1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 #include "zip.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define MAX_EVENT_NAME_LEN 64 64 65 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 66 67 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 68 69 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 70 * compilation if user enables corresponding warning. Disable it explicitly. 71 */ 72 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 73 74 #define __printf(a, b) __attribute__((format(printf, a, b))) 75 76 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 77 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 78 static int map_set_def_max_entries(struct bpf_map *map); 79 80 static const char * const attach_type_name[] = { 81 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 82 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 83 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 84 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 85 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 86 [BPF_CGROUP_DEVICE] = "cgroup_device", 87 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 88 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 89 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 90 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 91 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 92 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 93 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 94 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 95 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 96 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 97 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 98 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 99 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 100 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 101 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 102 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 103 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 104 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 105 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 106 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 107 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 108 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 109 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 110 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 111 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 112 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 113 [BPF_LIRC_MODE2] = "lirc_mode2", 114 [BPF_FLOW_DISSECTOR] = "flow_dissector", 115 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 116 [BPF_TRACE_FENTRY] = "trace_fentry", 117 [BPF_TRACE_FEXIT] = "trace_fexit", 118 [BPF_MODIFY_RETURN] = "modify_return", 119 [BPF_LSM_MAC] = "lsm_mac", 120 [BPF_LSM_CGROUP] = "lsm_cgroup", 121 [BPF_SK_LOOKUP] = "sk_lookup", 122 [BPF_TRACE_ITER] = "trace_iter", 123 [BPF_XDP_DEVMAP] = "xdp_devmap", 124 [BPF_XDP_CPUMAP] = "xdp_cpumap", 125 [BPF_XDP] = "xdp", 126 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 127 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 128 [BPF_PERF_EVENT] = "perf_event", 129 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 130 [BPF_STRUCT_OPS] = "struct_ops", 131 [BPF_NETFILTER] = "netfilter", 132 [BPF_TCX_INGRESS] = "tcx_ingress", 133 [BPF_TCX_EGRESS] = "tcx_egress", 134 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 135 [BPF_NETKIT_PRIMARY] = "netkit_primary", 136 [BPF_NETKIT_PEER] = "netkit_peer", 137 [BPF_TRACE_KPROBE_SESSION] = "trace_kprobe_session", 138 [BPF_TRACE_UPROBE_SESSION] = "trace_uprobe_session", 139 }; 140 141 static const char * const link_type_name[] = { 142 [BPF_LINK_TYPE_UNSPEC] = "unspec", 143 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 144 [BPF_LINK_TYPE_TRACING] = "tracing", 145 [BPF_LINK_TYPE_CGROUP] = "cgroup", 146 [BPF_LINK_TYPE_ITER] = "iter", 147 [BPF_LINK_TYPE_NETNS] = "netns", 148 [BPF_LINK_TYPE_XDP] = "xdp", 149 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 150 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 151 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 152 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 153 [BPF_LINK_TYPE_TCX] = "tcx", 154 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 155 [BPF_LINK_TYPE_NETKIT] = "netkit", 156 [BPF_LINK_TYPE_SOCKMAP] = "sockmap", 157 }; 158 159 static const char * const map_type_name[] = { 160 [BPF_MAP_TYPE_UNSPEC] = "unspec", 161 [BPF_MAP_TYPE_HASH] = "hash", 162 [BPF_MAP_TYPE_ARRAY] = "array", 163 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 164 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 165 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 166 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 167 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 168 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 169 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 170 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 171 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 172 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 173 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 174 [BPF_MAP_TYPE_DEVMAP] = "devmap", 175 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 176 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 177 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 178 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 179 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 180 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 181 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 182 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 183 [BPF_MAP_TYPE_QUEUE] = "queue", 184 [BPF_MAP_TYPE_STACK] = "stack", 185 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 186 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 187 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 188 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 189 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 190 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 191 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 192 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 193 [BPF_MAP_TYPE_ARENA] = "arena", 194 }; 195 196 static const char * const prog_type_name[] = { 197 [BPF_PROG_TYPE_UNSPEC] = "unspec", 198 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 199 [BPF_PROG_TYPE_KPROBE] = "kprobe", 200 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 201 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 202 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 203 [BPF_PROG_TYPE_XDP] = "xdp", 204 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 205 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 206 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 207 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 208 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 209 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 210 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 211 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 212 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 213 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 214 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 215 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 216 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 217 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 218 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 219 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 220 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 221 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 222 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 223 [BPF_PROG_TYPE_TRACING] = "tracing", 224 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 225 [BPF_PROG_TYPE_EXT] = "ext", 226 [BPF_PROG_TYPE_LSM] = "lsm", 227 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 228 [BPF_PROG_TYPE_SYSCALL] = "syscall", 229 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 230 }; 231 232 static int __base_pr(enum libbpf_print_level level, const char *format, 233 va_list args) 234 { 235 const char *env_var = "LIBBPF_LOG_LEVEL"; 236 static enum libbpf_print_level min_level = LIBBPF_INFO; 237 static bool initialized; 238 239 if (!initialized) { 240 char *verbosity; 241 242 initialized = true; 243 verbosity = getenv(env_var); 244 if (verbosity) { 245 if (strcasecmp(verbosity, "warn") == 0) 246 min_level = LIBBPF_WARN; 247 else if (strcasecmp(verbosity, "debug") == 0) 248 min_level = LIBBPF_DEBUG; 249 else if (strcasecmp(verbosity, "info") == 0) 250 min_level = LIBBPF_INFO; 251 else 252 fprintf(stderr, "libbpf: unrecognized '%s' envvar value: '%s', should be one of 'warn', 'debug', or 'info'.\n", 253 env_var, verbosity); 254 } 255 } 256 257 /* if too verbose, skip logging */ 258 if (level > min_level) 259 return 0; 260 261 return vfprintf(stderr, format, args); 262 } 263 264 static libbpf_print_fn_t __libbpf_pr = __base_pr; 265 266 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 267 { 268 libbpf_print_fn_t old_print_fn; 269 270 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 271 272 return old_print_fn; 273 } 274 275 __printf(2, 3) 276 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 277 { 278 va_list args; 279 int old_errno; 280 libbpf_print_fn_t print_fn; 281 282 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 283 if (!print_fn) 284 return; 285 286 old_errno = errno; 287 288 va_start(args, format); 289 print_fn(level, format, args); 290 va_end(args); 291 292 errno = old_errno; 293 } 294 295 static void pr_perm_msg(int err) 296 { 297 struct rlimit limit; 298 char buf[100]; 299 300 if (err != -EPERM || geteuid() != 0) 301 return; 302 303 err = getrlimit(RLIMIT_MEMLOCK, &limit); 304 if (err) 305 return; 306 307 if (limit.rlim_cur == RLIM_INFINITY) 308 return; 309 310 if (limit.rlim_cur < 1024) 311 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 312 else if (limit.rlim_cur < 1024*1024) 313 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 314 else 315 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 316 317 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 318 buf); 319 } 320 321 #define STRERR_BUFSIZE 128 322 323 /* Copied from tools/perf/util/util.h */ 324 #ifndef zfree 325 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 326 #endif 327 328 #ifndef zclose 329 # define zclose(fd) ({ \ 330 int ___err = 0; \ 331 if ((fd) >= 0) \ 332 ___err = close((fd)); \ 333 fd = -1; \ 334 ___err; }) 335 #endif 336 337 static inline __u64 ptr_to_u64(const void *ptr) 338 { 339 return (__u64) (unsigned long) ptr; 340 } 341 342 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 343 { 344 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 345 return 0; 346 } 347 348 __u32 libbpf_major_version(void) 349 { 350 return LIBBPF_MAJOR_VERSION; 351 } 352 353 __u32 libbpf_minor_version(void) 354 { 355 return LIBBPF_MINOR_VERSION; 356 } 357 358 const char *libbpf_version_string(void) 359 { 360 #define __S(X) #X 361 #define _S(X) __S(X) 362 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 363 #undef _S 364 #undef __S 365 } 366 367 enum reloc_type { 368 RELO_LD64, 369 RELO_CALL, 370 RELO_DATA, 371 RELO_EXTERN_LD64, 372 RELO_EXTERN_CALL, 373 RELO_SUBPROG_ADDR, 374 RELO_CORE, 375 }; 376 377 struct reloc_desc { 378 enum reloc_type type; 379 int insn_idx; 380 union { 381 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 382 struct { 383 int map_idx; 384 int sym_off; 385 int ext_idx; 386 }; 387 }; 388 }; 389 390 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 391 enum sec_def_flags { 392 SEC_NONE = 0, 393 /* expected_attach_type is optional, if kernel doesn't support that */ 394 SEC_EXP_ATTACH_OPT = 1, 395 /* legacy, only used by libbpf_get_type_names() and 396 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 397 * This used to be associated with cgroup (and few other) BPF programs 398 * that were attachable through BPF_PROG_ATTACH command. Pretty 399 * meaningless nowadays, though. 400 */ 401 SEC_ATTACHABLE = 2, 402 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 403 /* attachment target is specified through BTF ID in either kernel or 404 * other BPF program's BTF object 405 */ 406 SEC_ATTACH_BTF = 4, 407 /* BPF program type allows sleeping/blocking in kernel */ 408 SEC_SLEEPABLE = 8, 409 /* BPF program support non-linear XDP buffer */ 410 SEC_XDP_FRAGS = 16, 411 /* Setup proper attach type for usdt probes. */ 412 SEC_USDT = 32, 413 }; 414 415 struct bpf_sec_def { 416 char *sec; 417 enum bpf_prog_type prog_type; 418 enum bpf_attach_type expected_attach_type; 419 long cookie; 420 int handler_id; 421 422 libbpf_prog_setup_fn_t prog_setup_fn; 423 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 424 libbpf_prog_attach_fn_t prog_attach_fn; 425 }; 426 427 /* 428 * bpf_prog should be a better name but it has been used in 429 * linux/filter.h. 430 */ 431 struct bpf_program { 432 char *name; 433 char *sec_name; 434 size_t sec_idx; 435 const struct bpf_sec_def *sec_def; 436 /* this program's instruction offset (in number of instructions) 437 * within its containing ELF section 438 */ 439 size_t sec_insn_off; 440 /* number of original instructions in ELF section belonging to this 441 * program, not taking into account subprogram instructions possible 442 * appended later during relocation 443 */ 444 size_t sec_insn_cnt; 445 /* Offset (in number of instructions) of the start of instruction 446 * belonging to this BPF program within its containing main BPF 447 * program. For the entry-point (main) BPF program, this is always 448 * zero. For a sub-program, this gets reset before each of main BPF 449 * programs are processed and relocated and is used to determined 450 * whether sub-program was already appended to the main program, and 451 * if yes, at which instruction offset. 452 */ 453 size_t sub_insn_off; 454 455 /* instructions that belong to BPF program; insns[0] is located at 456 * sec_insn_off instruction within its ELF section in ELF file, so 457 * when mapping ELF file instruction index to the local instruction, 458 * one needs to subtract sec_insn_off; and vice versa. 459 */ 460 struct bpf_insn *insns; 461 /* actual number of instruction in this BPF program's image; for 462 * entry-point BPF programs this includes the size of main program 463 * itself plus all the used sub-programs, appended at the end 464 */ 465 size_t insns_cnt; 466 467 struct reloc_desc *reloc_desc; 468 int nr_reloc; 469 470 /* BPF verifier log settings */ 471 char *log_buf; 472 size_t log_size; 473 __u32 log_level; 474 475 struct bpf_object *obj; 476 477 int fd; 478 bool autoload; 479 bool autoattach; 480 bool sym_global; 481 bool mark_btf_static; 482 enum bpf_prog_type type; 483 enum bpf_attach_type expected_attach_type; 484 int exception_cb_idx; 485 486 int prog_ifindex; 487 __u32 attach_btf_obj_fd; 488 __u32 attach_btf_id; 489 __u32 attach_prog_fd; 490 491 void *func_info; 492 __u32 func_info_rec_size; 493 __u32 func_info_cnt; 494 495 void *line_info; 496 __u32 line_info_rec_size; 497 __u32 line_info_cnt; 498 __u32 prog_flags; 499 }; 500 501 struct bpf_struct_ops { 502 struct bpf_program **progs; 503 __u32 *kern_func_off; 504 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 505 void *data; 506 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 507 * btf_vmlinux's format. 508 * struct bpf_struct_ops_tcp_congestion_ops { 509 * [... some other kernel fields ...] 510 * struct tcp_congestion_ops data; 511 * } 512 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 513 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 514 * from "data". 515 */ 516 void *kern_vdata; 517 __u32 type_id; 518 }; 519 520 #define DATA_SEC ".data" 521 #define BSS_SEC ".bss" 522 #define RODATA_SEC ".rodata" 523 #define KCONFIG_SEC ".kconfig" 524 #define KSYMS_SEC ".ksyms" 525 #define STRUCT_OPS_SEC ".struct_ops" 526 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 527 #define ARENA_SEC ".addr_space.1" 528 529 enum libbpf_map_type { 530 LIBBPF_MAP_UNSPEC, 531 LIBBPF_MAP_DATA, 532 LIBBPF_MAP_BSS, 533 LIBBPF_MAP_RODATA, 534 LIBBPF_MAP_KCONFIG, 535 }; 536 537 struct bpf_map_def { 538 unsigned int type; 539 unsigned int key_size; 540 unsigned int value_size; 541 unsigned int max_entries; 542 unsigned int map_flags; 543 }; 544 545 struct bpf_map { 546 struct bpf_object *obj; 547 char *name; 548 /* real_name is defined for special internal maps (.rodata*, 549 * .data*, .bss, .kconfig) and preserves their original ELF section 550 * name. This is important to be able to find corresponding BTF 551 * DATASEC information. 552 */ 553 char *real_name; 554 int fd; 555 int sec_idx; 556 size_t sec_offset; 557 int map_ifindex; 558 int inner_map_fd; 559 struct bpf_map_def def; 560 __u32 numa_node; 561 __u32 btf_var_idx; 562 int mod_btf_fd; 563 __u32 btf_key_type_id; 564 __u32 btf_value_type_id; 565 __u32 btf_vmlinux_value_type_id; 566 enum libbpf_map_type libbpf_type; 567 void *mmaped; 568 struct bpf_struct_ops *st_ops; 569 struct bpf_map *inner_map; 570 void **init_slots; 571 int init_slots_sz; 572 char *pin_path; 573 bool pinned; 574 bool reused; 575 bool autocreate; 576 bool autoattach; 577 __u64 map_extra; 578 }; 579 580 enum extern_type { 581 EXT_UNKNOWN, 582 EXT_KCFG, 583 EXT_KSYM, 584 }; 585 586 enum kcfg_type { 587 KCFG_UNKNOWN, 588 KCFG_CHAR, 589 KCFG_BOOL, 590 KCFG_INT, 591 KCFG_TRISTATE, 592 KCFG_CHAR_ARR, 593 }; 594 595 struct extern_desc { 596 enum extern_type type; 597 int sym_idx; 598 int btf_id; 599 int sec_btf_id; 600 const char *name; 601 char *essent_name; 602 bool is_set; 603 bool is_weak; 604 union { 605 struct { 606 enum kcfg_type type; 607 int sz; 608 int align; 609 int data_off; 610 bool is_signed; 611 } kcfg; 612 struct { 613 unsigned long long addr; 614 615 /* target btf_id of the corresponding kernel var. */ 616 int kernel_btf_obj_fd; 617 int kernel_btf_id; 618 619 /* local btf_id of the ksym extern's type. */ 620 __u32 type_id; 621 /* BTF fd index to be patched in for insn->off, this is 622 * 0 for vmlinux BTF, index in obj->fd_array for module 623 * BTF 624 */ 625 __s16 btf_fd_idx; 626 } ksym; 627 }; 628 }; 629 630 struct module_btf { 631 struct btf *btf; 632 char *name; 633 __u32 id; 634 int fd; 635 int fd_array_idx; 636 }; 637 638 enum sec_type { 639 SEC_UNUSED = 0, 640 SEC_RELO, 641 SEC_BSS, 642 SEC_DATA, 643 SEC_RODATA, 644 SEC_ST_OPS, 645 }; 646 647 struct elf_sec_desc { 648 enum sec_type sec_type; 649 Elf64_Shdr *shdr; 650 Elf_Data *data; 651 }; 652 653 struct elf_state { 654 int fd; 655 const void *obj_buf; 656 size_t obj_buf_sz; 657 Elf *elf; 658 Elf64_Ehdr *ehdr; 659 Elf_Data *symbols; 660 Elf_Data *arena_data; 661 size_t shstrndx; /* section index for section name strings */ 662 size_t strtabidx; 663 struct elf_sec_desc *secs; 664 size_t sec_cnt; 665 int btf_maps_shndx; 666 __u32 btf_maps_sec_btf_id; 667 int text_shndx; 668 int symbols_shndx; 669 bool has_st_ops; 670 int arena_data_shndx; 671 }; 672 673 struct usdt_manager; 674 675 enum bpf_object_state { 676 OBJ_OPEN, 677 OBJ_PREPARED, 678 OBJ_LOADED, 679 }; 680 681 struct bpf_object { 682 char name[BPF_OBJ_NAME_LEN]; 683 char license[64]; 684 __u32 kern_version; 685 686 enum bpf_object_state state; 687 struct bpf_program *programs; 688 size_t nr_programs; 689 struct bpf_map *maps; 690 size_t nr_maps; 691 size_t maps_cap; 692 693 char *kconfig; 694 struct extern_desc *externs; 695 int nr_extern; 696 int kconfig_map_idx; 697 698 bool has_subcalls; 699 bool has_rodata; 700 701 struct bpf_gen *gen_loader; 702 703 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 704 struct elf_state efile; 705 706 unsigned char byteorder; 707 708 struct btf *btf; 709 struct btf_ext *btf_ext; 710 711 /* Parse and load BTF vmlinux if any of the programs in the object need 712 * it at load time. 713 */ 714 struct btf *btf_vmlinux; 715 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 716 * override for vmlinux BTF. 717 */ 718 char *btf_custom_path; 719 /* vmlinux BTF override for CO-RE relocations */ 720 struct btf *btf_vmlinux_override; 721 /* Lazily initialized kernel module BTFs */ 722 struct module_btf *btf_modules; 723 bool btf_modules_loaded; 724 size_t btf_module_cnt; 725 size_t btf_module_cap; 726 727 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 728 char *log_buf; 729 size_t log_size; 730 __u32 log_level; 731 732 int *fd_array; 733 size_t fd_array_cap; 734 size_t fd_array_cnt; 735 736 struct usdt_manager *usdt_man; 737 738 struct bpf_map *arena_map; 739 void *arena_data; 740 size_t arena_data_sz; 741 742 struct kern_feature_cache *feat_cache; 743 char *token_path; 744 int token_fd; 745 746 char path[]; 747 }; 748 749 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 750 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 751 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 752 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 753 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 754 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 755 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 756 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 757 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 758 759 void bpf_program__unload(struct bpf_program *prog) 760 { 761 if (!prog) 762 return; 763 764 zclose(prog->fd); 765 766 zfree(&prog->func_info); 767 zfree(&prog->line_info); 768 } 769 770 static void bpf_program__exit(struct bpf_program *prog) 771 { 772 if (!prog) 773 return; 774 775 bpf_program__unload(prog); 776 zfree(&prog->name); 777 zfree(&prog->sec_name); 778 zfree(&prog->insns); 779 zfree(&prog->reloc_desc); 780 781 prog->nr_reloc = 0; 782 prog->insns_cnt = 0; 783 prog->sec_idx = -1; 784 } 785 786 static bool insn_is_subprog_call(const struct bpf_insn *insn) 787 { 788 return BPF_CLASS(insn->code) == BPF_JMP && 789 BPF_OP(insn->code) == BPF_CALL && 790 BPF_SRC(insn->code) == BPF_K && 791 insn->src_reg == BPF_PSEUDO_CALL && 792 insn->dst_reg == 0 && 793 insn->off == 0; 794 } 795 796 static bool is_call_insn(const struct bpf_insn *insn) 797 { 798 return insn->code == (BPF_JMP | BPF_CALL); 799 } 800 801 static bool insn_is_pseudo_func(struct bpf_insn *insn) 802 { 803 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 804 } 805 806 static int 807 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 808 const char *name, size_t sec_idx, const char *sec_name, 809 size_t sec_off, void *insn_data, size_t insn_data_sz) 810 { 811 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 812 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 813 sec_name, name, sec_off, insn_data_sz); 814 return -EINVAL; 815 } 816 817 memset(prog, 0, sizeof(*prog)); 818 prog->obj = obj; 819 820 prog->sec_idx = sec_idx; 821 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 822 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 823 /* insns_cnt can later be increased by appending used subprograms */ 824 prog->insns_cnt = prog->sec_insn_cnt; 825 826 prog->type = BPF_PROG_TYPE_UNSPEC; 827 prog->fd = -1; 828 prog->exception_cb_idx = -1; 829 830 /* libbpf's convention for SEC("?abc...") is that it's just like 831 * SEC("abc...") but the corresponding bpf_program starts out with 832 * autoload set to false. 833 */ 834 if (sec_name[0] == '?') { 835 prog->autoload = false; 836 /* from now on forget there was ? in section name */ 837 sec_name++; 838 } else { 839 prog->autoload = true; 840 } 841 842 prog->autoattach = true; 843 844 /* inherit object's log_level */ 845 prog->log_level = obj->log_level; 846 847 prog->sec_name = strdup(sec_name); 848 if (!prog->sec_name) 849 goto errout; 850 851 prog->name = strdup(name); 852 if (!prog->name) 853 goto errout; 854 855 prog->insns = malloc(insn_data_sz); 856 if (!prog->insns) 857 goto errout; 858 memcpy(prog->insns, insn_data, insn_data_sz); 859 860 return 0; 861 errout: 862 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 863 bpf_program__exit(prog); 864 return -ENOMEM; 865 } 866 867 static int 868 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 869 const char *sec_name, int sec_idx) 870 { 871 Elf_Data *symbols = obj->efile.symbols; 872 struct bpf_program *prog, *progs; 873 void *data = sec_data->d_buf; 874 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 875 int nr_progs, err, i; 876 const char *name; 877 Elf64_Sym *sym; 878 879 progs = obj->programs; 880 nr_progs = obj->nr_programs; 881 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 882 883 for (i = 0; i < nr_syms; i++) { 884 sym = elf_sym_by_idx(obj, i); 885 886 if (sym->st_shndx != sec_idx) 887 continue; 888 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 889 continue; 890 891 prog_sz = sym->st_size; 892 sec_off = sym->st_value; 893 894 name = elf_sym_str(obj, sym->st_name); 895 if (!name) { 896 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 897 sec_name, sec_off); 898 return -LIBBPF_ERRNO__FORMAT; 899 } 900 901 if (sec_off + prog_sz > sec_sz || sec_off + prog_sz < sec_off) { 902 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 903 sec_name, sec_off); 904 return -LIBBPF_ERRNO__FORMAT; 905 } 906 907 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 908 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 909 return -ENOTSUP; 910 } 911 912 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 913 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 914 915 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 916 if (!progs) { 917 /* 918 * In this case the original obj->programs 919 * is still valid, so don't need special treat for 920 * bpf_close_object(). 921 */ 922 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 923 sec_name, name); 924 return -ENOMEM; 925 } 926 obj->programs = progs; 927 928 prog = &progs[nr_progs]; 929 930 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 931 sec_off, data + sec_off, prog_sz); 932 if (err) 933 return err; 934 935 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 936 prog->sym_global = true; 937 938 /* if function is a global/weak symbol, but has restricted 939 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 940 * as static to enable more permissive BPF verification mode 941 * with more outside context available to BPF verifier 942 */ 943 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 944 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 945 prog->mark_btf_static = true; 946 947 nr_progs++; 948 obj->nr_programs = nr_progs; 949 } 950 951 return 0; 952 } 953 954 static void bpf_object_bswap_progs(struct bpf_object *obj) 955 { 956 struct bpf_program *prog = obj->programs; 957 struct bpf_insn *insn; 958 int p, i; 959 960 for (p = 0; p < obj->nr_programs; p++, prog++) { 961 insn = prog->insns; 962 for (i = 0; i < prog->insns_cnt; i++, insn++) 963 bpf_insn_bswap(insn); 964 } 965 pr_debug("converted %zu BPF programs to native byte order\n", obj->nr_programs); 966 } 967 968 static const struct btf_member * 969 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 970 { 971 struct btf_member *m; 972 int i; 973 974 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 975 if (btf_member_bit_offset(t, i) == bit_offset) 976 return m; 977 } 978 979 return NULL; 980 } 981 982 static const struct btf_member * 983 find_member_by_name(const struct btf *btf, const struct btf_type *t, 984 const char *name) 985 { 986 struct btf_member *m; 987 int i; 988 989 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 990 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 991 return m; 992 } 993 994 return NULL; 995 } 996 997 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 998 __u16 kind, struct btf **res_btf, 999 struct module_btf **res_mod_btf); 1000 1001 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 1002 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 1003 const char *name, __u32 kind); 1004 1005 static int 1006 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 1007 struct module_btf **mod_btf, 1008 const struct btf_type **type, __u32 *type_id, 1009 const struct btf_type **vtype, __u32 *vtype_id, 1010 const struct btf_member **data_member) 1011 { 1012 const struct btf_type *kern_type, *kern_vtype; 1013 const struct btf_member *kern_data_member; 1014 struct btf *btf = NULL; 1015 __s32 kern_vtype_id, kern_type_id; 1016 char tname[256]; 1017 __u32 i; 1018 1019 snprintf(tname, sizeof(tname), "%.*s", 1020 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 1021 1022 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT, 1023 &btf, mod_btf); 1024 if (kern_type_id < 0) { 1025 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 1026 tname); 1027 return kern_type_id; 1028 } 1029 kern_type = btf__type_by_id(btf, kern_type_id); 1030 1031 /* Find the corresponding "map_value" type that will be used 1032 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 1033 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 1034 * btf_vmlinux. 1035 */ 1036 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 1037 tname, BTF_KIND_STRUCT); 1038 if (kern_vtype_id < 0) { 1039 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 1040 STRUCT_OPS_VALUE_PREFIX, tname); 1041 return kern_vtype_id; 1042 } 1043 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 1044 1045 /* Find "struct tcp_congestion_ops" from 1046 * struct bpf_struct_ops_tcp_congestion_ops { 1047 * [ ... ] 1048 * struct tcp_congestion_ops data; 1049 * } 1050 */ 1051 kern_data_member = btf_members(kern_vtype); 1052 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1053 if (kern_data_member->type == kern_type_id) 1054 break; 1055 } 1056 if (i == btf_vlen(kern_vtype)) { 1057 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1058 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1059 return -EINVAL; 1060 } 1061 1062 *type = kern_type; 1063 *type_id = kern_type_id; 1064 *vtype = kern_vtype; 1065 *vtype_id = kern_vtype_id; 1066 *data_member = kern_data_member; 1067 1068 return 0; 1069 } 1070 1071 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1072 { 1073 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1074 } 1075 1076 static bool is_valid_st_ops_program(struct bpf_object *obj, 1077 const struct bpf_program *prog) 1078 { 1079 int i; 1080 1081 for (i = 0; i < obj->nr_programs; i++) { 1082 if (&obj->programs[i] == prog) 1083 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1084 } 1085 1086 return false; 1087 } 1088 1089 /* For each struct_ops program P, referenced from some struct_ops map M, 1090 * enable P.autoload if there are Ms for which M.autocreate is true, 1091 * disable P.autoload if for all Ms M.autocreate is false. 1092 * Don't change P.autoload for programs that are not referenced from any maps. 1093 */ 1094 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1095 { 1096 struct bpf_program *prog, *slot_prog; 1097 struct bpf_map *map; 1098 int i, j, k, vlen; 1099 1100 for (i = 0; i < obj->nr_programs; ++i) { 1101 int should_load = false; 1102 int use_cnt = 0; 1103 1104 prog = &obj->programs[i]; 1105 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1106 continue; 1107 1108 for (j = 0; j < obj->nr_maps; ++j) { 1109 const struct btf_type *type; 1110 1111 map = &obj->maps[j]; 1112 if (!bpf_map__is_struct_ops(map)) 1113 continue; 1114 1115 type = btf__type_by_id(obj->btf, map->st_ops->type_id); 1116 vlen = btf_vlen(type); 1117 for (k = 0; k < vlen; ++k) { 1118 slot_prog = map->st_ops->progs[k]; 1119 if (prog != slot_prog) 1120 continue; 1121 1122 use_cnt++; 1123 if (map->autocreate) 1124 should_load = true; 1125 } 1126 } 1127 if (use_cnt) 1128 prog->autoload = should_load; 1129 } 1130 1131 return 0; 1132 } 1133 1134 /* Init the map's fields that depend on kern_btf */ 1135 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1136 { 1137 const struct btf_member *member, *kern_member, *kern_data_member; 1138 const struct btf_type *type, *kern_type, *kern_vtype; 1139 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1140 struct bpf_object *obj = map->obj; 1141 const struct btf *btf = obj->btf; 1142 struct bpf_struct_ops *st_ops; 1143 const struct btf *kern_btf; 1144 struct module_btf *mod_btf = NULL; 1145 void *data, *kern_data; 1146 const char *tname; 1147 int err; 1148 1149 st_ops = map->st_ops; 1150 type = btf__type_by_id(btf, st_ops->type_id); 1151 tname = btf__name_by_offset(btf, type->name_off); 1152 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1153 &kern_type, &kern_type_id, 1154 &kern_vtype, &kern_vtype_id, 1155 &kern_data_member); 1156 if (err) 1157 return err; 1158 1159 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1160 1161 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1162 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1163 1164 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1165 map->def.value_size = kern_vtype->size; 1166 map->btf_vmlinux_value_type_id = kern_vtype_id; 1167 1168 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1169 if (!st_ops->kern_vdata) 1170 return -ENOMEM; 1171 1172 data = st_ops->data; 1173 kern_data_off = kern_data_member->offset / 8; 1174 kern_data = st_ops->kern_vdata + kern_data_off; 1175 1176 member = btf_members(type); 1177 for (i = 0; i < btf_vlen(type); i++, member++) { 1178 const struct btf_type *mtype, *kern_mtype; 1179 __u32 mtype_id, kern_mtype_id; 1180 void *mdata, *kern_mdata; 1181 struct bpf_program *prog; 1182 __s64 msize, kern_msize; 1183 __u32 moff, kern_moff; 1184 __u32 kern_member_idx; 1185 const char *mname; 1186 1187 mname = btf__name_by_offset(btf, member->name_off); 1188 moff = member->offset / 8; 1189 mdata = data + moff; 1190 msize = btf__resolve_size(btf, member->type); 1191 if (msize < 0) { 1192 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n", 1193 map->name, mname); 1194 return msize; 1195 } 1196 1197 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1198 if (!kern_member) { 1199 if (!libbpf_is_mem_zeroed(mdata, msize)) { 1200 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1201 map->name, mname); 1202 return -ENOTSUP; 1203 } 1204 1205 if (st_ops->progs[i]) { 1206 /* If we had declaratively set struct_ops callback, we need to 1207 * force its autoload to false, because it doesn't have 1208 * a chance of succeeding from POV of the current struct_ops map. 1209 * If this program is still referenced somewhere else, though, 1210 * then bpf_object_adjust_struct_ops_autoload() will update its 1211 * autoload accordingly. 1212 */ 1213 st_ops->progs[i]->autoload = false; 1214 st_ops->progs[i] = NULL; 1215 } 1216 1217 /* Skip all-zero/NULL fields if they are not present in the kernel BTF */ 1218 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n", 1219 map->name, mname); 1220 continue; 1221 } 1222 1223 kern_member_idx = kern_member - btf_members(kern_type); 1224 if (btf_member_bitfield_size(type, i) || 1225 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1226 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1227 map->name, mname); 1228 return -ENOTSUP; 1229 } 1230 1231 kern_moff = kern_member->offset / 8; 1232 kern_mdata = kern_data + kern_moff; 1233 1234 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1235 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1236 &kern_mtype_id); 1237 if (BTF_INFO_KIND(mtype->info) != 1238 BTF_INFO_KIND(kern_mtype->info)) { 1239 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1240 map->name, mname, BTF_INFO_KIND(mtype->info), 1241 BTF_INFO_KIND(kern_mtype->info)); 1242 return -ENOTSUP; 1243 } 1244 1245 if (btf_is_ptr(mtype)) { 1246 prog = *(void **)mdata; 1247 /* just like for !kern_member case above, reset declaratively 1248 * set (at compile time) program's autload to false, 1249 * if user replaced it with another program or NULL 1250 */ 1251 if (st_ops->progs[i] && st_ops->progs[i] != prog) 1252 st_ops->progs[i]->autoload = false; 1253 1254 /* Update the value from the shadow type */ 1255 st_ops->progs[i] = prog; 1256 if (!prog) 1257 continue; 1258 1259 if (!is_valid_st_ops_program(obj, prog)) { 1260 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1261 map->name, mname); 1262 return -ENOTSUP; 1263 } 1264 1265 kern_mtype = skip_mods_and_typedefs(kern_btf, 1266 kern_mtype->type, 1267 &kern_mtype_id); 1268 1269 /* mtype->type must be a func_proto which was 1270 * guaranteed in bpf_object__collect_st_ops_relos(), 1271 * so only check kern_mtype for func_proto here. 1272 */ 1273 if (!btf_is_func_proto(kern_mtype)) { 1274 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1275 map->name, mname); 1276 return -ENOTSUP; 1277 } 1278 1279 if (mod_btf) 1280 prog->attach_btf_obj_fd = mod_btf->fd; 1281 1282 /* if we haven't yet processed this BPF program, record proper 1283 * attach_btf_id and member_idx 1284 */ 1285 if (!prog->attach_btf_id) { 1286 prog->attach_btf_id = kern_type_id; 1287 prog->expected_attach_type = kern_member_idx; 1288 } 1289 1290 /* struct_ops BPF prog can be re-used between multiple 1291 * .struct_ops & .struct_ops.link as long as it's the 1292 * same struct_ops struct definition and the same 1293 * function pointer field 1294 */ 1295 if (prog->attach_btf_id != kern_type_id) { 1296 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1297 map->name, mname, prog->name, prog->sec_name, prog->type, 1298 prog->attach_btf_id, kern_type_id); 1299 return -EINVAL; 1300 } 1301 if (prog->expected_attach_type != kern_member_idx) { 1302 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1303 map->name, mname, prog->name, prog->sec_name, prog->type, 1304 prog->expected_attach_type, kern_member_idx); 1305 return -EINVAL; 1306 } 1307 1308 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1309 1310 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1311 map->name, mname, prog->name, moff, 1312 kern_moff); 1313 1314 continue; 1315 } 1316 1317 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1318 if (kern_msize < 0 || msize != kern_msize) { 1319 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1320 map->name, mname, (ssize_t)msize, 1321 (ssize_t)kern_msize); 1322 return -ENOTSUP; 1323 } 1324 1325 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1326 map->name, mname, (unsigned int)msize, 1327 moff, kern_moff); 1328 memcpy(kern_mdata, mdata, msize); 1329 } 1330 1331 return 0; 1332 } 1333 1334 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1335 { 1336 struct bpf_map *map; 1337 size_t i; 1338 int err; 1339 1340 for (i = 0; i < obj->nr_maps; i++) { 1341 map = &obj->maps[i]; 1342 1343 if (!bpf_map__is_struct_ops(map)) 1344 continue; 1345 1346 if (!map->autocreate) 1347 continue; 1348 1349 err = bpf_map__init_kern_struct_ops(map); 1350 if (err) 1351 return err; 1352 } 1353 1354 return 0; 1355 } 1356 1357 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1358 int shndx, Elf_Data *data) 1359 { 1360 const struct btf_type *type, *datasec; 1361 const struct btf_var_secinfo *vsi; 1362 struct bpf_struct_ops *st_ops; 1363 const char *tname, *var_name; 1364 __s32 type_id, datasec_id; 1365 const struct btf *btf; 1366 struct bpf_map *map; 1367 __u32 i; 1368 1369 if (shndx == -1) 1370 return 0; 1371 1372 btf = obj->btf; 1373 datasec_id = btf__find_by_name_kind(btf, sec_name, 1374 BTF_KIND_DATASEC); 1375 if (datasec_id < 0) { 1376 pr_warn("struct_ops init: DATASEC %s not found\n", 1377 sec_name); 1378 return -EINVAL; 1379 } 1380 1381 datasec = btf__type_by_id(btf, datasec_id); 1382 vsi = btf_var_secinfos(datasec); 1383 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1384 type = btf__type_by_id(obj->btf, vsi->type); 1385 var_name = btf__name_by_offset(obj->btf, type->name_off); 1386 1387 type_id = btf__resolve_type(obj->btf, vsi->type); 1388 if (type_id < 0) { 1389 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1390 vsi->type, sec_name); 1391 return -EINVAL; 1392 } 1393 1394 type = btf__type_by_id(obj->btf, type_id); 1395 tname = btf__name_by_offset(obj->btf, type->name_off); 1396 if (!tname[0]) { 1397 pr_warn("struct_ops init: anonymous type is not supported\n"); 1398 return -ENOTSUP; 1399 } 1400 if (!btf_is_struct(type)) { 1401 pr_warn("struct_ops init: %s is not a struct\n", tname); 1402 return -EINVAL; 1403 } 1404 1405 map = bpf_object__add_map(obj); 1406 if (IS_ERR(map)) 1407 return PTR_ERR(map); 1408 1409 map->sec_idx = shndx; 1410 map->sec_offset = vsi->offset; 1411 map->name = strdup(var_name); 1412 if (!map->name) 1413 return -ENOMEM; 1414 map->btf_value_type_id = type_id; 1415 1416 /* Follow same convention as for programs autoload: 1417 * SEC("?.struct_ops") means map is not created by default. 1418 */ 1419 if (sec_name[0] == '?') { 1420 map->autocreate = false; 1421 /* from now on forget there was ? in section name */ 1422 sec_name++; 1423 } 1424 1425 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1426 map->def.key_size = sizeof(int); 1427 map->def.value_size = type->size; 1428 map->def.max_entries = 1; 1429 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1430 map->autoattach = true; 1431 1432 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1433 if (!map->st_ops) 1434 return -ENOMEM; 1435 st_ops = map->st_ops; 1436 st_ops->data = malloc(type->size); 1437 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1438 st_ops->kern_func_off = malloc(btf_vlen(type) * 1439 sizeof(*st_ops->kern_func_off)); 1440 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1441 return -ENOMEM; 1442 1443 if (vsi->offset + type->size > data->d_size) { 1444 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1445 var_name, sec_name); 1446 return -EINVAL; 1447 } 1448 1449 memcpy(st_ops->data, 1450 data->d_buf + vsi->offset, 1451 type->size); 1452 st_ops->type_id = type_id; 1453 1454 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1455 tname, type_id, var_name, vsi->offset); 1456 } 1457 1458 return 0; 1459 } 1460 1461 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1462 { 1463 const char *sec_name; 1464 int sec_idx, err; 1465 1466 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1467 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1468 1469 if (desc->sec_type != SEC_ST_OPS) 1470 continue; 1471 1472 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1473 if (!sec_name) 1474 return -LIBBPF_ERRNO__FORMAT; 1475 1476 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1477 if (err) 1478 return err; 1479 } 1480 1481 return 0; 1482 } 1483 1484 static struct bpf_object *bpf_object__new(const char *path, 1485 const void *obj_buf, 1486 size_t obj_buf_sz, 1487 const char *obj_name) 1488 { 1489 struct bpf_object *obj; 1490 char *end; 1491 1492 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1493 if (!obj) { 1494 pr_warn("alloc memory failed for %s\n", path); 1495 return ERR_PTR(-ENOMEM); 1496 } 1497 1498 strcpy(obj->path, path); 1499 if (obj_name) { 1500 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1501 } else { 1502 /* Using basename() GNU version which doesn't modify arg. */ 1503 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1504 end = strchr(obj->name, '.'); 1505 if (end) 1506 *end = 0; 1507 } 1508 1509 obj->efile.fd = -1; 1510 /* 1511 * Caller of this function should also call 1512 * bpf_object__elf_finish() after data collection to return 1513 * obj_buf to user. If not, we should duplicate the buffer to 1514 * avoid user freeing them before elf finish. 1515 */ 1516 obj->efile.obj_buf = obj_buf; 1517 obj->efile.obj_buf_sz = obj_buf_sz; 1518 obj->efile.btf_maps_shndx = -1; 1519 obj->kconfig_map_idx = -1; 1520 1521 obj->kern_version = get_kernel_version(); 1522 obj->state = OBJ_OPEN; 1523 1524 return obj; 1525 } 1526 1527 static void bpf_object__elf_finish(struct bpf_object *obj) 1528 { 1529 if (!obj->efile.elf) 1530 return; 1531 1532 elf_end(obj->efile.elf); 1533 obj->efile.elf = NULL; 1534 obj->efile.ehdr = NULL; 1535 obj->efile.symbols = NULL; 1536 obj->efile.arena_data = NULL; 1537 1538 zfree(&obj->efile.secs); 1539 obj->efile.sec_cnt = 0; 1540 zclose(obj->efile.fd); 1541 obj->efile.obj_buf = NULL; 1542 obj->efile.obj_buf_sz = 0; 1543 } 1544 1545 static int bpf_object__elf_init(struct bpf_object *obj) 1546 { 1547 Elf64_Ehdr *ehdr; 1548 int err = 0; 1549 Elf *elf; 1550 1551 if (obj->efile.elf) { 1552 pr_warn("elf: init internal error\n"); 1553 return -LIBBPF_ERRNO__LIBELF; 1554 } 1555 1556 if (obj->efile.obj_buf_sz > 0) { 1557 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1558 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1559 } else { 1560 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1561 if (obj->efile.fd < 0) { 1562 err = -errno; 1563 pr_warn("elf: failed to open %s: %s\n", obj->path, errstr(err)); 1564 return err; 1565 } 1566 1567 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1568 } 1569 1570 if (!elf) { 1571 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1572 err = -LIBBPF_ERRNO__LIBELF; 1573 goto errout; 1574 } 1575 1576 obj->efile.elf = elf; 1577 1578 if (elf_kind(elf) != ELF_K_ELF) { 1579 err = -LIBBPF_ERRNO__FORMAT; 1580 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1581 goto errout; 1582 } 1583 1584 if (gelf_getclass(elf) != ELFCLASS64) { 1585 err = -LIBBPF_ERRNO__FORMAT; 1586 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1587 goto errout; 1588 } 1589 1590 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1591 if (!obj->efile.ehdr) { 1592 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1593 err = -LIBBPF_ERRNO__FORMAT; 1594 goto errout; 1595 } 1596 1597 /* Validate ELF object endianness... */ 1598 if (ehdr->e_ident[EI_DATA] != ELFDATA2LSB && 1599 ehdr->e_ident[EI_DATA] != ELFDATA2MSB) { 1600 err = -LIBBPF_ERRNO__ENDIAN; 1601 pr_warn("elf: '%s' has unknown byte order\n", obj->path); 1602 goto errout; 1603 } 1604 /* and save after bpf_object_open() frees ELF data */ 1605 obj->byteorder = ehdr->e_ident[EI_DATA]; 1606 1607 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1608 pr_warn("elf: failed to get section names section index for %s: %s\n", 1609 obj->path, elf_errmsg(-1)); 1610 err = -LIBBPF_ERRNO__FORMAT; 1611 goto errout; 1612 } 1613 1614 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1615 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1616 pr_warn("elf: failed to get section names strings from %s: %s\n", 1617 obj->path, elf_errmsg(-1)); 1618 err = -LIBBPF_ERRNO__FORMAT; 1619 goto errout; 1620 } 1621 1622 /* Old LLVM set e_machine to EM_NONE */ 1623 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1624 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1625 err = -LIBBPF_ERRNO__FORMAT; 1626 goto errout; 1627 } 1628 1629 return 0; 1630 errout: 1631 bpf_object__elf_finish(obj); 1632 return err; 1633 } 1634 1635 static bool is_native_endianness(struct bpf_object *obj) 1636 { 1637 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1638 return obj->byteorder == ELFDATA2LSB; 1639 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1640 return obj->byteorder == ELFDATA2MSB; 1641 #else 1642 # error "Unrecognized __BYTE_ORDER__" 1643 #endif 1644 } 1645 1646 static int 1647 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1648 { 1649 if (!data) { 1650 pr_warn("invalid license section in %s\n", obj->path); 1651 return -LIBBPF_ERRNO__FORMAT; 1652 } 1653 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1654 * go over allowed ELF data section buffer 1655 */ 1656 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1657 pr_debug("license of %s is %s\n", obj->path, obj->license); 1658 return 0; 1659 } 1660 1661 static int 1662 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1663 { 1664 __u32 kver; 1665 1666 if (!data || size != sizeof(kver)) { 1667 pr_warn("invalid kver section in %s\n", obj->path); 1668 return -LIBBPF_ERRNO__FORMAT; 1669 } 1670 memcpy(&kver, data, sizeof(kver)); 1671 obj->kern_version = kver; 1672 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1673 return 0; 1674 } 1675 1676 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1677 { 1678 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1679 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1680 return true; 1681 return false; 1682 } 1683 1684 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1685 { 1686 Elf_Data *data; 1687 Elf_Scn *scn; 1688 1689 if (!name) 1690 return -EINVAL; 1691 1692 scn = elf_sec_by_name(obj, name); 1693 data = elf_sec_data(obj, scn); 1694 if (data) { 1695 *size = data->d_size; 1696 return 0; /* found it */ 1697 } 1698 1699 return -ENOENT; 1700 } 1701 1702 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1703 { 1704 Elf_Data *symbols = obj->efile.symbols; 1705 const char *sname; 1706 size_t si; 1707 1708 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1709 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1710 1711 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1712 continue; 1713 1714 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1715 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1716 continue; 1717 1718 sname = elf_sym_str(obj, sym->st_name); 1719 if (!sname) { 1720 pr_warn("failed to get sym name string for var %s\n", name); 1721 return ERR_PTR(-EIO); 1722 } 1723 if (strcmp(name, sname) == 0) 1724 return sym; 1725 } 1726 1727 return ERR_PTR(-ENOENT); 1728 } 1729 1730 #ifndef MFD_CLOEXEC 1731 #define MFD_CLOEXEC 0x0001U 1732 #endif 1733 #ifndef MFD_NOEXEC_SEAL 1734 #define MFD_NOEXEC_SEAL 0x0008U 1735 #endif 1736 1737 static int create_placeholder_fd(void) 1738 { 1739 unsigned int flags = MFD_CLOEXEC | MFD_NOEXEC_SEAL; 1740 const char *name = "libbpf-placeholder-fd"; 1741 int fd; 1742 1743 fd = ensure_good_fd(sys_memfd_create(name, flags)); 1744 if (fd >= 0) 1745 return fd; 1746 else if (errno != EINVAL) 1747 return -errno; 1748 1749 /* Possibly running on kernel without MFD_NOEXEC_SEAL */ 1750 fd = ensure_good_fd(sys_memfd_create(name, flags & ~MFD_NOEXEC_SEAL)); 1751 if (fd < 0) 1752 return -errno; 1753 return fd; 1754 } 1755 1756 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1757 { 1758 struct bpf_map *map; 1759 int err; 1760 1761 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1762 sizeof(*obj->maps), obj->nr_maps + 1); 1763 if (err) 1764 return ERR_PTR(err); 1765 1766 map = &obj->maps[obj->nr_maps++]; 1767 map->obj = obj; 1768 /* Preallocate map FD without actually creating BPF map just yet. 1769 * These map FD "placeholders" will be reused later without changing 1770 * FD value when map is actually created in the kernel. 1771 * 1772 * This is useful to be able to perform BPF program relocations 1773 * without having to create BPF maps before that step. This allows us 1774 * to finalize and load BTF very late in BPF object's loading phase, 1775 * right before BPF maps have to be created and BPF programs have to 1776 * be loaded. By having these map FD placeholders we can perform all 1777 * the sanitizations, relocations, and any other adjustments before we 1778 * start creating actual BPF kernel objects (BTF, maps, progs). 1779 */ 1780 map->fd = create_placeholder_fd(); 1781 if (map->fd < 0) 1782 return ERR_PTR(map->fd); 1783 map->inner_map_fd = -1; 1784 map->autocreate = true; 1785 1786 return map; 1787 } 1788 1789 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1790 { 1791 const long page_sz = sysconf(_SC_PAGE_SIZE); 1792 size_t map_sz; 1793 1794 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1795 map_sz = roundup(map_sz, page_sz); 1796 return map_sz; 1797 } 1798 1799 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1800 { 1801 const long page_sz = sysconf(_SC_PAGE_SIZE); 1802 1803 switch (map->def.type) { 1804 case BPF_MAP_TYPE_ARRAY: 1805 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1806 case BPF_MAP_TYPE_ARENA: 1807 return page_sz * map->def.max_entries; 1808 default: 1809 return 0; /* not supported */ 1810 } 1811 } 1812 1813 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1814 { 1815 void *mmaped; 1816 1817 if (!map->mmaped) 1818 return -EINVAL; 1819 1820 if (old_sz == new_sz) 1821 return 0; 1822 1823 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1824 if (mmaped == MAP_FAILED) 1825 return -errno; 1826 1827 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1828 munmap(map->mmaped, old_sz); 1829 map->mmaped = mmaped; 1830 return 0; 1831 } 1832 1833 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1834 { 1835 char map_name[BPF_OBJ_NAME_LEN], *p; 1836 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1837 1838 /* This is one of the more confusing parts of libbpf for various 1839 * reasons, some of which are historical. The original idea for naming 1840 * internal names was to include as much of BPF object name prefix as 1841 * possible, so that it can be distinguished from similar internal 1842 * maps of a different BPF object. 1843 * As an example, let's say we have bpf_object named 'my_object_name' 1844 * and internal map corresponding to '.rodata' ELF section. The final 1845 * map name advertised to user and to the kernel will be 1846 * 'my_objec.rodata', taking first 8 characters of object name and 1847 * entire 7 characters of '.rodata'. 1848 * Somewhat confusingly, if internal map ELF section name is shorter 1849 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1850 * for the suffix, even though we only have 4 actual characters, and 1851 * resulting map will be called 'my_objec.bss', not even using all 15 1852 * characters allowed by the kernel. Oh well, at least the truncated 1853 * object name is somewhat consistent in this case. But if the map 1854 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1855 * (8 chars) and thus will be left with only first 7 characters of the 1856 * object name ('my_obje'). Happy guessing, user, that the final map 1857 * name will be "my_obje.kconfig". 1858 * Now, with libbpf starting to support arbitrarily named .rodata.* 1859 * and .data.* data sections, it's possible that ELF section name is 1860 * longer than allowed 15 chars, so we now need to be careful to take 1861 * only up to 15 first characters of ELF name, taking no BPF object 1862 * name characters at all. So '.rodata.abracadabra' will result in 1863 * '.rodata.abracad' kernel and user-visible name. 1864 * We need to keep this convoluted logic intact for .data, .bss and 1865 * .rodata maps, but for new custom .data.custom and .rodata.custom 1866 * maps we use their ELF names as is, not prepending bpf_object name 1867 * in front. We still need to truncate them to 15 characters for the 1868 * kernel. Full name can be recovered for such maps by using DATASEC 1869 * BTF type associated with such map's value type, though. 1870 */ 1871 if (sfx_len >= BPF_OBJ_NAME_LEN) 1872 sfx_len = BPF_OBJ_NAME_LEN - 1; 1873 1874 /* if there are two or more dots in map name, it's a custom dot map */ 1875 if (strchr(real_name + 1, '.') != NULL) 1876 pfx_len = 0; 1877 else 1878 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1879 1880 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1881 sfx_len, real_name); 1882 1883 /* sanities map name to characters allowed by kernel */ 1884 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1885 if (!isalnum(*p) && *p != '_' && *p != '.') 1886 *p = '_'; 1887 1888 return strdup(map_name); 1889 } 1890 1891 static int 1892 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1893 1894 /* Internal BPF map is mmap()'able only if at least one of corresponding 1895 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1896 * variable and it's not marked as __hidden (which turns it into, effectively, 1897 * a STATIC variable). 1898 */ 1899 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1900 { 1901 const struct btf_type *t, *vt; 1902 struct btf_var_secinfo *vsi; 1903 int i, n; 1904 1905 if (!map->btf_value_type_id) 1906 return false; 1907 1908 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1909 if (!btf_is_datasec(t)) 1910 return false; 1911 1912 vsi = btf_var_secinfos(t); 1913 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1914 vt = btf__type_by_id(obj->btf, vsi->type); 1915 if (!btf_is_var(vt)) 1916 continue; 1917 1918 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1919 return true; 1920 } 1921 1922 return false; 1923 } 1924 1925 static int 1926 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1927 const char *real_name, int sec_idx, void *data, size_t data_sz) 1928 { 1929 struct bpf_map_def *def; 1930 struct bpf_map *map; 1931 size_t mmap_sz; 1932 int err; 1933 1934 map = bpf_object__add_map(obj); 1935 if (IS_ERR(map)) 1936 return PTR_ERR(map); 1937 1938 map->libbpf_type = type; 1939 map->sec_idx = sec_idx; 1940 map->sec_offset = 0; 1941 map->real_name = strdup(real_name); 1942 map->name = internal_map_name(obj, real_name); 1943 if (!map->real_name || !map->name) { 1944 zfree(&map->real_name); 1945 zfree(&map->name); 1946 return -ENOMEM; 1947 } 1948 1949 def = &map->def; 1950 def->type = BPF_MAP_TYPE_ARRAY; 1951 def->key_size = sizeof(int); 1952 def->value_size = data_sz; 1953 def->max_entries = 1; 1954 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1955 ? BPF_F_RDONLY_PROG : 0; 1956 1957 /* failures are fine because of maps like .rodata.str1.1 */ 1958 (void) map_fill_btf_type_info(obj, map); 1959 1960 if (map_is_mmapable(obj, map)) 1961 def->map_flags |= BPF_F_MMAPABLE; 1962 1963 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1964 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1965 1966 mmap_sz = bpf_map_mmap_sz(map); 1967 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1968 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1969 if (map->mmaped == MAP_FAILED) { 1970 err = -errno; 1971 map->mmaped = NULL; 1972 pr_warn("failed to alloc map '%s' content buffer: %s\n", map->name, errstr(err)); 1973 zfree(&map->real_name); 1974 zfree(&map->name); 1975 return err; 1976 } 1977 1978 if (data) 1979 memcpy(map->mmaped, data, data_sz); 1980 1981 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1982 return 0; 1983 } 1984 1985 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1986 { 1987 struct elf_sec_desc *sec_desc; 1988 const char *sec_name; 1989 int err = 0, sec_idx; 1990 1991 /* 1992 * Populate obj->maps with libbpf internal maps. 1993 */ 1994 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1995 sec_desc = &obj->efile.secs[sec_idx]; 1996 1997 /* Skip recognized sections with size 0. */ 1998 if (!sec_desc->data || sec_desc->data->d_size == 0) 1999 continue; 2000 2001 switch (sec_desc->sec_type) { 2002 case SEC_DATA: 2003 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2004 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 2005 sec_name, sec_idx, 2006 sec_desc->data->d_buf, 2007 sec_desc->data->d_size); 2008 break; 2009 case SEC_RODATA: 2010 obj->has_rodata = true; 2011 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2012 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 2013 sec_name, sec_idx, 2014 sec_desc->data->d_buf, 2015 sec_desc->data->d_size); 2016 break; 2017 case SEC_BSS: 2018 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 2019 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 2020 sec_name, sec_idx, 2021 NULL, 2022 sec_desc->data->d_size); 2023 break; 2024 default: 2025 /* skip */ 2026 break; 2027 } 2028 if (err) 2029 return err; 2030 } 2031 return 0; 2032 } 2033 2034 2035 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 2036 const void *name) 2037 { 2038 int i; 2039 2040 for (i = 0; i < obj->nr_extern; i++) { 2041 if (strcmp(obj->externs[i].name, name) == 0) 2042 return &obj->externs[i]; 2043 } 2044 return NULL; 2045 } 2046 2047 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj, 2048 const void *name, int len) 2049 { 2050 const char *ext_name; 2051 int i; 2052 2053 for (i = 0; i < obj->nr_extern; i++) { 2054 ext_name = obj->externs[i].name; 2055 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0) 2056 return &obj->externs[i]; 2057 } 2058 return NULL; 2059 } 2060 2061 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 2062 char value) 2063 { 2064 switch (ext->kcfg.type) { 2065 case KCFG_BOOL: 2066 if (value == 'm') { 2067 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 2068 ext->name, value); 2069 return -EINVAL; 2070 } 2071 *(bool *)ext_val = value == 'y' ? true : false; 2072 break; 2073 case KCFG_TRISTATE: 2074 if (value == 'y') 2075 *(enum libbpf_tristate *)ext_val = TRI_YES; 2076 else if (value == 'm') 2077 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 2078 else /* value == 'n' */ 2079 *(enum libbpf_tristate *)ext_val = TRI_NO; 2080 break; 2081 case KCFG_CHAR: 2082 *(char *)ext_val = value; 2083 break; 2084 case KCFG_UNKNOWN: 2085 case KCFG_INT: 2086 case KCFG_CHAR_ARR: 2087 default: 2088 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 2089 ext->name, value); 2090 return -EINVAL; 2091 } 2092 ext->is_set = true; 2093 return 0; 2094 } 2095 2096 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 2097 const char *value) 2098 { 2099 size_t len; 2100 2101 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2102 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2103 ext->name, value); 2104 return -EINVAL; 2105 } 2106 2107 len = strlen(value); 2108 if (len < 2 || value[len - 1] != '"') { 2109 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2110 ext->name, value); 2111 return -EINVAL; 2112 } 2113 2114 /* strip quotes */ 2115 len -= 2; 2116 if (len >= ext->kcfg.sz) { 2117 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2118 ext->name, value, len, ext->kcfg.sz - 1); 2119 len = ext->kcfg.sz - 1; 2120 } 2121 memcpy(ext_val, value + 1, len); 2122 ext_val[len] = '\0'; 2123 ext->is_set = true; 2124 return 0; 2125 } 2126 2127 static int parse_u64(const char *value, __u64 *res) 2128 { 2129 char *value_end; 2130 int err; 2131 2132 errno = 0; 2133 *res = strtoull(value, &value_end, 0); 2134 if (errno) { 2135 err = -errno; 2136 pr_warn("failed to parse '%s': %s\n", value, errstr(err)); 2137 return err; 2138 } 2139 if (*value_end) { 2140 pr_warn("failed to parse '%s' as integer completely\n", value); 2141 return -EINVAL; 2142 } 2143 return 0; 2144 } 2145 2146 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2147 { 2148 int bit_sz = ext->kcfg.sz * 8; 2149 2150 if (ext->kcfg.sz == 8) 2151 return true; 2152 2153 /* Validate that value stored in u64 fits in integer of `ext->sz` 2154 * bytes size without any loss of information. If the target integer 2155 * is signed, we rely on the following limits of integer type of 2156 * Y bits and subsequent transformation: 2157 * 2158 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2159 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2160 * 0 <= X + 2^(Y-1) < 2^Y 2161 * 2162 * For unsigned target integer, check that all the (64 - Y) bits are 2163 * zero. 2164 */ 2165 if (ext->kcfg.is_signed) 2166 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2167 else 2168 return (v >> bit_sz) == 0; 2169 } 2170 2171 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2172 __u64 value) 2173 { 2174 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2175 ext->kcfg.type != KCFG_BOOL) { 2176 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2177 ext->name, (unsigned long long)value); 2178 return -EINVAL; 2179 } 2180 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2181 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2182 ext->name, (unsigned long long)value); 2183 return -EINVAL; 2184 2185 } 2186 if (!is_kcfg_value_in_range(ext, value)) { 2187 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2188 ext->name, (unsigned long long)value, ext->kcfg.sz); 2189 return -ERANGE; 2190 } 2191 switch (ext->kcfg.sz) { 2192 case 1: 2193 *(__u8 *)ext_val = value; 2194 break; 2195 case 2: 2196 *(__u16 *)ext_val = value; 2197 break; 2198 case 4: 2199 *(__u32 *)ext_val = value; 2200 break; 2201 case 8: 2202 *(__u64 *)ext_val = value; 2203 break; 2204 default: 2205 return -EINVAL; 2206 } 2207 ext->is_set = true; 2208 return 0; 2209 } 2210 2211 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2212 char *buf, void *data) 2213 { 2214 struct extern_desc *ext; 2215 char *sep, *value; 2216 int len, err = 0; 2217 void *ext_val; 2218 __u64 num; 2219 2220 if (!str_has_pfx(buf, "CONFIG_")) 2221 return 0; 2222 2223 sep = strchr(buf, '='); 2224 if (!sep) { 2225 pr_warn("failed to parse '%s': no separator\n", buf); 2226 return -EINVAL; 2227 } 2228 2229 /* Trim ending '\n' */ 2230 len = strlen(buf); 2231 if (buf[len - 1] == '\n') 2232 buf[len - 1] = '\0'; 2233 /* Split on '=' and ensure that a value is present. */ 2234 *sep = '\0'; 2235 if (!sep[1]) { 2236 *sep = '='; 2237 pr_warn("failed to parse '%s': no value\n", buf); 2238 return -EINVAL; 2239 } 2240 2241 ext = find_extern_by_name(obj, buf); 2242 if (!ext || ext->is_set) 2243 return 0; 2244 2245 ext_val = data + ext->kcfg.data_off; 2246 value = sep + 1; 2247 2248 switch (*value) { 2249 case 'y': case 'n': case 'm': 2250 err = set_kcfg_value_tri(ext, ext_val, *value); 2251 break; 2252 case '"': 2253 err = set_kcfg_value_str(ext, ext_val, value); 2254 break; 2255 default: 2256 /* assume integer */ 2257 err = parse_u64(value, &num); 2258 if (err) { 2259 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2260 return err; 2261 } 2262 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2263 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2264 return -EINVAL; 2265 } 2266 err = set_kcfg_value_num(ext, ext_val, num); 2267 break; 2268 } 2269 if (err) 2270 return err; 2271 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2272 return 0; 2273 } 2274 2275 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2276 { 2277 char buf[PATH_MAX]; 2278 struct utsname uts; 2279 int len, err = 0; 2280 gzFile file; 2281 2282 uname(&uts); 2283 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2284 if (len < 0) 2285 return -EINVAL; 2286 else if (len >= PATH_MAX) 2287 return -ENAMETOOLONG; 2288 2289 /* gzopen also accepts uncompressed files. */ 2290 file = gzopen(buf, "re"); 2291 if (!file) 2292 file = gzopen("/proc/config.gz", "re"); 2293 2294 if (!file) { 2295 pr_warn("failed to open system Kconfig\n"); 2296 return -ENOENT; 2297 } 2298 2299 while (gzgets(file, buf, sizeof(buf))) { 2300 err = bpf_object__process_kconfig_line(obj, buf, data); 2301 if (err) { 2302 pr_warn("error parsing system Kconfig line '%s': %s\n", 2303 buf, errstr(err)); 2304 goto out; 2305 } 2306 } 2307 2308 out: 2309 gzclose(file); 2310 return err; 2311 } 2312 2313 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2314 const char *config, void *data) 2315 { 2316 char buf[PATH_MAX]; 2317 int err = 0; 2318 FILE *file; 2319 2320 file = fmemopen((void *)config, strlen(config), "r"); 2321 if (!file) { 2322 err = -errno; 2323 pr_warn("failed to open in-memory Kconfig: %s\n", errstr(err)); 2324 return err; 2325 } 2326 2327 while (fgets(buf, sizeof(buf), file)) { 2328 err = bpf_object__process_kconfig_line(obj, buf, data); 2329 if (err) { 2330 pr_warn("error parsing in-memory Kconfig line '%s': %s\n", 2331 buf, errstr(err)); 2332 break; 2333 } 2334 } 2335 2336 fclose(file); 2337 return err; 2338 } 2339 2340 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2341 { 2342 struct extern_desc *last_ext = NULL, *ext; 2343 size_t map_sz; 2344 int i, err; 2345 2346 for (i = 0; i < obj->nr_extern; i++) { 2347 ext = &obj->externs[i]; 2348 if (ext->type == EXT_KCFG) 2349 last_ext = ext; 2350 } 2351 2352 if (!last_ext) 2353 return 0; 2354 2355 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2356 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2357 ".kconfig", obj->efile.symbols_shndx, 2358 NULL, map_sz); 2359 if (err) 2360 return err; 2361 2362 obj->kconfig_map_idx = obj->nr_maps - 1; 2363 2364 return 0; 2365 } 2366 2367 const struct btf_type * 2368 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2369 { 2370 const struct btf_type *t = btf__type_by_id(btf, id); 2371 2372 if (res_id) 2373 *res_id = id; 2374 2375 while (btf_is_mod(t) || btf_is_typedef(t)) { 2376 if (res_id) 2377 *res_id = t->type; 2378 t = btf__type_by_id(btf, t->type); 2379 } 2380 2381 return t; 2382 } 2383 2384 static const struct btf_type * 2385 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2386 { 2387 const struct btf_type *t; 2388 2389 t = skip_mods_and_typedefs(btf, id, NULL); 2390 if (!btf_is_ptr(t)) 2391 return NULL; 2392 2393 t = skip_mods_and_typedefs(btf, t->type, res_id); 2394 2395 return btf_is_func_proto(t) ? t : NULL; 2396 } 2397 2398 static const char *__btf_kind_str(__u16 kind) 2399 { 2400 switch (kind) { 2401 case BTF_KIND_UNKN: return "void"; 2402 case BTF_KIND_INT: return "int"; 2403 case BTF_KIND_PTR: return "ptr"; 2404 case BTF_KIND_ARRAY: return "array"; 2405 case BTF_KIND_STRUCT: return "struct"; 2406 case BTF_KIND_UNION: return "union"; 2407 case BTF_KIND_ENUM: return "enum"; 2408 case BTF_KIND_FWD: return "fwd"; 2409 case BTF_KIND_TYPEDEF: return "typedef"; 2410 case BTF_KIND_VOLATILE: return "volatile"; 2411 case BTF_KIND_CONST: return "const"; 2412 case BTF_KIND_RESTRICT: return "restrict"; 2413 case BTF_KIND_FUNC: return "func"; 2414 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2415 case BTF_KIND_VAR: return "var"; 2416 case BTF_KIND_DATASEC: return "datasec"; 2417 case BTF_KIND_FLOAT: return "float"; 2418 case BTF_KIND_DECL_TAG: return "decl_tag"; 2419 case BTF_KIND_TYPE_TAG: return "type_tag"; 2420 case BTF_KIND_ENUM64: return "enum64"; 2421 default: return "unknown"; 2422 } 2423 } 2424 2425 const char *btf_kind_str(const struct btf_type *t) 2426 { 2427 return __btf_kind_str(btf_kind(t)); 2428 } 2429 2430 /* 2431 * Fetch integer attribute of BTF map definition. Such attributes are 2432 * represented using a pointer to an array, in which dimensionality of array 2433 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2434 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2435 * type definition, while using only sizeof(void *) space in ELF data section. 2436 */ 2437 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2438 const struct btf_member *m, __u32 *res) 2439 { 2440 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2441 const char *name = btf__name_by_offset(btf, m->name_off); 2442 const struct btf_array *arr_info; 2443 const struct btf_type *arr_t; 2444 2445 if (!btf_is_ptr(t)) { 2446 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2447 map_name, name, btf_kind_str(t)); 2448 return false; 2449 } 2450 2451 arr_t = btf__type_by_id(btf, t->type); 2452 if (!arr_t) { 2453 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2454 map_name, name, t->type); 2455 return false; 2456 } 2457 if (!btf_is_array(arr_t)) { 2458 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2459 map_name, name, btf_kind_str(arr_t)); 2460 return false; 2461 } 2462 arr_info = btf_array(arr_t); 2463 *res = arr_info->nelems; 2464 return true; 2465 } 2466 2467 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2468 const struct btf_member *m, __u64 *res) 2469 { 2470 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2471 const char *name = btf__name_by_offset(btf, m->name_off); 2472 2473 if (btf_is_ptr(t)) { 2474 __u32 res32; 2475 bool ret; 2476 2477 ret = get_map_field_int(map_name, btf, m, &res32); 2478 if (ret) 2479 *res = (__u64)res32; 2480 return ret; 2481 } 2482 2483 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2484 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2485 map_name, name, btf_kind_str(t)); 2486 return false; 2487 } 2488 2489 if (btf_vlen(t) != 1) { 2490 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2491 map_name, name); 2492 return false; 2493 } 2494 2495 if (btf_is_enum(t)) { 2496 const struct btf_enum *e = btf_enum(t); 2497 2498 *res = e->val; 2499 } else { 2500 const struct btf_enum64 *e = btf_enum64(t); 2501 2502 *res = btf_enum64_value(e); 2503 } 2504 return true; 2505 } 2506 2507 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2508 { 2509 int len; 2510 2511 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2512 if (len < 0) 2513 return -EINVAL; 2514 if (len >= buf_sz) 2515 return -ENAMETOOLONG; 2516 2517 return 0; 2518 } 2519 2520 static int build_map_pin_path(struct bpf_map *map, const char *path) 2521 { 2522 char buf[PATH_MAX]; 2523 int err; 2524 2525 if (!path) 2526 path = BPF_FS_DEFAULT_PATH; 2527 2528 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2529 if (err) 2530 return err; 2531 2532 return bpf_map__set_pin_path(map, buf); 2533 } 2534 2535 /* should match definition in bpf_helpers.h */ 2536 enum libbpf_pin_type { 2537 LIBBPF_PIN_NONE, 2538 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2539 LIBBPF_PIN_BY_NAME, 2540 }; 2541 2542 int parse_btf_map_def(const char *map_name, struct btf *btf, 2543 const struct btf_type *def_t, bool strict, 2544 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2545 { 2546 const struct btf_type *t; 2547 const struct btf_member *m; 2548 bool is_inner = inner_def == NULL; 2549 int vlen, i; 2550 2551 vlen = btf_vlen(def_t); 2552 m = btf_members(def_t); 2553 for (i = 0; i < vlen; i++, m++) { 2554 const char *name = btf__name_by_offset(btf, m->name_off); 2555 2556 if (!name) { 2557 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2558 return -EINVAL; 2559 } 2560 if (strcmp(name, "type") == 0) { 2561 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2562 return -EINVAL; 2563 map_def->parts |= MAP_DEF_MAP_TYPE; 2564 } else if (strcmp(name, "max_entries") == 0) { 2565 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2566 return -EINVAL; 2567 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2568 } else if (strcmp(name, "map_flags") == 0) { 2569 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2570 return -EINVAL; 2571 map_def->parts |= MAP_DEF_MAP_FLAGS; 2572 } else if (strcmp(name, "numa_node") == 0) { 2573 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2574 return -EINVAL; 2575 map_def->parts |= MAP_DEF_NUMA_NODE; 2576 } else if (strcmp(name, "key_size") == 0) { 2577 __u32 sz; 2578 2579 if (!get_map_field_int(map_name, btf, m, &sz)) 2580 return -EINVAL; 2581 if (map_def->key_size && map_def->key_size != sz) { 2582 pr_warn("map '%s': conflicting key size %u != %u.\n", 2583 map_name, map_def->key_size, sz); 2584 return -EINVAL; 2585 } 2586 map_def->key_size = sz; 2587 map_def->parts |= MAP_DEF_KEY_SIZE; 2588 } else if (strcmp(name, "key") == 0) { 2589 __s64 sz; 2590 2591 t = btf__type_by_id(btf, m->type); 2592 if (!t) { 2593 pr_warn("map '%s': key type [%d] not found.\n", 2594 map_name, m->type); 2595 return -EINVAL; 2596 } 2597 if (!btf_is_ptr(t)) { 2598 pr_warn("map '%s': key spec is not PTR: %s.\n", 2599 map_name, btf_kind_str(t)); 2600 return -EINVAL; 2601 } 2602 sz = btf__resolve_size(btf, t->type); 2603 if (sz < 0) { 2604 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2605 map_name, t->type, (ssize_t)sz); 2606 return sz; 2607 } 2608 if (map_def->key_size && map_def->key_size != sz) { 2609 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2610 map_name, map_def->key_size, (ssize_t)sz); 2611 return -EINVAL; 2612 } 2613 map_def->key_size = sz; 2614 map_def->key_type_id = t->type; 2615 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2616 } else if (strcmp(name, "value_size") == 0) { 2617 __u32 sz; 2618 2619 if (!get_map_field_int(map_name, btf, m, &sz)) 2620 return -EINVAL; 2621 if (map_def->value_size && map_def->value_size != sz) { 2622 pr_warn("map '%s': conflicting value size %u != %u.\n", 2623 map_name, map_def->value_size, sz); 2624 return -EINVAL; 2625 } 2626 map_def->value_size = sz; 2627 map_def->parts |= MAP_DEF_VALUE_SIZE; 2628 } else if (strcmp(name, "value") == 0) { 2629 __s64 sz; 2630 2631 t = btf__type_by_id(btf, m->type); 2632 if (!t) { 2633 pr_warn("map '%s': value type [%d] not found.\n", 2634 map_name, m->type); 2635 return -EINVAL; 2636 } 2637 if (!btf_is_ptr(t)) { 2638 pr_warn("map '%s': value spec is not PTR: %s.\n", 2639 map_name, btf_kind_str(t)); 2640 return -EINVAL; 2641 } 2642 sz = btf__resolve_size(btf, t->type); 2643 if (sz < 0) { 2644 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2645 map_name, t->type, (ssize_t)sz); 2646 return sz; 2647 } 2648 if (map_def->value_size && map_def->value_size != sz) { 2649 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2650 map_name, map_def->value_size, (ssize_t)sz); 2651 return -EINVAL; 2652 } 2653 map_def->value_size = sz; 2654 map_def->value_type_id = t->type; 2655 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2656 } 2657 else if (strcmp(name, "values") == 0) { 2658 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2659 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2660 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2661 char inner_map_name[128]; 2662 int err; 2663 2664 if (is_inner) { 2665 pr_warn("map '%s': multi-level inner maps not supported.\n", 2666 map_name); 2667 return -ENOTSUP; 2668 } 2669 if (i != vlen - 1) { 2670 pr_warn("map '%s': '%s' member should be last.\n", 2671 map_name, name); 2672 return -EINVAL; 2673 } 2674 if (!is_map_in_map && !is_prog_array) { 2675 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2676 map_name); 2677 return -ENOTSUP; 2678 } 2679 if (map_def->value_size && map_def->value_size != 4) { 2680 pr_warn("map '%s': conflicting value size %u != 4.\n", 2681 map_name, map_def->value_size); 2682 return -EINVAL; 2683 } 2684 map_def->value_size = 4; 2685 t = btf__type_by_id(btf, m->type); 2686 if (!t) { 2687 pr_warn("map '%s': %s type [%d] not found.\n", 2688 map_name, desc, m->type); 2689 return -EINVAL; 2690 } 2691 if (!btf_is_array(t) || btf_array(t)->nelems) { 2692 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2693 map_name, desc); 2694 return -EINVAL; 2695 } 2696 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2697 if (!btf_is_ptr(t)) { 2698 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2699 map_name, desc, btf_kind_str(t)); 2700 return -EINVAL; 2701 } 2702 t = skip_mods_and_typedefs(btf, t->type, NULL); 2703 if (is_prog_array) { 2704 if (!btf_is_func_proto(t)) { 2705 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2706 map_name, btf_kind_str(t)); 2707 return -EINVAL; 2708 } 2709 continue; 2710 } 2711 if (!btf_is_struct(t)) { 2712 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2713 map_name, btf_kind_str(t)); 2714 return -EINVAL; 2715 } 2716 2717 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2718 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2719 if (err) 2720 return err; 2721 2722 map_def->parts |= MAP_DEF_INNER_MAP; 2723 } else if (strcmp(name, "pinning") == 0) { 2724 __u32 val; 2725 2726 if (is_inner) { 2727 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2728 return -EINVAL; 2729 } 2730 if (!get_map_field_int(map_name, btf, m, &val)) 2731 return -EINVAL; 2732 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2733 pr_warn("map '%s': invalid pinning value %u.\n", 2734 map_name, val); 2735 return -EINVAL; 2736 } 2737 map_def->pinning = val; 2738 map_def->parts |= MAP_DEF_PINNING; 2739 } else if (strcmp(name, "map_extra") == 0) { 2740 __u64 map_extra; 2741 2742 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2743 return -EINVAL; 2744 map_def->map_extra = map_extra; 2745 map_def->parts |= MAP_DEF_MAP_EXTRA; 2746 } else { 2747 if (strict) { 2748 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2749 return -ENOTSUP; 2750 } 2751 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2752 } 2753 } 2754 2755 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2756 pr_warn("map '%s': map type isn't specified.\n", map_name); 2757 return -EINVAL; 2758 } 2759 2760 return 0; 2761 } 2762 2763 static size_t adjust_ringbuf_sz(size_t sz) 2764 { 2765 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2766 __u32 mul; 2767 2768 /* if user forgot to set any size, make sure they see error */ 2769 if (sz == 0) 2770 return 0; 2771 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2772 * a power-of-2 multiple of kernel's page size. If user diligently 2773 * satisified these conditions, pass the size through. 2774 */ 2775 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2776 return sz; 2777 2778 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2779 * user-set size to satisfy both user size request and kernel 2780 * requirements and substitute correct max_entries for map creation. 2781 */ 2782 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2783 if (mul * page_sz > sz) 2784 return mul * page_sz; 2785 } 2786 2787 /* if it's impossible to satisfy the conditions (i.e., user size is 2788 * very close to UINT_MAX but is not a power-of-2 multiple of 2789 * page_size) then just return original size and let kernel reject it 2790 */ 2791 return sz; 2792 } 2793 2794 static bool map_is_ringbuf(const struct bpf_map *map) 2795 { 2796 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2797 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2798 } 2799 2800 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2801 { 2802 map->def.type = def->map_type; 2803 map->def.key_size = def->key_size; 2804 map->def.value_size = def->value_size; 2805 map->def.max_entries = def->max_entries; 2806 map->def.map_flags = def->map_flags; 2807 map->map_extra = def->map_extra; 2808 2809 map->numa_node = def->numa_node; 2810 map->btf_key_type_id = def->key_type_id; 2811 map->btf_value_type_id = def->value_type_id; 2812 2813 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2814 if (map_is_ringbuf(map)) 2815 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2816 2817 if (def->parts & MAP_DEF_MAP_TYPE) 2818 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2819 2820 if (def->parts & MAP_DEF_KEY_TYPE) 2821 pr_debug("map '%s': found key [%u], sz = %u.\n", 2822 map->name, def->key_type_id, def->key_size); 2823 else if (def->parts & MAP_DEF_KEY_SIZE) 2824 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2825 2826 if (def->parts & MAP_DEF_VALUE_TYPE) 2827 pr_debug("map '%s': found value [%u], sz = %u.\n", 2828 map->name, def->value_type_id, def->value_size); 2829 else if (def->parts & MAP_DEF_VALUE_SIZE) 2830 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2831 2832 if (def->parts & MAP_DEF_MAX_ENTRIES) 2833 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2834 if (def->parts & MAP_DEF_MAP_FLAGS) 2835 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2836 if (def->parts & MAP_DEF_MAP_EXTRA) 2837 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2838 (unsigned long long)def->map_extra); 2839 if (def->parts & MAP_DEF_PINNING) 2840 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2841 if (def->parts & MAP_DEF_NUMA_NODE) 2842 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2843 2844 if (def->parts & MAP_DEF_INNER_MAP) 2845 pr_debug("map '%s': found inner map definition.\n", map->name); 2846 } 2847 2848 static const char *btf_var_linkage_str(__u32 linkage) 2849 { 2850 switch (linkage) { 2851 case BTF_VAR_STATIC: return "static"; 2852 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2853 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2854 default: return "unknown"; 2855 } 2856 } 2857 2858 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2859 const struct btf_type *sec, 2860 int var_idx, int sec_idx, 2861 const Elf_Data *data, bool strict, 2862 const char *pin_root_path) 2863 { 2864 struct btf_map_def map_def = {}, inner_def = {}; 2865 const struct btf_type *var, *def; 2866 const struct btf_var_secinfo *vi; 2867 const struct btf_var *var_extra; 2868 const char *map_name; 2869 struct bpf_map *map; 2870 int err; 2871 2872 vi = btf_var_secinfos(sec) + var_idx; 2873 var = btf__type_by_id(obj->btf, vi->type); 2874 var_extra = btf_var(var); 2875 map_name = btf__name_by_offset(obj->btf, var->name_off); 2876 2877 if (map_name == NULL || map_name[0] == '\0') { 2878 pr_warn("map #%d: empty name.\n", var_idx); 2879 return -EINVAL; 2880 } 2881 if ((__u64)vi->offset + vi->size > data->d_size) { 2882 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2883 return -EINVAL; 2884 } 2885 if (!btf_is_var(var)) { 2886 pr_warn("map '%s': unexpected var kind %s.\n", 2887 map_name, btf_kind_str(var)); 2888 return -EINVAL; 2889 } 2890 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2891 pr_warn("map '%s': unsupported map linkage %s.\n", 2892 map_name, btf_var_linkage_str(var_extra->linkage)); 2893 return -EOPNOTSUPP; 2894 } 2895 2896 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2897 if (!btf_is_struct(def)) { 2898 pr_warn("map '%s': unexpected def kind %s.\n", 2899 map_name, btf_kind_str(var)); 2900 return -EINVAL; 2901 } 2902 if (def->size > vi->size) { 2903 pr_warn("map '%s': invalid def size.\n", map_name); 2904 return -EINVAL; 2905 } 2906 2907 map = bpf_object__add_map(obj); 2908 if (IS_ERR(map)) 2909 return PTR_ERR(map); 2910 map->name = strdup(map_name); 2911 if (!map->name) { 2912 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2913 return -ENOMEM; 2914 } 2915 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2916 map->def.type = BPF_MAP_TYPE_UNSPEC; 2917 map->sec_idx = sec_idx; 2918 map->sec_offset = vi->offset; 2919 map->btf_var_idx = var_idx; 2920 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2921 map_name, map->sec_idx, map->sec_offset); 2922 2923 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2924 if (err) 2925 return err; 2926 2927 fill_map_from_def(map, &map_def); 2928 2929 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2930 err = build_map_pin_path(map, pin_root_path); 2931 if (err) { 2932 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2933 return err; 2934 } 2935 } 2936 2937 if (map_def.parts & MAP_DEF_INNER_MAP) { 2938 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2939 if (!map->inner_map) 2940 return -ENOMEM; 2941 map->inner_map->fd = create_placeholder_fd(); 2942 if (map->inner_map->fd < 0) 2943 return map->inner_map->fd; 2944 map->inner_map->sec_idx = sec_idx; 2945 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2946 if (!map->inner_map->name) 2947 return -ENOMEM; 2948 sprintf(map->inner_map->name, "%s.inner", map_name); 2949 2950 fill_map_from_def(map->inner_map, &inner_def); 2951 } 2952 2953 err = map_fill_btf_type_info(obj, map); 2954 if (err) 2955 return err; 2956 2957 return 0; 2958 } 2959 2960 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2961 const char *sec_name, int sec_idx, 2962 void *data, size_t data_sz) 2963 { 2964 const long page_sz = sysconf(_SC_PAGE_SIZE); 2965 size_t mmap_sz; 2966 2967 mmap_sz = bpf_map_mmap_sz(obj->arena_map); 2968 if (roundup(data_sz, page_sz) > mmap_sz) { 2969 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2970 sec_name, mmap_sz, data_sz); 2971 return -E2BIG; 2972 } 2973 2974 obj->arena_data = malloc(data_sz); 2975 if (!obj->arena_data) 2976 return -ENOMEM; 2977 memcpy(obj->arena_data, data, data_sz); 2978 obj->arena_data_sz = data_sz; 2979 2980 /* make bpf_map__init_value() work for ARENA maps */ 2981 map->mmaped = obj->arena_data; 2982 2983 return 0; 2984 } 2985 2986 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2987 const char *pin_root_path) 2988 { 2989 const struct btf_type *sec = NULL; 2990 int nr_types, i, vlen, err; 2991 const struct btf_type *t; 2992 const char *name; 2993 Elf_Data *data; 2994 Elf_Scn *scn; 2995 2996 if (obj->efile.btf_maps_shndx < 0) 2997 return 0; 2998 2999 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 3000 data = elf_sec_data(obj, scn); 3001 if (!scn || !data) { 3002 pr_warn("elf: failed to get %s map definitions for %s\n", 3003 MAPS_ELF_SEC, obj->path); 3004 return -EINVAL; 3005 } 3006 3007 nr_types = btf__type_cnt(obj->btf); 3008 for (i = 1; i < nr_types; i++) { 3009 t = btf__type_by_id(obj->btf, i); 3010 if (!btf_is_datasec(t)) 3011 continue; 3012 name = btf__name_by_offset(obj->btf, t->name_off); 3013 if (strcmp(name, MAPS_ELF_SEC) == 0) { 3014 sec = t; 3015 obj->efile.btf_maps_sec_btf_id = i; 3016 break; 3017 } 3018 } 3019 3020 if (!sec) { 3021 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 3022 return -ENOENT; 3023 } 3024 3025 vlen = btf_vlen(sec); 3026 for (i = 0; i < vlen; i++) { 3027 err = bpf_object__init_user_btf_map(obj, sec, i, 3028 obj->efile.btf_maps_shndx, 3029 data, strict, 3030 pin_root_path); 3031 if (err) 3032 return err; 3033 } 3034 3035 for (i = 0; i < obj->nr_maps; i++) { 3036 struct bpf_map *map = &obj->maps[i]; 3037 3038 if (map->def.type != BPF_MAP_TYPE_ARENA) 3039 continue; 3040 3041 if (obj->arena_map) { 3042 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 3043 map->name, obj->arena_map->name); 3044 return -EINVAL; 3045 } 3046 obj->arena_map = map; 3047 3048 if (obj->efile.arena_data) { 3049 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 3050 obj->efile.arena_data->d_buf, 3051 obj->efile.arena_data->d_size); 3052 if (err) 3053 return err; 3054 } 3055 } 3056 if (obj->efile.arena_data && !obj->arena_map) { 3057 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 3058 ARENA_SEC); 3059 return -ENOENT; 3060 } 3061 3062 return 0; 3063 } 3064 3065 static int bpf_object__init_maps(struct bpf_object *obj, 3066 const struct bpf_object_open_opts *opts) 3067 { 3068 const char *pin_root_path; 3069 bool strict; 3070 int err = 0; 3071 3072 strict = !OPTS_GET(opts, relaxed_maps, false); 3073 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 3074 3075 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 3076 err = err ?: bpf_object__init_global_data_maps(obj); 3077 err = err ?: bpf_object__init_kconfig_map(obj); 3078 err = err ?: bpf_object_init_struct_ops(obj); 3079 3080 return err; 3081 } 3082 3083 static bool section_have_execinstr(struct bpf_object *obj, int idx) 3084 { 3085 Elf64_Shdr *sh; 3086 3087 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 3088 if (!sh) 3089 return false; 3090 3091 return sh->sh_flags & SHF_EXECINSTR; 3092 } 3093 3094 static bool starts_with_qmark(const char *s) 3095 { 3096 return s && s[0] == '?'; 3097 } 3098 3099 static bool btf_needs_sanitization(struct bpf_object *obj) 3100 { 3101 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3102 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3103 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3104 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3105 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3106 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3107 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3108 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3109 3110 return !has_func || !has_datasec || !has_func_global || !has_float || 3111 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3112 } 3113 3114 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3115 { 3116 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3117 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3118 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3119 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3120 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3121 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3122 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3123 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3124 int enum64_placeholder_id = 0; 3125 struct btf_type *t; 3126 int i, j, vlen; 3127 3128 for (i = 1; i < btf__type_cnt(btf); i++) { 3129 t = (struct btf_type *)btf__type_by_id(btf, i); 3130 3131 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3132 /* replace VAR/DECL_TAG with INT */ 3133 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3134 /* 3135 * using size = 1 is the safest choice, 4 will be too 3136 * big and cause kernel BTF validation failure if 3137 * original variable took less than 4 bytes 3138 */ 3139 t->size = 1; 3140 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3141 } else if (!has_datasec && btf_is_datasec(t)) { 3142 /* replace DATASEC with STRUCT */ 3143 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3144 struct btf_member *m = btf_members(t); 3145 struct btf_type *vt; 3146 char *name; 3147 3148 name = (char *)btf__name_by_offset(btf, t->name_off); 3149 while (*name) { 3150 if (*name == '.' || *name == '?') 3151 *name = '_'; 3152 name++; 3153 } 3154 3155 vlen = btf_vlen(t); 3156 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3157 for (j = 0; j < vlen; j++, v++, m++) { 3158 /* order of field assignments is important */ 3159 m->offset = v->offset * 8; 3160 m->type = v->type; 3161 /* preserve variable name as member name */ 3162 vt = (void *)btf__type_by_id(btf, v->type); 3163 m->name_off = vt->name_off; 3164 } 3165 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3166 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3167 /* replace '?' prefix with '_' for DATASEC names */ 3168 char *name; 3169 3170 name = (char *)btf__name_by_offset(btf, t->name_off); 3171 if (name[0] == '?') 3172 name[0] = '_'; 3173 } else if (!has_func && btf_is_func_proto(t)) { 3174 /* replace FUNC_PROTO with ENUM */ 3175 vlen = btf_vlen(t); 3176 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3177 t->size = sizeof(__u32); /* kernel enforced */ 3178 } else if (!has_func && btf_is_func(t)) { 3179 /* replace FUNC with TYPEDEF */ 3180 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3181 } else if (!has_func_global && btf_is_func(t)) { 3182 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3183 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3184 } else if (!has_float && btf_is_float(t)) { 3185 /* replace FLOAT with an equally-sized empty STRUCT; 3186 * since C compilers do not accept e.g. "float" as a 3187 * valid struct name, make it anonymous 3188 */ 3189 t->name_off = 0; 3190 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3191 } else if (!has_type_tag && btf_is_type_tag(t)) { 3192 /* replace TYPE_TAG with a CONST */ 3193 t->name_off = 0; 3194 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3195 } else if (!has_enum64 && btf_is_enum(t)) { 3196 /* clear the kflag */ 3197 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3198 } else if (!has_enum64 && btf_is_enum64(t)) { 3199 /* replace ENUM64 with a union */ 3200 struct btf_member *m; 3201 3202 if (enum64_placeholder_id == 0) { 3203 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3204 if (enum64_placeholder_id < 0) 3205 return enum64_placeholder_id; 3206 3207 t = (struct btf_type *)btf__type_by_id(btf, i); 3208 } 3209 3210 m = btf_members(t); 3211 vlen = btf_vlen(t); 3212 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3213 for (j = 0; j < vlen; j++, m++) { 3214 m->type = enum64_placeholder_id; 3215 m->offset = 0; 3216 } 3217 } 3218 } 3219 3220 return 0; 3221 } 3222 3223 static bool libbpf_needs_btf(const struct bpf_object *obj) 3224 { 3225 return obj->efile.btf_maps_shndx >= 0 || 3226 obj->efile.has_st_ops || 3227 obj->nr_extern > 0; 3228 } 3229 3230 static bool kernel_needs_btf(const struct bpf_object *obj) 3231 { 3232 return obj->efile.has_st_ops; 3233 } 3234 3235 static int bpf_object__init_btf(struct bpf_object *obj, 3236 Elf_Data *btf_data, 3237 Elf_Data *btf_ext_data) 3238 { 3239 int err = -ENOENT; 3240 3241 if (btf_data) { 3242 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3243 err = libbpf_get_error(obj->btf); 3244 if (err) { 3245 obj->btf = NULL; 3246 pr_warn("Error loading ELF section %s: %s.\n", BTF_ELF_SEC, errstr(err)); 3247 goto out; 3248 } 3249 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3250 btf__set_pointer_size(obj->btf, 8); 3251 } 3252 if (btf_ext_data) { 3253 struct btf_ext_info *ext_segs[3]; 3254 int seg_num, sec_num; 3255 3256 if (!obj->btf) { 3257 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3258 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3259 goto out; 3260 } 3261 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3262 err = libbpf_get_error(obj->btf_ext); 3263 if (err) { 3264 pr_warn("Error loading ELF section %s: %s. Ignored and continue.\n", 3265 BTF_EXT_ELF_SEC, errstr(err)); 3266 obj->btf_ext = NULL; 3267 goto out; 3268 } 3269 3270 /* setup .BTF.ext to ELF section mapping */ 3271 ext_segs[0] = &obj->btf_ext->func_info; 3272 ext_segs[1] = &obj->btf_ext->line_info; 3273 ext_segs[2] = &obj->btf_ext->core_relo_info; 3274 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3275 struct btf_ext_info *seg = ext_segs[seg_num]; 3276 const struct btf_ext_info_sec *sec; 3277 const char *sec_name; 3278 Elf_Scn *scn; 3279 3280 if (seg->sec_cnt == 0) 3281 continue; 3282 3283 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3284 if (!seg->sec_idxs) { 3285 err = -ENOMEM; 3286 goto out; 3287 } 3288 3289 sec_num = 0; 3290 for_each_btf_ext_sec(seg, sec) { 3291 /* preventively increment index to avoid doing 3292 * this before every continue below 3293 */ 3294 sec_num++; 3295 3296 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3297 if (str_is_empty(sec_name)) 3298 continue; 3299 scn = elf_sec_by_name(obj, sec_name); 3300 if (!scn) 3301 continue; 3302 3303 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3304 } 3305 } 3306 } 3307 out: 3308 if (err && libbpf_needs_btf(obj)) { 3309 pr_warn("BTF is required, but is missing or corrupted.\n"); 3310 return err; 3311 } 3312 return 0; 3313 } 3314 3315 static int compare_vsi_off(const void *_a, const void *_b) 3316 { 3317 const struct btf_var_secinfo *a = _a; 3318 const struct btf_var_secinfo *b = _b; 3319 3320 return a->offset - b->offset; 3321 } 3322 3323 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3324 struct btf_type *t) 3325 { 3326 __u32 size = 0, i, vars = btf_vlen(t); 3327 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3328 struct btf_var_secinfo *vsi; 3329 bool fixup_offsets = false; 3330 int err; 3331 3332 if (!sec_name) { 3333 pr_debug("No name found in string section for DATASEC kind.\n"); 3334 return -ENOENT; 3335 } 3336 3337 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3338 * variable offsets set at the previous step. Further, not every 3339 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3340 * all fixups altogether for such sections and go straight to sorting 3341 * VARs within their DATASEC. 3342 */ 3343 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3344 goto sort_vars; 3345 3346 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3347 * fix this up. But BPF static linker already fixes this up and fills 3348 * all the sizes and offsets during static linking. So this step has 3349 * to be optional. But the STV_HIDDEN handling is non-optional for any 3350 * non-extern DATASEC, so the variable fixup loop below handles both 3351 * functions at the same time, paying the cost of BTF VAR <-> ELF 3352 * symbol matching just once. 3353 */ 3354 if (t->size == 0) { 3355 err = find_elf_sec_sz(obj, sec_name, &size); 3356 if (err || !size) { 3357 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %s\n", 3358 sec_name, size, errstr(err)); 3359 return -ENOENT; 3360 } 3361 3362 t->size = size; 3363 fixup_offsets = true; 3364 } 3365 3366 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3367 const struct btf_type *t_var; 3368 struct btf_var *var; 3369 const char *var_name; 3370 Elf64_Sym *sym; 3371 3372 t_var = btf__type_by_id(btf, vsi->type); 3373 if (!t_var || !btf_is_var(t_var)) { 3374 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3375 return -EINVAL; 3376 } 3377 3378 var = btf_var(t_var); 3379 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3380 continue; 3381 3382 var_name = btf__name_by_offset(btf, t_var->name_off); 3383 if (!var_name) { 3384 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3385 sec_name, i); 3386 return -ENOENT; 3387 } 3388 3389 sym = find_elf_var_sym(obj, var_name); 3390 if (IS_ERR(sym)) { 3391 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3392 sec_name, var_name); 3393 return -ENOENT; 3394 } 3395 3396 if (fixup_offsets) 3397 vsi->offset = sym->st_value; 3398 3399 /* if variable is a global/weak symbol, but has restricted 3400 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3401 * as static. This follows similar logic for functions (BPF 3402 * subprogs) and influences libbpf's further decisions about 3403 * whether to make global data BPF array maps as 3404 * BPF_F_MMAPABLE. 3405 */ 3406 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3407 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3408 var->linkage = BTF_VAR_STATIC; 3409 } 3410 3411 sort_vars: 3412 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3413 return 0; 3414 } 3415 3416 static int bpf_object_fixup_btf(struct bpf_object *obj) 3417 { 3418 int i, n, err = 0; 3419 3420 if (!obj->btf) 3421 return 0; 3422 3423 n = btf__type_cnt(obj->btf); 3424 for (i = 1; i < n; i++) { 3425 struct btf_type *t = btf_type_by_id(obj->btf, i); 3426 3427 /* Loader needs to fix up some of the things compiler 3428 * couldn't get its hands on while emitting BTF. This 3429 * is section size and global variable offset. We use 3430 * the info from the ELF itself for this purpose. 3431 */ 3432 if (btf_is_datasec(t)) { 3433 err = btf_fixup_datasec(obj, obj->btf, t); 3434 if (err) 3435 return err; 3436 } 3437 } 3438 3439 return 0; 3440 } 3441 3442 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3443 { 3444 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3445 prog->type == BPF_PROG_TYPE_LSM) 3446 return true; 3447 3448 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3449 * also need vmlinux BTF 3450 */ 3451 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3452 return true; 3453 3454 return false; 3455 } 3456 3457 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3458 { 3459 return bpf_map__is_struct_ops(map); 3460 } 3461 3462 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3463 { 3464 struct bpf_program *prog; 3465 struct bpf_map *map; 3466 int i; 3467 3468 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3469 * is not specified 3470 */ 3471 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3472 return true; 3473 3474 /* Support for typed ksyms needs kernel BTF */ 3475 for (i = 0; i < obj->nr_extern; i++) { 3476 const struct extern_desc *ext; 3477 3478 ext = &obj->externs[i]; 3479 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3480 return true; 3481 } 3482 3483 bpf_object__for_each_program(prog, obj) { 3484 if (!prog->autoload) 3485 continue; 3486 if (prog_needs_vmlinux_btf(prog)) 3487 return true; 3488 } 3489 3490 bpf_object__for_each_map(map, obj) { 3491 if (map_needs_vmlinux_btf(map)) 3492 return true; 3493 } 3494 3495 return false; 3496 } 3497 3498 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3499 { 3500 int err; 3501 3502 /* btf_vmlinux could be loaded earlier */ 3503 if (obj->btf_vmlinux || obj->gen_loader) 3504 return 0; 3505 3506 if (!force && !obj_needs_vmlinux_btf(obj)) 3507 return 0; 3508 3509 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3510 err = libbpf_get_error(obj->btf_vmlinux); 3511 if (err) { 3512 pr_warn("Error loading vmlinux BTF: %s\n", errstr(err)); 3513 obj->btf_vmlinux = NULL; 3514 return err; 3515 } 3516 return 0; 3517 } 3518 3519 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3520 { 3521 struct btf *kern_btf = obj->btf; 3522 bool btf_mandatory, sanitize; 3523 int i, err = 0; 3524 3525 if (!obj->btf) 3526 return 0; 3527 3528 if (!kernel_supports(obj, FEAT_BTF)) { 3529 if (kernel_needs_btf(obj)) { 3530 err = -EOPNOTSUPP; 3531 goto report; 3532 } 3533 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3534 return 0; 3535 } 3536 3537 /* Even though some subprogs are global/weak, user might prefer more 3538 * permissive BPF verification process that BPF verifier performs for 3539 * static functions, taking into account more context from the caller 3540 * functions. In such case, they need to mark such subprogs with 3541 * __attribute__((visibility("hidden"))) and libbpf will adjust 3542 * corresponding FUNC BTF type to be marked as static and trigger more 3543 * involved BPF verification process. 3544 */ 3545 for (i = 0; i < obj->nr_programs; i++) { 3546 struct bpf_program *prog = &obj->programs[i]; 3547 struct btf_type *t; 3548 const char *name; 3549 int j, n; 3550 3551 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3552 continue; 3553 3554 n = btf__type_cnt(obj->btf); 3555 for (j = 1; j < n; j++) { 3556 t = btf_type_by_id(obj->btf, j); 3557 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3558 continue; 3559 3560 name = btf__str_by_offset(obj->btf, t->name_off); 3561 if (strcmp(name, prog->name) != 0) 3562 continue; 3563 3564 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3565 break; 3566 } 3567 } 3568 3569 sanitize = btf_needs_sanitization(obj); 3570 if (sanitize) { 3571 const void *raw_data; 3572 __u32 sz; 3573 3574 /* clone BTF to sanitize a copy and leave the original intact */ 3575 raw_data = btf__raw_data(obj->btf, &sz); 3576 kern_btf = btf__new(raw_data, sz); 3577 err = libbpf_get_error(kern_btf); 3578 if (err) 3579 return err; 3580 3581 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3582 btf__set_pointer_size(obj->btf, 8); 3583 err = bpf_object__sanitize_btf(obj, kern_btf); 3584 if (err) 3585 return err; 3586 } 3587 3588 if (obj->gen_loader) { 3589 __u32 raw_size = 0; 3590 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3591 3592 if (!raw_data) 3593 return -ENOMEM; 3594 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3595 /* Pretend to have valid FD to pass various fd >= 0 checks. 3596 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3597 */ 3598 btf__set_fd(kern_btf, 0); 3599 } else { 3600 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3601 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3602 obj->log_level ? 1 : 0, obj->token_fd); 3603 } 3604 if (sanitize) { 3605 if (!err) { 3606 /* move fd to libbpf's BTF */ 3607 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3608 btf__set_fd(kern_btf, -1); 3609 } 3610 btf__free(kern_btf); 3611 } 3612 report: 3613 if (err) { 3614 btf_mandatory = kernel_needs_btf(obj); 3615 if (btf_mandatory) { 3616 pr_warn("Error loading .BTF into kernel: %s. BTF is mandatory, can't proceed.\n", 3617 errstr(err)); 3618 } else { 3619 pr_info("Error loading .BTF into kernel: %s. BTF is optional, ignoring.\n", 3620 errstr(err)); 3621 err = 0; 3622 } 3623 } 3624 return err; 3625 } 3626 3627 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3628 { 3629 const char *name; 3630 3631 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3632 if (!name) { 3633 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3634 off, obj->path, elf_errmsg(-1)); 3635 return NULL; 3636 } 3637 3638 return name; 3639 } 3640 3641 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3642 { 3643 const char *name; 3644 3645 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3646 if (!name) { 3647 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3648 off, obj->path, elf_errmsg(-1)); 3649 return NULL; 3650 } 3651 3652 return name; 3653 } 3654 3655 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3656 { 3657 Elf_Scn *scn; 3658 3659 scn = elf_getscn(obj->efile.elf, idx); 3660 if (!scn) { 3661 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3662 idx, obj->path, elf_errmsg(-1)); 3663 return NULL; 3664 } 3665 return scn; 3666 } 3667 3668 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3669 { 3670 Elf_Scn *scn = NULL; 3671 Elf *elf = obj->efile.elf; 3672 const char *sec_name; 3673 3674 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3675 sec_name = elf_sec_name(obj, scn); 3676 if (!sec_name) 3677 return NULL; 3678 3679 if (strcmp(sec_name, name) != 0) 3680 continue; 3681 3682 return scn; 3683 } 3684 return NULL; 3685 } 3686 3687 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3688 { 3689 Elf64_Shdr *shdr; 3690 3691 if (!scn) 3692 return NULL; 3693 3694 shdr = elf64_getshdr(scn); 3695 if (!shdr) { 3696 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3697 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3698 return NULL; 3699 } 3700 3701 return shdr; 3702 } 3703 3704 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3705 { 3706 const char *name; 3707 Elf64_Shdr *sh; 3708 3709 if (!scn) 3710 return NULL; 3711 3712 sh = elf_sec_hdr(obj, scn); 3713 if (!sh) 3714 return NULL; 3715 3716 name = elf_sec_str(obj, sh->sh_name); 3717 if (!name) { 3718 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3719 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3720 return NULL; 3721 } 3722 3723 return name; 3724 } 3725 3726 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3727 { 3728 Elf_Data *data; 3729 3730 if (!scn) 3731 return NULL; 3732 3733 data = elf_getdata(scn, 0); 3734 if (!data) { 3735 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3736 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3737 obj->path, elf_errmsg(-1)); 3738 return NULL; 3739 } 3740 3741 return data; 3742 } 3743 3744 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3745 { 3746 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3747 return NULL; 3748 3749 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3750 } 3751 3752 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3753 { 3754 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3755 return NULL; 3756 3757 return (Elf64_Rel *)data->d_buf + idx; 3758 } 3759 3760 static bool is_sec_name_dwarf(const char *name) 3761 { 3762 /* approximation, but the actual list is too long */ 3763 return str_has_pfx(name, ".debug_"); 3764 } 3765 3766 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3767 { 3768 /* no special handling of .strtab */ 3769 if (hdr->sh_type == SHT_STRTAB) 3770 return true; 3771 3772 /* ignore .llvm_addrsig section as well */ 3773 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3774 return true; 3775 3776 /* no subprograms will lead to an empty .text section, ignore it */ 3777 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3778 strcmp(name, ".text") == 0) 3779 return true; 3780 3781 /* DWARF sections */ 3782 if (is_sec_name_dwarf(name)) 3783 return true; 3784 3785 if (str_has_pfx(name, ".rel")) { 3786 name += sizeof(".rel") - 1; 3787 /* DWARF section relocations */ 3788 if (is_sec_name_dwarf(name)) 3789 return true; 3790 3791 /* .BTF and .BTF.ext don't need relocations */ 3792 if (strcmp(name, BTF_ELF_SEC) == 0 || 3793 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3794 return true; 3795 } 3796 3797 return false; 3798 } 3799 3800 static int cmp_progs(const void *_a, const void *_b) 3801 { 3802 const struct bpf_program *a = _a; 3803 const struct bpf_program *b = _b; 3804 3805 if (a->sec_idx != b->sec_idx) 3806 return a->sec_idx < b->sec_idx ? -1 : 1; 3807 3808 /* sec_insn_off can't be the same within the section */ 3809 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3810 } 3811 3812 static int bpf_object__elf_collect(struct bpf_object *obj) 3813 { 3814 struct elf_sec_desc *sec_desc; 3815 Elf *elf = obj->efile.elf; 3816 Elf_Data *btf_ext_data = NULL; 3817 Elf_Data *btf_data = NULL; 3818 int idx = 0, err = 0; 3819 const char *name; 3820 Elf_Data *data; 3821 Elf_Scn *scn; 3822 Elf64_Shdr *sh; 3823 3824 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3825 * section. Since section count retrieved by elf_getshdrnum() does 3826 * include sec #0, it is already the necessary size of an array to keep 3827 * all the sections. 3828 */ 3829 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3830 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3831 obj->path, elf_errmsg(-1)); 3832 return -LIBBPF_ERRNO__FORMAT; 3833 } 3834 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3835 if (!obj->efile.secs) 3836 return -ENOMEM; 3837 3838 /* a bunch of ELF parsing functionality depends on processing symbols, 3839 * so do the first pass and find the symbol table 3840 */ 3841 scn = NULL; 3842 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3843 sh = elf_sec_hdr(obj, scn); 3844 if (!sh) 3845 return -LIBBPF_ERRNO__FORMAT; 3846 3847 if (sh->sh_type == SHT_SYMTAB) { 3848 if (obj->efile.symbols) { 3849 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3850 return -LIBBPF_ERRNO__FORMAT; 3851 } 3852 3853 data = elf_sec_data(obj, scn); 3854 if (!data) 3855 return -LIBBPF_ERRNO__FORMAT; 3856 3857 idx = elf_ndxscn(scn); 3858 3859 obj->efile.symbols = data; 3860 obj->efile.symbols_shndx = idx; 3861 obj->efile.strtabidx = sh->sh_link; 3862 } 3863 } 3864 3865 if (!obj->efile.symbols) { 3866 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3867 obj->path); 3868 return -ENOENT; 3869 } 3870 3871 scn = NULL; 3872 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3873 idx = elf_ndxscn(scn); 3874 sec_desc = &obj->efile.secs[idx]; 3875 3876 sh = elf_sec_hdr(obj, scn); 3877 if (!sh) 3878 return -LIBBPF_ERRNO__FORMAT; 3879 3880 name = elf_sec_str(obj, sh->sh_name); 3881 if (!name) 3882 return -LIBBPF_ERRNO__FORMAT; 3883 3884 if (ignore_elf_section(sh, name)) 3885 continue; 3886 3887 data = elf_sec_data(obj, scn); 3888 if (!data) 3889 return -LIBBPF_ERRNO__FORMAT; 3890 3891 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3892 idx, name, (unsigned long)data->d_size, 3893 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3894 (int)sh->sh_type); 3895 3896 if (strcmp(name, "license") == 0) { 3897 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3898 if (err) 3899 return err; 3900 } else if (strcmp(name, "version") == 0) { 3901 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3902 if (err) 3903 return err; 3904 } else if (strcmp(name, "maps") == 0) { 3905 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3906 return -ENOTSUP; 3907 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3908 obj->efile.btf_maps_shndx = idx; 3909 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3910 if (sh->sh_type != SHT_PROGBITS) 3911 return -LIBBPF_ERRNO__FORMAT; 3912 btf_data = data; 3913 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3914 if (sh->sh_type != SHT_PROGBITS) 3915 return -LIBBPF_ERRNO__FORMAT; 3916 btf_ext_data = data; 3917 } else if (sh->sh_type == SHT_SYMTAB) { 3918 /* already processed during the first pass above */ 3919 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3920 if (sh->sh_flags & SHF_EXECINSTR) { 3921 if (strcmp(name, ".text") == 0) 3922 obj->efile.text_shndx = idx; 3923 err = bpf_object__add_programs(obj, data, name, idx); 3924 if (err) 3925 return err; 3926 } else if (strcmp(name, DATA_SEC) == 0 || 3927 str_has_pfx(name, DATA_SEC ".")) { 3928 sec_desc->sec_type = SEC_DATA; 3929 sec_desc->shdr = sh; 3930 sec_desc->data = data; 3931 } else if (strcmp(name, RODATA_SEC) == 0 || 3932 str_has_pfx(name, RODATA_SEC ".")) { 3933 sec_desc->sec_type = SEC_RODATA; 3934 sec_desc->shdr = sh; 3935 sec_desc->data = data; 3936 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3937 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3938 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3939 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3940 sec_desc->sec_type = SEC_ST_OPS; 3941 sec_desc->shdr = sh; 3942 sec_desc->data = data; 3943 obj->efile.has_st_ops = true; 3944 } else if (strcmp(name, ARENA_SEC) == 0) { 3945 obj->efile.arena_data = data; 3946 obj->efile.arena_data_shndx = idx; 3947 } else { 3948 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3949 idx, name); 3950 } 3951 } else if (sh->sh_type == SHT_REL) { 3952 int targ_sec_idx = sh->sh_info; /* points to other section */ 3953 3954 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3955 targ_sec_idx >= obj->efile.sec_cnt) 3956 return -LIBBPF_ERRNO__FORMAT; 3957 3958 /* Only do relo for section with exec instructions */ 3959 if (!section_have_execinstr(obj, targ_sec_idx) && 3960 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3961 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3962 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3963 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3964 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3965 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3966 idx, name, targ_sec_idx, 3967 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3968 continue; 3969 } 3970 3971 sec_desc->sec_type = SEC_RELO; 3972 sec_desc->shdr = sh; 3973 sec_desc->data = data; 3974 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3975 str_has_pfx(name, BSS_SEC "."))) { 3976 sec_desc->sec_type = SEC_BSS; 3977 sec_desc->shdr = sh; 3978 sec_desc->data = data; 3979 } else { 3980 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3981 (size_t)sh->sh_size); 3982 } 3983 } 3984 3985 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3986 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3987 return -LIBBPF_ERRNO__FORMAT; 3988 } 3989 3990 /* change BPF program insns to native endianness for introspection */ 3991 if (!is_native_endianness(obj)) 3992 bpf_object_bswap_progs(obj); 3993 3994 /* sort BPF programs by section name and in-section instruction offset 3995 * for faster search 3996 */ 3997 if (obj->nr_programs) 3998 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3999 4000 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 4001 } 4002 4003 static bool sym_is_extern(const Elf64_Sym *sym) 4004 { 4005 int bind = ELF64_ST_BIND(sym->st_info); 4006 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 4007 return sym->st_shndx == SHN_UNDEF && 4008 (bind == STB_GLOBAL || bind == STB_WEAK) && 4009 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 4010 } 4011 4012 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 4013 { 4014 int bind = ELF64_ST_BIND(sym->st_info); 4015 int type = ELF64_ST_TYPE(sym->st_info); 4016 4017 /* in .text section */ 4018 if (sym->st_shndx != text_shndx) 4019 return false; 4020 4021 /* local function */ 4022 if (bind == STB_LOCAL && type == STT_SECTION) 4023 return true; 4024 4025 /* global function */ 4026 return (bind == STB_GLOBAL || bind == STB_WEAK) && type == STT_FUNC; 4027 } 4028 4029 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 4030 { 4031 const struct btf_type *t; 4032 const char *tname; 4033 int i, n; 4034 4035 if (!btf) 4036 return -ESRCH; 4037 4038 n = btf__type_cnt(btf); 4039 for (i = 1; i < n; i++) { 4040 t = btf__type_by_id(btf, i); 4041 4042 if (!btf_is_var(t) && !btf_is_func(t)) 4043 continue; 4044 4045 tname = btf__name_by_offset(btf, t->name_off); 4046 if (strcmp(tname, ext_name)) 4047 continue; 4048 4049 if (btf_is_var(t) && 4050 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 4051 return -EINVAL; 4052 4053 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 4054 return -EINVAL; 4055 4056 return i; 4057 } 4058 4059 return -ENOENT; 4060 } 4061 4062 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 4063 const struct btf_var_secinfo *vs; 4064 const struct btf_type *t; 4065 int i, j, n; 4066 4067 if (!btf) 4068 return -ESRCH; 4069 4070 n = btf__type_cnt(btf); 4071 for (i = 1; i < n; i++) { 4072 t = btf__type_by_id(btf, i); 4073 4074 if (!btf_is_datasec(t)) 4075 continue; 4076 4077 vs = btf_var_secinfos(t); 4078 for (j = 0; j < btf_vlen(t); j++, vs++) { 4079 if (vs->type == ext_btf_id) 4080 return i; 4081 } 4082 } 4083 4084 return -ENOENT; 4085 } 4086 4087 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 4088 bool *is_signed) 4089 { 4090 const struct btf_type *t; 4091 const char *name; 4092 4093 t = skip_mods_and_typedefs(btf, id, NULL); 4094 name = btf__name_by_offset(btf, t->name_off); 4095 4096 if (is_signed) 4097 *is_signed = false; 4098 switch (btf_kind(t)) { 4099 case BTF_KIND_INT: { 4100 int enc = btf_int_encoding(t); 4101 4102 if (enc & BTF_INT_BOOL) 4103 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 4104 if (is_signed) 4105 *is_signed = enc & BTF_INT_SIGNED; 4106 if (t->size == 1) 4107 return KCFG_CHAR; 4108 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4109 return KCFG_UNKNOWN; 4110 return KCFG_INT; 4111 } 4112 case BTF_KIND_ENUM: 4113 if (t->size != 4) 4114 return KCFG_UNKNOWN; 4115 if (strcmp(name, "libbpf_tristate")) 4116 return KCFG_UNKNOWN; 4117 return KCFG_TRISTATE; 4118 case BTF_KIND_ENUM64: 4119 if (strcmp(name, "libbpf_tristate")) 4120 return KCFG_UNKNOWN; 4121 return KCFG_TRISTATE; 4122 case BTF_KIND_ARRAY: 4123 if (btf_array(t)->nelems == 0) 4124 return KCFG_UNKNOWN; 4125 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4126 return KCFG_UNKNOWN; 4127 return KCFG_CHAR_ARR; 4128 default: 4129 return KCFG_UNKNOWN; 4130 } 4131 } 4132 4133 static int cmp_externs(const void *_a, const void *_b) 4134 { 4135 const struct extern_desc *a = _a; 4136 const struct extern_desc *b = _b; 4137 4138 if (a->type != b->type) 4139 return a->type < b->type ? -1 : 1; 4140 4141 if (a->type == EXT_KCFG) { 4142 /* descending order by alignment requirements */ 4143 if (a->kcfg.align != b->kcfg.align) 4144 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4145 /* ascending order by size, within same alignment class */ 4146 if (a->kcfg.sz != b->kcfg.sz) 4147 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4148 } 4149 4150 /* resolve ties by name */ 4151 return strcmp(a->name, b->name); 4152 } 4153 4154 static int find_int_btf_id(const struct btf *btf) 4155 { 4156 const struct btf_type *t; 4157 int i, n; 4158 4159 n = btf__type_cnt(btf); 4160 for (i = 1; i < n; i++) { 4161 t = btf__type_by_id(btf, i); 4162 4163 if (btf_is_int(t) && btf_int_bits(t) == 32) 4164 return i; 4165 } 4166 4167 return 0; 4168 } 4169 4170 static int add_dummy_ksym_var(struct btf *btf) 4171 { 4172 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4173 const struct btf_var_secinfo *vs; 4174 const struct btf_type *sec; 4175 4176 if (!btf) 4177 return 0; 4178 4179 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4180 BTF_KIND_DATASEC); 4181 if (sec_btf_id < 0) 4182 return 0; 4183 4184 sec = btf__type_by_id(btf, sec_btf_id); 4185 vs = btf_var_secinfos(sec); 4186 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4187 const struct btf_type *vt; 4188 4189 vt = btf__type_by_id(btf, vs->type); 4190 if (btf_is_func(vt)) 4191 break; 4192 } 4193 4194 /* No func in ksyms sec. No need to add dummy var. */ 4195 if (i == btf_vlen(sec)) 4196 return 0; 4197 4198 int_btf_id = find_int_btf_id(btf); 4199 dummy_var_btf_id = btf__add_var(btf, 4200 "dummy_ksym", 4201 BTF_VAR_GLOBAL_ALLOCATED, 4202 int_btf_id); 4203 if (dummy_var_btf_id < 0) 4204 pr_warn("cannot create a dummy_ksym var\n"); 4205 4206 return dummy_var_btf_id; 4207 } 4208 4209 static int bpf_object__collect_externs(struct bpf_object *obj) 4210 { 4211 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4212 const struct btf_type *t; 4213 struct extern_desc *ext; 4214 int i, n, off, dummy_var_btf_id; 4215 const char *ext_name, *sec_name; 4216 size_t ext_essent_len; 4217 Elf_Scn *scn; 4218 Elf64_Shdr *sh; 4219 4220 if (!obj->efile.symbols) 4221 return 0; 4222 4223 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4224 sh = elf_sec_hdr(obj, scn); 4225 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4226 return -LIBBPF_ERRNO__FORMAT; 4227 4228 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4229 if (dummy_var_btf_id < 0) 4230 return dummy_var_btf_id; 4231 4232 n = sh->sh_size / sh->sh_entsize; 4233 pr_debug("looking for externs among %d symbols...\n", n); 4234 4235 for (i = 0; i < n; i++) { 4236 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4237 4238 if (!sym) 4239 return -LIBBPF_ERRNO__FORMAT; 4240 if (!sym_is_extern(sym)) 4241 continue; 4242 ext_name = elf_sym_str(obj, sym->st_name); 4243 if (!ext_name || !ext_name[0]) 4244 continue; 4245 4246 ext = obj->externs; 4247 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4248 if (!ext) 4249 return -ENOMEM; 4250 obj->externs = ext; 4251 ext = &ext[obj->nr_extern]; 4252 memset(ext, 0, sizeof(*ext)); 4253 obj->nr_extern++; 4254 4255 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4256 if (ext->btf_id <= 0) { 4257 pr_warn("failed to find BTF for extern '%s': %d\n", 4258 ext_name, ext->btf_id); 4259 return ext->btf_id; 4260 } 4261 t = btf__type_by_id(obj->btf, ext->btf_id); 4262 ext->name = btf__name_by_offset(obj->btf, t->name_off); 4263 ext->sym_idx = i; 4264 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4265 4266 ext_essent_len = bpf_core_essential_name_len(ext->name); 4267 ext->essent_name = NULL; 4268 if (ext_essent_len != strlen(ext->name)) { 4269 ext->essent_name = strndup(ext->name, ext_essent_len); 4270 if (!ext->essent_name) 4271 return -ENOMEM; 4272 } 4273 4274 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4275 if (ext->sec_btf_id <= 0) { 4276 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4277 ext_name, ext->btf_id, ext->sec_btf_id); 4278 return ext->sec_btf_id; 4279 } 4280 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4281 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4282 4283 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4284 if (btf_is_func(t)) { 4285 pr_warn("extern function %s is unsupported under %s section\n", 4286 ext->name, KCONFIG_SEC); 4287 return -ENOTSUP; 4288 } 4289 kcfg_sec = sec; 4290 ext->type = EXT_KCFG; 4291 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4292 if (ext->kcfg.sz <= 0) { 4293 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4294 ext_name, ext->kcfg.sz); 4295 return ext->kcfg.sz; 4296 } 4297 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4298 if (ext->kcfg.align <= 0) { 4299 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4300 ext_name, ext->kcfg.align); 4301 return -EINVAL; 4302 } 4303 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4304 &ext->kcfg.is_signed); 4305 if (ext->kcfg.type == KCFG_UNKNOWN) { 4306 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4307 return -ENOTSUP; 4308 } 4309 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4310 ksym_sec = sec; 4311 ext->type = EXT_KSYM; 4312 skip_mods_and_typedefs(obj->btf, t->type, 4313 &ext->ksym.type_id); 4314 } else { 4315 pr_warn("unrecognized extern section '%s'\n", sec_name); 4316 return -ENOTSUP; 4317 } 4318 } 4319 pr_debug("collected %d externs total\n", obj->nr_extern); 4320 4321 if (!obj->nr_extern) 4322 return 0; 4323 4324 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4325 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4326 4327 /* for .ksyms section, we need to turn all externs into allocated 4328 * variables in BTF to pass kernel verification; we do this by 4329 * pretending that each extern is a 8-byte variable 4330 */ 4331 if (ksym_sec) { 4332 /* find existing 4-byte integer type in BTF to use for fake 4333 * extern variables in DATASEC 4334 */ 4335 int int_btf_id = find_int_btf_id(obj->btf); 4336 /* For extern function, a dummy_var added earlier 4337 * will be used to replace the vs->type and 4338 * its name string will be used to refill 4339 * the missing param's name. 4340 */ 4341 const struct btf_type *dummy_var; 4342 4343 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4344 for (i = 0; i < obj->nr_extern; i++) { 4345 ext = &obj->externs[i]; 4346 if (ext->type != EXT_KSYM) 4347 continue; 4348 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4349 i, ext->sym_idx, ext->name); 4350 } 4351 4352 sec = ksym_sec; 4353 n = btf_vlen(sec); 4354 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4355 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4356 struct btf_type *vt; 4357 4358 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4359 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4360 ext = find_extern_by_name(obj, ext_name); 4361 if (!ext) { 4362 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4363 btf_kind_str(vt), ext_name); 4364 return -ESRCH; 4365 } 4366 if (btf_is_func(vt)) { 4367 const struct btf_type *func_proto; 4368 struct btf_param *param; 4369 int j; 4370 4371 func_proto = btf__type_by_id(obj->btf, 4372 vt->type); 4373 param = btf_params(func_proto); 4374 /* Reuse the dummy_var string if the 4375 * func proto does not have param name. 4376 */ 4377 for (j = 0; j < btf_vlen(func_proto); j++) 4378 if (param[j].type && !param[j].name_off) 4379 param[j].name_off = 4380 dummy_var->name_off; 4381 vs->type = dummy_var_btf_id; 4382 vt->info &= ~0xffff; 4383 vt->info |= BTF_FUNC_GLOBAL; 4384 } else { 4385 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4386 vt->type = int_btf_id; 4387 } 4388 vs->offset = off; 4389 vs->size = sizeof(int); 4390 } 4391 sec->size = off; 4392 } 4393 4394 if (kcfg_sec) { 4395 sec = kcfg_sec; 4396 /* for kcfg externs calculate their offsets within a .kconfig map */ 4397 off = 0; 4398 for (i = 0; i < obj->nr_extern; i++) { 4399 ext = &obj->externs[i]; 4400 if (ext->type != EXT_KCFG) 4401 continue; 4402 4403 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4404 off = ext->kcfg.data_off + ext->kcfg.sz; 4405 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4406 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4407 } 4408 sec->size = off; 4409 n = btf_vlen(sec); 4410 for (i = 0; i < n; i++) { 4411 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4412 4413 t = btf__type_by_id(obj->btf, vs->type); 4414 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4415 ext = find_extern_by_name(obj, ext_name); 4416 if (!ext) { 4417 pr_warn("failed to find extern definition for BTF var '%s'\n", 4418 ext_name); 4419 return -ESRCH; 4420 } 4421 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4422 vs->offset = ext->kcfg.data_off; 4423 } 4424 } 4425 return 0; 4426 } 4427 4428 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4429 { 4430 return prog->sec_idx == obj->efile.text_shndx; 4431 } 4432 4433 struct bpf_program * 4434 bpf_object__find_program_by_name(const struct bpf_object *obj, 4435 const char *name) 4436 { 4437 struct bpf_program *prog; 4438 4439 bpf_object__for_each_program(prog, obj) { 4440 if (prog_is_subprog(obj, prog)) 4441 continue; 4442 if (!strcmp(prog->name, name)) 4443 return prog; 4444 } 4445 return errno = ENOENT, NULL; 4446 } 4447 4448 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4449 int shndx) 4450 { 4451 switch (obj->efile.secs[shndx].sec_type) { 4452 case SEC_BSS: 4453 case SEC_DATA: 4454 case SEC_RODATA: 4455 return true; 4456 default: 4457 return false; 4458 } 4459 } 4460 4461 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4462 int shndx) 4463 { 4464 return shndx == obj->efile.btf_maps_shndx; 4465 } 4466 4467 static enum libbpf_map_type 4468 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4469 { 4470 if (shndx == obj->efile.symbols_shndx) 4471 return LIBBPF_MAP_KCONFIG; 4472 4473 switch (obj->efile.secs[shndx].sec_type) { 4474 case SEC_BSS: 4475 return LIBBPF_MAP_BSS; 4476 case SEC_DATA: 4477 return LIBBPF_MAP_DATA; 4478 case SEC_RODATA: 4479 return LIBBPF_MAP_RODATA; 4480 default: 4481 return LIBBPF_MAP_UNSPEC; 4482 } 4483 } 4484 4485 static int bpf_program__record_reloc(struct bpf_program *prog, 4486 struct reloc_desc *reloc_desc, 4487 __u32 insn_idx, const char *sym_name, 4488 const Elf64_Sym *sym, const Elf64_Rel *rel) 4489 { 4490 struct bpf_insn *insn = &prog->insns[insn_idx]; 4491 size_t map_idx, nr_maps = prog->obj->nr_maps; 4492 struct bpf_object *obj = prog->obj; 4493 __u32 shdr_idx = sym->st_shndx; 4494 enum libbpf_map_type type; 4495 const char *sym_sec_name; 4496 struct bpf_map *map; 4497 4498 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4499 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4500 prog->name, sym_name, insn_idx, insn->code); 4501 return -LIBBPF_ERRNO__RELOC; 4502 } 4503 4504 if (sym_is_extern(sym)) { 4505 int sym_idx = ELF64_R_SYM(rel->r_info); 4506 int i, n = obj->nr_extern; 4507 struct extern_desc *ext; 4508 4509 for (i = 0; i < n; i++) { 4510 ext = &obj->externs[i]; 4511 if (ext->sym_idx == sym_idx) 4512 break; 4513 } 4514 if (i >= n) { 4515 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4516 prog->name, sym_name, sym_idx); 4517 return -LIBBPF_ERRNO__RELOC; 4518 } 4519 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4520 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4521 if (insn->code == (BPF_JMP | BPF_CALL)) 4522 reloc_desc->type = RELO_EXTERN_CALL; 4523 else 4524 reloc_desc->type = RELO_EXTERN_LD64; 4525 reloc_desc->insn_idx = insn_idx; 4526 reloc_desc->ext_idx = i; 4527 return 0; 4528 } 4529 4530 /* sub-program call relocation */ 4531 if (is_call_insn(insn)) { 4532 if (insn->src_reg != BPF_PSEUDO_CALL) { 4533 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4534 return -LIBBPF_ERRNO__RELOC; 4535 } 4536 /* text_shndx can be 0, if no default "main" program exists */ 4537 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4538 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4539 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4540 prog->name, sym_name, sym_sec_name); 4541 return -LIBBPF_ERRNO__RELOC; 4542 } 4543 if (sym->st_value % BPF_INSN_SZ) { 4544 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4545 prog->name, sym_name, (size_t)sym->st_value); 4546 return -LIBBPF_ERRNO__RELOC; 4547 } 4548 reloc_desc->type = RELO_CALL; 4549 reloc_desc->insn_idx = insn_idx; 4550 reloc_desc->sym_off = sym->st_value; 4551 return 0; 4552 } 4553 4554 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4555 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4556 prog->name, sym_name, shdr_idx); 4557 return -LIBBPF_ERRNO__RELOC; 4558 } 4559 4560 /* loading subprog addresses */ 4561 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4562 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4563 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4564 */ 4565 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4566 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4567 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4568 return -LIBBPF_ERRNO__RELOC; 4569 } 4570 4571 reloc_desc->type = RELO_SUBPROG_ADDR; 4572 reloc_desc->insn_idx = insn_idx; 4573 reloc_desc->sym_off = sym->st_value; 4574 return 0; 4575 } 4576 4577 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4578 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4579 4580 /* arena data relocation */ 4581 if (shdr_idx == obj->efile.arena_data_shndx) { 4582 reloc_desc->type = RELO_DATA; 4583 reloc_desc->insn_idx = insn_idx; 4584 reloc_desc->map_idx = obj->arena_map - obj->maps; 4585 reloc_desc->sym_off = sym->st_value; 4586 return 0; 4587 } 4588 4589 /* generic map reference relocation */ 4590 if (type == LIBBPF_MAP_UNSPEC) { 4591 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4592 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4593 prog->name, sym_name, sym_sec_name); 4594 return -LIBBPF_ERRNO__RELOC; 4595 } 4596 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4597 map = &obj->maps[map_idx]; 4598 if (map->libbpf_type != type || 4599 map->sec_idx != sym->st_shndx || 4600 map->sec_offset != sym->st_value) 4601 continue; 4602 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4603 prog->name, map_idx, map->name, map->sec_idx, 4604 map->sec_offset, insn_idx); 4605 break; 4606 } 4607 if (map_idx >= nr_maps) { 4608 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4609 prog->name, sym_sec_name, (size_t)sym->st_value); 4610 return -LIBBPF_ERRNO__RELOC; 4611 } 4612 reloc_desc->type = RELO_LD64; 4613 reloc_desc->insn_idx = insn_idx; 4614 reloc_desc->map_idx = map_idx; 4615 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4616 return 0; 4617 } 4618 4619 /* global data map relocation */ 4620 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4621 pr_warn("prog '%s': bad data relo against section '%s'\n", 4622 prog->name, sym_sec_name); 4623 return -LIBBPF_ERRNO__RELOC; 4624 } 4625 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4626 map = &obj->maps[map_idx]; 4627 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4628 continue; 4629 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4630 prog->name, map_idx, map->name, map->sec_idx, 4631 map->sec_offset, insn_idx); 4632 break; 4633 } 4634 if (map_idx >= nr_maps) { 4635 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4636 prog->name, sym_sec_name); 4637 return -LIBBPF_ERRNO__RELOC; 4638 } 4639 4640 reloc_desc->type = RELO_DATA; 4641 reloc_desc->insn_idx = insn_idx; 4642 reloc_desc->map_idx = map_idx; 4643 reloc_desc->sym_off = sym->st_value; 4644 return 0; 4645 } 4646 4647 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4648 { 4649 return insn_idx >= prog->sec_insn_off && 4650 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4651 } 4652 4653 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4654 size_t sec_idx, size_t insn_idx) 4655 { 4656 int l = 0, r = obj->nr_programs - 1, m; 4657 struct bpf_program *prog; 4658 4659 if (!obj->nr_programs) 4660 return NULL; 4661 4662 while (l < r) { 4663 m = l + (r - l + 1) / 2; 4664 prog = &obj->programs[m]; 4665 4666 if (prog->sec_idx < sec_idx || 4667 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4668 l = m; 4669 else 4670 r = m - 1; 4671 } 4672 /* matching program could be at index l, but it still might be the 4673 * wrong one, so we need to double check conditions for the last time 4674 */ 4675 prog = &obj->programs[l]; 4676 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4677 return prog; 4678 return NULL; 4679 } 4680 4681 static int 4682 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4683 { 4684 const char *relo_sec_name, *sec_name; 4685 size_t sec_idx = shdr->sh_info, sym_idx; 4686 struct bpf_program *prog; 4687 struct reloc_desc *relos; 4688 int err, i, nrels; 4689 const char *sym_name; 4690 __u32 insn_idx; 4691 Elf_Scn *scn; 4692 Elf_Data *scn_data; 4693 Elf64_Sym *sym; 4694 Elf64_Rel *rel; 4695 4696 if (sec_idx >= obj->efile.sec_cnt) 4697 return -EINVAL; 4698 4699 scn = elf_sec_by_idx(obj, sec_idx); 4700 scn_data = elf_sec_data(obj, scn); 4701 if (!scn_data) 4702 return -LIBBPF_ERRNO__FORMAT; 4703 4704 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4705 sec_name = elf_sec_name(obj, scn); 4706 if (!relo_sec_name || !sec_name) 4707 return -EINVAL; 4708 4709 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4710 relo_sec_name, sec_idx, sec_name); 4711 nrels = shdr->sh_size / shdr->sh_entsize; 4712 4713 for (i = 0; i < nrels; i++) { 4714 rel = elf_rel_by_idx(data, i); 4715 if (!rel) { 4716 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4717 return -LIBBPF_ERRNO__FORMAT; 4718 } 4719 4720 sym_idx = ELF64_R_SYM(rel->r_info); 4721 sym = elf_sym_by_idx(obj, sym_idx); 4722 if (!sym) { 4723 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4724 relo_sec_name, sym_idx, i); 4725 return -LIBBPF_ERRNO__FORMAT; 4726 } 4727 4728 if (sym->st_shndx >= obj->efile.sec_cnt) { 4729 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4730 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4731 return -LIBBPF_ERRNO__FORMAT; 4732 } 4733 4734 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4735 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4736 relo_sec_name, (size_t)rel->r_offset, i); 4737 return -LIBBPF_ERRNO__FORMAT; 4738 } 4739 4740 insn_idx = rel->r_offset / BPF_INSN_SZ; 4741 /* relocations against static functions are recorded as 4742 * relocations against the section that contains a function; 4743 * in such case, symbol will be STT_SECTION and sym.st_name 4744 * will point to empty string (0), so fetch section name 4745 * instead 4746 */ 4747 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4748 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4749 else 4750 sym_name = elf_sym_str(obj, sym->st_name); 4751 sym_name = sym_name ?: "<?"; 4752 4753 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4754 relo_sec_name, i, insn_idx, sym_name); 4755 4756 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4757 if (!prog) { 4758 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4759 relo_sec_name, i, sec_name, insn_idx); 4760 continue; 4761 } 4762 4763 relos = libbpf_reallocarray(prog->reloc_desc, 4764 prog->nr_reloc + 1, sizeof(*relos)); 4765 if (!relos) 4766 return -ENOMEM; 4767 prog->reloc_desc = relos; 4768 4769 /* adjust insn_idx to local BPF program frame of reference */ 4770 insn_idx -= prog->sec_insn_off; 4771 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4772 insn_idx, sym_name, sym, rel); 4773 if (err) 4774 return err; 4775 4776 prog->nr_reloc++; 4777 } 4778 return 0; 4779 } 4780 4781 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4782 { 4783 int id; 4784 4785 if (!obj->btf) 4786 return -ENOENT; 4787 4788 /* if it's BTF-defined map, we don't need to search for type IDs. 4789 * For struct_ops map, it does not need btf_key_type_id and 4790 * btf_value_type_id. 4791 */ 4792 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4793 return 0; 4794 4795 /* 4796 * LLVM annotates global data differently in BTF, that is, 4797 * only as '.data', '.bss' or '.rodata'. 4798 */ 4799 if (!bpf_map__is_internal(map)) 4800 return -ENOENT; 4801 4802 id = btf__find_by_name(obj->btf, map->real_name); 4803 if (id < 0) 4804 return id; 4805 4806 map->btf_key_type_id = 0; 4807 map->btf_value_type_id = id; 4808 return 0; 4809 } 4810 4811 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4812 { 4813 char file[PATH_MAX], buff[4096]; 4814 FILE *fp; 4815 __u32 val; 4816 int err; 4817 4818 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4819 memset(info, 0, sizeof(*info)); 4820 4821 fp = fopen(file, "re"); 4822 if (!fp) { 4823 err = -errno; 4824 pr_warn("failed to open %s: %s. No procfs support?\n", file, 4825 errstr(err)); 4826 return err; 4827 } 4828 4829 while (fgets(buff, sizeof(buff), fp)) { 4830 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4831 info->type = val; 4832 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4833 info->key_size = val; 4834 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4835 info->value_size = val; 4836 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4837 info->max_entries = val; 4838 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4839 info->map_flags = val; 4840 } 4841 4842 fclose(fp); 4843 4844 return 0; 4845 } 4846 4847 static bool map_is_created(const struct bpf_map *map) 4848 { 4849 return map->obj->state >= OBJ_PREPARED || map->reused; 4850 } 4851 4852 bool bpf_map__autocreate(const struct bpf_map *map) 4853 { 4854 return map->autocreate; 4855 } 4856 4857 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4858 { 4859 if (map_is_created(map)) 4860 return libbpf_err(-EBUSY); 4861 4862 map->autocreate = autocreate; 4863 return 0; 4864 } 4865 4866 int bpf_map__set_autoattach(struct bpf_map *map, bool autoattach) 4867 { 4868 if (!bpf_map__is_struct_ops(map)) 4869 return libbpf_err(-EINVAL); 4870 4871 map->autoattach = autoattach; 4872 return 0; 4873 } 4874 4875 bool bpf_map__autoattach(const struct bpf_map *map) 4876 { 4877 return map->autoattach; 4878 } 4879 4880 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4881 { 4882 struct bpf_map_info info; 4883 __u32 len = sizeof(info), name_len; 4884 int new_fd, err; 4885 char *new_name; 4886 4887 memset(&info, 0, len); 4888 err = bpf_map_get_info_by_fd(fd, &info, &len); 4889 if (err && errno == EINVAL) 4890 err = bpf_get_map_info_from_fdinfo(fd, &info); 4891 if (err) 4892 return libbpf_err(err); 4893 4894 name_len = strlen(info.name); 4895 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4896 new_name = strdup(map->name); 4897 else 4898 new_name = strdup(info.name); 4899 4900 if (!new_name) 4901 return libbpf_err(-errno); 4902 4903 /* 4904 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4905 * This is similar to what we do in ensure_good_fd(), but without 4906 * closing original FD. 4907 */ 4908 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4909 if (new_fd < 0) { 4910 err = -errno; 4911 goto err_free_new_name; 4912 } 4913 4914 err = reuse_fd(map->fd, new_fd); 4915 if (err) 4916 goto err_free_new_name; 4917 4918 free(map->name); 4919 4920 map->name = new_name; 4921 map->def.type = info.type; 4922 map->def.key_size = info.key_size; 4923 map->def.value_size = info.value_size; 4924 map->def.max_entries = info.max_entries; 4925 map->def.map_flags = info.map_flags; 4926 map->btf_key_type_id = info.btf_key_type_id; 4927 map->btf_value_type_id = info.btf_value_type_id; 4928 map->reused = true; 4929 map->map_extra = info.map_extra; 4930 4931 return 0; 4932 4933 err_free_new_name: 4934 free(new_name); 4935 return libbpf_err(err); 4936 } 4937 4938 __u32 bpf_map__max_entries(const struct bpf_map *map) 4939 { 4940 return map->def.max_entries; 4941 } 4942 4943 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4944 { 4945 if (!bpf_map_type__is_map_in_map(map->def.type)) 4946 return errno = EINVAL, NULL; 4947 4948 return map->inner_map; 4949 } 4950 4951 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4952 { 4953 if (map_is_created(map)) 4954 return libbpf_err(-EBUSY); 4955 4956 map->def.max_entries = max_entries; 4957 4958 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4959 if (map_is_ringbuf(map)) 4960 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4961 4962 return 0; 4963 } 4964 4965 static int bpf_object_prepare_token(struct bpf_object *obj) 4966 { 4967 const char *bpffs_path; 4968 int bpffs_fd = -1, token_fd, err; 4969 bool mandatory; 4970 enum libbpf_print_level level; 4971 4972 /* token is explicitly prevented */ 4973 if (obj->token_path && obj->token_path[0] == '\0') { 4974 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 4975 return 0; 4976 } 4977 4978 mandatory = obj->token_path != NULL; 4979 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 4980 4981 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 4982 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 4983 if (bpffs_fd < 0) { 4984 err = -errno; 4985 __pr(level, "object '%s': failed (%s) to open BPF FS mount at '%s'%s\n", 4986 obj->name, errstr(err), bpffs_path, 4987 mandatory ? "" : ", skipping optional step..."); 4988 return mandatory ? err : 0; 4989 } 4990 4991 token_fd = bpf_token_create(bpffs_fd, 0); 4992 close(bpffs_fd); 4993 if (token_fd < 0) { 4994 if (!mandatory && token_fd == -ENOENT) { 4995 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 4996 obj->name, bpffs_path); 4997 return 0; 4998 } 4999 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 5000 obj->name, token_fd, bpffs_path, 5001 mandatory ? "" : ", skipping optional step..."); 5002 return mandatory ? token_fd : 0; 5003 } 5004 5005 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 5006 if (!obj->feat_cache) { 5007 close(token_fd); 5008 return -ENOMEM; 5009 } 5010 5011 obj->token_fd = token_fd; 5012 obj->feat_cache->token_fd = token_fd; 5013 5014 return 0; 5015 } 5016 5017 static int 5018 bpf_object__probe_loading(struct bpf_object *obj) 5019 { 5020 struct bpf_insn insns[] = { 5021 BPF_MOV64_IMM(BPF_REG_0, 0), 5022 BPF_EXIT_INSN(), 5023 }; 5024 int ret, insn_cnt = ARRAY_SIZE(insns); 5025 LIBBPF_OPTS(bpf_prog_load_opts, opts, 5026 .token_fd = obj->token_fd, 5027 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 5028 ); 5029 5030 if (obj->gen_loader) 5031 return 0; 5032 5033 ret = bump_rlimit_memlock(); 5034 if (ret) 5035 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %s), you might need to do it explicitly!\n", 5036 errstr(ret)); 5037 5038 /* make sure basic loading works */ 5039 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 5040 if (ret < 0) 5041 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 5042 if (ret < 0) { 5043 ret = errno; 5044 pr_warn("Error in %s(): %s. Couldn't load trivial BPF program. Make sure your kernel supports BPF (CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is set to big enough value.\n", 5045 __func__, errstr(ret)); 5046 return -ret; 5047 } 5048 close(ret); 5049 5050 return 0; 5051 } 5052 5053 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 5054 { 5055 if (obj->gen_loader) 5056 /* To generate loader program assume the latest kernel 5057 * to avoid doing extra prog_load, map_create syscalls. 5058 */ 5059 return true; 5060 5061 if (obj->token_fd) 5062 return feat_supported(obj->feat_cache, feat_id); 5063 5064 return feat_supported(NULL, feat_id); 5065 } 5066 5067 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 5068 { 5069 struct bpf_map_info map_info; 5070 __u32 map_info_len = sizeof(map_info); 5071 int err; 5072 5073 memset(&map_info, 0, map_info_len); 5074 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 5075 if (err && errno == EINVAL) 5076 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 5077 if (err) { 5078 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 5079 errstr(err)); 5080 return false; 5081 } 5082 5083 return (map_info.type == map->def.type && 5084 map_info.key_size == map->def.key_size && 5085 map_info.value_size == map->def.value_size && 5086 map_info.max_entries == map->def.max_entries && 5087 map_info.map_flags == map->def.map_flags && 5088 map_info.map_extra == map->map_extra); 5089 } 5090 5091 static int 5092 bpf_object__reuse_map(struct bpf_map *map) 5093 { 5094 int err, pin_fd; 5095 5096 pin_fd = bpf_obj_get(map->pin_path); 5097 if (pin_fd < 0) { 5098 err = -errno; 5099 if (err == -ENOENT) { 5100 pr_debug("found no pinned map to reuse at '%s'\n", 5101 map->pin_path); 5102 return 0; 5103 } 5104 5105 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5106 map->pin_path, errstr(err)); 5107 return err; 5108 } 5109 5110 if (!map_is_reuse_compat(map, pin_fd)) { 5111 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5112 map->pin_path); 5113 close(pin_fd); 5114 return -EINVAL; 5115 } 5116 5117 err = bpf_map__reuse_fd(map, pin_fd); 5118 close(pin_fd); 5119 if (err) 5120 return err; 5121 5122 map->pinned = true; 5123 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5124 5125 return 0; 5126 } 5127 5128 static int 5129 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5130 { 5131 enum libbpf_map_type map_type = map->libbpf_type; 5132 int err, zero = 0; 5133 size_t mmap_sz; 5134 5135 if (obj->gen_loader) { 5136 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5137 map->mmaped, map->def.value_size); 5138 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5139 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5140 return 0; 5141 } 5142 5143 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5144 if (err) { 5145 err = -errno; 5146 pr_warn("map '%s': failed to set initial contents: %s\n", 5147 bpf_map__name(map), errstr(err)); 5148 return err; 5149 } 5150 5151 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5152 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5153 err = bpf_map_freeze(map->fd); 5154 if (err) { 5155 err = -errno; 5156 pr_warn("map '%s': failed to freeze as read-only: %s\n", 5157 bpf_map__name(map), errstr(err)); 5158 return err; 5159 } 5160 } 5161 5162 /* Remap anonymous mmap()-ed "map initialization image" as 5163 * a BPF map-backed mmap()-ed memory, but preserving the same 5164 * memory address. This will cause kernel to change process' 5165 * page table to point to a different piece of kernel memory, 5166 * but from userspace point of view memory address (and its 5167 * contents, being identical at this point) will stay the 5168 * same. This mapping will be released by bpf_object__close() 5169 * as per normal clean up procedure. 5170 */ 5171 mmap_sz = bpf_map_mmap_sz(map); 5172 if (map->def.map_flags & BPF_F_MMAPABLE) { 5173 void *mmaped; 5174 int prot; 5175 5176 if (map->def.map_flags & BPF_F_RDONLY_PROG) 5177 prot = PROT_READ; 5178 else 5179 prot = PROT_READ | PROT_WRITE; 5180 mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map->fd, 0); 5181 if (mmaped == MAP_FAILED) { 5182 err = -errno; 5183 pr_warn("map '%s': failed to re-mmap() contents: %s\n", 5184 bpf_map__name(map), errstr(err)); 5185 return err; 5186 } 5187 map->mmaped = mmaped; 5188 } else if (map->mmaped) { 5189 munmap(map->mmaped, mmap_sz); 5190 map->mmaped = NULL; 5191 } 5192 5193 return 0; 5194 } 5195 5196 static void bpf_map__destroy(struct bpf_map *map); 5197 5198 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5199 { 5200 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5201 struct bpf_map_def *def = &map->def; 5202 const char *map_name = NULL; 5203 int err = 0, map_fd; 5204 5205 if (kernel_supports(obj, FEAT_PROG_NAME)) 5206 map_name = map->name; 5207 create_attr.map_ifindex = map->map_ifindex; 5208 create_attr.map_flags = def->map_flags; 5209 create_attr.numa_node = map->numa_node; 5210 create_attr.map_extra = map->map_extra; 5211 create_attr.token_fd = obj->token_fd; 5212 if (obj->token_fd) 5213 create_attr.map_flags |= BPF_F_TOKEN_FD; 5214 5215 if (bpf_map__is_struct_ops(map)) { 5216 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5217 if (map->mod_btf_fd >= 0) { 5218 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5219 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5220 } 5221 } 5222 5223 if (obj->btf && btf__fd(obj->btf) >= 0) { 5224 create_attr.btf_fd = btf__fd(obj->btf); 5225 create_attr.btf_key_type_id = map->btf_key_type_id; 5226 create_attr.btf_value_type_id = map->btf_value_type_id; 5227 } 5228 5229 if (bpf_map_type__is_map_in_map(def->type)) { 5230 if (map->inner_map) { 5231 err = map_set_def_max_entries(map->inner_map); 5232 if (err) 5233 return err; 5234 err = bpf_object__create_map(obj, map->inner_map, true); 5235 if (err) { 5236 pr_warn("map '%s': failed to create inner map: %s\n", 5237 map->name, errstr(err)); 5238 return err; 5239 } 5240 map->inner_map_fd = map->inner_map->fd; 5241 } 5242 if (map->inner_map_fd >= 0) 5243 create_attr.inner_map_fd = map->inner_map_fd; 5244 } 5245 5246 switch (def->type) { 5247 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5248 case BPF_MAP_TYPE_CGROUP_ARRAY: 5249 case BPF_MAP_TYPE_STACK_TRACE: 5250 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5251 case BPF_MAP_TYPE_HASH_OF_MAPS: 5252 case BPF_MAP_TYPE_DEVMAP: 5253 case BPF_MAP_TYPE_DEVMAP_HASH: 5254 case BPF_MAP_TYPE_CPUMAP: 5255 case BPF_MAP_TYPE_XSKMAP: 5256 case BPF_MAP_TYPE_SOCKMAP: 5257 case BPF_MAP_TYPE_SOCKHASH: 5258 case BPF_MAP_TYPE_QUEUE: 5259 case BPF_MAP_TYPE_STACK: 5260 case BPF_MAP_TYPE_ARENA: 5261 create_attr.btf_fd = 0; 5262 create_attr.btf_key_type_id = 0; 5263 create_attr.btf_value_type_id = 0; 5264 map->btf_key_type_id = 0; 5265 map->btf_value_type_id = 0; 5266 break; 5267 case BPF_MAP_TYPE_STRUCT_OPS: 5268 create_attr.btf_value_type_id = 0; 5269 break; 5270 default: 5271 break; 5272 } 5273 5274 if (obj->gen_loader) { 5275 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5276 def->key_size, def->value_size, def->max_entries, 5277 &create_attr, is_inner ? -1 : map - obj->maps); 5278 /* We keep pretenting we have valid FD to pass various fd >= 0 5279 * checks by just keeping original placeholder FDs in place. 5280 * See bpf_object__add_map() comment. 5281 * This placeholder fd will not be used with any syscall and 5282 * will be reset to -1 eventually. 5283 */ 5284 map_fd = map->fd; 5285 } else { 5286 map_fd = bpf_map_create(def->type, map_name, 5287 def->key_size, def->value_size, 5288 def->max_entries, &create_attr); 5289 } 5290 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5291 err = -errno; 5292 pr_warn("Error in bpf_create_map_xattr(%s): %s. Retrying without BTF.\n", 5293 map->name, errstr(err)); 5294 create_attr.btf_fd = 0; 5295 create_attr.btf_key_type_id = 0; 5296 create_attr.btf_value_type_id = 0; 5297 map->btf_key_type_id = 0; 5298 map->btf_value_type_id = 0; 5299 map_fd = bpf_map_create(def->type, map_name, 5300 def->key_size, def->value_size, 5301 def->max_entries, &create_attr); 5302 } 5303 5304 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5305 if (obj->gen_loader) 5306 map->inner_map->fd = -1; 5307 bpf_map__destroy(map->inner_map); 5308 zfree(&map->inner_map); 5309 } 5310 5311 if (map_fd < 0) 5312 return map_fd; 5313 5314 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5315 if (map->fd == map_fd) 5316 return 0; 5317 5318 /* Keep placeholder FD value but now point it to the BPF map object. 5319 * This way everything that relied on this map's FD (e.g., relocated 5320 * ldimm64 instructions) will stay valid and won't need adjustments. 5321 * map->fd stays valid but now point to what map_fd points to. 5322 */ 5323 return reuse_fd(map->fd, map_fd); 5324 } 5325 5326 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5327 { 5328 const struct bpf_map *targ_map; 5329 unsigned int i; 5330 int fd, err = 0; 5331 5332 for (i = 0; i < map->init_slots_sz; i++) { 5333 if (!map->init_slots[i]) 5334 continue; 5335 5336 targ_map = map->init_slots[i]; 5337 fd = targ_map->fd; 5338 5339 if (obj->gen_loader) { 5340 bpf_gen__populate_outer_map(obj->gen_loader, 5341 map - obj->maps, i, 5342 targ_map - obj->maps); 5343 } else { 5344 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5345 } 5346 if (err) { 5347 err = -errno; 5348 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %s\n", 5349 map->name, i, targ_map->name, fd, errstr(err)); 5350 return err; 5351 } 5352 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5353 map->name, i, targ_map->name, fd); 5354 } 5355 5356 zfree(&map->init_slots); 5357 map->init_slots_sz = 0; 5358 5359 return 0; 5360 } 5361 5362 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5363 { 5364 const struct bpf_program *targ_prog; 5365 unsigned int i; 5366 int fd, err; 5367 5368 if (obj->gen_loader) 5369 return -ENOTSUP; 5370 5371 for (i = 0; i < map->init_slots_sz; i++) { 5372 if (!map->init_slots[i]) 5373 continue; 5374 5375 targ_prog = map->init_slots[i]; 5376 fd = bpf_program__fd(targ_prog); 5377 5378 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5379 if (err) { 5380 err = -errno; 5381 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %s\n", 5382 map->name, i, targ_prog->name, fd, errstr(err)); 5383 return err; 5384 } 5385 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5386 map->name, i, targ_prog->name, fd); 5387 } 5388 5389 zfree(&map->init_slots); 5390 map->init_slots_sz = 0; 5391 5392 return 0; 5393 } 5394 5395 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5396 { 5397 struct bpf_map *map; 5398 int i, err; 5399 5400 for (i = 0; i < obj->nr_maps; i++) { 5401 map = &obj->maps[i]; 5402 5403 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5404 continue; 5405 5406 err = init_prog_array_slots(obj, map); 5407 if (err < 0) 5408 return err; 5409 } 5410 return 0; 5411 } 5412 5413 static int map_set_def_max_entries(struct bpf_map *map) 5414 { 5415 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5416 int nr_cpus; 5417 5418 nr_cpus = libbpf_num_possible_cpus(); 5419 if (nr_cpus < 0) { 5420 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5421 map->name, nr_cpus); 5422 return nr_cpus; 5423 } 5424 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5425 map->def.max_entries = nr_cpus; 5426 } 5427 5428 return 0; 5429 } 5430 5431 static int 5432 bpf_object__create_maps(struct bpf_object *obj) 5433 { 5434 struct bpf_map *map; 5435 unsigned int i, j; 5436 int err; 5437 bool retried; 5438 5439 for (i = 0; i < obj->nr_maps; i++) { 5440 map = &obj->maps[i]; 5441 5442 /* To support old kernels, we skip creating global data maps 5443 * (.rodata, .data, .kconfig, etc); later on, during program 5444 * loading, if we detect that at least one of the to-be-loaded 5445 * programs is referencing any global data map, we'll error 5446 * out with program name and relocation index logged. 5447 * This approach allows to accommodate Clang emitting 5448 * unnecessary .rodata.str1.1 sections for string literals, 5449 * but also it allows to have CO-RE applications that use 5450 * global variables in some of BPF programs, but not others. 5451 * If those global variable-using programs are not loaded at 5452 * runtime due to bpf_program__set_autoload(prog, false), 5453 * bpf_object loading will succeed just fine even on old 5454 * kernels. 5455 */ 5456 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5457 map->autocreate = false; 5458 5459 if (!map->autocreate) { 5460 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5461 continue; 5462 } 5463 5464 err = map_set_def_max_entries(map); 5465 if (err) 5466 goto err_out; 5467 5468 retried = false; 5469 retry: 5470 if (map->pin_path) { 5471 err = bpf_object__reuse_map(map); 5472 if (err) { 5473 pr_warn("map '%s': error reusing pinned map\n", 5474 map->name); 5475 goto err_out; 5476 } 5477 if (retried && map->fd < 0) { 5478 pr_warn("map '%s': cannot find pinned map\n", 5479 map->name); 5480 err = -ENOENT; 5481 goto err_out; 5482 } 5483 } 5484 5485 if (map->reused) { 5486 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5487 map->name, map->fd); 5488 } else { 5489 err = bpf_object__create_map(obj, map, false); 5490 if (err) 5491 goto err_out; 5492 5493 pr_debug("map '%s': created successfully, fd=%d\n", 5494 map->name, map->fd); 5495 5496 if (bpf_map__is_internal(map)) { 5497 err = bpf_object__populate_internal_map(obj, map); 5498 if (err < 0) 5499 goto err_out; 5500 } else if (map->def.type == BPF_MAP_TYPE_ARENA) { 5501 map->mmaped = mmap((void *)(long)map->map_extra, 5502 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5503 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5504 map->fd, 0); 5505 if (map->mmaped == MAP_FAILED) { 5506 err = -errno; 5507 map->mmaped = NULL; 5508 pr_warn("map '%s': failed to mmap arena: %s\n", 5509 map->name, errstr(err)); 5510 return err; 5511 } 5512 if (obj->arena_data) { 5513 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5514 zfree(&obj->arena_data); 5515 } 5516 } 5517 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5518 err = init_map_in_map_slots(obj, map); 5519 if (err < 0) 5520 goto err_out; 5521 } 5522 } 5523 5524 if (map->pin_path && !map->pinned) { 5525 err = bpf_map__pin(map, NULL); 5526 if (err) { 5527 if (!retried && err == -EEXIST) { 5528 retried = true; 5529 goto retry; 5530 } 5531 pr_warn("map '%s': failed to auto-pin at '%s': %s\n", 5532 map->name, map->pin_path, errstr(err)); 5533 goto err_out; 5534 } 5535 } 5536 } 5537 5538 return 0; 5539 5540 err_out: 5541 pr_warn("map '%s': failed to create: %s\n", map->name, errstr(err)); 5542 pr_perm_msg(err); 5543 for (j = 0; j < i; j++) 5544 zclose(obj->maps[j].fd); 5545 return err; 5546 } 5547 5548 static bool bpf_core_is_flavor_sep(const char *s) 5549 { 5550 /* check X___Y name pattern, where X and Y are not underscores */ 5551 return s[0] != '_' && /* X */ 5552 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5553 s[4] != '_'; /* Y */ 5554 } 5555 5556 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5557 * before last triple underscore. Struct name part after last triple 5558 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5559 */ 5560 size_t bpf_core_essential_name_len(const char *name) 5561 { 5562 size_t n = strlen(name); 5563 int i; 5564 5565 for (i = n - 5; i >= 0; i--) { 5566 if (bpf_core_is_flavor_sep(name + i)) 5567 return i + 1; 5568 } 5569 return n; 5570 } 5571 5572 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5573 { 5574 if (!cands) 5575 return; 5576 5577 free(cands->cands); 5578 free(cands); 5579 } 5580 5581 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5582 size_t local_essent_len, 5583 const struct btf *targ_btf, 5584 const char *targ_btf_name, 5585 int targ_start_id, 5586 struct bpf_core_cand_list *cands) 5587 { 5588 struct bpf_core_cand *new_cands, *cand; 5589 const struct btf_type *t, *local_t; 5590 const char *targ_name, *local_name; 5591 size_t targ_essent_len; 5592 int n, i; 5593 5594 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5595 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5596 5597 n = btf__type_cnt(targ_btf); 5598 for (i = targ_start_id; i < n; i++) { 5599 t = btf__type_by_id(targ_btf, i); 5600 if (!btf_kind_core_compat(t, local_t)) 5601 continue; 5602 5603 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5604 if (str_is_empty(targ_name)) 5605 continue; 5606 5607 targ_essent_len = bpf_core_essential_name_len(targ_name); 5608 if (targ_essent_len != local_essent_len) 5609 continue; 5610 5611 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5612 continue; 5613 5614 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5615 local_cand->id, btf_kind_str(local_t), 5616 local_name, i, btf_kind_str(t), targ_name, 5617 targ_btf_name); 5618 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5619 sizeof(*cands->cands)); 5620 if (!new_cands) 5621 return -ENOMEM; 5622 5623 cand = &new_cands[cands->len]; 5624 cand->btf = targ_btf; 5625 cand->id = i; 5626 5627 cands->cands = new_cands; 5628 cands->len++; 5629 } 5630 return 0; 5631 } 5632 5633 static int load_module_btfs(struct bpf_object *obj) 5634 { 5635 struct bpf_btf_info info; 5636 struct module_btf *mod_btf; 5637 struct btf *btf; 5638 char name[64]; 5639 __u32 id = 0, len; 5640 int err, fd; 5641 5642 if (obj->btf_modules_loaded) 5643 return 0; 5644 5645 if (obj->gen_loader) 5646 return 0; 5647 5648 /* don't do this again, even if we find no module BTFs */ 5649 obj->btf_modules_loaded = true; 5650 5651 /* kernel too old to support module BTFs */ 5652 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5653 return 0; 5654 5655 while (true) { 5656 err = bpf_btf_get_next_id(id, &id); 5657 if (err && errno == ENOENT) 5658 return 0; 5659 if (err && errno == EPERM) { 5660 pr_debug("skipping module BTFs loading, missing privileges\n"); 5661 return 0; 5662 } 5663 if (err) { 5664 err = -errno; 5665 pr_warn("failed to iterate BTF objects: %s\n", errstr(err)); 5666 return err; 5667 } 5668 5669 fd = bpf_btf_get_fd_by_id(id); 5670 if (fd < 0) { 5671 if (errno == ENOENT) 5672 continue; /* expected race: BTF was unloaded */ 5673 err = -errno; 5674 pr_warn("failed to get BTF object #%d FD: %s\n", id, errstr(err)); 5675 return err; 5676 } 5677 5678 len = sizeof(info); 5679 memset(&info, 0, sizeof(info)); 5680 info.name = ptr_to_u64(name); 5681 info.name_len = sizeof(name); 5682 5683 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5684 if (err) { 5685 err = -errno; 5686 pr_warn("failed to get BTF object #%d info: %s\n", id, errstr(err)); 5687 goto err_out; 5688 } 5689 5690 /* ignore non-module BTFs */ 5691 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5692 close(fd); 5693 continue; 5694 } 5695 5696 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5697 err = libbpf_get_error(btf); 5698 if (err) { 5699 pr_warn("failed to load module [%s]'s BTF object #%d: %s\n", 5700 name, id, errstr(err)); 5701 goto err_out; 5702 } 5703 5704 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5705 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5706 if (err) 5707 goto err_out; 5708 5709 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5710 5711 mod_btf->btf = btf; 5712 mod_btf->id = id; 5713 mod_btf->fd = fd; 5714 mod_btf->name = strdup(name); 5715 if (!mod_btf->name) { 5716 err = -ENOMEM; 5717 goto err_out; 5718 } 5719 continue; 5720 5721 err_out: 5722 close(fd); 5723 return err; 5724 } 5725 5726 return 0; 5727 } 5728 5729 static struct bpf_core_cand_list * 5730 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5731 { 5732 struct bpf_core_cand local_cand = {}; 5733 struct bpf_core_cand_list *cands; 5734 const struct btf *main_btf; 5735 const struct btf_type *local_t; 5736 const char *local_name; 5737 size_t local_essent_len; 5738 int err, i; 5739 5740 local_cand.btf = local_btf; 5741 local_cand.id = local_type_id; 5742 local_t = btf__type_by_id(local_btf, local_type_id); 5743 if (!local_t) 5744 return ERR_PTR(-EINVAL); 5745 5746 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5747 if (str_is_empty(local_name)) 5748 return ERR_PTR(-EINVAL); 5749 local_essent_len = bpf_core_essential_name_len(local_name); 5750 5751 cands = calloc(1, sizeof(*cands)); 5752 if (!cands) 5753 return ERR_PTR(-ENOMEM); 5754 5755 /* Attempt to find target candidates in vmlinux BTF first */ 5756 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5757 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5758 if (err) 5759 goto err_out; 5760 5761 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5762 if (cands->len) 5763 return cands; 5764 5765 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5766 if (obj->btf_vmlinux_override) 5767 return cands; 5768 5769 /* now look through module BTFs, trying to still find candidates */ 5770 err = load_module_btfs(obj); 5771 if (err) 5772 goto err_out; 5773 5774 for (i = 0; i < obj->btf_module_cnt; i++) { 5775 err = bpf_core_add_cands(&local_cand, local_essent_len, 5776 obj->btf_modules[i].btf, 5777 obj->btf_modules[i].name, 5778 btf__type_cnt(obj->btf_vmlinux), 5779 cands); 5780 if (err) 5781 goto err_out; 5782 } 5783 5784 return cands; 5785 err_out: 5786 bpf_core_free_cands(cands); 5787 return ERR_PTR(err); 5788 } 5789 5790 /* Check local and target types for compatibility. This check is used for 5791 * type-based CO-RE relocations and follow slightly different rules than 5792 * field-based relocations. This function assumes that root types were already 5793 * checked for name match. Beyond that initial root-level name check, names 5794 * are completely ignored. Compatibility rules are as follows: 5795 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5796 * kind should match for local and target types (i.e., STRUCT is not 5797 * compatible with UNION); 5798 * - for ENUMs, the size is ignored; 5799 * - for INT, size and signedness are ignored; 5800 * - for ARRAY, dimensionality is ignored, element types are checked for 5801 * compatibility recursively; 5802 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5803 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5804 * - FUNC_PROTOs are compatible if they have compatible signature: same 5805 * number of input args and compatible return and argument types. 5806 * These rules are not set in stone and probably will be adjusted as we get 5807 * more experience with using BPF CO-RE relocations. 5808 */ 5809 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5810 const struct btf *targ_btf, __u32 targ_id) 5811 { 5812 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5813 } 5814 5815 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5816 const struct btf *targ_btf, __u32 targ_id) 5817 { 5818 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5819 } 5820 5821 static size_t bpf_core_hash_fn(const long key, void *ctx) 5822 { 5823 return key; 5824 } 5825 5826 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5827 { 5828 return k1 == k2; 5829 } 5830 5831 static int record_relo_core(struct bpf_program *prog, 5832 const struct bpf_core_relo *core_relo, int insn_idx) 5833 { 5834 struct reloc_desc *relos, *relo; 5835 5836 relos = libbpf_reallocarray(prog->reloc_desc, 5837 prog->nr_reloc + 1, sizeof(*relos)); 5838 if (!relos) 5839 return -ENOMEM; 5840 relo = &relos[prog->nr_reloc]; 5841 relo->type = RELO_CORE; 5842 relo->insn_idx = insn_idx; 5843 relo->core_relo = core_relo; 5844 prog->reloc_desc = relos; 5845 prog->nr_reloc++; 5846 return 0; 5847 } 5848 5849 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5850 { 5851 struct reloc_desc *relo; 5852 int i; 5853 5854 for (i = 0; i < prog->nr_reloc; i++) { 5855 relo = &prog->reloc_desc[i]; 5856 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5857 continue; 5858 5859 return relo->core_relo; 5860 } 5861 5862 return NULL; 5863 } 5864 5865 static int bpf_core_resolve_relo(struct bpf_program *prog, 5866 const struct bpf_core_relo *relo, 5867 int relo_idx, 5868 const struct btf *local_btf, 5869 struct hashmap *cand_cache, 5870 struct bpf_core_relo_res *targ_res) 5871 { 5872 struct bpf_core_spec specs_scratch[3] = {}; 5873 struct bpf_core_cand_list *cands = NULL; 5874 const char *prog_name = prog->name; 5875 const struct btf_type *local_type; 5876 const char *local_name; 5877 __u32 local_id = relo->type_id; 5878 int err; 5879 5880 local_type = btf__type_by_id(local_btf, local_id); 5881 if (!local_type) 5882 return -EINVAL; 5883 5884 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5885 if (!local_name) 5886 return -EINVAL; 5887 5888 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5889 !hashmap__find(cand_cache, local_id, &cands)) { 5890 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5891 if (IS_ERR(cands)) { 5892 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5893 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5894 local_name, PTR_ERR(cands)); 5895 return PTR_ERR(cands); 5896 } 5897 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5898 if (err) { 5899 bpf_core_free_cands(cands); 5900 return err; 5901 } 5902 } 5903 5904 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5905 targ_res); 5906 } 5907 5908 static int 5909 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5910 { 5911 const struct btf_ext_info_sec *sec; 5912 struct bpf_core_relo_res targ_res; 5913 const struct bpf_core_relo *rec; 5914 const struct btf_ext_info *seg; 5915 struct hashmap_entry *entry; 5916 struct hashmap *cand_cache = NULL; 5917 struct bpf_program *prog; 5918 struct bpf_insn *insn; 5919 const char *sec_name; 5920 int i, err = 0, insn_idx, sec_idx, sec_num; 5921 5922 if (obj->btf_ext->core_relo_info.len == 0) 5923 return 0; 5924 5925 if (targ_btf_path) { 5926 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5927 err = libbpf_get_error(obj->btf_vmlinux_override); 5928 if (err) { 5929 pr_warn("failed to parse target BTF: %s\n", errstr(err)); 5930 return err; 5931 } 5932 } 5933 5934 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5935 if (IS_ERR(cand_cache)) { 5936 err = PTR_ERR(cand_cache); 5937 goto out; 5938 } 5939 5940 seg = &obj->btf_ext->core_relo_info; 5941 sec_num = 0; 5942 for_each_btf_ext_sec(seg, sec) { 5943 sec_idx = seg->sec_idxs[sec_num]; 5944 sec_num++; 5945 5946 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5947 if (str_is_empty(sec_name)) { 5948 err = -EINVAL; 5949 goto out; 5950 } 5951 5952 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5953 5954 for_each_btf_ext_rec(seg, sec, i, rec) { 5955 if (rec->insn_off % BPF_INSN_SZ) 5956 return -EINVAL; 5957 insn_idx = rec->insn_off / BPF_INSN_SZ; 5958 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5959 if (!prog) { 5960 /* When __weak subprog is "overridden" by another instance 5961 * of the subprog from a different object file, linker still 5962 * appends all the .BTF.ext info that used to belong to that 5963 * eliminated subprogram. 5964 * This is similar to what x86-64 linker does for relocations. 5965 * So just ignore such relocations just like we ignore 5966 * subprog instructions when discovering subprograms. 5967 */ 5968 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5969 sec_name, i, insn_idx); 5970 continue; 5971 } 5972 /* no need to apply CO-RE relocation if the program is 5973 * not going to be loaded 5974 */ 5975 if (!prog->autoload) 5976 continue; 5977 5978 /* adjust insn_idx from section frame of reference to the local 5979 * program's frame of reference; (sub-)program code is not yet 5980 * relocated, so it's enough to just subtract in-section offset 5981 */ 5982 insn_idx = insn_idx - prog->sec_insn_off; 5983 if (insn_idx >= prog->insns_cnt) 5984 return -EINVAL; 5985 insn = &prog->insns[insn_idx]; 5986 5987 err = record_relo_core(prog, rec, insn_idx); 5988 if (err) { 5989 pr_warn("prog '%s': relo #%d: failed to record relocation: %s\n", 5990 prog->name, i, errstr(err)); 5991 goto out; 5992 } 5993 5994 if (prog->obj->gen_loader) 5995 continue; 5996 5997 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5998 if (err) { 5999 pr_warn("prog '%s': relo #%d: failed to relocate: %s\n", 6000 prog->name, i, errstr(err)); 6001 goto out; 6002 } 6003 6004 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 6005 if (err) { 6006 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %s\n", 6007 prog->name, i, insn_idx, errstr(err)); 6008 goto out; 6009 } 6010 } 6011 } 6012 6013 out: 6014 /* obj->btf_vmlinux and module BTFs are freed after object load */ 6015 btf__free(obj->btf_vmlinux_override); 6016 obj->btf_vmlinux_override = NULL; 6017 6018 if (!IS_ERR_OR_NULL(cand_cache)) { 6019 hashmap__for_each_entry(cand_cache, entry, i) { 6020 bpf_core_free_cands(entry->pvalue); 6021 } 6022 hashmap__free(cand_cache); 6023 } 6024 return err; 6025 } 6026 6027 /* base map load ldimm64 special constant, used also for log fixup logic */ 6028 #define POISON_LDIMM64_MAP_BASE 2001000000 6029 #define POISON_LDIMM64_MAP_PFX "200100" 6030 6031 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 6032 int insn_idx, struct bpf_insn *insn, 6033 int map_idx, const struct bpf_map *map) 6034 { 6035 int i; 6036 6037 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 6038 prog->name, relo_idx, insn_idx, map_idx, map->name); 6039 6040 /* we turn single ldimm64 into two identical invalid calls */ 6041 for (i = 0; i < 2; i++) { 6042 insn->code = BPF_JMP | BPF_CALL; 6043 insn->dst_reg = 0; 6044 insn->src_reg = 0; 6045 insn->off = 0; 6046 /* if this instruction is reachable (not a dead code), 6047 * verifier will complain with something like: 6048 * invalid func unknown#2001000123 6049 * where lower 123 is map index into obj->maps[] array 6050 */ 6051 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 6052 6053 insn++; 6054 } 6055 } 6056 6057 /* unresolved kfunc call special constant, used also for log fixup logic */ 6058 #define POISON_CALL_KFUNC_BASE 2002000000 6059 #define POISON_CALL_KFUNC_PFX "2002" 6060 6061 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 6062 int insn_idx, struct bpf_insn *insn, 6063 int ext_idx, const struct extern_desc *ext) 6064 { 6065 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 6066 prog->name, relo_idx, insn_idx, ext->name); 6067 6068 /* we turn kfunc call into invalid helper call with identifiable constant */ 6069 insn->code = BPF_JMP | BPF_CALL; 6070 insn->dst_reg = 0; 6071 insn->src_reg = 0; 6072 insn->off = 0; 6073 /* if this instruction is reachable (not a dead code), 6074 * verifier will complain with something like: 6075 * invalid func unknown#2001000123 6076 * where lower 123 is extern index into obj->externs[] array 6077 */ 6078 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 6079 } 6080 6081 /* Relocate data references within program code: 6082 * - map references; 6083 * - global variable references; 6084 * - extern references. 6085 */ 6086 static int 6087 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 6088 { 6089 int i; 6090 6091 for (i = 0; i < prog->nr_reloc; i++) { 6092 struct reloc_desc *relo = &prog->reloc_desc[i]; 6093 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6094 const struct bpf_map *map; 6095 struct extern_desc *ext; 6096 6097 switch (relo->type) { 6098 case RELO_LD64: 6099 map = &obj->maps[relo->map_idx]; 6100 if (obj->gen_loader) { 6101 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 6102 insn[0].imm = relo->map_idx; 6103 } else if (map->autocreate) { 6104 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 6105 insn[0].imm = map->fd; 6106 } else { 6107 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6108 relo->map_idx, map); 6109 } 6110 break; 6111 case RELO_DATA: 6112 map = &obj->maps[relo->map_idx]; 6113 insn[1].imm = insn[0].imm + relo->sym_off; 6114 if (obj->gen_loader) { 6115 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6116 insn[0].imm = relo->map_idx; 6117 } else if (map->autocreate) { 6118 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6119 insn[0].imm = map->fd; 6120 } else { 6121 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6122 relo->map_idx, map); 6123 } 6124 break; 6125 case RELO_EXTERN_LD64: 6126 ext = &obj->externs[relo->ext_idx]; 6127 if (ext->type == EXT_KCFG) { 6128 if (obj->gen_loader) { 6129 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6130 insn[0].imm = obj->kconfig_map_idx; 6131 } else { 6132 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6133 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6134 } 6135 insn[1].imm = ext->kcfg.data_off; 6136 } else /* EXT_KSYM */ { 6137 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6138 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6139 insn[0].imm = ext->ksym.kernel_btf_id; 6140 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6141 } else { /* typeless ksyms or unresolved typed ksyms */ 6142 insn[0].imm = (__u32)ext->ksym.addr; 6143 insn[1].imm = ext->ksym.addr >> 32; 6144 } 6145 } 6146 break; 6147 case RELO_EXTERN_CALL: 6148 ext = &obj->externs[relo->ext_idx]; 6149 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6150 if (ext->is_set) { 6151 insn[0].imm = ext->ksym.kernel_btf_id; 6152 insn[0].off = ext->ksym.btf_fd_idx; 6153 } else { /* unresolved weak kfunc call */ 6154 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6155 relo->ext_idx, ext); 6156 } 6157 break; 6158 case RELO_SUBPROG_ADDR: 6159 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6160 pr_warn("prog '%s': relo #%d: bad insn\n", 6161 prog->name, i); 6162 return -EINVAL; 6163 } 6164 /* handled already */ 6165 break; 6166 case RELO_CALL: 6167 /* handled already */ 6168 break; 6169 case RELO_CORE: 6170 /* will be handled by bpf_program_record_relos() */ 6171 break; 6172 default: 6173 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6174 prog->name, i, relo->type); 6175 return -EINVAL; 6176 } 6177 } 6178 6179 return 0; 6180 } 6181 6182 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6183 const struct bpf_program *prog, 6184 const struct btf_ext_info *ext_info, 6185 void **prog_info, __u32 *prog_rec_cnt, 6186 __u32 *prog_rec_sz) 6187 { 6188 void *copy_start = NULL, *copy_end = NULL; 6189 void *rec, *rec_end, *new_prog_info; 6190 const struct btf_ext_info_sec *sec; 6191 size_t old_sz, new_sz; 6192 int i, sec_num, sec_idx, off_adj; 6193 6194 sec_num = 0; 6195 for_each_btf_ext_sec(ext_info, sec) { 6196 sec_idx = ext_info->sec_idxs[sec_num]; 6197 sec_num++; 6198 if (prog->sec_idx != sec_idx) 6199 continue; 6200 6201 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6202 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6203 6204 if (insn_off < prog->sec_insn_off) 6205 continue; 6206 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6207 break; 6208 6209 if (!copy_start) 6210 copy_start = rec; 6211 copy_end = rec + ext_info->rec_size; 6212 } 6213 6214 if (!copy_start) 6215 return -ENOENT; 6216 6217 /* append func/line info of a given (sub-)program to the main 6218 * program func/line info 6219 */ 6220 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6221 new_sz = old_sz + (copy_end - copy_start); 6222 new_prog_info = realloc(*prog_info, new_sz); 6223 if (!new_prog_info) 6224 return -ENOMEM; 6225 *prog_info = new_prog_info; 6226 *prog_rec_cnt = new_sz / ext_info->rec_size; 6227 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6228 6229 /* Kernel instruction offsets are in units of 8-byte 6230 * instructions, while .BTF.ext instruction offsets generated 6231 * by Clang are in units of bytes. So convert Clang offsets 6232 * into kernel offsets and adjust offset according to program 6233 * relocated position. 6234 */ 6235 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6236 rec = new_prog_info + old_sz; 6237 rec_end = new_prog_info + new_sz; 6238 for (; rec < rec_end; rec += ext_info->rec_size) { 6239 __u32 *insn_off = rec; 6240 6241 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6242 } 6243 *prog_rec_sz = ext_info->rec_size; 6244 return 0; 6245 } 6246 6247 return -ENOENT; 6248 } 6249 6250 static int 6251 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6252 struct bpf_program *main_prog, 6253 const struct bpf_program *prog) 6254 { 6255 int err; 6256 6257 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6258 * support func/line info 6259 */ 6260 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6261 return 0; 6262 6263 /* only attempt func info relocation if main program's func_info 6264 * relocation was successful 6265 */ 6266 if (main_prog != prog && !main_prog->func_info) 6267 goto line_info; 6268 6269 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6270 &main_prog->func_info, 6271 &main_prog->func_info_cnt, 6272 &main_prog->func_info_rec_size); 6273 if (err) { 6274 if (err != -ENOENT) { 6275 pr_warn("prog '%s': error relocating .BTF.ext function info: %s\n", 6276 prog->name, errstr(err)); 6277 return err; 6278 } 6279 if (main_prog->func_info) { 6280 /* 6281 * Some info has already been found but has problem 6282 * in the last btf_ext reloc. Must have to error out. 6283 */ 6284 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6285 return err; 6286 } 6287 /* Have problem loading the very first info. Ignore the rest. */ 6288 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6289 prog->name); 6290 } 6291 6292 line_info: 6293 /* don't relocate line info if main program's relocation failed */ 6294 if (main_prog != prog && !main_prog->line_info) 6295 return 0; 6296 6297 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6298 &main_prog->line_info, 6299 &main_prog->line_info_cnt, 6300 &main_prog->line_info_rec_size); 6301 if (err) { 6302 if (err != -ENOENT) { 6303 pr_warn("prog '%s': error relocating .BTF.ext line info: %s\n", 6304 prog->name, errstr(err)); 6305 return err; 6306 } 6307 if (main_prog->line_info) { 6308 /* 6309 * Some info has already been found but has problem 6310 * in the last btf_ext reloc. Must have to error out. 6311 */ 6312 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6313 return err; 6314 } 6315 /* Have problem loading the very first info. Ignore the rest. */ 6316 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6317 prog->name); 6318 } 6319 return 0; 6320 } 6321 6322 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6323 { 6324 size_t insn_idx = *(const size_t *)key; 6325 const struct reloc_desc *relo = elem; 6326 6327 if (insn_idx == relo->insn_idx) 6328 return 0; 6329 return insn_idx < relo->insn_idx ? -1 : 1; 6330 } 6331 6332 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6333 { 6334 if (!prog->nr_reloc) 6335 return NULL; 6336 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6337 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6338 } 6339 6340 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6341 { 6342 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6343 struct reloc_desc *relos; 6344 int i; 6345 6346 if (main_prog == subprog) 6347 return 0; 6348 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6349 /* if new count is zero, reallocarray can return a valid NULL result; 6350 * in this case the previous pointer will be freed, so we *have to* 6351 * reassign old pointer to the new value (even if it's NULL) 6352 */ 6353 if (!relos && new_cnt) 6354 return -ENOMEM; 6355 if (subprog->nr_reloc) 6356 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6357 sizeof(*relos) * subprog->nr_reloc); 6358 6359 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6360 relos[i].insn_idx += subprog->sub_insn_off; 6361 /* After insn_idx adjustment the 'relos' array is still sorted 6362 * by insn_idx and doesn't break bsearch. 6363 */ 6364 main_prog->reloc_desc = relos; 6365 main_prog->nr_reloc = new_cnt; 6366 return 0; 6367 } 6368 6369 static int 6370 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6371 struct bpf_program *subprog) 6372 { 6373 struct bpf_insn *insns; 6374 size_t new_cnt; 6375 int err; 6376 6377 subprog->sub_insn_off = main_prog->insns_cnt; 6378 6379 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6380 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6381 if (!insns) { 6382 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6383 return -ENOMEM; 6384 } 6385 main_prog->insns = insns; 6386 main_prog->insns_cnt = new_cnt; 6387 6388 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6389 subprog->insns_cnt * sizeof(*insns)); 6390 6391 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6392 main_prog->name, subprog->insns_cnt, subprog->name); 6393 6394 /* The subprog insns are now appended. Append its relos too. */ 6395 err = append_subprog_relos(main_prog, subprog); 6396 if (err) 6397 return err; 6398 return 0; 6399 } 6400 6401 static int 6402 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6403 struct bpf_program *prog) 6404 { 6405 size_t sub_insn_idx, insn_idx; 6406 struct bpf_program *subprog; 6407 struct reloc_desc *relo; 6408 struct bpf_insn *insn; 6409 int err; 6410 6411 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6412 if (err) 6413 return err; 6414 6415 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6416 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6417 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6418 continue; 6419 6420 relo = find_prog_insn_relo(prog, insn_idx); 6421 if (relo && relo->type == RELO_EXTERN_CALL) 6422 /* kfunc relocations will be handled later 6423 * in bpf_object__relocate_data() 6424 */ 6425 continue; 6426 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6427 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6428 prog->name, insn_idx, relo->type); 6429 return -LIBBPF_ERRNO__RELOC; 6430 } 6431 if (relo) { 6432 /* sub-program instruction index is a combination of 6433 * an offset of a symbol pointed to by relocation and 6434 * call instruction's imm field; for global functions, 6435 * call always has imm = -1, but for static functions 6436 * relocation is against STT_SECTION and insn->imm 6437 * points to a start of a static function 6438 * 6439 * for subprog addr relocation, the relo->sym_off + insn->imm is 6440 * the byte offset in the corresponding section. 6441 */ 6442 if (relo->type == RELO_CALL) 6443 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6444 else 6445 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6446 } else if (insn_is_pseudo_func(insn)) { 6447 /* 6448 * RELO_SUBPROG_ADDR relo is always emitted even if both 6449 * functions are in the same section, so it shouldn't reach here. 6450 */ 6451 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6452 prog->name, insn_idx); 6453 return -LIBBPF_ERRNO__RELOC; 6454 } else { 6455 /* if subprogram call is to a static function within 6456 * the same ELF section, there won't be any relocation 6457 * emitted, but it also means there is no additional 6458 * offset necessary, insns->imm is relative to 6459 * instruction's original position within the section 6460 */ 6461 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6462 } 6463 6464 /* we enforce that sub-programs should be in .text section */ 6465 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6466 if (!subprog) { 6467 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6468 prog->name); 6469 return -LIBBPF_ERRNO__RELOC; 6470 } 6471 6472 /* if it's the first call instruction calling into this 6473 * subprogram (meaning this subprog hasn't been processed 6474 * yet) within the context of current main program: 6475 * - append it at the end of main program's instructions blog; 6476 * - process is recursively, while current program is put on hold; 6477 * - if that subprogram calls some other not yet processes 6478 * subprogram, same thing will happen recursively until 6479 * there are no more unprocesses subprograms left to append 6480 * and relocate. 6481 */ 6482 if (subprog->sub_insn_off == 0) { 6483 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6484 if (err) 6485 return err; 6486 err = bpf_object__reloc_code(obj, main_prog, subprog); 6487 if (err) 6488 return err; 6489 } 6490 6491 /* main_prog->insns memory could have been re-allocated, so 6492 * calculate pointer again 6493 */ 6494 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6495 /* calculate correct instruction position within current main 6496 * prog; each main prog can have a different set of 6497 * subprograms appended (potentially in different order as 6498 * well), so position of any subprog can be different for 6499 * different main programs 6500 */ 6501 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6502 6503 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6504 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6505 } 6506 6507 return 0; 6508 } 6509 6510 /* 6511 * Relocate sub-program calls. 6512 * 6513 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6514 * main prog) is processed separately. For each subprog (non-entry functions, 6515 * that can be called from either entry progs or other subprogs) gets their 6516 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6517 * hasn't been yet appended and relocated within current main prog. Once its 6518 * relocated, sub_insn_off will point at the position within current main prog 6519 * where given subprog was appended. This will further be used to relocate all 6520 * the call instructions jumping into this subprog. 6521 * 6522 * We start with main program and process all call instructions. If the call 6523 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6524 * is zero), subprog instructions are appended at the end of main program's 6525 * instruction array. Then main program is "put on hold" while we recursively 6526 * process newly appended subprogram. If that subprogram calls into another 6527 * subprogram that hasn't been appended, new subprogram is appended again to 6528 * the *main* prog's instructions (subprog's instructions are always left 6529 * untouched, as they need to be in unmodified state for subsequent main progs 6530 * and subprog instructions are always sent only as part of a main prog) and 6531 * the process continues recursively. Once all the subprogs called from a main 6532 * prog or any of its subprogs are appended (and relocated), all their 6533 * positions within finalized instructions array are known, so it's easy to 6534 * rewrite call instructions with correct relative offsets, corresponding to 6535 * desired target subprog. 6536 * 6537 * Its important to realize that some subprogs might not be called from some 6538 * main prog and any of its called/used subprogs. Those will keep their 6539 * subprog->sub_insn_off as zero at all times and won't be appended to current 6540 * main prog and won't be relocated within the context of current main prog. 6541 * They might still be used from other main progs later. 6542 * 6543 * Visually this process can be shown as below. Suppose we have two main 6544 * programs mainA and mainB and BPF object contains three subprogs: subA, 6545 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6546 * subC both call subB: 6547 * 6548 * +--------+ +-------+ 6549 * | v v | 6550 * +--+---+ +--+-+-+ +---+--+ 6551 * | subA | | subB | | subC | 6552 * +--+---+ +------+ +---+--+ 6553 * ^ ^ 6554 * | | 6555 * +---+-------+ +------+----+ 6556 * | mainA | | mainB | 6557 * +-----------+ +-----------+ 6558 * 6559 * We'll start relocating mainA, will find subA, append it and start 6560 * processing sub A recursively: 6561 * 6562 * +-----------+------+ 6563 * | mainA | subA | 6564 * +-----------+------+ 6565 * 6566 * At this point we notice that subB is used from subA, so we append it and 6567 * relocate (there are no further subcalls from subB): 6568 * 6569 * +-----------+------+------+ 6570 * | mainA | subA | subB | 6571 * +-----------+------+------+ 6572 * 6573 * At this point, we relocate subA calls, then go one level up and finish with 6574 * relocatin mainA calls. mainA is done. 6575 * 6576 * For mainB process is similar but results in different order. We start with 6577 * mainB and skip subA and subB, as mainB never calls them (at least 6578 * directly), but we see subC is needed, so we append and start processing it: 6579 * 6580 * +-----------+------+ 6581 * | mainB | subC | 6582 * +-----------+------+ 6583 * Now we see subC needs subB, so we go back to it, append and relocate it: 6584 * 6585 * +-----------+------+------+ 6586 * | mainB | subC | subB | 6587 * +-----------+------+------+ 6588 * 6589 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6590 */ 6591 static int 6592 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6593 { 6594 struct bpf_program *subprog; 6595 int i, err; 6596 6597 /* mark all subprogs as not relocated (yet) within the context of 6598 * current main program 6599 */ 6600 for (i = 0; i < obj->nr_programs; i++) { 6601 subprog = &obj->programs[i]; 6602 if (!prog_is_subprog(obj, subprog)) 6603 continue; 6604 6605 subprog->sub_insn_off = 0; 6606 } 6607 6608 err = bpf_object__reloc_code(obj, prog, prog); 6609 if (err) 6610 return err; 6611 6612 return 0; 6613 } 6614 6615 static void 6616 bpf_object__free_relocs(struct bpf_object *obj) 6617 { 6618 struct bpf_program *prog; 6619 int i; 6620 6621 /* free up relocation descriptors */ 6622 for (i = 0; i < obj->nr_programs; i++) { 6623 prog = &obj->programs[i]; 6624 zfree(&prog->reloc_desc); 6625 prog->nr_reloc = 0; 6626 } 6627 } 6628 6629 static int cmp_relocs(const void *_a, const void *_b) 6630 { 6631 const struct reloc_desc *a = _a; 6632 const struct reloc_desc *b = _b; 6633 6634 if (a->insn_idx != b->insn_idx) 6635 return a->insn_idx < b->insn_idx ? -1 : 1; 6636 6637 /* no two relocations should have the same insn_idx, but ... */ 6638 if (a->type != b->type) 6639 return a->type < b->type ? -1 : 1; 6640 6641 return 0; 6642 } 6643 6644 static void bpf_object__sort_relos(struct bpf_object *obj) 6645 { 6646 int i; 6647 6648 for (i = 0; i < obj->nr_programs; i++) { 6649 struct bpf_program *p = &obj->programs[i]; 6650 6651 if (!p->nr_reloc) 6652 continue; 6653 6654 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6655 } 6656 } 6657 6658 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6659 { 6660 const char *str = "exception_callback:"; 6661 size_t pfx_len = strlen(str); 6662 int i, j, n; 6663 6664 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6665 return 0; 6666 6667 n = btf__type_cnt(obj->btf); 6668 for (i = 1; i < n; i++) { 6669 const char *name; 6670 struct btf_type *t; 6671 6672 t = btf_type_by_id(obj->btf, i); 6673 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6674 continue; 6675 6676 name = btf__str_by_offset(obj->btf, t->name_off); 6677 if (strncmp(name, str, pfx_len) != 0) 6678 continue; 6679 6680 t = btf_type_by_id(obj->btf, t->type); 6681 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6682 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6683 prog->name); 6684 return -EINVAL; 6685 } 6686 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6687 continue; 6688 /* Multiple callbacks are specified for the same prog, 6689 * the verifier will eventually return an error for this 6690 * case, hence simply skip appending a subprog. 6691 */ 6692 if (prog->exception_cb_idx >= 0) { 6693 prog->exception_cb_idx = -1; 6694 break; 6695 } 6696 6697 name += pfx_len; 6698 if (str_is_empty(name)) { 6699 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6700 prog->name); 6701 return -EINVAL; 6702 } 6703 6704 for (j = 0; j < obj->nr_programs; j++) { 6705 struct bpf_program *subprog = &obj->programs[j]; 6706 6707 if (!prog_is_subprog(obj, subprog)) 6708 continue; 6709 if (strcmp(name, subprog->name) != 0) 6710 continue; 6711 /* Enforce non-hidden, as from verifier point of 6712 * view it expects global functions, whereas the 6713 * mark_btf_static fixes up linkage as static. 6714 */ 6715 if (!subprog->sym_global || subprog->mark_btf_static) { 6716 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6717 prog->name, subprog->name); 6718 return -EINVAL; 6719 } 6720 /* Let's see if we already saw a static exception callback with the same name */ 6721 if (prog->exception_cb_idx >= 0) { 6722 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6723 prog->name, subprog->name); 6724 return -EINVAL; 6725 } 6726 prog->exception_cb_idx = j; 6727 break; 6728 } 6729 6730 if (prog->exception_cb_idx >= 0) 6731 continue; 6732 6733 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6734 return -ENOENT; 6735 } 6736 6737 return 0; 6738 } 6739 6740 static struct { 6741 enum bpf_prog_type prog_type; 6742 const char *ctx_name; 6743 } global_ctx_map[] = { 6744 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6745 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6746 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6747 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6748 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6749 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6750 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6751 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6752 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6753 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6754 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6755 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6756 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6757 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6758 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6759 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6760 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6761 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6762 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6763 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6764 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6765 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6766 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6767 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6768 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6769 /* all other program types don't have "named" context structs */ 6770 }; 6771 6772 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6773 * for below __builtin_types_compatible_p() checks; 6774 * with this approach we don't need any extra arch-specific #ifdef guards 6775 */ 6776 struct pt_regs; 6777 struct user_pt_regs; 6778 struct user_regs_struct; 6779 6780 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6781 const char *subprog_name, int arg_idx, 6782 int arg_type_id, const char *ctx_name) 6783 { 6784 const struct btf_type *t; 6785 const char *tname; 6786 6787 /* check if existing parameter already matches verifier expectations */ 6788 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6789 if (!btf_is_ptr(t)) 6790 goto out_warn; 6791 6792 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6793 * and perf_event programs, so check this case early on and forget 6794 * about it for subsequent checks 6795 */ 6796 while (btf_is_mod(t)) 6797 t = btf__type_by_id(btf, t->type); 6798 if (btf_is_typedef(t) && 6799 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6800 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6801 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6802 return false; /* canonical type for kprobe/perf_event */ 6803 } 6804 6805 /* now we can ignore typedefs moving forward */ 6806 t = skip_mods_and_typedefs(btf, t->type, NULL); 6807 6808 /* if it's `void *`, definitely fix up BTF info */ 6809 if (btf_is_void(t)) 6810 return true; 6811 6812 /* if it's already proper canonical type, no need to fix up */ 6813 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6814 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6815 return false; 6816 6817 /* special cases */ 6818 switch (prog->type) { 6819 case BPF_PROG_TYPE_KPROBE: 6820 /* `struct pt_regs *` is expected, but we need to fix up */ 6821 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6822 return true; 6823 break; 6824 case BPF_PROG_TYPE_PERF_EVENT: 6825 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6826 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6827 return true; 6828 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6829 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6830 return true; 6831 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6832 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6833 return true; 6834 break; 6835 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6836 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6837 /* allow u64* as ctx */ 6838 if (btf_is_int(t) && t->size == 8) 6839 return true; 6840 break; 6841 default: 6842 break; 6843 } 6844 6845 out_warn: 6846 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6847 prog->name, subprog_name, arg_idx, ctx_name); 6848 return false; 6849 } 6850 6851 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6852 { 6853 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6854 int i, err, arg_cnt, fn_name_off, linkage; 6855 struct btf_type *fn_t, *fn_proto_t, *t; 6856 struct btf_param *p; 6857 6858 /* caller already validated FUNC -> FUNC_PROTO validity */ 6859 fn_t = btf_type_by_id(btf, orig_fn_id); 6860 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6861 6862 /* Note that each btf__add_xxx() operation invalidates 6863 * all btf_type and string pointers, so we need to be 6864 * very careful when cloning BTF types. BTF type 6865 * pointers have to be always refetched. And to avoid 6866 * problems with invalidated string pointers, we 6867 * add empty strings initially, then just fix up 6868 * name_off offsets in place. Offsets are stable for 6869 * existing strings, so that works out. 6870 */ 6871 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6872 linkage = btf_func_linkage(fn_t); 6873 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6874 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6875 arg_cnt = btf_vlen(fn_proto_t); 6876 6877 /* clone FUNC_PROTO and its params */ 6878 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6879 if (fn_proto_id < 0) 6880 return -EINVAL; 6881 6882 for (i = 0; i < arg_cnt; i++) { 6883 int name_off; 6884 6885 /* copy original parameter data */ 6886 t = btf_type_by_id(btf, orig_proto_id); 6887 p = &btf_params(t)[i]; 6888 name_off = p->name_off; 6889 6890 err = btf__add_func_param(btf, "", p->type); 6891 if (err) 6892 return err; 6893 6894 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6895 p = &btf_params(fn_proto_t)[i]; 6896 p->name_off = name_off; /* use remembered str offset */ 6897 } 6898 6899 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6900 * entry program's name as a placeholder, which we replace immediately 6901 * with original name_off 6902 */ 6903 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6904 if (fn_id < 0) 6905 return -EINVAL; 6906 6907 fn_t = btf_type_by_id(btf, fn_id); 6908 fn_t->name_off = fn_name_off; /* reuse original string */ 6909 6910 return fn_id; 6911 } 6912 6913 /* Check if main program or global subprog's function prototype has `arg:ctx` 6914 * argument tags, and, if necessary, substitute correct type to match what BPF 6915 * verifier would expect, taking into account specific program type. This 6916 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6917 * have a native support for it in the verifier, making user's life much 6918 * easier. 6919 */ 6920 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6921 { 6922 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6923 struct bpf_func_info_min *func_rec; 6924 struct btf_type *fn_t, *fn_proto_t; 6925 struct btf *btf = obj->btf; 6926 const struct btf_type *t; 6927 struct btf_param *p; 6928 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6929 int i, n, arg_idx, arg_cnt, err, rec_idx; 6930 int *orig_ids; 6931 6932 /* no .BTF.ext, no problem */ 6933 if (!obj->btf_ext || !prog->func_info) 6934 return 0; 6935 6936 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6937 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 6938 return 0; 6939 6940 /* some BPF program types just don't have named context structs, so 6941 * this fallback mechanism doesn't work for them 6942 */ 6943 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6944 if (global_ctx_map[i].prog_type != prog->type) 6945 continue; 6946 ctx_name = global_ctx_map[i].ctx_name; 6947 break; 6948 } 6949 if (!ctx_name) 6950 return 0; 6951 6952 /* remember original func BTF IDs to detect if we already cloned them */ 6953 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6954 if (!orig_ids) 6955 return -ENOMEM; 6956 for (i = 0; i < prog->func_info_cnt; i++) { 6957 func_rec = prog->func_info + prog->func_info_rec_size * i; 6958 orig_ids[i] = func_rec->type_id; 6959 } 6960 6961 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6962 * of our subprogs; if yes and subprog is global and needs adjustment, 6963 * clone and adjust FUNC -> FUNC_PROTO combo 6964 */ 6965 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6966 /* only DECL_TAG with "arg:ctx" value are interesting */ 6967 t = btf__type_by_id(btf, i); 6968 if (!btf_is_decl_tag(t)) 6969 continue; 6970 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6971 continue; 6972 6973 /* only global funcs need adjustment, if at all */ 6974 orig_fn_id = t->type; 6975 fn_t = btf_type_by_id(btf, orig_fn_id); 6976 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6977 continue; 6978 6979 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6980 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6981 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6982 continue; 6983 6984 /* find corresponding func_info record */ 6985 func_rec = NULL; 6986 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 6987 if (orig_ids[rec_idx] == t->type) { 6988 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 6989 break; 6990 } 6991 } 6992 /* current main program doesn't call into this subprog */ 6993 if (!func_rec) 6994 continue; 6995 6996 /* some more sanity checking of DECL_TAG */ 6997 arg_cnt = btf_vlen(fn_proto_t); 6998 arg_idx = btf_decl_tag(t)->component_idx; 6999 if (arg_idx < 0 || arg_idx >= arg_cnt) 7000 continue; 7001 7002 /* check if we should fix up argument type */ 7003 p = &btf_params(fn_proto_t)[arg_idx]; 7004 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 7005 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 7006 continue; 7007 7008 /* clone fn/fn_proto, unless we already did it for another arg */ 7009 if (func_rec->type_id == orig_fn_id) { 7010 int fn_id; 7011 7012 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 7013 if (fn_id < 0) { 7014 err = fn_id; 7015 goto err_out; 7016 } 7017 7018 /* point func_info record to a cloned FUNC type */ 7019 func_rec->type_id = fn_id; 7020 } 7021 7022 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 7023 * we do it just once per main BPF program, as all global 7024 * funcs share the same program type, so need only PTR -> 7025 * STRUCT type chain 7026 */ 7027 if (ptr_id == 0) { 7028 struct_id = btf__add_struct(btf, ctx_name, 0); 7029 ptr_id = btf__add_ptr(btf, struct_id); 7030 if (ptr_id < 0 || struct_id < 0) { 7031 err = -EINVAL; 7032 goto err_out; 7033 } 7034 } 7035 7036 /* for completeness, clone DECL_TAG and point it to cloned param */ 7037 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 7038 if (tag_id < 0) { 7039 err = -EINVAL; 7040 goto err_out; 7041 } 7042 7043 /* all the BTF manipulations invalidated pointers, refetch them */ 7044 fn_t = btf_type_by_id(btf, func_rec->type_id); 7045 fn_proto_t = btf_type_by_id(btf, fn_t->type); 7046 7047 /* fix up type ID pointed to by param */ 7048 p = &btf_params(fn_proto_t)[arg_idx]; 7049 p->type = ptr_id; 7050 } 7051 7052 free(orig_ids); 7053 return 0; 7054 err_out: 7055 free(orig_ids); 7056 return err; 7057 } 7058 7059 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 7060 { 7061 struct bpf_program *prog; 7062 size_t i, j; 7063 int err; 7064 7065 if (obj->btf_ext) { 7066 err = bpf_object__relocate_core(obj, targ_btf_path); 7067 if (err) { 7068 pr_warn("failed to perform CO-RE relocations: %s\n", 7069 errstr(err)); 7070 return err; 7071 } 7072 bpf_object__sort_relos(obj); 7073 } 7074 7075 /* Before relocating calls pre-process relocations and mark 7076 * few ld_imm64 instructions that points to subprogs. 7077 * Otherwise bpf_object__reloc_code() later would have to consider 7078 * all ld_imm64 insns as relocation candidates. That would 7079 * reduce relocation speed, since amount of find_prog_insn_relo() 7080 * would increase and most of them will fail to find a relo. 7081 */ 7082 for (i = 0; i < obj->nr_programs; i++) { 7083 prog = &obj->programs[i]; 7084 for (j = 0; j < prog->nr_reloc; j++) { 7085 struct reloc_desc *relo = &prog->reloc_desc[j]; 7086 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 7087 7088 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 7089 if (relo->type == RELO_SUBPROG_ADDR) 7090 insn[0].src_reg = BPF_PSEUDO_FUNC; 7091 } 7092 } 7093 7094 /* relocate subprogram calls and append used subprograms to main 7095 * programs; each copy of subprogram code needs to be relocated 7096 * differently for each main program, because its code location might 7097 * have changed. 7098 * Append subprog relos to main programs to allow data relos to be 7099 * processed after text is completely relocated. 7100 */ 7101 for (i = 0; i < obj->nr_programs; i++) { 7102 prog = &obj->programs[i]; 7103 /* sub-program's sub-calls are relocated within the context of 7104 * its main program only 7105 */ 7106 if (prog_is_subprog(obj, prog)) 7107 continue; 7108 if (!prog->autoload) 7109 continue; 7110 7111 err = bpf_object__relocate_calls(obj, prog); 7112 if (err) { 7113 pr_warn("prog '%s': failed to relocate calls: %s\n", 7114 prog->name, errstr(err)); 7115 return err; 7116 } 7117 7118 err = bpf_prog_assign_exc_cb(obj, prog); 7119 if (err) 7120 return err; 7121 /* Now, also append exception callback if it has not been done already. */ 7122 if (prog->exception_cb_idx >= 0) { 7123 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7124 7125 /* Calling exception callback directly is disallowed, which the 7126 * verifier will reject later. In case it was processed already, 7127 * we can skip this step, otherwise for all other valid cases we 7128 * have to append exception callback now. 7129 */ 7130 if (subprog->sub_insn_off == 0) { 7131 err = bpf_object__append_subprog_code(obj, prog, subprog); 7132 if (err) 7133 return err; 7134 err = bpf_object__reloc_code(obj, prog, subprog); 7135 if (err) 7136 return err; 7137 } 7138 } 7139 } 7140 for (i = 0; i < obj->nr_programs; i++) { 7141 prog = &obj->programs[i]; 7142 if (prog_is_subprog(obj, prog)) 7143 continue; 7144 if (!prog->autoload) 7145 continue; 7146 7147 /* Process data relos for main programs */ 7148 err = bpf_object__relocate_data(obj, prog); 7149 if (err) { 7150 pr_warn("prog '%s': failed to relocate data references: %s\n", 7151 prog->name, errstr(err)); 7152 return err; 7153 } 7154 7155 /* Fix up .BTF.ext information, if necessary */ 7156 err = bpf_program_fixup_func_info(obj, prog); 7157 if (err) { 7158 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %s\n", 7159 prog->name, errstr(err)); 7160 return err; 7161 } 7162 } 7163 7164 return 0; 7165 } 7166 7167 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7168 Elf64_Shdr *shdr, Elf_Data *data); 7169 7170 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7171 Elf64_Shdr *shdr, Elf_Data *data) 7172 { 7173 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7174 int i, j, nrels, new_sz; 7175 const struct btf_var_secinfo *vi = NULL; 7176 const struct btf_type *sec, *var, *def; 7177 struct bpf_map *map = NULL, *targ_map = NULL; 7178 struct bpf_program *targ_prog = NULL; 7179 bool is_prog_array, is_map_in_map; 7180 const struct btf_member *member; 7181 const char *name, *mname, *type; 7182 unsigned int moff; 7183 Elf64_Sym *sym; 7184 Elf64_Rel *rel; 7185 void *tmp; 7186 7187 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7188 return -EINVAL; 7189 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7190 if (!sec) 7191 return -EINVAL; 7192 7193 nrels = shdr->sh_size / shdr->sh_entsize; 7194 for (i = 0; i < nrels; i++) { 7195 rel = elf_rel_by_idx(data, i); 7196 if (!rel) { 7197 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7198 return -LIBBPF_ERRNO__FORMAT; 7199 } 7200 7201 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7202 if (!sym) { 7203 pr_warn(".maps relo #%d: symbol %zx not found\n", 7204 i, (size_t)ELF64_R_SYM(rel->r_info)); 7205 return -LIBBPF_ERRNO__FORMAT; 7206 } 7207 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7208 7209 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7210 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7211 (size_t)rel->r_offset, sym->st_name, name); 7212 7213 for (j = 0; j < obj->nr_maps; j++) { 7214 map = &obj->maps[j]; 7215 if (map->sec_idx != obj->efile.btf_maps_shndx) 7216 continue; 7217 7218 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7219 if (vi->offset <= rel->r_offset && 7220 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7221 break; 7222 } 7223 if (j == obj->nr_maps) { 7224 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7225 i, name, (size_t)rel->r_offset); 7226 return -EINVAL; 7227 } 7228 7229 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7230 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7231 type = is_map_in_map ? "map" : "prog"; 7232 if (is_map_in_map) { 7233 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7234 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7235 i, name); 7236 return -LIBBPF_ERRNO__RELOC; 7237 } 7238 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7239 map->def.key_size != sizeof(int)) { 7240 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7241 i, map->name, sizeof(int)); 7242 return -EINVAL; 7243 } 7244 targ_map = bpf_object__find_map_by_name(obj, name); 7245 if (!targ_map) { 7246 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7247 i, name); 7248 return -ESRCH; 7249 } 7250 } else if (is_prog_array) { 7251 targ_prog = bpf_object__find_program_by_name(obj, name); 7252 if (!targ_prog) { 7253 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7254 i, name); 7255 return -ESRCH; 7256 } 7257 if (targ_prog->sec_idx != sym->st_shndx || 7258 targ_prog->sec_insn_off * 8 != sym->st_value || 7259 prog_is_subprog(obj, targ_prog)) { 7260 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7261 i, name); 7262 return -LIBBPF_ERRNO__RELOC; 7263 } 7264 } else { 7265 return -EINVAL; 7266 } 7267 7268 var = btf__type_by_id(obj->btf, vi->type); 7269 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7270 if (btf_vlen(def) == 0) 7271 return -EINVAL; 7272 member = btf_members(def) + btf_vlen(def) - 1; 7273 mname = btf__name_by_offset(obj->btf, member->name_off); 7274 if (strcmp(mname, "values")) 7275 return -EINVAL; 7276 7277 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7278 if (rel->r_offset - vi->offset < moff) 7279 return -EINVAL; 7280 7281 moff = rel->r_offset - vi->offset - moff; 7282 /* here we use BPF pointer size, which is always 64 bit, as we 7283 * are parsing ELF that was built for BPF target 7284 */ 7285 if (moff % bpf_ptr_sz) 7286 return -EINVAL; 7287 moff /= bpf_ptr_sz; 7288 if (moff >= map->init_slots_sz) { 7289 new_sz = moff + 1; 7290 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7291 if (!tmp) 7292 return -ENOMEM; 7293 map->init_slots = tmp; 7294 memset(map->init_slots + map->init_slots_sz, 0, 7295 (new_sz - map->init_slots_sz) * host_ptr_sz); 7296 map->init_slots_sz = new_sz; 7297 } 7298 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7299 7300 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7301 i, map->name, moff, type, name); 7302 } 7303 7304 return 0; 7305 } 7306 7307 static int bpf_object__collect_relos(struct bpf_object *obj) 7308 { 7309 int i, err; 7310 7311 for (i = 0; i < obj->efile.sec_cnt; i++) { 7312 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7313 Elf64_Shdr *shdr; 7314 Elf_Data *data; 7315 int idx; 7316 7317 if (sec_desc->sec_type != SEC_RELO) 7318 continue; 7319 7320 shdr = sec_desc->shdr; 7321 data = sec_desc->data; 7322 idx = shdr->sh_info; 7323 7324 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7325 pr_warn("internal error at %d\n", __LINE__); 7326 return -LIBBPF_ERRNO__INTERNAL; 7327 } 7328 7329 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7330 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7331 else if (idx == obj->efile.btf_maps_shndx) 7332 err = bpf_object__collect_map_relos(obj, shdr, data); 7333 else 7334 err = bpf_object__collect_prog_relos(obj, shdr, data); 7335 if (err) 7336 return err; 7337 } 7338 7339 bpf_object__sort_relos(obj); 7340 return 0; 7341 } 7342 7343 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7344 { 7345 if (BPF_CLASS(insn->code) == BPF_JMP && 7346 BPF_OP(insn->code) == BPF_CALL && 7347 BPF_SRC(insn->code) == BPF_K && 7348 insn->src_reg == 0 && 7349 insn->dst_reg == 0) { 7350 *func_id = insn->imm; 7351 return true; 7352 } 7353 return false; 7354 } 7355 7356 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7357 { 7358 struct bpf_insn *insn = prog->insns; 7359 enum bpf_func_id func_id; 7360 int i; 7361 7362 if (obj->gen_loader) 7363 return 0; 7364 7365 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7366 if (!insn_is_helper_call(insn, &func_id)) 7367 continue; 7368 7369 /* on kernels that don't yet support 7370 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7371 * to bpf_probe_read() which works well for old kernels 7372 */ 7373 switch (func_id) { 7374 case BPF_FUNC_probe_read_kernel: 7375 case BPF_FUNC_probe_read_user: 7376 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7377 insn->imm = BPF_FUNC_probe_read; 7378 break; 7379 case BPF_FUNC_probe_read_kernel_str: 7380 case BPF_FUNC_probe_read_user_str: 7381 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7382 insn->imm = BPF_FUNC_probe_read_str; 7383 break; 7384 default: 7385 break; 7386 } 7387 } 7388 return 0; 7389 } 7390 7391 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7392 int *btf_obj_fd, int *btf_type_id); 7393 7394 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7395 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7396 struct bpf_prog_load_opts *opts, long cookie) 7397 { 7398 enum sec_def_flags def = cookie; 7399 7400 /* old kernels might not support specifying expected_attach_type */ 7401 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7402 opts->expected_attach_type = 0; 7403 7404 if (def & SEC_SLEEPABLE) 7405 opts->prog_flags |= BPF_F_SLEEPABLE; 7406 7407 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7408 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7409 7410 /* special check for usdt to use uprobe_multi link */ 7411 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) { 7412 /* for BPF_TRACE_UPROBE_MULTI, user might want to query expected_attach_type 7413 * in prog, and expected_attach_type we set in kernel is from opts, so we 7414 * update both. 7415 */ 7416 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7417 opts->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7418 } 7419 7420 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7421 int btf_obj_fd = 0, btf_type_id = 0, err; 7422 const char *attach_name; 7423 7424 attach_name = strchr(prog->sec_name, '/'); 7425 if (!attach_name) { 7426 /* if BPF program is annotated with just SEC("fentry") 7427 * (or similar) without declaratively specifying 7428 * target, then it is expected that target will be 7429 * specified with bpf_program__set_attach_target() at 7430 * runtime before BPF object load step. If not, then 7431 * there is nothing to load into the kernel as BPF 7432 * verifier won't be able to validate BPF program 7433 * correctness anyways. 7434 */ 7435 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7436 prog->name); 7437 return -EINVAL; 7438 } 7439 attach_name++; /* skip over / */ 7440 7441 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7442 if (err) 7443 return err; 7444 7445 /* cache resolved BTF FD and BTF type ID in the prog */ 7446 prog->attach_btf_obj_fd = btf_obj_fd; 7447 prog->attach_btf_id = btf_type_id; 7448 7449 /* but by now libbpf common logic is not utilizing 7450 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7451 * this callback is called after opts were populated by 7452 * libbpf, so this callback has to update opts explicitly here 7453 */ 7454 opts->attach_btf_obj_fd = btf_obj_fd; 7455 opts->attach_btf_id = btf_type_id; 7456 } 7457 return 0; 7458 } 7459 7460 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7461 7462 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7463 struct bpf_insn *insns, int insns_cnt, 7464 const char *license, __u32 kern_version, int *prog_fd) 7465 { 7466 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7467 const char *prog_name = NULL; 7468 size_t log_buf_size = 0; 7469 char *log_buf = NULL, *tmp; 7470 bool own_log_buf = true; 7471 __u32 log_level = prog->log_level; 7472 int ret, err; 7473 7474 /* Be more helpful by rejecting programs that can't be validated early 7475 * with more meaningful and actionable error message. 7476 */ 7477 switch (prog->type) { 7478 case BPF_PROG_TYPE_UNSPEC: 7479 /* 7480 * The program type must be set. Most likely we couldn't find a proper 7481 * section definition at load time, and thus we didn't infer the type. 7482 */ 7483 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7484 prog->name, prog->sec_name); 7485 return -EINVAL; 7486 case BPF_PROG_TYPE_STRUCT_OPS: 7487 if (prog->attach_btf_id == 0) { 7488 pr_warn("prog '%s': SEC(\"struct_ops\") program isn't referenced anywhere, did you forget to use it?\n", 7489 prog->name); 7490 return -EINVAL; 7491 } 7492 break; 7493 default: 7494 break; 7495 } 7496 7497 if (!insns || !insns_cnt) 7498 return -EINVAL; 7499 7500 if (kernel_supports(obj, FEAT_PROG_NAME)) 7501 prog_name = prog->name; 7502 load_attr.attach_prog_fd = prog->attach_prog_fd; 7503 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7504 load_attr.attach_btf_id = prog->attach_btf_id; 7505 load_attr.kern_version = kern_version; 7506 load_attr.prog_ifindex = prog->prog_ifindex; 7507 load_attr.expected_attach_type = prog->expected_attach_type; 7508 7509 /* specify func_info/line_info only if kernel supports them */ 7510 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7511 load_attr.prog_btf_fd = btf__fd(obj->btf); 7512 load_attr.func_info = prog->func_info; 7513 load_attr.func_info_rec_size = prog->func_info_rec_size; 7514 load_attr.func_info_cnt = prog->func_info_cnt; 7515 load_attr.line_info = prog->line_info; 7516 load_attr.line_info_rec_size = prog->line_info_rec_size; 7517 load_attr.line_info_cnt = prog->line_info_cnt; 7518 } 7519 load_attr.log_level = log_level; 7520 load_attr.prog_flags = prog->prog_flags; 7521 load_attr.fd_array = obj->fd_array; 7522 7523 load_attr.token_fd = obj->token_fd; 7524 if (obj->token_fd) 7525 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7526 7527 /* adjust load_attr if sec_def provides custom preload callback */ 7528 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7529 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7530 if (err < 0) { 7531 pr_warn("prog '%s': failed to prepare load attributes: %s\n", 7532 prog->name, errstr(err)); 7533 return err; 7534 } 7535 insns = prog->insns; 7536 insns_cnt = prog->insns_cnt; 7537 } 7538 7539 if (obj->gen_loader) { 7540 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7541 license, insns, insns_cnt, &load_attr, 7542 prog - obj->programs); 7543 *prog_fd = -1; 7544 return 0; 7545 } 7546 7547 retry_load: 7548 /* if log_level is zero, we don't request logs initially even if 7549 * custom log_buf is specified; if the program load fails, then we'll 7550 * bump log_level to 1 and use either custom log_buf or we'll allocate 7551 * our own and retry the load to get details on what failed 7552 */ 7553 if (log_level) { 7554 if (prog->log_buf) { 7555 log_buf = prog->log_buf; 7556 log_buf_size = prog->log_size; 7557 own_log_buf = false; 7558 } else if (obj->log_buf) { 7559 log_buf = obj->log_buf; 7560 log_buf_size = obj->log_size; 7561 own_log_buf = false; 7562 } else { 7563 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7564 tmp = realloc(log_buf, log_buf_size); 7565 if (!tmp) { 7566 ret = -ENOMEM; 7567 goto out; 7568 } 7569 log_buf = tmp; 7570 log_buf[0] = '\0'; 7571 own_log_buf = true; 7572 } 7573 } 7574 7575 load_attr.log_buf = log_buf; 7576 load_attr.log_size = log_buf_size; 7577 load_attr.log_level = log_level; 7578 7579 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7580 if (ret >= 0) { 7581 if (log_level && own_log_buf) { 7582 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7583 prog->name, log_buf); 7584 } 7585 7586 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7587 struct bpf_map *map; 7588 int i; 7589 7590 for (i = 0; i < obj->nr_maps; i++) { 7591 map = &prog->obj->maps[i]; 7592 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7593 continue; 7594 7595 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7596 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7597 prog->name, map->real_name, errstr(errno)); 7598 /* Don't fail hard if can't bind rodata. */ 7599 } 7600 } 7601 } 7602 7603 *prog_fd = ret; 7604 ret = 0; 7605 goto out; 7606 } 7607 7608 if (log_level == 0) { 7609 log_level = 1; 7610 goto retry_load; 7611 } 7612 /* On ENOSPC, increase log buffer size and retry, unless custom 7613 * log_buf is specified. 7614 * Be careful to not overflow u32, though. Kernel's log buf size limit 7615 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7616 * multiply by 2 unless we are sure we'll fit within 32 bits. 7617 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7618 */ 7619 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7620 goto retry_load; 7621 7622 ret = -errno; 7623 7624 /* post-process verifier log to improve error descriptions */ 7625 fixup_verifier_log(prog, log_buf, log_buf_size); 7626 7627 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, errstr(errno)); 7628 pr_perm_msg(ret); 7629 7630 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7631 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7632 prog->name, log_buf); 7633 } 7634 7635 out: 7636 if (own_log_buf) 7637 free(log_buf); 7638 return ret; 7639 } 7640 7641 static char *find_prev_line(char *buf, char *cur) 7642 { 7643 char *p; 7644 7645 if (cur == buf) /* end of a log buf */ 7646 return NULL; 7647 7648 p = cur - 1; 7649 while (p - 1 >= buf && *(p - 1) != '\n') 7650 p--; 7651 7652 return p; 7653 } 7654 7655 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7656 char *orig, size_t orig_sz, const char *patch) 7657 { 7658 /* size of the remaining log content to the right from the to-be-replaced part */ 7659 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7660 size_t patch_sz = strlen(patch); 7661 7662 if (patch_sz != orig_sz) { 7663 /* If patch line(s) are longer than original piece of verifier log, 7664 * shift log contents by (patch_sz - orig_sz) bytes to the right 7665 * starting from after to-be-replaced part of the log. 7666 * 7667 * If patch line(s) are shorter than original piece of verifier log, 7668 * shift log contents by (orig_sz - patch_sz) bytes to the left 7669 * starting from after to-be-replaced part of the log 7670 * 7671 * We need to be careful about not overflowing available 7672 * buf_sz capacity. If that's the case, we'll truncate the end 7673 * of the original log, as necessary. 7674 */ 7675 if (patch_sz > orig_sz) { 7676 if (orig + patch_sz >= buf + buf_sz) { 7677 /* patch is big enough to cover remaining space completely */ 7678 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7679 rem_sz = 0; 7680 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7681 /* patch causes part of remaining log to be truncated */ 7682 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7683 } 7684 } 7685 /* shift remaining log to the right by calculated amount */ 7686 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7687 } 7688 7689 memcpy(orig, patch, patch_sz); 7690 } 7691 7692 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7693 char *buf, size_t buf_sz, size_t log_sz, 7694 char *line1, char *line2, char *line3) 7695 { 7696 /* Expected log for failed and not properly guarded CO-RE relocation: 7697 * line1 -> 123: (85) call unknown#195896080 7698 * line2 -> invalid func unknown#195896080 7699 * line3 -> <anything else or end of buffer> 7700 * 7701 * "123" is the index of the instruction that was poisoned. We extract 7702 * instruction index to find corresponding CO-RE relocation and 7703 * replace this part of the log with more relevant information about 7704 * failed CO-RE relocation. 7705 */ 7706 const struct bpf_core_relo *relo; 7707 struct bpf_core_spec spec; 7708 char patch[512], spec_buf[256]; 7709 int insn_idx, err, spec_len; 7710 7711 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7712 return; 7713 7714 relo = find_relo_core(prog, insn_idx); 7715 if (!relo) 7716 return; 7717 7718 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7719 if (err) 7720 return; 7721 7722 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7723 snprintf(patch, sizeof(patch), 7724 "%d: <invalid CO-RE relocation>\n" 7725 "failed to resolve CO-RE relocation %s%s\n", 7726 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7727 7728 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7729 } 7730 7731 static void fixup_log_missing_map_load(struct bpf_program *prog, 7732 char *buf, size_t buf_sz, size_t log_sz, 7733 char *line1, char *line2, char *line3) 7734 { 7735 /* Expected log for failed and not properly guarded map reference: 7736 * line1 -> 123: (85) call unknown#2001000345 7737 * line2 -> invalid func unknown#2001000345 7738 * line3 -> <anything else or end of buffer> 7739 * 7740 * "123" is the index of the instruction that was poisoned. 7741 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7742 */ 7743 struct bpf_object *obj = prog->obj; 7744 const struct bpf_map *map; 7745 int insn_idx, map_idx; 7746 char patch[128]; 7747 7748 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7749 return; 7750 7751 map_idx -= POISON_LDIMM64_MAP_BASE; 7752 if (map_idx < 0 || map_idx >= obj->nr_maps) 7753 return; 7754 map = &obj->maps[map_idx]; 7755 7756 snprintf(patch, sizeof(patch), 7757 "%d: <invalid BPF map reference>\n" 7758 "BPF map '%s' is referenced but wasn't created\n", 7759 insn_idx, map->name); 7760 7761 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7762 } 7763 7764 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7765 char *buf, size_t buf_sz, size_t log_sz, 7766 char *line1, char *line2, char *line3) 7767 { 7768 /* Expected log for failed and not properly guarded kfunc call: 7769 * line1 -> 123: (85) call unknown#2002000345 7770 * line2 -> invalid func unknown#2002000345 7771 * line3 -> <anything else or end of buffer> 7772 * 7773 * "123" is the index of the instruction that was poisoned. 7774 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7775 */ 7776 struct bpf_object *obj = prog->obj; 7777 const struct extern_desc *ext; 7778 int insn_idx, ext_idx; 7779 char patch[128]; 7780 7781 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7782 return; 7783 7784 ext_idx -= POISON_CALL_KFUNC_BASE; 7785 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7786 return; 7787 ext = &obj->externs[ext_idx]; 7788 7789 snprintf(patch, sizeof(patch), 7790 "%d: <invalid kfunc call>\n" 7791 "kfunc '%s' is referenced but wasn't resolved\n", 7792 insn_idx, ext->name); 7793 7794 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7795 } 7796 7797 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7798 { 7799 /* look for familiar error patterns in last N lines of the log */ 7800 const size_t max_last_line_cnt = 10; 7801 char *prev_line, *cur_line, *next_line; 7802 size_t log_sz; 7803 int i; 7804 7805 if (!buf) 7806 return; 7807 7808 log_sz = strlen(buf) + 1; 7809 next_line = buf + log_sz - 1; 7810 7811 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7812 cur_line = find_prev_line(buf, next_line); 7813 if (!cur_line) 7814 return; 7815 7816 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7817 prev_line = find_prev_line(buf, cur_line); 7818 if (!prev_line) 7819 continue; 7820 7821 /* failed CO-RE relocation case */ 7822 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7823 prev_line, cur_line, next_line); 7824 return; 7825 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7826 prev_line = find_prev_line(buf, cur_line); 7827 if (!prev_line) 7828 continue; 7829 7830 /* reference to uncreated BPF map */ 7831 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7832 prev_line, cur_line, next_line); 7833 return; 7834 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7835 prev_line = find_prev_line(buf, cur_line); 7836 if (!prev_line) 7837 continue; 7838 7839 /* reference to unresolved kfunc */ 7840 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7841 prev_line, cur_line, next_line); 7842 return; 7843 } 7844 } 7845 } 7846 7847 static int bpf_program_record_relos(struct bpf_program *prog) 7848 { 7849 struct bpf_object *obj = prog->obj; 7850 int i; 7851 7852 for (i = 0; i < prog->nr_reloc; i++) { 7853 struct reloc_desc *relo = &prog->reloc_desc[i]; 7854 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7855 int kind; 7856 7857 switch (relo->type) { 7858 case RELO_EXTERN_LD64: 7859 if (ext->type != EXT_KSYM) 7860 continue; 7861 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7862 BTF_KIND_VAR : BTF_KIND_FUNC; 7863 bpf_gen__record_extern(obj->gen_loader, ext->name, 7864 ext->is_weak, !ext->ksym.type_id, 7865 true, kind, relo->insn_idx); 7866 break; 7867 case RELO_EXTERN_CALL: 7868 bpf_gen__record_extern(obj->gen_loader, ext->name, 7869 ext->is_weak, false, false, BTF_KIND_FUNC, 7870 relo->insn_idx); 7871 break; 7872 case RELO_CORE: { 7873 struct bpf_core_relo cr = { 7874 .insn_off = relo->insn_idx * 8, 7875 .type_id = relo->core_relo->type_id, 7876 .access_str_off = relo->core_relo->access_str_off, 7877 .kind = relo->core_relo->kind, 7878 }; 7879 7880 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7881 break; 7882 } 7883 default: 7884 continue; 7885 } 7886 } 7887 return 0; 7888 } 7889 7890 static int 7891 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7892 { 7893 struct bpf_program *prog; 7894 size_t i; 7895 int err; 7896 7897 for (i = 0; i < obj->nr_programs; i++) { 7898 prog = &obj->programs[i]; 7899 if (prog_is_subprog(obj, prog)) 7900 continue; 7901 if (!prog->autoload) { 7902 pr_debug("prog '%s': skipped loading\n", prog->name); 7903 continue; 7904 } 7905 prog->log_level |= log_level; 7906 7907 if (obj->gen_loader) 7908 bpf_program_record_relos(prog); 7909 7910 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7911 obj->license, obj->kern_version, &prog->fd); 7912 if (err) { 7913 pr_warn("prog '%s': failed to load: %s\n", prog->name, errstr(err)); 7914 return err; 7915 } 7916 } 7917 7918 bpf_object__free_relocs(obj); 7919 return 0; 7920 } 7921 7922 static int bpf_object_prepare_progs(struct bpf_object *obj) 7923 { 7924 struct bpf_program *prog; 7925 size_t i; 7926 int err; 7927 7928 for (i = 0; i < obj->nr_programs; i++) { 7929 prog = &obj->programs[i]; 7930 err = bpf_object__sanitize_prog(obj, prog); 7931 if (err) 7932 return err; 7933 } 7934 return 0; 7935 } 7936 7937 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7938 7939 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7940 { 7941 struct bpf_program *prog; 7942 int err; 7943 7944 bpf_object__for_each_program(prog, obj) { 7945 prog->sec_def = find_sec_def(prog->sec_name); 7946 if (!prog->sec_def) { 7947 /* couldn't guess, but user might manually specify */ 7948 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7949 prog->name, prog->sec_name); 7950 continue; 7951 } 7952 7953 prog->type = prog->sec_def->prog_type; 7954 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7955 7956 /* sec_def can have custom callback which should be called 7957 * after bpf_program is initialized to adjust its properties 7958 */ 7959 if (prog->sec_def->prog_setup_fn) { 7960 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7961 if (err < 0) { 7962 pr_warn("prog '%s': failed to initialize: %s\n", 7963 prog->name, errstr(err)); 7964 return err; 7965 } 7966 } 7967 } 7968 7969 return 0; 7970 } 7971 7972 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7973 const char *obj_name, 7974 const struct bpf_object_open_opts *opts) 7975 { 7976 const char *kconfig, *btf_tmp_path, *token_path; 7977 struct bpf_object *obj; 7978 int err; 7979 char *log_buf; 7980 size_t log_size; 7981 __u32 log_level; 7982 7983 if (obj_buf && !obj_name) 7984 return ERR_PTR(-EINVAL); 7985 7986 if (elf_version(EV_CURRENT) == EV_NONE) { 7987 pr_warn("failed to init libelf for %s\n", 7988 path ? : "(mem buf)"); 7989 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7990 } 7991 7992 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7993 return ERR_PTR(-EINVAL); 7994 7995 obj_name = OPTS_GET(opts, object_name, NULL) ?: obj_name; 7996 if (obj_buf) { 7997 path = obj_name; 7998 pr_debug("loading object '%s' from buffer\n", obj_name); 7999 } else { 8000 pr_debug("loading object from %s\n", path); 8001 } 8002 8003 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 8004 log_size = OPTS_GET(opts, kernel_log_size, 0); 8005 log_level = OPTS_GET(opts, kernel_log_level, 0); 8006 if (log_size > UINT_MAX) 8007 return ERR_PTR(-EINVAL); 8008 if (log_size && !log_buf) 8009 return ERR_PTR(-EINVAL); 8010 8011 token_path = OPTS_GET(opts, bpf_token_path, NULL); 8012 /* if user didn't specify bpf_token_path explicitly, check if 8013 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 8014 * option 8015 */ 8016 if (!token_path) 8017 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 8018 if (token_path && strlen(token_path) >= PATH_MAX) 8019 return ERR_PTR(-ENAMETOOLONG); 8020 8021 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 8022 if (IS_ERR(obj)) 8023 return obj; 8024 8025 obj->log_buf = log_buf; 8026 obj->log_size = log_size; 8027 obj->log_level = log_level; 8028 8029 if (token_path) { 8030 obj->token_path = strdup(token_path); 8031 if (!obj->token_path) { 8032 err = -ENOMEM; 8033 goto out; 8034 } 8035 } 8036 8037 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 8038 if (btf_tmp_path) { 8039 if (strlen(btf_tmp_path) >= PATH_MAX) { 8040 err = -ENAMETOOLONG; 8041 goto out; 8042 } 8043 obj->btf_custom_path = strdup(btf_tmp_path); 8044 if (!obj->btf_custom_path) { 8045 err = -ENOMEM; 8046 goto out; 8047 } 8048 } 8049 8050 kconfig = OPTS_GET(opts, kconfig, NULL); 8051 if (kconfig) { 8052 obj->kconfig = strdup(kconfig); 8053 if (!obj->kconfig) { 8054 err = -ENOMEM; 8055 goto out; 8056 } 8057 } 8058 8059 err = bpf_object__elf_init(obj); 8060 err = err ? : bpf_object__elf_collect(obj); 8061 err = err ? : bpf_object__collect_externs(obj); 8062 err = err ? : bpf_object_fixup_btf(obj); 8063 err = err ? : bpf_object__init_maps(obj, opts); 8064 err = err ? : bpf_object_init_progs(obj, opts); 8065 err = err ? : bpf_object__collect_relos(obj); 8066 if (err) 8067 goto out; 8068 8069 bpf_object__elf_finish(obj); 8070 8071 return obj; 8072 out: 8073 bpf_object__close(obj); 8074 return ERR_PTR(err); 8075 } 8076 8077 struct bpf_object * 8078 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 8079 { 8080 if (!path) 8081 return libbpf_err_ptr(-EINVAL); 8082 8083 return libbpf_ptr(bpf_object_open(path, NULL, 0, NULL, opts)); 8084 } 8085 8086 struct bpf_object *bpf_object__open(const char *path) 8087 { 8088 return bpf_object__open_file(path, NULL); 8089 } 8090 8091 struct bpf_object * 8092 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 8093 const struct bpf_object_open_opts *opts) 8094 { 8095 char tmp_name[64]; 8096 8097 if (!obj_buf || obj_buf_sz == 0) 8098 return libbpf_err_ptr(-EINVAL); 8099 8100 /* create a (quite useless) default "name" for this memory buffer object */ 8101 snprintf(tmp_name, sizeof(tmp_name), "%lx-%zx", (unsigned long)obj_buf, obj_buf_sz); 8102 8103 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, tmp_name, opts)); 8104 } 8105 8106 static int bpf_object_unload(struct bpf_object *obj) 8107 { 8108 size_t i; 8109 8110 if (!obj) 8111 return libbpf_err(-EINVAL); 8112 8113 for (i = 0; i < obj->nr_maps; i++) { 8114 zclose(obj->maps[i].fd); 8115 if (obj->maps[i].st_ops) 8116 zfree(&obj->maps[i].st_ops->kern_vdata); 8117 } 8118 8119 for (i = 0; i < obj->nr_programs; i++) 8120 bpf_program__unload(&obj->programs[i]); 8121 8122 return 0; 8123 } 8124 8125 static int bpf_object__sanitize_maps(struct bpf_object *obj) 8126 { 8127 struct bpf_map *m; 8128 8129 bpf_object__for_each_map(m, obj) { 8130 if (!bpf_map__is_internal(m)) 8131 continue; 8132 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 8133 m->def.map_flags &= ~BPF_F_MMAPABLE; 8134 } 8135 8136 return 0; 8137 } 8138 8139 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type, 8140 const char *sym_name, void *ctx); 8141 8142 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8143 { 8144 char sym_type, sym_name[500]; 8145 unsigned long long sym_addr; 8146 int ret, err = 0; 8147 FILE *f; 8148 8149 f = fopen("/proc/kallsyms", "re"); 8150 if (!f) { 8151 err = -errno; 8152 pr_warn("failed to open /proc/kallsyms: %s\n", errstr(err)); 8153 return err; 8154 } 8155 8156 while (true) { 8157 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8158 &sym_addr, &sym_type, sym_name); 8159 if (ret == EOF && feof(f)) 8160 break; 8161 if (ret != 3) { 8162 pr_warn("failed to read kallsyms entry: %d\n", ret); 8163 err = -EINVAL; 8164 break; 8165 } 8166 8167 err = cb(sym_addr, sym_type, sym_name, ctx); 8168 if (err) 8169 break; 8170 } 8171 8172 fclose(f); 8173 return err; 8174 } 8175 8176 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8177 const char *sym_name, void *ctx) 8178 { 8179 struct bpf_object *obj = ctx; 8180 const struct btf_type *t; 8181 struct extern_desc *ext; 8182 char *res; 8183 8184 res = strstr(sym_name, ".llvm."); 8185 if (sym_type == 'd' && res) 8186 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name); 8187 else 8188 ext = find_extern_by_name(obj, sym_name); 8189 if (!ext || ext->type != EXT_KSYM) 8190 return 0; 8191 8192 t = btf__type_by_id(obj->btf, ext->btf_id); 8193 if (!btf_is_var(t)) 8194 return 0; 8195 8196 if (ext->is_set && ext->ksym.addr != sym_addr) { 8197 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8198 sym_name, ext->ksym.addr, sym_addr); 8199 return -EINVAL; 8200 } 8201 if (!ext->is_set) { 8202 ext->is_set = true; 8203 ext->ksym.addr = sym_addr; 8204 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8205 } 8206 return 0; 8207 } 8208 8209 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8210 { 8211 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8212 } 8213 8214 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8215 __u16 kind, struct btf **res_btf, 8216 struct module_btf **res_mod_btf) 8217 { 8218 struct module_btf *mod_btf; 8219 struct btf *btf; 8220 int i, id, err; 8221 8222 btf = obj->btf_vmlinux; 8223 mod_btf = NULL; 8224 id = btf__find_by_name_kind(btf, ksym_name, kind); 8225 8226 if (id == -ENOENT) { 8227 err = load_module_btfs(obj); 8228 if (err) 8229 return err; 8230 8231 for (i = 0; i < obj->btf_module_cnt; i++) { 8232 /* we assume module_btf's BTF FD is always >0 */ 8233 mod_btf = &obj->btf_modules[i]; 8234 btf = mod_btf->btf; 8235 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8236 if (id != -ENOENT) 8237 break; 8238 } 8239 } 8240 if (id <= 0) 8241 return -ESRCH; 8242 8243 *res_btf = btf; 8244 *res_mod_btf = mod_btf; 8245 return id; 8246 } 8247 8248 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8249 struct extern_desc *ext) 8250 { 8251 const struct btf_type *targ_var, *targ_type; 8252 __u32 targ_type_id, local_type_id; 8253 struct module_btf *mod_btf = NULL; 8254 const char *targ_var_name; 8255 struct btf *btf = NULL; 8256 int id, err; 8257 8258 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8259 if (id < 0) { 8260 if (id == -ESRCH && ext->is_weak) 8261 return 0; 8262 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8263 ext->name); 8264 return id; 8265 } 8266 8267 /* find local type_id */ 8268 local_type_id = ext->ksym.type_id; 8269 8270 /* find target type_id */ 8271 targ_var = btf__type_by_id(btf, id); 8272 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8273 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8274 8275 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8276 btf, targ_type_id); 8277 if (err <= 0) { 8278 const struct btf_type *local_type; 8279 const char *targ_name, *local_name; 8280 8281 local_type = btf__type_by_id(obj->btf, local_type_id); 8282 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8283 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8284 8285 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8286 ext->name, local_type_id, 8287 btf_kind_str(local_type), local_name, targ_type_id, 8288 btf_kind_str(targ_type), targ_name); 8289 return -EINVAL; 8290 } 8291 8292 ext->is_set = true; 8293 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8294 ext->ksym.kernel_btf_id = id; 8295 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8296 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8297 8298 return 0; 8299 } 8300 8301 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8302 struct extern_desc *ext) 8303 { 8304 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8305 struct module_btf *mod_btf = NULL; 8306 const struct btf_type *kern_func; 8307 struct btf *kern_btf = NULL; 8308 int ret; 8309 8310 local_func_proto_id = ext->ksym.type_id; 8311 8312 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8313 &mod_btf); 8314 if (kfunc_id < 0) { 8315 if (kfunc_id == -ESRCH && ext->is_weak) 8316 return 0; 8317 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8318 ext->name); 8319 return kfunc_id; 8320 } 8321 8322 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8323 kfunc_proto_id = kern_func->type; 8324 8325 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8326 kern_btf, kfunc_proto_id); 8327 if (ret <= 0) { 8328 if (ext->is_weak) 8329 return 0; 8330 8331 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8332 ext->name, local_func_proto_id, 8333 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8334 return -EINVAL; 8335 } 8336 8337 /* set index for module BTF fd in fd_array, if unset */ 8338 if (mod_btf && !mod_btf->fd_array_idx) { 8339 /* insn->off is s16 */ 8340 if (obj->fd_array_cnt == INT16_MAX) { 8341 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8342 ext->name, mod_btf->fd_array_idx); 8343 return -E2BIG; 8344 } 8345 /* Cannot use index 0 for module BTF fd */ 8346 if (!obj->fd_array_cnt) 8347 obj->fd_array_cnt = 1; 8348 8349 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8350 obj->fd_array_cnt + 1); 8351 if (ret) 8352 return ret; 8353 mod_btf->fd_array_idx = obj->fd_array_cnt; 8354 /* we assume module BTF FD is always >0 */ 8355 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8356 } 8357 8358 ext->is_set = true; 8359 ext->ksym.kernel_btf_id = kfunc_id; 8360 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8361 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8362 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8363 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8364 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8365 */ 8366 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8367 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8368 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8369 8370 return 0; 8371 } 8372 8373 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8374 { 8375 const struct btf_type *t; 8376 struct extern_desc *ext; 8377 int i, err; 8378 8379 for (i = 0; i < obj->nr_extern; i++) { 8380 ext = &obj->externs[i]; 8381 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8382 continue; 8383 8384 if (obj->gen_loader) { 8385 ext->is_set = true; 8386 ext->ksym.kernel_btf_obj_fd = 0; 8387 ext->ksym.kernel_btf_id = 0; 8388 continue; 8389 } 8390 t = btf__type_by_id(obj->btf, ext->btf_id); 8391 if (btf_is_var(t)) 8392 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8393 else 8394 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8395 if (err) 8396 return err; 8397 } 8398 return 0; 8399 } 8400 8401 static int bpf_object__resolve_externs(struct bpf_object *obj, 8402 const char *extra_kconfig) 8403 { 8404 bool need_config = false, need_kallsyms = false; 8405 bool need_vmlinux_btf = false; 8406 struct extern_desc *ext; 8407 void *kcfg_data = NULL; 8408 int err, i; 8409 8410 if (obj->nr_extern == 0) 8411 return 0; 8412 8413 if (obj->kconfig_map_idx >= 0) 8414 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8415 8416 for (i = 0; i < obj->nr_extern; i++) { 8417 ext = &obj->externs[i]; 8418 8419 if (ext->type == EXT_KSYM) { 8420 if (ext->ksym.type_id) 8421 need_vmlinux_btf = true; 8422 else 8423 need_kallsyms = true; 8424 continue; 8425 } else if (ext->type == EXT_KCFG) { 8426 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8427 __u64 value = 0; 8428 8429 /* Kconfig externs need actual /proc/config.gz */ 8430 if (str_has_pfx(ext->name, "CONFIG_")) { 8431 need_config = true; 8432 continue; 8433 } 8434 8435 /* Virtual kcfg externs are customly handled by libbpf */ 8436 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8437 value = get_kernel_version(); 8438 if (!value) { 8439 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8440 return -EINVAL; 8441 } 8442 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8443 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8444 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8445 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8446 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8447 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8448 * __kconfig externs, where LINUX_ ones are virtual and filled out 8449 * customly by libbpf (their values don't come from Kconfig). 8450 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8451 * __weak, it defaults to zero value, just like for CONFIG_xxx 8452 * externs. 8453 */ 8454 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8455 return -EINVAL; 8456 } 8457 8458 err = set_kcfg_value_num(ext, ext_ptr, value); 8459 if (err) 8460 return err; 8461 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8462 ext->name, (long long)value); 8463 } else { 8464 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8465 return -EINVAL; 8466 } 8467 } 8468 if (need_config && extra_kconfig) { 8469 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8470 if (err) 8471 return -EINVAL; 8472 need_config = false; 8473 for (i = 0; i < obj->nr_extern; i++) { 8474 ext = &obj->externs[i]; 8475 if (ext->type == EXT_KCFG && !ext->is_set) { 8476 need_config = true; 8477 break; 8478 } 8479 } 8480 } 8481 if (need_config) { 8482 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8483 if (err) 8484 return -EINVAL; 8485 } 8486 if (need_kallsyms) { 8487 err = bpf_object__read_kallsyms_file(obj); 8488 if (err) 8489 return -EINVAL; 8490 } 8491 if (need_vmlinux_btf) { 8492 err = bpf_object__resolve_ksyms_btf_id(obj); 8493 if (err) 8494 return -EINVAL; 8495 } 8496 for (i = 0; i < obj->nr_extern; i++) { 8497 ext = &obj->externs[i]; 8498 8499 if (!ext->is_set && !ext->is_weak) { 8500 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8501 return -ESRCH; 8502 } else if (!ext->is_set) { 8503 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8504 ext->name); 8505 } 8506 } 8507 8508 return 0; 8509 } 8510 8511 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8512 { 8513 const struct btf_type *type; 8514 struct bpf_struct_ops *st_ops; 8515 __u32 i; 8516 8517 st_ops = map->st_ops; 8518 type = btf__type_by_id(map->obj->btf, st_ops->type_id); 8519 for (i = 0; i < btf_vlen(type); i++) { 8520 struct bpf_program *prog = st_ops->progs[i]; 8521 void *kern_data; 8522 int prog_fd; 8523 8524 if (!prog) 8525 continue; 8526 8527 prog_fd = bpf_program__fd(prog); 8528 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8529 *(unsigned long *)kern_data = prog_fd; 8530 } 8531 } 8532 8533 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8534 { 8535 struct bpf_map *map; 8536 int i; 8537 8538 for (i = 0; i < obj->nr_maps; i++) { 8539 map = &obj->maps[i]; 8540 8541 if (!bpf_map__is_struct_ops(map)) 8542 continue; 8543 8544 if (!map->autocreate) 8545 continue; 8546 8547 bpf_map_prepare_vdata(map); 8548 } 8549 8550 return 0; 8551 } 8552 8553 static void bpf_object_unpin(struct bpf_object *obj) 8554 { 8555 int i; 8556 8557 /* unpin any maps that were auto-pinned during load */ 8558 for (i = 0; i < obj->nr_maps; i++) 8559 if (obj->maps[i].pinned && !obj->maps[i].reused) 8560 bpf_map__unpin(&obj->maps[i], NULL); 8561 } 8562 8563 static void bpf_object_post_load_cleanup(struct bpf_object *obj) 8564 { 8565 int i; 8566 8567 /* clean up fd_array */ 8568 zfree(&obj->fd_array); 8569 8570 /* clean up module BTFs */ 8571 for (i = 0; i < obj->btf_module_cnt; i++) { 8572 close(obj->btf_modules[i].fd); 8573 btf__free(obj->btf_modules[i].btf); 8574 free(obj->btf_modules[i].name); 8575 } 8576 obj->btf_module_cnt = 0; 8577 zfree(&obj->btf_modules); 8578 8579 /* clean up vmlinux BTF */ 8580 btf__free(obj->btf_vmlinux); 8581 obj->btf_vmlinux = NULL; 8582 } 8583 8584 static int bpf_object_prepare(struct bpf_object *obj, const char *target_btf_path) 8585 { 8586 int err; 8587 8588 if (obj->state >= OBJ_PREPARED) { 8589 pr_warn("object '%s': prepare loading can't be attempted twice\n", obj->name); 8590 return -EINVAL; 8591 } 8592 8593 err = bpf_object_prepare_token(obj); 8594 err = err ? : bpf_object__probe_loading(obj); 8595 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8596 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8597 err = err ? : bpf_object__sanitize_maps(obj); 8598 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8599 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8600 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8601 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8602 err = err ? : bpf_object__create_maps(obj); 8603 err = err ? : bpf_object_prepare_progs(obj); 8604 8605 if (err) { 8606 bpf_object_unpin(obj); 8607 bpf_object_unload(obj); 8608 obj->state = OBJ_LOADED; 8609 return err; 8610 } 8611 8612 obj->state = OBJ_PREPARED; 8613 return 0; 8614 } 8615 8616 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8617 { 8618 int err; 8619 8620 if (!obj) 8621 return libbpf_err(-EINVAL); 8622 8623 if (obj->state >= OBJ_LOADED) { 8624 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8625 return libbpf_err(-EINVAL); 8626 } 8627 8628 /* Disallow kernel loading programs of non-native endianness but 8629 * permit cross-endian creation of "light skeleton". 8630 */ 8631 if (obj->gen_loader) { 8632 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8633 } else if (!is_native_endianness(obj)) { 8634 pr_warn("object '%s': loading non-native endianness is unsupported\n", obj->name); 8635 return libbpf_err(-LIBBPF_ERRNO__ENDIAN); 8636 } 8637 8638 if (obj->state < OBJ_PREPARED) { 8639 err = bpf_object_prepare(obj, target_btf_path); 8640 if (err) 8641 return libbpf_err(err); 8642 } 8643 err = bpf_object__load_progs(obj, extra_log_level); 8644 err = err ? : bpf_object_init_prog_arrays(obj); 8645 err = err ? : bpf_object_prepare_struct_ops(obj); 8646 8647 if (obj->gen_loader) { 8648 /* reset FDs */ 8649 if (obj->btf) 8650 btf__set_fd(obj->btf, -1); 8651 if (!err) 8652 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8653 } 8654 8655 bpf_object_post_load_cleanup(obj); 8656 obj->state = OBJ_LOADED; /* doesn't matter if successfully or not */ 8657 8658 if (err) { 8659 bpf_object_unpin(obj); 8660 bpf_object_unload(obj); 8661 pr_warn("failed to load object '%s'\n", obj->path); 8662 return libbpf_err(err); 8663 } 8664 8665 return 0; 8666 } 8667 8668 int bpf_object__prepare(struct bpf_object *obj) 8669 { 8670 return libbpf_err(bpf_object_prepare(obj, NULL)); 8671 } 8672 8673 int bpf_object__load(struct bpf_object *obj) 8674 { 8675 return bpf_object_load(obj, 0, NULL); 8676 } 8677 8678 static int make_parent_dir(const char *path) 8679 { 8680 char *dname, *dir; 8681 int err = 0; 8682 8683 dname = strdup(path); 8684 if (dname == NULL) 8685 return -ENOMEM; 8686 8687 dir = dirname(dname); 8688 if (mkdir(dir, 0700) && errno != EEXIST) 8689 err = -errno; 8690 8691 free(dname); 8692 if (err) { 8693 pr_warn("failed to mkdir %s: %s\n", path, errstr(err)); 8694 } 8695 return err; 8696 } 8697 8698 static int check_path(const char *path) 8699 { 8700 struct statfs st_fs; 8701 char *dname, *dir; 8702 int err = 0; 8703 8704 if (path == NULL) 8705 return -EINVAL; 8706 8707 dname = strdup(path); 8708 if (dname == NULL) 8709 return -ENOMEM; 8710 8711 dir = dirname(dname); 8712 if (statfs(dir, &st_fs)) { 8713 pr_warn("failed to statfs %s: %s\n", dir, errstr(errno)); 8714 err = -errno; 8715 } 8716 free(dname); 8717 8718 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8719 pr_warn("specified path %s is not on BPF FS\n", path); 8720 err = -EINVAL; 8721 } 8722 8723 return err; 8724 } 8725 8726 int bpf_program__pin(struct bpf_program *prog, const char *path) 8727 { 8728 int err; 8729 8730 if (prog->fd < 0) { 8731 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8732 return libbpf_err(-EINVAL); 8733 } 8734 8735 err = make_parent_dir(path); 8736 if (err) 8737 return libbpf_err(err); 8738 8739 err = check_path(path); 8740 if (err) 8741 return libbpf_err(err); 8742 8743 if (bpf_obj_pin(prog->fd, path)) { 8744 err = -errno; 8745 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, errstr(err)); 8746 return libbpf_err(err); 8747 } 8748 8749 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8750 return 0; 8751 } 8752 8753 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8754 { 8755 int err; 8756 8757 if (prog->fd < 0) { 8758 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8759 return libbpf_err(-EINVAL); 8760 } 8761 8762 err = check_path(path); 8763 if (err) 8764 return libbpf_err(err); 8765 8766 err = unlink(path); 8767 if (err) 8768 return libbpf_err(-errno); 8769 8770 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8771 return 0; 8772 } 8773 8774 int bpf_map__pin(struct bpf_map *map, const char *path) 8775 { 8776 int err; 8777 8778 if (map == NULL) { 8779 pr_warn("invalid map pointer\n"); 8780 return libbpf_err(-EINVAL); 8781 } 8782 8783 if (map->fd < 0) { 8784 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name); 8785 return libbpf_err(-EINVAL); 8786 } 8787 8788 if (map->pin_path) { 8789 if (path && strcmp(path, map->pin_path)) { 8790 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8791 bpf_map__name(map), map->pin_path, path); 8792 return libbpf_err(-EINVAL); 8793 } else if (map->pinned) { 8794 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8795 bpf_map__name(map), map->pin_path); 8796 return 0; 8797 } 8798 } else { 8799 if (!path) { 8800 pr_warn("missing a path to pin map '%s' at\n", 8801 bpf_map__name(map)); 8802 return libbpf_err(-EINVAL); 8803 } else if (map->pinned) { 8804 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8805 return libbpf_err(-EEXIST); 8806 } 8807 8808 map->pin_path = strdup(path); 8809 if (!map->pin_path) { 8810 err = -errno; 8811 goto out_err; 8812 } 8813 } 8814 8815 err = make_parent_dir(map->pin_path); 8816 if (err) 8817 return libbpf_err(err); 8818 8819 err = check_path(map->pin_path); 8820 if (err) 8821 return libbpf_err(err); 8822 8823 if (bpf_obj_pin(map->fd, map->pin_path)) { 8824 err = -errno; 8825 goto out_err; 8826 } 8827 8828 map->pinned = true; 8829 pr_debug("pinned map '%s'\n", map->pin_path); 8830 8831 return 0; 8832 8833 out_err: 8834 pr_warn("failed to pin map: %s\n", errstr(err)); 8835 return libbpf_err(err); 8836 } 8837 8838 int bpf_map__unpin(struct bpf_map *map, const char *path) 8839 { 8840 int err; 8841 8842 if (map == NULL) { 8843 pr_warn("invalid map pointer\n"); 8844 return libbpf_err(-EINVAL); 8845 } 8846 8847 if (map->pin_path) { 8848 if (path && strcmp(path, map->pin_path)) { 8849 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8850 bpf_map__name(map), map->pin_path, path); 8851 return libbpf_err(-EINVAL); 8852 } 8853 path = map->pin_path; 8854 } else if (!path) { 8855 pr_warn("no path to unpin map '%s' from\n", 8856 bpf_map__name(map)); 8857 return libbpf_err(-EINVAL); 8858 } 8859 8860 err = check_path(path); 8861 if (err) 8862 return libbpf_err(err); 8863 8864 err = unlink(path); 8865 if (err != 0) 8866 return libbpf_err(-errno); 8867 8868 map->pinned = false; 8869 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8870 8871 return 0; 8872 } 8873 8874 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8875 { 8876 char *new = NULL; 8877 8878 if (path) { 8879 new = strdup(path); 8880 if (!new) 8881 return libbpf_err(-errno); 8882 } 8883 8884 free(map->pin_path); 8885 map->pin_path = new; 8886 return 0; 8887 } 8888 8889 __alias(bpf_map__pin_path) 8890 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8891 8892 const char *bpf_map__pin_path(const struct bpf_map *map) 8893 { 8894 return map->pin_path; 8895 } 8896 8897 bool bpf_map__is_pinned(const struct bpf_map *map) 8898 { 8899 return map->pinned; 8900 } 8901 8902 static void sanitize_pin_path(char *s) 8903 { 8904 /* bpffs disallows periods in path names */ 8905 while (*s) { 8906 if (*s == '.') 8907 *s = '_'; 8908 s++; 8909 } 8910 } 8911 8912 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8913 { 8914 struct bpf_map *map; 8915 int err; 8916 8917 if (!obj) 8918 return libbpf_err(-ENOENT); 8919 8920 if (obj->state < OBJ_PREPARED) { 8921 pr_warn("object not yet loaded; load it first\n"); 8922 return libbpf_err(-ENOENT); 8923 } 8924 8925 bpf_object__for_each_map(map, obj) { 8926 char *pin_path = NULL; 8927 char buf[PATH_MAX]; 8928 8929 if (!map->autocreate) 8930 continue; 8931 8932 if (path) { 8933 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8934 if (err) 8935 goto err_unpin_maps; 8936 sanitize_pin_path(buf); 8937 pin_path = buf; 8938 } else if (!map->pin_path) { 8939 continue; 8940 } 8941 8942 err = bpf_map__pin(map, pin_path); 8943 if (err) 8944 goto err_unpin_maps; 8945 } 8946 8947 return 0; 8948 8949 err_unpin_maps: 8950 while ((map = bpf_object__prev_map(obj, map))) { 8951 if (!map->pin_path) 8952 continue; 8953 8954 bpf_map__unpin(map, NULL); 8955 } 8956 8957 return libbpf_err(err); 8958 } 8959 8960 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8961 { 8962 struct bpf_map *map; 8963 int err; 8964 8965 if (!obj) 8966 return libbpf_err(-ENOENT); 8967 8968 bpf_object__for_each_map(map, obj) { 8969 char *pin_path = NULL; 8970 char buf[PATH_MAX]; 8971 8972 if (path) { 8973 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8974 if (err) 8975 return libbpf_err(err); 8976 sanitize_pin_path(buf); 8977 pin_path = buf; 8978 } else if (!map->pin_path) { 8979 continue; 8980 } 8981 8982 err = bpf_map__unpin(map, pin_path); 8983 if (err) 8984 return libbpf_err(err); 8985 } 8986 8987 return 0; 8988 } 8989 8990 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8991 { 8992 struct bpf_program *prog; 8993 char buf[PATH_MAX]; 8994 int err; 8995 8996 if (!obj) 8997 return libbpf_err(-ENOENT); 8998 8999 if (obj->state < OBJ_LOADED) { 9000 pr_warn("object not yet loaded; load it first\n"); 9001 return libbpf_err(-ENOENT); 9002 } 9003 9004 bpf_object__for_each_program(prog, obj) { 9005 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9006 if (err) 9007 goto err_unpin_programs; 9008 9009 err = bpf_program__pin(prog, buf); 9010 if (err) 9011 goto err_unpin_programs; 9012 } 9013 9014 return 0; 9015 9016 err_unpin_programs: 9017 while ((prog = bpf_object__prev_program(obj, prog))) { 9018 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 9019 continue; 9020 9021 bpf_program__unpin(prog, buf); 9022 } 9023 9024 return libbpf_err(err); 9025 } 9026 9027 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 9028 { 9029 struct bpf_program *prog; 9030 int err; 9031 9032 if (!obj) 9033 return libbpf_err(-ENOENT); 9034 9035 bpf_object__for_each_program(prog, obj) { 9036 char buf[PATH_MAX]; 9037 9038 err = pathname_concat(buf, sizeof(buf), path, prog->name); 9039 if (err) 9040 return libbpf_err(err); 9041 9042 err = bpf_program__unpin(prog, buf); 9043 if (err) 9044 return libbpf_err(err); 9045 } 9046 9047 return 0; 9048 } 9049 9050 int bpf_object__pin(struct bpf_object *obj, const char *path) 9051 { 9052 int err; 9053 9054 err = bpf_object__pin_maps(obj, path); 9055 if (err) 9056 return libbpf_err(err); 9057 9058 err = bpf_object__pin_programs(obj, path); 9059 if (err) { 9060 bpf_object__unpin_maps(obj, path); 9061 return libbpf_err(err); 9062 } 9063 9064 return 0; 9065 } 9066 9067 int bpf_object__unpin(struct bpf_object *obj, const char *path) 9068 { 9069 int err; 9070 9071 err = bpf_object__unpin_programs(obj, path); 9072 if (err) 9073 return libbpf_err(err); 9074 9075 err = bpf_object__unpin_maps(obj, path); 9076 if (err) 9077 return libbpf_err(err); 9078 9079 return 0; 9080 } 9081 9082 static void bpf_map__destroy(struct bpf_map *map) 9083 { 9084 if (map->inner_map) { 9085 bpf_map__destroy(map->inner_map); 9086 zfree(&map->inner_map); 9087 } 9088 9089 zfree(&map->init_slots); 9090 map->init_slots_sz = 0; 9091 9092 if (map->mmaped && map->mmaped != map->obj->arena_data) 9093 munmap(map->mmaped, bpf_map_mmap_sz(map)); 9094 map->mmaped = NULL; 9095 9096 if (map->st_ops) { 9097 zfree(&map->st_ops->data); 9098 zfree(&map->st_ops->progs); 9099 zfree(&map->st_ops->kern_func_off); 9100 zfree(&map->st_ops); 9101 } 9102 9103 zfree(&map->name); 9104 zfree(&map->real_name); 9105 zfree(&map->pin_path); 9106 9107 if (map->fd >= 0) 9108 zclose(map->fd); 9109 } 9110 9111 void bpf_object__close(struct bpf_object *obj) 9112 { 9113 size_t i; 9114 9115 if (IS_ERR_OR_NULL(obj)) 9116 return; 9117 9118 /* 9119 * if user called bpf_object__prepare() without ever getting to 9120 * bpf_object__load(), we need to clean up stuff that is normally 9121 * cleaned up at the end of loading step 9122 */ 9123 bpf_object_post_load_cleanup(obj); 9124 9125 usdt_manager_free(obj->usdt_man); 9126 obj->usdt_man = NULL; 9127 9128 bpf_gen__free(obj->gen_loader); 9129 bpf_object__elf_finish(obj); 9130 bpf_object_unload(obj); 9131 btf__free(obj->btf); 9132 btf__free(obj->btf_vmlinux); 9133 btf_ext__free(obj->btf_ext); 9134 9135 for (i = 0; i < obj->nr_maps; i++) 9136 bpf_map__destroy(&obj->maps[i]); 9137 9138 zfree(&obj->btf_custom_path); 9139 zfree(&obj->kconfig); 9140 9141 for (i = 0; i < obj->nr_extern; i++) 9142 zfree(&obj->externs[i].essent_name); 9143 9144 zfree(&obj->externs); 9145 obj->nr_extern = 0; 9146 9147 zfree(&obj->maps); 9148 obj->nr_maps = 0; 9149 9150 if (obj->programs && obj->nr_programs) { 9151 for (i = 0; i < obj->nr_programs; i++) 9152 bpf_program__exit(&obj->programs[i]); 9153 } 9154 zfree(&obj->programs); 9155 9156 zfree(&obj->feat_cache); 9157 zfree(&obj->token_path); 9158 if (obj->token_fd > 0) 9159 close(obj->token_fd); 9160 9161 zfree(&obj->arena_data); 9162 9163 free(obj); 9164 } 9165 9166 const char *bpf_object__name(const struct bpf_object *obj) 9167 { 9168 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 9169 } 9170 9171 unsigned int bpf_object__kversion(const struct bpf_object *obj) 9172 { 9173 return obj ? obj->kern_version : 0; 9174 } 9175 9176 int bpf_object__token_fd(const struct bpf_object *obj) 9177 { 9178 return obj->token_fd ?: -1; 9179 } 9180 9181 struct btf *bpf_object__btf(const struct bpf_object *obj) 9182 { 9183 return obj ? obj->btf : NULL; 9184 } 9185 9186 int bpf_object__btf_fd(const struct bpf_object *obj) 9187 { 9188 return obj->btf ? btf__fd(obj->btf) : -1; 9189 } 9190 9191 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9192 { 9193 if (obj->state >= OBJ_LOADED) 9194 return libbpf_err(-EINVAL); 9195 9196 obj->kern_version = kern_version; 9197 9198 return 0; 9199 } 9200 9201 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9202 { 9203 struct bpf_gen *gen; 9204 9205 if (!opts) 9206 return libbpf_err(-EFAULT); 9207 if (!OPTS_VALID(opts, gen_loader_opts)) 9208 return libbpf_err(-EINVAL); 9209 gen = calloc(sizeof(*gen), 1); 9210 if (!gen) 9211 return libbpf_err(-ENOMEM); 9212 gen->opts = opts; 9213 gen->swapped_endian = !is_native_endianness(obj); 9214 obj->gen_loader = gen; 9215 return 0; 9216 } 9217 9218 static struct bpf_program * 9219 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9220 bool forward) 9221 { 9222 size_t nr_programs = obj->nr_programs; 9223 ssize_t idx; 9224 9225 if (!nr_programs) 9226 return NULL; 9227 9228 if (!p) 9229 /* Iter from the beginning */ 9230 return forward ? &obj->programs[0] : 9231 &obj->programs[nr_programs - 1]; 9232 9233 if (p->obj != obj) { 9234 pr_warn("error: program handler doesn't match object\n"); 9235 return errno = EINVAL, NULL; 9236 } 9237 9238 idx = (p - obj->programs) + (forward ? 1 : -1); 9239 if (idx >= obj->nr_programs || idx < 0) 9240 return NULL; 9241 return &obj->programs[idx]; 9242 } 9243 9244 struct bpf_program * 9245 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9246 { 9247 struct bpf_program *prog = prev; 9248 9249 do { 9250 prog = __bpf_program__iter(prog, obj, true); 9251 } while (prog && prog_is_subprog(obj, prog)); 9252 9253 return prog; 9254 } 9255 9256 struct bpf_program * 9257 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9258 { 9259 struct bpf_program *prog = next; 9260 9261 do { 9262 prog = __bpf_program__iter(prog, obj, false); 9263 } while (prog && prog_is_subprog(obj, prog)); 9264 9265 return prog; 9266 } 9267 9268 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9269 { 9270 prog->prog_ifindex = ifindex; 9271 } 9272 9273 const char *bpf_program__name(const struct bpf_program *prog) 9274 { 9275 return prog->name; 9276 } 9277 9278 const char *bpf_program__section_name(const struct bpf_program *prog) 9279 { 9280 return prog->sec_name; 9281 } 9282 9283 bool bpf_program__autoload(const struct bpf_program *prog) 9284 { 9285 return prog->autoload; 9286 } 9287 9288 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9289 { 9290 if (prog->obj->state >= OBJ_LOADED) 9291 return libbpf_err(-EINVAL); 9292 9293 prog->autoload = autoload; 9294 return 0; 9295 } 9296 9297 bool bpf_program__autoattach(const struct bpf_program *prog) 9298 { 9299 return prog->autoattach; 9300 } 9301 9302 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9303 { 9304 prog->autoattach = autoattach; 9305 } 9306 9307 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9308 { 9309 return prog->insns; 9310 } 9311 9312 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9313 { 9314 return prog->insns_cnt; 9315 } 9316 9317 int bpf_program__set_insns(struct bpf_program *prog, 9318 struct bpf_insn *new_insns, size_t new_insn_cnt) 9319 { 9320 struct bpf_insn *insns; 9321 9322 if (prog->obj->state >= OBJ_LOADED) 9323 return libbpf_err(-EBUSY); 9324 9325 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9326 /* NULL is a valid return from reallocarray if the new count is zero */ 9327 if (!insns && new_insn_cnt) { 9328 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9329 return libbpf_err(-ENOMEM); 9330 } 9331 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9332 9333 prog->insns = insns; 9334 prog->insns_cnt = new_insn_cnt; 9335 return 0; 9336 } 9337 9338 int bpf_program__fd(const struct bpf_program *prog) 9339 { 9340 if (!prog) 9341 return libbpf_err(-EINVAL); 9342 9343 if (prog->fd < 0) 9344 return libbpf_err(-ENOENT); 9345 9346 return prog->fd; 9347 } 9348 9349 __alias(bpf_program__type) 9350 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9351 9352 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9353 { 9354 return prog->type; 9355 } 9356 9357 static size_t custom_sec_def_cnt; 9358 static struct bpf_sec_def *custom_sec_defs; 9359 static struct bpf_sec_def custom_fallback_def; 9360 static bool has_custom_fallback_def; 9361 static int last_custom_sec_def_handler_id; 9362 9363 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9364 { 9365 if (prog->obj->state >= OBJ_LOADED) 9366 return libbpf_err(-EBUSY); 9367 9368 /* if type is not changed, do nothing */ 9369 if (prog->type == type) 9370 return 0; 9371 9372 prog->type = type; 9373 9374 /* If a program type was changed, we need to reset associated SEC() 9375 * handler, as it will be invalid now. The only exception is a generic 9376 * fallback handler, which by definition is program type-agnostic and 9377 * is a catch-all custom handler, optionally set by the application, 9378 * so should be able to handle any type of BPF program. 9379 */ 9380 if (prog->sec_def != &custom_fallback_def) 9381 prog->sec_def = NULL; 9382 return 0; 9383 } 9384 9385 __alias(bpf_program__expected_attach_type) 9386 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9387 9388 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9389 { 9390 return prog->expected_attach_type; 9391 } 9392 9393 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9394 enum bpf_attach_type type) 9395 { 9396 if (prog->obj->state >= OBJ_LOADED) 9397 return libbpf_err(-EBUSY); 9398 9399 prog->expected_attach_type = type; 9400 return 0; 9401 } 9402 9403 __u32 bpf_program__flags(const struct bpf_program *prog) 9404 { 9405 return prog->prog_flags; 9406 } 9407 9408 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9409 { 9410 if (prog->obj->state >= OBJ_LOADED) 9411 return libbpf_err(-EBUSY); 9412 9413 prog->prog_flags = flags; 9414 return 0; 9415 } 9416 9417 __u32 bpf_program__log_level(const struct bpf_program *prog) 9418 { 9419 return prog->log_level; 9420 } 9421 9422 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9423 { 9424 if (prog->obj->state >= OBJ_LOADED) 9425 return libbpf_err(-EBUSY); 9426 9427 prog->log_level = log_level; 9428 return 0; 9429 } 9430 9431 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9432 { 9433 *log_size = prog->log_size; 9434 return prog->log_buf; 9435 } 9436 9437 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9438 { 9439 if (log_size && !log_buf) 9440 return libbpf_err(-EINVAL); 9441 if (prog->log_size > UINT_MAX) 9442 return libbpf_err(-EINVAL); 9443 if (prog->obj->state >= OBJ_LOADED) 9444 return libbpf_err(-EBUSY); 9445 9446 prog->log_buf = log_buf; 9447 prog->log_size = log_size; 9448 return 0; 9449 } 9450 9451 struct bpf_func_info *bpf_program__func_info(const struct bpf_program *prog) 9452 { 9453 if (prog->func_info_rec_size != sizeof(struct bpf_func_info)) 9454 return libbpf_err_ptr(-EOPNOTSUPP); 9455 return prog->func_info; 9456 } 9457 9458 __u32 bpf_program__func_info_cnt(const struct bpf_program *prog) 9459 { 9460 return prog->func_info_cnt; 9461 } 9462 9463 struct bpf_line_info *bpf_program__line_info(const struct bpf_program *prog) 9464 { 9465 if (prog->line_info_rec_size != sizeof(struct bpf_line_info)) 9466 return libbpf_err_ptr(-EOPNOTSUPP); 9467 return prog->line_info; 9468 } 9469 9470 __u32 bpf_program__line_info_cnt(const struct bpf_program *prog) 9471 { 9472 return prog->line_info_cnt; 9473 } 9474 9475 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9476 .sec = (char *)sec_pfx, \ 9477 .prog_type = BPF_PROG_TYPE_##ptype, \ 9478 .expected_attach_type = atype, \ 9479 .cookie = (long)(flags), \ 9480 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9481 __VA_ARGS__ \ 9482 } 9483 9484 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9485 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9486 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9487 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9488 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9489 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9490 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9491 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9492 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9493 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9494 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9495 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9496 9497 static const struct bpf_sec_def section_defs[] = { 9498 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9499 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9500 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9501 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9502 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9503 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9504 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9505 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9506 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9507 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9508 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9509 SEC_DEF("kprobe.session+", KPROBE, BPF_TRACE_KPROBE_SESSION, SEC_NONE, attach_kprobe_session), 9510 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9511 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9512 SEC_DEF("uprobe.session+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_NONE, attach_uprobe_multi), 9513 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9514 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9515 SEC_DEF("uprobe.session.s+", KPROBE, BPF_TRACE_UPROBE_SESSION, SEC_SLEEPABLE, attach_uprobe_multi), 9516 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9517 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9518 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9519 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9520 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9521 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9522 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9523 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9524 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9525 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9526 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9527 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9528 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9529 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9530 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9531 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9532 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9533 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9534 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9535 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9536 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9537 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9538 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9539 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9540 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9541 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9542 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9543 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9544 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9545 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9546 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9547 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9548 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9549 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9550 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9551 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9552 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9553 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9554 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9555 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9556 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9557 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9558 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9559 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9560 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9561 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9562 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9563 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT), 9564 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9565 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9566 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9567 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9568 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9569 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9570 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9571 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9572 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9573 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9574 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9575 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9576 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9577 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9578 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9579 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9580 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9581 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9582 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9583 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9584 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9585 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9586 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9587 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9588 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9589 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9590 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9591 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9592 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9593 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9594 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9595 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9596 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9597 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9598 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9599 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9600 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9601 }; 9602 9603 int libbpf_register_prog_handler(const char *sec, 9604 enum bpf_prog_type prog_type, 9605 enum bpf_attach_type exp_attach_type, 9606 const struct libbpf_prog_handler_opts *opts) 9607 { 9608 struct bpf_sec_def *sec_def; 9609 9610 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9611 return libbpf_err(-EINVAL); 9612 9613 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9614 return libbpf_err(-E2BIG); 9615 9616 if (sec) { 9617 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9618 sizeof(*sec_def)); 9619 if (!sec_def) 9620 return libbpf_err(-ENOMEM); 9621 9622 custom_sec_defs = sec_def; 9623 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9624 } else { 9625 if (has_custom_fallback_def) 9626 return libbpf_err(-EBUSY); 9627 9628 sec_def = &custom_fallback_def; 9629 } 9630 9631 sec_def->sec = sec ? strdup(sec) : NULL; 9632 if (sec && !sec_def->sec) 9633 return libbpf_err(-ENOMEM); 9634 9635 sec_def->prog_type = prog_type; 9636 sec_def->expected_attach_type = exp_attach_type; 9637 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9638 9639 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9640 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9641 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9642 9643 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9644 9645 if (sec) 9646 custom_sec_def_cnt++; 9647 else 9648 has_custom_fallback_def = true; 9649 9650 return sec_def->handler_id; 9651 } 9652 9653 int libbpf_unregister_prog_handler(int handler_id) 9654 { 9655 struct bpf_sec_def *sec_defs; 9656 int i; 9657 9658 if (handler_id <= 0) 9659 return libbpf_err(-EINVAL); 9660 9661 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9662 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9663 has_custom_fallback_def = false; 9664 return 0; 9665 } 9666 9667 for (i = 0; i < custom_sec_def_cnt; i++) { 9668 if (custom_sec_defs[i].handler_id == handler_id) 9669 break; 9670 } 9671 9672 if (i == custom_sec_def_cnt) 9673 return libbpf_err(-ENOENT); 9674 9675 free(custom_sec_defs[i].sec); 9676 for (i = i + 1; i < custom_sec_def_cnt; i++) 9677 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9678 custom_sec_def_cnt--; 9679 9680 /* try to shrink the array, but it's ok if we couldn't */ 9681 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9682 /* if new count is zero, reallocarray can return a valid NULL result; 9683 * in this case the previous pointer will be freed, so we *have to* 9684 * reassign old pointer to the new value (even if it's NULL) 9685 */ 9686 if (sec_defs || custom_sec_def_cnt == 0) 9687 custom_sec_defs = sec_defs; 9688 9689 return 0; 9690 } 9691 9692 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9693 { 9694 size_t len = strlen(sec_def->sec); 9695 9696 /* "type/" always has to have proper SEC("type/extras") form */ 9697 if (sec_def->sec[len - 1] == '/') { 9698 if (str_has_pfx(sec_name, sec_def->sec)) 9699 return true; 9700 return false; 9701 } 9702 9703 /* "type+" means it can be either exact SEC("type") or 9704 * well-formed SEC("type/extras") with proper '/' separator 9705 */ 9706 if (sec_def->sec[len - 1] == '+') { 9707 len--; 9708 /* not even a prefix */ 9709 if (strncmp(sec_name, sec_def->sec, len) != 0) 9710 return false; 9711 /* exact match or has '/' separator */ 9712 if (sec_name[len] == '\0' || sec_name[len] == '/') 9713 return true; 9714 return false; 9715 } 9716 9717 return strcmp(sec_name, sec_def->sec) == 0; 9718 } 9719 9720 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9721 { 9722 const struct bpf_sec_def *sec_def; 9723 int i, n; 9724 9725 n = custom_sec_def_cnt; 9726 for (i = 0; i < n; i++) { 9727 sec_def = &custom_sec_defs[i]; 9728 if (sec_def_matches(sec_def, sec_name)) 9729 return sec_def; 9730 } 9731 9732 n = ARRAY_SIZE(section_defs); 9733 for (i = 0; i < n; i++) { 9734 sec_def = §ion_defs[i]; 9735 if (sec_def_matches(sec_def, sec_name)) 9736 return sec_def; 9737 } 9738 9739 if (has_custom_fallback_def) 9740 return &custom_fallback_def; 9741 9742 return NULL; 9743 } 9744 9745 #define MAX_TYPE_NAME_SIZE 32 9746 9747 static char *libbpf_get_type_names(bool attach_type) 9748 { 9749 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9750 char *buf; 9751 9752 buf = malloc(len); 9753 if (!buf) 9754 return NULL; 9755 9756 buf[0] = '\0'; 9757 /* Forge string buf with all available names */ 9758 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9759 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9760 9761 if (attach_type) { 9762 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9763 continue; 9764 9765 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9766 continue; 9767 } 9768 9769 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9770 free(buf); 9771 return NULL; 9772 } 9773 strcat(buf, " "); 9774 strcat(buf, section_defs[i].sec); 9775 } 9776 9777 return buf; 9778 } 9779 9780 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9781 enum bpf_attach_type *expected_attach_type) 9782 { 9783 const struct bpf_sec_def *sec_def; 9784 char *type_names; 9785 9786 if (!name) 9787 return libbpf_err(-EINVAL); 9788 9789 sec_def = find_sec_def(name); 9790 if (sec_def) { 9791 *prog_type = sec_def->prog_type; 9792 *expected_attach_type = sec_def->expected_attach_type; 9793 return 0; 9794 } 9795 9796 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9797 type_names = libbpf_get_type_names(false); 9798 if (type_names != NULL) { 9799 pr_debug("supported section(type) names are:%s\n", type_names); 9800 free(type_names); 9801 } 9802 9803 return libbpf_err(-ESRCH); 9804 } 9805 9806 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9807 { 9808 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9809 return NULL; 9810 9811 return attach_type_name[t]; 9812 } 9813 9814 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9815 { 9816 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9817 return NULL; 9818 9819 return link_type_name[t]; 9820 } 9821 9822 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9823 { 9824 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9825 return NULL; 9826 9827 return map_type_name[t]; 9828 } 9829 9830 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9831 { 9832 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9833 return NULL; 9834 9835 return prog_type_name[t]; 9836 } 9837 9838 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9839 int sec_idx, 9840 size_t offset) 9841 { 9842 struct bpf_map *map; 9843 size_t i; 9844 9845 for (i = 0; i < obj->nr_maps; i++) { 9846 map = &obj->maps[i]; 9847 if (!bpf_map__is_struct_ops(map)) 9848 continue; 9849 if (map->sec_idx == sec_idx && 9850 map->sec_offset <= offset && 9851 offset - map->sec_offset < map->def.value_size) 9852 return map; 9853 } 9854 9855 return NULL; 9856 } 9857 9858 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9859 * st_ops->data for shadow type. 9860 */ 9861 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9862 Elf64_Shdr *shdr, Elf_Data *data) 9863 { 9864 const struct btf_type *type; 9865 const struct btf_member *member; 9866 struct bpf_struct_ops *st_ops; 9867 struct bpf_program *prog; 9868 unsigned int shdr_idx; 9869 const struct btf *btf; 9870 struct bpf_map *map; 9871 unsigned int moff, insn_idx; 9872 const char *name; 9873 __u32 member_idx; 9874 Elf64_Sym *sym; 9875 Elf64_Rel *rel; 9876 int i, nrels; 9877 9878 btf = obj->btf; 9879 nrels = shdr->sh_size / shdr->sh_entsize; 9880 for (i = 0; i < nrels; i++) { 9881 rel = elf_rel_by_idx(data, i); 9882 if (!rel) { 9883 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9884 return -LIBBPF_ERRNO__FORMAT; 9885 } 9886 9887 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9888 if (!sym) { 9889 pr_warn("struct_ops reloc: symbol %zx not found\n", 9890 (size_t)ELF64_R_SYM(rel->r_info)); 9891 return -LIBBPF_ERRNO__FORMAT; 9892 } 9893 9894 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9895 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9896 if (!map) { 9897 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9898 (size_t)rel->r_offset); 9899 return -EINVAL; 9900 } 9901 9902 moff = rel->r_offset - map->sec_offset; 9903 shdr_idx = sym->st_shndx; 9904 st_ops = map->st_ops; 9905 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9906 map->name, 9907 (long long)(rel->r_info >> 32), 9908 (long long)sym->st_value, 9909 shdr_idx, (size_t)rel->r_offset, 9910 map->sec_offset, sym->st_name, name); 9911 9912 if (shdr_idx >= SHN_LORESERVE) { 9913 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9914 map->name, (size_t)rel->r_offset, shdr_idx); 9915 return -LIBBPF_ERRNO__RELOC; 9916 } 9917 if (sym->st_value % BPF_INSN_SZ) { 9918 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9919 map->name, (unsigned long long)sym->st_value); 9920 return -LIBBPF_ERRNO__FORMAT; 9921 } 9922 insn_idx = sym->st_value / BPF_INSN_SZ; 9923 9924 type = btf__type_by_id(btf, st_ops->type_id); 9925 member = find_member_by_offset(type, moff * 8); 9926 if (!member) { 9927 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9928 map->name, moff); 9929 return -EINVAL; 9930 } 9931 member_idx = member - btf_members(type); 9932 name = btf__name_by_offset(btf, member->name_off); 9933 9934 if (!resolve_func_ptr(btf, member->type, NULL)) { 9935 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9936 map->name, name); 9937 return -EINVAL; 9938 } 9939 9940 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9941 if (!prog) { 9942 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9943 map->name, shdr_idx, name); 9944 return -EINVAL; 9945 } 9946 9947 /* prevent the use of BPF prog with invalid type */ 9948 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9949 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9950 map->name, prog->name); 9951 return -EINVAL; 9952 } 9953 9954 st_ops->progs[member_idx] = prog; 9955 9956 /* st_ops->data will be exposed to users, being returned by 9957 * bpf_map__initial_value() as a pointer to the shadow 9958 * type. All function pointers in the original struct type 9959 * should be converted to a pointer to struct bpf_program 9960 * in the shadow type. 9961 */ 9962 *((struct bpf_program **)(st_ops->data + moff)) = prog; 9963 } 9964 9965 return 0; 9966 } 9967 9968 #define BTF_TRACE_PREFIX "btf_trace_" 9969 #define BTF_LSM_PREFIX "bpf_lsm_" 9970 #define BTF_ITER_PREFIX "bpf_iter_" 9971 #define BTF_MAX_NAME_SIZE 128 9972 9973 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9974 const char **prefix, int *kind) 9975 { 9976 switch (attach_type) { 9977 case BPF_TRACE_RAW_TP: 9978 *prefix = BTF_TRACE_PREFIX; 9979 *kind = BTF_KIND_TYPEDEF; 9980 break; 9981 case BPF_LSM_MAC: 9982 case BPF_LSM_CGROUP: 9983 *prefix = BTF_LSM_PREFIX; 9984 *kind = BTF_KIND_FUNC; 9985 break; 9986 case BPF_TRACE_ITER: 9987 *prefix = BTF_ITER_PREFIX; 9988 *kind = BTF_KIND_FUNC; 9989 break; 9990 default: 9991 *prefix = ""; 9992 *kind = BTF_KIND_FUNC; 9993 } 9994 } 9995 9996 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9997 const char *name, __u32 kind) 9998 { 9999 char btf_type_name[BTF_MAX_NAME_SIZE]; 10000 int ret; 10001 10002 ret = snprintf(btf_type_name, sizeof(btf_type_name), 10003 "%s%s", prefix, name); 10004 /* snprintf returns the number of characters written excluding the 10005 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 10006 * indicates truncation. 10007 */ 10008 if (ret < 0 || ret >= sizeof(btf_type_name)) 10009 return -ENAMETOOLONG; 10010 return btf__find_by_name_kind(btf, btf_type_name, kind); 10011 } 10012 10013 static inline int find_attach_btf_id(struct btf *btf, const char *name, 10014 enum bpf_attach_type attach_type) 10015 { 10016 const char *prefix; 10017 int kind; 10018 10019 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 10020 return find_btf_by_prefix_kind(btf, prefix, name, kind); 10021 } 10022 10023 int libbpf_find_vmlinux_btf_id(const char *name, 10024 enum bpf_attach_type attach_type) 10025 { 10026 struct btf *btf; 10027 int err; 10028 10029 btf = btf__load_vmlinux_btf(); 10030 err = libbpf_get_error(btf); 10031 if (err) { 10032 pr_warn("vmlinux BTF is not found\n"); 10033 return libbpf_err(err); 10034 } 10035 10036 err = find_attach_btf_id(btf, name, attach_type); 10037 if (err <= 0) 10038 pr_warn("%s is not found in vmlinux BTF\n", name); 10039 10040 btf__free(btf); 10041 return libbpf_err(err); 10042 } 10043 10044 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd, int token_fd) 10045 { 10046 struct bpf_prog_info info; 10047 __u32 info_len = sizeof(info); 10048 struct btf *btf; 10049 int err; 10050 10051 memset(&info, 0, info_len); 10052 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 10053 if (err) { 10054 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %s\n", 10055 attach_prog_fd, errstr(err)); 10056 return err; 10057 } 10058 10059 err = -EINVAL; 10060 if (!info.btf_id) { 10061 pr_warn("The target program doesn't have BTF\n"); 10062 goto out; 10063 } 10064 btf = btf_load_from_kernel(info.btf_id, NULL, token_fd); 10065 err = libbpf_get_error(btf); 10066 if (err) { 10067 pr_warn("Failed to get BTF %d of the program: %s\n", info.btf_id, errstr(err)); 10068 goto out; 10069 } 10070 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 10071 btf__free(btf); 10072 if (err <= 0) { 10073 pr_warn("%s is not found in prog's BTF\n", name); 10074 goto out; 10075 } 10076 out: 10077 return err; 10078 } 10079 10080 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 10081 enum bpf_attach_type attach_type, 10082 int *btf_obj_fd, int *btf_type_id) 10083 { 10084 int ret, i, mod_len; 10085 const char *fn_name, *mod_name = NULL; 10086 10087 fn_name = strchr(attach_name, ':'); 10088 if (fn_name) { 10089 mod_name = attach_name; 10090 mod_len = fn_name - mod_name; 10091 fn_name++; 10092 } 10093 10094 if (!mod_name || strncmp(mod_name, "vmlinux", mod_len) == 0) { 10095 ret = find_attach_btf_id(obj->btf_vmlinux, 10096 mod_name ? fn_name : attach_name, 10097 attach_type); 10098 if (ret > 0) { 10099 *btf_obj_fd = 0; /* vmlinux BTF */ 10100 *btf_type_id = ret; 10101 return 0; 10102 } 10103 if (ret != -ENOENT) 10104 return ret; 10105 } 10106 10107 ret = load_module_btfs(obj); 10108 if (ret) 10109 return ret; 10110 10111 for (i = 0; i < obj->btf_module_cnt; i++) { 10112 const struct module_btf *mod = &obj->btf_modules[i]; 10113 10114 if (mod_name && strncmp(mod->name, mod_name, mod_len) != 0) 10115 continue; 10116 10117 ret = find_attach_btf_id(mod->btf, 10118 mod_name ? fn_name : attach_name, 10119 attach_type); 10120 if (ret > 0) { 10121 *btf_obj_fd = mod->fd; 10122 *btf_type_id = ret; 10123 return 0; 10124 } 10125 if (ret == -ENOENT) 10126 continue; 10127 10128 return ret; 10129 } 10130 10131 return -ESRCH; 10132 } 10133 10134 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 10135 int *btf_obj_fd, int *btf_type_id) 10136 { 10137 enum bpf_attach_type attach_type = prog->expected_attach_type; 10138 __u32 attach_prog_fd = prog->attach_prog_fd; 10139 int err = 0; 10140 10141 /* BPF program's BTF ID */ 10142 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 10143 if (!attach_prog_fd) { 10144 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 10145 return -EINVAL; 10146 } 10147 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd, prog->obj->token_fd); 10148 if (err < 0) { 10149 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %s\n", 10150 prog->name, attach_prog_fd, attach_name, errstr(err)); 10151 return err; 10152 } 10153 *btf_obj_fd = 0; 10154 *btf_type_id = err; 10155 return 0; 10156 } 10157 10158 /* kernel/module BTF ID */ 10159 if (prog->obj->gen_loader) { 10160 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 10161 *btf_obj_fd = 0; 10162 *btf_type_id = 1; 10163 } else { 10164 err = find_kernel_btf_id(prog->obj, attach_name, 10165 attach_type, btf_obj_fd, 10166 btf_type_id); 10167 } 10168 if (err) { 10169 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %s\n", 10170 prog->name, attach_name, errstr(err)); 10171 return err; 10172 } 10173 return 0; 10174 } 10175 10176 int libbpf_attach_type_by_name(const char *name, 10177 enum bpf_attach_type *attach_type) 10178 { 10179 char *type_names; 10180 const struct bpf_sec_def *sec_def; 10181 10182 if (!name) 10183 return libbpf_err(-EINVAL); 10184 10185 sec_def = find_sec_def(name); 10186 if (!sec_def) { 10187 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 10188 type_names = libbpf_get_type_names(true); 10189 if (type_names != NULL) { 10190 pr_debug("attachable section(type) names are:%s\n", type_names); 10191 free(type_names); 10192 } 10193 10194 return libbpf_err(-EINVAL); 10195 } 10196 10197 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 10198 return libbpf_err(-EINVAL); 10199 if (!(sec_def->cookie & SEC_ATTACHABLE)) 10200 return libbpf_err(-EINVAL); 10201 10202 *attach_type = sec_def->expected_attach_type; 10203 return 0; 10204 } 10205 10206 int bpf_map__fd(const struct bpf_map *map) 10207 { 10208 if (!map) 10209 return libbpf_err(-EINVAL); 10210 if (!map_is_created(map)) 10211 return -1; 10212 return map->fd; 10213 } 10214 10215 static bool map_uses_real_name(const struct bpf_map *map) 10216 { 10217 /* Since libbpf started to support custom .data.* and .rodata.* maps, 10218 * their user-visible name differs from kernel-visible name. Users see 10219 * such map's corresponding ELF section name as a map name. 10220 * This check distinguishes .data/.rodata from .data.* and .rodata.* 10221 * maps to know which name has to be returned to the user. 10222 */ 10223 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 10224 return true; 10225 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 10226 return true; 10227 return false; 10228 } 10229 10230 const char *bpf_map__name(const struct bpf_map *map) 10231 { 10232 if (!map) 10233 return NULL; 10234 10235 if (map_uses_real_name(map)) 10236 return map->real_name; 10237 10238 return map->name; 10239 } 10240 10241 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10242 { 10243 return map->def.type; 10244 } 10245 10246 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10247 { 10248 if (map_is_created(map)) 10249 return libbpf_err(-EBUSY); 10250 map->def.type = type; 10251 return 0; 10252 } 10253 10254 __u32 bpf_map__map_flags(const struct bpf_map *map) 10255 { 10256 return map->def.map_flags; 10257 } 10258 10259 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10260 { 10261 if (map_is_created(map)) 10262 return libbpf_err(-EBUSY); 10263 map->def.map_flags = flags; 10264 return 0; 10265 } 10266 10267 __u64 bpf_map__map_extra(const struct bpf_map *map) 10268 { 10269 return map->map_extra; 10270 } 10271 10272 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10273 { 10274 if (map_is_created(map)) 10275 return libbpf_err(-EBUSY); 10276 map->map_extra = map_extra; 10277 return 0; 10278 } 10279 10280 __u32 bpf_map__numa_node(const struct bpf_map *map) 10281 { 10282 return map->numa_node; 10283 } 10284 10285 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10286 { 10287 if (map_is_created(map)) 10288 return libbpf_err(-EBUSY); 10289 map->numa_node = numa_node; 10290 return 0; 10291 } 10292 10293 __u32 bpf_map__key_size(const struct bpf_map *map) 10294 { 10295 return map->def.key_size; 10296 } 10297 10298 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10299 { 10300 if (map_is_created(map)) 10301 return libbpf_err(-EBUSY); 10302 map->def.key_size = size; 10303 return 0; 10304 } 10305 10306 __u32 bpf_map__value_size(const struct bpf_map *map) 10307 { 10308 return map->def.value_size; 10309 } 10310 10311 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10312 { 10313 struct btf *btf; 10314 struct btf_type *datasec_type, *var_type; 10315 struct btf_var_secinfo *var; 10316 const struct btf_type *array_type; 10317 const struct btf_array *array; 10318 int vlen, element_sz, new_array_id; 10319 __u32 nr_elements; 10320 10321 /* check btf existence */ 10322 btf = bpf_object__btf(map->obj); 10323 if (!btf) 10324 return -ENOENT; 10325 10326 /* verify map is datasec */ 10327 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10328 if (!btf_is_datasec(datasec_type)) { 10329 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10330 bpf_map__name(map)); 10331 return -EINVAL; 10332 } 10333 10334 /* verify datasec has at least one var */ 10335 vlen = btf_vlen(datasec_type); 10336 if (vlen == 0) { 10337 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10338 bpf_map__name(map)); 10339 return -EINVAL; 10340 } 10341 10342 /* verify last var in the datasec is an array */ 10343 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10344 var_type = btf_type_by_id(btf, var->type); 10345 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10346 if (!btf_is_array(array_type)) { 10347 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10348 bpf_map__name(map)); 10349 return -EINVAL; 10350 } 10351 10352 /* verify request size aligns with array */ 10353 array = btf_array(array_type); 10354 element_sz = btf__resolve_size(btf, array->type); 10355 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10356 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10357 bpf_map__name(map), element_sz, size); 10358 return -EINVAL; 10359 } 10360 10361 /* create a new array based on the existing array, but with new length */ 10362 nr_elements = (size - var->offset) / element_sz; 10363 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10364 if (new_array_id < 0) 10365 return new_array_id; 10366 10367 /* adding a new btf type invalidates existing pointers to btf objects, 10368 * so refresh pointers before proceeding 10369 */ 10370 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10371 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10372 var_type = btf_type_by_id(btf, var->type); 10373 10374 /* finally update btf info */ 10375 datasec_type->size = size; 10376 var->size = size - var->offset; 10377 var_type->type = new_array_id; 10378 10379 return 0; 10380 } 10381 10382 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10383 { 10384 if (map_is_created(map)) 10385 return libbpf_err(-EBUSY); 10386 10387 if (map->mmaped) { 10388 size_t mmap_old_sz, mmap_new_sz; 10389 int err; 10390 10391 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10392 return libbpf_err(-EOPNOTSUPP); 10393 10394 mmap_old_sz = bpf_map_mmap_sz(map); 10395 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10396 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10397 if (err) { 10398 pr_warn("map '%s': failed to resize memory-mapped region: %s\n", 10399 bpf_map__name(map), errstr(err)); 10400 return libbpf_err(err); 10401 } 10402 err = map_btf_datasec_resize(map, size); 10403 if (err && err != -ENOENT) { 10404 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %s\n", 10405 bpf_map__name(map), errstr(err)); 10406 map->btf_value_type_id = 0; 10407 map->btf_key_type_id = 0; 10408 } 10409 } 10410 10411 map->def.value_size = size; 10412 return 0; 10413 } 10414 10415 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10416 { 10417 return map ? map->btf_key_type_id : 0; 10418 } 10419 10420 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10421 { 10422 return map ? map->btf_value_type_id : 0; 10423 } 10424 10425 int bpf_map__set_initial_value(struct bpf_map *map, 10426 const void *data, size_t size) 10427 { 10428 size_t actual_sz; 10429 10430 if (map_is_created(map)) 10431 return libbpf_err(-EBUSY); 10432 10433 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10434 return libbpf_err(-EINVAL); 10435 10436 if (map->def.type == BPF_MAP_TYPE_ARENA) 10437 actual_sz = map->obj->arena_data_sz; 10438 else 10439 actual_sz = map->def.value_size; 10440 if (size != actual_sz) 10441 return libbpf_err(-EINVAL); 10442 10443 memcpy(map->mmaped, data, size); 10444 return 0; 10445 } 10446 10447 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10448 { 10449 if (bpf_map__is_struct_ops(map)) { 10450 if (psize) 10451 *psize = map->def.value_size; 10452 return map->st_ops->data; 10453 } 10454 10455 if (!map->mmaped) 10456 return NULL; 10457 10458 if (map->def.type == BPF_MAP_TYPE_ARENA) 10459 *psize = map->obj->arena_data_sz; 10460 else 10461 *psize = map->def.value_size; 10462 10463 return map->mmaped; 10464 } 10465 10466 bool bpf_map__is_internal(const struct bpf_map *map) 10467 { 10468 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10469 } 10470 10471 __u32 bpf_map__ifindex(const struct bpf_map *map) 10472 { 10473 return map->map_ifindex; 10474 } 10475 10476 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10477 { 10478 if (map_is_created(map)) 10479 return libbpf_err(-EBUSY); 10480 map->map_ifindex = ifindex; 10481 return 0; 10482 } 10483 10484 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10485 { 10486 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10487 pr_warn("error: unsupported map type\n"); 10488 return libbpf_err(-EINVAL); 10489 } 10490 if (map->inner_map_fd != -1) { 10491 pr_warn("error: inner_map_fd already specified\n"); 10492 return libbpf_err(-EINVAL); 10493 } 10494 if (map->inner_map) { 10495 bpf_map__destroy(map->inner_map); 10496 zfree(&map->inner_map); 10497 } 10498 map->inner_map_fd = fd; 10499 return 0; 10500 } 10501 10502 static struct bpf_map * 10503 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10504 { 10505 ssize_t idx; 10506 struct bpf_map *s, *e; 10507 10508 if (!obj || !obj->maps) 10509 return errno = EINVAL, NULL; 10510 10511 s = obj->maps; 10512 e = obj->maps + obj->nr_maps; 10513 10514 if ((m < s) || (m >= e)) { 10515 pr_warn("error in %s: map handler doesn't belong to object\n", 10516 __func__); 10517 return errno = EINVAL, NULL; 10518 } 10519 10520 idx = (m - obj->maps) + i; 10521 if (idx >= obj->nr_maps || idx < 0) 10522 return NULL; 10523 return &obj->maps[idx]; 10524 } 10525 10526 struct bpf_map * 10527 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10528 { 10529 if (prev == NULL && obj != NULL) 10530 return obj->maps; 10531 10532 return __bpf_map__iter(prev, obj, 1); 10533 } 10534 10535 struct bpf_map * 10536 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10537 { 10538 if (next == NULL && obj != NULL) { 10539 if (!obj->nr_maps) 10540 return NULL; 10541 return obj->maps + obj->nr_maps - 1; 10542 } 10543 10544 return __bpf_map__iter(next, obj, -1); 10545 } 10546 10547 struct bpf_map * 10548 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10549 { 10550 struct bpf_map *pos; 10551 10552 bpf_object__for_each_map(pos, obj) { 10553 /* if it's a special internal map name (which always starts 10554 * with dot) then check if that special name matches the 10555 * real map name (ELF section name) 10556 */ 10557 if (name[0] == '.') { 10558 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10559 return pos; 10560 continue; 10561 } 10562 /* otherwise map name has to be an exact match */ 10563 if (map_uses_real_name(pos)) { 10564 if (strcmp(pos->real_name, name) == 0) 10565 return pos; 10566 continue; 10567 } 10568 if (strcmp(pos->name, name) == 0) 10569 return pos; 10570 } 10571 return errno = ENOENT, NULL; 10572 } 10573 10574 int 10575 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10576 { 10577 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10578 } 10579 10580 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10581 size_t value_sz, bool check_value_sz) 10582 { 10583 if (!map_is_created(map)) /* map is not yet created */ 10584 return -ENOENT; 10585 10586 if (map->def.key_size != key_sz) { 10587 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10588 map->name, key_sz, map->def.key_size); 10589 return -EINVAL; 10590 } 10591 10592 if (map->fd < 0) { 10593 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 10594 return -EINVAL; 10595 } 10596 10597 if (!check_value_sz) 10598 return 0; 10599 10600 switch (map->def.type) { 10601 case BPF_MAP_TYPE_PERCPU_ARRAY: 10602 case BPF_MAP_TYPE_PERCPU_HASH: 10603 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10604 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10605 int num_cpu = libbpf_num_possible_cpus(); 10606 size_t elem_sz = roundup(map->def.value_size, 8); 10607 10608 if (value_sz != num_cpu * elem_sz) { 10609 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10610 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10611 return -EINVAL; 10612 } 10613 break; 10614 } 10615 default: 10616 if (map->def.value_size != value_sz) { 10617 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10618 map->name, value_sz, map->def.value_size); 10619 return -EINVAL; 10620 } 10621 break; 10622 } 10623 return 0; 10624 } 10625 10626 int bpf_map__lookup_elem(const struct bpf_map *map, 10627 const void *key, size_t key_sz, 10628 void *value, size_t value_sz, __u64 flags) 10629 { 10630 int err; 10631 10632 err = validate_map_op(map, key_sz, value_sz, true); 10633 if (err) 10634 return libbpf_err(err); 10635 10636 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10637 } 10638 10639 int bpf_map__update_elem(const struct bpf_map *map, 10640 const void *key, size_t key_sz, 10641 const void *value, size_t value_sz, __u64 flags) 10642 { 10643 int err; 10644 10645 err = validate_map_op(map, key_sz, value_sz, true); 10646 if (err) 10647 return libbpf_err(err); 10648 10649 return bpf_map_update_elem(map->fd, key, value, flags); 10650 } 10651 10652 int bpf_map__delete_elem(const struct bpf_map *map, 10653 const void *key, size_t key_sz, __u64 flags) 10654 { 10655 int err; 10656 10657 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10658 if (err) 10659 return libbpf_err(err); 10660 10661 return bpf_map_delete_elem_flags(map->fd, key, flags); 10662 } 10663 10664 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10665 const void *key, size_t key_sz, 10666 void *value, size_t value_sz, __u64 flags) 10667 { 10668 int err; 10669 10670 err = validate_map_op(map, key_sz, value_sz, true); 10671 if (err) 10672 return libbpf_err(err); 10673 10674 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10675 } 10676 10677 int bpf_map__get_next_key(const struct bpf_map *map, 10678 const void *cur_key, void *next_key, size_t key_sz) 10679 { 10680 int err; 10681 10682 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10683 if (err) 10684 return libbpf_err(err); 10685 10686 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10687 } 10688 10689 long libbpf_get_error(const void *ptr) 10690 { 10691 if (!IS_ERR_OR_NULL(ptr)) 10692 return 0; 10693 10694 if (IS_ERR(ptr)) 10695 errno = -PTR_ERR(ptr); 10696 10697 /* If ptr == NULL, then errno should be already set by the failing 10698 * API, because libbpf never returns NULL on success and it now always 10699 * sets errno on error. So no extra errno handling for ptr == NULL 10700 * case. 10701 */ 10702 return -errno; 10703 } 10704 10705 /* Replace link's underlying BPF program with the new one */ 10706 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10707 { 10708 int ret; 10709 int prog_fd = bpf_program__fd(prog); 10710 10711 if (prog_fd < 0) { 10712 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n", 10713 prog->name); 10714 return libbpf_err(-EINVAL); 10715 } 10716 10717 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL); 10718 return libbpf_err_errno(ret); 10719 } 10720 10721 /* Release "ownership" of underlying BPF resource (typically, BPF program 10722 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10723 * link, when destructed through bpf_link__destroy() call won't attempt to 10724 * detach/unregisted that BPF resource. This is useful in situations where, 10725 * say, attached BPF program has to outlive userspace program that attached it 10726 * in the system. Depending on type of BPF program, though, there might be 10727 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10728 * exit of userspace program doesn't trigger automatic detachment and clean up 10729 * inside the kernel. 10730 */ 10731 void bpf_link__disconnect(struct bpf_link *link) 10732 { 10733 link->disconnected = true; 10734 } 10735 10736 int bpf_link__destroy(struct bpf_link *link) 10737 { 10738 int err = 0; 10739 10740 if (IS_ERR_OR_NULL(link)) 10741 return 0; 10742 10743 if (!link->disconnected && link->detach) 10744 err = link->detach(link); 10745 if (link->pin_path) 10746 free(link->pin_path); 10747 if (link->dealloc) 10748 link->dealloc(link); 10749 else 10750 free(link); 10751 10752 return libbpf_err(err); 10753 } 10754 10755 int bpf_link__fd(const struct bpf_link *link) 10756 { 10757 return link->fd; 10758 } 10759 10760 const char *bpf_link__pin_path(const struct bpf_link *link) 10761 { 10762 return link->pin_path; 10763 } 10764 10765 static int bpf_link__detach_fd(struct bpf_link *link) 10766 { 10767 return libbpf_err_errno(close(link->fd)); 10768 } 10769 10770 struct bpf_link *bpf_link__open(const char *path) 10771 { 10772 struct bpf_link *link; 10773 int fd; 10774 10775 fd = bpf_obj_get(path); 10776 if (fd < 0) { 10777 fd = -errno; 10778 pr_warn("failed to open link at %s: %d\n", path, fd); 10779 return libbpf_err_ptr(fd); 10780 } 10781 10782 link = calloc(1, sizeof(*link)); 10783 if (!link) { 10784 close(fd); 10785 return libbpf_err_ptr(-ENOMEM); 10786 } 10787 link->detach = &bpf_link__detach_fd; 10788 link->fd = fd; 10789 10790 link->pin_path = strdup(path); 10791 if (!link->pin_path) { 10792 bpf_link__destroy(link); 10793 return libbpf_err_ptr(-ENOMEM); 10794 } 10795 10796 return link; 10797 } 10798 10799 int bpf_link__detach(struct bpf_link *link) 10800 { 10801 return bpf_link_detach(link->fd) ? -errno : 0; 10802 } 10803 10804 int bpf_link__pin(struct bpf_link *link, const char *path) 10805 { 10806 int err; 10807 10808 if (link->pin_path) 10809 return libbpf_err(-EBUSY); 10810 err = make_parent_dir(path); 10811 if (err) 10812 return libbpf_err(err); 10813 err = check_path(path); 10814 if (err) 10815 return libbpf_err(err); 10816 10817 link->pin_path = strdup(path); 10818 if (!link->pin_path) 10819 return libbpf_err(-ENOMEM); 10820 10821 if (bpf_obj_pin(link->fd, link->pin_path)) { 10822 err = -errno; 10823 zfree(&link->pin_path); 10824 return libbpf_err(err); 10825 } 10826 10827 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10828 return 0; 10829 } 10830 10831 int bpf_link__unpin(struct bpf_link *link) 10832 { 10833 int err; 10834 10835 if (!link->pin_path) 10836 return libbpf_err(-EINVAL); 10837 10838 err = unlink(link->pin_path); 10839 if (err != 0) 10840 return -errno; 10841 10842 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10843 zfree(&link->pin_path); 10844 return 0; 10845 } 10846 10847 struct bpf_link_perf { 10848 struct bpf_link link; 10849 int perf_event_fd; 10850 /* legacy kprobe support: keep track of probe identifier and type */ 10851 char *legacy_probe_name; 10852 bool legacy_is_kprobe; 10853 bool legacy_is_retprobe; 10854 }; 10855 10856 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10857 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10858 10859 static int bpf_link_perf_detach(struct bpf_link *link) 10860 { 10861 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10862 int err = 0; 10863 10864 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10865 err = -errno; 10866 10867 if (perf_link->perf_event_fd != link->fd) 10868 close(perf_link->perf_event_fd); 10869 close(link->fd); 10870 10871 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10872 if (perf_link->legacy_probe_name) { 10873 if (perf_link->legacy_is_kprobe) { 10874 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10875 perf_link->legacy_is_retprobe); 10876 } else { 10877 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10878 perf_link->legacy_is_retprobe); 10879 } 10880 } 10881 10882 return err; 10883 } 10884 10885 static void bpf_link_perf_dealloc(struct bpf_link *link) 10886 { 10887 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10888 10889 free(perf_link->legacy_probe_name); 10890 free(perf_link); 10891 } 10892 10893 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10894 const struct bpf_perf_event_opts *opts) 10895 { 10896 struct bpf_link_perf *link; 10897 int prog_fd, link_fd = -1, err; 10898 bool force_ioctl_attach; 10899 10900 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10901 return libbpf_err_ptr(-EINVAL); 10902 10903 if (pfd < 0) { 10904 pr_warn("prog '%s': invalid perf event FD %d\n", 10905 prog->name, pfd); 10906 return libbpf_err_ptr(-EINVAL); 10907 } 10908 prog_fd = bpf_program__fd(prog); 10909 if (prog_fd < 0) { 10910 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 10911 prog->name); 10912 return libbpf_err_ptr(-EINVAL); 10913 } 10914 10915 link = calloc(1, sizeof(*link)); 10916 if (!link) 10917 return libbpf_err_ptr(-ENOMEM); 10918 link->link.detach = &bpf_link_perf_detach; 10919 link->link.dealloc = &bpf_link_perf_dealloc; 10920 link->perf_event_fd = pfd; 10921 10922 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10923 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10924 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10925 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10926 10927 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10928 if (link_fd < 0) { 10929 err = -errno; 10930 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %s\n", 10931 prog->name, pfd, errstr(err)); 10932 goto err_out; 10933 } 10934 link->link.fd = link_fd; 10935 } else { 10936 if (OPTS_GET(opts, bpf_cookie, 0)) { 10937 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10938 err = -EOPNOTSUPP; 10939 goto err_out; 10940 } 10941 10942 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10943 err = -errno; 10944 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10945 prog->name, pfd, errstr(err)); 10946 if (err == -EPROTO) 10947 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10948 prog->name, pfd); 10949 goto err_out; 10950 } 10951 link->link.fd = pfd; 10952 } 10953 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10954 err = -errno; 10955 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10956 prog->name, pfd, errstr(err)); 10957 goto err_out; 10958 } 10959 10960 return &link->link; 10961 err_out: 10962 if (link_fd >= 0) 10963 close(link_fd); 10964 free(link); 10965 return libbpf_err_ptr(err); 10966 } 10967 10968 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10969 { 10970 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10971 } 10972 10973 /* 10974 * this function is expected to parse integer in the range of [0, 2^31-1] from 10975 * given file using scanf format string fmt. If actual parsed value is 10976 * negative, the result might be indistinguishable from error 10977 */ 10978 static int parse_uint_from_file(const char *file, const char *fmt) 10979 { 10980 int err, ret; 10981 FILE *f; 10982 10983 f = fopen(file, "re"); 10984 if (!f) { 10985 err = -errno; 10986 pr_debug("failed to open '%s': %s\n", file, errstr(err)); 10987 return err; 10988 } 10989 err = fscanf(f, fmt, &ret); 10990 if (err != 1) { 10991 err = err == EOF ? -EIO : -errno; 10992 pr_debug("failed to parse '%s': %s\n", file, errstr(err)); 10993 fclose(f); 10994 return err; 10995 } 10996 fclose(f); 10997 return ret; 10998 } 10999 11000 static int determine_kprobe_perf_type(void) 11001 { 11002 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 11003 11004 return parse_uint_from_file(file, "%d\n"); 11005 } 11006 11007 static int determine_uprobe_perf_type(void) 11008 { 11009 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 11010 11011 return parse_uint_from_file(file, "%d\n"); 11012 } 11013 11014 static int determine_kprobe_retprobe_bit(void) 11015 { 11016 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 11017 11018 return parse_uint_from_file(file, "config:%d\n"); 11019 } 11020 11021 static int determine_uprobe_retprobe_bit(void) 11022 { 11023 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 11024 11025 return parse_uint_from_file(file, "config:%d\n"); 11026 } 11027 11028 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 11029 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 11030 11031 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 11032 uint64_t offset, int pid, size_t ref_ctr_off) 11033 { 11034 const size_t attr_sz = sizeof(struct perf_event_attr); 11035 struct perf_event_attr attr; 11036 int type, pfd; 11037 11038 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 11039 return -EINVAL; 11040 11041 memset(&attr, 0, attr_sz); 11042 11043 type = uprobe ? determine_uprobe_perf_type() 11044 : determine_kprobe_perf_type(); 11045 if (type < 0) { 11046 pr_warn("failed to determine %s perf type: %s\n", 11047 uprobe ? "uprobe" : "kprobe", 11048 errstr(type)); 11049 return type; 11050 } 11051 if (retprobe) { 11052 int bit = uprobe ? determine_uprobe_retprobe_bit() 11053 : determine_kprobe_retprobe_bit(); 11054 11055 if (bit < 0) { 11056 pr_warn("failed to determine %s retprobe bit: %s\n", 11057 uprobe ? "uprobe" : "kprobe", 11058 errstr(bit)); 11059 return bit; 11060 } 11061 attr.config |= 1 << bit; 11062 } 11063 attr.size = attr_sz; 11064 attr.type = type; 11065 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 11066 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 11067 attr.config2 = offset; /* kprobe_addr or probe_offset */ 11068 11069 /* pid filter is meaningful only for uprobes */ 11070 pfd = syscall(__NR_perf_event_open, &attr, 11071 pid < 0 ? -1 : pid /* pid */, 11072 pid == -1 ? 0 : -1 /* cpu */, 11073 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11074 return pfd >= 0 ? pfd : -errno; 11075 } 11076 11077 static int append_to_file(const char *file, const char *fmt, ...) 11078 { 11079 int fd, n, err = 0; 11080 va_list ap; 11081 char buf[1024]; 11082 11083 va_start(ap, fmt); 11084 n = vsnprintf(buf, sizeof(buf), fmt, ap); 11085 va_end(ap); 11086 11087 if (n < 0 || n >= sizeof(buf)) 11088 return -EINVAL; 11089 11090 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 11091 if (fd < 0) 11092 return -errno; 11093 11094 if (write(fd, buf, n) < 0) 11095 err = -errno; 11096 11097 close(fd); 11098 return err; 11099 } 11100 11101 #define DEBUGFS "/sys/kernel/debug/tracing" 11102 #define TRACEFS "/sys/kernel/tracing" 11103 11104 static bool use_debugfs(void) 11105 { 11106 static int has_debugfs = -1; 11107 11108 if (has_debugfs < 0) 11109 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 11110 11111 return has_debugfs == 1; 11112 } 11113 11114 static const char *tracefs_path(void) 11115 { 11116 return use_debugfs() ? DEBUGFS : TRACEFS; 11117 } 11118 11119 static const char *tracefs_kprobe_events(void) 11120 { 11121 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 11122 } 11123 11124 static const char *tracefs_uprobe_events(void) 11125 { 11126 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 11127 } 11128 11129 static const char *tracefs_available_filter_functions(void) 11130 { 11131 return use_debugfs() ? DEBUGFS"/available_filter_functions" 11132 : TRACEFS"/available_filter_functions"; 11133 } 11134 11135 static const char *tracefs_available_filter_functions_addrs(void) 11136 { 11137 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 11138 : TRACEFS"/available_filter_functions_addrs"; 11139 } 11140 11141 static void gen_probe_legacy_event_name(char *buf, size_t buf_sz, 11142 const char *name, size_t offset) 11143 { 11144 static int index = 0; 11145 int i; 11146 11147 snprintf(buf, buf_sz, "libbpf_%u_%d_%s_0x%zx", getpid(), 11148 __sync_fetch_and_add(&index, 1), name, offset); 11149 11150 /* sanitize name in the probe name */ 11151 for (i = 0; buf[i]; i++) { 11152 if (!isalnum(buf[i])) 11153 buf[i] = '_'; 11154 } 11155 } 11156 11157 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 11158 const char *kfunc_name, size_t offset) 11159 { 11160 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 11161 retprobe ? 'r' : 'p', 11162 retprobe ? "kretprobes" : "kprobes", 11163 probe_name, kfunc_name, offset); 11164 } 11165 11166 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 11167 { 11168 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 11169 retprobe ? "kretprobes" : "kprobes", probe_name); 11170 } 11171 11172 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11173 { 11174 char file[256]; 11175 11176 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11177 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 11178 11179 return parse_uint_from_file(file, "%d\n"); 11180 } 11181 11182 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 11183 const char *kfunc_name, size_t offset, int pid) 11184 { 11185 const size_t attr_sz = sizeof(struct perf_event_attr); 11186 struct perf_event_attr attr; 11187 int type, pfd, err; 11188 11189 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 11190 if (err < 0) { 11191 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 11192 kfunc_name, offset, 11193 errstr(err)); 11194 return err; 11195 } 11196 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 11197 if (type < 0) { 11198 err = type; 11199 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 11200 kfunc_name, offset, 11201 errstr(err)); 11202 goto err_clean_legacy; 11203 } 11204 11205 memset(&attr, 0, attr_sz); 11206 attr.size = attr_sz; 11207 attr.config = type; 11208 attr.type = PERF_TYPE_TRACEPOINT; 11209 11210 pfd = syscall(__NR_perf_event_open, &attr, 11211 pid < 0 ? -1 : pid, /* pid */ 11212 pid == -1 ? 0 : -1, /* cpu */ 11213 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11214 if (pfd < 0) { 11215 err = -errno; 11216 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 11217 errstr(err)); 11218 goto err_clean_legacy; 11219 } 11220 return pfd; 11221 11222 err_clean_legacy: 11223 /* Clear the newly added legacy kprobe_event */ 11224 remove_kprobe_event_legacy(probe_name, retprobe); 11225 return err; 11226 } 11227 11228 static const char *arch_specific_syscall_pfx(void) 11229 { 11230 #if defined(__x86_64__) 11231 return "x64"; 11232 #elif defined(__i386__) 11233 return "ia32"; 11234 #elif defined(__s390x__) 11235 return "s390x"; 11236 #elif defined(__s390__) 11237 return "s390"; 11238 #elif defined(__arm__) 11239 return "arm"; 11240 #elif defined(__aarch64__) 11241 return "arm64"; 11242 #elif defined(__mips__) 11243 return "mips"; 11244 #elif defined(__riscv) 11245 return "riscv"; 11246 #elif defined(__powerpc__) 11247 return "powerpc"; 11248 #elif defined(__powerpc64__) 11249 return "powerpc64"; 11250 #else 11251 return NULL; 11252 #endif 11253 } 11254 11255 int probe_kern_syscall_wrapper(int token_fd) 11256 { 11257 char syscall_name[64]; 11258 const char *ksys_pfx; 11259 11260 ksys_pfx = arch_specific_syscall_pfx(); 11261 if (!ksys_pfx) 11262 return 0; 11263 11264 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11265 11266 if (determine_kprobe_perf_type() >= 0) { 11267 int pfd; 11268 11269 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11270 if (pfd >= 0) 11271 close(pfd); 11272 11273 return pfd >= 0 ? 1 : 0; 11274 } else { /* legacy mode */ 11275 char probe_name[MAX_EVENT_NAME_LEN]; 11276 11277 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11278 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11279 return 0; 11280 11281 (void)remove_kprobe_event_legacy(probe_name, false); 11282 return 1; 11283 } 11284 } 11285 11286 struct bpf_link * 11287 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11288 const char *func_name, 11289 const struct bpf_kprobe_opts *opts) 11290 { 11291 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11292 enum probe_attach_mode attach_mode; 11293 char *legacy_probe = NULL; 11294 struct bpf_link *link; 11295 size_t offset; 11296 bool retprobe, legacy; 11297 int pfd, err; 11298 11299 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11300 return libbpf_err_ptr(-EINVAL); 11301 11302 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11303 retprobe = OPTS_GET(opts, retprobe, false); 11304 offset = OPTS_GET(opts, offset, 0); 11305 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11306 11307 legacy = determine_kprobe_perf_type() < 0; 11308 switch (attach_mode) { 11309 case PROBE_ATTACH_MODE_LEGACY: 11310 legacy = true; 11311 pe_opts.force_ioctl_attach = true; 11312 break; 11313 case PROBE_ATTACH_MODE_PERF: 11314 if (legacy) 11315 return libbpf_err_ptr(-ENOTSUP); 11316 pe_opts.force_ioctl_attach = true; 11317 break; 11318 case PROBE_ATTACH_MODE_LINK: 11319 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11320 return libbpf_err_ptr(-ENOTSUP); 11321 break; 11322 case PROBE_ATTACH_MODE_DEFAULT: 11323 break; 11324 default: 11325 return libbpf_err_ptr(-EINVAL); 11326 } 11327 11328 if (!legacy) { 11329 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11330 func_name, offset, 11331 -1 /* pid */, 0 /* ref_ctr_off */); 11332 } else { 11333 char probe_name[MAX_EVENT_NAME_LEN]; 11334 11335 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 11336 func_name, offset); 11337 11338 legacy_probe = strdup(probe_name); 11339 if (!legacy_probe) 11340 return libbpf_err_ptr(-ENOMEM); 11341 11342 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11343 offset, -1 /* pid */); 11344 } 11345 if (pfd < 0) { 11346 err = -errno; 11347 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11348 prog->name, retprobe ? "kretprobe" : "kprobe", 11349 func_name, offset, 11350 errstr(err)); 11351 goto err_out; 11352 } 11353 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11354 err = libbpf_get_error(link); 11355 if (err) { 11356 close(pfd); 11357 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11358 prog->name, retprobe ? "kretprobe" : "kprobe", 11359 func_name, offset, 11360 errstr(err)); 11361 goto err_clean_legacy; 11362 } 11363 if (legacy) { 11364 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11365 11366 perf_link->legacy_probe_name = legacy_probe; 11367 perf_link->legacy_is_kprobe = true; 11368 perf_link->legacy_is_retprobe = retprobe; 11369 } 11370 11371 return link; 11372 11373 err_clean_legacy: 11374 if (legacy) 11375 remove_kprobe_event_legacy(legacy_probe, retprobe); 11376 err_out: 11377 free(legacy_probe); 11378 return libbpf_err_ptr(err); 11379 } 11380 11381 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11382 bool retprobe, 11383 const char *func_name) 11384 { 11385 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11386 .retprobe = retprobe, 11387 ); 11388 11389 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11390 } 11391 11392 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11393 const char *syscall_name, 11394 const struct bpf_ksyscall_opts *opts) 11395 { 11396 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11397 char func_name[128]; 11398 11399 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11400 return libbpf_err_ptr(-EINVAL); 11401 11402 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11403 /* arch_specific_syscall_pfx() should never return NULL here 11404 * because it is guarded by kernel_supports(). However, since 11405 * compiler does not know that we have an explicit conditional 11406 * as well. 11407 */ 11408 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11409 arch_specific_syscall_pfx() ? : "", syscall_name); 11410 } else { 11411 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11412 } 11413 11414 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11415 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11416 11417 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11418 } 11419 11420 /* Adapted from perf/util/string.c */ 11421 bool glob_match(const char *str, const char *pat) 11422 { 11423 while (*str && *pat && *pat != '*') { 11424 if (*pat == '?') { /* Matches any single character */ 11425 str++; 11426 pat++; 11427 continue; 11428 } 11429 if (*str != *pat) 11430 return false; 11431 str++; 11432 pat++; 11433 } 11434 /* Check wild card */ 11435 if (*pat == '*') { 11436 while (*pat == '*') 11437 pat++; 11438 if (!*pat) /* Tail wild card matches all */ 11439 return true; 11440 while (*str) 11441 if (glob_match(str++, pat)) 11442 return true; 11443 } 11444 return !*str && !*pat; 11445 } 11446 11447 struct kprobe_multi_resolve { 11448 const char *pattern; 11449 unsigned long *addrs; 11450 size_t cap; 11451 size_t cnt; 11452 }; 11453 11454 struct avail_kallsyms_data { 11455 char **syms; 11456 size_t cnt; 11457 struct kprobe_multi_resolve *res; 11458 }; 11459 11460 static int avail_func_cmp(const void *a, const void *b) 11461 { 11462 return strcmp(*(const char **)a, *(const char **)b); 11463 } 11464 11465 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11466 const char *sym_name, void *ctx) 11467 { 11468 struct avail_kallsyms_data *data = ctx; 11469 struct kprobe_multi_resolve *res = data->res; 11470 int err; 11471 11472 if (!glob_match(sym_name, res->pattern)) 11473 return 0; 11474 11475 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) { 11476 /* Some versions of kernel strip out .llvm.<hash> suffix from 11477 * function names reported in available_filter_functions, but 11478 * don't do so for kallsyms. While this is clearly a kernel 11479 * bug (fixed by [0]) we try to accommodate that in libbpf to 11480 * make multi-kprobe usability a bit better: if no match is 11481 * found, we will strip .llvm. suffix and try one more time. 11482 * 11483 * [0] fb6a421fb615 ("kallsyms: Match symbols exactly with CONFIG_LTO_CLANG") 11484 */ 11485 char sym_trim[256], *psym_trim = sym_trim, *sym_sfx; 11486 11487 if (!(sym_sfx = strstr(sym_name, ".llvm."))) 11488 return 0; 11489 11490 /* psym_trim vs sym_trim dance is done to avoid pointer vs array 11491 * coercion differences and get proper `const char **` pointer 11492 * which avail_func_cmp() expects 11493 */ 11494 snprintf(sym_trim, sizeof(sym_trim), "%.*s", (int)(sym_sfx - sym_name), sym_name); 11495 if (!bsearch(&psym_trim, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11496 return 0; 11497 } 11498 11499 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11500 if (err) 11501 return err; 11502 11503 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11504 return 0; 11505 } 11506 11507 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11508 { 11509 const char *available_functions_file = tracefs_available_filter_functions(); 11510 struct avail_kallsyms_data data; 11511 char sym_name[500]; 11512 FILE *f; 11513 int err = 0, ret, i; 11514 char **syms = NULL; 11515 size_t cap = 0, cnt = 0; 11516 11517 f = fopen(available_functions_file, "re"); 11518 if (!f) { 11519 err = -errno; 11520 pr_warn("failed to open %s: %s\n", available_functions_file, errstr(err)); 11521 return err; 11522 } 11523 11524 while (true) { 11525 char *name; 11526 11527 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11528 if (ret == EOF && feof(f)) 11529 break; 11530 11531 if (ret != 1) { 11532 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11533 err = -EINVAL; 11534 goto cleanup; 11535 } 11536 11537 if (!glob_match(sym_name, res->pattern)) 11538 continue; 11539 11540 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11541 if (err) 11542 goto cleanup; 11543 11544 name = strdup(sym_name); 11545 if (!name) { 11546 err = -errno; 11547 goto cleanup; 11548 } 11549 11550 syms[cnt++] = name; 11551 } 11552 11553 /* no entries found, bail out */ 11554 if (cnt == 0) { 11555 err = -ENOENT; 11556 goto cleanup; 11557 } 11558 11559 /* sort available functions */ 11560 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11561 11562 data.syms = syms; 11563 data.res = res; 11564 data.cnt = cnt; 11565 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11566 11567 if (res->cnt == 0) 11568 err = -ENOENT; 11569 11570 cleanup: 11571 for (i = 0; i < cnt; i++) 11572 free((char *)syms[i]); 11573 free(syms); 11574 11575 fclose(f); 11576 return err; 11577 } 11578 11579 static bool has_available_filter_functions_addrs(void) 11580 { 11581 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11582 } 11583 11584 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11585 { 11586 const char *available_path = tracefs_available_filter_functions_addrs(); 11587 char sym_name[500]; 11588 FILE *f; 11589 int ret, err = 0; 11590 unsigned long long sym_addr; 11591 11592 f = fopen(available_path, "re"); 11593 if (!f) { 11594 err = -errno; 11595 pr_warn("failed to open %s: %s\n", available_path, errstr(err)); 11596 return err; 11597 } 11598 11599 while (true) { 11600 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11601 if (ret == EOF && feof(f)) 11602 break; 11603 11604 if (ret != 2) { 11605 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11606 ret); 11607 err = -EINVAL; 11608 goto cleanup; 11609 } 11610 11611 if (!glob_match(sym_name, res->pattern)) 11612 continue; 11613 11614 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11615 sizeof(*res->addrs), res->cnt + 1); 11616 if (err) 11617 goto cleanup; 11618 11619 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11620 } 11621 11622 if (res->cnt == 0) 11623 err = -ENOENT; 11624 11625 cleanup: 11626 fclose(f); 11627 return err; 11628 } 11629 11630 struct bpf_link * 11631 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11632 const char *pattern, 11633 const struct bpf_kprobe_multi_opts *opts) 11634 { 11635 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11636 struct kprobe_multi_resolve res = { 11637 .pattern = pattern, 11638 }; 11639 enum bpf_attach_type attach_type; 11640 struct bpf_link *link = NULL; 11641 const unsigned long *addrs; 11642 int err, link_fd, prog_fd; 11643 bool retprobe, session, unique_match; 11644 const __u64 *cookies; 11645 const char **syms; 11646 size_t cnt; 11647 11648 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11649 return libbpf_err_ptr(-EINVAL); 11650 11651 prog_fd = bpf_program__fd(prog); 11652 if (prog_fd < 0) { 11653 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11654 prog->name); 11655 return libbpf_err_ptr(-EINVAL); 11656 } 11657 11658 syms = OPTS_GET(opts, syms, false); 11659 addrs = OPTS_GET(opts, addrs, false); 11660 cnt = OPTS_GET(opts, cnt, false); 11661 cookies = OPTS_GET(opts, cookies, false); 11662 unique_match = OPTS_GET(opts, unique_match, false); 11663 11664 if (!pattern && !addrs && !syms) 11665 return libbpf_err_ptr(-EINVAL); 11666 if (pattern && (addrs || syms || cookies || cnt)) 11667 return libbpf_err_ptr(-EINVAL); 11668 if (!pattern && !cnt) 11669 return libbpf_err_ptr(-EINVAL); 11670 if (!pattern && unique_match) 11671 return libbpf_err_ptr(-EINVAL); 11672 if (addrs && syms) 11673 return libbpf_err_ptr(-EINVAL); 11674 11675 if (pattern) { 11676 if (has_available_filter_functions_addrs()) 11677 err = libbpf_available_kprobes_parse(&res); 11678 else 11679 err = libbpf_available_kallsyms_parse(&res); 11680 if (err) 11681 goto error; 11682 11683 if (unique_match && res.cnt != 1) { 11684 pr_warn("prog '%s': failed to find a unique match for '%s' (%zu matches)\n", 11685 prog->name, pattern, res.cnt); 11686 err = -EINVAL; 11687 goto error; 11688 } 11689 11690 addrs = res.addrs; 11691 cnt = res.cnt; 11692 } 11693 11694 retprobe = OPTS_GET(opts, retprobe, false); 11695 session = OPTS_GET(opts, session, false); 11696 11697 if (retprobe && session) 11698 return libbpf_err_ptr(-EINVAL); 11699 11700 attach_type = session ? BPF_TRACE_KPROBE_SESSION : BPF_TRACE_KPROBE_MULTI; 11701 11702 lopts.kprobe_multi.syms = syms; 11703 lopts.kprobe_multi.addrs = addrs; 11704 lopts.kprobe_multi.cookies = cookies; 11705 lopts.kprobe_multi.cnt = cnt; 11706 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11707 11708 link = calloc(1, sizeof(*link)); 11709 if (!link) { 11710 err = -ENOMEM; 11711 goto error; 11712 } 11713 link->detach = &bpf_link__detach_fd; 11714 11715 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 11716 if (link_fd < 0) { 11717 err = -errno; 11718 pr_warn("prog '%s': failed to attach: %s\n", 11719 prog->name, errstr(err)); 11720 goto error; 11721 } 11722 link->fd = link_fd; 11723 free(res.addrs); 11724 return link; 11725 11726 error: 11727 free(link); 11728 free(res.addrs); 11729 return libbpf_err_ptr(err); 11730 } 11731 11732 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11733 { 11734 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11735 unsigned long offset = 0; 11736 const char *func_name; 11737 char *func; 11738 int n; 11739 11740 *link = NULL; 11741 11742 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11743 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11744 return 0; 11745 11746 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11747 if (opts.retprobe) 11748 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11749 else 11750 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11751 11752 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11753 if (n < 1) { 11754 pr_warn("kprobe name is invalid: %s\n", func_name); 11755 return -EINVAL; 11756 } 11757 if (opts.retprobe && offset != 0) { 11758 free(func); 11759 pr_warn("kretprobes do not support offset specification\n"); 11760 return -EINVAL; 11761 } 11762 11763 opts.offset = offset; 11764 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11765 free(func); 11766 return libbpf_get_error(*link); 11767 } 11768 11769 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11770 { 11771 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11772 const char *syscall_name; 11773 11774 *link = NULL; 11775 11776 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11777 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11778 return 0; 11779 11780 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11781 if (opts.retprobe) 11782 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11783 else 11784 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11785 11786 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11787 return *link ? 0 : -errno; 11788 } 11789 11790 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11791 { 11792 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11793 const char *spec; 11794 char *pattern; 11795 int n; 11796 11797 *link = NULL; 11798 11799 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11800 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11801 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11802 return 0; 11803 11804 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11805 if (opts.retprobe) 11806 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11807 else 11808 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11809 11810 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11811 if (n < 1) { 11812 pr_warn("kprobe multi pattern is invalid: %s\n", spec); 11813 return -EINVAL; 11814 } 11815 11816 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11817 free(pattern); 11818 return libbpf_get_error(*link); 11819 } 11820 11821 static int attach_kprobe_session(const struct bpf_program *prog, long cookie, 11822 struct bpf_link **link) 11823 { 11824 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts, .session = true); 11825 const char *spec; 11826 char *pattern; 11827 int n; 11828 11829 *link = NULL; 11830 11831 /* no auto-attach for SEC("kprobe.session") */ 11832 if (strcmp(prog->sec_name, "kprobe.session") == 0) 11833 return 0; 11834 11835 spec = prog->sec_name + sizeof("kprobe.session/") - 1; 11836 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11837 if (n < 1) { 11838 pr_warn("kprobe session pattern is invalid: %s\n", spec); 11839 return -EINVAL; 11840 } 11841 11842 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11843 free(pattern); 11844 return *link ? 0 : -errno; 11845 } 11846 11847 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11848 { 11849 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11850 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11851 int n, ret = -EINVAL; 11852 11853 *link = NULL; 11854 11855 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11856 &probe_type, &binary_path, &func_name); 11857 switch (n) { 11858 case 1: 11859 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11860 ret = 0; 11861 break; 11862 case 3: 11863 opts.session = str_has_pfx(probe_type, "uprobe.session"); 11864 opts.retprobe = str_has_pfx(probe_type, "uretprobe.multi"); 11865 11866 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11867 ret = libbpf_get_error(*link); 11868 break; 11869 default: 11870 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11871 prog->sec_name); 11872 break; 11873 } 11874 free(probe_type); 11875 free(binary_path); 11876 free(func_name); 11877 return ret; 11878 } 11879 11880 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11881 const char *binary_path, size_t offset) 11882 { 11883 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11884 retprobe ? 'r' : 'p', 11885 retprobe ? "uretprobes" : "uprobes", 11886 probe_name, binary_path, offset); 11887 } 11888 11889 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11890 { 11891 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11892 retprobe ? "uretprobes" : "uprobes", probe_name); 11893 } 11894 11895 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11896 { 11897 char file[512]; 11898 11899 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11900 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11901 11902 return parse_uint_from_file(file, "%d\n"); 11903 } 11904 11905 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11906 const char *binary_path, size_t offset, int pid) 11907 { 11908 const size_t attr_sz = sizeof(struct perf_event_attr); 11909 struct perf_event_attr attr; 11910 int type, pfd, err; 11911 11912 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11913 if (err < 0) { 11914 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %s\n", 11915 binary_path, (size_t)offset, errstr(err)); 11916 return err; 11917 } 11918 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11919 if (type < 0) { 11920 err = type; 11921 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %s\n", 11922 binary_path, offset, errstr(err)); 11923 goto err_clean_legacy; 11924 } 11925 11926 memset(&attr, 0, attr_sz); 11927 attr.size = attr_sz; 11928 attr.config = type; 11929 attr.type = PERF_TYPE_TRACEPOINT; 11930 11931 pfd = syscall(__NR_perf_event_open, &attr, 11932 pid < 0 ? -1 : pid, /* pid */ 11933 pid == -1 ? 0 : -1, /* cpu */ 11934 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11935 if (pfd < 0) { 11936 err = -errno; 11937 pr_warn("legacy uprobe perf_event_open() failed: %s\n", errstr(err)); 11938 goto err_clean_legacy; 11939 } 11940 return pfd; 11941 11942 err_clean_legacy: 11943 /* Clear the newly added legacy uprobe_event */ 11944 remove_uprobe_event_legacy(probe_name, retprobe); 11945 return err; 11946 } 11947 11948 /* Find offset of function name in archive specified by path. Currently 11949 * supported are .zip files that do not compress their contents, as used on 11950 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11951 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11952 * library functions. 11953 * 11954 * An overview of the APK format specifically provided here: 11955 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11956 */ 11957 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11958 const char *func_name) 11959 { 11960 struct zip_archive *archive; 11961 struct zip_entry entry; 11962 long ret; 11963 Elf *elf; 11964 11965 archive = zip_archive_open(archive_path); 11966 if (IS_ERR(archive)) { 11967 ret = PTR_ERR(archive); 11968 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11969 return ret; 11970 } 11971 11972 ret = zip_archive_find_entry(archive, file_name, &entry); 11973 if (ret) { 11974 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11975 archive_path, ret); 11976 goto out; 11977 } 11978 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11979 (unsigned long)entry.data_offset); 11980 11981 if (entry.compression) { 11982 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11983 archive_path); 11984 ret = -LIBBPF_ERRNO__FORMAT; 11985 goto out; 11986 } 11987 11988 elf = elf_memory((void *)entry.data, entry.data_length); 11989 if (!elf) { 11990 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11991 elf_errmsg(-1)); 11992 ret = -LIBBPF_ERRNO__LIBELF; 11993 goto out; 11994 } 11995 11996 ret = elf_find_func_offset(elf, file_name, func_name); 11997 if (ret > 0) { 11998 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11999 func_name, file_name, archive_path, entry.data_offset, ret, 12000 ret + entry.data_offset); 12001 ret += entry.data_offset; 12002 } 12003 elf_end(elf); 12004 12005 out: 12006 zip_archive_close(archive); 12007 return ret; 12008 } 12009 12010 static const char *arch_specific_lib_paths(void) 12011 { 12012 /* 12013 * Based on https://packages.debian.org/sid/libc6. 12014 * 12015 * Assume that the traced program is built for the same architecture 12016 * as libbpf, which should cover the vast majority of cases. 12017 */ 12018 #if defined(__x86_64__) 12019 return "/lib/x86_64-linux-gnu"; 12020 #elif defined(__i386__) 12021 return "/lib/i386-linux-gnu"; 12022 #elif defined(__s390x__) 12023 return "/lib/s390x-linux-gnu"; 12024 #elif defined(__s390__) 12025 return "/lib/s390-linux-gnu"; 12026 #elif defined(__arm__) && defined(__SOFTFP__) 12027 return "/lib/arm-linux-gnueabi"; 12028 #elif defined(__arm__) && !defined(__SOFTFP__) 12029 return "/lib/arm-linux-gnueabihf"; 12030 #elif defined(__aarch64__) 12031 return "/lib/aarch64-linux-gnu"; 12032 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 12033 return "/lib/mips64el-linux-gnuabi64"; 12034 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 12035 return "/lib/mipsel-linux-gnu"; 12036 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 12037 return "/lib/powerpc64le-linux-gnu"; 12038 #elif defined(__sparc__) && defined(__arch64__) 12039 return "/lib/sparc64-linux-gnu"; 12040 #elif defined(__riscv) && __riscv_xlen == 64 12041 return "/lib/riscv64-linux-gnu"; 12042 #else 12043 return NULL; 12044 #endif 12045 } 12046 12047 /* Get full path to program/shared library. */ 12048 static int resolve_full_path(const char *file, char *result, size_t result_sz) 12049 { 12050 const char *search_paths[3] = {}; 12051 int i, perm; 12052 12053 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 12054 search_paths[0] = getenv("LD_LIBRARY_PATH"); 12055 search_paths[1] = "/usr/lib64:/usr/lib"; 12056 search_paths[2] = arch_specific_lib_paths(); 12057 perm = R_OK; 12058 } else { 12059 search_paths[0] = getenv("PATH"); 12060 search_paths[1] = "/usr/bin:/usr/sbin"; 12061 perm = R_OK | X_OK; 12062 } 12063 12064 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 12065 const char *s; 12066 12067 if (!search_paths[i]) 12068 continue; 12069 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 12070 char *next_path; 12071 int seg_len; 12072 12073 if (s[0] == ':') 12074 s++; 12075 next_path = strchr(s, ':'); 12076 seg_len = next_path ? next_path - s : strlen(s); 12077 if (!seg_len) 12078 continue; 12079 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 12080 /* ensure it has required permissions */ 12081 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 12082 continue; 12083 pr_debug("resolved '%s' to '%s'\n", file, result); 12084 return 0; 12085 } 12086 } 12087 return -ENOENT; 12088 } 12089 12090 struct bpf_link * 12091 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 12092 pid_t pid, 12093 const char *path, 12094 const char *func_pattern, 12095 const struct bpf_uprobe_multi_opts *opts) 12096 { 12097 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 12098 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12099 unsigned long *resolved_offsets = NULL; 12100 enum bpf_attach_type attach_type; 12101 int err = 0, link_fd, prog_fd; 12102 struct bpf_link *link = NULL; 12103 char full_path[PATH_MAX]; 12104 bool retprobe, session; 12105 const __u64 *cookies; 12106 const char **syms; 12107 size_t cnt; 12108 12109 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 12110 return libbpf_err_ptr(-EINVAL); 12111 12112 prog_fd = bpf_program__fd(prog); 12113 if (prog_fd < 0) { 12114 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12115 prog->name); 12116 return libbpf_err_ptr(-EINVAL); 12117 } 12118 12119 syms = OPTS_GET(opts, syms, NULL); 12120 offsets = OPTS_GET(opts, offsets, NULL); 12121 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 12122 cookies = OPTS_GET(opts, cookies, NULL); 12123 cnt = OPTS_GET(opts, cnt, 0); 12124 retprobe = OPTS_GET(opts, retprobe, false); 12125 session = OPTS_GET(opts, session, false); 12126 12127 /* 12128 * User can specify 2 mutually exclusive set of inputs: 12129 * 12130 * 1) use only path/func_pattern/pid arguments 12131 * 12132 * 2) use path/pid with allowed combinations of: 12133 * syms/offsets/ref_ctr_offsets/cookies/cnt 12134 * 12135 * - syms and offsets are mutually exclusive 12136 * - ref_ctr_offsets and cookies are optional 12137 * 12138 * Any other usage results in error. 12139 */ 12140 12141 if (!path) 12142 return libbpf_err_ptr(-EINVAL); 12143 if (!func_pattern && cnt == 0) 12144 return libbpf_err_ptr(-EINVAL); 12145 12146 if (func_pattern) { 12147 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 12148 return libbpf_err_ptr(-EINVAL); 12149 } else { 12150 if (!!syms == !!offsets) 12151 return libbpf_err_ptr(-EINVAL); 12152 } 12153 12154 if (retprobe && session) 12155 return libbpf_err_ptr(-EINVAL); 12156 12157 if (func_pattern) { 12158 if (!strchr(path, '/')) { 12159 err = resolve_full_path(path, full_path, sizeof(full_path)); 12160 if (err) { 12161 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12162 prog->name, path, errstr(err)); 12163 return libbpf_err_ptr(err); 12164 } 12165 path = full_path; 12166 } 12167 12168 err = elf_resolve_pattern_offsets(path, func_pattern, 12169 &resolved_offsets, &cnt); 12170 if (err < 0) 12171 return libbpf_err_ptr(err); 12172 offsets = resolved_offsets; 12173 } else if (syms) { 12174 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 12175 if (err < 0) 12176 return libbpf_err_ptr(err); 12177 offsets = resolved_offsets; 12178 } 12179 12180 attach_type = session ? BPF_TRACE_UPROBE_SESSION : BPF_TRACE_UPROBE_MULTI; 12181 12182 lopts.uprobe_multi.path = path; 12183 lopts.uprobe_multi.offsets = offsets; 12184 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 12185 lopts.uprobe_multi.cookies = cookies; 12186 lopts.uprobe_multi.cnt = cnt; 12187 lopts.uprobe_multi.flags = retprobe ? BPF_F_UPROBE_MULTI_RETURN : 0; 12188 12189 if (pid == 0) 12190 pid = getpid(); 12191 if (pid > 0) 12192 lopts.uprobe_multi.pid = pid; 12193 12194 link = calloc(1, sizeof(*link)); 12195 if (!link) { 12196 err = -ENOMEM; 12197 goto error; 12198 } 12199 link->detach = &bpf_link__detach_fd; 12200 12201 link_fd = bpf_link_create(prog_fd, 0, attach_type, &lopts); 12202 if (link_fd < 0) { 12203 err = -errno; 12204 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 12205 prog->name, errstr(err)); 12206 goto error; 12207 } 12208 link->fd = link_fd; 12209 free(resolved_offsets); 12210 return link; 12211 12212 error: 12213 free(resolved_offsets); 12214 free(link); 12215 return libbpf_err_ptr(err); 12216 } 12217 12218 LIBBPF_API struct bpf_link * 12219 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 12220 const char *binary_path, size_t func_offset, 12221 const struct bpf_uprobe_opts *opts) 12222 { 12223 const char *archive_path = NULL, *archive_sep = NULL; 12224 char *legacy_probe = NULL; 12225 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12226 enum probe_attach_mode attach_mode; 12227 char full_path[PATH_MAX]; 12228 struct bpf_link *link; 12229 size_t ref_ctr_off; 12230 int pfd, err; 12231 bool retprobe, legacy; 12232 const char *func_name; 12233 12234 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12235 return libbpf_err_ptr(-EINVAL); 12236 12237 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 12238 retprobe = OPTS_GET(opts, retprobe, false); 12239 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 12240 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12241 12242 if (!binary_path) 12243 return libbpf_err_ptr(-EINVAL); 12244 12245 /* Check if "binary_path" refers to an archive. */ 12246 archive_sep = strstr(binary_path, "!/"); 12247 if (archive_sep) { 12248 full_path[0] = '\0'; 12249 libbpf_strlcpy(full_path, binary_path, 12250 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 12251 archive_path = full_path; 12252 binary_path = archive_sep + 2; 12253 } else if (!strchr(binary_path, '/')) { 12254 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 12255 if (err) { 12256 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12257 prog->name, binary_path, errstr(err)); 12258 return libbpf_err_ptr(err); 12259 } 12260 binary_path = full_path; 12261 } 12262 func_name = OPTS_GET(opts, func_name, NULL); 12263 if (func_name) { 12264 long sym_off; 12265 12266 if (archive_path) { 12267 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 12268 func_name); 12269 binary_path = archive_path; 12270 } else { 12271 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 12272 } 12273 if (sym_off < 0) 12274 return libbpf_err_ptr(sym_off); 12275 func_offset += sym_off; 12276 } 12277 12278 legacy = determine_uprobe_perf_type() < 0; 12279 switch (attach_mode) { 12280 case PROBE_ATTACH_MODE_LEGACY: 12281 legacy = true; 12282 pe_opts.force_ioctl_attach = true; 12283 break; 12284 case PROBE_ATTACH_MODE_PERF: 12285 if (legacy) 12286 return libbpf_err_ptr(-ENOTSUP); 12287 pe_opts.force_ioctl_attach = true; 12288 break; 12289 case PROBE_ATTACH_MODE_LINK: 12290 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 12291 return libbpf_err_ptr(-ENOTSUP); 12292 break; 12293 case PROBE_ATTACH_MODE_DEFAULT: 12294 break; 12295 default: 12296 return libbpf_err_ptr(-EINVAL); 12297 } 12298 12299 if (!legacy) { 12300 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12301 func_offset, pid, ref_ctr_off); 12302 } else { 12303 char probe_name[MAX_EVENT_NAME_LEN]; 12304 12305 if (ref_ctr_off) 12306 return libbpf_err_ptr(-EINVAL); 12307 12308 gen_probe_legacy_event_name(probe_name, sizeof(probe_name), 12309 strrchr(binary_path, '/') ? : binary_path, 12310 func_offset); 12311 12312 legacy_probe = strdup(probe_name); 12313 if (!legacy_probe) 12314 return libbpf_err_ptr(-ENOMEM); 12315 12316 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12317 binary_path, func_offset, pid); 12318 } 12319 if (pfd < 0) { 12320 err = -errno; 12321 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12322 prog->name, retprobe ? "uretprobe" : "uprobe", 12323 binary_path, func_offset, 12324 errstr(err)); 12325 goto err_out; 12326 } 12327 12328 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12329 err = libbpf_get_error(link); 12330 if (err) { 12331 close(pfd); 12332 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12333 prog->name, retprobe ? "uretprobe" : "uprobe", 12334 binary_path, func_offset, 12335 errstr(err)); 12336 goto err_clean_legacy; 12337 } 12338 if (legacy) { 12339 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12340 12341 perf_link->legacy_probe_name = legacy_probe; 12342 perf_link->legacy_is_kprobe = false; 12343 perf_link->legacy_is_retprobe = retprobe; 12344 } 12345 return link; 12346 12347 err_clean_legacy: 12348 if (legacy) 12349 remove_uprobe_event_legacy(legacy_probe, retprobe); 12350 err_out: 12351 free(legacy_probe); 12352 return libbpf_err_ptr(err); 12353 } 12354 12355 /* Format of u[ret]probe section definition supporting auto-attach: 12356 * u[ret]probe/binary:function[+offset] 12357 * 12358 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12359 * full binary path via bpf_program__attach_uprobe_opts. 12360 * 12361 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12362 * specified (and auto-attach is not possible) or the above format is specified for 12363 * auto-attach. 12364 */ 12365 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12366 { 12367 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12368 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12369 int n, c, ret = -EINVAL; 12370 long offset = 0; 12371 12372 *link = NULL; 12373 12374 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12375 &probe_type, &binary_path, &func_name); 12376 switch (n) { 12377 case 1: 12378 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12379 ret = 0; 12380 break; 12381 case 2: 12382 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12383 prog->name, prog->sec_name); 12384 break; 12385 case 3: 12386 /* check if user specifies `+offset`, if yes, this should be 12387 * the last part of the string, make sure sscanf read to EOL 12388 */ 12389 func_off = strrchr(func_name, '+'); 12390 if (func_off) { 12391 n = sscanf(func_off, "+%li%n", &offset, &c); 12392 if (n == 1 && *(func_off + c) == '\0') 12393 func_off[0] = '\0'; 12394 else 12395 offset = 0; 12396 } 12397 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12398 strcmp(probe_type, "uretprobe.s") == 0; 12399 if (opts.retprobe && offset != 0) { 12400 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12401 prog->name); 12402 break; 12403 } 12404 opts.func_name = func_name; 12405 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12406 ret = libbpf_get_error(*link); 12407 break; 12408 default: 12409 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12410 prog->sec_name); 12411 break; 12412 } 12413 free(probe_type); 12414 free(binary_path); 12415 free(func_name); 12416 12417 return ret; 12418 } 12419 12420 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12421 bool retprobe, pid_t pid, 12422 const char *binary_path, 12423 size_t func_offset) 12424 { 12425 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12426 12427 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12428 } 12429 12430 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12431 pid_t pid, const char *binary_path, 12432 const char *usdt_provider, const char *usdt_name, 12433 const struct bpf_usdt_opts *opts) 12434 { 12435 char resolved_path[512]; 12436 struct bpf_object *obj = prog->obj; 12437 struct bpf_link *link; 12438 __u64 usdt_cookie; 12439 int err; 12440 12441 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12442 return libbpf_err_ptr(-EINVAL); 12443 12444 if (bpf_program__fd(prog) < 0) { 12445 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12446 prog->name); 12447 return libbpf_err_ptr(-EINVAL); 12448 } 12449 12450 if (!binary_path) 12451 return libbpf_err_ptr(-EINVAL); 12452 12453 if (!strchr(binary_path, '/')) { 12454 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12455 if (err) { 12456 pr_warn("prog '%s': failed to resolve full path for '%s': %s\n", 12457 prog->name, binary_path, errstr(err)); 12458 return libbpf_err_ptr(err); 12459 } 12460 binary_path = resolved_path; 12461 } 12462 12463 /* USDT manager is instantiated lazily on first USDT attach. It will 12464 * be destroyed together with BPF object in bpf_object__close(). 12465 */ 12466 if (IS_ERR(obj->usdt_man)) 12467 return libbpf_ptr(obj->usdt_man); 12468 if (!obj->usdt_man) { 12469 obj->usdt_man = usdt_manager_new(obj); 12470 if (IS_ERR(obj->usdt_man)) 12471 return libbpf_ptr(obj->usdt_man); 12472 } 12473 12474 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12475 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12476 usdt_provider, usdt_name, usdt_cookie); 12477 err = libbpf_get_error(link); 12478 if (err) 12479 return libbpf_err_ptr(err); 12480 return link; 12481 } 12482 12483 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12484 { 12485 char *path = NULL, *provider = NULL, *name = NULL; 12486 const char *sec_name; 12487 int n, err; 12488 12489 sec_name = bpf_program__section_name(prog); 12490 if (strcmp(sec_name, "usdt") == 0) { 12491 /* no auto-attach for just SEC("usdt") */ 12492 *link = NULL; 12493 return 0; 12494 } 12495 12496 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12497 if (n != 3) { 12498 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12499 sec_name); 12500 err = -EINVAL; 12501 } else { 12502 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12503 provider, name, NULL); 12504 err = libbpf_get_error(*link); 12505 } 12506 free(path); 12507 free(provider); 12508 free(name); 12509 return err; 12510 } 12511 12512 static int determine_tracepoint_id(const char *tp_category, 12513 const char *tp_name) 12514 { 12515 char file[PATH_MAX]; 12516 int ret; 12517 12518 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12519 tracefs_path(), tp_category, tp_name); 12520 if (ret < 0) 12521 return -errno; 12522 if (ret >= sizeof(file)) { 12523 pr_debug("tracepoint %s/%s path is too long\n", 12524 tp_category, tp_name); 12525 return -E2BIG; 12526 } 12527 return parse_uint_from_file(file, "%d\n"); 12528 } 12529 12530 static int perf_event_open_tracepoint(const char *tp_category, 12531 const char *tp_name) 12532 { 12533 const size_t attr_sz = sizeof(struct perf_event_attr); 12534 struct perf_event_attr attr; 12535 int tp_id, pfd, err; 12536 12537 tp_id = determine_tracepoint_id(tp_category, tp_name); 12538 if (tp_id < 0) { 12539 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12540 tp_category, tp_name, 12541 errstr(tp_id)); 12542 return tp_id; 12543 } 12544 12545 memset(&attr, 0, attr_sz); 12546 attr.type = PERF_TYPE_TRACEPOINT; 12547 attr.size = attr_sz; 12548 attr.config = tp_id; 12549 12550 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12551 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12552 if (pfd < 0) { 12553 err = -errno; 12554 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12555 tp_category, tp_name, 12556 errstr(err)); 12557 return err; 12558 } 12559 return pfd; 12560 } 12561 12562 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12563 const char *tp_category, 12564 const char *tp_name, 12565 const struct bpf_tracepoint_opts *opts) 12566 { 12567 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12568 struct bpf_link *link; 12569 int pfd, err; 12570 12571 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12572 return libbpf_err_ptr(-EINVAL); 12573 12574 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12575 12576 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12577 if (pfd < 0) { 12578 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12579 prog->name, tp_category, tp_name, 12580 errstr(pfd)); 12581 return libbpf_err_ptr(pfd); 12582 } 12583 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12584 err = libbpf_get_error(link); 12585 if (err) { 12586 close(pfd); 12587 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12588 prog->name, tp_category, tp_name, 12589 errstr(err)); 12590 return libbpf_err_ptr(err); 12591 } 12592 return link; 12593 } 12594 12595 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12596 const char *tp_category, 12597 const char *tp_name) 12598 { 12599 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12600 } 12601 12602 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12603 { 12604 char *sec_name, *tp_cat, *tp_name; 12605 12606 *link = NULL; 12607 12608 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12609 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12610 return 0; 12611 12612 sec_name = strdup(prog->sec_name); 12613 if (!sec_name) 12614 return -ENOMEM; 12615 12616 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12617 if (str_has_pfx(prog->sec_name, "tp/")) 12618 tp_cat = sec_name + sizeof("tp/") - 1; 12619 else 12620 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12621 tp_name = strchr(tp_cat, '/'); 12622 if (!tp_name) { 12623 free(sec_name); 12624 return -EINVAL; 12625 } 12626 *tp_name = '\0'; 12627 tp_name++; 12628 12629 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12630 free(sec_name); 12631 return libbpf_get_error(*link); 12632 } 12633 12634 struct bpf_link * 12635 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog, 12636 const char *tp_name, 12637 struct bpf_raw_tracepoint_opts *opts) 12638 { 12639 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts); 12640 struct bpf_link *link; 12641 int prog_fd, pfd; 12642 12643 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts)) 12644 return libbpf_err_ptr(-EINVAL); 12645 12646 prog_fd = bpf_program__fd(prog); 12647 if (prog_fd < 0) { 12648 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12649 return libbpf_err_ptr(-EINVAL); 12650 } 12651 12652 link = calloc(1, sizeof(*link)); 12653 if (!link) 12654 return libbpf_err_ptr(-ENOMEM); 12655 link->detach = &bpf_link__detach_fd; 12656 12657 raw_opts.tp_name = tp_name; 12658 raw_opts.cookie = OPTS_GET(opts, cookie, 0); 12659 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts); 12660 if (pfd < 0) { 12661 pfd = -errno; 12662 free(link); 12663 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12664 prog->name, tp_name, errstr(pfd)); 12665 return libbpf_err_ptr(pfd); 12666 } 12667 link->fd = pfd; 12668 return link; 12669 } 12670 12671 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12672 const char *tp_name) 12673 { 12674 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL); 12675 } 12676 12677 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12678 { 12679 static const char *const prefixes[] = { 12680 "raw_tp", 12681 "raw_tracepoint", 12682 "raw_tp.w", 12683 "raw_tracepoint.w", 12684 }; 12685 size_t i; 12686 const char *tp_name = NULL; 12687 12688 *link = NULL; 12689 12690 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12691 size_t pfx_len; 12692 12693 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12694 continue; 12695 12696 pfx_len = strlen(prefixes[i]); 12697 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12698 if (prog->sec_name[pfx_len] == '\0') 12699 return 0; 12700 12701 if (prog->sec_name[pfx_len] != '/') 12702 continue; 12703 12704 tp_name = prog->sec_name + pfx_len + 1; 12705 break; 12706 } 12707 12708 if (!tp_name) { 12709 pr_warn("prog '%s': invalid section name '%s'\n", 12710 prog->name, prog->sec_name); 12711 return -EINVAL; 12712 } 12713 12714 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12715 return libbpf_get_error(*link); 12716 } 12717 12718 /* Common logic for all BPF program types that attach to a btf_id */ 12719 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12720 const struct bpf_trace_opts *opts) 12721 { 12722 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12723 struct bpf_link *link; 12724 int prog_fd, pfd; 12725 12726 if (!OPTS_VALID(opts, bpf_trace_opts)) 12727 return libbpf_err_ptr(-EINVAL); 12728 12729 prog_fd = bpf_program__fd(prog); 12730 if (prog_fd < 0) { 12731 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12732 return libbpf_err_ptr(-EINVAL); 12733 } 12734 12735 link = calloc(1, sizeof(*link)); 12736 if (!link) 12737 return libbpf_err_ptr(-ENOMEM); 12738 link->detach = &bpf_link__detach_fd; 12739 12740 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12741 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12742 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12743 if (pfd < 0) { 12744 pfd = -errno; 12745 free(link); 12746 pr_warn("prog '%s': failed to attach: %s\n", 12747 prog->name, errstr(pfd)); 12748 return libbpf_err_ptr(pfd); 12749 } 12750 link->fd = pfd; 12751 return link; 12752 } 12753 12754 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12755 { 12756 return bpf_program__attach_btf_id(prog, NULL); 12757 } 12758 12759 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12760 const struct bpf_trace_opts *opts) 12761 { 12762 return bpf_program__attach_btf_id(prog, opts); 12763 } 12764 12765 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12766 { 12767 return bpf_program__attach_btf_id(prog, NULL); 12768 } 12769 12770 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12771 { 12772 *link = bpf_program__attach_trace(prog); 12773 return libbpf_get_error(*link); 12774 } 12775 12776 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12777 { 12778 *link = bpf_program__attach_lsm(prog); 12779 return libbpf_get_error(*link); 12780 } 12781 12782 static struct bpf_link * 12783 bpf_program_attach_fd(const struct bpf_program *prog, 12784 int target_fd, const char *target_name, 12785 const struct bpf_link_create_opts *opts) 12786 { 12787 enum bpf_attach_type attach_type; 12788 struct bpf_link *link; 12789 int prog_fd, link_fd; 12790 12791 prog_fd = bpf_program__fd(prog); 12792 if (prog_fd < 0) { 12793 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12794 return libbpf_err_ptr(-EINVAL); 12795 } 12796 12797 link = calloc(1, sizeof(*link)); 12798 if (!link) 12799 return libbpf_err_ptr(-ENOMEM); 12800 link->detach = &bpf_link__detach_fd; 12801 12802 attach_type = bpf_program__expected_attach_type(prog); 12803 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12804 if (link_fd < 0) { 12805 link_fd = -errno; 12806 free(link); 12807 pr_warn("prog '%s': failed to attach to %s: %s\n", 12808 prog->name, target_name, 12809 errstr(link_fd)); 12810 return libbpf_err_ptr(link_fd); 12811 } 12812 link->fd = link_fd; 12813 return link; 12814 } 12815 12816 struct bpf_link * 12817 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12818 { 12819 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12820 } 12821 12822 struct bpf_link * 12823 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12824 { 12825 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12826 } 12827 12828 struct bpf_link * 12829 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd) 12830 { 12831 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL); 12832 } 12833 12834 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12835 { 12836 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12837 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12838 } 12839 12840 struct bpf_link * 12841 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12842 const struct bpf_tcx_opts *opts) 12843 { 12844 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12845 __u32 relative_id; 12846 int relative_fd; 12847 12848 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12849 return libbpf_err_ptr(-EINVAL); 12850 12851 relative_id = OPTS_GET(opts, relative_id, 0); 12852 relative_fd = OPTS_GET(opts, relative_fd, 0); 12853 12854 /* validate we don't have unexpected combinations of non-zero fields */ 12855 if (!ifindex) { 12856 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12857 prog->name); 12858 return libbpf_err_ptr(-EINVAL); 12859 } 12860 if (relative_fd && relative_id) { 12861 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12862 prog->name); 12863 return libbpf_err_ptr(-EINVAL); 12864 } 12865 12866 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12867 link_create_opts.tcx.relative_fd = relative_fd; 12868 link_create_opts.tcx.relative_id = relative_id; 12869 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12870 12871 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12872 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12873 } 12874 12875 struct bpf_link * 12876 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12877 const struct bpf_netkit_opts *opts) 12878 { 12879 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12880 __u32 relative_id; 12881 int relative_fd; 12882 12883 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12884 return libbpf_err_ptr(-EINVAL); 12885 12886 relative_id = OPTS_GET(opts, relative_id, 0); 12887 relative_fd = OPTS_GET(opts, relative_fd, 0); 12888 12889 /* validate we don't have unexpected combinations of non-zero fields */ 12890 if (!ifindex) { 12891 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12892 prog->name); 12893 return libbpf_err_ptr(-EINVAL); 12894 } 12895 if (relative_fd && relative_id) { 12896 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12897 prog->name); 12898 return libbpf_err_ptr(-EINVAL); 12899 } 12900 12901 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12902 link_create_opts.netkit.relative_fd = relative_fd; 12903 link_create_opts.netkit.relative_id = relative_id; 12904 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12905 12906 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12907 } 12908 12909 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12910 int target_fd, 12911 const char *attach_func_name) 12912 { 12913 int btf_id; 12914 12915 if (!!target_fd != !!attach_func_name) { 12916 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12917 prog->name); 12918 return libbpf_err_ptr(-EINVAL); 12919 } 12920 12921 if (prog->type != BPF_PROG_TYPE_EXT) { 12922 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace\n", 12923 prog->name); 12924 return libbpf_err_ptr(-EINVAL); 12925 } 12926 12927 if (target_fd) { 12928 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12929 12930 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd, prog->obj->token_fd); 12931 if (btf_id < 0) 12932 return libbpf_err_ptr(btf_id); 12933 12934 target_opts.target_btf_id = btf_id; 12935 12936 return bpf_program_attach_fd(prog, target_fd, "freplace", 12937 &target_opts); 12938 } else { 12939 /* no target, so use raw_tracepoint_open for compatibility 12940 * with old kernels 12941 */ 12942 return bpf_program__attach_trace(prog); 12943 } 12944 } 12945 12946 struct bpf_link * 12947 bpf_program__attach_iter(const struct bpf_program *prog, 12948 const struct bpf_iter_attach_opts *opts) 12949 { 12950 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12951 struct bpf_link *link; 12952 int prog_fd, link_fd; 12953 __u32 target_fd = 0; 12954 12955 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12956 return libbpf_err_ptr(-EINVAL); 12957 12958 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12959 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12960 12961 prog_fd = bpf_program__fd(prog); 12962 if (prog_fd < 0) { 12963 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12964 return libbpf_err_ptr(-EINVAL); 12965 } 12966 12967 link = calloc(1, sizeof(*link)); 12968 if (!link) 12969 return libbpf_err_ptr(-ENOMEM); 12970 link->detach = &bpf_link__detach_fd; 12971 12972 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12973 &link_create_opts); 12974 if (link_fd < 0) { 12975 link_fd = -errno; 12976 free(link); 12977 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12978 prog->name, errstr(link_fd)); 12979 return libbpf_err_ptr(link_fd); 12980 } 12981 link->fd = link_fd; 12982 return link; 12983 } 12984 12985 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12986 { 12987 *link = bpf_program__attach_iter(prog, NULL); 12988 return libbpf_get_error(*link); 12989 } 12990 12991 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12992 const struct bpf_netfilter_opts *opts) 12993 { 12994 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12995 struct bpf_link *link; 12996 int prog_fd, link_fd; 12997 12998 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12999 return libbpf_err_ptr(-EINVAL); 13000 13001 prog_fd = bpf_program__fd(prog); 13002 if (prog_fd < 0) { 13003 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 13004 return libbpf_err_ptr(-EINVAL); 13005 } 13006 13007 link = calloc(1, sizeof(*link)); 13008 if (!link) 13009 return libbpf_err_ptr(-ENOMEM); 13010 13011 link->detach = &bpf_link__detach_fd; 13012 13013 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 13014 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 13015 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 13016 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 13017 13018 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 13019 if (link_fd < 0) { 13020 link_fd = -errno; 13021 free(link); 13022 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 13023 prog->name, errstr(link_fd)); 13024 return libbpf_err_ptr(link_fd); 13025 } 13026 link->fd = link_fd; 13027 13028 return link; 13029 } 13030 13031 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 13032 { 13033 struct bpf_link *link = NULL; 13034 int err; 13035 13036 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13037 return libbpf_err_ptr(-EOPNOTSUPP); 13038 13039 if (bpf_program__fd(prog) < 0) { 13040 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 13041 prog->name); 13042 return libbpf_err_ptr(-EINVAL); 13043 } 13044 13045 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 13046 if (err) 13047 return libbpf_err_ptr(err); 13048 13049 /* When calling bpf_program__attach() explicitly, auto-attach support 13050 * is expected to work, so NULL returned link is considered an error. 13051 * This is different for skeleton's attach, see comment in 13052 * bpf_object__attach_skeleton(). 13053 */ 13054 if (!link) 13055 return libbpf_err_ptr(-EOPNOTSUPP); 13056 13057 return link; 13058 } 13059 13060 struct bpf_link_struct_ops { 13061 struct bpf_link link; 13062 int map_fd; 13063 }; 13064 13065 static int bpf_link__detach_struct_ops(struct bpf_link *link) 13066 { 13067 struct bpf_link_struct_ops *st_link; 13068 __u32 zero = 0; 13069 13070 st_link = container_of(link, struct bpf_link_struct_ops, link); 13071 13072 if (st_link->map_fd < 0) 13073 /* w/o a real link */ 13074 return bpf_map_delete_elem(link->fd, &zero); 13075 13076 return close(link->fd); 13077 } 13078 13079 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 13080 { 13081 struct bpf_link_struct_ops *link; 13082 __u32 zero = 0; 13083 int err, fd; 13084 13085 if (!bpf_map__is_struct_ops(map)) { 13086 pr_warn("map '%s': can't attach non-struct_ops map\n", map->name); 13087 return libbpf_err_ptr(-EINVAL); 13088 } 13089 13090 if (map->fd < 0) { 13091 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name); 13092 return libbpf_err_ptr(-EINVAL); 13093 } 13094 13095 link = calloc(1, sizeof(*link)); 13096 if (!link) 13097 return libbpf_err_ptr(-EINVAL); 13098 13099 /* kern_vdata should be prepared during the loading phase. */ 13100 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13101 /* It can be EBUSY if the map has been used to create or 13102 * update a link before. We don't allow updating the value of 13103 * a struct_ops once it is set. That ensures that the value 13104 * never changed. So, it is safe to skip EBUSY. 13105 */ 13106 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 13107 free(link); 13108 return libbpf_err_ptr(err); 13109 } 13110 13111 link->link.detach = bpf_link__detach_struct_ops; 13112 13113 if (!(map->def.map_flags & BPF_F_LINK)) { 13114 /* w/o a real link */ 13115 link->link.fd = map->fd; 13116 link->map_fd = -1; 13117 return &link->link; 13118 } 13119 13120 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 13121 if (fd < 0) { 13122 free(link); 13123 return libbpf_err_ptr(fd); 13124 } 13125 13126 link->link.fd = fd; 13127 link->map_fd = map->fd; 13128 13129 return &link->link; 13130 } 13131 13132 /* 13133 * Swap the back struct_ops of a link with a new struct_ops map. 13134 */ 13135 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 13136 { 13137 struct bpf_link_struct_ops *st_ops_link; 13138 __u32 zero = 0; 13139 int err; 13140 13141 if (!bpf_map__is_struct_ops(map)) 13142 return libbpf_err(-EINVAL); 13143 13144 if (map->fd < 0) { 13145 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 13146 return libbpf_err(-EINVAL); 13147 } 13148 13149 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 13150 /* Ensure the type of a link is correct */ 13151 if (st_ops_link->map_fd < 0) 13152 return libbpf_err(-EINVAL); 13153 13154 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 13155 /* It can be EBUSY if the map has been used to create or 13156 * update a link before. We don't allow updating the value of 13157 * a struct_ops once it is set. That ensures that the value 13158 * never changed. So, it is safe to skip EBUSY. 13159 */ 13160 if (err && err != -EBUSY) 13161 return err; 13162 13163 err = bpf_link_update(link->fd, map->fd, NULL); 13164 if (err < 0) 13165 return err; 13166 13167 st_ops_link->map_fd = map->fd; 13168 13169 return 0; 13170 } 13171 13172 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 13173 void *private_data); 13174 13175 static enum bpf_perf_event_ret 13176 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 13177 void **copy_mem, size_t *copy_size, 13178 bpf_perf_event_print_t fn, void *private_data) 13179 { 13180 struct perf_event_mmap_page *header = mmap_mem; 13181 __u64 data_head = ring_buffer_read_head(header); 13182 __u64 data_tail = header->data_tail; 13183 void *base = ((__u8 *)header) + page_size; 13184 int ret = LIBBPF_PERF_EVENT_CONT; 13185 struct perf_event_header *ehdr; 13186 size_t ehdr_size; 13187 13188 while (data_head != data_tail) { 13189 ehdr = base + (data_tail & (mmap_size - 1)); 13190 ehdr_size = ehdr->size; 13191 13192 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 13193 void *copy_start = ehdr; 13194 size_t len_first = base + mmap_size - copy_start; 13195 size_t len_secnd = ehdr_size - len_first; 13196 13197 if (*copy_size < ehdr_size) { 13198 free(*copy_mem); 13199 *copy_mem = malloc(ehdr_size); 13200 if (!*copy_mem) { 13201 *copy_size = 0; 13202 ret = LIBBPF_PERF_EVENT_ERROR; 13203 break; 13204 } 13205 *copy_size = ehdr_size; 13206 } 13207 13208 memcpy(*copy_mem, copy_start, len_first); 13209 memcpy(*copy_mem + len_first, base, len_secnd); 13210 ehdr = *copy_mem; 13211 } 13212 13213 ret = fn(ehdr, private_data); 13214 data_tail += ehdr_size; 13215 if (ret != LIBBPF_PERF_EVENT_CONT) 13216 break; 13217 } 13218 13219 ring_buffer_write_tail(header, data_tail); 13220 return libbpf_err(ret); 13221 } 13222 13223 struct perf_buffer; 13224 13225 struct perf_buffer_params { 13226 struct perf_event_attr *attr; 13227 /* if event_cb is specified, it takes precendence */ 13228 perf_buffer_event_fn event_cb; 13229 /* sample_cb and lost_cb are higher-level common-case callbacks */ 13230 perf_buffer_sample_fn sample_cb; 13231 perf_buffer_lost_fn lost_cb; 13232 void *ctx; 13233 int cpu_cnt; 13234 int *cpus; 13235 int *map_keys; 13236 }; 13237 13238 struct perf_cpu_buf { 13239 struct perf_buffer *pb; 13240 void *base; /* mmap()'ed memory */ 13241 void *buf; /* for reconstructing segmented data */ 13242 size_t buf_size; 13243 int fd; 13244 int cpu; 13245 int map_key; 13246 }; 13247 13248 struct perf_buffer { 13249 perf_buffer_event_fn event_cb; 13250 perf_buffer_sample_fn sample_cb; 13251 perf_buffer_lost_fn lost_cb; 13252 void *ctx; /* passed into callbacks */ 13253 13254 size_t page_size; 13255 size_t mmap_size; 13256 struct perf_cpu_buf **cpu_bufs; 13257 struct epoll_event *events; 13258 int cpu_cnt; /* number of allocated CPU buffers */ 13259 int epoll_fd; /* perf event FD */ 13260 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 13261 }; 13262 13263 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 13264 struct perf_cpu_buf *cpu_buf) 13265 { 13266 if (!cpu_buf) 13267 return; 13268 if (cpu_buf->base && 13269 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 13270 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 13271 if (cpu_buf->fd >= 0) { 13272 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 13273 close(cpu_buf->fd); 13274 } 13275 free(cpu_buf->buf); 13276 free(cpu_buf); 13277 } 13278 13279 void perf_buffer__free(struct perf_buffer *pb) 13280 { 13281 int i; 13282 13283 if (IS_ERR_OR_NULL(pb)) 13284 return; 13285 if (pb->cpu_bufs) { 13286 for (i = 0; i < pb->cpu_cnt; i++) { 13287 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13288 13289 if (!cpu_buf) 13290 continue; 13291 13292 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 13293 perf_buffer__free_cpu_buf(pb, cpu_buf); 13294 } 13295 free(pb->cpu_bufs); 13296 } 13297 if (pb->epoll_fd >= 0) 13298 close(pb->epoll_fd); 13299 free(pb->events); 13300 free(pb); 13301 } 13302 13303 static struct perf_cpu_buf * 13304 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 13305 int cpu, int map_key) 13306 { 13307 struct perf_cpu_buf *cpu_buf; 13308 int err; 13309 13310 cpu_buf = calloc(1, sizeof(*cpu_buf)); 13311 if (!cpu_buf) 13312 return ERR_PTR(-ENOMEM); 13313 13314 cpu_buf->pb = pb; 13315 cpu_buf->cpu = cpu; 13316 cpu_buf->map_key = map_key; 13317 13318 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 13319 -1, PERF_FLAG_FD_CLOEXEC); 13320 if (cpu_buf->fd < 0) { 13321 err = -errno; 13322 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 13323 cpu, errstr(err)); 13324 goto error; 13325 } 13326 13327 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13328 PROT_READ | PROT_WRITE, MAP_SHARED, 13329 cpu_buf->fd, 0); 13330 if (cpu_buf->base == MAP_FAILED) { 13331 cpu_buf->base = NULL; 13332 err = -errno; 13333 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13334 cpu, errstr(err)); 13335 goto error; 13336 } 13337 13338 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13339 err = -errno; 13340 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13341 cpu, errstr(err)); 13342 goto error; 13343 } 13344 13345 return cpu_buf; 13346 13347 error: 13348 perf_buffer__free_cpu_buf(pb, cpu_buf); 13349 return (struct perf_cpu_buf *)ERR_PTR(err); 13350 } 13351 13352 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13353 struct perf_buffer_params *p); 13354 13355 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13356 perf_buffer_sample_fn sample_cb, 13357 perf_buffer_lost_fn lost_cb, 13358 void *ctx, 13359 const struct perf_buffer_opts *opts) 13360 { 13361 const size_t attr_sz = sizeof(struct perf_event_attr); 13362 struct perf_buffer_params p = {}; 13363 struct perf_event_attr attr; 13364 __u32 sample_period; 13365 13366 if (!OPTS_VALID(opts, perf_buffer_opts)) 13367 return libbpf_err_ptr(-EINVAL); 13368 13369 sample_period = OPTS_GET(opts, sample_period, 1); 13370 if (!sample_period) 13371 sample_period = 1; 13372 13373 memset(&attr, 0, attr_sz); 13374 attr.size = attr_sz; 13375 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13376 attr.type = PERF_TYPE_SOFTWARE; 13377 attr.sample_type = PERF_SAMPLE_RAW; 13378 attr.wakeup_events = sample_period; 13379 13380 p.attr = &attr; 13381 p.sample_cb = sample_cb; 13382 p.lost_cb = lost_cb; 13383 p.ctx = ctx; 13384 13385 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13386 } 13387 13388 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13389 struct perf_event_attr *attr, 13390 perf_buffer_event_fn event_cb, void *ctx, 13391 const struct perf_buffer_raw_opts *opts) 13392 { 13393 struct perf_buffer_params p = {}; 13394 13395 if (!attr) 13396 return libbpf_err_ptr(-EINVAL); 13397 13398 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13399 return libbpf_err_ptr(-EINVAL); 13400 13401 p.attr = attr; 13402 p.event_cb = event_cb; 13403 p.ctx = ctx; 13404 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13405 p.cpus = OPTS_GET(opts, cpus, NULL); 13406 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13407 13408 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13409 } 13410 13411 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13412 struct perf_buffer_params *p) 13413 { 13414 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13415 struct bpf_map_info map; 13416 struct perf_buffer *pb; 13417 bool *online = NULL; 13418 __u32 map_info_len; 13419 int err, i, j, n; 13420 13421 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13422 pr_warn("page count should be power of two, but is %zu\n", 13423 page_cnt); 13424 return ERR_PTR(-EINVAL); 13425 } 13426 13427 /* best-effort sanity checks */ 13428 memset(&map, 0, sizeof(map)); 13429 map_info_len = sizeof(map); 13430 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13431 if (err) { 13432 err = -errno; 13433 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13434 * -EBADFD, -EFAULT, or -E2BIG on real error 13435 */ 13436 if (err != -EINVAL) { 13437 pr_warn("failed to get map info for map FD %d: %s\n", 13438 map_fd, errstr(err)); 13439 return ERR_PTR(err); 13440 } 13441 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13442 map_fd); 13443 } else { 13444 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13445 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13446 map.name); 13447 return ERR_PTR(-EINVAL); 13448 } 13449 } 13450 13451 pb = calloc(1, sizeof(*pb)); 13452 if (!pb) 13453 return ERR_PTR(-ENOMEM); 13454 13455 pb->event_cb = p->event_cb; 13456 pb->sample_cb = p->sample_cb; 13457 pb->lost_cb = p->lost_cb; 13458 pb->ctx = p->ctx; 13459 13460 pb->page_size = getpagesize(); 13461 pb->mmap_size = pb->page_size * page_cnt; 13462 pb->map_fd = map_fd; 13463 13464 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13465 if (pb->epoll_fd < 0) { 13466 err = -errno; 13467 pr_warn("failed to create epoll instance: %s\n", 13468 errstr(err)); 13469 goto error; 13470 } 13471 13472 if (p->cpu_cnt > 0) { 13473 pb->cpu_cnt = p->cpu_cnt; 13474 } else { 13475 pb->cpu_cnt = libbpf_num_possible_cpus(); 13476 if (pb->cpu_cnt < 0) { 13477 err = pb->cpu_cnt; 13478 goto error; 13479 } 13480 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13481 pb->cpu_cnt = map.max_entries; 13482 } 13483 13484 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13485 if (!pb->events) { 13486 err = -ENOMEM; 13487 pr_warn("failed to allocate events: out of memory\n"); 13488 goto error; 13489 } 13490 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13491 if (!pb->cpu_bufs) { 13492 err = -ENOMEM; 13493 pr_warn("failed to allocate buffers: out of memory\n"); 13494 goto error; 13495 } 13496 13497 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13498 if (err) { 13499 pr_warn("failed to get online CPU mask: %s\n", errstr(err)); 13500 goto error; 13501 } 13502 13503 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13504 struct perf_cpu_buf *cpu_buf; 13505 int cpu, map_key; 13506 13507 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13508 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13509 13510 /* in case user didn't explicitly requested particular CPUs to 13511 * be attached to, skip offline/not present CPUs 13512 */ 13513 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13514 continue; 13515 13516 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13517 if (IS_ERR(cpu_buf)) { 13518 err = PTR_ERR(cpu_buf); 13519 goto error; 13520 } 13521 13522 pb->cpu_bufs[j] = cpu_buf; 13523 13524 err = bpf_map_update_elem(pb->map_fd, &map_key, 13525 &cpu_buf->fd, 0); 13526 if (err) { 13527 err = -errno; 13528 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13529 cpu, map_key, cpu_buf->fd, 13530 errstr(err)); 13531 goto error; 13532 } 13533 13534 pb->events[j].events = EPOLLIN; 13535 pb->events[j].data.ptr = cpu_buf; 13536 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13537 &pb->events[j]) < 0) { 13538 err = -errno; 13539 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13540 cpu, cpu_buf->fd, 13541 errstr(err)); 13542 goto error; 13543 } 13544 j++; 13545 } 13546 pb->cpu_cnt = j; 13547 free(online); 13548 13549 return pb; 13550 13551 error: 13552 free(online); 13553 if (pb) 13554 perf_buffer__free(pb); 13555 return ERR_PTR(err); 13556 } 13557 13558 struct perf_sample_raw { 13559 struct perf_event_header header; 13560 uint32_t size; 13561 char data[]; 13562 }; 13563 13564 struct perf_sample_lost { 13565 struct perf_event_header header; 13566 uint64_t id; 13567 uint64_t lost; 13568 uint64_t sample_id; 13569 }; 13570 13571 static enum bpf_perf_event_ret 13572 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13573 { 13574 struct perf_cpu_buf *cpu_buf = ctx; 13575 struct perf_buffer *pb = cpu_buf->pb; 13576 void *data = e; 13577 13578 /* user wants full control over parsing perf event */ 13579 if (pb->event_cb) 13580 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13581 13582 switch (e->type) { 13583 case PERF_RECORD_SAMPLE: { 13584 struct perf_sample_raw *s = data; 13585 13586 if (pb->sample_cb) 13587 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13588 break; 13589 } 13590 case PERF_RECORD_LOST: { 13591 struct perf_sample_lost *s = data; 13592 13593 if (pb->lost_cb) 13594 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13595 break; 13596 } 13597 default: 13598 pr_warn("unknown perf sample type %d\n", e->type); 13599 return LIBBPF_PERF_EVENT_ERROR; 13600 } 13601 return LIBBPF_PERF_EVENT_CONT; 13602 } 13603 13604 static int perf_buffer__process_records(struct perf_buffer *pb, 13605 struct perf_cpu_buf *cpu_buf) 13606 { 13607 enum bpf_perf_event_ret ret; 13608 13609 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13610 pb->page_size, &cpu_buf->buf, 13611 &cpu_buf->buf_size, 13612 perf_buffer__process_record, cpu_buf); 13613 if (ret != LIBBPF_PERF_EVENT_CONT) 13614 return ret; 13615 return 0; 13616 } 13617 13618 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13619 { 13620 return pb->epoll_fd; 13621 } 13622 13623 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13624 { 13625 int i, cnt, err; 13626 13627 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13628 if (cnt < 0) 13629 return -errno; 13630 13631 for (i = 0; i < cnt; i++) { 13632 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13633 13634 err = perf_buffer__process_records(pb, cpu_buf); 13635 if (err) { 13636 pr_warn("error while processing records: %s\n", errstr(err)); 13637 return libbpf_err(err); 13638 } 13639 } 13640 return cnt; 13641 } 13642 13643 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13644 * manager. 13645 */ 13646 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13647 { 13648 return pb->cpu_cnt; 13649 } 13650 13651 /* 13652 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13653 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13654 * select()/poll()/epoll() Linux syscalls. 13655 */ 13656 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13657 { 13658 struct perf_cpu_buf *cpu_buf; 13659 13660 if (buf_idx >= pb->cpu_cnt) 13661 return libbpf_err(-EINVAL); 13662 13663 cpu_buf = pb->cpu_bufs[buf_idx]; 13664 if (!cpu_buf) 13665 return libbpf_err(-ENOENT); 13666 13667 return cpu_buf->fd; 13668 } 13669 13670 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13671 { 13672 struct perf_cpu_buf *cpu_buf; 13673 13674 if (buf_idx >= pb->cpu_cnt) 13675 return libbpf_err(-EINVAL); 13676 13677 cpu_buf = pb->cpu_bufs[buf_idx]; 13678 if (!cpu_buf) 13679 return libbpf_err(-ENOENT); 13680 13681 *buf = cpu_buf->base; 13682 *buf_size = pb->mmap_size; 13683 return 0; 13684 } 13685 13686 /* 13687 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13688 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13689 * consume, do nothing and return success. 13690 * Returns: 13691 * - 0 on success; 13692 * - <0 on failure. 13693 */ 13694 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13695 { 13696 struct perf_cpu_buf *cpu_buf; 13697 13698 if (buf_idx >= pb->cpu_cnt) 13699 return libbpf_err(-EINVAL); 13700 13701 cpu_buf = pb->cpu_bufs[buf_idx]; 13702 if (!cpu_buf) 13703 return libbpf_err(-ENOENT); 13704 13705 return perf_buffer__process_records(pb, cpu_buf); 13706 } 13707 13708 int perf_buffer__consume(struct perf_buffer *pb) 13709 { 13710 int i, err; 13711 13712 for (i = 0; i < pb->cpu_cnt; i++) { 13713 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13714 13715 if (!cpu_buf) 13716 continue; 13717 13718 err = perf_buffer__process_records(pb, cpu_buf); 13719 if (err) { 13720 pr_warn("perf_buffer: failed to process records in buffer #%d: %s\n", 13721 i, errstr(err)); 13722 return libbpf_err(err); 13723 } 13724 } 13725 return 0; 13726 } 13727 13728 int bpf_program__set_attach_target(struct bpf_program *prog, 13729 int attach_prog_fd, 13730 const char *attach_func_name) 13731 { 13732 int btf_obj_fd = 0, btf_id = 0, err; 13733 13734 if (!prog || attach_prog_fd < 0) 13735 return libbpf_err(-EINVAL); 13736 13737 if (prog->obj->state >= OBJ_LOADED) 13738 return libbpf_err(-EINVAL); 13739 13740 if (attach_prog_fd && !attach_func_name) { 13741 /* remember attach_prog_fd and let bpf_program__load() find 13742 * BTF ID during the program load 13743 */ 13744 prog->attach_prog_fd = attach_prog_fd; 13745 return 0; 13746 } 13747 13748 if (attach_prog_fd) { 13749 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13750 attach_prog_fd, prog->obj->token_fd); 13751 if (btf_id < 0) 13752 return libbpf_err(btf_id); 13753 } else { 13754 if (!attach_func_name) 13755 return libbpf_err(-EINVAL); 13756 13757 /* load btf_vmlinux, if not yet */ 13758 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13759 if (err) 13760 return libbpf_err(err); 13761 err = find_kernel_btf_id(prog->obj, attach_func_name, 13762 prog->expected_attach_type, 13763 &btf_obj_fd, &btf_id); 13764 if (err) 13765 return libbpf_err(err); 13766 } 13767 13768 prog->attach_btf_id = btf_id; 13769 prog->attach_btf_obj_fd = btf_obj_fd; 13770 prog->attach_prog_fd = attach_prog_fd; 13771 return 0; 13772 } 13773 13774 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13775 { 13776 int err = 0, n, len, start, end = -1; 13777 bool *tmp; 13778 13779 *mask = NULL; 13780 *mask_sz = 0; 13781 13782 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13783 while (*s) { 13784 if (*s == ',' || *s == '\n') { 13785 s++; 13786 continue; 13787 } 13788 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13789 if (n <= 0 || n > 2) { 13790 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13791 err = -EINVAL; 13792 goto cleanup; 13793 } else if (n == 1) { 13794 end = start; 13795 } 13796 if (start < 0 || start > end) { 13797 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13798 start, end, s); 13799 err = -EINVAL; 13800 goto cleanup; 13801 } 13802 tmp = realloc(*mask, end + 1); 13803 if (!tmp) { 13804 err = -ENOMEM; 13805 goto cleanup; 13806 } 13807 *mask = tmp; 13808 memset(tmp + *mask_sz, 0, start - *mask_sz); 13809 memset(tmp + start, 1, end - start + 1); 13810 *mask_sz = end + 1; 13811 s += len; 13812 } 13813 if (!*mask_sz) { 13814 pr_warn("Empty CPU range\n"); 13815 return -EINVAL; 13816 } 13817 return 0; 13818 cleanup: 13819 free(*mask); 13820 *mask = NULL; 13821 return err; 13822 } 13823 13824 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13825 { 13826 int fd, err = 0, len; 13827 char buf[128]; 13828 13829 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13830 if (fd < 0) { 13831 err = -errno; 13832 pr_warn("Failed to open cpu mask file %s: %s\n", fcpu, errstr(err)); 13833 return err; 13834 } 13835 len = read(fd, buf, sizeof(buf)); 13836 close(fd); 13837 if (len <= 0) { 13838 err = len ? -errno : -EINVAL; 13839 pr_warn("Failed to read cpu mask from %s: %s\n", fcpu, errstr(err)); 13840 return err; 13841 } 13842 if (len >= sizeof(buf)) { 13843 pr_warn("CPU mask is too big in file %s\n", fcpu); 13844 return -E2BIG; 13845 } 13846 buf[len] = '\0'; 13847 13848 return parse_cpu_mask_str(buf, mask, mask_sz); 13849 } 13850 13851 int libbpf_num_possible_cpus(void) 13852 { 13853 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13854 static int cpus; 13855 int err, n, i, tmp_cpus; 13856 bool *mask; 13857 13858 tmp_cpus = READ_ONCE(cpus); 13859 if (tmp_cpus > 0) 13860 return tmp_cpus; 13861 13862 err = parse_cpu_mask_file(fcpu, &mask, &n); 13863 if (err) 13864 return libbpf_err(err); 13865 13866 tmp_cpus = 0; 13867 for (i = 0; i < n; i++) { 13868 if (mask[i]) 13869 tmp_cpus++; 13870 } 13871 free(mask); 13872 13873 WRITE_ONCE(cpus, tmp_cpus); 13874 return tmp_cpus; 13875 } 13876 13877 static int populate_skeleton_maps(const struct bpf_object *obj, 13878 struct bpf_map_skeleton *maps, 13879 size_t map_cnt, size_t map_skel_sz) 13880 { 13881 int i; 13882 13883 for (i = 0; i < map_cnt; i++) { 13884 struct bpf_map_skeleton *map_skel = (void *)maps + i * map_skel_sz; 13885 struct bpf_map **map = map_skel->map; 13886 const char *name = map_skel->name; 13887 void **mmaped = map_skel->mmaped; 13888 13889 *map = bpf_object__find_map_by_name(obj, name); 13890 if (!*map) { 13891 pr_warn("failed to find skeleton map '%s'\n", name); 13892 return -ESRCH; 13893 } 13894 13895 /* externs shouldn't be pre-setup from user code */ 13896 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13897 *mmaped = (*map)->mmaped; 13898 } 13899 return 0; 13900 } 13901 13902 static int populate_skeleton_progs(const struct bpf_object *obj, 13903 struct bpf_prog_skeleton *progs, 13904 size_t prog_cnt, size_t prog_skel_sz) 13905 { 13906 int i; 13907 13908 for (i = 0; i < prog_cnt; i++) { 13909 struct bpf_prog_skeleton *prog_skel = (void *)progs + i * prog_skel_sz; 13910 struct bpf_program **prog = prog_skel->prog; 13911 const char *name = prog_skel->name; 13912 13913 *prog = bpf_object__find_program_by_name(obj, name); 13914 if (!*prog) { 13915 pr_warn("failed to find skeleton program '%s'\n", name); 13916 return -ESRCH; 13917 } 13918 } 13919 return 0; 13920 } 13921 13922 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13923 const struct bpf_object_open_opts *opts) 13924 { 13925 struct bpf_object *obj; 13926 int err; 13927 13928 obj = bpf_object_open(NULL, s->data, s->data_sz, s->name, opts); 13929 if (IS_ERR(obj)) { 13930 err = PTR_ERR(obj); 13931 pr_warn("failed to initialize skeleton BPF object '%s': %s\n", 13932 s->name, errstr(err)); 13933 return libbpf_err(err); 13934 } 13935 13936 *s->obj = obj; 13937 err = populate_skeleton_maps(obj, s->maps, s->map_cnt, s->map_skel_sz); 13938 if (err) { 13939 pr_warn("failed to populate skeleton maps for '%s': %s\n", s->name, errstr(err)); 13940 return libbpf_err(err); 13941 } 13942 13943 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13944 if (err) { 13945 pr_warn("failed to populate skeleton progs for '%s': %s\n", s->name, errstr(err)); 13946 return libbpf_err(err); 13947 } 13948 13949 return 0; 13950 } 13951 13952 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13953 { 13954 int err, len, var_idx, i; 13955 const char *var_name; 13956 const struct bpf_map *map; 13957 struct btf *btf; 13958 __u32 map_type_id; 13959 const struct btf_type *map_type, *var_type; 13960 const struct bpf_var_skeleton *var_skel; 13961 struct btf_var_secinfo *var; 13962 13963 if (!s->obj) 13964 return libbpf_err(-EINVAL); 13965 13966 btf = bpf_object__btf(s->obj); 13967 if (!btf) { 13968 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13969 bpf_object__name(s->obj)); 13970 return libbpf_err(-errno); 13971 } 13972 13973 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt, s->map_skel_sz); 13974 if (err) { 13975 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 13976 return libbpf_err(err); 13977 } 13978 13979 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt, s->prog_skel_sz); 13980 if (err) { 13981 pr_warn("failed to populate subskeleton maps: %s\n", errstr(err)); 13982 return libbpf_err(err); 13983 } 13984 13985 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13986 var_skel = (void *)s->vars + var_idx * s->var_skel_sz; 13987 map = *var_skel->map; 13988 map_type_id = bpf_map__btf_value_type_id(map); 13989 map_type = btf__type_by_id(btf, map_type_id); 13990 13991 if (!btf_is_datasec(map_type)) { 13992 pr_warn("type for map '%1$s' is not a datasec: %2$s\n", 13993 bpf_map__name(map), 13994 __btf_kind_str(btf_kind(map_type))); 13995 return libbpf_err(-EINVAL); 13996 } 13997 13998 len = btf_vlen(map_type); 13999 var = btf_var_secinfos(map_type); 14000 for (i = 0; i < len; i++, var++) { 14001 var_type = btf__type_by_id(btf, var->type); 14002 var_name = btf__name_by_offset(btf, var_type->name_off); 14003 if (strcmp(var_name, var_skel->name) == 0) { 14004 *var_skel->addr = map->mmaped + var->offset; 14005 break; 14006 } 14007 } 14008 } 14009 return 0; 14010 } 14011 14012 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 14013 { 14014 if (!s) 14015 return; 14016 free(s->maps); 14017 free(s->progs); 14018 free(s->vars); 14019 free(s); 14020 } 14021 14022 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 14023 { 14024 int i, err; 14025 14026 err = bpf_object__load(*s->obj); 14027 if (err) { 14028 pr_warn("failed to load BPF skeleton '%s': %s\n", s->name, errstr(err)); 14029 return libbpf_err(err); 14030 } 14031 14032 for (i = 0; i < s->map_cnt; i++) { 14033 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14034 struct bpf_map *map = *map_skel->map; 14035 14036 if (!map_skel->mmaped) 14037 continue; 14038 14039 *map_skel->mmaped = map->mmaped; 14040 } 14041 14042 return 0; 14043 } 14044 14045 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 14046 { 14047 int i, err; 14048 14049 for (i = 0; i < s->prog_cnt; i++) { 14050 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14051 struct bpf_program *prog = *prog_skel->prog; 14052 struct bpf_link **link = prog_skel->link; 14053 14054 if (!prog->autoload || !prog->autoattach) 14055 continue; 14056 14057 /* auto-attaching not supported for this program */ 14058 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 14059 continue; 14060 14061 /* if user already set the link manually, don't attempt auto-attach */ 14062 if (*link) 14063 continue; 14064 14065 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 14066 if (err) { 14067 pr_warn("prog '%s': failed to auto-attach: %s\n", 14068 bpf_program__name(prog), errstr(err)); 14069 return libbpf_err(err); 14070 } 14071 14072 /* It's possible that for some SEC() definitions auto-attach 14073 * is supported in some cases (e.g., if definition completely 14074 * specifies target information), but is not in other cases. 14075 * SEC("uprobe") is one such case. If user specified target 14076 * binary and function name, such BPF program can be 14077 * auto-attached. But if not, it shouldn't trigger skeleton's 14078 * attach to fail. It should just be skipped. 14079 * attach_fn signals such case with returning 0 (no error) and 14080 * setting link to NULL. 14081 */ 14082 } 14083 14084 14085 for (i = 0; i < s->map_cnt; i++) { 14086 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14087 struct bpf_map *map = *map_skel->map; 14088 struct bpf_link **link; 14089 14090 if (!map->autocreate || !map->autoattach) 14091 continue; 14092 14093 /* only struct_ops maps can be attached */ 14094 if (!bpf_map__is_struct_ops(map)) 14095 continue; 14096 14097 /* skeleton is created with earlier version of bpftool, notify user */ 14098 if (s->map_skel_sz < offsetofend(struct bpf_map_skeleton, link)) { 14099 pr_warn("map '%s': BPF skeleton version is old, skipping map auto-attachment...\n", 14100 bpf_map__name(map)); 14101 continue; 14102 } 14103 14104 link = map_skel->link; 14105 if (!link) { 14106 pr_warn("map '%s': BPF map skeleton link is uninitialized\n", 14107 bpf_map__name(map)); 14108 continue; 14109 } 14110 14111 if (*link) 14112 continue; 14113 14114 *link = bpf_map__attach_struct_ops(map); 14115 if (!*link) { 14116 err = -errno; 14117 pr_warn("map '%s': failed to auto-attach: %s\n", 14118 bpf_map__name(map), errstr(err)); 14119 return libbpf_err(err); 14120 } 14121 } 14122 14123 return 0; 14124 } 14125 14126 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 14127 { 14128 int i; 14129 14130 for (i = 0; i < s->prog_cnt; i++) { 14131 struct bpf_prog_skeleton *prog_skel = (void *)s->progs + i * s->prog_skel_sz; 14132 struct bpf_link **link = prog_skel->link; 14133 14134 bpf_link__destroy(*link); 14135 *link = NULL; 14136 } 14137 14138 if (s->map_skel_sz < sizeof(struct bpf_map_skeleton)) 14139 return; 14140 14141 for (i = 0; i < s->map_cnt; i++) { 14142 struct bpf_map_skeleton *map_skel = (void *)s->maps + i * s->map_skel_sz; 14143 struct bpf_link **link = map_skel->link; 14144 14145 if (link) { 14146 bpf_link__destroy(*link); 14147 *link = NULL; 14148 } 14149 } 14150 } 14151 14152 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 14153 { 14154 if (!s) 14155 return; 14156 14157 bpf_object__detach_skeleton(s); 14158 if (s->obj) 14159 bpf_object__close(*s->obj); 14160 free(s->maps); 14161 free(s->progs); 14162 free(s); 14163 } 14164