__find_program_by_name(const struct bpf_object *obj, 4424 const char *name) 4425 { 4426 struct bpf_program *prog; 4427 4428 bpf_object__for_each_program(prog, obj) { 4429 if (prog_is_subprog(obj, prog)) 4430 continue; 4431 if (!strcmp(prog->name, name)) 4432 return prog; 4433 } 4434 return errno = ENOENT, NULL; 4435 } 4436 4437 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4438 int shndx) 4439 { 4440 switch (obj->efile.secs[shndx].sec_type) { 4441 case SEC_BSS: 4442 case SEC_DATA: 4443 case SEC_RODATA: 4444 return true; 4445 default: 4446 return false; 4447 } 4448 } 4449 4450 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4451 int shndx) 4452 { 4453 return shndx == obj->efile.btf_maps_shndx; 4454 } 4455 4456 static enum libbpf_map_type 4457 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4458 { 4459 if (shndx == obj->efile.symbols_shndx) 4460 return LIBBPF_MAP_KCONFIG; 4461 4462 switch (obj->efile.secs[shndx].sec_type) { 4463 case SEC_BSS: 4464 return LIBBPF_MAP_BSS; 4465 case SEC_DATA: 4466 return LIBBPF_MAP_DATA; 4467 case SEC_RODATA: 4468 return LIBBPF_MAP_RODATA; 4469 default: 4470 return LIBBPF_MAP_UNSPEC; 4471 } 4472 } 4473 4474 static int bpf_program__record_reloc(struct bpf_program *prog, 4475 struct reloc_desc *reloc_desc, 4476 __u32 insn_idx, const char *sym_name, 4477 const Elf64_Sym *sym, const Elf64_Rel *rel) 4478 { 4479 struct bpf_insn *insn = &prog->insns[insn_idx]; 4480 size_t map_idx, nr_maps = prog->obj->nr_maps; 4481 struct bpf_object *obj = prog->obj; 4482 __u32 shdr_idx = sym->st_shndx; 4483 enum libbpf_map_type type; 4484 const char *sym_sec_name; 4485 struct bpf_map *map; 4486 4487 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4488 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4489 prog->name, sym_name, insn_idx, insn->code); 4490 return -LIBBPF_ERRNO__RELOC; 4491 } 4492 4493 if (sym_is_extern(sym)) { 4494 int sym_idx = ELF64_R_SYM(rel->r_info); 4495 int i, n = obj->nr_extern; 4496 struct extern_desc *ext; 4497 4498 for (i = 0; i < n; i++) { 4499 ext = &obj->externs[i]; 4500 if (ext->sym_idx == sym_idx) 4501 break; 4502 } 4503 if (i >= n) { 4504 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4505 prog->name, sym_name, sym_idx); 4506 return -LIBBPF_ERRNO__RELOC; 4507 } 4508 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4509 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4510 if (insn->code == (BPF_JMP | BPF_CALL)) 4511 reloc_desc->type = RELO_EXTERN_CALL; 4512 else 4513 reloc_desc->type = RELO_EXTERN_LD64; 4514 reloc_desc->insn_idx = insn_idx; 4515 reloc_desc->ext_idx = i; 4516 return 0; 4517 } 4518 4519 /* sub-program call relocation */ 4520 if (is_call_insn(insn)) { 4521 if (insn->src_reg != BPF_PSEUDO_CALL) { 4522 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4523 return -LIBBPF_ERRNO__RELOC; 4524 } 4525 /* text_shndx can be 0, if no default "main" program exists */ 4526 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4527 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4528 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4529 prog->name, sym_name, sym_sec_name); 4530 return -LIBBPF_ERRNO__RELOC; 4531 } 4532 if (sym->st_value % BPF_INSN_SZ) { 4533 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4534 prog->name, sym_name, (size_t)sym->st_value); 4535 return -LIBBPF_ERRNO__RELOC; 4536 } 4537 reloc_desc->type = RELO_CALL; 4538 reloc_desc->insn_idx = insn_idx; 4539 reloc_desc->sym_off = sym->st_value; 4540 return 0; 4541 } 4542 4543 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4544 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4545 prog->name, sym_name, shdr_idx); 4546 return -LIBBPF_ERRNO__RELOC; 4547 } 4548 4549 /* loading subprog addresses */ 4550 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4551 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4552 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4553 */ 4554 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4555 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4556 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4557 return -LIBBPF_ERRNO__RELOC; 4558 } 4559 4560 reloc_desc->type = RELO_SUBPROG_ADDR; 4561 reloc_desc->insn_idx = insn_idx; 4562 reloc_desc->sym_off = sym->st_value; 4563 return 0; 4564 } 4565 4566 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4567 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4568 4569 /* arena data relocation */ 4570 if (shdr_idx == obj->efile.arena_data_shndx) { 4571 reloc_desc->type = RELO_DATA; 4572 reloc_desc->insn_idx = insn_idx; 4573 reloc_desc->map_idx = obj->arena_map - obj->maps; 4574 reloc_desc->sym_off = sym->st_value; 4575 return 0; 4576 } 4577 4578 /* generic map reference relocation */ 4579 if (type == LIBBPF_MAP_UNSPEC) { 4580 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4581 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4582 prog->name, sym_name, sym_sec_name); 4583 return -LIBBPF_ERRNO__RELOC; 4584 } 4585 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4586 map = &obj->maps[map_idx]; 4587 if (map->libbpf_type != type || 4588 map->sec_idx != sym->st_shndx || 4589 map->sec_offset != sym->st_value) 4590 continue; 4591 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4592 prog->name, map_idx, map->name, map->sec_idx, 4593 map->sec_offset, insn_idx); 4594 break; 4595 } 4596 if (map_idx >= nr_maps) { 4597 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4598 prog->name, sym_sec_name, (size_t)sym->st_value); 4599 return -LIBBPF_ERRNO__RELOC; 4600 } 4601 reloc_desc->type = RELO_LD64; 4602 reloc_desc->insn_idx = insn_idx; 4603 reloc_desc->map_idx = map_idx; 4604 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4605 return 0; 4606 } 4607 4608 /* global data map relocation */ 4609 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4610 pr_warn("prog '%s': bad data relo against section '%s'\n", 4611 prog->name, sym_sec_name); 4612 return -LIBBPF_ERRNO__RELOC; 4613 } 4614 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4615 map = &obj->maps[map_idx]; 4616 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4617 continue; 4618 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4619 prog->name, map_idx, map->name, map->sec_idx, 4620 map->sec_offset, insn_idx); 4621 break; 4622 } 4623 if (map_idx >= nr_maps) { 4624 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4625 prog->name, sym_sec_name); 4626 return -LIBBPF_ERRNO__RELOC; 4627 } 4628 4629 reloc_desc->type = RELO_DATA; 4630 reloc_desc->insn_idx = insn_idx; 4631 reloc_desc->map_idx = map_idx; 4632 reloc_desc->sym_off = sym->st_value; 4633 return 0; 4634 } 4635 4636 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4637 { 4638 return insn_idx >= prog->sec_insn_off && 4639 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4640 } 4641 4642 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4643 size_t sec_idx, size_t insn_idx) 4644 { 4645 int l = 0, r = obj->nr_programs - 1, m; 4646 struct bpf_program *prog; 4647 4648 if (!obj->nr_programs) 4649 return NULL; 4650 4651 while (l < r) { 4652 m = l + (r - l + 1) / 2; 4653 prog = &obj->programs[m]; 4654 4655 if (prog->sec_idx < sec_idx || 4656 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4657 l = m; 4658 else 4659 r = m - 1; 4660 } 4661 /* matching program could be at index l, but it still might be the 4662 * wrong one, so we need to double check conditions for the last time 4663 */ 4664 prog = &obj->programs[l]; 4665 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4666 return prog; 4667 return NULL; 4668 } 4669 4670 static int 4671 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4672 { 4673 const char *relo_sec_name, *sec_name; 4674 size_t sec_idx = shdr->sh_info, sym_idx; 4675 struct bpf_program *prog; 4676 struct reloc_desc *relos; 4677 int err, i, nrels; 4678 const char *sym_name; 4679 __u32 insn_idx; 4680 Elf_Scn *scn; 4681 Elf_Data *scn_data; 4682 Elf64_Sym *sym; 4683 Elf64_Rel *rel; 4684 4685 if (sec_idx >= obj->efile.sec_cnt) 4686 return -EINVAL; 4687 4688 scn = elf_sec_by_idx(obj, sec_idx); 4689 scn_data = elf_sec_data(obj, scn); 4690 if (!scn_data) 4691 return -LIBBPF_ERRNO__FORMAT; 4692 4693 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4694 sec_name = elf_sec_name(obj, scn); 4695 if (!relo_sec_name || !sec_name) 4696 return -EINVAL; 4697 4698 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4699 relo_sec_name, sec_idx, sec_name); 4700 nrels = shdr->sh_size / shdr->sh_entsize; 4701 4702 for (i = 0; i < nrels; i++) { 4703 rel = elf_rel_by_idx(data, i); 4704 if (!rel) { 4705 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4706 return -LIBBPF_ERRNO__FORMAT; 4707 } 4708 4709 sym_idx = ELF64_R_SYM(rel->r_info); 4710 sym = elf_sym_by_idx(obj, sym_idx); 4711 if (!sym) { 4712 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4713 relo_sec_name, sym_idx, i); 4714 return -LIBBPF_ERRNO__FORMAT; 4715 } 4716 4717 if (sym->st_shndx >= obj->efile.sec_cnt) { 4718 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4719 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4720 return -LIBBPF_ERRNO__FORMAT; 4721 } 4722 4723 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4724 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4725 relo_sec_name, (size_t)rel->r_offset, i); 4726 return -LIBBPF_ERRNO__FORMAT; 4727 } 4728 4729 insn_idx = rel->r_offset / BPF_INSN_SZ; 4730 /* relocations against static functions are recorded as 4731 * relocations against the section that contains a function; 4732 * in such case, symbol will be STT_SECTION and sym.st_name 4733 * will point to empty string (0), so fetch section name 4734 * instead 4735 */ 4736 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4737 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4738 else 4739 sym_name = elf_sym_str(obj, sym->st_name); 4740 sym_name = sym_name ?: "<?"; 4741 4742 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4743 relo_sec_name, i, insn_idx, sym_name); 4744 4745 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4746 if (!prog) { 4747 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4748 relo_sec_name, i, sec_name, insn_idx); 4749 continue; 4750 } 4751 4752 relos = libbpf_reallocarray(prog->reloc_desc, 4753 prog->nr_reloc + 1, sizeof(*relos)); 4754 if (!relos) 4755 return -ENOMEM; 4756 prog->reloc_desc = relos; 4757 4758 /* adjust insn_idx to local BPF program frame of reference */ 4759 insn_idx -= prog->sec_insn_off; 4760 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4761 insn_idx, sym_name, sym, rel); 4762 if (err) 4763 return err; 4764 4765 prog->nr_reloc++; 4766 } 4767 return 0; 4768 } 4769 4770 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4771 { 4772 int id; 4773 4774 if (!obj->btf) 4775 return -ENOENT; 4776 4777 /* if it's BTF-defined map, we don't need to search for type IDs. 4778 * For struct_ops map, it does not need btf_key_type_id and 4779 * btf_value_type_id. 4780 */ 4781 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4782 return 0; 4783 4784 /* 4785 * LLVM annotates global data differently in BTF, that is, 4786 * only as '.data', '.bss' or '.rodata'. 4787 */ 4788 if (!bpf_map__is_internal(map)) 4789 return -ENOENT; 4790 4791 id = btf__find_by_name(obj->btf, map->real_name); 4792 if (id < 0) 4793 return id; 4794 4795 map->btf_key_type_id = 0; 4796 map->btf_value_type_id = id; 4797 return 0; 4798 } 4799 4800 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4801 { 4802 char file[PATH_MAX], buff[4096]; 4803 FILE *fp; 4804 __u32 val; 4805 int err; 4806 4807 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4808 memset(info, 0, sizeof(*info)); 4809 4810 fp = fopen(file, "re"); 4811 if (!fp) { 4812 err = -errno; 4813 pr_warn("failed to open %s: %s. No procfs support?\n", file, 4814 errstr(err)); 4815 return err; 4816 } 4817 4818 while (fgets(buff, sizeof(buff), fp)) { 4819 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4820 info->type = val; 4821 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4822 info->key_size = val; 4823 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4824 info->value_size = val; 4825 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4826 info->max_entries = val; 4827 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4828 info->map_flags = val; 4829 } 4830 4831 fclose(fp); 4832 4833 return 0; 4834 } 4835 4836 bool bpf_map__autocreate(const struct bpf_map *map) 4837 { 4838 return map->autocreate; 4839 } 4840 4841 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4842 { 4843 if (map->obj->loaded) 4844 return libbpf_err(-EBUSY); 4845 4846 map->autocreate = autocreate; 4847 return 0; 4848 } 4849 4850 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach) 4851 { 4852 if (!bpf_map__is_struct_ops(map)) 4853 return libbpf_err(-EINVAL); 4854 4855 map->autoattach = autoattach; 4856 return 0; 4857 } 4858 4859 bool bpf_map__autoattach(const struct bpf_map *map) 4860 { 4861 return map->autoattach; 4862 } 4863 4864 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4865 { 4866 struct bpf_map_info info; 4867 __u32 len = sizeof(info), name_len; 4868 int new_fd, err; 4869 char *new_name; 4870 4871 memset(&info, 0, len); 4872 err = bpf_map_get_info_by_fd(fd, &info, &len); 4873 if (err && errno == EINVAL) 4874 err = bpf_get_map_info_from_fdinfo(fd, &info); 4875 if (err) 4876 return libbpf_err(err); 4877 4878 name_len = strlen(info.name); 4879 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4880 new_name = strdup(map->name); 4881 else 4882 new_name = strdup(info.name); 4883 4884 if (!new_name) 4885 return libbpf_err(-errno); 4886 4887 /* 4888 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4889 * This is similar to what we do in ensure_good_fd(), but without 4890 * closing original FD. 4891 */ 4892 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4893 if (new_fd < 0) { 4894 err = -errno; 4895 goto err_free_new_name; 4896 } 4897 4898 err = reuse_fd(map->fd, new_fd); 4899 if (err) 4900 goto err_free_new_name; 4901 4902 free(map->name); 4903 4904 map->name = new_name; 4905 map->def.type = info.type; 4906 map->def.key_size = info.key_size; 4907 map->def.value_size = info.value_size; 4908 map->def.max_entries = info.max_entries; 4909 map->def.map_flags = info.map_flags; 4910 map->btf_key_type_id = info.btf_key_type_id; 4911 map->btf_value_type_id = info.btf_value_type_id; 4912 map->reused = true; 4913 map->map_extra = info.map_extra; 4914 4915 return 0; 4916 4917 err_free_new_name: 4918 free(new_name); 4919 return libbpf_err(err); 4920 } 4921 4922 __u32 bpf_map__max_entries(const struct bpf_map *map) 4923 { 4924 return map->def.max_entries; 4925 } 4926 4927 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4928 { 4929 if (!bpf_map_type__is_map_in_map(map->def.type)) 4930 return errno = EINVAL, NULL; 4931 4932 return map->inner_map; 4933 } 4934 4935 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4936 { 4937 if (map->obj->loaded) 4938 return libbpf_err(-EBUSY); 4939 4940 map->def.max_entries = max_entries; 4941 4942 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4943 if (map_is_ringbuf(map)) 4944 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4945 4946 return 0; 4947 } 4948 4949 static int bpf_object_prepare_token(struct bpf_object *obj) 4950 { 4951 const char *bpffs_path; 4952 int bpffs_fd = -1, token_fd, err; 4953 bool mandatory; 4954 enum libbpf_print_level level; 4955 4956 /* token is explicitly prevented */ 4957 if (obj->token_path && obj->token_path[0] == '\0') { 4958 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 4959 return 0; 4960 } 4961 4962 mandatory = obj->token_path != NULL; 4963 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 4964 4965 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 4966 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 4967 if (bpffs_fd < 0) { 4968 err = -errno; 4969 __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n", 4970 obj->name, errstr(err), bpffs_path, 4971 mandatory ? "" : ", skipping optional step..."); 4972 return mandatory ? err : 0; 4973 } 4974 4975 token_fd = bpf_token_create(bpffs_fd, 0); 4976 close(bpffs_fd); 4977 if (token_fd < 0) { 4978 if (!mandatory && token_fd == -ENOENT) { 4979 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 4980 obj->name, bpffs_path); 4981 return 0; 4982 } 4983 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 4984 obj->name, token_fd, bpffs_path, 4985 mandatory ? "" : ", skipping optional step..."); 4986 return mandatory ? token_fd : 0; 4987 } 4988 4989 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 4990 if (!obj->feat_cache) { 4991 close(token_fd); 4992 return -ENOMEM; 4993 } 4994 4995 obj->token_fd = token_fd; 4996 obj->feat_cache->token_fd = token_fd; 4997 4998 return 0; 4999 } 5000 5001 static int 5002 bpf_object__probe_loading(struct bpf_object *obj) 5003 { 5004 struct bpf_insn insns[] = { 5005 BPF_MOV64_IMM(BPF_REG_0, 0), 5006 BPF_EXIT_INSN(), 5007 }; 5008 int ret, insn_cnt = ARRAY_SIZE(insns); 5009 LIBBPF_OPTS(bpf_prog_load_opts, opts, 5010 .token_fd = obj->token_fd, 5011 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 5012 ); 5013 5014 if (obj->gen_loader) 5015 return 0; 5016 5017 ret = bump_rlimit_memlock(); 5018 if (ret) 5019 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n", 5020 errstr(ret)); 5021 5022 /* make sure basic loading works */ 5023 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 5024 if (ret < 0) 5025 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 5026 if (ret < 0) { 5027 ret = errno; 5028 pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n", 5029 __func__, errstr(ret)); 5030 return -ret; 5031 } 5032 close(ret); 5033 5034 return 0; 5035 } 5036 5037 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5038 { 5039 if (obj->gen_loader) 5040 /* To generate loader program assume the latest kernel 5041 * to avoid doing extra prog_load, map_create syscalls. 5042 */ 5043 return true; 5044 5045 if (obj->token_fd) 5046 return feat_supported(obj->feat_cache, feat_id); 5047 5048 return feat_supported(NULL, feat_id); 5049 } 5050 5051 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5052 { 5053 struct bpf_map_info map_info; 5054 __u32 map_info_len = sizeof(map_info); 5055 int err; 5056 5057 memset(&map_info, 0, map_info_len); 5058 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5059 if (err && errno == EINVAL) 5060 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5061 if (err) { 5062 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5063 errstr(err)); 5064 return false; 5065 } 5066 5067 return (map_info.type == map->def.type && 5068 map_info.key_size == map->def.key_size && 5069 map_info.value_size == map->def.value_size && 5070 map_info.max_entries == map->def.max_entries && 5071 map_info.map_flags == map->def.map_flags && 5072 map_info.map_extra == map->map_extra); 5073 } 5074 5075 static int 5076 bpf_object__reuse_map(struct bpf_map *map) 5077 { 5078 int err, pin_fd; 5079 5080 pin_fd = bpf_obj_get(map->pin_path); 5081 if (pin_fd < 0) { 5082 err = -errno; 5083 if (err == -ENOENT) { 5084 pr_debug("found no pinned map to reuse at '%s'\n", 5085 map->pin_path); 5086 return 0; 5087 } 5088 5089 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5090 map->pin_path, errstr(err)); 5091 return err; 5092 } 5093 5094 if (!map_is_reuse_compat(map, pin_fd)) { 5095 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5096 map->pin_path); 5097 close(pin_fd); 5098 return -EINVAL; 5099 } 5100 5101 err = bpf_map__reuse_fd(map, pin_fd); 5102 close(pin_fd); 5103 if (err) 5104 return err; 5105 5106 map->pinned = true; 5107 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5108 5109 return 0; 5110 } 5111 5112 static int 5113 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5114 { 5115 enum libbpf_map_type map_type = map->libbpf_type; 5116 int err, zero = 0; 5117 size_t mmap_sz; 5118 5119 if (obj->gen_loader) { 5120 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5121 map->mmaped, map->def.value_size); 5122 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5123 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5124 return 0; 5125 } 5126 5127 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5128 if (err) { 5129 err = -errno; 5130 pr_warn("map '%s': failed to set initial contents: %s\n", 5131 bpf_map__name(map), errstr(err)); 5132 return err; 5133 } 5134 5135 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5136 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5137 err = bpf_map_freeze(map->fd); 5138 if (err) { 5139 err = -errno; 5140 pr_warn("map '%s': failed to freeze as read-only: %s\n", 5141 bpf_map__name(map), errstr(err)); 5142 return err; 5143 } 5144 } 5145 5146 /* Remap anonymous mmap()-ed "map initialization image" as 5147 * a BPF map-backed mmap()-ed memory, but preserving the same 5148 * memory address. This will cause kernel to change process' 5149 * page table to point to a different piece of kernel memory, 5150 * but from userspace point of view memory address (and its 5151 * contents, being identical at this point) will stay the 5152 * same. This mapping will be released by bpf_object__close() 5153 * as per normal clean up procedure. 5154 */ 5155 mmap_sz = bpf_map_mmap_sz(map); 5156 if (map->def.map_flags & BPF_F_MMAPABLE) { 5157 void *mmaped; 5158 int prot; 5159 5160 if (map->def.map_flags & BPF_F_RDONLY_PROG) 5161 prot = PROT_READ; 5162 else 5163 prot = PROT_READ | PROT_WRITE; 5164 mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0); 5165 if (mmaped == MAP_FAILED) { 5166 err = -errno; 5167 pr_warn("map '%s': failed to re-mmap() contents: %s\n", 5168 bpf_map__name(map), errstr(err)); 5169 return err; 5170 } 5171 map->mmaped = mmaped; 5172 } else if (map->mmaped) { 5173 munmap(map->mmaped, mmap_sz); 5174 map->mmaped = NULL; 5175 } 5176 5177 return 0; 5178 } 5179 5180 static void bpf_map__destroy(struct bpf_map *map); 5181 5182 static bool map_is_created(const struct bpf_map *map) 5183 { 5184 return map->obj->loaded || map->reused; 5185 } 5186 5187 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5188 { 5189 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5190 struct bpf_map_def *def = &map->def; 5191 const char *map_name = NULL; 5192 int err = 0, map_fd; 5193 5194 if (kernel_supports(obj, FEAT_PROG_NAME)) 5195 map_name = map->name; 5196 create_attr.map_ifindex = map->map_ifindex; 5197 create_attr.map_flags = def->map_flags; 5198 create_attr.numa_node = map->numa_node; 5199 create_attr.map_extra = map->map_extra; 5200 create_attr.token_fd = obj->token_fd; 5201 if (obj->token_fd) 5202 create_attr.map_flags |= BPF_F_TOKEN_FD; 5203 5204 if (bpf_map__is_struct_ops(map)) { 5205 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5206 if (map->mod_btf_fd >= 0) { 5207 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5208 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5209 } 5210 } 5211 5212 if (obj->btf && btf__fd(obj->btf) >= 0) { 5213 create_attr.btf_fd = btf__fd(obj->btf); 5214 create_attr.btf_key_type_id = map->btf_key_type_id; 5215 create_attr.btf_value_type_id = map->btf_value_type_id; 5216 } 5217 5218 if (bpf_map_type__is_map_in_map(def->type)) { 5219 if (map->inner_map) { 5220 err = map_set_def_max_entries(map->inner_map); 5221 if (err) 5222 return err; 5223 err = bpf_object__create_map(obj, map->inner_map, true); 5224 if (err) { 5225 pr_warn("map '%s': failed to create inner map: %s\n", 5226 map->name, errstr(err)); 5227 return err; 5228 } 5229 map->inner_map_fd = map->inner_map->fd; 5230 } 5231 if (map->inner_map_fd >= 0) 5232 create_attr.inner_map_fd = map->inner_map_fd; 5233 } 5234 5235 switch (def->type) { 5236 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5237 case BPF_MAP_TYPE_CGROUP_ARRAY: 5238 case BPF_MAP_TYPE_STACK_TRACE: 5239 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5240 case BPF_MAP_TYPE_HASH_OF_MAPS: 5241 case BPF_MAP_TYPE_DEVMAP: 5242 case BPF_MAP_TYPE_DEVMAP_HASH: 5243 case BPF_MAP_TYPE_CPUMAP: 5244 case BPF_MAP_TYPE_XSKMAP: 5245 case BPF_MAP_TYPE_SOCKMAP: 5246 case BPF_MAP_TYPE_SOCKHASH: 5247 case BPF_MAP_TYPE_QUEUE: 5248 case BPF_MAP_TYPE_STACK: 5249 case BPF_MAP_TYPE_ARENA: 5250 create_attr.btf_fd = 0; 5251 create_attr.btf_key_type_id = 0; 5252 create_attr.btf_value_type_id = 0; 5253 map->btf_key_type_id = 0; 5254 map->btf_value_type_id = 0; 5255 break; 5256 case BPF_MAP_TYPE_STRUCT_OPS: 5257 create_attr.btf_value_type_id = 0; 5258 break; 5259 default: 5260 break; 5261 } 5262 5263 if (obj->gen_loader) { 5264 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5265 def->key_size, def->value_size, def->max_entries, 5266 &create_attr, is_inner ? -1 : map - obj->maps); 5267 /* We keep pretenting we have valid FD to pass various fd >= 0 5268 * checks by just keeping original placeholder FDs in place. 5269 * See bpf_object__add_map() comment. 5270 * This placeholder fd will not be used with any syscall and 5271 * will be reset to -1 eventually. 5272 */ 5273 map_fd = map->fd; 5274 } else { 5275 map_fd = bpf_map_create(def->type, map_name, 5276 def->key_size, def->value_size, 5277 def->max_entries, &create_attr); 5278 } 5279 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5280 err = -errno; 5281 pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n", 5282 map->name, errstr(err)); 5283 create_attr.btf_fd = 0; 5284 create_attr.btf_key_type_id = 0; 5285 create_attr.btf_value_type_id = 0; 5286 map->btf_key_type_id = 0; 5287 map->btf_value_type_id = 0; 5288 map_fd = bpf_map_create(def->type, map_name, 5289 def->key_size, def->value_size, 5290 def->max_entries, &create_attr); 5291 } 5292 5293 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5294 if (obj->gen_loader) 5295 map->inner_map->fd = -1; 5296 bpf_map__destroy(map->inner_map); 5297 zfree(&map->inner_map); 5298 } 5299 5300 if (map_fd < 0) 5301 return map_fd; 5302 5303 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5304 if (map->fd == map_fd) 5305 return 0; 5306 5307 /* Keep placeholder FD value but now point it to the BPF map object. 5308 * This way everything that relied on this map's FD (e.g., relocated 5309 * ldimm64 instructions) will stay valid and won't need adjustments. 5310 * map->fd stays valid but now point to what map_fd points to. 5311 */ 5312 return reuse_fd(map->fd, map_fd); 5313 } 5314 5315 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5316 { 5317 const struct bpf_map *targ_map; 5318 unsigned int i; 5319 int fd, err = 0; 5320 5321 for (i = 0; i < map->init_slots_sz; i++) { 5322 if (!map->init_slots[i]) 5323 continue; 5324 5325 targ_map = map->init_slots[i]; 5326 fd = targ_map->fd; 5327 5328 if (obj->gen_loader) { 5329 bpf_gen__populate_outer_map(obj->gen_loader, 5330 map - obj->maps, i, 5331 targ_map - obj->maps); 5332 } else { 5333 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5334 } 5335 if (err) { 5336 err = -errno; 5337 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n", 5338 map->name, i, targ_map->name, fd, errstr(err)); 5339 return err; 5340 } 5341 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5342 map->name, i, targ_map->name, fd); 5343 } 5344 5345 zfree(&map->init_slots); 5346 map->init_slots_sz = 0; 5347 5348 return 0; 5349 } 5350 5351 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5352 { 5353 const struct bpf_program *targ_prog; 5354 unsigned int i; 5355 int fd, err; 5356 5357 if (obj->gen_loader) 5358 return -ENOTSUP; 5359 5360 for (i = 0; i < map->init_slots_sz; i++) { 5361 if (!map->init_slots[i]) 5362 continue; 5363 5364 targ_prog = map->init_slots[i]; 5365 fd = bpf_program__fd(targ_prog); 5366 5367 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5368 if (err) { 5369 err = -errno; 5370 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n", 5371 map->name, i, targ_prog->name, fd, errstr(err)); 5372 return err; 5373 } 5374 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5375 map->name, i, targ_prog->name, fd); 5376 } 5377 5378 zfree(&map->init_slots); 5379 map->init_slots_sz = 0; 5380 5381 return 0; 5382 } 5383 5384 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5385 { 5386 struct bpf_map *map; 5387 int i, err; 5388 5389 for (i = 0; i < obj->nr_maps; i++) { 5390 map = &obj->maps[i]; 5391 5392 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5393 continue; 5394 5395 err = init_prog_array_slots(obj, map); 5396 if (err < 0) 5397 return err; 5398 } 5399 return 0; 5400 } 5401 5402 static int map_set_def_max_entries(struct bpf_map *map) 5403 { 5404 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5405 int nr_cpus; 5406 5407 nr_cpus = libbpf_num_possible_cpus(); 5408 if (nr_cpus < 0) { 5409 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5410 map->name, nr_cpus); 5411 return nr_cpus; 5412 } 5413 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5414 map->def.max_entries = nr_cpus; 5415 } 5416 5417 return 0; 5418 } 5419 5420 static int 5421 bpf_object__create_maps(struct bpf_object *obj) 5422 { 5423 struct bpf_map *map; 5424 unsigned int i, j; 5425 int err; 5426 bool retried; 5427 5428 for (i = 0; i < obj->nr_maps; i++) { 5429 map = &obj->maps[i]; 5430 5431 /* To support old kernels, we skip creating global data maps 5432 * (.rodata, .data, .kconfig, etc); later on, during program 5433 * loading, if we detect that at least one of the to-be-loaded 5434 * programs is referencing any global data map, we'll error 5435 * out with program name and relocation index logged. 5436 * This approach allows to accommodate Clang emitting 5437 * unnecessary .rodata.str1.1 sections for string literals, 5438 * but also it allows to have CO-RE applications that use 5439 * global variables in some of BPF programs, but not others. 5440 * If those global variable-using programs are not loaded at 5441 * runtime due to bpf_program__set_autoload(prog, false), 5442 * bpf_object loading will succeed just fine even on old 5443 * kernels. 5444 */ 5445 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5446 map->autocreate = false; 5447 5448 if (!map->autocreate) { 5449 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5450 continue; 5451 } 5452 5453 err = map_set_def_max_entries(map); 5454 if (err) 5455 goto err_out; 5456 5457 retried = false; 5458 retry: 5459 if (map->pin_path) { 5460 err = bpf_object__reuse_map(map); 5461 if (err) { 5462 pr_warn("map '%s': error reusing pinned map\n", 5463 map->name); 5464 goto err_out; 5465 } 5466 if (retried && map->fd < 0) { 5467 pr_warn("map '%s': cannot find pinned map\n", 5468 map->name); 5469 err = -ENOENT; 5470 goto err_out; 5471 } 5472 } 5473 5474 if (map->reused) { 5475 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5476 map->name, map->fd); 5477 } else { 5478 err = bpf_object__create_map(obj, map, false); 5479 if (err) 5480 goto err_out; 5481 5482 pr_debug("map '%s': created successfully, fd=%d\n", 5483 map->name, map->fd); 5484 5485 if (bpf_map__is_internal(map)) { 5486 err = bpf_object__populate_internal_map(obj, map); 5487 if (err < 0) 5488 goto err_out; 5489 } else if (map->def.type == BPF_MAP_TYPE_ARENA) { 5490 map->mmaped = mmap((void *)(long)map->map_extra, 5491 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5492 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5493 map->fd, 0); 5494 if (map->mmaped == MAP_FAILED) { 5495 err = -errno; 5496 map->mmaped = NULL; 5497 pr_warn("map '%s': failed to mmap arena: %s\n", 5498 map->name, errstr(err)); 5499 return err; 5500 } 5501 if (obj->arena_data) { 5502 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5503 zfree(&obj->arena_data); 5504 } 5505 } 5506 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5507 err = init_map_in_map_slots(obj, map); 5508 if (err < 0) 5509 goto err_out; 5510 } 5511 } 5512 5513 if (map->pin_path && !map->pinned) { 5514 err = bpf_map__pin(map, NULL); 5515 if (err) { 5516 if (!retried && err == -EEXIST) { 5517 retried = true; 5518 goto retry; 5519 } 5520 pr_warn("map '%s': failed to auto-pin at '%s': %s\n", 5521 map->name, map->pin_path, errstr(err)); 5522 goto err_out; 5523 } 5524 } 5525 } 5526 5527 return 0; 5528 5529 err_out: 5530 pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err)); 5531 pr_perm_msg(err); 5532 for (j = 0; j < i; j++) 5533 zclose(obj->maps[j].fd); 5534 return err; 5535 } 5536 5537 static bool bpf_core_is_flavor_sep(const char *s) 5538 { 5539 /* check X___Y name pattern, where X and Y are not underscores */ 5540 return s[0] != '_' && /* X */ 5541 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5542 s[4] != '_'; /* Y */ 5543 } 5544 5545 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5546 * before last triple underscore. Struct name part after last triple 5547 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5548 */ 5549 size_t bpf_core_essential_name_len(const char *name) 5550 { 5551 size_t n = strlen(name); 5552 int i; 5553 5554 for (i = n - 5; i >= 0; i--) { 5555 if (bpf_core_is_flavor_sep(name + i)) 5556 return i + 1; 5557 } 5558 return n; 5559 } 5560 5561 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5562 { 5563 if (!cands) 5564 return; 5565 5566 free(cands->cands); 5567 free(cands); 5568 } 5569 5570 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5571 size_t local_essent_len, 5572 const struct btf *targ_btf, 5573 const char *targ_btf_name, 5574 int targ_start_id, 5575 struct bpf_core_cand_list *cands) 5576 { 5577 struct bpf_core_cand *new_cands, *cand; 5578 const struct btf_type *t, *local_t; 5579 const char *targ_name, *local_name; 5580 size_t targ_essent_len; 5581 int n, i; 5582 5583 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5584 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5585 5586 n = btf__type_cnt(targ_btf); 5587 for (i = targ_start_id; i < n; i++) { 5588 t = btf__type_by_id(targ_btf, i); 5589 if (!btf_kind_core_compat(t, local_t)) 5590 continue; 5591 5592 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5593 if (str_is_empty(targ_name)) 5594 continue; 5595 5596 targ_essent_len = bpf_core_essential_name_len(targ_name); 5597 if (targ_essent_len != local_essent_len) 5598 continue; 5599 5600 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5601 continue; 5602 5603 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5604 local_cand->id, btf_kind_str(local_t), 5605 local_name, i, btf_kind_str(t), targ_name, 5606 targ_btf_name); 5607 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5608 sizeof(*cands->cands)); 5609 if (!new_cands) 5610 return -ENOMEM; 5611 5612 cand = &new_cands[cands->len]; 5613 cand->btf = targ_btf; 5614 cand->id = i; 5615 5616 cands->cands = new_cands; 5617 cands->len++; 5618 } 5619 return 0; 5620 } 5621 5622 static int load_module_btfs(struct bpf_object *obj) 5623 { 5624 struct bpf_btf_info info; 5625 struct module_btf *mod_btf; 5626 struct btf *btf; 5627 char name[64]; 5628 __u32 id = 0, len; 5629 int err, fd; 5630 5631 if (obj->btf_modules_loaded) 5632 return 0; 5633 5634 if (obj->gen_loader) 5635 return 0; 5636 5637 /* don't do this again, even if we find no module BTFs */ 5638 obj->btf_modules_loaded = true; 5639 5640 /* kernel too old to support module BTFs */ 5641 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5642 return 0; 5643 5644 while (true) { 5645 err = bpf_btf_get_next_id(id, &id); 5646 if (err && errno == ENOENT) 5647 return 0; 5648 if (err && errno == EPERM) { 5649 pr_debug("skipping module BTFs loading, missing privileges\n"); 5650 return 0; 5651 } 5652 if (err) { 5653 err = -errno; 5654 pr_warn("failed to iterate BTF objects: %s\n", errstr(err)); 5655 return err; 5656 } 5657 5658 fd = bpf_btf_get_fd_by_id(id); 5659 if (fd < 0) { 5660 if (errno == ENOENT) 5661 continue; /* expected race: BTF was unloaded */ 5662 err = -errno; 5663 pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err)); 5664 return err; 5665 } 5666 5667 len = sizeof(info); 5668 memset(&info, 0, sizeof(info)); 5669 info.name = ptr_to_u64(name); 5670 info.name_len = sizeof(name); 5671 5672 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5673 if (err) { 5674 err = -errno; 5675 pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err)); 5676 goto err_out; 5677 } 5678 5679 /* ignore non-module BTFs */ 5680 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5681 close(fd); 5682 continue; 5683 } 5684 5685 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5686 err = libbpf_get_error(btf); 5687 if (err) { 5688 pr_warn("failed to load module [%s]'s BTF object #%d: %s\n", 5689 name, id, errstr(err)); 5690 goto err_out; 5691 } 5692 5693 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5694 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5695 if (err) 5696 goto err_out; 5697 5698 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5699 5700 mod_btf->btf = btf; 5701 mod_btf->id = id; 5702 mod_btf->fd = fd; 5703 mod_btf->name = strdup(name); 5704 if (!mod_btf->name) { 5705 err = -ENOMEM; 5706 goto err_out; 5707 } 5708 continue; 5709 5710 err_out: 5711 close(fd); 5712 return err; 5713 } 5714 5715 return 0; 5716 } 5717 5718 static struct bpf_core_cand_list * 5719 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5720 { 5721 struct bpf_core_cand local_cand = {}; 5722 struct bpf_core_cand_list *cands; 5723 const struct btf *main_btf; 5724 const struct btf_type *local_t; 5725 const char *local_name; 5726 size_t local_essent_len; 5727 int err, i; 5728 5729 local_cand.btf = local_btf; 5730 local_cand.id = local_type_id; 5731 local_t = btf__type_by_id(local_btf, local_type_id); 5732 if (!local_t) 5733 return ERR_PTR(-EINVAL); 5734 5735 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5736 if (str_is_empty(local_name)) 5737 return ERR_PTR(-EINVAL); 5738 local_essent_len = bpf_core_essential_name_len(local_name); 5739 5740 cands = calloc(1, sizeof(*cands)); 5741 if (!cands) 5742 return ERR_PTR(-ENOMEM); 5743 5744 /* Attempt to find target candidates in vmlinux BTF first */ 5745 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5746 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5747 if (err) 5748 goto err_out; 5749 5750 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5751 if (cands->len) 5752 return cands; 5753 5754 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5755 if (obj->btf_vmlinux_override) 5756 return cands; 5757 5758 /* now look through module BTFs, trying to still find candidates */ 5759 err = load_module_btfs(obj); 5760 if (err) 5761 goto err_out; 5762 5763 for (i = 0; i < obj->btf_module_cnt; i++) { 5764 err = bpf_core_add_cands(&local_cand, local_essent_len, 5765 obj->btf_modules[i].btf, 5766 obj->btf_modules[i].name, 5767 btf__type_cnt(obj->btf_vmlinux), 5768 cands); 5769 if (err) 5770 goto err_out; 5771 } 5772 5773 return cands; 5774 err_out: 5775 bpf_core_free_cands(cands); 5776 return ERR_PTR(err); 5777 } 5778 5779 /* Check local and target types for compatibility. This check is used for 5780 * type-based CO-RE relocations and follow slightly different rules than 5781 * field-based relocations. This function assumes that root types were already 5782 * checked for name match. Beyond that initial root-level name check, names 5783 * are completely ignored. Compatibility rules are as follows: 5784 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5785 * kind should match for local and target types (i.e., STRUCT is not 5786 * compatible with UNION); 5787 * - for ENUMs, the size is ignored; 5788 * - for INT, size and signedness are ignored; 5789 * - for ARRAY, dimensionality is ignored, element types are checked for 5790 * compatibility recursively; 5791 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5792 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5793 * - FUNC_PROTOs are compatible if they have compatible signature: same 5794 * number of input args and compatible return and argument types. 5795 * These rules are not set in stone and probably will be adjusted as we get 5796 * more experience with using BPF CO-RE relocations. 5797 */ 5798 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5799 const struct btf *targ_btf, __u32 targ_id) 5800 { 5801 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5802 } 5803 5804 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5805 const struct btf *targ_btf, __u32 targ_id) 5806 { 5807 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5808 } 5809 5810 static size_t bpf_core_hash_fn(const long key, void *ctx) 5811 { 5812 return key; 5813 } 5814 5815 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5816 { 5817 return k1 == k2; 5818 } 5819 5820 static int record_relo_core(struct bpf_program *prog, 5821 const struct bpf_core_relo *core_relo, int insn_idx) 5822 { 5823 struct reloc_desc *relos, *relo; 5824 5825 relos = libbpf_reallocarray(prog->reloc_desc, 5826 prog->nr_reloc + 1, sizeof(*relos)); 5827 if (!relos) 5828 return -ENOMEM; 5829 relo = &relos[prog->nr_reloc]; 5830 relo->type = RELO_CORE; 5831 relo->insn_idx = insn_idx; 5832 relo->core_relo = core_relo; 5833 prog->reloc_desc = relos; 5834 prog->nr_reloc++; 5835 return 0; 5836 } 5837 5838 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5839 { 5840 struct reloc_desc *relo; 5841 int i; 5842 5843 for (i = 0; i < prog->nr_reloc; i++) { 5844 relo = &prog->reloc_desc[i]; 5845 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5846 continue; 5847 5848 return relo->core_relo; 5849 } 5850 5851 return NULL; 5852 } 5853 5854 static int bpf_core_resolve_relo(struct bpf_program *prog, 5855 const struct bpf_core_relo *relo, 5856 int relo_idx, 5857 const struct btf *local_btf, 5858 struct hashmap *cand_cache, 5859 struct bpf_core_relo_res *targ_res) 5860 { 5861 struct bpf_core_spec specs_scratch[3] = {}; 5862 struct bpf_core_cand_list *cands = NULL; 5863 const char *prog_name = prog->name; 5864 const struct btf_type *local_type; 5865 const char *local_name; 5866 __u32 local_id = relo->type_id; 5867 int err; 5868 5869 local_type = btf__type_by_id(local_btf, local_id); 5870 if (!local_type) 5871 return -EINVAL; 5872 5873 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5874 if (!local_name) 5875 return -EINVAL; 5876 5877 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5878 !hashmap__find(cand_cache, local_id, &cands)) { 5879 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5880 if (IS_ERR(cands)) { 5881 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5882 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5883 local_name, PTR_ERR(cands)); 5884 return PTR_ERR(cands); 5885 } 5886 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5887 if (err) { 5888 bpf_core_free_cands(cands); 5889 return err; 5890 } 5891 } 5892 5893 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5894 targ_res); 5895 } 5896 5897 static int 5898 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5899 { 5900 const struct btf_ext_info_sec *sec; 5901 struct bpf_core_relo_res targ_res; 5902 const struct bpf_core_relo *rec; 5903 const struct btf_ext_info *seg; 5904 struct hashmap_entry *entry; 5905 struct hashmap *cand_cache = NULL; 5906 struct bpf_program *prog; 5907 struct bpf_insn *insn; 5908 const char *sec_name; 5909 int i, err = 0, insn_idx, sec_idx, sec_num; 5910 5911 if (obj->btf_ext->core_relo_info.len == 0) 5912 return 0; 5913 5914 if (targ_btf_path) { 5915 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5916 err = libbpf_get_error(obj->btf_vmlinux_override); 5917 if (err) { 5918 pr_warn("failed to parse target BTF: %s\n", errstr(err)); 5919 return err; 5920 } 5921 } 5922 5923 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5924 if (IS_ERR(cand_cache)) { 5925 err = PTR_ERR(cand_cache); 5926 goto out; 5927 } 5928 5929 seg = &obj->btf_ext->core_relo_info; 5930 sec_num = 0; 5931 for_each_btf_ext_sec(seg, sec) { 5932 sec_idx = seg->sec_idxs[sec_num]; 5933 sec_num++; 5934 5935 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5936 if (str_is_empty(sec_name)) { 5937 err = -EINVAL; 5938 goto out; 5939 } 5940 5941 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5942 5943 for_each_btf_ext_rec(seg, sec, i, rec) { 5944 if (rec->insn_off % BPF_INSN_SZ) 5945 return -EINVAL; 5946 insn_idx = rec->insn_off / BPF_INSN_SZ; 5947 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5948 if (!prog) { 5949 /* When __weak subprog is "overridden" by another instance 5950 * of the subprog from a different object file, linker still 5951 * appends all the .BTF.ext info that used to belong to that 5952 * eliminated subprogram. 5953 * This is similar to what x86-64 linker does for relocations. 5954 * So just ignore such relocations just like we ignore 5955 * subprog instructions when discovering subprograms. 5956 */ 5957 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5958 sec_name, i, insn_idx); 5959 continue; 5960 } 5961 /* no need to apply CO-RE relocation if the program is 5962 * not going to be loaded 5963 */ 5964 if (!prog->autoload) 5965 continue; 5966 5967 /* adjust insn_idx from section frame of reference to the local 5968 * program's frame of reference; (sub-)program code is not yet 5969 * relocated, so it's enough to just subtract in-section offset 5970 */ 5971 insn_idx = insn_idx - prog->sec_insn_off; 5972 if (insn_idx >= prog->insns_cnt) 5973 return -EINVAL; 5974 insn = &prog->insns[insn_idx]; 5975 5976 err = record_relo_core(prog, rec, insn_idx); 5977 if (err) { 5978 pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n", 5979 prog->name, i, errstr(err)); 5980 goto out; 5981 } 5982 5983 if (prog->obj->gen_loader) 5984 continue; 5985 5986 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5987 if (err) { 5988 pr_warn("prog '%s': relo #%d: failed to relocate: %s\n", 5989 prog->name, i, errstr(err)); 5990 goto out; 5991 } 5992 5993 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5994 if (err) { 5995 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n", 5996 prog->name, i, insn_idx, errstr(err)); 5997 goto out; 5998 } 5999 } 6000 } 6001 6002 out: 6003 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6004 btf__free(obj->btf_vmlinux_override); 6005 obj->btf_vmlinux_override = NULL; 6006 6007 if (!IS_ERR_OR_NULL(cand_cache)) { 6008 hashmap__for_each_entry(cand_cache, entry, i) { 6009 bpf_core_free_cands(entry->pvalue); 6010 } 6011 hashmap__free(cand_cache); 6012 } 6013 return err; 6014 } 6015 6016 /* base map load ldimm64 special constant, used also for log fixup logic */ 6017 #define POISON_LDIMM64_MAP_BASE 2001000000 6018 #define POISON_LDIMM64_MAP_PFX "200100" 6019 6020 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 6021 int insn_idx, struct bpf_insn *insn, 6022 int map_idx, const struct bpf_map *map) 6023 { 6024 int i; 6025 6026 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 6027 prog->name, relo_idx, insn_idx, map_idx, map->name); 6028 6029 /* we turn single ldimm64 into two identical invalid calls */ 6030 for (i = 0; i < 2; i++) { 6031 insn->code = BPF_JMP | BPF_CALL; 6032 insn->dst_reg = 0; 6033 insn->src_reg = 0; 6034 insn->off = 0; 6035 /* if this instruction is reachable (not a dead code), 6036 * verifier will complain with something like: 6037 * invalid func unknown#2001000123 6038 * where lower 123 is map index into obj->maps[] array 6039 */ 6040 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6041 6042 insn++; 6043 } 6044 } 6045 6046 /* unresolved kfunc call special constant, used also for log fixup logic */ 6047 #define POISON_CALL_KFUNC_BASE 2002000000 6048 #define POISON_CALL_KFUNC_PFX "2002" 6049 6050 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6051 int insn_idx, struct bpf_insn *insn, 6052 int ext_idx, const struct extern_desc *ext) 6053 { 6054 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6055 prog->name, relo_idx, insn_idx, ext->name); 6056 6057 /* we turn kfunc call into invalid helper call with identifiable constant */ 6058 insn->code = BPF_JMP | BPF_CALL; 6059 insn->dst_reg = 0; 6060 insn->src_reg = 0; 6061 insn->off = 0; 6062 /* if this instruction is reachable (not a dead code), 6063 * verifier will complain with something like: 6064 * invalid func unknown#2001000123 6065 * where lower 123 is extern index into obj->externs[] array 6066 */ 6067 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6068 } 6069 6070 /* Relocate data references within program code: 6071 * - map references; 6072 * - global variable references; 6073 * - extern references. 6074 */ 6075 static int 6076 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6077 { 6078 int i; 6079 6080 for (i = 0; i < prog->nr_reloc; i++) { 6081 struct reloc_desc *relo = &prog->reloc_desc[i]; 6082 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6083 const struct bpf_map *map; 6084 struct extern_desc *ext; 6085 6086 switch (relo->type) { 6087 case RELO_LD64: 6088 map = &obj->maps[relo->map_idx]; 6089 if (obj->gen_loader) { 6090 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6091 insn[0].imm = relo->map_idx; 6092 } else if (map->autocreate) { 6093 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6094 insn[0].imm = map->fd; 6095 } else { 6096 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6097 relo->map_idx, map); 6098 } 6099 break; 6100 case RELO_DATA: 6101 map = &obj->maps[relo->map_idx]; 6102 insn[1].imm = insn[0].imm + relo->sym_off; 6103 if (obj->gen_loader) { 6104 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6105 insn[0].imm = relo->map_idx; 6106 } else if (map->autocreate) { 6107 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6108 insn[0].imm = map->fd; 6109 } else { 6110 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6111 relo->map_idx, map); 6112 } 6113 break; 6114 case RELO_EXTERN_LD64: 6115 ext = &obj->externs[relo->ext_idx]; 6116 if (ext->type == EXT_KCFG) { 6117 if (obj->gen_loader) { 6118 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6119 insn[0].imm = obj->kconfig_map_idx; 6120 } else { 6121 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6122 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6123 } 6124 insn[1].imm = ext->kcfg.data_off; 6125 } else /* EXT_KSYM */ { 6126 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6127 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6128 insn[0].imm = ext->ksym.kernel_btf_id; 6129 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6130 } else { /* typeless ksyms or unresolved typed ksyms */ 6131 insn[0].imm = (__u32)ext->ksym.addr; 6132 insn[1].imm = ext->ksym.addr >> 32; 6133 } 6134 } 6135 break; 6136 case RELO_EXTERN_CALL: 6137 ext = &obj->externs[relo->ext_idx]; 6138 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6139 if (ext->is_set) { 6140 insn[0].imm = ext->ksym.kernel_btf_id; 6141 insn[0].off = ext->ksym.btf_fd_idx; 6142 } else { /* unresolved weak kfunc call */ 6143 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6144 relo->ext_idx, ext); 6145 } 6146 break; 6147 case RELO_SUBPROG_ADDR: 6148 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6149 pr_warn("prog '%s': relo #%d: bad insn\n", 6150 prog->name, i); 6151 return -EINVAL; 6152 } 6153 /* handled already */ 6154 break; 6155 case RELO_CALL: 6156 /* handled already */ 6157 break; 6158 case RELO_CORE: 6159 /* will be handled by bpf_program_record_relos() */ 6160 break; 6161 default: 6162 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6163 prog->name, i, relo->type); 6164 return -EINVAL; 6165 } 6166 } 6167 6168 return 0; 6169 } 6170 6171 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6172 const struct bpf_program *prog, 6173 const struct btf_ext_info *ext_info, 6174 void **prog_info, __u32 *prog_rec_cnt, 6175 __u32 *prog_rec_sz) 6176 { 6177 void *copy_start = NULL, *copy_end = NULL; 6178 void *rec, *rec_end, *new_prog_info; 6179 const struct btf_ext_info_sec *sec; 6180 size_t old_sz, new_sz; 6181 int i, sec_num, sec_idx, off_adj; 6182 6183 sec_num = 0; 6184 for_each_btf_ext_sec(ext_info, sec) { 6185 sec_idx = ext_info->sec_idxs[sec_num]; 6186 sec_num++; 6187 if (prog->sec_idx != sec_idx) 6188 continue; 6189 6190 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6191 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6192 6193 if (insn_off < prog->sec_insn_off) 6194 continue; 6195 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6196 break; 6197 6198 if (!copy_start) 6199 copy_start = rec; 6200 copy_end = rec + ext_info->rec_size; 6201 } 6202 6203 if (!copy_start) 6204 return -ENOENT; 6205 6206 /* append func/line info of a given (sub-)program to the main 6207 * program func/line info 6208 */ 6209 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6210 new_sz = old_sz + (copy_end - copy_start); 6211 new_prog_info = realloc(*prog_info, new_sz); 6212 if (!new_prog_info) 6213 return -ENOMEM; 6214 *prog_info = new_prog_info; 6215 *prog_rec_cnt = new_sz / ext_info->rec_size; 6216 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6217 6218 /* Kernel instruction offsets are in units of 8-byte 6219 * instructions, while .BTF.ext instruction offsets generated 6220 * by Clang are in units of bytes. So convert Clang offsets 6221 * into kernel offsets and adjust offset according to program 6222 * relocated position. 6223 */ 6224 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6225 rec = new_prog_info + old_sz; 6226 rec_end = new_prog_info + new_sz; 6227 for (; rec < rec_end; rec += ext_info->rec_size) { 6228 __u32 *insn_off = rec; 6229 6230 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6231 } 6232 *prog_rec_sz = ext_info->rec_size; 6233 return 0; 6234 } 6235 6236 return -ENOENT; 6237 } 6238 6239 static int 6240 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6241 struct bpf_program *main_prog, 6242 const struct bpf_program *prog) 6243 { 6244 int err; 6245 6246 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6247 * support func/line info 6248 */ 6249 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6250 return 0; 6251 6252 /* only attempt func info relocation if main program's func_info 6253 * relocation was successful 6254 */ 6255 if (main_prog != prog && !main_prog->func_info) 6256 goto line_info; 6257 6258 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6259 &main_prog->func_info, 6260 &main_prog->func_info_cnt, 6261 &main_prog->func_info_rec_size); 6262 if (err) { 6263 if (err != -ENOENT) { 6264 pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n", 6265 prog->name, errstr(err)); 6266 return err; 6267 } 6268 if (main_prog->func_info) { 6269 /* 6270 * Some info has already been found but has problem 6271 * in the last btf_ext reloc. Must have to error out. 6272 */ 6273 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6274 return err; 6275 } 6276 /* Have problem loading the very first info. Ignore the rest. */ 6277 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6278 prog->name); 6279 } 6280 6281 line_info: 6282 /* don't relocate line info if main program's relocation failed */ 6283 if (main_prog != prog && !main_prog->line_info) 6284 return 0; 6285 6286 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6287 &main_prog->line_info, 6288 &main_prog->line_info_cnt, 6289 &main_prog->line_info_rec_size); 6290 if (err) { 6291 if (err != -ENOENT) { 6292 pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n", 6293 prog->name, errstr(err)); 6294 return err; 6295 } 6296 if (main_prog->line_info) { 6297 /* 6298 * Some info has already been found but has problem 6299 * in the last btf_ext reloc. Must have to error out. 6300 */ 6301 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6302 return err; 6303 } 6304 /* Have problem loading the very first info. Ignore the rest. */ 6305 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6306 prog->name); 6307 } 6308 return 0; 6309 } 6310 6311 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6312 { 6313 size_t insn_idx = *(const size_t *)key; 6314 const struct reloc_desc *relo = elem; 6315 6316 if (insn_idx == relo->insn_idx) 6317 return 0; 6318 return insn_idx < relo->insn_idx ? -1 : 1; 6319 } 6320 6321 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6322 { 6323 if (!prog->nr_reloc) 6324 return NULL; 6325 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6326 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6327 } 6328 6329 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6330 { 6331 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6332 struct reloc_desc *relos; 6333 int i; 6334 6335 if (main_prog == subprog) 6336 return 0; 6337 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6338 /* if new count is zero, reallocarray can return a valid NULL result; 6339 * in this case the previous pointer will be freed, so we *have to* 6340 * reassign old pointer to the new value (even if it's NULL) 6341 */ 6342 if (!relos && new_cnt) 6343 return -ENOMEM; 6344 if (subprog->nr_reloc) 6345 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6346 sizeof(*relos) * subprog->nr_reloc); 6347 6348 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6349 relos[i].insn_idx += subprog->sub_insn_off; 6350 /* After insn_idx adjustment the 'relos' array is still sorted 6351 * by insn_idx and doesn't break bsearch. 6352 */ 6353 main_prog->reloc_desc = relos; 6354 main_prog->nr_reloc = new_cnt; 6355 return 0; 6356 } 6357 6358 static int 6359 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6360 struct bpf_program *subprog) 6361 { 6362 struct bpf_insn *insns; 6363 size_t new_cnt; 6364 int err; 6365 6366 subprog->sub_insn_off = main_prog->insns_cnt; 6367 6368 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6369 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6370 if (!insns) { 6371 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6372 return -ENOMEM; 6373 } 6374 main_prog->insns = insns; 6375 main_prog->insns_cnt = new_cnt; 6376 6377 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6378 subprog->insns_cnt * sizeof(*insns)); 6379 6380 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6381 main_prog->name, subprog->insns_cnt, subprog->name); 6382 6383 /* The subprog insns are now appended. Append its relos too. */ 6384 err = append_subprog_relos(main_prog, subprog); 6385 if (err) 6386 return err; 6387 return 0; 6388 } 6389 6390 static int 6391 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6392 struct bpf_program *prog) 6393 { 6394 size_t sub_insn_idx, insn_idx; 6395 struct bpf_program *subprog; 6396 struct reloc_desc *relo; 6397 struct bpf_insn *insn; 6398 int err; 6399 6400 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6401 if (err) 6402 return err; 6403 6404 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6405 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6406 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6407 continue; 6408 6409 relo = find_prog_insn_relo(prog, insn_idx); 6410 if (relo && relo->type == RELO_EXTERN_CALL) 6411 /* kfunc relocations will be handled later 6412 * in bpf_object__relocate_data() 6413 */ 6414 continue; 6415 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6416 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6417 prog->name, insn_idx, relo->type); 6418 return -LIBBPF_ERRNO__RELOC; 6419 } 6420 if (relo) { 6421 /* sub-program instruction index is a combination of 6422 * an offset of a symbol pointed to by relocation and 6423 * call instruction's imm field; for global functions, 6424 * call always has imm = -1, but for static functions 6425 * relocation is against STT_SECTION and insn->imm 6426 * points to a start of a static function 6427 * 6428 * for subprog addr relocation, the relo->sym_off + insn->imm is 6429 * the byte offset in the corresponding section. 6430 */ 6431 if (relo->type == RELO_CALL) 6432 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6433 else 6434 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6435 } else if (insn_is_pseudo_func(insn)) { 6436 /* 6437 * RELO_SUBPROG_ADDR relo is always emitted even if both 6438 * functions are in the same section, so it shouldn't reach here. 6439 */ 6440 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6441 prog->name, insn_idx); 6442 return -LIBBPF_ERRNO__RELOC; 6443 } else { 6444 /* if subprogram call is to a static function within 6445 * the same ELF section, there won't be any relocation 6446 * emitted, but it also means there is no additional 6447 * offset necessary, insns->imm is relative to 6448 * instruction's original position within the section 6449 */ 6450 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6451 } 6452 6453 /* we enforce that sub-programs should be in .text section */ 6454 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6455 if (!subprog) { 6456 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6457 prog->name); 6458 return -LIBBPF_ERRNO__RELOC; 6459 } 6460 6461 /* if it's the first call instruction calling into this 6462 * subprogram (meaning this subprog hasn't been processed 6463 * yet) within the context of current main program: 6464 * - append it at the end of main program's instructions blog; 6465 * - process is recursively, while current program is put on hold; 6466 * - if that subprogram calls some other not yet processes 6467 * subprogram, same thing will happen recursively until 6468 * there are no more unprocesses subprograms left to append 6469 * and relocate. 6470 */ 6471 if (subprog->sub_insn_off == 0) { 6472 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6473 if (err) 6474 return err; 6475 err = bpf_object__reloc_code(obj, main_prog, subprog); 6476 if (err) 6477 return err; 6478 } 6479 6480 /* main_prog->insns memory could have been re-allocated, so 6481 * calculate pointer again 6482 */ 6483 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6484 /* calculate correct instruction position within current main 6485 * prog; each main prog can have a different set of 6486 * subprograms appended (potentially in different order as 6487 * well), so position of any subprog can be different for 6488 * different main programs 6489 */ 6490 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6491 6492 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6493 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6494 } 6495 6496 return 0; 6497 } 6498 6499 /* 6500 * Relocate sub-program calls. 6501 * 6502 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6503 * main prog) is processed separately. For each subprog (non-entry functions, 6504 * that can be called from either entry progs or other subprogs) gets their 6505 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6506 * hasn't been yet appended and relocated within current main prog. Once its 6507 * relocated, sub_insn_off will point at the position within current main prog 6508 * where given subprog was appended. This will further be used to relocate all 6509 * the call instructions jumping into this subprog. 6510 * 6511 * We start with main program and process all call instructions. If the call 6512 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6513 * is zero), subprog instructions are appended at the end of main program's 6514 * instruction array. Then main program is "put on hold" while we recursively 6515 * process newly appended subprogram. If that subprogram calls into another 6516 * subprogram that hasn't been appended, new subprogram is appended again to 6517 * the *main* prog's instructions (subprog's instructions are always left 6518 * untouched, as they need to be in unmodified state for subsequent main progs 6519 * and subprog instructions are always sent only as part of a main prog) and 6520 * the process continues recursively. Once all the subprogs called from a main 6521 * prog or any of its subprogs are appended (and relocated), all their 6522 * positions within finalized instructions array are known, so it's easy to 6523 * rewrite call instructions with correct relative offsets, corresponding to 6524 * desired target subprog. 6525 * 6526 * Its important to realize that some subprogs might not be called from some 6527 * main prog and any of its called/used subprogs. Those will keep their 6528 * subprog->sub_insn_off as zero at all times and won't be appended to current 6529 * main prog and won't be relocated within the context of current main prog. 6530 * They might still be used from other main progs later. 6531 * 6532 * Visually this process can be shown as below. Suppose we have two main 6533 * programs mainA and mainB and BPF object contains three subprogs: subA, 6534 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6535 * subC both call subB: 6536 * 6537 * +--------+ +-------+ 6538 * | v v | 6539 * +--+---+ +--+-+-+ +---+--+ 6540 * | subA | | subB | | subC | 6541 * +--+---+ +------+ +---+--+ 6542 * ^ ^ 6543 * | | 6544 * +---+-------+ +------+----+ 6545 * | mainA | | mainB | 6546 * +-----------+ +-----------+ 6547 * 6548 * We'll start relocating mainA, will find subA, append it and start 6549 * processing sub A recursively: 6550 * 6551 * +-----------+------+ 6552 * | mainA | subA | 6553 * +-----------+------+ 6554 * 6555 * At this point we notice that subB is used from subA, so we append it and 6556 * relocate (there are no further subcalls from subB): 6557 * 6558 * +-----------+------+------+ 6559 * | mainA | subA | subB | 6560 * +-----------+------+------+ 6561 * 6562 * At this point, we relocate subA calls, then go one level up and finish with 6563 * relocatin mainA calls. mainA is done. 6564 * 6565 * For mainB process is similar but results in different order. We start with 6566 * mainB and skip subA and subB, as mainB never calls them (at least 6567 * directly), but we see subC is needed, so we append and start processing it: 6568 * 6569 * +-----------+------+ 6570 * | mainB | subC | 6571 * +-----------+------+ 6572 * Now we see subC needs subB, so we go back to it, append and relocate it: 6573 * 6574 * +-----------+------+------+ 6575 * | mainB | subC | subB | 6576 * +-----------+------+------+ 6577 * 6578 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6579 */ 6580 static int 6581 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6582 { 6583 struct bpf_program *subprog; 6584 int i, err; 6585 6586 /* mark all subprogs as not relocated (yet) within the context of 6587 * current main program 6588 */ 6589 for (i = 0; i < obj->nr_programs; i++) { 6590 subprog = &obj->programs[i]; 6591 if (!prog_is_subprog(obj, subprog)) 6592 continue; 6593 6594 subprog->sub_insn_off = 0; 6595 } 6596 6597 err = bpf_object__reloc_code(obj, prog, prog); 6598 if (err) 6599 return err; 6600 6601 return 0; 6602 } 6603 6604 static void 6605 bpf_object__free_relocs(struct bpf_object *obj) 6606 { 6607 struct bpf_program *prog; 6608 int i; 6609 6610 /* free up relocation descriptors */ 6611 for (i = 0; i < obj->nr_programs; i++) { 6612 prog = &obj->programs[i]; 6613 zfree(&prog->reloc_desc); 6614 prog->nr_reloc = 0; 6615 } 6616 } 6617 6618 static int cmp_relocs(const void *_a, const void *_b) 6619 { 6620 const struct reloc_desc *a = _a; 6621 const struct reloc_desc *b = _b; 6622 6623 if (a->insn_idx != b->insn_idx) 6624 return a->insn_idx < b->insn_idx ? -1 : 1; 6625 6626 /* no two relocations should have the same insn_idx, but ... */ 6627 if (a->type != b->type) 6628 return a->type < b->type ? -1 : 1; 6629 6630 return 0; 6631 } 6632 6633 static void bpf_object__sort_relos(struct bpf_object *obj) 6634 { 6635 int i; 6636 6637 for (i = 0; i < obj->nr_programs; i++) { 6638 struct bpf_program *p = &obj->programs[i]; 6639 6640 if (!p->nr_reloc) 6641 continue; 6642 6643 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6644 } 6645 } 6646 6647 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6648 { 6649 const char *str = "exception_callback:"; 6650 size_t pfx_len = strlen(str); 6651 int i, j, n; 6652 6653 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6654 return 0; 6655 6656 n = btf__type_cnt(obj->btf); 6657 for (i = 1; i < n; i++) { 6658 const char *name; 6659 struct btf_type *t; 6660 6661 t = btf_type_by_id(obj->btf, i); 6662 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6663 continue; 6664 6665 name = btf__str_by_offset(obj->btf, t->name_off); 6666 if (strncmp(name, str, pfx_len) != 0) 6667 continue; 6668 6669 t = btf_type_by_id(obj->btf, t->type); 6670 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6671 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6672 prog->name); 6673 return -EINVAL; 6674 } 6675 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6676 continue; 6677 /* Multiple callbacks are specified for the same prog, 6678 * the verifier will eventually return an error for this 6679 * case, hence simply skip appending a subprog. 6680 */ 6681 if (prog->exception_cb_idx >= 0) { 6682 prog->exception_cb_idx = -1; 6683 break; 6684 } 6685 6686 name += pfx_len; 6687 if (str_is_empty(name)) { 6688 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6689 prog->name); 6690 return -EINVAL; 6691 } 6692 6693 for (j = 0; j < obj->nr_programs; j++) { 6694 struct bpf_program *subprog = &obj->programs[j]; 6695 6696 if (!prog_is_subprog(obj, subprog)) 6697 continue; 6698 if (strcmp(name, subprog->name) != 0) 6699 continue; 6700 /* Enforce non-hidden, as from verifier point of 6701 * view it expects global functions, whereas the 6702 * mark_btf_static fixes up linkage as static. 6703 */ 6704 if (!subprog->sym_global || subprog->mark_btf_static) { 6705 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6706 prog->name, subprog->name); 6707 return -EINVAL; 6708 } 6709 /* Let's see if we already saw a static exception callback with the same name */ 6710 if (prog->exception_cb_idx >= 0) { 6711 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6712 prog->name, subprog->name); 6713 return -EINVAL; 6714 } 6715 prog->exception_cb_idx = j; 6716 break; 6717 } 6718 6719 if (prog->exception_cb_idx >= 0) 6720 continue; 6721 6722 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6723 return -ENOENT; 6724 } 6725 6726 return 0; 6727 } 6728 6729 static struct { 6730 enum bpf_prog_type prog_type; 6731 const char *ctx_name; 6732 } global_ctx_map[] = { 6733 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6734 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6735 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6736 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6737 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6738 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6739 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6740 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6741 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6742 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6743 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6744 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6745 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6746 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6747 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6748 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6749 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6750 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6751 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6752 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6753 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6754 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6755 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6756 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6757 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6758 /* all other program types don't have "named" context structs */ 6759 }; 6760 6761 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6762 * for below __builtin_types_compatible_p() checks; 6763 * with this approach we don't need any extra arch-specific #ifdef guards 6764 */ 6765 struct pt_regs; 6766 struct user_pt_regs; 6767 struct user_regs_struct; 6768 6769 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6770 const char *subprog_name, int arg_idx, 6771 int arg_type_id, const char *ctx_name) 6772 { 6773 const struct btf_type *t; 6774 const char *tname; 6775 6776 /* check if existing parameter already matches verifier expectations */ 6777 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6778 if (!btf_is_ptr(t)) 6779 goto out_warn; 6780 6781 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6782 * and perf_event programs, so check this case early on and forget 6783 * about it for subsequent checks 6784 */ 6785 while (btf_is_mod(t)) 6786 t = btf__type_by_id(btf, t->type); 6787 if (btf_is_typedef(t) && 6788 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6789 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6790 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6791 return false; /* canonical type for kprobe/perf_event */ 6792 } 6793 6794 /* now we can ignore typedefs moving forward */ 6795 t = skip_mods_and_typedefs(btf, t->type, NULL); 6796 6797 /* if it's `void *`, definitely fix up BTF info */ 6798 if (btf_is_void(t)) 6799 return true; 6800 6801 /* if it's already proper canonical type, no need to fix up */ 6802 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6803 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6804 return false; 6805 6806 /* special cases */ 6807 switch (prog->type) { 6808 case BPF_PROG_TYPE_KPROBE: 6809 /* `struct pt_regs *` is expected, but we need to fix up */ 6810 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6811 return true; 6812 break; 6813 case BPF_PROG_TYPE_PERF_EVENT: 6814 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6815 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6816 return true; 6817 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6818 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6819 return true; 6820 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6821 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6822 return true; 6823 break; 6824 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6825 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6826 /* allow u64* as ctx */ 6827 if (btf_is_int(t) && t->size == 8) 6828 return true; 6829 break; 6830 default: 6831 break; 6832 } 6833 6834 out_warn: 6835 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6836 prog->name, subprog_name, arg_idx, ctx_name); 6837 return false; 6838 } 6839 6840 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6841 { 6842 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6843 int i, err, arg_cnt, fn_name_off, linkage; 6844 struct btf_type *fn_t, *fn_proto_t, *t; 6845 struct btf_param *p; 6846 6847 /* caller already validated FUNC -> FUNC_PROTO validity */ 6848 fn_t = btf_type_by_id(btf, orig_fn_id); 6849 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6850 6851 /* Note that each btf__add_xxx() operation invalidates 6852 * all btf_type and string pointers, so we need to be 6853 * very careful when cloning BTF types. BTF type 6854 * pointers have to be always refetched. And to avoid 6855 * problems with invalidated string pointers, we 6856 * add empty strings initially, then just fix up 6857 * name_off offsets in place. Offsets are stable for 6858 * existing strings, so that works out. 6859 */ 6860 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6861 linkage = btf_func_linkage(fn_t); 6862 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6863 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6864 arg_cnt = btf_vlen(fn_proto_t); 6865 6866 /* clone FUNC_PROTO and its params */ 6867 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6868 if (fn_proto_id < 0) 6869 return -EINVAL; 6870 6871 for (i = 0; i < arg_cnt; i++) { 6872 int name_off; 6873 6874 /* copy original parameter data */ 6875 t = btf_type_by_id(btf, orig_proto_id); 6876 p = &btf_params(t)[i]; 6877 name_off = p->name_off; 6878 6879 err = btf__add_func_param(btf, "", p->type); 6880 if (err) 6881 return err; 6882 6883 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6884 p = &btf_params(fn_proto_t)[i]; 6885 p->name_off = name_off; /* use remembered str offset */ 6886 } 6887 6888 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6889 * entry program's name as a placeholder, which we replace immediately 6890 * with original name_off 6891 */ 6892 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6893 if (fn_id < 0) 6894 return -EINVAL; 6895 6896 fn_t = btf_type_by_id(btf, fn_id); 6897 fn_t->name_off = fn_name_off; /* reuse original string */ 6898 6899 return fn_id; 6900 } 6901 6902 /* Check if main program or global subprog's function prototype has `arg:ctx` 6903 * argument tags, and, if necessary, substitute correct type to match what BPF 6904 * verifier would expect, taking into account specific program type. This 6905 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6906 * have a native support for it in the verifier, making user's life much 6907 * easier. 6908 */ 6909 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6910 { 6911 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6912 struct bpf_func_info_min *func_rec; 6913 struct btf_type *fn_t, *fn_proto_t; 6914 struct btf *btf = obj->btf; 6915 const struct btf_type *t; 6916 struct btf_param *p; 6917 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6918 int i, n, arg_idx, arg_cnt, err, rec_idx; 6919 int *orig_ids; 6920 6921 /* no .BTF.ext, no problem */ 6922 if (!obj->btf_ext || !prog->func_info) 6923 return 0; 6924 6925 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6926 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 6927 return 0; 6928 6929 /* some BPF program types just don't have named context structs, so 6930 * this fallback mechanism doesn't work for them 6931 */ 6932 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6933 if (global_ctx_map[i].prog_type != prog->type) 6934 continue; 6935 ctx_name = global_ctx_map[i].ctx_name; 6936 break; 6937 } 6938 if (!ctx_name) 6939 return 0; 6940 6941 /* remember original func BTF IDs to detect if we already cloned them */ 6942 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6943 if (!orig_ids) 6944 return -ENOMEM; 6945 for (i = 0; i < prog->func_info_cnt; i++) { 6946 func_rec = prog->func_info + prog->func_info_rec_size * i; 6947 orig_ids[i] = func_rec->type_id; 6948 } 6949 6950 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6951 * of our subprogs; if yes and subprog is global and needs adjustment, 6952 * clone and adjust FUNC -> FUNC_PROTO combo 6953 */ 6954 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6955 /* only DECL_TAG with "arg:ctx" value are interesting */ 6956 t = btf__type_by_id(btf, i); 6957 if (!btf_is_decl_tag(t)) 6958 continue; 6959 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6960 continue; 6961 6962 /* only global funcs need adjustment, if at all */ 6963 orig_fn_id = t->type; 6964 fn_t = btf_type_by_id(btf, orig_fn_id); 6965 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6966 continue; 6967 6968 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6969 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6970 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6971 continue; 6972 6973 /* find corresponding func_info record */ 6974 func_rec = NULL; 6975 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 6976 if (orig_ids[rec_idx] == t->type) { 6977 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 6978 break; 6979 } 6980 } 6981 /* current main program doesn't call into this subprog */ 6982 if (!func_rec) 6983 continue; 6984 6985 /* some more sanity checking of DECL_TAG */ 6986 arg_cnt = btf_vlen(fn_proto_t); 6987 arg_idx = btf_decl_tag(t)->component_idx; 6988 if (arg_idx < 0 || arg_idx >= arg_cnt) 6989 continue; 6990 6991 /* check if we should fix up argument type */ 6992 p = &btf_params(fn_proto_t)[arg_idx]; 6993 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 6994 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 6995 continue; 6996 6997 /* clone fn/fn_proto, unless we already did it for another arg */ 6998 if (func_rec->type_id == orig_fn_id) { 6999 int fn_id; 7000 7001 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 7002 if (fn_id < 0) { 7003 err = fn_id; 7004 goto err_out; 7005 } 7006 7007 /* point func_info record to a cloned FUNC type */ 7008 func_rec->type_id = fn_id; 7009 } 7010 7011 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 7012 * we do it just once per main BPF program, as all global 7013 * funcs share the same program type, so need only PTR -> 7014 * STRUCT type chain 7015 */ 7016 if (ptr_id == 0) { 7017 struct_id = btf__add_struct(btf, ctx_name, 0); 7018 ptr_id = btf__add_ptr(btf, struct_id); 7019 if (ptr_id < 0 || struct_id < 0) { 7020 err = -EINVAL; 7021 goto err_out; 7022 } 7023 } 7024 7025 /* for completeness, clone DECL_TAG and point it to cloned param */ 7026 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 7027 if (tag_id < 0) { 7028 err = -EINVAL; 7029 goto err_out; 7030 } 7031 7032 /* all the BTF manipulations invalidated pointers, refetch them */ 7033 fn_t = btf_type_by_id(btf, func_rec->type_id); 7034 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7035 7036 /* fix up type ID pointed to by param */ 7037 p = &btf_params(fn_proto_t)[arg_idx]; 7038 p->type = ptr_id; 7039 } 7040 7041 free(orig_ids); 7042 return 0; 7043 err_out: 7044 free(orig_ids); 7045 return err; 7046 } 7047 7048 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7049 { 7050 struct bpf_program *prog; 7051 size_t i, j; 7052 int err; 7053 7054 if (obj->btf_ext) { 7055 err = bpf_object__relocate_core(obj, targ_btf_path); 7056 if (err) { 7057 pr_warn("failed to perform CO-RE relocations: %s\n", 7058 errstr(err)); 7059 return err; 7060 } 7061 bpf_object__sort_relos(obj); 7062 } 7063 7064 /* Before relocating calls pre-process relocations and mark 7065 * few ld_imm64 instructions that points to subprogs. 7066 * Otherwise bpf_object__reloc_code() later would have to consider 7067 * all ld_imm64 insns as relocation candidates. That would 7068 * reduce relocation speed, since amount of find_prog_insn_relo() 7069 * would increase and most of them will fail to find a relo. 7070 */ 7071 for (i = 0; i < obj->nr_programs; i++) { 7072 prog = &obj->programs[i]; 7073 for (j = 0; j < prog->nr_reloc; j++) { 7074 struct reloc_desc *relo = &prog->reloc_desc[j]; 7075 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7076 7077 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7078 if (relo->type == RELO_SUBPROG_ADDR) 7079 insn[0].src_reg = BPF_PSEUDO_FUNC; 7080 } 7081 } 7082 7083 /* relocate subprogram calls and append used subprograms to main 7084 * programs; each copy of subprogram code needs to be relocated 7085 * differently for each main program, because its code location might 7086 * have changed. 7087 * Append subprog relos to main programs to allow data relos to be 7088 * processed after text is completely relocated. 7089 */ 7090 for (i = 0; i < obj->nr_programs; i++) { 7091 prog = &obj->programs[i]; 7092 /* sub-program's sub-calls are relocated within the context of 7093 * its main program only 7094 */ 7095 if (prog_is_subprog(obj, prog)) 7096 continue; 7097 if (!prog->autoload) 7098 continue; 7099 7100 err = bpf_object__relocate_calls(obj, prog); 7101 if (err) { 7102 pr_warn("prog '%s': failed to relocate calls: %s\n", 7103 prog->name, errstr(err)); 7104 return err; 7105 } 7106 7107 err = bpf_prog_assign_exc_cb(obj, prog); 7108 if (err) 7109 return err; 7110 /* Now, also append exception callback if it has not been done already. */ 7111 if (prog->exception_cb_idx >= 0) { 7112 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7113 7114 /* Calling exception callback directly is disallowed, which the 7115 * verifier will reject later. In case it was processed already, 7116 * we can skip this step, otherwise for all other valid cases we 7117 * have to append exception callback now. 7118 */ 7119 if (subprog->sub_insn_off == 0) { 7120 err = bpf_object__append_subprog_code(obj, prog, subprog); 7121 if (err) 7122 return err; 7123 err = bpf_object__reloc_code(obj, prog, subprog); 7124 if (err) 7125 return err; 7126 } 7127 } 7128 } 7129 for (i = 0; i < obj->nr_programs; i++) { 7130 prog = &obj->programs[i]; 7131 if (prog_is_subprog(obj, prog)) 7132 continue; 7133 if (!prog->autoload) 7134 continue; 7135 7136 /* Process data relos for main programs */ 7137 err = bpf_object__relocate_data(obj, prog); 7138 if (err) { 7139 pr_warn("prog '%s': failed to relocate data references: %s\n", 7140 prog->name, errstr(err)); 7141 return err; 7142 } 7143 7144 /* Fix up .BTF.ext information, if necessary */ 7145 err = bpf_program_fixup_func_info(obj, prog); 7146 if (err) { 7147 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n", 7148 prog->name, errstr(err)); 7149 return err; 7150 } 7151 } 7152 7153 return 0; 7154 } 7155 7156 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7157 Elf64_Shdr *shdr, Elf_Data *data); 7158 7159 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7160 Elf64_Shdr *shdr, Elf_Data *data) 7161 { 7162 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7163 int i, j, nrels, new_sz; 7164 const struct btf_var_secinfo *vi = NULL; 7165 const struct btf_type *sec, *var, *def; 7166 struct bpf_map *map = NULL, *targ_map = NULL; 7167 struct bpf_program *targ_prog = NULL; 7168 bool is_prog_array, is_map_in_map; 7169 const struct btf_member *member; 7170 const char *name, *mname, *type; 7171 unsigned int moff; 7172 Elf64_Sym *sym; 7173 Elf64_Rel *rel; 7174 void *tmp; 7175 7176 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7177 return -EINVAL; 7178 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7179 if (!sec) 7180 return -EINVAL; 7181 7182 nrels = shdr->sh_size / shdr->sh_entsize; 7183 for (i = 0; i < nrels; i++) { 7184 rel = elf_rel_by_idx(data, i); 7185 if (!rel) { 7186 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7187 return -LIBBPF_ERRNO__FORMAT; 7188 } 7189 7190 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7191 if (!sym) { 7192 pr_warn(".maps relo #%d: symbol %zx not found\n", 7193 i, (size_t)ELF64_R_SYM(rel->r_info)); 7194 return -LIBBPF_ERRNO__FORMAT; 7195 } 7196 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7197 7198 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7199 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7200 (size_t)rel->r_offset, sym->st_name, name); 7201 7202 for (j = 0; j < obj->nr_maps; j++) { 7203 map = &obj->maps[j]; 7204 if (map->sec_idx != obj->efile.btf_maps_shndx) 7205 continue; 7206 7207 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7208 if (vi->offset <= rel->r_offset && 7209 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7210 break; 7211 } 7212 if (j == obj->nr_maps) { 7213 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7214 i, name, (size_t)rel->r_offset); 7215 return -EINVAL; 7216 } 7217 7218 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7219 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7220 type = is_map_in_map ? "map" : "prog"; 7221 if (is_map_in_map) { 7222 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7223 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7224 i, name); 7225 return -LIBBPF_ERRNO__RELOC; 7226 } 7227 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7228 map->def.key_size != sizeof(int)) { 7229 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7230 i, map->name, sizeof(int)); 7231 return -EINVAL; 7232 } 7233 targ_map = bpf_object__find_map_by_name(obj, name); 7234 if (!targ_map) { 7235 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7236 i, name); 7237 return -ESRCH; 7238 } 7239 } else if (is_prog_array) { 7240 targ_prog = bpf_object__find_program_by_name(obj, name); 7241 if (!targ_prog) { 7242 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7243 i, name); 7244 return -ESRCH; 7245 } 7246 if (targ_prog->sec_idx != sym->st_shndx || 7247 targ_prog->sec_insn_off * 8 != sym->st_value || 7248 prog_is_subprog(obj, targ_prog)) { 7249 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7250 i, name); 7251 return -LIBBPF_ERRNO__RELOC; 7252 } 7253 } else { 7254 return -EINVAL; 7255 } 7256 7257 var = btf__type_by_id(obj->btf, vi->type); 7258 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7259 if (btf_vlen(def) == 0) 7260 return -EINVAL; 7261 member = btf_members(def) + btf_vlen(def) - 1; 7262 mname = btf__name_by_offset(obj->btf, member->name_off); 7263 if (strcmp(mname, "values")) 7264 return -EINVAL; 7265 7266 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7267 if (rel->r_offset - vi->offset < moff) 7268 return -EINVAL; 7269 7270 moff = rel->r_offset - vi->offset - moff; 7271 /* here we use BPF pointer size, which is always 64 bit, as we 7272 * are parsing ELF that was built for BPF target 7273 */ 7274 if (moff % bpf_ptr_sz) 7275 return -EINVAL; 7276 moff /= bpf_ptr_sz; 7277 if (moff >= map->init_slots_sz) { 7278 new_sz = moff + 1; 7279 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7280 if (!tmp) 7281 return -ENOMEM; 7282 map->init_slots = tmp; 7283 memset(map->init_slots + map->init_slots_sz, 0, 7284 (new_sz - map->init_slots_sz) * host_ptr_sz); 7285 map->init_slots_sz = new_sz; 7286 } 7287 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7288 7289 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7290 i, map->name, moff, type, name); 7291 } 7292 7293 return 0; 7294 } 7295 7296 static int bpf_object__collect_relos(struct bpf_object *obj) 7297 { 7298 int i, err; 7299 7300 for (i = 0; i < obj->efile.sec_cnt; i++) { 7301 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7302 Elf64_Shdr *shdr; 7303 Elf_Data *data; 7304 int idx; 7305 7306 if (sec_desc->sec_type != SEC_RELO) 7307 continue; 7308 7309 shdr = sec_desc->shdr; 7310 data = sec_desc->data; 7311 idx = shdr->sh_info; 7312 7313 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7314 pr_warn("internal error at %d\n", __LINE__); 7315 return -LIBBPF_ERRNO__INTERNAL; 7316 } 7317 7318 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7319 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7320 else if (idx == obj->efile.btf_maps_shndx) 7321 err = bpf_object__collect_map_relos(obj, shdr, data); 7322 else 7323 err = bpf_object__collect_prog_relos(obj, shdr, data); 7324 if (err) 7325 return err; 7326 } 7327 7328 bpf_object__sort_relos(obj); 7329 return 0; 7330 } 7331 7332 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7333 { 7334 if (BPF_CLASS(insn->code) == BPF_JMP && 7335 BPF_OP(insn->code) == BPF_CALL && 7336 BPF_SRC(insn->code) == BPF_K && 7337 insn->src_reg == 0 && 7338 insn->dst_reg == 0) { 7339 *func_id = insn->imm; 7340 return true; 7341 } 7342 return false; 7343 } 7344 7345 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7346 { 7347 struct bpf_insn *insn = prog->insns; 7348 enum bpf_func_id func_id; 7349 int i; 7350 7351 if (obj->gen_loader) 7352 return 0; 7353 7354 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7355 if (!insn_is_helper_call(insn, &func_id)) 7356 continue; 7357 7358 /* on kernels that don't yet support 7359 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7360 * to bpf_probe_read() which works well for old kernels 7361 */ 7362 switch (func_id) { 7363 case BPF_FUNC_probe_read_kernel: 7364 case BPF_FUNC_probe_read_user: 7365 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7366 insn->imm = BPF_FUNC_probe_read; 7367 break; 7368 case BPF_FUNC_probe_read_kernel_str: 7369 case BPF_FUNC_probe_read_user_str: 7370 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7371 insn->imm = BPF_FUNC_probe_read_str; 7372 break; 7373 default: 7374 break; 7375 } 7376 } 7377 return 0; 7378 } 7379 7380 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7381 int *btf_obj_fd, int *btf_type_id); 7382 7383 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7384 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7385 struct bpf_prog_load_opts *opts, long cookie) 7386 { 7387 enum sec_def_flags def = cookie; 7388 7389 /* old kernels might not support specifying expected_attach_type */ 7390 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7391 opts->expected_attach_type = 0; 7392 7393 if (def & SEC_SLEEPABLE) 7394 opts->prog_flags |= BPF_F_SLEEPABLE; 7395 7396 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7397 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7398 7399 /* special check for usdt to use uprobe_multi link */ 7400 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) { 7401 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type 7402 * in prog, and expected_attach_type we set in kernel is from opts, so we 7403 * update both. 7404 */ 7405 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7406 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7407 } 7408 7409 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7410 int btf_obj_fd = 0, btf_type_id = 0, err; 7411 const char *attach_name; 7412 7413 attach_name = strchr(prog->sec_name, '/'); 7414 if (!attach_name) { 7415 /* if BPF program is annotated with just SEC("fentry") 7416 * (or similar) without declaratively specifying 7417 * target, then it is expected that target will be 7418 * specified with bpf_program__set_attach_target() at 7419 * runtime before BPF object load step. If not, then 7420 * there is nothing to load into the kernel as BPF 7421 * verifier won't be able to validate BPF program 7422 * correctness anyways. 7423 */ 7424 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7425 prog->name); 7426 return -EINVAL; 7427 } 7428 attach_name++; /* skip over / */ 7429 7430 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7431 if (err) 7432 return err; 7433 7434 /* cache resolved BTF FD and BTF type ID in the prog */ 7435 prog->attach_btf_obj_fd = btf_obj_fd; 7436 prog->attach_btf_id = btf_type_id; 7437 7438 /* but by now libbpf common logic is not utilizing 7439 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7440 * this callback is called after opts were populated by 7441 * libbpf, so this callback has to update opts explicitly here 7442 */ 7443 opts->attach_btf_obj_fd = btf_obj_fd; 7444 opts->attach_btf_id = btf_type_id; 7445 } 7446 return 0; 7447 } 7448 7449 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7450 7451 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7452 struct bpf_insn *insns, int insns_cnt, 7453 const char *license, __u32 kern_version, int *prog_fd) 7454 { 7455 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7456 const char *prog_name = NULL; 7457 size_t log_buf_size = 0; 7458 char *log_buf = NULL, *tmp; 7459 bool own_log_buf = true; 7460 __u32 log_level = prog->log_level; 7461 int ret, err; 7462 7463 /* Be more helpful by rejecting programs that can't be validated early 7464 * with more meaningful and actionable error message. 7465 */ 7466 switch (prog->type) { 7467 case BPF_PROG_TYPE_UNSPEC: 7468 /* 7469 * The program type must be set. Most likely we couldn't find a proper 7470 * section definition at load time, and thus we didn't infer the type. 7471 */ 7472 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7473 prog->name, prog->sec_name); 7474 return -EINVAL; 7475 case BPF_PROG_TYPE_STRUCT_OPS: 7476 if (prog->attach_btf_id == 0) { 7477 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n", 7478 prog->name); 7479 return -EINVAL; 7480 } 7481 break; 7482 default: 7483 break; 7484 } 7485 7486 if (!insns || !insns_cnt) 7487 return -EINVAL; 7488 7489 if (kernel_supports(obj, FEAT_PROG_NAME)) 7490 prog_name = prog->name; 7491 load_attr.attach_prog_fd = prog->attach_prog_fd; 7492 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7493 load_attr.attach_btf_id = prog->attach_btf_id; 7494 load_attr.kern_version = kern_version; 7495 load_attr.prog_ifindex = prog->prog_ifindex; 7496 load_attr.expected_attach_type = prog->expected_attach_type; 7497 7498 /* specify func_info/line_info only if kernel supports them */ 7499 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7500 load_attr.prog_btf_fd = btf__fd(obj->btf); 7501 load_attr.func_info = prog->func_info; 7502 load_attr.func_info_rec_size = prog->func_info_rec_size; 7503 load_attr.func_info_cnt = prog->func_info_cnt; 7504 load_attr.line_info = prog->line_info; 7505 load_attr.line_info_rec_size = prog->line_info_rec_size; 7506 load_attr.line_info_cnt = prog->line_info_cnt; 7507 } 7508 load_attr.log_level = log_level; 7509 load_attr.prog_flags = prog->prog_flags; 7510 load_attr.fd_array = obj->fd_array; 7511 7512 load_attr.token_fd = obj->token_fd; 7513 if (obj->token_fd) 7514 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7515 7516 /* adjust load_attr if sec_def provides custom preload callback */ 7517 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7518 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7519 if (err < 0) { 7520 pr_warn("prog '%s': failed to prepare load attributes: %s\n", 7521 prog->name, errstr(err)); 7522 return err; 7523 } 7524 insns = prog->insns; 7525 insns_cnt = prog->insns_cnt; 7526 } 7527 7528 if (obj->gen_loader) { 7529 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7530 license, insns, insns_cnt, &load_attr, 7531 prog - obj->programs); 7532 *prog_fd = -1; 7533 return 0; 7534 } 7535 7536 retry_load: 7537 /* if log_level is zero, we don't request logs initially even if 7538 * custom log_buf is specified; if the program load fails, then we'll 7539 * bump log_level to 1 and use either custom log_buf or we'll allocate 7540 * our own and retry the load to get details on what failed 7541 */ 7542 if (log_level) { 7543 if (prog->log_buf) { 7544 log_buf = prog->log_buf; 7545 log_buf_size = prog->log_size; 7546 own_log_buf = false; 7547 } else if (obj->log_buf) { 7548 log_buf = obj->log_buf; 7549 log_buf_size = obj->log_size; 7550 own_log_buf = false; 7551 } else { 7552 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7553 tmp = realloc(log_buf, log_buf_size); 7554 if (!tmp) { 7555 ret = -ENOMEM; 7556 goto out; 7557 } 7558 log_buf = tmp; 7559 log_buf[0] = '\0'; 7560 own_log_buf = true; 7561 } 7562 } 7563 7564 load_attr.log_buf = log_buf; 7565 load_attr.log_size = log_buf_size; 7566 load_attr.log_level = log_level; 7567 7568 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7569 if (ret >= 0) { 7570 if (log_level && own_log_buf) { 7571 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7572 prog->name, log_buf); 7573 } 7574 7575 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7576 struct bpf_map *map; 7577 int i; 7578 7579 for (i = 0; i < obj->nr_maps; i++) { 7580 map = &prog->obj->maps[i]; 7581 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7582 continue; 7583 7584 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7585 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7586 prog->name, map->real_name, errstr(errno)); 7587 /* Don't fail hard if can't bind rodata. */ 7588 } 7589 } 7590 } 7591 7592 *prog_fd = ret; 7593 ret = 0; 7594 goto out; 7595 } 7596 7597 if (log_level == 0) { 7598 log_level = 1; 7599 goto retry_load; 7600 } 7601 /* On ENOSPC, increase log buffer size and retry, unless custom 7602 * log_buf is specified. 7603 * Be careful to not overflow u32, though. Kernel's log buf size limit 7604 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7605 * multiply by 2 unless we are sure we'll fit within 32 bits. 7606 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7607 */ 7608 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7609 goto retry_load; 7610 7611 ret = -errno; 7612 7613 /* post-process verifier log to improve error descriptions */ 7614 fixup_verifier_log(prog, log_buf, log_buf_size); 7615 7616 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno)); 7617 pr_perm_msg(ret); 7618 7619 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7620 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7621 prog->name, log_buf); 7622 } 7623 7624 out: 7625 if (own_log_buf) 7626 free(log_buf); 7627 return ret; 7628 } 7629 7630 static char *find_prev_line(char *buf, char *cur) 7631 { 7632 char *p; 7633 7634 if (cur == buf) /* end of a log buf */ 7635 return NULL; 7636 7637 p = cur - 1; 7638 while (p - 1 >= buf && *(p - 1) != '\n') 7639 p--; 7640 7641 return p; 7642 } 7643 7644 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7645 char *orig, size_t orig_sz, const char *patch) 7646 { 7647 /* size of the remaining log content to the right from the to-be-replaced part */ 7648 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7649 size_t patch_sz = strlen(patch); 7650 7651 if (patch_sz != orig_sz) { 7652 /* If patch line(s) are longer than original piece of verifier log, 7653 * shift log contents by (patch_sz - orig_sz) bytes to the right 7654 * starting from after to-be-replaced part of the log. 7655 * 7656 * If patch line(s) are shorter than original piece of verifier log, 7657 * shift log contents by (orig_sz - patch_sz) bytes to the left 7658 * starting from after to-be-replaced part of the log 7659 * 7660 * We need to be careful about not overflowing available 7661 * buf_sz capacity. If that's the case, we'll truncate the end 7662 * of the original log, as necessary. 7663 */ 7664 if (patch_sz > orig_sz) { 7665 if (orig + patch_sz >= buf + buf_sz) { 7666 /* patch is big enough to cover remaining space completely */ 7667 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7668 rem_sz = 0; 7669 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7670 /* patch causes part of remaining log to be truncated */ 7671 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7672 } 7673 } 7674 /* shift remaining log to the right by calculated amount */ 7675 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7676 } 7677 7678 memcpy(orig, patch, patch_sz); 7679 } 7680 7681 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7682 char *buf, size_t buf_sz, size_t log_sz, 7683 char *line1, char *line2, char *line3) 7684 { 7685 /* Expected log for failed and not properly guarded CO-RE relocation: 7686 * line1 -> 123: (85) call unknown#195896080 7687 * line2 -> invalid func unknown#195896080 7688 * line3 -> <anything else or end of buffer> 7689 * 7690 * "123" is the index of the instruction that was poisoned. We extract 7691 * instruction index to find corresponding CO-RE relocation and 7692 * replace this part of the log with more relevant information about 7693 * failed CO-RE relocation. 7694 */ 7695 const struct bpf_core_relo *relo; 7696 struct bpf_core_spec spec; 7697 char patch[512], spec_buf[256]; 7698 int insn_idx, err, spec_len; 7699 7700 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7701 return; 7702 7703 relo = find_relo_core(prog, insn_idx); 7704 if (!relo) 7705 return; 7706 7707 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7708 if (err) 7709 return; 7710 7711 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7712 snprintf(patch, sizeof(patch), 7713 "%d: <invalid CO-RE relocation>\n" 7714 "failed to resolve CO-RE relocation %s%s\n", 7715 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7716 7717 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7718 } 7719 7720 static void fixup_log_missing_map_load(struct bpf_program *prog, 7721 char *buf, size_t buf_sz, size_t log_sz, 7722 char *line1, char *line2, char *line3) 7723 { 7724 /* Expected log for failed and not properly guarded map reference: 7725 * line1 -> 123: (85) call unknown#2001000345 7726 * line2 -> invalid func unknown#2001000345 7727 * line3 -> <anything else or end of buffer> 7728 * 7729 * "123" is the index of the instruction that was poisoned. 7730 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7731 */ 7732 struct bpf_object *obj = prog->obj; 7733 const struct bpf_map *map; 7734 int insn_idx, map_idx; 7735 char patch[128]; 7736 7737 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7738 return; 7739 7740 map_idx -= POISON_LDIMM64_MAP_BASE; 7741 if (map_idx < 0 || map_idx >= obj->nr_maps) 7742 return; 7743 map = &obj->maps[map_idx]; 7744 7745 snprintf(patch, sizeof(patch), 7746 "%d: <invalid BPF map reference>\n" 7747 "BPF map '%s' is referenced but wasn't created\n", 7748 insn_idx, map->name); 7749 7750 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7751 } 7752 7753 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7754 char *buf, size_t buf_sz, size_t log_sz, 7755 char *line1, char *line2, char *line3) 7756 { 7757 /* Expected log for failed and not properly guarded kfunc call: 7758 * line1 -> 123: (85) call unknown#2002000345 7759 * line2 -> invalid func unknown#2002000345 7760 * line3 -> <anything else or end of buffer> 7761 * 7762 * "123" is the index of the instruction that was poisoned. 7763 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7764 */ 7765 struct bpf_object *obj = prog->obj; 7766 const struct extern_desc *ext; 7767 int insn_idx, ext_idx; 7768 char patch[128]; 7769 7770 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7771 return; 7772 7773 ext_idx -= POISON_CALL_KFUNC_BASE; 7774 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7775 return; 7776 ext = &obj->externs[ext_idx]; 7777 7778 snprintf(patch, sizeof(patch), 7779 "%d: <invalid kfunc call>\n" 7780 "kfunc '%s' is referenced but wasn't resolved\n", 7781 insn_idx, ext->name); 7782 7783 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7784 } 7785 7786 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7787 { 7788 /* look for familiar error patterns in last N lines of the log */ 7789 const size_t max_last_line_cnt = 10; 7790 char *prev_line, *cur_line, *next_line; 7791 size_t log_sz; 7792 int i; 7793 7794 if (!buf) 7795 return; 7796 7797 log_sz = strlen(buf) + 1; 7798 next_line = buf + log_sz - 1; 7799 7800 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7801 cur_line = find_prev_line(buf, next_line); 7802 if (!cur_line) 7803 return; 7804 7805 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7806 prev_line = find_prev_line(buf, cur_line); 7807 if (!prev_line) 7808 continue; 7809 7810 /* failed CO-RE relocation case */ 7811 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7812 prev_line, cur_line, next_line); 7813 return; 7814 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7815 prev_line = find_prev_line(buf, cur_line); 7816 if (!prev_line) 7817 continue; 7818 7819 /* reference to uncreated BPF map */ 7820 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7821 prev_line, cur_line, next_line); 7822 return; 7823 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7824 prev_line = find_prev_line(buf, cur_line); 7825 if (!prev_line) 7826 continue; 7827 7828 /* reference to unresolved kfunc */ 7829 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7830 prev_line, cur_line, next_line); 7831 return; 7832 } 7833 } 7834 } 7835 7836 static int bpf_program_record_relos(struct bpf_program *prog) 7837 { 7838 struct bpf_object *obj = prog->obj; 7839 int i; 7840 7841 for (i = 0; i < prog->nr_reloc; i++) { 7842 struct reloc_desc *relo = &prog->reloc_desc[i]; 7843 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7844 int kind; 7845 7846 switch (relo->type) { 7847 case RELO_EXTERN_LD64: 7848 if (ext->type != EXT_KSYM) 7849 continue; 7850 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7851 BTF_KIND_VAR : BTF_KIND_FUNC; 7852 bpf_gen__record_extern(obj->gen_loader, ext->name, 7853 ext->is_weak, !ext->ksym.type_id, 7854 true, kind, relo->insn_idx); 7855 break; 7856 case RELO_EXTERN_CALL: 7857 bpf_gen__record_extern(obj->gen_loader, ext->name, 7858 ext->is_weak, false, false, BTF_KIND_FUNC, 7859 relo->insn_idx); 7860 break; 7861 case RELO_CORE: { 7862 struct bpf_core_relo cr = { 7863 .insn_off = relo->insn_idx * 8, 7864 .type_id = relo->core_relo->type_id, 7865 .access_str_off = relo->core_relo->access_str_off, 7866 .kind = relo->core_relo->kind, 7867 }; 7868 7869 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7870 break; 7871 } 7872 default: 7873 continue; 7874 } 7875 } 7876 return 0; 7877 } 7878 7879 static int 7880 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7881 { 7882 struct bpf_program *prog; 7883 size_t i; 7884 int err; 7885 7886 for (i = 0; i < obj->nr_programs; i++) { 7887 prog = &obj->programs[i]; 7888 err = bpf_object__sanitize_prog(obj, prog); 7889 if (err) 7890 return err; 7891 } 7892 7893 for (i = 0; i < obj->nr_programs; i++) { 7894 prog = &obj->programs[i]; 7895 if (prog_is_subprog(obj, prog)) 7896 continue; 7897 if (!prog->autoload) { 7898 pr_debug("prog '%s': skipped loading\n", prog->name); 7899 continue; 7900 } 7901 prog->log_level |= log_level; 7902 7903 if (obj->gen_loader) 7904 bpf_program_record_relos(prog); 7905 7906 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7907 obj->license, obj->kern_version, &prog->fd); 7908 if (err) { 7909 pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err)); 7910 return err; 7911 } 7912 } 7913 7914 bpf_object__free_relocs(obj); 7915 return 0; 7916 } 7917 7918 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7919 7920 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7921 { 7922 struct bpf_program *prog; 7923 int err; 7924 7925 bpf_object__for_each_program(prog, obj) { 7926 prog->sec_def = find_sec_def(prog->sec_name); 7927 if (!prog->sec_def) { 7928 /* couldn't guess, but user might manually specify */ 7929 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7930 prog->name, prog->sec_name); 7931 continue; 7932 } 7933 7934 prog->type = prog->sec_def->prog_type; 7935 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7936 7937 /* sec_def can have custom callback which should be called 7938 * after bpf_program is initialized to adjust its properties 7939 */ 7940 if (prog->sec_def->prog_setup_fn) { 7941 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7942 if (err < 0) { 7943 pr_warn("prog '%s': failed to initialize: %s\n", 7944 prog->name, errstr(err)); 7945 return err; 7946 } 7947 } 7948 } 7949 7950 return 0; 7951 } 7952 7953 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7954 const char *obj_name, 7955 const struct bpf_object_open_opts *opts) 7956 { 7957 const char *kconfig, *btf_tmp_path, *token_path; 7958 struct bpf_object *obj; 7959 int err; 7960 char *log_buf; 7961 size_t log_size; 7962 __u32 log_level; 7963 7964 if (obj_buf && !obj_name) 7965 return ERR_PTR(-EINVAL); 7966 7967 if (elf_version(EV_CURRENT) == EV_NONE) { 7968 pr_warn("failed to init libelf for %s\n", 7969 path ? : "(mem buf)"); 7970 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7971 } 7972 7973 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7974 return ERR_PTR(-EINVAL); 7975 7976 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name; 7977 if (obj_buf) { 7978 path = obj_name; 7979 pr_debug("loading object '%s' from buffer\n", obj_name); 7980 } else { 7981 pr_debug("loading object from %s\n", path); 7982 } 7983 7984 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7985 log_size = OPTS_GET(opts, kernel_log_size, 0); 7986 log_level = OPTS_GET(opts, kernel_log_level, 0); 7987 if (log_size > UINT_MAX) 7988 return ERR_PTR(-EINVAL); 7989 if (log_size && !log_buf) 7990 return ERR_PTR(-EINVAL); 7991 7992 token_path = OPTS_GET(opts, bpf_token_path, NULL); 7993 /* if user didn't specify bpf_token_path explicitly, check if 7994 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 7995 * option 7996 */ 7997 if (!token_path) 7998 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 7999 if (token_path && strlen(token_path) >= PATH_MAX) 8000 return ERR_PTR(-ENAMETOOLONG); 8001 8002 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 8003 if (IS_ERR(obj)) 8004 return obj; 8005 8006 obj->log_buf = log_buf; 8007 obj->log_size = log_size; 8008 obj->log_level = log_level; 8009 8010 if (token_path) { 8011 obj->token_path = strdup(token_path); 8012 if (!obj->token_path) { 8013 err = -ENOMEM; 8014 goto out; 8015 } 8016 } 8017 8018 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 8019 if (btf_tmp_path) { 8020 if (strlen(btf_tmp_path) >= PATH_MAX) { 8021 err = -ENAMETOOLONG; 8022 goto out; 8023 } 8024 obj->btf_custom_path = strdup(btf_tmp_path); 8025 if (!obj->btf_custom_path) { 8026 err = -ENOMEM; 8027 goto out; 8028 } 8029 } 8030 8031 kconfig = OPTS_GET(opts, kconfig, NULL); 8032 if (kconfig) { 8033 obj->kconfig = strdup(kconfig); 8034 if (!obj->kconfig) { 8035 err = -ENOMEM; 8036 goto out; 8037 } 8038 } 8039 8040 err = bpf_object__elf_init(obj); 8041 err = err ? : bpf_object__elf_collect(obj); 8042 err = err ? : bpf_object__collect_externs(obj); 8043 err = err ? : bpf_object_fixup_btf(obj); 8044 err = err ? : bpf_object__init_maps(obj, opts); 8045 err = err ? : bpf_object_init_progs(obj, opts); 8046 err = err ? : bpf_object__collect_relos(obj); 8047 if (err) 8048 goto out; 8049 8050 bpf_object__elf_finish(obj); 8051 8052 return obj; 8053 out: 8054 bpf_object__close(obj); 8055 return ERR_PTR(err); 8056 } 8057 8058 struct bpf_object * 8059 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8060 { 8061 if (!path) 8062 return libbpf_err_ptr(-EINVAL); 8063 8064 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts)); 8065 } 8066 8067 struct bpf_object *bpf_object__open(const char *path) 8068 { 8069 return bpf_object__open_file(path, NULL); 8070 } 8071 8072 struct bpf_object * 8073 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8074 const struct bpf_object_open_opts *opts) 8075 { 8076 char tmp_name[64]; 8077 8078 if (!obj_buf || obj_buf_sz == 0) 8079 return libbpf_err_ptr(-EINVAL); 8080 8081 /* create a (quite useless) default "name" for this memory buffer object */ 8082 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz); 8083 8084 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts)); 8085 } 8086 8087 static int bpf_object_unload(struct bpf_object *obj) 8088 { 8089 size_t i; 8090 8091 if (!obj) 8092 return libbpf_err(-EINVAL); 8093 8094 for (i = 0; i < obj->nr_maps; i++) { 8095 zclose(obj->maps[i].fd); 8096 if (obj->maps[i].st_ops) 8097 zfree(&obj->maps[i].st_ops->kern_vdata); 8098 } 8099 8100 for (i = 0; i < obj->nr_programs; i++) 8101 bpf_program__unload(&obj->programs[i]); 8102 8103 return 0; 8104 } 8105 8106 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8107 { 8108 struct bpf_map *m; 8109 8110 bpf_object__for_each_map(m, obj) { 8111 if (!bpf_map__is_internal(m)) 8112 continue; 8113 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8114 m->def.map_flags &= ~BPF_F_MMAPABLE; 8115 } 8116 8117 return 0; 8118 } 8119 8120 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type, 8121 const char *sym_name, void *ctx); 8122 8123 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8124 { 8125 char sym_type, sym_name[500]; 8126 unsigned long long sym_addr; 8127 int ret, err = 0; 8128 FILE *f; 8129 8130 f = fopen("/proc/kallsyms", "re"); 8131 if (!f) { 8132 err = -errno; 8133 pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err)); 8134 return err; 8135 } 8136 8137 while (true) { 8138 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8139 &sym_addr, &sym_type, sym_name); 8140 if (ret == EOF && feof(f)) 8141 break; 8142 if (ret != 3) { 8143 pr_warn("failed to read kallsyms entry: %d\n", ret); 8144 err = -EINVAL; 8145 break; 8146 } 8147 8148 err = cb(sym_addr, sym_type, sym_name, ctx); 8149 if (err) 8150 break; 8151 } 8152 8153 fclose(f); 8154 return err; 8155 } 8156 8157 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8158 const char *sym_name, void *ctx) 8159 { 8160 struct bpf_object *obj = ctx; 8161 const struct btf_type *t; 8162 struct extern_desc *ext; 8163 char *res; 8164 8165 res = strstr(sym_name, ".llvm."); 8166 if (sym_type == 'd' && res) 8167 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name); 8168 else 8169 ext = find_extern_by_name(obj, sym_name); 8170 if (!ext || ext->type != EXT_KSYM) 8171 return 0; 8172 8173 t = btf__type_by_id(obj->btf, ext->btf_id); 8174 if (!btf_is_var(t)) 8175 return 0; 8176 8177 if (ext->is_set && ext->ksym.addr != sym_addr) { 8178 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8179 sym_name, ext->ksym.addr, sym_addr); 8180 return -EINVAL; 8181 } 8182 if (!ext->is_set) { 8183 ext->is_set = true; 8184 ext->ksym.addr = sym_addr; 8185 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8186 } 8187 return 0; 8188 } 8189 8190 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8191 { 8192 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8193 } 8194 8195 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8196 __u16 kind, struct btf **res_btf, 8197 struct module_btf **res_mod_btf) 8198 { 8199 struct module_btf *mod_btf; 8200 struct btf *btf; 8201 int i, id, err; 8202 8203 btf = obj->btf_vmlinux; 8204 mod_btf = NULL; 8205 id = btf__find_by_name_kind(btf, ksym_name, kind); 8206 8207 if (id == -ENOENT) { 8208 err = load_module_btfs(obj); 8209 if (err) 8210 return err; 8211 8212 for (i = 0; i < obj->btf_module_cnt; i++) { 8213 /* we assume module_btf's BTF FD is always >0 */ 8214 mod_btf = &obj->btf_modules[i]; 8215 btf = mod_btf->btf; 8216 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8217 if (id != -ENOENT) 8218 break; 8219 } 8220 } 8221 if (id <= 0) 8222 return -ESRCH; 8223 8224 *res_btf = btf; 8225 *res_mod_btf = mod_btf; 8226 return id; 8227 } 8228 8229 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8230 struct extern_desc *ext) 8231 { 8232 const struct btf_type *targ_var, *targ_type; 8233 __u32 targ_type_id, local_type_id; 8234 struct module_btf *mod_btf = NULL; 8235 const char *targ_var_name; 8236 struct btf *btf = NULL; 8237 int id, err; 8238 8239 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8240 if (id < 0) { 8241 if (id == -ESRCH && ext->is_weak) 8242 return 0; 8243 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8244 ext->name); 8245 return id; 8246 } 8247 8248 /* find local type_id */ 8249 local_type_id = ext->ksym.type_id; 8250 8251 /* find target type_id */ 8252 targ_var = btf__type_by_id(btf, id); 8253 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8254 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8255 8256 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8257 btf, targ_type_id); 8258 if (err <= 0) { 8259 const struct btf_type *local_type; 8260 const char *targ_name, *local_name; 8261 8262 local_type = btf__type_by_id(obj->btf, local_type_id); 8263 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8264 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8265 8266 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8267 ext->name, local_type_id, 8268 btf_kind_str(local_type), local_name, targ_type_id, 8269 btf_kind_str(targ_type), targ_name); 8270 return -EINVAL; 8271 } 8272 8273 ext->is_set = true; 8274 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8275 ext->ksym.kernel_btf_id = id; 8276 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8277 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8278 8279 return 0; 8280 } 8281 8282 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8283 struct extern_desc *ext) 8284 { 8285 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8286 struct module_btf *mod_btf = NULL; 8287 const struct btf_type *kern_func; 8288 struct btf *kern_btf = NULL; 8289 int ret; 8290 8291 local_func_proto_id = ext->ksym.type_id; 8292 8293 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8294 &mod_btf); 8295 if (kfunc_id < 0) { 8296 if (kfunc_id == -ESRCH && ext->is_weak) 8297 return 0; 8298 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8299 ext->name); 8300 return kfunc_id; 8301 } 8302 8303 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8304 kfunc_proto_id = kern_func->type; 8305 8306 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8307 kern_btf, kfunc_proto_id); 8308 if (ret <= 0) { 8309 if (ext->is_weak) 8310 return 0; 8311 8312 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8313 ext->name, local_func_proto_id, 8314 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8315 return -EINVAL; 8316 } 8317 8318 /* set index for module BTF fd in fd_array, if unset */ 8319 if (mod_btf && !mod_btf->fd_array_idx) { 8320 /* insn->off is s16 */ 8321 if (obj->fd_array_cnt == INT16_MAX) { 8322 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8323 ext->name, mod_btf->fd_array_idx); 8324 return -E2BIG; 8325 } 8326 /* Cannot use index 0 for module BTF fd */ 8327 if (!obj->fd_array_cnt) 8328 obj->fd_array_cnt = 1; 8329 8330 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8331 obj->fd_array_cnt + 1); 8332 if (ret) 8333 return ret; 8334 mod_btf->fd_array_idx = obj->fd_array_cnt; 8335 /* we assume module BTF FD is always >0 */ 8336 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8337 } 8338 8339 ext->is_set = true; 8340 ext->ksym.kernel_btf_id = kfunc_id; 8341 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8342 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8343 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8344 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8345 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8346 */ 8347 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8348 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8349 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8350 8351 return 0; 8352 } 8353 8354 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8355 { 8356 const struct btf_type *t; 8357 struct extern_desc *ext; 8358 int i, err; 8359 8360 for (i = 0; i < obj->nr_extern; i++) { 8361 ext = &obj->externs[i]; 8362 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8363 continue; 8364 8365 if (obj->gen_loader) { 8366 ext->is_set = true; 8367 ext->ksym.kernel_btf_obj_fd = 0; 8368 ext->ksym.kernel_btf_id = 0; 8369 continue; 8370 } 8371 t = btf__type_by_id(obj->btf, ext->btf_id); 8372 if (btf_is_var(t)) 8373 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8374 else 8375 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8376 if (err) 8377 return err; 8378 } 8379 return 0; 8380 } 8381 8382 static int bpf_object__resolve_externs(struct bpf_object *obj, 8383 const char *extra_kconfig) 8384 { 8385 bool need_config = false, need_kallsyms = false; 8386 bool need_vmlinux_btf = false; 8387 struct extern_desc *ext; 8388 void *kcfg_data = NULL; 8389 int err, i; 8390 8391 if (obj->nr_extern == 0) 8392 return 0; 8393 8394 if (obj->kconfig_map_idx >= 0) 8395 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8396 8397 for (i = 0; i < obj->nr_extern; i++) { 8398 ext = &obj->externs[i]; 8399 8400 if (ext->type == EXT_KSYM) { 8401 if (ext->ksym.type_id) 8402 need_vmlinux_btf = true; 8403 else 8404 need_kallsyms = true; 8405 continue; 8406 } else if (ext->type == EXT_KCFG) { 8407 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8408 __u64 value = 0; 8409 8410 /* Kconfig externs need actual /proc/config.gz */ 8411 if (str_has_pfx(ext->name, "CONFIG_")) { 8412 need_config = true; 8413 continue; 8414 } 8415 8416 /* Virtual kcfg externs are customly handled by libbpf */ 8417 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8418 value = get_kernel_version(); 8419 if (!value) { 8420 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8421 return -EINVAL; 8422 } 8423 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8424 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8425 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8426 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8427 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8428 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8429 * __kconfig externs, where LINUX_ ones are virtual and filled out 8430 * customly by libbpf (their values don't come from Kconfig). 8431 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8432 * __weak, it defaults to zero value, just like for CONFIG_xxx 8433 * externs. 8434 */ 8435 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8436 return -EINVAL; 8437 } 8438 8439 err = set_kcfg_value_num(ext, ext_ptr, value); 8440 if (err) 8441 return err; 8442 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8443 ext->name, (long long)value); 8444 } else { 8445 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8446 return -EINVAL; 8447 } 8448 } 8449 if (need_config && extra_kconfig) { 8450 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8451 if (err) 8452 return -EINVAL; 8453 need_config = false; 8454 for (i = 0; i < obj->nr_extern; i++) { 8455 ext = &obj->externs[i]; 8456 if (ext->type == EXT_KCFG && !ext->is_set) { 8457 need_config = true; 8458 break; 8459 } 8460 } 8461 } 8462 if (need_config) { 8463 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8464 if (err) 8465 return -EINVAL; 8466 } 8467 if (need_kallsyms) { 8468 err = bpf_object__read_kallsyms_file(obj); 8469 if (err) 8470 return -EINVAL; 8471 } 8472 if (need_vmlinux_btf) { 8473 err = bpf_object__resolve_ksyms_btf_id(obj); 8474 if (err) 8475 return -EINVAL; 8476 } 8477 for (i = 0; i < obj->nr_extern; i++) { 8478 ext = &obj->externs[i]; 8479 8480 if (!ext->is_set && !ext->is_weak) { 8481 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8482 return -ESRCH; 8483 } else if (!ext->is_set) { 8484 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8485 ext->name); 8486 } 8487 } 8488 8489 return 0; 8490 } 8491 8492 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8493 { 8494 const struct btf_type *type; 8495 struct bpf_struct_ops *st_ops; 8496 __u32 i; 8497 8498 st_ops = map->st_ops; 8499 type = btf__type_by_id(map->obj->btf, st_ops->type_id); 8500 for (i = 0; i < btf_vlen(type); i++) { 8501 struct bpf_program *prog = st_ops->progs[i]; 8502 void *kern_data; 8503 int prog_fd; 8504 8505 if (!prog) 8506 continue; 8507 8508 prog_fd = bpf_program__fd(prog); 8509 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8510 *(unsigned long *)kern_data = prog_fd; 8511 } 8512 } 8513 8514 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8515 { 8516 struct bpf_map *map; 8517 int i; 8518 8519 for (i = 0; i < obj->nr_maps; i++) { 8520 map = &obj->maps[i]; 8521 8522 if (!bpf_map__is_struct_ops(map)) 8523 continue; 8524 8525 if (!map->autocreate) 8526 continue; 8527 8528 bpf_map_prepare_vdata(map); 8529 } 8530 8531 return 0; 8532 } 8533 8534 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8535 { 8536 int err, i; 8537 8538 if (!obj) 8539 return libbpf_err(-EINVAL); 8540 8541 if (obj->loaded) { 8542 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8543 return libbpf_err(-EINVAL); 8544 } 8545 8546 /* Disallow kernel loading programs of non-native endianness but 8547 * permit cross-endian creation of "light skeleton". 8548 */ 8549 if (obj->gen_loader) { 8550 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8551 } else if (!is_native_endianness(obj)) { 8552 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name); 8553 return libbpf_err(-LIBBPF_ERRNO__ENDIAN); 8554 } 8555 8556 err = bpf_object_prepare_token(obj); 8557 err = err ? : bpf_object__probe_loading(obj); 8558 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8559 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8560 err = err ? : bpf_object__sanitize_maps(obj); 8561 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8562 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8563 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8564 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8565 err = err ? : bpf_object__create_maps(obj); 8566 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8567 err = err ? : bpf_object_init_prog_arrays(obj); 8568 err = err ? : bpf_object_prepare_struct_ops(obj); 8569 8570 if (obj->gen_loader) { 8571 /* reset FDs */ 8572 if (obj->btf) 8573 btf__set_fd(obj->btf, -1); 8574 if (!err) 8575 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8576 } 8577 8578 /* clean up fd_array */ 8579 zfree(&obj->fd_array); 8580 8581 /* clean up module BTFs */ 8582 for (i = 0; i < obj->btf_module_cnt; i++) { 8583 close(obj->btf_modules[i].fd); 8584 btf__free(obj->btf_modules[i].btf); 8585 free(obj->btf_modules[i].name); 8586 } 8587 free(obj->btf_modules); 8588 8589 /* clean up vmlinux BTF */ 8590 btf__free(obj->btf_vmlinux); 8591 obj->btf_vmlinux = NULL; 8592 8593 obj->loaded = true; /* doesn't matter if successfully or not */ 8594 8595 if (err) 8596 goto out; 8597 8598 return 0; 8599 out: 8600 /* unpin any maps that were auto-pinned during load */ 8601 for (i = 0; i < obj->nr_maps; i++) 8602 if (obj->maps[i].pinned && !obj->maps[i].reused) 8603 bpf_map__unpin(&obj->maps[i], NULL); 8604 8605 bpf_object_unload(obj); 8606 pr_warn("failed to load object '%s'\n", obj->path); 8607 return libbpf_err(err); 8608 } 8609 8610 int bpf_object__load(struct bpf_object *obj) 8611 { 8612 return bpf_object_load(obj, 0, NULL); 8613 } 8614 8615 static int make_parent_dir(const char *path) 8616 { 8617 char *dname, *dir; 8618 int err = 0; 8619 8620 dname = strdup(path); 8621 if (dname == NULL) 8622 return -ENOMEM; 8623 8624 dir = dirname(dname); 8625 if (mkdir(dir, 0700) && errno != EEXIST) 8626 err = -errno; 8627 8628 free(dname); 8629 if (err) { 8630 pr_warn("failed to mkdir %s: %s\n", path, errstr(err)); 8631 } 8632 return err; 8633 } 8634 8635 static int check_path(const char *path) 8636 { 8637 struct statfs st_fs; 8638 char *dname, *dir; 8639 int err = 0; 8640 8641 if (path == NULL) 8642 return -EINVAL; 8643 8644 dname = strdup(path); 8645 if (dname == NULL) 8646 return -ENOMEM; 8647 8648 dir = dirname(dname); 8649 if (statfs(dir, &st_fs)) { 8650 pr_warn("failed to statfs %s: %s\n", dir, errstr(errno)); 8651 err = -errno; 8652 } 8653 free(dname); 8654 8655 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8656 pr_warn("specified path %s is not on BPF FS\n", path); 8657 err = -EINVAL; 8658 } 8659 8660 return err; 8661 } 8662 8663 int bpf_program__pin(struct bpf_program *prog, const char *path) 8664 { 8665 int err; 8666 8667 if (prog->fd < 0) { 8668 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8669 return libbpf_err(-EINVAL); 8670 } 8671 8672 err = make_parent_dir(path); 8673 if (err) 8674 return libbpf_err(err); 8675 8676 err = check_path(path); 8677 if (err) 8678 return libbpf_err(err); 8679 8680 if (bpf_obj_pin(prog->fd, path)) { 8681 err = -errno; 8682 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err)); 8683 return libbpf_err(err); 8684 } 8685 8686 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8687 return 0; 8688 } 8689 8690 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8691 { 8692 int err; 8693 8694 if (prog->fd < 0) { 8695 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8696 return libbpf_err(-EINVAL); 8697 } 8698 8699 err = check_path(path); 8700 if (err) 8701 return libbpf_err(err); 8702 8703 err = unlink(path); 8704 if (err) 8705 return libbpf_err(-errno); 8706 8707 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8708 return 0; 8709 } 8710 8711 int bpf_map__pin(struct bpf_map *map, const char *path) 8712 { 8713 int err; 8714 8715 if (map == NULL) { 8716 pr_warn("invalid map pointer\n"); 8717 return libbpf_err(-EINVAL); 8718 } 8719 8720 if (map->fd < 0) { 8721 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name); 8722 return libbpf_err(-EINVAL); 8723 } 8724 8725 if (map->pin_path) { 8726 if (path && strcmp(path, map->pin_path)) { 8727 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8728 bpf_map__name(map), map->pin_path, path); 8729 return libbpf_err(-EINVAL); 8730 } else if (map->pinned) { 8731 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8732 bpf_map__name(map), map->pin_path); 8733 return 0; 8734 } 8735 } else { 8736 if (!path) { 8737 pr_warn("missing a path to pin map '%s' at\n", 8738 bpf_map__name(map)); 8739 return libbpf_err(-EINVAL); 8740 } else if (map->pinned) { 8741 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8742 return libbpf_err(-EEXIST); 8743 } 8744 8745 map->pin_path = strdup(path); 8746 if (!map->pin_path) { 8747 err = -errno; 8748 goto out_err; 8749 } 8750 } 8751 8752 err = make_parent_dir(map->pin_path); 8753 if (err) 8754 return libbpf_err(err); 8755 8756 err = check_path(map->pin_path); 8757 if (err) 8758 return libbpf_err(err); 8759 8760 if (bpf_obj_pin(map->fd, map->pin_path)) { 8761 err = -errno; 8762 goto out_err; 8763 } 8764 8765 map->pinned = true; 8766 pr_debug("pinned map '%s'\n", map->pin_path); 8767 8768 return 0; 8769 8770 out_err: 8771 pr_warn("failed to pin map: %s\n", errstr(err)); 8772 return libbpf_err(err); 8773 } 8774 8775 int bpf_map__unpin(struct bpf_map *map, const char *path) 8776 { 8777 int err; 8778 8779 if (map == NULL) { 8780 pr_warn("invalid map pointer\n"); 8781 return libbpf_err(-EINVAL); 8782 } 8783 8784 if (map->pin_path) { 8785 if (path && strcmp(path, map->pin_path)) { 8786 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8787 bpf_map__name(map), map->pin_path, path); 8788 return libbpf_err(-EINVAL); 8789 } 8790 path = map->pin_path; 8791 } else if (!path) { 8792 pr_warn("no path to unpin map '%s' from\n", 8793 bpf_map__name(map)); 8794 return libbpf_err(-EINVAL); 8795 } 8796 8797 err = check_path(path); 8798 if (err) 8799 return libbpf_err(err); 8800 8801 err = unlink(path); 8802 if (err != 0) 8803 return libbpf_err(-errno); 8804 8805 map->pinned = false; 8806 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8807 8808 return 0; 8809 } 8810 8811 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8812 { 8813 char *new = NULL; 8814 8815 if (path) { 8816 new = strdup(path); 8817 if (!new) 8818 return libbpf_err(-errno); 8819 } 8820 8821 free(map->pin_path); 8822 map->pin_path = new; 8823 return 0; 8824 } 8825 8826 __alias(bpf_map__pin_path) 8827 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8828 8829 const char *bpf_map__pin_path(const struct bpf_map *map) 8830 { 8831 return map->pin_path; 8832 } 8833 8834 bool bpf_map__is_pinned(const struct bpf_map *map) 8835 { 8836 return map->pinned; 8837 } 8838 8839 static void sanitize_pin_path(char *s) 8840 { 8841 /* bpffs disallows periods in path names */ 8842 while (*s) { 8843 if (*s == '.') 8844 *s = '_'; 8845 s++; 8846 } 8847 } 8848 8849 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8850 { 8851 struct bpf_map *map; 8852 int err; 8853 8854 if (!obj) 8855 return libbpf_err(-ENOENT); 8856 8857 if (!obj->loaded) { 8858 pr_warn("object not yet loaded; load it first\n"); 8859 return libbpf_err(-ENOENT); 8860 } 8861 8862 bpf_object__for_each_map(map, obj) { 8863 char *pin_path = NULL; 8864 char buf[PATH_MAX]; 8865 8866 if (!map->autocreate) 8867 continue; 8868 8869 if (path) { 8870 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8871 if (err) 8872 goto err_unpin_maps; 8873 sanitize_pin_path(buf); 8874 pin_path = buf; 8875 } else if (!map->pin_path) { 8876 continue; 8877 } 8878 8879 err = bpf_map__pin(map, pin_path); 8880 if (err) 8881 goto err_unpin_maps; 8882 } 8883 8884 return 0; 8885 8886 err_unpin_maps: 8887 while ((map = bpf_object__prev_map(obj, map))) { 8888 if (!map->pin_path) 8889 continue; 8890 8891 bpf_map__unpin(map, NULL); 8892 } 8893 8894 return libbpf_err(err); 8895 } 8896 8897 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8898 { 8899 struct bpf_map *map; 8900 int err; 8901 8902 if (!obj) 8903 return libbpf_err(-ENOENT); 8904 8905 bpf_object__for_each_map(map, obj) { 8906 char *pin_path = NULL; 8907 char buf[PATH_MAX]; 8908 8909 if (path) { 8910 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8911 if (err) 8912 return libbpf_err(err); 8913 sanitize_pin_path(buf); 8914 pin_path = buf; 8915 } else if (!map->pin_path) { 8916 continue; 8917 } 8918 8919 err = bpf_map__unpin(map, pin_path); 8920 if (err) 8921 return libbpf_err(err); 8922 } 8923 8924 return 0; 8925 } 8926 8927 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8928 { 8929 struct bpf_program *prog; 8930 char buf[PATH_MAX]; 8931 int err; 8932 8933 if (!obj) 8934 return libbpf_err(-ENOENT); 8935 8936 if (!obj->loaded) { 8937 pr_warn("object not yet loaded; load it first\n"); 8938 return libbpf_err(-ENOENT); 8939 } 8940 8941 bpf_object__for_each_program(prog, obj) { 8942 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8943 if (err) 8944 goto err_unpin_programs; 8945 8946 err = bpf_program__pin(prog, buf); 8947 if (err) 8948 goto err_unpin_programs; 8949 } 8950 8951 return 0; 8952 8953 err_unpin_programs: 8954 while ((prog = bpf_object__prev_program(obj, prog))) { 8955 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8956 continue; 8957 8958 bpf_program__unpin(prog, buf); 8959 } 8960 8961 return libbpf_err(err); 8962 } 8963 8964 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8965 { 8966 struct bpf_program *prog; 8967 int err; 8968 8969 if (!obj) 8970 return libbpf_err(-ENOENT); 8971 8972 bpf_object__for_each_program(prog, obj) { 8973 char buf[PATH_MAX]; 8974 8975 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8976 if (err) 8977 return libbpf_err(err); 8978 8979 err = bpf_program__unpin(prog, buf); 8980 if (err) 8981 return libbpf_err(err); 8982 } 8983 8984 return 0; 8985 } 8986 8987 int bpf_object__pin(struct bpf_object *obj, const char *path) 8988 { 8989 int err; 8990 8991 err = bpf_object__pin_maps(obj, path); 8992 if (err) 8993 return libbpf_err(err); 8994 8995 err = bpf_object__pin_programs(obj, path); 8996 if (err) { 8997 bpf_object__unpin_maps(obj, path); 8998 return libbpf_err(err); 8999 } 9000 9001 return 0; 9002 } 9003 9004 int bpf_object__unpin(struct bpf_object *obj, const char *path) 9005 { 9006 int err; 9007 9008 err = bpf_object__unpin_programs(obj, path); 9009 if (err) 9010 return libbpf_err(err); 9011 9012 err = bpf_object__unpin_maps(obj, path); 9013 if (err) 9014 return libbpf_err(err); 9015 9016 return 0; 9017 } 9018 9019 static void bpf_map__destroy(struct bpf_map *map) 9020 { 9021 if (map->inner_map) { 9022 bpf_map__destroy(map->inner_map); 9023 zfree(&map->inner_map); 9024 } 9025 9026 zfree(&map->init_slots); 9027 map->init_slots_sz = 0; 9028 9029 if (map->mmaped && map->mmaped != map->obj->arena_data) 9030 munmap(map->mmaped, bpf_map_mmap_sz(map)); 9031 map->mmaped = NULL; 9032 9033 if (map->st_ops) { 9034 zfree(&map->st_ops->data); 9035 zfree(&map->st_ops->progs); 9036 zfree(&map->st_ops->kern_func_off); 9037 zfree(&map->st_ops); 9038 } 9039 9040 zfree(&map->name); 9041 zfree(&map->real_name); 9042 zfree(&map->pin_path); 9043 9044 if (map->fd >= 0) 9045 zclose(map->fd); 9046 } 9047 9048 void bpf_object__close(struct bpf_object *obj) 9049 { 9050 size_t i; 9051 9052 if (IS_ERR_OR_NULL(obj)) 9053 return; 9054 9055 usdt_manager_free(obj->usdt_man); 9056 obj->usdt_man = NULL; 9057 9058 bpf_gen__free(obj->gen_loader); 9059 bpf_object__elf_finish(obj); 9060 bpf_object_unload(obj); 9061 btf__free(obj->btf); 9062 btf__free(obj->btf_vmlinux); 9063 btf_ext__free(obj->btf_ext); 9064 9065 for (i = 0; i < obj->nr_maps; i++) 9066 bpf_map__destroy(&obj->maps[i]); 9067 9068 zfree(&obj->btf_custom_path); 9069 zfree(&obj->kconfig); 9070 9071 for (i = 0; i < obj->nr_extern; i++) 9072 zfree(&obj->externs[i].essent_name); 9073 9074 zfree(&obj->externs); 9075 obj->nr_extern = 0; 9076 9077 zfree(&obj->maps); 9078 obj->nr_maps = 0; 9079 9080 if (obj->programs && obj->nr_programs) { 9081 for (i = 0; i < obj->nr_programs; i++) 9082 bpf_program__exit(&obj->programs[i]); 9083 } 9084 zfree(&obj->programs); 9085 9086 zfree(&obj->feat_cache); 9087 zfree(&obj->token_path); 9088 if (obj->token_fd > 0) 9089 close(obj->token_fd); 9090 9091 zfree(&obj->arena_data); 9092 9093 free(obj); 9094 } 9095 9096 const char *bpf_object__name(const struct bpf_object *obj) 9097 { 9098 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9099 } 9100 9101 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9102 { 9103 return obj ? obj->kern_version : 0; 9104 } 9105 9106 int bpf_object__token_fd(const struct bpf_object *obj) 9107 { 9108 return obj->token_fd ?: -1; 9109 } 9110 9111 struct btf *bpf_object__btf(const struct bpf_object *obj) 9112 { 9113 return obj ? obj->btf : NULL; 9114 } 9115 9116 int bpf_object__btf_fd(const struct bpf_object *obj) 9117 { 9118 return obj->btf ? btf__fd(obj->btf) : -1; 9119 } 9120 9121 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9122 { 9123 if (obj->loaded) 9124 return libbpf_err(-EINVAL); 9125 9126 obj->kern_version = kern_version; 9127 9128 return 0; 9129 } 9130 9131 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9132 { 9133 struct bpf_gen *gen; 9134 9135 if (!opts) 9136 return -EFAULT; 9137 if (!OPTS_VALID(opts, gen_loader_opts)) 9138 return -EINVAL; 9139 gen = calloc(sizeof(*gen), 1); 9140 if (!gen) 9141 return -ENOMEM; 9142 gen->opts = opts; 9143 gen->swapped_endian = !is_native_endianness(obj); 9144 obj->gen_loader = gen; 9145 return 0; 9146 } 9147 9148 static struct bpf_program * 9149 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9150 bool forward) 9151 { 9152 size_t nr_programs = obj->nr_programs; 9153 ssize_t idx; 9154 9155 if (!nr_programs) 9156 return NULL; 9157 9158 if (!p) 9159 /* Iter from the beginning */ 9160 return forward ? &obj->programs[0] : 9161 &obj->programs[nr_programs - 1]; 9162 9163 if (p->obj != obj) { 9164 pr_warn("error: program handler doesn't match object\n"); 9165 return errno = EINVAL, NULL; 9166 } 9167 9168 idx = (p - obj->programs) + (forward ? 1 : -1); 9169 if (idx >= obj->nr_programs || idx < 0) 9170 return NULL; 9171 return &obj->programs[idx]; 9172 } 9173 9174 struct bpf_program * 9175 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9176 { 9177 struct bpf_program *prog = prev; 9178 9179 do { 9180 prog = __bpf_program__iter(prog, obj, true); 9181 } while (prog && prog_is_subprog(obj, prog)); 9182 9183 return prog; 9184 } 9185 9186 struct bpf_program * 9187 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9188 { 9189 struct bpf_program *prog = next; 9190 9191 do { 9192 prog = __bpf_program__iter(prog, obj, false); 9193 } while (prog && prog_is_subprog(obj, prog)); 9194 9195 return prog; 9196 } 9197 9198 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9199 { 9200 prog->prog_ifindex = ifindex; 9201 } 9202 9203 const char *bpf_program__name(const struct bpf_program *prog) 9204 { 9205 return prog->name; 9206 } 9207 9208 const char *bpf_program__section_name(const struct bpf_program *prog) 9209 { 9210 return prog->sec_name; 9211 } 9212 9213 bool bpf_program__autoload(const struct bpf_program *prog) 9214 { 9215 return prog->autoload; 9216 } 9217 9218 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9219 { 9220 if (prog->obj->loaded) 9221 return libbpf_err(-EINVAL); 9222 9223 prog->autoload = autoload; 9224 return 0; 9225 } 9226 9227 bool bpf_program__autoattach(const struct bpf_program *prog) 9228 { 9229 return prog->autoattach; 9230 } 9231 9232 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9233 { 9234 prog->autoattach = autoattach; 9235 } 9236 9237 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9238 { 9239 return prog->insns; 9240 } 9241 9242 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9243 { 9244 return prog->insns_cnt; 9245 } 9246 9247 int bpf_program__set_insns(struct bpf_program *prog, 9248 struct bpf_insn *new_insns, size_t new_insn_cnt) 9249 { 9250 struct bpf_insn *insns; 9251 9252 if (prog->obj->loaded) 9253 return -EBUSY; 9254 9255 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9256 /* NULL is a valid return from reallocarray if the new count is zero */ 9257 if (!insns && new_insn_cnt) { 9258 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9259 return -ENOMEM; 9260 } 9261 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9262 9263 prog->insns = insns; 9264 prog->insns_cnt = new_insn_cnt; 9265 return 0; 9266 } 9267 9268 int bpf_program__fd(const struct bpf_program *prog) 9269 { 9270 if (!prog) 9271 return libbpf_err(-EINVAL); 9272 9273 if (prog->fd < 0) 9274 return libbpf_err(-ENOENT); 9275 9276 return prog->fd; 9277 } 9278 9279 __alias(bpf_program__type) 9280 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9281 9282 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9283 { 9284 return prog->type; 9285 } 9286 9287 static size_t custom_sec_def_cnt; 9288 static struct bpf_sec_def *custom_sec_defs; 9289 static struct bpf_sec_def custom_fallback_def; 9290 static bool has_custom_fallback_def; 9291 static int last_custom_sec_def_handler_id; 9292 9293 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9294 { 9295 if (prog->obj->loaded) 9296 return libbpf_err(-EBUSY); 9297 9298 /* if type is not changed, do nothing */ 9299 if (prog->type == type) 9300 return 0; 9301 9302 prog->type = type; 9303 9304 /* If a program type was changed, we need to reset associated SEC() 9305 * handler, as it will be invalid now. The only exception is a generic 9306 * fallback handler, which by definition is program type-agnostic and 9307 * is a catch-all custom handler, optionally set by the application, 9308 * so should be able to handle any type of BPF program. 9309 */ 9310 if (prog->sec_def != &custom_fallback_def) 9311 prog->sec_def = NULL; 9312 return 0; 9313 } 9314 9315 __alias(bpf_program__expected_attach_type) 9316 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9317 9318 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9319 { 9320 return prog->expected_attach_type; 9321 } 9322 9323 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9324 enum bpf_attach_type type) 9325 { 9326 if (prog->obj->loaded) 9327 return libbpf_err(-EBUSY); 9328 9329 prog->expected_attach_type = type; 9330 return 0; 9331 } 9332 9333 __u32 bpf_program__flags(const struct bpf_program *prog) 9334 { 9335 return prog->prog_flags; 9336 } 9337 9338 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9339 { 9340 if (prog->obj->loaded) 9341 return libbpf_err(-EBUSY); 9342 9343 prog->prog_flags = flags; 9344 return 0; 9345 } 9346 9347 __u32 bpf_program__log_level(const struct bpf_program *prog) 9348 { 9349 return prog->log_level; 9350 } 9351 9352 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9353 { 9354 if (prog->obj->loaded) 9355 return libbpf_err(-EBUSY); 9356 9357 prog->log_level = log_level; 9358 return 0; 9359 } 9360 9361 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9362 { 9363 *log_size = prog->log_size; 9364 return prog->log_buf; 9365 } 9366 9367 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9368 { 9369 if (log_size && !log_buf) 9370 return -EINVAL; 9371 if (prog->log_size > UINT_MAX) 9372 return -EINVAL; 9373 if (prog->obj->loaded) 9374 return -EBUSY; 9375 9376 prog->log_buf = log_buf; 9377 prog->log_size = log_size; 9378 return 0; 9379 } 9380 9381 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9382 .sec = (char *)sec_pfx, \ 9383 .prog_type = BPF_PROG_TYPE_##ptype, \ 9384 .expected_attach_type = atype, \ 9385 .cookie = (long)(flags), \ 9386 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9387 __VA_ARGS__ \ 9388 } 9389 9390 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9391 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9392 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9393 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9394 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9395 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9396 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9397 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9398 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9399 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9400 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9401 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9402 9403 static const struct bpf_sec_def section_defs[] = { 9404 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9405 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9406 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9407 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9408 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9409 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9410 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9411 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9412 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9413 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9414 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9415 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session), 9416 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9417 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9418 SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi), 9419 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9420 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9421 SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi), 9422 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9423 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9424 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9425 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9426 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9427 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9428 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9429 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9430 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9431 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9432 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9433 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9434 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9435 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9436 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9437 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9438 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9439 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9440 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9441 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9442 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9443 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9444 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9445 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9446 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9447 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9448 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9449 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9450 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9451 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9452 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9453 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9454 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9455 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9456 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9457 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9458 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9459 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9460 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9461 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9462 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9463 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9464 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9465 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9466 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9467 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9468 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9469 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT), 9470 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9471 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9472 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9473 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9474 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9475 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9476 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9477 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9478 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9479 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9480 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9481 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9482 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9483 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9484 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9485 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9486 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9487 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9488 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9489 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9490 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9491 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9492 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9493 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9494 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9495 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9496 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9497 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9498 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9499 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9500 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9501 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9502 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9503 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9504 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9505 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9506 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9507 }; 9508 9509 int libbpf_register_prog_handler(const char *sec, 9510 enum bpf_prog_type prog_type, 9511 enum bpf_attach_type exp_attach_type, 9512 const struct libbpf_prog_handler_opts *opts) 9513 { 9514 struct bpf_sec_def *sec_def; 9515 9516 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9517 return libbpf_err(-EINVAL); 9518 9519 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9520 return libbpf_err(-E2BIG); 9521 9522 if (sec) { 9523 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9524 sizeof(*sec_def)); 9525 if (!sec_def) 9526 return libbpf_err(-ENOMEM); 9527 9528 custom_sec_defs = sec_def; 9529 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9530 } else { 9531 if (has_custom_fallback_def) 9532 return libbpf_err(-EBUSY); 9533 9534 sec_def = &custom_fallback_def; 9535 } 9536 9537 sec_def->sec = sec ? strdup(sec) : NULL; 9538 if (sec && !sec_def->sec) 9539 return libbpf_err(-ENOMEM); 9540 9541 sec_def->prog_type = prog_type; 9542 sec_def->expected_attach_type = exp_attach_type; 9543 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9544 9545 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9546 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9547 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9548 9549 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9550 9551 if (sec) 9552 custom_sec_def_cnt++; 9553 else 9554 has_custom_fallback_def = true; 9555 9556 return sec_def->handler_id; 9557 } 9558 9559 int libbpf_unregister_prog_handler(int handler_id) 9560 { 9561 struct bpf_sec_def *sec_defs; 9562 int i; 9563 9564 if (handler_id <= 0) 9565 return libbpf_err(-EINVAL); 9566 9567 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9568 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9569 has_custom_fallback_def = false; 9570 return 0; 9571 } 9572 9573 for (i = 0; i < custom_sec_def_cnt; i++) { 9574 if (custom_sec_defs[i].handler_id == handler_id) 9575 break; 9576 } 9577 9578 if (i == custom_sec_def_cnt) 9579 return libbpf_err(-ENOENT); 9580 9581 free(custom_sec_defs[i].sec); 9582 for (i = i + 1; i < custom_sec_def_cnt; i++) 9583 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9584 custom_sec_def_cnt--; 9585 9586 /* try to shrink the array, but it's ok if we couldn't */ 9587 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9588 /* if new count is zero, reallocarray can return a valid NULL result; 9589 * in this case the previous pointer will be freed, so we *have to* 9590 * reassign old pointer to the new value (even if it's NULL) 9591 */ 9592 if (sec_defs || custom_sec_def_cnt == 0) 9593 custom_sec_defs = sec_defs; 9594 9595 return 0; 9596 } 9597 9598 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9599 { 9600 size_t len = strlen(sec_def->sec); 9601 9602 /* "type/" always has to have proper SEC("type/extras") form */ 9603 if (sec_def->sec[len - 1] == '/') { 9604 if (str_has_pfx(sec_name, sec_def->sec)) 9605 return true; 9606 return false; 9607 } 9608 9609 /* "type+" means it can be either exact SEC("type") or 9610 * well-formed SEC("type/extras") with proper '/' separator 9611 */ 9612 if (sec_def->sec[len - 1] == '+') { 9613 len--; 9614 /* not even a prefix */ 9615 if (strncmp(sec_name, sec_def->sec, len) != 0) 9616 return false; 9617 /* exact match or has '/' separator */ 9618 if (sec_name[len] == '\0' || sec_name[len] == '/') 9619 return true; 9620 return false; 9621 } 9622 9623 return strcmp(sec_name, sec_def->sec) == 0; 9624 } 9625 9626 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9627 { 9628 const struct bpf_sec_def *sec_def; 9629 int i, n; 9630 9631 n = custom_sec_def_cnt; 9632 for (i = 0; i < n; i++) { 9633 sec_def = &custom_sec_defs[i]; 9634 if (sec_def_matches(sec_def, sec_name)) 9635 return sec_def; 9636 } 9637 9638 n = ARRAY_SIZE(section_defs); 9639 for (i = 0; i < n; i++) { 9640 sec_def = §ion_defs[i]; 9641 if (sec_def_matches(sec_def, sec_name)) 9642 return sec_def; 9643 } 9644 9645 if (has_custom_fallback_def) 9646 return &custom_fallback_def; 9647 9648 return NULL; 9649 } 9650 9651 #define MAX_TYPE_NAME_SIZE 32 9652 9653 static char *libbpf_get_type_names(bool attach_type) 9654 { 9655 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9656 char *buf; 9657 9658 buf = malloc(len); 9659 if (!buf) 9660 return NULL; 9661 9662 buf[0] = '\0'; 9663 /* Forge string buf with all available names */ 9664 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9665 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9666 9667 if (attach_type) { 9668 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9669 continue; 9670 9671 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9672 continue; 9673 } 9674 9675 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9676 free(buf); 9677 return NULL; 9678 } 9679 strcat(buf, " "); 9680 strcat(buf, section_defs[i].sec); 9681 } 9682 9683 return buf; 9684 } 9685 9686 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9687 enum bpf_attach_type *expected_attach_type) 9688 { 9689 const struct bpf_sec_def *sec_def; 9690 char *type_names; 9691 9692 if (!name) 9693 return libbpf_err(-EINVAL); 9694 9695 sec_def = find_sec_def(name); 9696 if (sec_def) { 9697 *prog_type = sec_def->prog_type; 9698 *expected_attach_type = sec_def->expected_attach_type; 9699 return 0; 9700 } 9701 9702 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9703 type_names = libbpf_get_type_names(false); 9704 if (type_names != NULL) { 9705 pr_debug("supported section(type) names are:%s\n", type_names); 9706 free(type_names); 9707 } 9708 9709 return libbpf_err(-ESRCH); 9710 } 9711 9712 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9713 { 9714 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9715 return NULL; 9716 9717 return attach_type_name[t]; 9718 } 9719 9720 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9721 { 9722 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9723 return NULL; 9724 9725 return link_type_name[t]; 9726 } 9727 9728 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9729 { 9730 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9731 return NULL; 9732 9733 return map_type_name[t]; 9734 } 9735 9736 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9737 { 9738 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9739 return NULL; 9740 9741 return prog_type_name[t]; 9742 } 9743 9744 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9745 int sec_idx, 9746 size_t offset) 9747 { 9748 struct bpf_map *map; 9749 size_t i; 9750 9751 for (i = 0; i < obj->nr_maps; i++) { 9752 map = &obj->maps[i]; 9753 if (!bpf_map__is_struct_ops(map)) 9754 continue; 9755 if (map->sec_idx == sec_idx && 9756 map->sec_offset <= offset && 9757 offset - map->sec_offset < map->def.value_size) 9758 return map; 9759 } 9760 9761 return NULL; 9762 } 9763 9764 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9765 * st_ops->data for shadow type. 9766 */ 9767 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9768 Elf64_Shdr *shdr, Elf_Data *data) 9769 { 9770 const struct btf_type *type; 9771 const struct btf_member *member; 9772 struct bpf_struct_ops *st_ops; 9773 struct bpf_program *prog; 9774 unsigned int shdr_idx; 9775 const struct btf *btf; 9776 struct bpf_map *map; 9777 unsigned int moff, insn_idx; 9778 const char *name; 9779 __u32 member_idx; 9780 Elf64_Sym *sym; 9781 Elf64_Rel *rel; 9782 int i, nrels; 9783 9784 btf = obj->btf; 9785 nrels = shdr->sh_size / shdr->sh_entsize; 9786 for (i = 0; i < nrels; i++) { 9787 rel = elf_rel_by_idx(data, i); 9788 if (!rel) { 9789 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9790 return -LIBBPF_ERRNO__FORMAT; 9791 } 9792 9793 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9794 if (!sym) { 9795 pr_warn("struct_ops reloc: symbol %zx not found\n", 9796 (size_t)ELF64_R_SYM(rel->r_info)); 9797 return -LIBBPF_ERRNO__FORMAT; 9798 } 9799 9800 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9801 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9802 if (!map) { 9803 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9804 (size_t)rel->r_offset); 9805 return -EINVAL; 9806 } 9807 9808 moff = rel->r_offset - map->sec_offset; 9809 shdr_idx = sym->st_shndx; 9810 st_ops = map->st_ops; 9811 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9812 map->name, 9813 (long long)(rel->r_info >> 32), 9814 (long long)sym->st_value, 9815 shdr_idx, (size_t)rel->r_offset, 9816 map->sec_offset, sym->st_name, name); 9817 9818 if (shdr_idx >= SHN_LORESERVE) { 9819 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9820 map->name, (size_t)rel->r_offset, shdr_idx); 9821 return -LIBBPF_ERRNO__RELOC; 9822 } 9823 if (sym->st_value % BPF_INSN_SZ) { 9824 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9825 map->name, (unsigned long long)sym->st_value); 9826 return -LIBBPF_ERRNO__FORMAT; 9827 } 9828 insn_idx = sym->st_value / BPF_INSN_SZ; 9829 9830 type = btf__type_by_id(btf, st_ops->type_id); 9831 member = find_member_by_offset(type, moff * 8); 9832 if (!member) { 9833 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9834 map->name, moff); 9835 return -EINVAL; 9836 } 9837 member_idx = member - btf_members(type); 9838 name = btf__name_by_offset(btf, member->name_off); 9839 9840 if (!resolve_func_ptr(btf, member->type, NULL)) { 9841 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9842 map->name, name); 9843 return -EINVAL; 9844 } 9845 9846 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9847 if (!prog) { 9848 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9849 map->name, shdr_idx, name); 9850 return -EINVAL; 9851 } 9852 9853 /* prevent the use of BPF prog with invalid type */ 9854 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9855 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9856 map->name, prog->name); 9857 return -EINVAL; 9858 } 9859 9860 st_ops->progs[member_idx] = prog; 9861 9862 /* st_ops->data will be exposed to users, being returned by 9863 * bpf_map__initial_value() as a pointer to the shadow 9864 * type. All function pointers in the original struct type 9865 * should be converted to a pointer to struct bpf_program 9866 * in the shadow type. 9867 */ 9868 *((struct bpf_program **)(st_ops->data + moff)) = prog; 9869 } 9870 9871 return 0; 9872 } 9873 9874 #define BTF_TRACE_PREFIX "btf_trace_" 9875 #define BTF_LSM_PREFIX "bpf_lsm_" 9876 #define BTF_ITER_PREFIX "bpf_iter_" 9877 #define BTF_MAX_NAME_SIZE 128 9878 9879 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9880 const char **prefix, int *kind) 9881 { 9882 switch (attach_type) { 9883 case BPF_TRACE_RAW_TP: 9884 *prefix = BTF_TRACE_PREFIX; 9885 *kind = BTF_KIND_TYPEDEF; 9886 break; 9887 case BPF_LSM_MAC: 9888 case BPF_LSM_CGROUP: 9889 *prefix = BTF_LSM_PREFIX; 9890 *kind = BTF_KIND_FUNC; 9891 break; 9892 case BPF_TRACE_ITER: 9893 *prefix = BTF_ITER_PREFIX; 9894 *kind = BTF_KIND_FUNC; 9895 break; 9896 default: 9897 *prefix = ""; 9898 *kind = BTF_KIND_FUNC; 9899 } 9900 } 9901 9902 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9903 const char *name, __u32 kind) 9904 { 9905 char btf_type_name[BTF_MAX_NAME_SIZE]; 9906 int ret; 9907 9908 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9909 "%s%s", prefix, name); 9910 /* snprintf returns the number of characters written excluding the 9911 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9912 * indicates truncation. 9913 */ 9914 if (ret < 0 || ret >= sizeof(btf_type_name)) 9915 return -ENAMETOOLONG; 9916 return btf__find_by_name_kind(btf, btf_type_name, kind); 9917 } 9918 9919 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9920 enum bpf_attach_type attach_type) 9921 { 9922 const char *prefix; 9923 int kind; 9924 9925 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9926 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9927 } 9928 9929 int libbpf_find_vmlinux_btf_id(const char *name, 9930 enum bpf_attach_type attach_type) 9931 { 9932 struct btf *btf; 9933 int err; 9934 9935 btf = btf__load_vmlinux_btf(); 9936 err = libbpf_get_error(btf); 9937 if (err) { 9938 pr_warn("vmlinux BTF is not found\n"); 9939 return libbpf_err(err); 9940 } 9941 9942 err = find_attach_btf_id(btf, name, attach_type); 9943 if (err <= 0) 9944 pr_warn("%s is not found in vmlinux BTF\n", name); 9945 9946 btf__free(btf); 9947 return libbpf_err(err); 9948 } 9949 9950 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9951 { 9952 struct bpf_prog_info info; 9953 __u32 info_len = sizeof(info); 9954 struct btf *btf; 9955 int err; 9956 9957 memset(&info, 0, info_len); 9958 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9959 if (err) { 9960 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n", 9961 attach_prog_fd, errstr(err)); 9962 return err; 9963 } 9964 9965 err = -EINVAL; 9966 if (!info.btf_id) { 9967 pr_warn("The target program doesn't have BTF\n"); 9968 goto out; 9969 } 9970 btf = btf__load_from_kernel_by_id(info.btf_id); 9971 err = libbpf_get_error(btf); 9972 if (err) { 9973 pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err)); 9974 goto out; 9975 } 9976 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9977 btf__free(btf); 9978 if (err <= 0) { 9979 pr_warn("%s is not found in prog's BTF\n", name); 9980 goto out; 9981 } 9982 out: 9983 return err; 9984 } 9985 9986 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9987 enum bpf_attach_type attach_type, 9988 int *btf_obj_fd, int *btf_type_id) 9989 { 9990 int ret, i, mod_len; 9991 const char *fn_name, *mod_name = NULL; 9992 9993 fn_name = strchr(attach_name, ':'); 9994 if (fn_name) { 9995 mod_name = attach_name; 9996 mod_len = fn_name - mod_name; 9997 fn_name++; 9998 } 9999 10000 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) { 10001 ret = find_attach_btf_id(obj->btf_vmlinux, 10002 mod_name ? fn_name : attach_name, 10003 attach_type); 10004 if (ret > 0) { 10005 *btf_obj_fd = 0; /* vmlinux BTF */ 10006 *btf_type_id = ret; 10007 return 0; 10008 } 10009 if (ret != -ENOENT) 10010 return ret; 10011 } 10012 10013 ret = load_module_btfs(obj); 10014 if (ret) 10015 return ret; 10016 10017 for (i = 0; i < obj->btf_module_cnt; i++) { 10018 const struct module_btf *mod = &obj->btf_modules[i]; 10019 10020 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0) 10021 continue; 10022 10023 ret = find_attach_btf_id(mod->btf, 10024 mod_name ? fn_name : attach_name, 10025 attach_type); 10026 if (ret > 0) { 10027 *btf_obj_fd = mod->fd; 10028 *btf_type_id = ret; 10029 return 0; 10030 } 10031 if (ret == -ENOENT) 10032 continue; 10033 10034 return ret; 10035 } 10036 10037 return -ESRCH; 10038 } 10039 10040 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 10041 int *btf_obj_fd, int *btf_type_id) 10042 { 10043 enum bpf_attach_type attach_type = prog->expected_attach_type; 10044 __u32 attach_prog_fd = prog->attach_prog_fd; 10045 int err = 0; 10046 10047 /* BPF program's BTF ID */ 10048 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 10049 if (!attach_prog_fd) { 10050 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 10051 return -EINVAL; 10052 } 10053 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 10054 if (err < 0) { 10055 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n", 10056 prog->name, attach_prog_fd, attach_name, errstr(err)); 10057 return err; 10058 } 10059 *btf_obj_fd = 0; 10060 *btf_type_id = err; 10061 return 0; 10062 } 10063 10064 /* kernel/module BTF ID */ 10065 if (prog->obj->gen_loader) { 10066 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 10067 *btf_obj_fd = 0; 10068 *btf_type_id = 1; 10069 } else { 10070 err = find_kernel_btf_id(prog->obj, attach_name, 10071 attach_type, btf_obj_fd, 10072 btf_type_id); 10073 } 10074 if (err) { 10075 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n", 10076 prog->name, attach_name, errstr(err)); 10077 return err; 10078 } 10079 return 0; 10080 } 10081 10082 int libbpf_attach_type_by_name(const char *name, 10083 enum bpf_attach_type *attach_type) 10084 { 10085 char *type_names; 10086 const struct bpf_sec_def *sec_def; 10087 10088 if (!name) 10089 return libbpf_err(-EINVAL); 10090 10091 sec_def = find_sec_def(name); 10092 if (!sec_def) { 10093 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 10094 type_names = libbpf_get_type_names(true); 10095 if (type_names != NULL) { 10096 pr_debug("attachable section(type) names are:%s\n", type_names); 10097 free(type_names); 10098 } 10099 10100 return libbpf_err(-EINVAL); 10101 } 10102 10103 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10104 return libbpf_err(-EINVAL); 10105 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10106 return libbpf_err(-EINVAL); 10107 10108 *attach_type = sec_def->expected_attach_type; 10109 return 0; 10110 } 10111 10112 int bpf_map__fd(const struct bpf_map *map) 10113 { 10114 if (!map) 10115 return libbpf_err(-EINVAL); 10116 if (!map_is_created(map)) 10117 return -1; 10118 return map->fd; 10119 } 10120 10121 static bool map_uses_real_name(const struct bpf_map *map) 10122 { 10123 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10124 * their user-visible name differs from kernel-visible name. Users see 10125 * such map's corresponding ELF section name as a map name. 10126 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10127 * maps to know which name has to be returned to the user. 10128 */ 10129 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10130 return true; 10131 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10132 return true; 10133 return false; 10134 } 10135 10136 const char *bpf_map__name(const struct bpf_map *map) 10137 { 10138 if (!map) 10139 return NULL; 10140 10141 if (map_uses_real_name(map)) 10142 return map->real_name; 10143 10144 return map->name; 10145 } 10146 10147 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10148 { 10149 return map->def.type; 10150 } 10151 10152 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10153 { 10154 if (map_is_created(map)) 10155 return libbpf_err(-EBUSY); 10156 map->def.type = type; 10157 return 0; 10158 } 10159 10160 __u32 bpf_map__map_flags(const struct bpf_map *map) 10161 { 10162 return map->def.map_flags; 10163 } 10164 10165 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10166 { 10167 if (map_is_created(map)) 10168 return libbpf_err(-EBUSY); 10169 map->def.map_flags = flags; 10170 return 0; 10171 } 10172 10173 __u64 bpf_map__map_extra(const struct bpf_map *map) 10174 { 10175 return map->map_extra; 10176 } 10177 10178 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10179 { 10180 if (map_is_created(map)) 10181 return libbpf_err(-EBUSY); 10182 map->map_extra = map_extra; 10183 return 0; 10184 } 10185 10186 __u32 bpf_map__numa_node(const struct bpf_map *map) 10187 { 10188 return map->numa_node; 10189 } 10190 10191 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10192 { 10193 if (map_is_created(map)) 10194 return libbpf_err(-EBUSY); 10195 map->numa_node = numa_node; 10196 return 0; 10197 } 10198 10199 __u32 bpf_map__key_size(const struct bpf_map *map) 10200 { 10201 return map->def.key_size; 10202 } 10203 10204 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10205 { 10206 if (map_is_created(map)) 10207 return libbpf_err(-EBUSY); 10208 map->def.key_size = size; 10209 return 0; 10210 } 10211 10212 __u32 bpf_map__value_size(const struct bpf_map *map) 10213 { 10214 return map->def.value_size; 10215 } 10216 10217 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10218 { 10219 struct btf *btf; 10220 struct btf_type *datasec_type, *var_type; 10221 struct btf_var_secinfo *var; 10222 const struct btf_type *array_type; 10223 const struct btf_array *array; 10224 int vlen, element_sz, new_array_id; 10225 __u32 nr_elements; 10226 10227 /* check btf existence */ 10228 btf = bpf_object__btf(map->obj); 10229 if (!btf) 10230 return -ENOENT; 10231 10232 /* verify map is datasec */ 10233 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10234 if (!btf_is_datasec(datasec_type)) { 10235 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10236 bpf_map__name(map)); 10237 return -EINVAL; 10238 } 10239 10240 /* verify datasec has at least one var */ 10241 vlen = btf_vlen(datasec_type); 10242 if (vlen == 0) { 10243 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10244 bpf_map__name(map)); 10245 return -EINVAL; 10246 } 10247 10248 /* verify last var in the datasec is an array */ 10249 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10250 var_type = btf_type_by_id(btf, var->type); 10251 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10252 if (!btf_is_array(array_type)) { 10253 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10254 bpf_map__name(map)); 10255 return -EINVAL; 10256 } 10257 10258 /* verify request size aligns with array */ 10259 array = btf_array(array_type); 10260 element_sz = btf__resolve_size(btf, array->type); 10261 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10262 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10263 bpf_map__name(map), element_sz, size); 10264 return -EINVAL; 10265 } 10266 10267 /* create a new array based on the existing array, but with new length */ 10268 nr_elements = (size - var->offset) / element_sz; 10269 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10270 if (new_array_id < 0) 10271 return new_array_id; 10272 10273 /* adding a new btf type invalidates existing pointers to btf objects, 10274 * so refresh pointers before proceeding 10275 */ 10276 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10277 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10278 var_type = btf_type_by_id(btf, var->type); 10279 10280 /* finally update btf info */ 10281 datasec_type->size = size; 10282 var->size = size - var->offset; 10283 var_type->type = new_array_id; 10284 10285 return 0; 10286 } 10287 10288 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10289 { 10290 if (map->obj->loaded || map->reused) 10291 return libbpf_err(-EBUSY); 10292 10293 if (map->mmaped) { 10294 size_t mmap_old_sz, mmap_new_sz; 10295 int err; 10296 10297 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10298 return -EOPNOTSUPP; 10299 10300 mmap_old_sz = bpf_map_mmap_sz(map); 10301 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10302 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10303 if (err) { 10304 pr_warn("map '%s': failed to resize memory-mapped region: %s\n", 10305 bpf_map__name(map), errstr(err)); 10306 return err; 10307 } 10308 err = map_btf_datasec_resize(map, size); 10309 if (err && err != -ENOENT) { 10310 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n", 10311 bpf_map__name(map), errstr(err)); 10312 map->btf_value_type_id = 0; 10313 map->btf_key_type_id = 0; 10314 } 10315 } 10316 10317 map->def.value_size = size; 10318 return 0; 10319 } 10320 10321 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10322 { 10323 return map ? map->btf_key_type_id : 0; 10324 } 10325 10326 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10327 { 10328 return map ? map->btf_value_type_id : 0; 10329 } 10330 10331 int bpf_map__set_initial_value(struct bpf_map *map, 10332 const void *data, size_t size) 10333 { 10334 size_t actual_sz; 10335 10336 if (map->obj->loaded || map->reused) 10337 return libbpf_err(-EBUSY); 10338 10339 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10340 return libbpf_err(-EINVAL); 10341 10342 if (map->def.type == BPF_MAP_TYPE_ARENA) 10343 actual_sz = map->obj->arena_data_sz; 10344 else 10345 actual_sz = map->def.value_size; 10346 if (size != actual_sz) 10347 return libbpf_err(-EINVAL); 10348 10349 memcpy(map->mmaped, data, size); 10350 return 0; 10351 } 10352 10353 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10354 { 10355 if (bpf_map__is_struct_ops(map)) { 10356 if (psize) 10357 *psize = map->def.value_size; 10358 return map->st_ops->data; 10359 } 10360 10361 if (!map->mmaped) 10362 return NULL; 10363 10364 if (map->def.type == BPF_MAP_TYPE_ARENA) 10365 *psize = map->obj->arena_data_sz; 10366 else 10367 *psize = map->def.value_size; 10368 10369 return map->mmaped; 10370 } 10371 10372 bool bpf_map__is_internal(const struct bpf_map *map) 10373 { 10374 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10375 } 10376 10377 __u32 bpf_map__ifindex(const struct bpf_map *map) 10378 { 10379 return map->map_ifindex; 10380 } 10381 10382 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10383 { 10384 if (map_is_created(map)) 10385 return libbpf_err(-EBUSY); 10386 map->map_ifindex = ifindex; 10387 return 0; 10388 } 10389 10390 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10391 { 10392 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10393 pr_warn("error: unsupported map type\n"); 10394 return libbpf_err(-EINVAL); 10395 } 10396 if (map->inner_map_fd != -1) { 10397 pr_warn("error: inner_map_fd already specified\n"); 10398 return libbpf_err(-EINVAL); 10399 } 10400 if (map->inner_map) { 10401 bpf_map__destroy(map->inner_map); 10402 zfree(&map->inner_map); 10403 } 10404 map->inner_map_fd = fd; 10405 return 0; 10406 } 10407 10408 static struct bpf_map * 10409 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10410 { 10411 ssize_t idx; 10412 struct bpf_map *s, *e; 10413 10414 if (!obj || !obj->maps) 10415 return errno = EINVAL, NULL; 10416 10417 s = obj->maps; 10418 e = obj->maps + obj->nr_maps; 10419 10420 if ((m < s) || (m >= e)) { 10421 pr_warn("error in %s: map handler doesn't belong to object\n", 10422 __func__); 10423 return errno = EINVAL, NULL; 10424 } 10425 10426 idx = (m - obj->maps) + i; 10427 if (idx >= obj->nr_maps || idx < 0) 10428 return NULL; 10429 return &obj->maps[idx]; 10430 } 10431 10432 struct bpf_map * 10433 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10434 { 10435 if (prev == NULL && obj != NULL) 10436 return obj->maps; 10437 10438 return __bpf_map__iter(prev, obj, 1); 10439 } 10440 10441 struct bpf_map * 10442 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10443 { 10444 if (next == NULL && obj != NULL) { 10445 if (!obj->nr_maps) 10446 return NULL; 10447 return obj->maps + obj->nr_maps - 1; 10448 } 10449 10450 return __bpf_map__iter(next, obj, -1); 10451 } 10452 10453 struct bpf_map * 10454 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10455 { 10456 struct bpf_map *pos; 10457 10458 bpf_object__for_each_map(pos, obj) { 10459 /* if it's a special internal map name (which always starts 10460 * with dot) then check if that special name matches the 10461 * real map name (ELF section name) 10462 */ 10463 if (name[0] == '.') { 10464 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10465 return pos; 10466 continue; 10467 } 10468 /* otherwise map name has to be an exact match */ 10469 if (map_uses_real_name(pos)) { 10470 if (strcmp(pos->real_name, name) == 0) 10471 return pos; 10472 continue; 10473 } 10474 if (strcmp(pos->name, name) == 0) 10475 return pos; 10476 } 10477 return errno = ENOENT, NULL; 10478 } 10479 10480 int 10481 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10482 { 10483 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10484 } 10485 10486 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10487 size_t value_sz, bool check_value_sz) 10488 { 10489 if (!map_is_created(map)) /* map is not yet created */ 10490 return -ENOENT; 10491 10492 if (map->def.key_size != key_sz) { 10493 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10494 map->name, key_sz, map->def.key_size); 10495 return -EINVAL; 10496 } 10497 10498 if (map->fd < 0) { 10499 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 10500 return -EINVAL; 10501 } 10502 10503 if (!check_value_sz) 10504 return 0; 10505 10506 switch (map->def.type) { 10507 case BPF_MAP_TYPE_PERCPU_ARRAY: 10508 case BPF_MAP_TYPE_PERCPU_HASH: 10509 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10510 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10511 int num_cpu = libbpf_num_possible_cpus(); 10512 size_t elem_sz = roundup(map->def.value_size, 8); 10513 10514 if (value_sz != num_cpu * elem_sz) { 10515 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10516 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10517 return -EINVAL; 10518 } 10519 break; 10520 } 10521 default: 10522 if (map->def.value_size != value_sz) { 10523 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10524 map->name, value_sz, map->def.value_size); 10525 return -EINVAL; 10526 } 10527 break; 10528 } 10529 return 0; 10530 } 10531 10532 int bpf_map__lookup_elem(const struct bpf_map *map, 10533 const void *key, size_t key_sz, 10534 void *value, size_t value_sz, __u64 flags) 10535 { 10536 int err; 10537 10538 err = validate_map_op(map, key_sz, value_sz, true); 10539 if (err) 10540 return libbpf_err(err); 10541 10542 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10543 } 10544 10545 int bpf_map__update_elem(const struct bpf_map *map, 10546 const void *key, size_t key_sz, 10547 const void *value, size_t value_sz, __u64 flags) 10548 { 10549 int err; 10550 10551 err = validate_map_op(map, key_sz, value_sz, true); 10552 if (err) 10553 return libbpf_err(err); 10554 10555 return bpf_map_update_elem(map->fd, key, value, flags); 10556 } 10557 10558 int bpf_map__delete_elem(const struct bpf_map *map, 10559 const void *key, size_t key_sz, __u64 flags) 10560 { 10561 int err; 10562 10563 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10564 if (err) 10565 return libbpf_err(err); 10566 10567 return bpf_map_delete_elem_flags(map->fd, key, flags); 10568 } 10569 10570 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10571 const void *key, size_t key_sz, 10572 void *value, size_t value_sz, __u64 flags) 10573 { 10574 int err; 10575 10576 err = validate_map_op(map, key_sz, value_sz, true); 10577 if (err) 10578 return libbpf_err(err); 10579 10580 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10581 } 10582 10583 int bpf_map__get_next_key(const struct bpf_map *map, 10584 const void *cur_key, void *next_key, size_t key_sz) 10585 { 10586 int err; 10587 10588 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10589 if (err) 10590 return libbpf_err(err); 10591 10592 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10593 } 10594 10595 long libbpf_get_error(const void *ptr) 10596 { 10597 if (!IS_ERR_OR_NULL(ptr)) 10598 return 0; 10599 10600 if (IS_ERR(ptr)) 10601 errno = -PTR_ERR(ptr); 10602 10603 /* If ptr == NULL, then errno should be already set by the failing 10604 * API, because libbpf never returns NULL on success and it now always 10605 * sets errno on error. So no extra errno handling for ptr == NULL 10606 * case. 10607 */ 10608 return -errno; 10609 } 10610 10611 /* Replace link's underlying BPF program with the new one */ 10612 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10613 { 10614 int ret; 10615 int prog_fd = bpf_program__fd(prog); 10616 10617 if (prog_fd < 0) { 10618 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n", 10619 prog->name); 10620 return libbpf_err(-EINVAL); 10621 } 10622 10623 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL); 10624 return libbpf_err_errno(ret); 10625 } 10626 10627 /* Release "ownership" of underlying BPF resource (typically, BPF program 10628 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10629 * link, when destructed through bpf_link__destroy() call won't attempt to 10630 * detach/unregisted that BPF resource. This is useful in situations where, 10631 * say, attached BPF program has to outlive userspace program that attached it 10632 * in the system. Depending on type of BPF program, though, there might be 10633 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10634 * exit of userspace program doesn't trigger automatic detachment and clean up 10635 * inside the kernel. 10636 */ 10637 void bpf_link__disconnect(struct bpf_link *link) 10638 { 10639 link->disconnected = true; 10640 } 10641 10642 int bpf_link__destroy(struct bpf_link *link) 10643 { 10644 int err = 0; 10645 10646 if (IS_ERR_OR_NULL(link)) 10647 return 0; 10648 10649 if (!link->disconnected && link->detach) 10650 err = link->detach(link); 10651 if (link->pin_path) 10652 free(link->pin_path); 10653 if (link->dealloc) 10654 link->dealloc(link); 10655 else 10656 free(link); 10657 10658 return libbpf_err(err); 10659 } 10660 10661 int bpf_link__fd(const struct bpf_link *link) 10662 { 10663 return link->fd; 10664 } 10665 10666 const char *bpf_link__pin_path(const struct bpf_link *link) 10667 { 10668 return link->pin_path; 10669 } 10670 10671 static int bpf_link__detach_fd(struct bpf_link *link) 10672 { 10673 return libbpf_err_errno(close(link->fd)); 10674 } 10675 10676 struct bpf_link *bpf_link__open(const char *path) 10677 { 10678 struct bpf_link *link; 10679 int fd; 10680 10681 fd = bpf_obj_get(path); 10682 if (fd < 0) { 10683 fd = -errno; 10684 pr_warn("failed to open link at %s: %d\n", path, fd); 10685 return libbpf_err_ptr(fd); 10686 } 10687 10688 link = calloc(1, sizeof(*link)); 10689 if (!link) { 10690 close(fd); 10691 return libbpf_err_ptr(-ENOMEM); 10692 } 10693 link->detach = &bpf_link__detach_fd; 10694 link->fd = fd; 10695 10696 link->pin_path = strdup(path); 10697 if (!link->pin_path) { 10698 bpf_link__destroy(link); 10699 return libbpf_err_ptr(-ENOMEM); 10700 } 10701 10702 return link; 10703 } 10704 10705 int bpf_link__detach(struct bpf_link *link) 10706 { 10707 return bpf_link_detach(link->fd) ? -errno : 0; 10708 } 10709 10710 int bpf_link__pin(struct bpf_link *link, const char *path) 10711 { 10712 int err; 10713 10714 if (link->pin_path) 10715 return libbpf_err(-EBUSY); 10716 err = make_parent_dir(path); 10717 if (err) 10718 return libbpf_err(err); 10719 err = check_path(path); 10720 if (err) 10721 return libbpf_err(err); 10722 10723 link->pin_path = strdup(path); 10724 if (!link->pin_path) 10725 return libbpf_err(-ENOMEM); 10726 10727 if (bpf_obj_pin(link->fd, link->pin_path)) { 10728 err = -errno; 10729 zfree(&link->pin_path); 10730 return libbpf_err(err); 10731 } 10732 10733 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10734 return 0; 10735 } 10736 10737 int bpf_link__unpin(struct bpf_link *link) 10738 { 10739 int err; 10740 10741 if (!link->pin_path) 10742 return libbpf_err(-EINVAL); 10743 10744 err = unlink(link->pin_path); 10745 if (err != 0) 10746 return -errno; 10747 10748 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10749 zfree(&link->pin_path); 10750 return 0; 10751 } 10752 10753 struct bpf_link_perf { 10754 struct bpf_link link; 10755 int perf_event_fd; 10756 /* legacy kprobe support: keep track of probe identifier and type */ 10757 char *legacy_probe_name; 10758 bool legacy_is_kprobe; 10759 bool legacy_is_retprobe; 10760 }; 10761 10762 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10763 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10764 10765 static int bpf_link_perf_detach(struct bpf_link *link) 10766 { 10767 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10768 int err = 0; 10769 10770 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10771 err = -errno; 10772 10773 if (perf_link->perf_event_fd != link->fd) 10774 close(perf_link->perf_event_fd); 10775 close(link->fd); 10776 10777 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10778 if (perf_link->legacy_probe_name) { 10779 if (perf_link->legacy_is_kprobe) { 10780 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10781 perf_link->legacy_is_retprobe); 10782 } else { 10783 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10784 perf_link->legacy_is_retprobe); 10785 } 10786 } 10787 10788 return err; 10789 } 10790 10791 static void bpf_link_perf_dealloc(struct bpf_link *link) 10792 { 10793 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10794 10795 free(perf_link->legacy_probe_name); 10796 free(perf_link); 10797 } 10798 10799 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10800 const struct bpf_perf_event_opts *opts) 10801 { 10802 struct bpf_link_perf *link; 10803 int prog_fd, link_fd = -1, err; 10804 bool force_ioctl_attach; 10805 10806 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10807 return libbpf_err_ptr(-EINVAL); 10808 10809 if (pfd < 0) { 10810 pr_warn("prog '%s': invalid perf event FD %d\n", 10811 prog->name, pfd); 10812 return libbpf_err_ptr(-EINVAL); 10813 } 10814 prog_fd = bpf_program__fd(prog); 10815 if (prog_fd < 0) { 10816 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 10817 prog->name); 10818 return libbpf_err_ptr(-EINVAL); 10819 } 10820 10821 link = calloc(1, sizeof(*link)); 10822 if (!link) 10823 return libbpf_err_ptr(-ENOMEM); 10824 link->link.detach = &bpf_link_perf_detach; 10825 link->link.dealloc = &bpf_link_perf_dealloc; 10826 link->perf_event_fd = pfd; 10827 10828 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10829 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10830 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10831 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10832 10833 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10834 if (link_fd < 0) { 10835 err = -errno; 10836 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n", 10837 prog->name, pfd, errstr(err)); 10838 goto err_out; 10839 } 10840 link->link.fd = link_fd; 10841 } else { 10842 if (OPTS_GET(opts, bpf_cookie, 0)) { 10843 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10844 err = -EOPNOTSUPP; 10845 goto err_out; 10846 } 10847 10848 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10849 err = -errno; 10850 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10851 prog->name, pfd, errstr(err)); 10852 if (err == -EPROTO) 10853 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10854 prog->name, pfd); 10855 goto err_out; 10856 } 10857 link->link.fd = pfd; 10858 } 10859 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10860 err = -errno; 10861 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10862 prog->name, pfd, errstr(err)); 10863 goto err_out; 10864 } 10865 10866 return &link->link; 10867 err_out: 10868 if (link_fd >= 0) 10869 close(link_fd); 10870 free(link); 10871 return libbpf_err_ptr(err); 10872 } 10873 10874 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10875 { 10876 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10877 } 10878 10879 /* 10880 * this function is expected to parse integer in the range of [0, 2^31-1] from 10881 * given file using scanf format string fmt. If actual parsed value is 10882 * negative, the result might be indistinguishable from error 10883 */ 10884 static int parse_uint_from_file(const char *file, const char *fmt) 10885 { 10886 int err, ret; 10887 FILE *f; 10888 10889 f = fopen(file, "re"); 10890 if (!f) { 10891 err = -errno; 10892 pr_debug("failed to open '%s': %s\n", file, errstr(err)); 10893 return err; 10894 } 10895 err = fscanf(f, fmt, &ret); 10896 if (err != 1) { 10897 err = err == EOF ? -EIO : -errno; 10898 pr_debug("failed to parse '%s': %s\n", file, errstr(err)); 10899 fclose(f); 10900 return err; 10901 } 10902 fclose(f); 10903 return ret; 10904 } 10905 10906 static int determine_kprobe_perf_type(void) 10907 { 10908 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10909 10910 return parse_uint_from_file(file, "%d\n"); 10911 } 10912 10913 static int determine_uprobe_perf_type(void) 10914 { 10915 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10916 10917 return parse_uint_from_file(file, "%d\n"); 10918 } 10919 10920 static int determine_kprobe_retprobe_bit(void) 10921 { 10922 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10923 10924 return parse_uint_from_file(file, "config:%d\n"); 10925 } 10926 10927 static int determine_uprobe_retprobe_bit(void) 10928 { 10929 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10930 10931 return parse_uint_from_file(file, "config:%d\n"); 10932 } 10933 10934 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10935 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10936 10937 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10938 uint64_t offset, int pid, size_t ref_ctr_off) 10939 { 10940 const size_t attr_sz = sizeof(struct perf_event_attr); 10941 struct perf_event_attr attr; 10942 int type, pfd; 10943 10944 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10945 return -EINVAL; 10946 10947 memset(&attr, 0, attr_sz); 10948 10949 type = uprobe ? determine_uprobe_perf_type() 10950 : determine_kprobe_perf_type(); 10951 if (type < 0) { 10952 pr_warn("failed to determine %s perf type: %s\n", 10953 uprobe ? "uprobe" : "kprobe", 10954 errstr(type)); 10955 return type; 10956 } 10957 if (retprobe) { 10958 int bit = uprobe ? determine_uprobe_retprobe_bit() 10959 : determine_kprobe_retprobe_bit(); 10960 10961 if (bit < 0) { 10962 pr_warn("failed to determine %s retprobe bit: %s\n", 10963 uprobe ? "uprobe" : "kprobe", 10964 errstr(bit)); 10965 return bit; 10966 } 10967 attr.config |= 1 << bit; 10968 } 10969 attr.size = attr_sz; 10970 attr.type = type; 10971 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10972 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10973 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10974 10975 /* pid filter is meaningful only for uprobes */ 10976 pfd = syscall(__NR_perf_event_open, &attr, 10977 pid < 0 ? -1 : pid /* pid */, 10978 pid == -1 ? 0 : -1 /* cpu */, 10979 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10980 return pfd >= 0 ? pfd : -errno; 10981 } 10982 10983 static int append_to_file(const char *file, const char *fmt, ...) 10984 { 10985 int fd, n, err = 0; 10986 va_list ap; 10987 char buf[1024]; 10988 10989 va_start(ap, fmt); 10990 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10991 va_end(ap); 10992 10993 if (n < 0 || n >= sizeof(buf)) 10994 return -EINVAL; 10995 10996 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10997 if (fd < 0) 10998 return -errno; 10999 11000 if (write(fd, buf, n) < 0) 11001 err = -errno; 11002 11003 close(fd); 11004 return err; 11005 } 11006 11007 #define DEBUGFS "/sys/kernel/debug/tracing" 11008 #define TRACEFS "/sys/kernel/tracing" 11009 11010 static bool use_debugfs(void) 11011 { 11012 static int has_debugfs = -1; 11013 11014 if (has_debugfs < 0) 11015 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 11016 11017 return has_debugfs == 1; 11018 } 11019 11020 static const char *tracefs_path(void) 11021 { 11022 return use_debugfs() ? DEBUGFS : TRACEFS; 11023 } 11024 11025 static const char *tracefs_kprobe_events(void) 11026 { 11027 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 11028 } 11029 11030 static const char *tracefs_uprobe_events(void) 11031 { 11032 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 11033 } 11034 11035 static const char *tracefs_available_filter_functions(void) 11036 { 11037 return use_debugfs() ? DEBUGFS"/available_filter_functions" 11038 : TRACEFS"/available_filter_functions"; 11039 } 11040 11041 static const char *tracefs_available_filter_functions_addrs(void) 11042 { 11043 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 11044 : TRACEFS"/available_filter_functions_addrs"; 11045 } 11046 11047 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 11048 const char *kfunc_name, size_t offset) 11049 { 11050 static int index = 0; 11051 int i; 11052 11053 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 11054 __sync_fetch_and_add(&index, 1)); 11055 11056 /* sanitize binary_path in the probe name */ 11057 for (i = 0; buf[i]; i++) { 11058 if (!isalnum(buf[i])) 11059 buf[i] = '_'; 11060 } 11061 } 11062 11063 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 11064 const char *kfunc_name, size_t offset) 11065 { 11066 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 11067 retprobe ? 'r' : 'p', 11068 retprobe ? "kretprobes" : "kprobes", 11069 probe_name, kfunc_name, offset); 11070 } 11071 11072 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 11073 { 11074 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 11075 retprobe ? "kretprobes" : "kprobes", probe_name); 11076 } 11077 11078 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11079 { 11080 char file[256]; 11081 11082 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11083 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 11084 11085 return parse_uint_from_file(file, "%d\n"); 11086 } 11087 11088 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 11089 const char *kfunc_name, size_t offset, int pid) 11090 { 11091 const size_t attr_sz = sizeof(struct perf_event_attr); 11092 struct perf_event_attr attr; 11093 int type, pfd, err; 11094 11095 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 11096 if (err < 0) { 11097 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 11098 kfunc_name, offset, 11099 errstr(err)); 11100 return err; 11101 } 11102 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 11103 if (type < 0) { 11104 err = type; 11105 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 11106 kfunc_name, offset, 11107 errstr(err)); 11108 goto err_clean_legacy; 11109 } 11110 11111 memset(&attr, 0, attr_sz); 11112 attr.size = attr_sz; 11113 attr.config = type; 11114 attr.type = PERF_TYPE_TRACEPOINT; 11115 11116 pfd = syscall(__NR_perf_event_open, &attr, 11117 pid < 0 ? -1 : pid, /* pid */ 11118 pid == -1 ? 0 : -1, /* cpu */ 11119 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11120 if (pfd < 0) { 11121 err = -errno; 11122 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 11123 errstr(err)); 11124 goto err_clean_legacy; 11125 } 11126 return pfd; 11127 11128 err_clean_legacy: 11129 /* Clear the newly added legacy kprobe_event */ 11130 remove_kprobe_event_legacy(probe_name, retprobe); 11131 return err; 11132 } 11133 11134 static const char *arch_specific_syscall_pfx(void) 11135 { 11136 #if defined(__x86_64__) 11137 return "x64"; 11138 #elif defined(__i386__) 11139 return "ia32"; 11140 #elif defined(__s390x__) 11141 return "s390x"; 11142 #elif defined(__s390__) 11143 return "s390"; 11144 #elif defined(__arm__) 11145 return "arm"; 11146 #elif defined(__aarch64__) 11147 return "arm64"; 11148 #elif defined(__mips__) 11149 return "mips"; 11150 #elif defined(__riscv) 11151 return "riscv"; 11152 #elif defined(__powerpc__) 11153 return "powerpc"; 11154 #elif defined(__powerpc64__) 11155 return "powerpc64"; 11156 #else 11157 return NULL; 11158 #endif 11159 } 11160 11161 int probe_kern_syscall_wrapper(int token_fd) 11162 { 11163 char syscall_name[64]; 11164 const char *ksys_pfx; 11165 11166 ksys_pfx = arch_specific_syscall_pfx(); 11167 if (!ksys_pfx) 11168 return 0; 11169 11170 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11171 11172 if (determine_kprobe_perf_type() >= 0) { 11173 int pfd; 11174 11175 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11176 if (pfd >= 0) 11177 close(pfd); 11178 11179 return pfd >= 0 ? 1 : 0; 11180 } else { /* legacy mode */ 11181 char probe_name[128]; 11182 11183 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11184 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11185 return 0; 11186 11187 (void)remove_kprobe_event_legacy(probe_name, false); 11188 return 1; 11189 } 11190 } 11191 11192 struct bpf_link * 11193 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11194 const char *func_name, 11195 const struct bpf_kprobe_opts *opts) 11196 { 11197 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11198 enum probe_attach_mode attach_mode; 11199 char *legacy_probe = NULL; 11200 struct bpf_link *link; 11201 size_t offset; 11202 bool retprobe, legacy; 11203 int pfd, err; 11204 11205 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11206 return libbpf_err_ptr(-EINVAL); 11207 11208 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11209 retprobe = OPTS_GET(opts, retprobe, false); 11210 offset = OPTS_GET(opts, offset, 0); 11211 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11212 11213 legacy = determine_kprobe_perf_type() < 0; 11214 switch (attach_mode) { 11215 case PROBE_ATTACH_MODE_LEGACY: 11216 legacy = true; 11217 pe_opts.force_ioctl_attach = true; 11218 break; 11219 case PROBE_ATTACH_MODE_PERF: 11220 if (legacy) 11221 return libbpf_err_ptr(-ENOTSUP); 11222 pe_opts.force_ioctl_attach = true; 11223 break; 11224 case PROBE_ATTACH_MODE_LINK: 11225 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11226 return libbpf_err_ptr(-ENOTSUP); 11227 break; 11228 case PROBE_ATTACH_MODE_DEFAULT: 11229 break; 11230 default: 11231 return libbpf_err_ptr(-EINVAL); 11232 } 11233 11234 if (!legacy) { 11235 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11236 func_name, offset, 11237 -1 /* pid */, 0 /* ref_ctr_off */); 11238 } else { 11239 char probe_name[256]; 11240 11241 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 11242 func_name, offset); 11243 11244 legacy_probe = strdup(probe_name); 11245 if (!legacy_probe) 11246 return libbpf_err_ptr(-ENOMEM); 11247 11248 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11249 offset, -1 /* pid */); 11250 } 11251 if (pfd < 0) { 11252 err = -errno; 11253 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11254 prog->name, retprobe ? "kretprobe" : "kprobe", 11255 func_name, offset, 11256 errstr(err)); 11257 goto err_out; 11258 } 11259 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11260 err = libbpf_get_error(link); 11261 if (err) { 11262 close(pfd); 11263 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11264 prog->name, retprobe ? "kretprobe" : "kprobe", 11265 func_name, offset, 11266 errstr(err)); 11267 goto err_clean_legacy; 11268 } 11269 if (legacy) { 11270 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11271 11272 perf_link->legacy_probe_name = legacy_probe; 11273 perf_link->legacy_is_kprobe = true; 11274 perf_link->legacy_is_retprobe = retprobe; 11275 } 11276 11277 return link; 11278 11279 err_clean_legacy: 11280 if (legacy) 11281 remove_kprobe_event_legacy(legacy_probe, retprobe); 11282 err_out: 11283 free(legacy_probe); 11284 return libbpf_err_ptr(err); 11285 } 11286 11287 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11288 bool retprobe, 11289 const char *func_name) 11290 { 11291 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11292 .retprobe = retprobe, 11293 ); 11294 11295 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11296 } 11297 11298 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11299 const char *syscall_name, 11300 const struct bpf_ksyscall_opts *opts) 11301 { 11302 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11303 char func_name[128]; 11304 11305 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11306 return libbpf_err_ptr(-EINVAL); 11307 11308 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11309 /* arch_specific_syscall_pfx() should never return NULL here 11310 * because it is guarded by kernel_supports(). However, since 11311 * compiler does not know that we have an explicit conditional 11312 * as well. 11313 */ 11314 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11315 arch_specific_syscall_pfx() ? : "", syscall_name); 11316 } else { 11317 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11318 } 11319 11320 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11321 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11322 11323 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11324 } 11325 11326 /* Adapted from perf/util/string.c */ 11327 bool glob_match(const char *str, const char *pat) 11328 { 11329 while (*str && *pat && *pat != '*') { 11330 if (*pat == '?') { /* Matches any single character */ 11331 str++; 11332 pat++; 11333 continue; 11334 } 11335 if (*str != *pat) 11336 return false; 11337 str++; 11338 pat++; 11339 } 11340 /* Check wild card */ 11341 if (*pat == '*') { 11342 while (*pat == '*') 11343 pat++; 11344 if (!*pat) /* Tail wild card matches all */ 11345 return true; 11346 while (*str) 11347 if (glob_match(str++, pat)) 11348 return true; 11349 } 11350 return !*str && !*pat; 11351 } 11352 11353 struct kprobe_multi_resolve { 11354 const char *pattern; 11355 unsigned long *addrs; 11356 size_t cap; 11357 size_t cnt; 11358 }; 11359 11360 struct avail_kallsyms_data { 11361 char **syms; 11362 size_t cnt; 11363 struct kprobe_multi_resolve *res; 11364 }; 11365 11366 static int avail_func_cmp(const void *a, const void *b) 11367 { 11368 return strcmp(*(const char **)a, *(const char **)b); 11369 } 11370 11371 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11372 const char *sym_name, void *ctx) 11373 { 11374 struct avail_kallsyms_data *data = ctx; 11375 struct kprobe_multi_resolve *res = data->res; 11376 int err; 11377 11378 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11379 return 0; 11380 11381 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11382 if (err) 11383 return err; 11384 11385 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11386 return 0; 11387 } 11388 11389 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11390 { 11391 const char *available_functions_file = tracefs_available_filter_functions(); 11392 struct avail_kallsyms_data data; 11393 char sym_name[500]; 11394 FILE *f; 11395 int err = 0, ret, i; 11396 char **syms = NULL; 11397 size_t cap = 0, cnt = 0; 11398 11399 f = fopen(available_functions_file, "re"); 11400 if (!f) { 11401 err = -errno; 11402 pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err)); 11403 return err; 11404 } 11405 11406 while (true) { 11407 char *name; 11408 11409 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11410 if (ret == EOF && feof(f)) 11411 break; 11412 11413 if (ret != 1) { 11414 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11415 err = -EINVAL; 11416 goto cleanup; 11417 } 11418 11419 if (!glob_match(sym_name, res->pattern)) 11420 continue; 11421 11422 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11423 if (err) 11424 goto cleanup; 11425 11426 name = strdup(sym_name); 11427 if (!name) { 11428 err = -errno; 11429 goto cleanup; 11430 } 11431 11432 syms[cnt++] = name; 11433 } 11434 11435 /* no entries found, bail out */ 11436 if (cnt == 0) { 11437 err = -ENOENT; 11438 goto cleanup; 11439 } 11440 11441 /* sort available functions */ 11442 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11443 11444 data.syms = syms; 11445 data.res = res; 11446 data.cnt = cnt; 11447 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11448 11449 if (res->cnt == 0) 11450 err = -ENOENT; 11451 11452 cleanup: 11453 for (i = 0; i < cnt; i++) 11454 free((char *)syms[i]); 11455 free(syms); 11456 11457 fclose(f); 11458 return err; 11459 } 11460 11461 static bool has_available_filter_functions_addrs(void) 11462 { 11463 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11464 } 11465 11466 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11467 { 11468 const char *available_path = tracefs_available_filter_functions_addrs(); 11469 char sym_name[500]; 11470 FILE *f; 11471 int ret, err = 0; 11472 unsigned long long sym_addr; 11473 11474 f = fopen(available_path, "re"); 11475 if (!f) { 11476 err = -errno; 11477 pr_warn("failed to open %s: %s\n", available_path, errstr(err)); 11478 return err; 11479 } 11480 11481 while (true) { 11482 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11483 if (ret == EOF && feof(f)) 11484 break; 11485 11486 if (ret != 2) { 11487 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11488 ret); 11489 err = -EINVAL; 11490 goto cleanup; 11491 } 11492 11493 if (!glob_match(sym_name, res->pattern)) 11494 continue; 11495 11496 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11497 sizeof(*res->addrs), res->cnt + 1); 11498 if (err) 11499 goto cleanup; 11500 11501 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11502 } 11503 11504 if (res->cnt == 0) 11505 err = -ENOENT; 11506 11507 cleanup: 11508 fclose(f); 11509 return err; 11510 } 11511 11512 struct bpf_link * 11513 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11514 const char *pattern, 11515 const struct bpf_kprobe_multi_opts *opts) 11516 { 11517 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11518 struct kprobe_multi_resolve res = { 11519 .pattern = pattern, 11520 }; 11521 enum bpf_attach_type attach_type; 11522 struct bpf_link *link = NULL; 11523 const unsigned long *addrs; 11524 int err, link_fd, prog_fd; 11525 bool retprobe, session; 11526 const __u64 *cookies; 11527 const char **syms; 11528 size_t cnt; 11529 11530 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11531 return libbpf_err_ptr(-EINVAL); 11532 11533 prog_fd = bpf_program__fd(prog); 11534 if (prog_fd < 0) { 11535 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11536 prog->name); 11537 return libbpf_err_ptr(-EINVAL); 11538 } 11539 11540 syms = OPTS_GET(opts, syms, false); 11541 addrs = OPTS_GET(opts, addrs, false); 11542 cnt = OPTS_GET(opts, cnt, false); 11543 cookies = OPTS_GET(opts, cookies, false); 11544 11545 if (!pattern && !addrs && !syms) 11546 return libbpf_err_ptr(-EINVAL); 11547 if (pattern && (addrs || syms || cookies || cnt)) 11548 return libbpf_err_ptr(-EINVAL); 11549 if (!pattern && !cnt) 11550 return libbpf_err_ptr(-EINVAL); 11551 if (addrs && syms) 11552 return libbpf_err_ptr(-EINVAL); 11553 11554 if (pattern) { 11555 if (has_available_filter_functions_addrs()) 11556 err = libbpf_available_kprobes_parse(&res); 11557 else 11558 err = libbpf_available_kallsyms_parse(&res); 11559 if (err) 11560 goto error; 11561 addrs = res.addrs; 11562 cnt = res.cnt; 11563 } 11564 11565 retprobe = OPTS_GET(opts, retprobe, false); 11566 session = OPTS_GET(opts, session, false); 11567 11568 if (retprobe && session) 11569 return libbpf_err_ptr(-EINVAL); 11570 11571 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI; 11572 11573 lopts.kprobe_multi.syms = syms; 11574 lopts.kprobe_multi.addrs = addrs; 11575 lopts.kprobe_multi.cookies = cookies; 11576 lopts.kprobe_multi.cnt = cnt; 11577 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11578 11579 link = calloc(1, sizeof(*link)); 11580 if (!link) { 11581 err = -ENOMEM; 11582 goto error; 11583 } 11584 link->detach = &bpf_link__detach_fd; 11585 11586 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 11587 if (link_fd < 0) { 11588 err = -errno; 11589 pr_warn("prog '%s': failed to attach: %s\n", 11590 prog->name, errstr(err)); 11591 goto error; 11592 } 11593 link->fd = link_fd; 11594 free(res.addrs); 11595 return link; 11596 11597 error: 11598 free(link); 11599 free(res.addrs); 11600 return libbpf_err_ptr(err); 11601 } 11602 11603 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11604 { 11605 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11606 unsigned long offset = 0; 11607 const char *func_name; 11608 char *func; 11609 int n; 11610 11611 *link = NULL; 11612 11613 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11614 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11615 return 0; 11616 11617 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11618 if (opts.retprobe) 11619 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11620 else 11621 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11622 11623 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11624 if (n < 1) { 11625 pr_warn("kprobe name is invalid: %s\n", func_name); 11626 return -EINVAL; 11627 } 11628 if (opts.retprobe && offset != 0) { 11629 free(func); 11630 pr_warn("kretprobes do not support offset specification\n"); 11631 return -EINVAL; 11632 } 11633 11634 opts.offset = offset; 11635 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11636 free(func); 11637 return libbpf_get_error(*link); 11638 } 11639 11640 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11641 { 11642 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11643 const char *syscall_name; 11644 11645 *link = NULL; 11646 11647 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11648 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11649 return 0; 11650 11651 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11652 if (opts.retprobe) 11653 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11654 else 11655 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11656 11657 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11658 return *link ? 0 : -errno; 11659 } 11660 11661 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11662 { 11663 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11664 const char *spec; 11665 char *pattern; 11666 int n; 11667 11668 *link = NULL; 11669 11670 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11671 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11672 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11673 return 0; 11674 11675 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11676 if (opts.retprobe) 11677 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11678 else 11679 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11680 11681 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11682 if (n < 1) { 11683 pr_warn("kprobe multi pattern is invalid: %s\n", spec); 11684 return -EINVAL; 11685 } 11686 11687 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11688 free(pattern); 11689 return libbpf_get_error(*link); 11690 } 11691 11692 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, 11693 struct bpf_link **link) 11694 { 11695 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true); 11696 const char *spec; 11697 char *pattern; 11698 int n; 11699 11700 *link = NULL; 11701 11702 /* no auto-attach for SEC("kprobe.session") */ 11703 if (strcmp(prog->sec_name, "kprobe.session") == 0) 11704 return 0; 11705 11706 spec = prog->sec_name + sizeof("kprobe.session/") - 1; 11707 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11708 if (n < 1) { 11709 pr_warn("kprobe session pattern is invalid: %s\n", spec); 11710 return -EINVAL; 11711 } 11712 11713 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11714 free(pattern); 11715 return *link ? 0 : -errno; 11716 } 11717 11718 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11719 { 11720 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11721 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11722 int n, ret = -EINVAL; 11723 11724 *link = NULL; 11725 11726 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11727 &probe_type, &binary_path, &func_name); 11728 switch (n) { 11729 case 1: 11730 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11731 ret = 0; 11732 break; 11733 case 3: 11734 opts.session = str_has_pfx(probe_type, "uprobe.session"); 11735 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi"); 11736 11737 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11738 ret = libbpf_get_error(*link); 11739 break; 11740 default: 11741 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11742 prog->sec_name); 11743 break; 11744 } 11745 free(probe_type); 11746 free(binary_path); 11747 free(func_name); 11748 return ret; 11749 } 11750 11751 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11752 const char *binary_path, uint64_t offset) 11753 { 11754 int i; 11755 11756 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11757 11758 /* sanitize binary_path in the probe name */ 11759 for (i = 0; buf[i]; i++) { 11760 if (!isalnum(buf[i])) 11761 buf[i] = '_'; 11762 } 11763 } 11764 11765 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11766 const char *binary_path, size_t offset) 11767 { 11768 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11769 retprobe ? 'r' : 'p', 11770 retprobe ? "uretprobes" : "uprobes", 11771 probe_name, binary_path, offset); 11772 } 11773 11774 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11775 { 11776 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11777 retprobe ? "uretprobes" : "uprobes", probe_name); 11778 } 11779 11780 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11781 { 11782 char file[512]; 11783 11784 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11785 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11786 11787 return parse_uint_from_file(file, "%d\n"); 11788 } 11789 11790 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11791 const char *binary_path, size_t offset, int pid) 11792 { 11793 const size_t attr_sz = sizeof(struct perf_event_attr); 11794 struct perf_event_attr attr; 11795 int type, pfd, err; 11796 11797 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11798 if (err < 0) { 11799 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n", 11800 binary_path, (size_t)offset, errstr(err)); 11801 return err; 11802 } 11803 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11804 if (type < 0) { 11805 err = type; 11806 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n", 11807 binary_path, offset, errstr(err)); 11808 goto err_clean_legacy; 11809 } 11810 11811 memset(&attr, 0, attr_sz); 11812 attr.size = attr_sz; 11813 attr.config = type; 11814 attr.type = PERF_TYPE_TRACEPOINT; 11815 11816 pfd = syscall(__NR_perf_event_open, &attr, 11817 pid < 0 ? -1 : pid, /* pid */ 11818 pid == -1 ? 0 : -1, /* cpu */ 11819 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11820 if (pfd < 0) { 11821 err = -errno; 11822 pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err)); 11823 goto err_clean_legacy; 11824 } 11825 return pfd; 11826 11827 err_clean_legacy: 11828 /* Clear the newly added legacy uprobe_event */ 11829 remove_uprobe_event_legacy(probe_name, retprobe); 11830 return err; 11831 } 11832 11833 /* Find offset of function name in archive specified by path. Currently 11834 * supported are .zip files that do not compress their contents, as used on 11835 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11836 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11837 * library functions. 11838 * 11839 * An overview of the APK format specifically provided here: 11840 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11841 */ 11842 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11843 const char *func_name) 11844 { 11845 struct zip_archive *archive; 11846 struct zip_entry entry; 11847 long ret; 11848 Elf *elf; 11849 11850 archive = zip_archive_open(archive_path); 11851 if (IS_ERR(archive)) { 11852 ret = PTR_ERR(archive); 11853 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11854 return ret; 11855 } 11856 11857 ret = zip_archive_find_entry(archive, file_name, &entry); 11858 if (ret) { 11859 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11860 archive_path, ret); 11861 goto out; 11862 } 11863 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11864 (unsigned long)entry.data_offset); 11865 11866 if (entry.compression) { 11867 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11868 archive_path); 11869 ret = -LIBBPF_ERRNO__FORMAT; 11870 goto out; 11871 } 11872 11873 elf = elf_memory((void *)entry.data, entry.data_length); 11874 if (!elf) { 11875 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11876 elf_errmsg(-1)); 11877 ret = -LIBBPF_ERRNO__LIBELF; 11878 goto out; 11879 } 11880 11881 ret = elf_find_func_offset(elf, file_name, func_name); 11882 if (ret > 0) { 11883 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11884 func_name, file_name, archive_path, entry.data_offset, ret, 11885 ret + entry.data_offset); 11886 ret += entry.data_offset; 11887 } 11888 elf_end(elf); 11889 11890 out: 11891 zip_archive_close(archive); 11892 return ret; 11893 } 11894 11895 static const char *arch_specific_lib_paths(void) 11896 { 11897 /* 11898 * Based on https://packages.debian.org/sid/libc6. 11899 * 11900 * Assume that the traced program is built for the same architecture 11901 * as libbpf, which should cover the vast majority of cases. 11902 */ 11903 #if defined(__x86_64__) 11904 return "/lib/x86_64-linux-gnu"; 11905 #elif defined(__i386__) 11906 return "/lib/i386-linux-gnu"; 11907 #elif defined(__s390x__) 11908 return "/lib/s390x-linux-gnu"; 11909 #elif defined(__s390__) 11910 return "/lib/s390-linux-gnu"; 11911 #elif defined(__arm__) && defined(__SOFTFP__) 11912 return "/lib/arm-linux-gnueabi"; 11913 #elif defined(__arm__) && !defined(__SOFTFP__) 11914 return "/lib/arm-linux-gnueabihf"; 11915 #elif defined(__aarch64__) 11916 return "/lib/aarch64-linux-gnu"; 11917 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11918 return "/lib/mips64el-linux-gnuabi64"; 11919 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11920 return "/lib/mipsel-linux-gnu"; 11921 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11922 return "/lib/powerpc64le-linux-gnu"; 11923 #elif defined(__sparc__) && defined(__arch64__) 11924 return "/lib/sparc64-linux-gnu"; 11925 #elif defined(__riscv) && __riscv_xlen == 64 11926 return "/lib/riscv64-linux-gnu"; 11927 #else 11928 return NULL; 11929 #endif 11930 } 11931 11932 /* Get full path to program/shared library. */ 11933 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11934 { 11935 const char *search_paths[3] = {}; 11936 int i, perm; 11937 11938 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11939 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11940 search_paths[1] = "/usr/lib64:/usr/lib"; 11941 search_paths[2] = arch_specific_lib_paths(); 11942 perm = R_OK; 11943 } else { 11944 search_paths[0] = getenv("PATH"); 11945 search_paths[1] = "/usr/bin:/usr/sbin"; 11946 perm = R_OK | X_OK; 11947 } 11948 11949 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11950 const char *s; 11951 11952 if (!search_paths[i]) 11953 continue; 11954 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11955 char *next_path; 11956 int seg_len; 11957 11958 if (s[0] == ':') 11959 s++; 11960 next_path = strchr(s, ':'); 11961 seg_len = next_path ? next_path - s : strlen(s); 11962 if (!seg_len) 11963 continue; 11964 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11965 /* ensure it has required permissions */ 11966 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11967 continue; 11968 pr_debug("resolved '%s' to '%s'\n", file, result); 11969 return 0; 11970 } 11971 } 11972 return -ENOENT; 11973 } 11974 11975 struct bpf_link * 11976 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11977 pid_t pid, 11978 const char *path, 11979 const char *func_pattern, 11980 const struct bpf_uprobe_multi_opts *opts) 11981 { 11982 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11983 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11984 unsigned long *resolved_offsets = NULL; 11985 enum bpf_attach_type attach_type; 11986 int err = 0, link_fd, prog_fd; 11987 struct bpf_link *link = NULL; 11988 char full_path[PATH_MAX]; 11989 bool retprobe, session; 11990 const __u64 *cookies; 11991 const char **syms; 11992 size_t cnt; 11993 11994 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11995 return libbpf_err_ptr(-EINVAL); 11996 11997 prog_fd = bpf_program__fd(prog); 11998 if (prog_fd < 0) { 11999 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12000 prog->name); 12001 return libbpf_err_ptr(-EINVAL); 12002 } 12003 12004 syms = OPTS_GET(opts, syms, NULL); 12005 offsets = OPTS_GET(opts, offsets, NULL); 12006 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 12007 cookies = OPTS_GET(opts, cookies, NULL); 12008 cnt = OPTS_GET(opts, cnt, 0); 12009 retprobe = OPTS_GET(opts, retprobe, false); 12010 session = OPTS_GET(opts, session, false); 12011 12012 /* 12013 * User can specify 2 mutually exclusive set of inputs: 12014 * 12015 * 1) use only path/func_pattern/pid arguments 12016 * 12017 * 2) use path/pid with allowed combinations of: 12018 * syms/offsets/ref_ctr_offsets/cookies/cnt 12019 * 12020 * - syms and offsets are mutually exclusive 12021 * - ref_ctr_offsets and cookies are optional 12022 * 12023 * Any other usage results in error. 12024 */ 12025 12026 if (!path) 12027 return libbpf_err_ptr(-EINVAL); 12028 if (!func_pattern && cnt == 0) 12029 return libbpf_err_ptr(-EINVAL); 12030 12031 if (func_pattern) { 12032 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 12033 return libbpf_err_ptr(-EINVAL); 12034 } else { 12035 if (!!syms == !!offsets) 12036 return libbpf_err_ptr(-EINVAL); 12037 } 12038 12039 if (retprobe && session) 12040 return libbpf_err_ptr(-EINVAL); 12041 12042 if (func_pattern) { 12043 if (!strchr(path, '/')) { 12044 err = resolve_full_path(path, full_path, sizeof(full_path)); 12045 if (err) { 12046 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12047 prog->name, path, errstr(err)); 12048 return libbpf_err_ptr(err); 12049 } 12050 path = full_path; 12051 } 12052 12053 err = elf_resolve_pattern_offsets(path, func_pattern, 12054 &resolved_offsets, &cnt); 12055 if (err < 0) 12056 return libbpf_err_ptr(err); 12057 offsets = resolved_offsets; 12058 } else if (syms) { 12059 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 12060 if (err < 0) 12061 return libbpf_err_ptr(err); 12062 offsets = resolved_offsets; 12063 } 12064 12065 attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI; 12066 12067 lopts.uprobe_multi.path = path; 12068 lopts.uprobe_multi.offsets = offsets; 12069 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 12070 lopts.uprobe_multi.cookies = cookies; 12071 lopts.uprobe_multi.cnt = cnt; 12072 lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0; 12073 12074 if (pid == 0) 12075 pid = getpid(); 12076 if (pid > 0) 12077 lopts.uprobe_multi.pid = pid; 12078 12079 link = calloc(1, sizeof(*link)); 12080 if (!link) { 12081 err = -ENOMEM; 12082 goto error; 12083 } 12084 link->detach = &bpf_link__detach_fd; 12085 12086 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 12087 if (link_fd < 0) { 12088 err = -errno; 12089 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 12090 prog->name, errstr(err)); 12091 goto error; 12092 } 12093 link->fd = link_fd; 12094 free(resolved_offsets); 12095 return link; 12096 12097 error: 12098 free(resolved_offsets); 12099 free(link); 12100 return libbpf_err_ptr(err); 12101 } 12102 12103 LIBBPF_API struct bpf_link * 12104 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 12105 const char *binary_path, size_t func_offset, 12106 const struct bpf_uprobe_opts *opts) 12107 { 12108 const char *archive_path = NULL, *archive_sep = NULL; 12109 char *legacy_probe = NULL; 12110 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12111 enum probe_attach_mode attach_mode; 12112 char full_path[PATH_MAX]; 12113 struct bpf_link *link; 12114 size_t ref_ctr_off; 12115 int pfd, err; 12116 bool retprobe, legacy; 12117 const char *func_name; 12118 12119 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12120 return libbpf_err_ptr(-EINVAL); 12121 12122 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 12123 retprobe = OPTS_GET(opts, retprobe, false); 12124 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 12125 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12126 12127 if (!binary_path) 12128 return libbpf_err_ptr(-EINVAL); 12129 12130 /* Check if "binary_path" refers to an archive. */ 12131 archive_sep = strstr(binary_path, "!/"); 12132 if (archive_sep) { 12133 full_path[0] = '\0'; 12134 libbpf_strlcpy(full_path, binary_path, 12135 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 12136 archive_path = full_path; 12137 binary_path = archive_sep + 2; 12138 } else if (!strchr(binary_path, '/')) { 12139 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 12140 if (err) { 12141 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12142 prog->name, binary_path, errstr(err)); 12143 return libbpf_err_ptr(err); 12144 } 12145 binary_path = full_path; 12146 } 12147 func_name = OPTS_GET(opts, func_name, NULL); 12148 if (func_name) { 12149 long sym_off; 12150 12151 if (archive_path) { 12152 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 12153 func_name); 12154 binary_path = archive_path; 12155 } else { 12156 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 12157 } 12158 if (sym_off < 0) 12159 return libbpf_err_ptr(sym_off); 12160 func_offset += sym_off; 12161 } 12162 12163 legacy = determine_uprobe_perf_type() < 0; 12164 switch (attach_mode) { 12165 case PROBE_ATTACH_MODE_LEGACY: 12166 legacy = true; 12167 pe_opts.force_ioctl_attach = true; 12168 break; 12169 case PROBE_ATTACH_MODE_PERF: 12170 if (legacy) 12171 return libbpf_err_ptr(-ENOTSUP); 12172 pe_opts.force_ioctl_attach = true; 12173 break; 12174 case PROBE_ATTACH_MODE_LINK: 12175 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 12176 return libbpf_err_ptr(-ENOTSUP); 12177 break; 12178 case PROBE_ATTACH_MODE_DEFAULT: 12179 break; 12180 default: 12181 return libbpf_err_ptr(-EINVAL); 12182 } 12183 12184 if (!legacy) { 12185 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12186 func_offset, pid, ref_ctr_off); 12187 } else { 12188 char probe_name[PATH_MAX + 64]; 12189 12190 if (ref_ctr_off) 12191 return libbpf_err_ptr(-EINVAL); 12192 12193 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 12194 binary_path, func_offset); 12195 12196 legacy_probe = strdup(probe_name); 12197 if (!legacy_probe) 12198 return libbpf_err_ptr(-ENOMEM); 12199 12200 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12201 binary_path, func_offset, pid); 12202 } 12203 if (pfd < 0) { 12204 err = -errno; 12205 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12206 prog->name, retprobe ? "uretprobe" : "uprobe", 12207 binary_path, func_offset, 12208 errstr(err)); 12209 goto err_out; 12210 } 12211 12212 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12213 err = libbpf_get_error(link); 12214 if (err) { 12215 close(pfd); 12216 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12217 prog->name, retprobe ? "uretprobe" : "uprobe", 12218 binary_path, func_offset, 12219 errstr(err)); 12220 goto err_clean_legacy; 12221 } 12222 if (legacy) { 12223 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12224 12225 perf_link->legacy_probe_name = legacy_probe; 12226 perf_link->legacy_is_kprobe = false; 12227 perf_link->legacy_is_retprobe = retprobe; 12228 } 12229 return link; 12230 12231 err_clean_legacy: 12232 if (legacy) 12233 remove_uprobe_event_legacy(legacy_probe, retprobe); 12234 err_out: 12235 free(legacy_probe); 12236 return libbpf_err_ptr(err); 12237 } 12238 12239 /* Format of u[ret]probe section definition supporting auto-attach: 12240 * u[ret]probe/binary:function[+offset] 12241 * 12242 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12243 * full binary path via bpf_program__attach_uprobe_opts. 12244 * 12245 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12246 * specified (and auto-attach is not possible) or the above format is specified for 12247 * auto-attach. 12248 */ 12249 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12250 { 12251 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12252 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12253 int n, c, ret = -EINVAL; 12254 long offset = 0; 12255 12256 *link = NULL; 12257 12258 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12259 &probe_type, &binary_path, &func_name); 12260 switch (n) { 12261 case 1: 12262 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12263 ret = 0; 12264 break; 12265 case 2: 12266 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12267 prog->name, prog->sec_name); 12268 break; 12269 case 3: 12270 /* check if user specifies `+offset`, if yes, this should be 12271 * the last part of the string, make sure sscanf read to EOL 12272 */ 12273 func_off = strrchr(func_name, '+'); 12274 if (func_off) { 12275 n = sscanf(func_off, "+%li%n", &offset, &c); 12276 if (n == 1 && *(func_off + c) == '\0') 12277 func_off[0] = '\0'; 12278 else 12279 offset = 0; 12280 } 12281 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12282 strcmp(probe_type, "uretprobe.s") == 0; 12283 if (opts.retprobe && offset != 0) { 12284 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12285 prog->name); 12286 break; 12287 } 12288 opts.func_name = func_name; 12289 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12290 ret = libbpf_get_error(*link); 12291 break; 12292 default: 12293 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12294 prog->sec_name); 12295 break; 12296 } 12297 free(probe_type); 12298 free(binary_path); 12299 free(func_name); 12300 12301 return ret; 12302 } 12303 12304 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12305 bool retprobe, pid_t pid, 12306 const char *binary_path, 12307 size_t func_offset) 12308 { 12309 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12310 12311 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12312 } 12313 12314 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12315 pid_t pid, const char *binary_path, 12316 const char *usdt_provider, const char *usdt_name, 12317 const struct bpf_usdt_opts *opts) 12318 { 12319 char resolved_path[512]; 12320 struct bpf_object *obj = prog->obj; 12321 struct bpf_link *link; 12322 __u64 usdt_cookie; 12323 int err; 12324 12325 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12326 return libbpf_err_ptr(-EINVAL); 12327 12328 if (bpf_program__fd(prog) < 0) { 12329 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12330 prog->name); 12331 return libbpf_err_ptr(-EINVAL); 12332 } 12333 12334 if (!binary_path) 12335 return libbpf_err_ptr(-EINVAL); 12336 12337 if (!strchr(binary_path, '/')) { 12338 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12339 if (err) { 12340 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12341 prog->name, binary_path, errstr(err)); 12342 return libbpf_err_ptr(err); 12343 } 12344 binary_path = resolved_path; 12345 } 12346 12347 /* USDT manager is instantiated lazily on first USDT attach. It will 12348 * be destroyed together with BPF object in bpf_object__close(). 12349 */ 12350 if (IS_ERR(obj->usdt_man)) 12351 return libbpf_ptr(obj->usdt_man); 12352 if (!obj->usdt_man) { 12353 obj->usdt_man = usdt_manager_new(obj); 12354 if (IS_ERR(obj->usdt_man)) 12355 return libbpf_ptr(obj->usdt_man); 12356 } 12357 12358 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12359 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12360 usdt_provider, usdt_name, usdt_cookie); 12361 err = libbpf_get_error(link); 12362 if (err) 12363 return libbpf_err_ptr(err); 12364 return link; 12365 } 12366 12367 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12368 { 12369 char *path = NULL, *provider = NULL, *name = NULL; 12370 const char *sec_name; 12371 int n, err; 12372 12373 sec_name = bpf_program__section_name(prog); 12374 if (strcmp(sec_name, "usdt") == 0) { 12375 /* no auto-attach for just SEC("usdt") */ 12376 *link = NULL; 12377 return 0; 12378 } 12379 12380 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12381 if (n != 3) { 12382 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12383 sec_name); 12384 err = -EINVAL; 12385 } else { 12386 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12387 provider, name, NULL); 12388 err = libbpf_get_error(*link); 12389 } 12390 free(path); 12391 free(provider); 12392 free(name); 12393 return err; 12394 } 12395 12396 static int determine_tracepoint_id(const char *tp_category, 12397 const char *tp_name) 12398 { 12399 char file[PATH_MAX]; 12400 int ret; 12401 12402 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12403 tracefs_path(), tp_category, tp_name); 12404 if (ret < 0) 12405 return -errno; 12406 if (ret >= sizeof(file)) { 12407 pr_debug("tracepoint %s/%s path is too long\n", 12408 tp_category, tp_name); 12409 return -E2BIG; 12410 } 12411 return parse_uint_from_file(file, "%d\n"); 12412 } 12413 12414 static int perf_event_open_tracepoint(const char *tp_category, 12415 const char *tp_name) 12416 { 12417 const size_t attr_sz = sizeof(struct perf_event_attr); 12418 struct perf_event_attr attr; 12419 int tp_id, pfd, err; 12420 12421 tp_id = determine_tracepoint_id(tp_category, tp_name); 12422 if (tp_id < 0) { 12423 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12424 tp_category, tp_name, 12425 errstr(tp_id)); 12426 return tp_id; 12427 } 12428 12429 memset(&attr, 0, attr_sz); 12430 attr.type = PERF_TYPE_TRACEPOINT; 12431 attr.size = attr_sz; 12432 attr.config = tp_id; 12433 12434 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12435 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12436 if (pfd < 0) { 12437 err = -errno; 12438 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12439 tp_category, tp_name, 12440 errstr(err)); 12441 return err; 12442 } 12443 return pfd; 12444 } 12445 12446 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12447 const char *tp_category, 12448 const char *tp_name, 12449 const struct bpf_tracepoint_opts *opts) 12450 { 12451 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12452 struct bpf_link *link; 12453 int pfd, err; 12454 12455 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12456 return libbpf_err_ptr(-EINVAL); 12457 12458 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12459 12460 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12461 if (pfd < 0) { 12462 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12463 prog->name, tp_category, tp_name, 12464 errstr(pfd)); 12465 return libbpf_err_ptr(pfd); 12466 } 12467 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12468 err = libbpf_get_error(link); 12469 if (err) { 12470 close(pfd); 12471 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12472 prog->name, tp_category, tp_name, 12473 errstr(err)); 12474 return libbpf_err_ptr(err); 12475 } 12476 return link; 12477 } 12478 12479 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12480 const char *tp_category, 12481 const char *tp_name) 12482 { 12483 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12484 } 12485 12486 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12487 { 12488 char *sec_name, *tp_cat, *tp_name; 12489 12490 *link = NULL; 12491 12492 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12493 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12494 return 0; 12495 12496 sec_name = strdup(prog->sec_name); 12497 if (!sec_name) 12498 return -ENOMEM; 12499 12500 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12501 if (str_has_pfx(prog->sec_name, "tp/")) 12502 tp_cat = sec_name + sizeof("tp/") - 1; 12503 else 12504 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12505 tp_name = strchr(tp_cat, '/'); 12506 if (!tp_name) { 12507 free(sec_name); 12508 return -EINVAL; 12509 } 12510 *tp_name = '\0'; 12511 tp_name++; 12512 12513 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12514 free(sec_name); 12515 return libbpf_get_error(*link); 12516 } 12517 12518 struct bpf_link * 12519 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog, 12520 const char *tp_name, 12521 struct bpf_raw_tracepoint_opts *opts) 12522 { 12523 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts); 12524 struct bpf_link *link; 12525 int prog_fd, pfd; 12526 12527 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts)) 12528 return libbpf_err_ptr(-EINVAL); 12529 12530 prog_fd = bpf_program__fd(prog); 12531 if (prog_fd < 0) { 12532 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12533 return libbpf_err_ptr(-EINVAL); 12534 } 12535 12536 link = calloc(1, sizeof(*link)); 12537 if (!link) 12538 return libbpf_err_ptr(-ENOMEM); 12539 link->detach = &bpf_link__detach_fd; 12540 12541 raw_opts.tp_name = tp_name; 12542 raw_opts.cookie = OPTS_GET(opts, cookie, 0); 12543 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts); 12544 if (pfd < 0) { 12545 pfd = -errno; 12546 free(link); 12547 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12548 prog->name, tp_name, errstr(pfd)); 12549 return libbpf_err_ptr(pfd); 12550 } 12551 link->fd = pfd; 12552 return link; 12553 } 12554 12555 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12556 const char *tp_name) 12557 { 12558 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL); 12559 } 12560 12561 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12562 { 12563 static const char *const prefixes[] = { 12564 "raw_tp", 12565 "raw_tracepoint", 12566 "raw_tp.w", 12567 "raw_tracepoint.w", 12568 }; 12569 size_t i; 12570 const char *tp_name = NULL; 12571 12572 *link = NULL; 12573 12574 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12575 size_t pfx_len; 12576 12577 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12578 continue; 12579 12580 pfx_len = strlen(prefixes[i]); 12581 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12582 if (prog->sec_name[pfx_len] == '\0') 12583 return 0; 12584 12585 if (prog->sec_name[pfx_len] != '/') 12586 continue; 12587 12588 tp_name = prog->sec_name + pfx_len + 1; 12589 break; 12590 } 12591 12592 if (!tp_name) { 12593 pr_warn("prog '%s': invalid section name '%s'\n", 12594 prog->name, prog->sec_name); 12595 return -EINVAL; 12596 } 12597 12598 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12599 return libbpf_get_error(*link); 12600 } 12601 12602 /* Common logic for all BPF program types that attach to a btf_id */ 12603 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12604 const struct bpf_trace_opts *opts) 12605 { 12606 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12607 struct bpf_link *link; 12608 int prog_fd, pfd; 12609 12610 if (!OPTS_VALID(opts, bpf_trace_opts)) 12611 return libbpf_err_ptr(-EINVAL); 12612 12613 prog_fd = bpf_program__fd(prog); 12614 if (prog_fd < 0) { 12615 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12616 return libbpf_err_ptr(-EINVAL); 12617 } 12618 12619 link = calloc(1, sizeof(*link)); 12620 if (!link) 12621 return libbpf_err_ptr(-ENOMEM); 12622 link->detach = &bpf_link__detach_fd; 12623 12624 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12625 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12626 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12627 if (pfd < 0) { 12628 pfd = -errno; 12629 free(link); 12630 pr_warn("prog '%s': failed to attach: %s\n", 12631 prog->name, errstr(pfd)); 12632 return libbpf_err_ptr(pfd); 12633 } 12634 link->fd = pfd; 12635 return link; 12636 } 12637 12638 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12639 { 12640 return bpf_program__attach_btf_id(prog, NULL); 12641 } 12642 12643 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12644 const struct bpf_trace_opts *opts) 12645 { 12646 return bpf_program__attach_btf_id(prog, opts); 12647 } 12648 12649 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12650 { 12651 return bpf_program__attach_btf_id(prog, NULL); 12652 } 12653 12654 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12655 { 12656 *link = bpf_program__attach_trace(prog); 12657 return libbpf_get_error(*link); 12658 } 12659 12660 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12661 { 12662 *link = bpf_program__attach_lsm(prog); 12663 return libbpf_get_error(*link); 12664 } 12665 12666 static struct bpf_link * 12667 bpf_program_attach_fd(const struct bpf_program *prog, 12668 int target_fd, const char *target_name, 12669 const struct bpf_link_create_opts *opts) 12670 { 12671 enum bpf_attach_type attach_type; 12672 struct bpf_link *link; 12673 int prog_fd, link_fd; 12674 12675 prog_fd = bpf_program__fd(prog); 12676 if (prog_fd < 0) { 12677 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12678 return libbpf_err_ptr(-EINVAL); 12679 } 12680 12681 link = calloc(1, sizeof(*link)); 12682 if (!link) 12683 return libbpf_err_ptr(-ENOMEM); 12684 link->detach = &bpf_link__detach_fd; 12685 12686 attach_type = bpf_program__expected_attach_type(prog); 12687 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12688 if (link_fd < 0) { 12689 link_fd = -errno; 12690 free(link); 12691 pr_warn("prog '%s': failed to attach to %s: %s\n", 12692 prog->name, target_name, 12693 errstr(link_fd)); 12694 return libbpf_err_ptr(link_fd); 12695 } 12696 link->fd = link_fd; 12697 return link; 12698 } 12699 12700 struct bpf_link * 12701 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12702 { 12703 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12704 } 12705 12706 struct bpf_link * 12707 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12708 { 12709 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12710 } 12711 12712 struct bpf_link * 12713 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd) 12714 { 12715 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL); 12716 } 12717 12718 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12719 { 12720 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12721 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12722 } 12723 12724 struct bpf_link * 12725 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12726 const struct bpf_tcx_opts *opts) 12727 { 12728 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12729 __u32 relative_id; 12730 int relative_fd; 12731 12732 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12733 return libbpf_err_ptr(-EINVAL); 12734 12735 relative_id = OPTS_GET(opts, relative_id, 0); 12736 relative_fd = OPTS_GET(opts, relative_fd, 0); 12737 12738 /* validate we don't have unexpected combinations of non-zero fields */ 12739 if (!ifindex) { 12740 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12741 prog->name); 12742 return libbpf_err_ptr(-EINVAL); 12743 } 12744 if (relative_fd && relative_id) { 12745 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12746 prog->name); 12747 return libbpf_err_ptr(-EINVAL); 12748 } 12749 12750 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12751 link_create_opts.tcx.relative_fd = relative_fd; 12752 link_create_opts.tcx.relative_id = relative_id; 12753 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12754 12755 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12756 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12757 } 12758 12759 struct bpf_link * 12760 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12761 const struct bpf_netkit_opts *opts) 12762 { 12763 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12764 __u32 relative_id; 12765 int relative_fd; 12766 12767 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12768 return libbpf_err_ptr(-EINVAL); 12769 12770 relative_id = OPTS_GET(opts, relative_id, 0); 12771 relative_fd = OPTS_GET(opts, relative_fd, 0); 12772 12773 /* validate we don't have unexpected combinations of non-zero fields */ 12774 if (!ifindex) { 12775 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12776 prog->name); 12777 return libbpf_err_ptr(-EINVAL); 12778 } 12779 if (relative_fd && relative_id) { 12780 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12781 prog->name); 12782 return libbpf_err_ptr(-EINVAL); 12783 } 12784 12785 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12786 link_create_opts.netkit.relative_fd = relative_fd; 12787 link_create_opts.netkit.relative_id = relative_id; 12788 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12789 12790 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12791 } 12792 12793 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12794 int target_fd, 12795 const char *attach_func_name) 12796 { 12797 int btf_id; 12798 12799 if (!!target_fd != !!attach_func_name) { 12800 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12801 prog->name); 12802 return libbpf_err_ptr(-EINVAL); 12803 } 12804 12805 if (prog->type != BPF_PROG_TYPE_EXT) { 12806 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n", 12807 prog->name); 12808 return libbpf_err_ptr(-EINVAL); 12809 } 12810 12811 if (target_fd) { 12812 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12813 12814 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12815 if (btf_id < 0) 12816 return libbpf_err_ptr(btf_id); 12817 12818 target_opts.target_btf_id = btf_id; 12819 12820 return bpf_program_attach_fd(prog, target_fd, "freplace", 12821 &target_opts); 12822 } else { 12823 /* no target, so use raw_tracepoint_open for compatibility 12824 * with old kernels 12825 */ 12826 return bpf_program__attach_trace(prog); 12827 } 12828 } 12829 12830 struct bpf_link * 12831 bpf_program__attach_iter(const struct bpf_program *prog, 12832 const struct bpf_iter_attach_opts *opts) 12833 { 12834 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12835 struct bpf_link *link; 12836 int prog_fd, link_fd; 12837 __u32 target_fd = 0; 12838 12839 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12840 return libbpf_err_ptr(-EINVAL); 12841 12842 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12843 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12844 12845 prog_fd = bpf_program__fd(prog); 12846 if (prog_fd < 0) { 12847 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12848 return libbpf_err_ptr(-EINVAL); 12849 } 12850 12851 link = calloc(1, sizeof(*link)); 12852 if (!link) 12853 return libbpf_err_ptr(-ENOMEM); 12854 link->detach = &bpf_link__detach_fd; 12855 12856 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12857 &link_create_opts); 12858 if (link_fd < 0) { 12859 link_fd = -errno; 12860 free(link); 12861 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12862 prog->name, errstr(link_fd)); 12863 return libbpf_err_ptr(link_fd); 12864 } 12865 link->fd = link_fd; 12866 return link; 12867 } 12868 12869 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12870 { 12871 *link = bpf_program__attach_iter(prog, NULL); 12872 return libbpf_get_error(*link); 12873 } 12874 12875 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12876 const struct bpf_netfilter_opts *opts) 12877 { 12878 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12879 struct bpf_link *link; 12880 int prog_fd, link_fd; 12881 12882 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12883 return libbpf_err_ptr(-EINVAL); 12884 12885 prog_fd = bpf_program__fd(prog); 12886 if (prog_fd < 0) { 12887 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12888 return libbpf_err_ptr(-EINVAL); 12889 } 12890 12891 link = calloc(1, sizeof(*link)); 12892 if (!link) 12893 return libbpf_err_ptr(-ENOMEM); 12894 12895 link->detach = &bpf_link__detach_fd; 12896 12897 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12898 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12899 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12900 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12901 12902 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12903 if (link_fd < 0) { 12904 link_fd = -errno; 12905 free(link); 12906 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12907 prog->name, errstr(link_fd)); 12908 return libbpf_err_ptr(link_fd); 12909 } 12910 link->fd = link_fd; 12911 12912 return link; 12913 } 12914 12915 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12916 { 12917 struct bpf_link *link = NULL; 12918 int err; 12919 12920 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12921 return libbpf_err_ptr(-EOPNOTSUPP); 12922 12923 if (bpf_program__fd(prog) < 0) { 12924 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12925 prog->name); 12926 return libbpf_err_ptr(-EINVAL); 12927 } 12928 12929 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12930 if (err) 12931 return libbpf_err_ptr(err); 12932 12933 /* When calling bpf_program__attach() explicitly, auto-attach support 12934 * is expected to work, so NULL returned link is considered an error. 12935 * This is different for skeleton's attach, see comment in 12936 * bpf_object__attach_skeleton(). 12937 */ 12938 if (!link) 12939 return libbpf_err_ptr(-EOPNOTSUPP); 12940 12941 return link; 12942 } 12943 12944 struct bpf_link_struct_ops { 12945 struct bpf_link link; 12946 int map_fd; 12947 }; 12948 12949 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12950 { 12951 struct bpf_link_struct_ops *st_link; 12952 __u32 zero = 0; 12953 12954 st_link = container_of(link, struct bpf_link_struct_ops, link); 12955 12956 if (st_link->map_fd < 0) 12957 /* w/o a real link */ 12958 return bpf_map_delete_elem(link->fd, &zero); 12959 12960 return close(link->fd); 12961 } 12962 12963 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12964 { 12965 struct bpf_link_struct_ops *link; 12966 __u32 zero = 0; 12967 int err, fd; 12968 12969 if (!bpf_map__is_struct_ops(map)) { 12970 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name); 12971 return libbpf_err_ptr(-EINVAL); 12972 } 12973 12974 if (map->fd < 0) { 12975 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name); 12976 return libbpf_err_ptr(-EINVAL); 12977 } 12978 12979 link = calloc(1, sizeof(*link)); 12980 if (!link) 12981 return libbpf_err_ptr(-EINVAL); 12982 12983 /* kern_vdata should be prepared during the loading phase. */ 12984 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12985 /* It can be EBUSY if the map has been used to create or 12986 * update a link before. We don't allow updating the value of 12987 * a struct_ops once it is set. That ensures that the value 12988 * never changed. So, it is safe to skip EBUSY. 12989 */ 12990 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12991 free(link); 12992 return libbpf_err_ptr(err); 12993 } 12994 12995 link->link.detach = bpf_link__detach_struct_ops; 12996 12997 if (!(map->def.map_flags & BPF_F_LINK)) { 12998 /* w/o a real link */ 12999 link->link.fd = map->fd; 13000 link->map_fd = -1; 13001 return &link->link; 13002 } 13003 13004 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 13005 if (fd < 0) { 13006 free(link); 13007 return libbpf_err_ptr(fd); 13008 } 13009 13010 link->link.fd = fd; 13011 link->map_fd = map->fd; 13012 13013 return &link->link; 13014 } 13015 13016 /* 13017 * Swap the back struct_ops of a link with a new struct_ops map. 13018 */ 13019 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 13020 { 13021 struct bpf_link_struct_ops *st_ops_link; 13022 __u32 zero = 0; 13023 int err; 13024 13025 if (!bpf_map__is_struct_ops(map)) 13026 return -EINVAL; 13027 13028 if (map->fd < 0) { 13029 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 13030 return -EINVAL; 13031 } 13032 13033 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 13034 /* Ensure the type of a link is correct */ 13035 if (st_ops_link->map_fd < 0) 13036 return -EINVAL; 13037 13038 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13039 /* It can be EBUSY if the map has been used to create or 13040 * update a link before. We don't allow updating the value of 13041 * a struct_ops once it is set. That ensures that the value 13042 * never changed. So, it is safe to skip EBUSY. 13043 */ 13044 if (err && err != -EBUSY) 13045 return err; 13046 13047 err = bpf_link_update(link->fd, map->fd, NULL); 13048 if (err < 0) 13049 return err; 13050 13051 st_ops_link->map_fd = map->fd; 13052 13053 return 0; 13054 } 13055 13056 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 13057 void *private_data); 13058 13059 static enum bpf_perf_event_ret 13060 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 13061 void **copy_mem, size_t *copy_size, 13062 bpf_perf_event_print_t fn, void *private_data) 13063 { 13064 struct perf_event_mmap_page *header = mmap_mem; 13065 __u64 data_head = ring_buffer_read_head(header); 13066 __u64 data_tail = header->data_tail; 13067 void *base = ((__u8 *)header) + page_size; 13068 int ret = LIBBPF_PERF_EVENT_CONT; 13069 struct perf_event_header *ehdr; 13070 size_t ehdr_size; 13071 13072 while (data_head != data_tail) { 13073 ehdr = base + (data_tail & (mmap_size - 1)); 13074 ehdr_size = ehdr->size; 13075 13076 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 13077 void *copy_start = ehdr; 13078 size_t len_first = base + mmap_size - copy_start; 13079 size_t len_secnd = ehdr_size - len_first; 13080 13081 if (*copy_size < ehdr_size) { 13082 free(*copy_mem); 13083 *copy_mem = malloc(ehdr_size); 13084 if (!*copy_mem) { 13085 *copy_size = 0; 13086 ret = LIBBPF_PERF_EVENT_ERROR; 13087 break; 13088 } 13089 *copy_size = ehdr_size; 13090 } 13091 13092 memcpy(*copy_mem, copy_start, len_first); 13093 memcpy(*copy_mem + len_first, base, len_secnd); 13094 ehdr = *copy_mem; 13095 } 13096 13097 ret = fn(ehdr, private_data); 13098 data_tail += ehdr_size; 13099 if (ret != LIBBPF_PERF_EVENT_CONT) 13100 break; 13101 } 13102 13103 ring_buffer_write_tail(header, data_tail); 13104 return libbpf_err(ret); 13105 } 13106 13107 struct perf_buffer; 13108 13109 struct perf_buffer_params { 13110 struct perf_event_attr *attr; 13111 /* if event_cb is specified, it takes precendence */ 13112 perf_buffer_event_fn event_cb; 13113 /* sample_cb and lost_cb are higher-level common-case callbacks */ 13114 perf_buffer_sample_fn sample_cb; 13115 perf_buffer_lost_fn lost_cb; 13116 void *ctx; 13117 int cpu_cnt; 13118 int *cpus; 13119 int *map_keys; 13120 }; 13121 13122 struct perf_cpu_buf { 13123 struct perf_buffer *pb; 13124 void *base; /* mmap()'ed memory */ 13125 void *buf; /* for reconstructing segmented data */ 13126 size_t buf_size; 13127 int fd; 13128 int cpu; 13129 int map_key; 13130 }; 13131 13132 struct perf_buffer { 13133 perf_buffer_event_fn event_cb; 13134 perf_buffer_sample_fn sample_cb; 13135 perf_buffer_lost_fn lost_cb; 13136 void *ctx; /* passed into callbacks */ 13137 13138 size_t page_size; 13139 size_t mmap_size; 13140 struct perf_cpu_buf **cpu_bufs; 13141 struct epoll_event *events; 13142 int cpu_cnt; /* number of allocated CPU buffers */ 13143 int epoll_fd; /* perf event FD */ 13144 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 13145 }; 13146 13147 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 13148 struct perf_cpu_buf *cpu_buf) 13149 { 13150 if (!cpu_buf) 13151 return; 13152 if (cpu_buf->base && 13153 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 13154 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 13155 if (cpu_buf->fd >= 0) { 13156 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 13157 close(cpu_buf->fd); 13158 } 13159 free(cpu_buf->buf); 13160 free(cpu_buf); 13161 } 13162 13163 void perf_buffer__free(struct perf_buffer *pb) 13164 { 13165 int i; 13166 13167 if (IS_ERR_OR_NULL(pb)) 13168 return; 13169 if (pb->cpu_bufs) { 13170 for (i = 0; i < pb->cpu_cnt; i++) { 13171 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13172 13173 if (!cpu_buf) 13174 continue; 13175 13176 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 13177 perf_buffer__free_cpu_buf(pb, cpu_buf); 13178 } 13179 free(pb->cpu_bufs); 13180 } 13181 if (pb->epoll_fd >= 0) 13182 close(pb->epoll_fd); 13183 free(pb->events); 13184 free(pb); 13185 } 13186 13187 static struct perf_cpu_buf * 13188 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 13189 int cpu, int map_key) 13190 { 13191 struct perf_cpu_buf *cpu_buf; 13192 int err; 13193 13194 cpu_buf = calloc(1, sizeof(*cpu_buf)); 13195 if (!cpu_buf) 13196 return ERR_PTR(-ENOMEM); 13197 13198 cpu_buf->pb = pb; 13199 cpu_buf->cpu = cpu; 13200 cpu_buf->map_key = map_key; 13201 13202 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 13203 -1, PERF_FLAG_FD_CLOEXEC); 13204 if (cpu_buf->fd < 0) { 13205 err = -errno; 13206 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 13207 cpu, errstr(err)); 13208 goto error; 13209 } 13210 13211 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13212 PROT_READ | PROT_WRITE, MAP_SHARED, 13213 cpu_buf->fd, 0); 13214 if (cpu_buf->base == MAP_FAILED) { 13215 cpu_buf->base = NULL; 13216 err = -errno; 13217 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13218 cpu, errstr(err)); 13219 goto error; 13220 } 13221 13222 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13223 err = -errno; 13224 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13225 cpu, errstr(err)); 13226 goto error; 13227 } 13228 13229 return cpu_buf; 13230 13231 error: 13232 perf_buffer__free_cpu_buf(pb, cpu_buf); 13233 return (struct perf_cpu_buf *)ERR_PTR(err); 13234 } 13235 13236 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13237 struct perf_buffer_params *p); 13238 13239 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13240 perf_buffer_sample_fn sample_cb, 13241 perf_buffer_lost_fn lost_cb, 13242 void *ctx, 13243 const struct perf_buffer_opts *opts) 13244 { 13245 const size_t attr_sz = sizeof(struct perf_event_attr); 13246 struct perf_buffer_params p = {}; 13247 struct perf_event_attr attr; 13248 __u32 sample_period; 13249 13250 if (!OPTS_VALID(opts, perf_buffer_opts)) 13251 return libbpf_err_ptr(-EINVAL); 13252 13253 sample_period = OPTS_GET(opts, sample_period, 1); 13254 if (!sample_period) 13255 sample_period = 1; 13256 13257 memset(&attr, 0, attr_sz); 13258 attr.size = attr_sz; 13259 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13260 attr.type = PERF_TYPE_SOFTWARE; 13261 attr.sample_type = PERF_SAMPLE_RAW; 13262 attr.sample_period = sample_period; 13263 attr.wakeup_events = sample_period; 13264 13265 p.attr = &attr; 13266 p.sample_cb = sample_cb; 13267 p.lost_cb = lost_cb; 13268 p.ctx = ctx; 13269 13270 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13271 } 13272 13273 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13274 struct perf_event_attr *attr, 13275 perf_buffer_event_fn event_cb, void *ctx, 13276 const struct perf_buffer_raw_opts *opts) 13277 { 13278 struct perf_buffer_params p = {}; 13279 13280 if (!attr) 13281 return libbpf_err_ptr(-EINVAL); 13282 13283 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13284 return libbpf_err_ptr(-EINVAL); 13285 13286 p.attr = attr; 13287 p.event_cb = event_cb; 13288 p.ctx = ctx; 13289 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13290 p.cpus = OPTS_GET(opts, cpus, NULL); 13291 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13292 13293 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13294 } 13295 13296 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13297 struct perf_buffer_params *p) 13298 { 13299 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13300 struct bpf_map_info map; 13301 struct perf_buffer *pb; 13302 bool *online = NULL; 13303 __u32 map_info_len; 13304 int err, i, j, n; 13305 13306 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13307 pr_warn("page count should be power of two, but is %zu\n", 13308 page_cnt); 13309 return ERR_PTR(-EINVAL); 13310 } 13311 13312 /* best-effort sanity checks */ 13313 memset(&map, 0, sizeof(map)); 13314 map_info_len = sizeof(map); 13315 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13316 if (err) { 13317 err = -errno; 13318 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13319 * -EBADFD, -EFAULT, or -E2BIG on real error 13320 */ 13321 if (err != -EINVAL) { 13322 pr_warn("failed to get map info for map FD %d: %s\n", 13323 map_fd, errstr(err)); 13324 return ERR_PTR(err); 13325 } 13326 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13327 map_fd); 13328 } else { 13329 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13330 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13331 map.name); 13332 return ERR_PTR(-EINVAL); 13333 } 13334 } 13335 13336 pb = calloc(1, sizeof(*pb)); 13337 if (!pb) 13338 return ERR_PTR(-ENOMEM); 13339 13340 pb->event_cb = p->event_cb; 13341 pb->sample_cb = p->sample_cb; 13342 pb->lost_cb = p->lost_cb; 13343 pb->ctx = p->ctx; 13344 13345 pb->page_size = getpagesize(); 13346 pb->mmap_size = pb->page_size * page_cnt; 13347 pb->map_fd = map_fd; 13348 13349 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13350 if (pb->epoll_fd < 0) { 13351 err = -errno; 13352 pr_warn("failed to create epoll instance: %s\n", 13353 errstr(err)); 13354 goto error; 13355 } 13356 13357 if (p->cpu_cnt > 0) { 13358 pb->cpu_cnt = p->cpu_cnt; 13359 } else { 13360 pb->cpu_cnt = libbpf_num_possible_cpus(); 13361 if (pb->cpu_cnt < 0) { 13362 err = pb->cpu_cnt; 13363 goto error; 13364 } 13365 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13366 pb->cpu_cnt = map.max_entries; 13367 } 13368 13369 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13370 if (!pb->events) { 13371 err = -ENOMEM; 13372 pr_warn("failed to allocate events: out of memory\n"); 13373 goto error; 13374 } 13375 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13376 if (!pb->cpu_bufs) { 13377 err = -ENOMEM; 13378 pr_warn("failed to allocate buffers: out of memory\n"); 13379 goto error; 13380 } 13381 13382 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13383 if (err) { 13384 pr_warn("failed to get online CPU mask: %s\n", errstr(err)); 13385 goto error; 13386 } 13387 13388 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13389 struct perf_cpu_buf *cpu_buf; 13390 int cpu, map_key; 13391 13392 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13393 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13394 13395 /* in case user didn't explicitly requested particular CPUs to 13396 * be attached to, skip offline/not present CPUs 13397 */ 13398 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13399 continue; 13400 13401 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13402 if (IS_ERR(cpu_buf)) { 13403 err = PTR_ERR(cpu_buf); 13404 goto error; 13405 } 13406 13407 pb->cpu_bufs[j] = cpu_buf; 13408 13409 err = bpf_map_update_elem(pb->map_fd, &map_key, 13410 &cpu_buf->fd, 0); 13411 if (err) { 13412 err = -errno; 13413 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13414 cpu, map_key, cpu_buf->fd, 13415 errstr(err)); 13416 goto error; 13417 } 13418 13419 pb->events[j].events = EPOLLIN; 13420 pb->events[j].data.ptr = cpu_buf; 13421 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13422 &pb->events[j]) < 0) { 13423 err = -errno; 13424 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13425 cpu, cpu_buf->fd, 13426 errstr(err)); 13427 goto error; 13428 } 13429 j++; 13430 } 13431 pb->cpu_cnt = j; 13432 free(online); 13433 13434 return pb; 13435 13436 error: 13437 free(online); 13438 if (pb) 13439 perf_buffer__free(pb); 13440 return ERR_PTR(err); 13441 } 13442 13443 struct perf_sample_raw { 13444 struct perf_event_header header; 13445 uint32_t size; 13446 char data[]; 13447 }; 13448 13449 struct perf_sample_lost { 13450 struct perf_event_header header; 13451 uint64_t id; 13452 uint64_t lost; 13453 uint64_t sample_id; 13454 }; 13455 13456 static enum bpf_perf_event_ret 13457 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13458 { 13459 struct perf_cpu_buf *cpu_buf = ctx; 13460 struct perf_buffer *pb = cpu_buf->pb; 13461 void *data = e; 13462 13463 /* user wants full control over parsing perf event */ 13464 if (pb->event_cb) 13465 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13466 13467 switch (e->type) { 13468 case PERF_RECORD_SAMPLE: { 13469 struct perf_sample_raw *s = data; 13470 13471 if (pb->sample_cb) 13472 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13473 break; 13474 } 13475 case PERF_RECORD_LOST: { 13476 struct perf_sample_lost *s = data; 13477 13478 if (pb->lost_cb) 13479 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13480 break; 13481 } 13482 default: 13483 pr_warn("unknown perf sample type %d\n", e->type); 13484 return LIBBPF_PERF_EVENT_ERROR; 13485 } 13486 return LIBBPF_PERF_EVENT_CONT; 13487 } 13488 13489 static int perf_buffer__process_records(struct perf_buffer *pb, 13490 struct perf_cpu_buf *cpu_buf) 13491 { 13492 enum bpf_perf_event_ret ret; 13493 13494 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13495 pb->page_size, &cpu_buf->buf, 13496 &cpu_buf->buf_size, 13497 perf_buffer__process_record, cpu_buf); 13498 if (ret != LIBBPF_PERF_EVENT_CONT) 13499 return ret; 13500 return 0; 13501 } 13502 13503 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13504 { 13505 return pb->epoll_fd; 13506 } 13507 13508 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13509 { 13510 int i, cnt, err; 13511 13512 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13513 if (cnt < 0) 13514 return -errno; 13515 13516 for (i = 0; i < cnt; i++) { 13517 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13518 13519 err = perf_buffer__process_records(pb, cpu_buf); 13520 if (err) { 13521 pr_warn("error while processing records: %s\n", errstr(err)); 13522 return libbpf_err(err); 13523 } 13524 } 13525 return cnt; 13526 } 13527 13528 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13529 * manager. 13530 */ 13531 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13532 { 13533 return pb->cpu_cnt; 13534 } 13535 13536 /* 13537 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13538 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13539 * select()/poll()/epoll() Linux syscalls. 13540 */ 13541 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13542 { 13543 struct perf_cpu_buf *cpu_buf; 13544 13545 if (buf_idx >= pb->cpu_cnt) 13546 return libbpf_err(-EINVAL); 13547 13548 cpu_buf = pb->cpu_bufs[buf_idx]; 13549 if (!cpu_buf) 13550 return libbpf_err(-ENOENT); 13551 13552 return cpu_buf->fd; 13553 } 13554 13555 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13556 { 13557 struct perf_cpu_buf *cpu_buf; 13558 13559 if (buf_idx >= pb->cpu_cnt) 13560 return libbpf_err(-EINVAL); 13561 13562 cpu_buf = pb->cpu_bufs[buf_idx]; 13563 if (!cpu_buf) 13564 return libbpf_err(-ENOENT); 13565 13566 *buf = cpu_buf->base; 13567 *buf_size = pb->mmap_size; 13568 return 0; 13569 } 13570 13571 /* 13572 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13573 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13574 * consume, do nothing and return success. 13575 * Returns: 13576 * - 0 on success; 13577 * - <0 on failure. 13578 */ 13579 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13580 { 13581 struct perf_cpu_buf *cpu_buf; 13582 13583 if (buf_idx >= pb->cpu_cnt) 13584 return libbpf_err(-EINVAL); 13585 13586 cpu_buf = pb->cpu_bufs[buf_idx]; 13587 if (!cpu_buf) 13588 return libbpf_err(-ENOENT); 13589 13590 return perf_buffer__process_records(pb, cpu_buf); 13591 } 13592 13593 int perf_buffer__consume(struct perf_buffer *pb) 13594 { 13595 int i, err; 13596 13597 for (i = 0; i < pb->cpu_cnt; i++) { 13598 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13599 13600 if (!cpu_buf) 13601 continue; 13602 13603 err = perf_buffer__process_records(pb, cpu_buf); 13604 if (err) { 13605 pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n", 13606 i, errstr(err)); 13607 return libbpf_err(err); 13608 } 13609 } 13610 return 0; 13611 } 13612 13613 int bpf_program__set_attach_target(struct bpf_program *prog, 13614 int attach_prog_fd, 13615 const char *attach_func_name) 13616 { 13617 int btf_obj_fd = 0, btf_id = 0, err; 13618 13619 if (!prog || attach_prog_fd < 0) 13620 return libbpf_err(-EINVAL); 13621 13622 if (prog->obj->loaded) 13623 return libbpf_err(-EINVAL); 13624 13625 if (attach_prog_fd && !attach_func_name) { 13626 /* remember attach_prog_fd and let bpf_program__load() find 13627 * BTF ID during the program load 13628 */ 13629 prog->attach_prog_fd = attach_prog_fd; 13630 return 0; 13631 } 13632 13633 if (attach_prog_fd) { 13634 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13635 attach_prog_fd); 13636 if (btf_id < 0) 13637 return libbpf_err(btf_id); 13638 } else { 13639 if (!attach_func_name) 13640 return libbpf_err(-EINVAL); 13641 13642 /* load btf_vmlinux, if not yet */ 13643 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13644 if (err) 13645 return libbpf_err(err); 13646 err = find_kernel_btf_id(prog->obj, attach_func_name, 13647 prog->expected_attach_type, 13648 &btf_obj_fd, &btf_id); 13649 if (err) 13650 return libbpf_err(err); 13651 } 13652 13653 prog->attach_btf_id = btf_id; 13654 prog->attach_btf_obj_fd = btf_obj_fd; 13655 prog->attach_prog_fd = attach_prog_fd; 13656 return 0; 13657 } 13658 13659 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13660 { 13661 int err = 0, n, len, start, end = -1; 13662 bool *tmp; 13663 13664 *mask = NULL; 13665 *mask_sz = 0; 13666 13667 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13668 while (*s) { 13669 if (*s == ',' || *s == '\n') { 13670 s++; 13671 continue; 13672 } 13673 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13674 if (n <= 0 || n > 2) { 13675 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13676 err = -EINVAL; 13677 goto cleanup; 13678 } else if (n == 1) { 13679 end = start; 13680 } 13681 if (start < 0 || start > end) { 13682 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13683 start, end, s); 13684 err = -EINVAL; 13685 goto cleanup; 13686 } 13687 tmp = realloc(*mask, end + 1); 13688 if (!tmp) { 13689 err = -ENOMEM; 13690 goto cleanup; 13691 } 13692 *mask = tmp; 13693 memset(tmp + *mask_sz, 0, start - *mask_sz); 13694 memset(tmp + start, 1, end - start + 1); 13695 *mask_sz = end + 1; 13696 s += len; 13697 } 13698 if (!*mask_sz) { 13699 pr_warn("Empty CPU range\n"); 13700 return -EINVAL; 13701 } 13702 return 0; 13703 cleanup: 13704 free(*mask); 13705 *mask = NULL; 13706 return err; 13707 } 13708 13709 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13710 { 13711 int fd, err = 0, len; 13712 char buf[128]; 13713 13714 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13715 if (fd < 0) { 13716 err = -errno; 13717 pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err)); 13718 return err; 13719 } 13720 len = read(fd, buf, sizeof(buf)); 13721 close(fd); 13722 if (len <= 0) { 13723 err = len ? -errno : -EINVAL; 13724 pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err)); 13725 return err; 13726 } 13727 if (len >= sizeof(buf)) { 13728 pr_warn("CPU mask is too big in file %s\n", fcpu); 13729 return -E2BIG; 13730 } 13731 buf[len] = '\0'; 13732 13733 return parse_cpu_mask_str(buf, mask, mask_sz); 13734 } 13735 13736 int libbpf_num_possible_cpus(void) 13737 { 13738 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13739 static int cpus; 13740 int err, n, i, tmp_cpus; 13741 bool *mask; 13742 13743 tmp_cpus = READ_ONCE(cpus); 13744 if (tmp_cpus > 0) 13745 return tmp_cpus; 13746 13747 err = parse_cpu_mask_file(fcpu, &mask, &n); 13748 if (err) 13749 return libbpf_err(err); 13750 13751 tmp_cpus = 0; 13752 for (i = 0; i < n; i++) { 13753 if (mask[i]) 13754 tmp_cpus++; 13755 } 13756 free(mask); 13757 13758 WRITE_ONCE(cpus, tmp_cpus); 13759 return tmp_cpus; 13760 } 13761 13762 static int populate_skeleton_maps(const struct bpf_object *obj, 13763 struct bpf_map_skeleton *maps, 13764 size_t map_cnt, size_t map_skel_sz) 13765 { 13766 int i; 13767 13768 for (i = 0; i < map_cnt; i++) { 13769 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz; 13770 struct bpf_map **map = map_skel->map; 13771 const char *name = map_skel->name; 13772 void **mmaped = map_skel->mmaped; 13773 13774 *map = bpf_object__find_map_by_name(obj, name); 13775 if (!*map) { 13776 pr_warn("failed to find skeleton map '%s'\n", name); 13777 return -ESRCH; 13778 } 13779 13780 /* externs shouldn't be pre-setup from user code */ 13781 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13782 *mmaped = (*map)->mmaped; 13783 } 13784 return 0; 13785 } 13786 13787 static int populate_skeleton_progs(const struct bpf_object *obj, 13788 struct bpf_prog_skeleton *progs, 13789 size_t prog_cnt, size_t prog_skel_sz) 13790 { 13791 int i; 13792 13793 for (i = 0; i < prog_cnt; i++) { 13794 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz; 13795 struct bpf_program **prog = prog_skel->prog; 13796 const char *name = prog_skel->name; 13797 13798 *prog = bpf_object__find_program_by_name(obj, name); 13799 if (!*prog) { 13800 pr_warn("failed to find skeleton program '%s'\n", name); 13801 return -ESRCH; 13802 } 13803 } 13804 return 0; 13805 } 13806 13807 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13808 const struct bpf_object_open_opts *opts) 13809 { 13810 struct bpf_object *obj; 13811 int err; 13812 13813 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts); 13814 if (IS_ERR(obj)) { 13815 err = PTR_ERR(obj); 13816 pr_warn("failed to initialize skeleton BPF object '%s': %s\n", 13817 s->name, errstr(err)); 13818 return libbpf_err(err); 13819 } 13820 13821 *s->obj = obj; 13822 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz); 13823 if (err) { 13824 pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err)); 13825 return libbpf_err(err); 13826 } 13827 13828 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13829 if (err) { 13830 pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err)); 13831 return libbpf_err(err); 13832 } 13833 13834 return 0; 13835 } 13836 13837 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13838 { 13839 int err, len, var_idx, i; 13840 const char *var_name; 13841 const struct bpf_map *map; 13842 struct btf *btf; 13843 __u32 map_type_id; 13844 const struct btf_type *map_type, *var_type; 13845 const struct bpf_var_skeleton *var_skel; 13846 struct btf_var_secinfo *var; 13847 13848 if (!s->obj) 13849 return libbpf_err(-EINVAL); 13850 13851 btf = bpf_object__btf(s->obj); 13852 if (!btf) { 13853 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13854 bpf_object__name(s->obj)); 13855 return libbpf_err(-errno); 13856 } 13857 13858 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz); 13859 if (err) { 13860 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 13861 return libbpf_err(err); 13862 } 13863 13864 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13865 if (err) { 13866 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 13867 return libbpf_err(err); 13868 } 13869 13870 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13871 var_skel = (void *)s->vars + var_idx * s->var_skel_sz; 13872 map = *var_skel->map; 13873 map_type_id = bpf_map__btf_value_type_id(map); 13874 map_type = btf__type_by_id(btf, map_type_id); 13875 13876 if (!btf_is_datasec(map_type)) { 13877 pr_warn("type for map '%1$s' is not a datasec: %2$s\n", 13878 bpf_map__name(map), 13879 __btf_kind_str(btf_kind(map_type))); 13880 return libbpf_err(-EINVAL); 13881 } 13882 13883 len = btf_vlen(map_type); 13884 var = btf_var_secinfos(map_type); 13885 for (i = 0; i < len; i++, var++) { 13886 var_type = btf__type_by_id(btf, var->type); 13887 var_name = btf__name_by_offset(btf, var_type->name_off); 13888 if (strcmp(var_name, var_skel->name) == 0) { 13889 *var_skel->addr = map->mmaped + var->offset; 13890 break; 13891 } 13892 } 13893 } 13894 return 0; 13895 } 13896 13897 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13898 { 13899 if (!s) 13900 return; 13901 free(s->maps); 13902 free(s->progs); 13903 free(s->vars); 13904 free(s); 13905 } 13906 13907 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13908 { 13909 int i, err; 13910 13911 err = bpf_object__load(*s->obj); 13912 if (err) { 13913 pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err)); 13914 return libbpf_err(err); 13915 } 13916 13917 for (i = 0; i < s->map_cnt; i++) { 13918 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 13919 struct bpf_map *map = *map_skel->map; 13920 13921 if (!map_skel->mmaped) 13922 continue; 13923 13924 *map_skel->mmaped = map->mmaped; 13925 } 13926 13927 return 0; 13928 } 13929 13930 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13931 { 13932 int i, err; 13933 13934 for (i = 0; i < s->prog_cnt; i++) { 13935 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 13936 struct bpf_program *prog = *prog_skel->prog; 13937 struct bpf_link **link = prog_skel->link; 13938 13939 if (!prog->autoload || !prog->autoattach) 13940 continue; 13941 13942 /* auto-attaching not supported for this program */ 13943 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13944 continue; 13945 13946 /* if user already set the link manually, don't attempt auto-attach */ 13947 if (*link) 13948 continue; 13949 13950 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13951 if (err) { 13952 pr_warn("prog '%s': failed to auto-attach: %s\n", 13953 bpf_program__name(prog), errstr(err)); 13954 return libbpf_err(err); 13955 } 13956 13957 /* It's possible that for some SEC() definitions auto-attach 13958 * is supported in some cases (e.g., if definition completely 13959 * specifies target information), but is not in other cases. 13960 * SEC("uprobe") is one such case. If user specified target 13961 * binary and function name, such BPF program can be 13962 * auto-attached. But if not, it shouldn't trigger skeleton's 13963 * attach to fail. It should just be skipped. 13964 * attach_fn signals such case with returning 0 (no error) and 13965 * setting link to NULL. 13966 */ 13967 } 13968 13969 13970 for (i = 0; i < s->map_cnt; i++) { 13971 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 13972 struct bpf_map *map = *map_skel->map; 13973 struct bpf_link **link; 13974 13975 if (!map->autocreate || !map->autoattach) 13976 continue; 13977 13978 /* only struct_ops maps can be attached */ 13979 if (!bpf_map__is_struct_ops(map)) 13980 continue; 13981 13982 /* skeleton is created with earlier version of bpftool, notify user */ 13983 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) { 13984 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n", 13985 bpf_map__name(map)); 13986 continue; 13987 } 13988 13989 link = map_skel->link; 13990 if (*link) 13991 continue; 13992 13993 *link = bpf_map__attach_struct_ops(map); 13994 if (!*link) { 13995 err = -errno; 13996 pr_warn("map '%s': failed to auto-attach: %s\n", 13997 bpf_map__name(map), errstr(err)); 13998 return libbpf_err(err); 13999 } 14000 } 14001 14002 return 0; 14003 } 14004 14005 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 14006 { 14007 int i; 14008 14009 for (i = 0; i < s->prog_cnt; i++) { 14010 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14011 struct bpf_link **link = prog_skel->link; 14012 14013 bpf_link__destroy(*link); 14014 *link = NULL; 14015 } 14016 14017 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton)) 14018 return; 14019 14020 for (i = 0; i < s->map_cnt; i++) { 14021 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14022 struct bpf_link **link = map_skel->link; 14023 14024 if (link) { 14025 bpf_link__destroy(*link); 14026 *link = NULL; 14027 } 14028 } 14029 } 14030 14031 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 14032 { 14033 if (!s) 14034 return; 14035 14036 bpf_object__detach_skeleton(s); 14037 if (s->obj) 14038 bpf_object__close(*s->obj); 14039 free(s->maps); 14040 free(s->progs); 14041 free(s); 14042 } 14043