1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <string.h> 22 #include <unistd.h> 23 #include <endian.h> 24 #include <fcntl.h> 25 #include <errno.h> 26 #include <asm/unistd.h> 27 #include <linux/err.h> 28 #include <linux/kernel.h> 29 #include <linux/bpf.h> 30 #include <linux/btf.h> 31 #include <linux/filter.h> 32 #include <linux/list.h> 33 #include <linux/limits.h> 34 #include <linux/perf_event.h> 35 #include <linux/ring_buffer.h> 36 #include <linux/version.h> 37 #include <sys/epoll.h> 38 #include <sys/ioctl.h> 39 #include <sys/mman.h> 40 #include <sys/stat.h> 41 #include <sys/types.h> 42 #include <sys/vfs.h> 43 #include <sys/utsname.h> 44 #include <sys/resource.h> 45 #include <tools/libc_compat.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 57 #ifndef EM_BPF 58 #define EM_BPF 247 59 #endif 60 61 #ifndef BPF_FS_MAGIC 62 #define BPF_FS_MAGIC 0xcafe4a11 63 #endif 64 65 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 66 * compilation if user enables corresponding warning. Disable it explicitly. 67 */ 68 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 69 70 #define __printf(a, b) __attribute__((format(printf, a, b))) 71 72 static int __base_pr(enum libbpf_print_level level, const char *format, 73 va_list args) 74 { 75 if (level == LIBBPF_DEBUG) 76 return 0; 77 78 return vfprintf(stderr, format, args); 79 } 80 81 static libbpf_print_fn_t __libbpf_pr = __base_pr; 82 83 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 84 { 85 libbpf_print_fn_t old_print_fn = __libbpf_pr; 86 87 __libbpf_pr = fn; 88 return old_print_fn; 89 } 90 91 __printf(2, 3) 92 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 93 { 94 va_list args; 95 96 if (!__libbpf_pr) 97 return; 98 99 va_start(args, format); 100 __libbpf_pr(level, format, args); 101 va_end(args); 102 } 103 104 static void pr_perm_msg(int err) 105 { 106 struct rlimit limit; 107 char buf[100]; 108 109 if (err != -EPERM || geteuid() != 0) 110 return; 111 112 err = getrlimit(RLIMIT_MEMLOCK, &limit); 113 if (err) 114 return; 115 116 if (limit.rlim_cur == RLIM_INFINITY) 117 return; 118 119 if (limit.rlim_cur < 1024) 120 snprintf(buf, sizeof(buf), "%lu bytes", limit.rlim_cur); 121 else if (limit.rlim_cur < 1024*1024) 122 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 123 else 124 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 125 126 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 127 buf); 128 } 129 130 #define STRERR_BUFSIZE 128 131 132 /* Copied from tools/perf/util/util.h */ 133 #ifndef zfree 134 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 135 #endif 136 137 #ifndef zclose 138 # define zclose(fd) ({ \ 139 int ___err = 0; \ 140 if ((fd) >= 0) \ 141 ___err = close((fd)); \ 142 fd = -1; \ 143 ___err; }) 144 #endif 145 146 #ifdef HAVE_LIBELF_MMAP_SUPPORT 147 # define LIBBPF_ELF_C_READ_MMAP ELF_C_READ_MMAP 148 #else 149 # define LIBBPF_ELF_C_READ_MMAP ELF_C_READ 150 #endif 151 152 static inline __u64 ptr_to_u64(const void *ptr) 153 { 154 return (__u64) (unsigned long) ptr; 155 } 156 157 struct bpf_capabilities { 158 /* v4.14: kernel support for program & map names. */ 159 __u32 name:1; 160 /* v5.2: kernel support for global data sections. */ 161 __u32 global_data:1; 162 /* BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO support */ 163 __u32 btf_func:1; 164 /* BTF_KIND_VAR and BTF_KIND_DATASEC support */ 165 __u32 btf_datasec:1; 166 /* BPF_F_MMAPABLE is supported for arrays */ 167 __u32 array_mmap:1; 168 }; 169 170 enum reloc_type { 171 RELO_LD64, 172 RELO_CALL, 173 RELO_DATA, 174 RELO_EXTERN, 175 }; 176 177 struct reloc_desc { 178 enum reloc_type type; 179 int insn_idx; 180 int map_idx; 181 int sym_off; 182 }; 183 184 /* 185 * bpf_prog should be a better name but it has been used in 186 * linux/filter.h. 187 */ 188 struct bpf_program { 189 /* Index in elf obj file, for relocation use. */ 190 int idx; 191 char *name; 192 int prog_ifindex; 193 char *section_name; 194 /* section_name with / replaced by _; makes recursive pinning 195 * in bpf_object__pin_programs easier 196 */ 197 char *pin_name; 198 struct bpf_insn *insns; 199 size_t insns_cnt, main_prog_cnt; 200 enum bpf_prog_type type; 201 202 struct reloc_desc *reloc_desc; 203 int nr_reloc; 204 int log_level; 205 206 struct { 207 int nr; 208 int *fds; 209 } instances; 210 bpf_program_prep_t preprocessor; 211 212 struct bpf_object *obj; 213 void *priv; 214 bpf_program_clear_priv_t clear_priv; 215 216 enum bpf_attach_type expected_attach_type; 217 __u32 attach_btf_id; 218 __u32 attach_prog_fd; 219 void *func_info; 220 __u32 func_info_rec_size; 221 __u32 func_info_cnt; 222 223 struct bpf_capabilities *caps; 224 225 void *line_info; 226 __u32 line_info_rec_size; 227 __u32 line_info_cnt; 228 __u32 prog_flags; 229 }; 230 231 #define DATA_SEC ".data" 232 #define BSS_SEC ".bss" 233 #define RODATA_SEC ".rodata" 234 #define KCONFIG_SEC ".kconfig" 235 236 enum libbpf_map_type { 237 LIBBPF_MAP_UNSPEC, 238 LIBBPF_MAP_DATA, 239 LIBBPF_MAP_BSS, 240 LIBBPF_MAP_RODATA, 241 LIBBPF_MAP_KCONFIG, 242 }; 243 244 static const char * const libbpf_type_to_btf_name[] = { 245 [LIBBPF_MAP_DATA] = DATA_SEC, 246 [LIBBPF_MAP_BSS] = BSS_SEC, 247 [LIBBPF_MAP_RODATA] = RODATA_SEC, 248 [LIBBPF_MAP_KCONFIG] = KCONFIG_SEC, 249 }; 250 251 struct bpf_map { 252 char *name; 253 int fd; 254 int sec_idx; 255 size_t sec_offset; 256 int map_ifindex; 257 int inner_map_fd; 258 struct bpf_map_def def; 259 __u32 btf_key_type_id; 260 __u32 btf_value_type_id; 261 void *priv; 262 bpf_map_clear_priv_t clear_priv; 263 enum libbpf_map_type libbpf_type; 264 void *mmaped; 265 char *pin_path; 266 bool pinned; 267 bool reused; 268 }; 269 270 enum extern_type { 271 EXT_UNKNOWN, 272 EXT_CHAR, 273 EXT_BOOL, 274 EXT_INT, 275 EXT_TRISTATE, 276 EXT_CHAR_ARR, 277 }; 278 279 struct extern_desc { 280 const char *name; 281 int sym_idx; 282 int btf_id; 283 enum extern_type type; 284 int sz; 285 int align; 286 int data_off; 287 bool is_signed; 288 bool is_weak; 289 bool is_set; 290 }; 291 292 static LIST_HEAD(bpf_objects_list); 293 294 struct bpf_object { 295 char name[BPF_OBJ_NAME_LEN]; 296 char license[64]; 297 __u32 kern_version; 298 299 struct bpf_program *programs; 300 size_t nr_programs; 301 struct bpf_map *maps; 302 size_t nr_maps; 303 size_t maps_cap; 304 305 char *kconfig; 306 struct extern_desc *externs; 307 int nr_extern; 308 int kconfig_map_idx; 309 310 bool loaded; 311 bool has_pseudo_calls; 312 bool relaxed_core_relocs; 313 314 /* 315 * Information when doing elf related work. Only valid if fd 316 * is valid. 317 */ 318 struct { 319 int fd; 320 const void *obj_buf; 321 size_t obj_buf_sz; 322 Elf *elf; 323 GElf_Ehdr ehdr; 324 Elf_Data *symbols; 325 Elf_Data *data; 326 Elf_Data *rodata; 327 Elf_Data *bss; 328 size_t strtabidx; 329 struct { 330 GElf_Shdr shdr; 331 Elf_Data *data; 332 } *reloc_sects; 333 int nr_reloc_sects; 334 int maps_shndx; 335 int btf_maps_shndx; 336 int text_shndx; 337 int symbols_shndx; 338 int data_shndx; 339 int rodata_shndx; 340 int bss_shndx; 341 } efile; 342 /* 343 * All loaded bpf_object is linked in a list, which is 344 * hidden to caller. bpf_objects__<func> handlers deal with 345 * all objects. 346 */ 347 struct list_head list; 348 349 struct btf *btf; 350 struct btf_ext *btf_ext; 351 352 void *priv; 353 bpf_object_clear_priv_t clear_priv; 354 355 struct bpf_capabilities caps; 356 357 char path[]; 358 }; 359 #define obj_elf_valid(o) ((o)->efile.elf) 360 361 void bpf_program__unload(struct bpf_program *prog) 362 { 363 int i; 364 365 if (!prog) 366 return; 367 368 /* 369 * If the object is opened but the program was never loaded, 370 * it is possible that prog->instances.nr == -1. 371 */ 372 if (prog->instances.nr > 0) { 373 for (i = 0; i < prog->instances.nr; i++) 374 zclose(prog->instances.fds[i]); 375 } else if (prog->instances.nr != -1) { 376 pr_warn("Internal error: instances.nr is %d\n", 377 prog->instances.nr); 378 } 379 380 prog->instances.nr = -1; 381 zfree(&prog->instances.fds); 382 383 zfree(&prog->func_info); 384 zfree(&prog->line_info); 385 } 386 387 static void bpf_program__exit(struct bpf_program *prog) 388 { 389 if (!prog) 390 return; 391 392 if (prog->clear_priv) 393 prog->clear_priv(prog, prog->priv); 394 395 prog->priv = NULL; 396 prog->clear_priv = NULL; 397 398 bpf_program__unload(prog); 399 zfree(&prog->name); 400 zfree(&prog->section_name); 401 zfree(&prog->pin_name); 402 zfree(&prog->insns); 403 zfree(&prog->reloc_desc); 404 405 prog->nr_reloc = 0; 406 prog->insns_cnt = 0; 407 prog->idx = -1; 408 } 409 410 static char *__bpf_program__pin_name(struct bpf_program *prog) 411 { 412 char *name, *p; 413 414 name = p = strdup(prog->section_name); 415 while ((p = strchr(p, '/'))) 416 *p = '_'; 417 418 return name; 419 } 420 421 static int 422 bpf_program__init(void *data, size_t size, char *section_name, int idx, 423 struct bpf_program *prog) 424 { 425 const size_t bpf_insn_sz = sizeof(struct bpf_insn); 426 427 if (size == 0 || size % bpf_insn_sz) { 428 pr_warn("corrupted section '%s', size: %zu\n", 429 section_name, size); 430 return -EINVAL; 431 } 432 433 memset(prog, 0, sizeof(*prog)); 434 435 prog->section_name = strdup(section_name); 436 if (!prog->section_name) { 437 pr_warn("failed to alloc name for prog under section(%d) %s\n", 438 idx, section_name); 439 goto errout; 440 } 441 442 prog->pin_name = __bpf_program__pin_name(prog); 443 if (!prog->pin_name) { 444 pr_warn("failed to alloc pin name for prog under section(%d) %s\n", 445 idx, section_name); 446 goto errout; 447 } 448 449 prog->insns = malloc(size); 450 if (!prog->insns) { 451 pr_warn("failed to alloc insns for prog under section %s\n", 452 section_name); 453 goto errout; 454 } 455 prog->insns_cnt = size / bpf_insn_sz; 456 memcpy(prog->insns, data, size); 457 prog->idx = idx; 458 prog->instances.fds = NULL; 459 prog->instances.nr = -1; 460 prog->type = BPF_PROG_TYPE_UNSPEC; 461 462 return 0; 463 errout: 464 bpf_program__exit(prog); 465 return -ENOMEM; 466 } 467 468 static int 469 bpf_object__add_program(struct bpf_object *obj, void *data, size_t size, 470 char *section_name, int idx) 471 { 472 struct bpf_program prog, *progs; 473 int nr_progs, err; 474 475 err = bpf_program__init(data, size, section_name, idx, &prog); 476 if (err) 477 return err; 478 479 prog.caps = &obj->caps; 480 progs = obj->programs; 481 nr_progs = obj->nr_programs; 482 483 progs = reallocarray(progs, nr_progs + 1, sizeof(progs[0])); 484 if (!progs) { 485 /* 486 * In this case the original obj->programs 487 * is still valid, so don't need special treat for 488 * bpf_close_object(). 489 */ 490 pr_warn("failed to alloc a new program under section '%s'\n", 491 section_name); 492 bpf_program__exit(&prog); 493 return -ENOMEM; 494 } 495 496 pr_debug("found program %s\n", prog.section_name); 497 obj->programs = progs; 498 obj->nr_programs = nr_progs + 1; 499 prog.obj = obj; 500 progs[nr_progs] = prog; 501 return 0; 502 } 503 504 static int 505 bpf_object__init_prog_names(struct bpf_object *obj) 506 { 507 Elf_Data *symbols = obj->efile.symbols; 508 struct bpf_program *prog; 509 size_t pi, si; 510 511 for (pi = 0; pi < obj->nr_programs; pi++) { 512 const char *name = NULL; 513 514 prog = &obj->programs[pi]; 515 516 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym) && !name; 517 si++) { 518 GElf_Sym sym; 519 520 if (!gelf_getsym(symbols, si, &sym)) 521 continue; 522 if (sym.st_shndx != prog->idx) 523 continue; 524 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL) 525 continue; 526 527 name = elf_strptr(obj->efile.elf, 528 obj->efile.strtabidx, 529 sym.st_name); 530 if (!name) { 531 pr_warn("failed to get sym name string for prog %s\n", 532 prog->section_name); 533 return -LIBBPF_ERRNO__LIBELF; 534 } 535 } 536 537 if (!name && prog->idx == obj->efile.text_shndx) 538 name = ".text"; 539 540 if (!name) { 541 pr_warn("failed to find sym for prog %s\n", 542 prog->section_name); 543 return -EINVAL; 544 } 545 546 prog->name = strdup(name); 547 if (!prog->name) { 548 pr_warn("failed to allocate memory for prog sym %s\n", 549 name); 550 return -ENOMEM; 551 } 552 } 553 554 return 0; 555 } 556 557 static __u32 get_kernel_version(void) 558 { 559 __u32 major, minor, patch; 560 struct utsname info; 561 562 uname(&info); 563 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 564 return 0; 565 return KERNEL_VERSION(major, minor, patch); 566 } 567 568 static struct bpf_object *bpf_object__new(const char *path, 569 const void *obj_buf, 570 size_t obj_buf_sz, 571 const char *obj_name) 572 { 573 struct bpf_object *obj; 574 char *end; 575 576 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 577 if (!obj) { 578 pr_warn("alloc memory failed for %s\n", path); 579 return ERR_PTR(-ENOMEM); 580 } 581 582 strcpy(obj->path, path); 583 if (obj_name) { 584 strncpy(obj->name, obj_name, sizeof(obj->name) - 1); 585 obj->name[sizeof(obj->name) - 1] = 0; 586 } else { 587 /* Using basename() GNU version which doesn't modify arg. */ 588 strncpy(obj->name, basename((void *)path), 589 sizeof(obj->name) - 1); 590 end = strchr(obj->name, '.'); 591 if (end) 592 *end = 0; 593 } 594 595 obj->efile.fd = -1; 596 /* 597 * Caller of this function should also call 598 * bpf_object__elf_finish() after data collection to return 599 * obj_buf to user. If not, we should duplicate the buffer to 600 * avoid user freeing them before elf finish. 601 */ 602 obj->efile.obj_buf = obj_buf; 603 obj->efile.obj_buf_sz = obj_buf_sz; 604 obj->efile.maps_shndx = -1; 605 obj->efile.btf_maps_shndx = -1; 606 obj->efile.data_shndx = -1; 607 obj->efile.rodata_shndx = -1; 608 obj->efile.bss_shndx = -1; 609 obj->kconfig_map_idx = -1; 610 611 obj->kern_version = get_kernel_version(); 612 obj->loaded = false; 613 614 INIT_LIST_HEAD(&obj->list); 615 list_add(&obj->list, &bpf_objects_list); 616 return obj; 617 } 618 619 static void bpf_object__elf_finish(struct bpf_object *obj) 620 { 621 if (!obj_elf_valid(obj)) 622 return; 623 624 if (obj->efile.elf) { 625 elf_end(obj->efile.elf); 626 obj->efile.elf = NULL; 627 } 628 obj->efile.symbols = NULL; 629 obj->efile.data = NULL; 630 obj->efile.rodata = NULL; 631 obj->efile.bss = NULL; 632 633 zfree(&obj->efile.reloc_sects); 634 obj->efile.nr_reloc_sects = 0; 635 zclose(obj->efile.fd); 636 obj->efile.obj_buf = NULL; 637 obj->efile.obj_buf_sz = 0; 638 } 639 640 static int bpf_object__elf_init(struct bpf_object *obj) 641 { 642 int err = 0; 643 GElf_Ehdr *ep; 644 645 if (obj_elf_valid(obj)) { 646 pr_warn("elf init: internal error\n"); 647 return -LIBBPF_ERRNO__LIBELF; 648 } 649 650 if (obj->efile.obj_buf_sz > 0) { 651 /* 652 * obj_buf should have been validated by 653 * bpf_object__open_buffer(). 654 */ 655 obj->efile.elf = elf_memory((char *)obj->efile.obj_buf, 656 obj->efile.obj_buf_sz); 657 } else { 658 obj->efile.fd = open(obj->path, O_RDONLY); 659 if (obj->efile.fd < 0) { 660 char errmsg[STRERR_BUFSIZE], *cp; 661 662 err = -errno; 663 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 664 pr_warn("failed to open %s: %s\n", obj->path, cp); 665 return err; 666 } 667 668 obj->efile.elf = elf_begin(obj->efile.fd, 669 LIBBPF_ELF_C_READ_MMAP, NULL); 670 } 671 672 if (!obj->efile.elf) { 673 pr_warn("failed to open %s as ELF file\n", obj->path); 674 err = -LIBBPF_ERRNO__LIBELF; 675 goto errout; 676 } 677 678 if (!gelf_getehdr(obj->efile.elf, &obj->efile.ehdr)) { 679 pr_warn("failed to get EHDR from %s\n", obj->path); 680 err = -LIBBPF_ERRNO__FORMAT; 681 goto errout; 682 } 683 ep = &obj->efile.ehdr; 684 685 /* Old LLVM set e_machine to EM_NONE */ 686 if (ep->e_type != ET_REL || 687 (ep->e_machine && ep->e_machine != EM_BPF)) { 688 pr_warn("%s is not an eBPF object file\n", obj->path); 689 err = -LIBBPF_ERRNO__FORMAT; 690 goto errout; 691 } 692 693 return 0; 694 errout: 695 bpf_object__elf_finish(obj); 696 return err; 697 } 698 699 static int bpf_object__check_endianness(struct bpf_object *obj) 700 { 701 #if __BYTE_ORDER == __LITTLE_ENDIAN 702 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2LSB) 703 return 0; 704 #elif __BYTE_ORDER == __BIG_ENDIAN 705 if (obj->efile.ehdr.e_ident[EI_DATA] == ELFDATA2MSB) 706 return 0; 707 #else 708 # error "Unrecognized __BYTE_ORDER__" 709 #endif 710 pr_warn("endianness mismatch.\n"); 711 return -LIBBPF_ERRNO__ENDIAN; 712 } 713 714 static int 715 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 716 { 717 memcpy(obj->license, data, min(size, sizeof(obj->license) - 1)); 718 pr_debug("license of %s is %s\n", obj->path, obj->license); 719 return 0; 720 } 721 722 static int 723 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 724 { 725 __u32 kver; 726 727 if (size != sizeof(kver)) { 728 pr_warn("invalid kver section in %s\n", obj->path); 729 return -LIBBPF_ERRNO__FORMAT; 730 } 731 memcpy(&kver, data, sizeof(kver)); 732 obj->kern_version = kver; 733 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 734 return 0; 735 } 736 737 static int compare_bpf_map(const void *_a, const void *_b) 738 { 739 const struct bpf_map *a = _a; 740 const struct bpf_map *b = _b; 741 742 if (a->sec_idx != b->sec_idx) 743 return a->sec_idx - b->sec_idx; 744 return a->sec_offset - b->sec_offset; 745 } 746 747 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 748 { 749 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 750 type == BPF_MAP_TYPE_HASH_OF_MAPS) 751 return true; 752 return false; 753 } 754 755 static int bpf_object_search_section_size(const struct bpf_object *obj, 756 const char *name, size_t *d_size) 757 { 758 const GElf_Ehdr *ep = &obj->efile.ehdr; 759 Elf *elf = obj->efile.elf; 760 Elf_Scn *scn = NULL; 761 int idx = 0; 762 763 while ((scn = elf_nextscn(elf, scn)) != NULL) { 764 const char *sec_name; 765 Elf_Data *data; 766 GElf_Shdr sh; 767 768 idx++; 769 if (gelf_getshdr(scn, &sh) != &sh) { 770 pr_warn("failed to get section(%d) header from %s\n", 771 idx, obj->path); 772 return -EIO; 773 } 774 775 sec_name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name); 776 if (!sec_name) { 777 pr_warn("failed to get section(%d) name from %s\n", 778 idx, obj->path); 779 return -EIO; 780 } 781 782 if (strcmp(name, sec_name)) 783 continue; 784 785 data = elf_getdata(scn, 0); 786 if (!data) { 787 pr_warn("failed to get section(%d) data from %s(%s)\n", 788 idx, name, obj->path); 789 return -EIO; 790 } 791 792 *d_size = data->d_size; 793 return 0; 794 } 795 796 return -ENOENT; 797 } 798 799 int bpf_object__section_size(const struct bpf_object *obj, const char *name, 800 __u32 *size) 801 { 802 int ret = -ENOENT; 803 size_t d_size; 804 805 *size = 0; 806 if (!name) { 807 return -EINVAL; 808 } else if (!strcmp(name, DATA_SEC)) { 809 if (obj->efile.data) 810 *size = obj->efile.data->d_size; 811 } else if (!strcmp(name, BSS_SEC)) { 812 if (obj->efile.bss) 813 *size = obj->efile.bss->d_size; 814 } else if (!strcmp(name, RODATA_SEC)) { 815 if (obj->efile.rodata) 816 *size = obj->efile.rodata->d_size; 817 } else { 818 ret = bpf_object_search_section_size(obj, name, &d_size); 819 if (!ret) 820 *size = d_size; 821 } 822 823 return *size ? 0 : ret; 824 } 825 826 int bpf_object__variable_offset(const struct bpf_object *obj, const char *name, 827 __u32 *off) 828 { 829 Elf_Data *symbols = obj->efile.symbols; 830 const char *sname; 831 size_t si; 832 833 if (!name || !off) 834 return -EINVAL; 835 836 for (si = 0; si < symbols->d_size / sizeof(GElf_Sym); si++) { 837 GElf_Sym sym; 838 839 if (!gelf_getsym(symbols, si, &sym)) 840 continue; 841 if (GELF_ST_BIND(sym.st_info) != STB_GLOBAL || 842 GELF_ST_TYPE(sym.st_info) != STT_OBJECT) 843 continue; 844 845 sname = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 846 sym.st_name); 847 if (!sname) { 848 pr_warn("failed to get sym name string for var %s\n", 849 name); 850 return -EIO; 851 } 852 if (strcmp(name, sname) == 0) { 853 *off = sym.st_value; 854 return 0; 855 } 856 } 857 858 return -ENOENT; 859 } 860 861 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 862 { 863 struct bpf_map *new_maps; 864 size_t new_cap; 865 int i; 866 867 if (obj->nr_maps < obj->maps_cap) 868 return &obj->maps[obj->nr_maps++]; 869 870 new_cap = max((size_t)4, obj->maps_cap * 3 / 2); 871 new_maps = realloc(obj->maps, new_cap * sizeof(*obj->maps)); 872 if (!new_maps) { 873 pr_warn("alloc maps for object failed\n"); 874 return ERR_PTR(-ENOMEM); 875 } 876 877 obj->maps_cap = new_cap; 878 obj->maps = new_maps; 879 880 /* zero out new maps */ 881 memset(obj->maps + obj->nr_maps, 0, 882 (obj->maps_cap - obj->nr_maps) * sizeof(*obj->maps)); 883 /* 884 * fill all fd with -1 so won't close incorrect fd (fd=0 is stdin) 885 * when failure (zclose won't close negative fd)). 886 */ 887 for (i = obj->nr_maps; i < obj->maps_cap; i++) { 888 obj->maps[i].fd = -1; 889 obj->maps[i].inner_map_fd = -1; 890 } 891 892 return &obj->maps[obj->nr_maps++]; 893 } 894 895 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 896 { 897 long page_sz = sysconf(_SC_PAGE_SIZE); 898 size_t map_sz; 899 900 map_sz = roundup(map->def.value_size, 8) * map->def.max_entries; 901 map_sz = roundup(map_sz, page_sz); 902 return map_sz; 903 } 904 905 static char *internal_map_name(struct bpf_object *obj, 906 enum libbpf_map_type type) 907 { 908 char map_name[BPF_OBJ_NAME_LEN]; 909 const char *sfx = libbpf_type_to_btf_name[type]; 910 int sfx_len = max((size_t)7, strlen(sfx)); 911 int pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, 912 strlen(obj->name)); 913 914 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 915 sfx_len, libbpf_type_to_btf_name[type]); 916 917 return strdup(map_name); 918 } 919 920 static int 921 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 922 int sec_idx, void *data, size_t data_sz) 923 { 924 struct bpf_map_def *def; 925 struct bpf_map *map; 926 int err; 927 928 map = bpf_object__add_map(obj); 929 if (IS_ERR(map)) 930 return PTR_ERR(map); 931 932 map->libbpf_type = type; 933 map->sec_idx = sec_idx; 934 map->sec_offset = 0; 935 map->name = internal_map_name(obj, type); 936 if (!map->name) { 937 pr_warn("failed to alloc map name\n"); 938 return -ENOMEM; 939 } 940 941 def = &map->def; 942 def->type = BPF_MAP_TYPE_ARRAY; 943 def->key_size = sizeof(int); 944 def->value_size = data_sz; 945 def->max_entries = 1; 946 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 947 ? BPF_F_RDONLY_PROG : 0; 948 def->map_flags |= BPF_F_MMAPABLE; 949 950 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 951 map->name, map->sec_idx, map->sec_offset, def->map_flags); 952 953 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 954 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 955 if (map->mmaped == MAP_FAILED) { 956 err = -errno; 957 map->mmaped = NULL; 958 pr_warn("failed to alloc map '%s' content buffer: %d\n", 959 map->name, err); 960 zfree(&map->name); 961 return err; 962 } 963 964 if (data) 965 memcpy(map->mmaped, data, data_sz); 966 967 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 968 return 0; 969 } 970 971 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 972 { 973 int err; 974 975 /* 976 * Populate obj->maps with libbpf internal maps. 977 */ 978 if (obj->efile.data_shndx >= 0) { 979 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 980 obj->efile.data_shndx, 981 obj->efile.data->d_buf, 982 obj->efile.data->d_size); 983 if (err) 984 return err; 985 } 986 if (obj->efile.rodata_shndx >= 0) { 987 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 988 obj->efile.rodata_shndx, 989 obj->efile.rodata->d_buf, 990 obj->efile.rodata->d_size); 991 if (err) 992 return err; 993 } 994 if (obj->efile.bss_shndx >= 0) { 995 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 996 obj->efile.bss_shndx, 997 NULL, 998 obj->efile.bss->d_size); 999 if (err) 1000 return err; 1001 } 1002 return 0; 1003 } 1004 1005 1006 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1007 const void *name) 1008 { 1009 int i; 1010 1011 for (i = 0; i < obj->nr_extern; i++) { 1012 if (strcmp(obj->externs[i].name, name) == 0) 1013 return &obj->externs[i]; 1014 } 1015 return NULL; 1016 } 1017 1018 static int set_ext_value_tri(struct extern_desc *ext, void *ext_val, 1019 char value) 1020 { 1021 switch (ext->type) { 1022 case EXT_BOOL: 1023 if (value == 'm') { 1024 pr_warn("extern %s=%c should be tristate or char\n", 1025 ext->name, value); 1026 return -EINVAL; 1027 } 1028 *(bool *)ext_val = value == 'y' ? true : false; 1029 break; 1030 case EXT_TRISTATE: 1031 if (value == 'y') 1032 *(enum libbpf_tristate *)ext_val = TRI_YES; 1033 else if (value == 'm') 1034 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1035 else /* value == 'n' */ 1036 *(enum libbpf_tristate *)ext_val = TRI_NO; 1037 break; 1038 case EXT_CHAR: 1039 *(char *)ext_val = value; 1040 break; 1041 case EXT_UNKNOWN: 1042 case EXT_INT: 1043 case EXT_CHAR_ARR: 1044 default: 1045 pr_warn("extern %s=%c should be bool, tristate, or char\n", 1046 ext->name, value); 1047 return -EINVAL; 1048 } 1049 ext->is_set = true; 1050 return 0; 1051 } 1052 1053 static int set_ext_value_str(struct extern_desc *ext, char *ext_val, 1054 const char *value) 1055 { 1056 size_t len; 1057 1058 if (ext->type != EXT_CHAR_ARR) { 1059 pr_warn("extern %s=%s should char array\n", ext->name, value); 1060 return -EINVAL; 1061 } 1062 1063 len = strlen(value); 1064 if (value[len - 1] != '"') { 1065 pr_warn("extern '%s': invalid string config '%s'\n", 1066 ext->name, value); 1067 return -EINVAL; 1068 } 1069 1070 /* strip quotes */ 1071 len -= 2; 1072 if (len >= ext->sz) { 1073 pr_warn("extern '%s': long string config %s of (%zu bytes) truncated to %d bytes\n", 1074 ext->name, value, len, ext->sz - 1); 1075 len = ext->sz - 1; 1076 } 1077 memcpy(ext_val, value + 1, len); 1078 ext_val[len] = '\0'; 1079 ext->is_set = true; 1080 return 0; 1081 } 1082 1083 static int parse_u64(const char *value, __u64 *res) 1084 { 1085 char *value_end; 1086 int err; 1087 1088 errno = 0; 1089 *res = strtoull(value, &value_end, 0); 1090 if (errno) { 1091 err = -errno; 1092 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1093 return err; 1094 } 1095 if (*value_end) { 1096 pr_warn("failed to parse '%s' as integer completely\n", value); 1097 return -EINVAL; 1098 } 1099 return 0; 1100 } 1101 1102 static bool is_ext_value_in_range(const struct extern_desc *ext, __u64 v) 1103 { 1104 int bit_sz = ext->sz * 8; 1105 1106 if (ext->sz == 8) 1107 return true; 1108 1109 /* Validate that value stored in u64 fits in integer of `ext->sz` 1110 * bytes size without any loss of information. If the target integer 1111 * is signed, we rely on the following limits of integer type of 1112 * Y bits and subsequent transformation: 1113 * 1114 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1115 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1116 * 0 <= X + 2^(Y-1) < 2^Y 1117 * 1118 * For unsigned target integer, check that all the (64 - Y) bits are 1119 * zero. 1120 */ 1121 if (ext->is_signed) 1122 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1123 else 1124 return (v >> bit_sz) == 0; 1125 } 1126 1127 static int set_ext_value_num(struct extern_desc *ext, void *ext_val, 1128 __u64 value) 1129 { 1130 if (ext->type != EXT_INT && ext->type != EXT_CHAR) { 1131 pr_warn("extern %s=%llu should be integer\n", 1132 ext->name, value); 1133 return -EINVAL; 1134 } 1135 if (!is_ext_value_in_range(ext, value)) { 1136 pr_warn("extern %s=%llu value doesn't fit in %d bytes\n", 1137 ext->name, value, ext->sz); 1138 return -ERANGE; 1139 } 1140 switch (ext->sz) { 1141 case 1: *(__u8 *)ext_val = value; break; 1142 case 2: *(__u16 *)ext_val = value; break; 1143 case 4: *(__u32 *)ext_val = value; break; 1144 case 8: *(__u64 *)ext_val = value; break; 1145 default: 1146 return -EINVAL; 1147 } 1148 ext->is_set = true; 1149 return 0; 1150 } 1151 1152 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1153 char *buf, void *data) 1154 { 1155 struct extern_desc *ext; 1156 char *sep, *value; 1157 int len, err = 0; 1158 void *ext_val; 1159 __u64 num; 1160 1161 if (strncmp(buf, "CONFIG_", 7)) 1162 return 0; 1163 1164 sep = strchr(buf, '='); 1165 if (!sep) { 1166 pr_warn("failed to parse '%s': no separator\n", buf); 1167 return -EINVAL; 1168 } 1169 1170 /* Trim ending '\n' */ 1171 len = strlen(buf); 1172 if (buf[len - 1] == '\n') 1173 buf[len - 1] = '\0'; 1174 /* Split on '=' and ensure that a value is present. */ 1175 *sep = '\0'; 1176 if (!sep[1]) { 1177 *sep = '='; 1178 pr_warn("failed to parse '%s': no value\n", buf); 1179 return -EINVAL; 1180 } 1181 1182 ext = find_extern_by_name(obj, buf); 1183 if (!ext || ext->is_set) 1184 return 0; 1185 1186 ext_val = data + ext->data_off; 1187 value = sep + 1; 1188 1189 switch (*value) { 1190 case 'y': case 'n': case 'm': 1191 err = set_ext_value_tri(ext, ext_val, *value); 1192 break; 1193 case '"': 1194 err = set_ext_value_str(ext, ext_val, value); 1195 break; 1196 default: 1197 /* assume integer */ 1198 err = parse_u64(value, &num); 1199 if (err) { 1200 pr_warn("extern %s=%s should be integer\n", 1201 ext->name, value); 1202 return err; 1203 } 1204 err = set_ext_value_num(ext, ext_val, num); 1205 break; 1206 } 1207 if (err) 1208 return err; 1209 pr_debug("extern %s=%s\n", ext->name, value); 1210 return 0; 1211 } 1212 1213 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1214 { 1215 char buf[PATH_MAX]; 1216 struct utsname uts; 1217 int len, err = 0; 1218 gzFile file; 1219 1220 uname(&uts); 1221 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1222 if (len < 0) 1223 return -EINVAL; 1224 else if (len >= PATH_MAX) 1225 return -ENAMETOOLONG; 1226 1227 /* gzopen also accepts uncompressed files. */ 1228 file = gzopen(buf, "r"); 1229 if (!file) 1230 file = gzopen("/proc/config.gz", "r"); 1231 1232 if (!file) { 1233 pr_warn("failed to open system Kconfig\n"); 1234 return -ENOENT; 1235 } 1236 1237 while (gzgets(file, buf, sizeof(buf))) { 1238 err = bpf_object__process_kconfig_line(obj, buf, data); 1239 if (err) { 1240 pr_warn("error parsing system Kconfig line '%s': %d\n", 1241 buf, err); 1242 goto out; 1243 } 1244 } 1245 1246 out: 1247 gzclose(file); 1248 return err; 1249 } 1250 1251 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1252 const char *config, void *data) 1253 { 1254 char buf[PATH_MAX]; 1255 int err = 0; 1256 FILE *file; 1257 1258 file = fmemopen((void *)config, strlen(config), "r"); 1259 if (!file) { 1260 err = -errno; 1261 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1262 return err; 1263 } 1264 1265 while (fgets(buf, sizeof(buf), file)) { 1266 err = bpf_object__process_kconfig_line(obj, buf, data); 1267 if (err) { 1268 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1269 buf, err); 1270 break; 1271 } 1272 } 1273 1274 fclose(file); 1275 return err; 1276 } 1277 1278 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1279 { 1280 struct extern_desc *last_ext; 1281 size_t map_sz; 1282 int err; 1283 1284 if (obj->nr_extern == 0) 1285 return 0; 1286 1287 last_ext = &obj->externs[obj->nr_extern - 1]; 1288 map_sz = last_ext->data_off + last_ext->sz; 1289 1290 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1291 obj->efile.symbols_shndx, 1292 NULL, map_sz); 1293 if (err) 1294 return err; 1295 1296 obj->kconfig_map_idx = obj->nr_maps - 1; 1297 1298 return 0; 1299 } 1300 1301 static int bpf_object__init_user_maps(struct bpf_object *obj, bool strict) 1302 { 1303 Elf_Data *symbols = obj->efile.symbols; 1304 int i, map_def_sz = 0, nr_maps = 0, nr_syms; 1305 Elf_Data *data = NULL; 1306 Elf_Scn *scn; 1307 1308 if (obj->efile.maps_shndx < 0) 1309 return 0; 1310 1311 if (!symbols) 1312 return -EINVAL; 1313 1314 scn = elf_getscn(obj->efile.elf, obj->efile.maps_shndx); 1315 if (scn) 1316 data = elf_getdata(scn, NULL); 1317 if (!scn || !data) { 1318 pr_warn("failed to get Elf_Data from map section %d\n", 1319 obj->efile.maps_shndx); 1320 return -EINVAL; 1321 } 1322 1323 /* 1324 * Count number of maps. Each map has a name. 1325 * Array of maps is not supported: only the first element is 1326 * considered. 1327 * 1328 * TODO: Detect array of map and report error. 1329 */ 1330 nr_syms = symbols->d_size / sizeof(GElf_Sym); 1331 for (i = 0; i < nr_syms; i++) { 1332 GElf_Sym sym; 1333 1334 if (!gelf_getsym(symbols, i, &sym)) 1335 continue; 1336 if (sym.st_shndx != obj->efile.maps_shndx) 1337 continue; 1338 nr_maps++; 1339 } 1340 /* Assume equally sized map definitions */ 1341 pr_debug("maps in %s: %d maps in %zd bytes\n", 1342 obj->path, nr_maps, data->d_size); 1343 1344 if (!data->d_size || nr_maps == 0 || (data->d_size % nr_maps) != 0) { 1345 pr_warn("unable to determine map definition size section %s, %d maps in %zd bytes\n", 1346 obj->path, nr_maps, data->d_size); 1347 return -EINVAL; 1348 } 1349 map_def_sz = data->d_size / nr_maps; 1350 1351 /* Fill obj->maps using data in "maps" section. */ 1352 for (i = 0; i < nr_syms; i++) { 1353 GElf_Sym sym; 1354 const char *map_name; 1355 struct bpf_map_def *def; 1356 struct bpf_map *map; 1357 1358 if (!gelf_getsym(symbols, i, &sym)) 1359 continue; 1360 if (sym.st_shndx != obj->efile.maps_shndx) 1361 continue; 1362 1363 map = bpf_object__add_map(obj); 1364 if (IS_ERR(map)) 1365 return PTR_ERR(map); 1366 1367 map_name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 1368 sym.st_name); 1369 if (!map_name) { 1370 pr_warn("failed to get map #%d name sym string for obj %s\n", 1371 i, obj->path); 1372 return -LIBBPF_ERRNO__FORMAT; 1373 } 1374 1375 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1376 map->sec_idx = sym.st_shndx; 1377 map->sec_offset = sym.st_value; 1378 pr_debug("map '%s' (legacy): at sec_idx %d, offset %zu.\n", 1379 map_name, map->sec_idx, map->sec_offset); 1380 if (sym.st_value + map_def_sz > data->d_size) { 1381 pr_warn("corrupted maps section in %s: last map \"%s\" too small\n", 1382 obj->path, map_name); 1383 return -EINVAL; 1384 } 1385 1386 map->name = strdup(map_name); 1387 if (!map->name) { 1388 pr_warn("failed to alloc map name\n"); 1389 return -ENOMEM; 1390 } 1391 pr_debug("map %d is \"%s\"\n", i, map->name); 1392 def = (struct bpf_map_def *)(data->d_buf + sym.st_value); 1393 /* 1394 * If the definition of the map in the object file fits in 1395 * bpf_map_def, copy it. Any extra fields in our version 1396 * of bpf_map_def will default to zero as a result of the 1397 * calloc above. 1398 */ 1399 if (map_def_sz <= sizeof(struct bpf_map_def)) { 1400 memcpy(&map->def, def, map_def_sz); 1401 } else { 1402 /* 1403 * Here the map structure being read is bigger than what 1404 * we expect, truncate if the excess bits are all zero. 1405 * If they are not zero, reject this map as 1406 * incompatible. 1407 */ 1408 char *b; 1409 1410 for (b = ((char *)def) + sizeof(struct bpf_map_def); 1411 b < ((char *)def) + map_def_sz; b++) { 1412 if (*b != 0) { 1413 pr_warn("maps section in %s: \"%s\" has unrecognized, non-zero options\n", 1414 obj->path, map_name); 1415 if (strict) 1416 return -EINVAL; 1417 } 1418 } 1419 memcpy(&map->def, def, sizeof(struct bpf_map_def)); 1420 } 1421 } 1422 return 0; 1423 } 1424 1425 static const struct btf_type * 1426 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 1427 { 1428 const struct btf_type *t = btf__type_by_id(btf, id); 1429 1430 if (res_id) 1431 *res_id = id; 1432 1433 while (btf_is_mod(t) || btf_is_typedef(t)) { 1434 if (res_id) 1435 *res_id = t->type; 1436 t = btf__type_by_id(btf, t->type); 1437 } 1438 1439 return t; 1440 } 1441 1442 /* 1443 * Fetch integer attribute of BTF map definition. Such attributes are 1444 * represented using a pointer to an array, in which dimensionality of array 1445 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 1446 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 1447 * type definition, while using only sizeof(void *) space in ELF data section. 1448 */ 1449 static bool get_map_field_int(const char *map_name, const struct btf *btf, 1450 const struct btf_type *def, 1451 const struct btf_member *m, __u32 *res) 1452 { 1453 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 1454 const char *name = btf__name_by_offset(btf, m->name_off); 1455 const struct btf_array *arr_info; 1456 const struct btf_type *arr_t; 1457 1458 if (!btf_is_ptr(t)) { 1459 pr_warn("map '%s': attr '%s': expected PTR, got %u.\n", 1460 map_name, name, btf_kind(t)); 1461 return false; 1462 } 1463 1464 arr_t = btf__type_by_id(btf, t->type); 1465 if (!arr_t) { 1466 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 1467 map_name, name, t->type); 1468 return false; 1469 } 1470 if (!btf_is_array(arr_t)) { 1471 pr_warn("map '%s': attr '%s': expected ARRAY, got %u.\n", 1472 map_name, name, btf_kind(arr_t)); 1473 return false; 1474 } 1475 arr_info = btf_array(arr_t); 1476 *res = arr_info->nelems; 1477 return true; 1478 } 1479 1480 static int build_map_pin_path(struct bpf_map *map, const char *path) 1481 { 1482 char buf[PATH_MAX]; 1483 int err, len; 1484 1485 if (!path) 1486 path = "/sys/fs/bpf"; 1487 1488 len = snprintf(buf, PATH_MAX, "%s/%s", path, bpf_map__name(map)); 1489 if (len < 0) 1490 return -EINVAL; 1491 else if (len >= PATH_MAX) 1492 return -ENAMETOOLONG; 1493 1494 err = bpf_map__set_pin_path(map, buf); 1495 if (err) 1496 return err; 1497 1498 return 0; 1499 } 1500 1501 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 1502 const struct btf_type *sec, 1503 int var_idx, int sec_idx, 1504 const Elf_Data *data, bool strict, 1505 const char *pin_root_path) 1506 { 1507 const struct btf_type *var, *def, *t; 1508 const struct btf_var_secinfo *vi; 1509 const struct btf_var *var_extra; 1510 const struct btf_member *m; 1511 const char *map_name; 1512 struct bpf_map *map; 1513 int vlen, i; 1514 1515 vi = btf_var_secinfos(sec) + var_idx; 1516 var = btf__type_by_id(obj->btf, vi->type); 1517 var_extra = btf_var(var); 1518 map_name = btf__name_by_offset(obj->btf, var->name_off); 1519 vlen = btf_vlen(var); 1520 1521 if (map_name == NULL || map_name[0] == '\0') { 1522 pr_warn("map #%d: empty name.\n", var_idx); 1523 return -EINVAL; 1524 } 1525 if ((__u64)vi->offset + vi->size > data->d_size) { 1526 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 1527 return -EINVAL; 1528 } 1529 if (!btf_is_var(var)) { 1530 pr_warn("map '%s': unexpected var kind %u.\n", 1531 map_name, btf_kind(var)); 1532 return -EINVAL; 1533 } 1534 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED && 1535 var_extra->linkage != BTF_VAR_STATIC) { 1536 pr_warn("map '%s': unsupported var linkage %u.\n", 1537 map_name, var_extra->linkage); 1538 return -EOPNOTSUPP; 1539 } 1540 1541 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 1542 if (!btf_is_struct(def)) { 1543 pr_warn("map '%s': unexpected def kind %u.\n", 1544 map_name, btf_kind(var)); 1545 return -EINVAL; 1546 } 1547 if (def->size > vi->size) { 1548 pr_warn("map '%s': invalid def size.\n", map_name); 1549 return -EINVAL; 1550 } 1551 1552 map = bpf_object__add_map(obj); 1553 if (IS_ERR(map)) 1554 return PTR_ERR(map); 1555 map->name = strdup(map_name); 1556 if (!map->name) { 1557 pr_warn("map '%s': failed to alloc map name.\n", map_name); 1558 return -ENOMEM; 1559 } 1560 map->libbpf_type = LIBBPF_MAP_UNSPEC; 1561 map->def.type = BPF_MAP_TYPE_UNSPEC; 1562 map->sec_idx = sec_idx; 1563 map->sec_offset = vi->offset; 1564 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 1565 map_name, map->sec_idx, map->sec_offset); 1566 1567 vlen = btf_vlen(def); 1568 m = btf_members(def); 1569 for (i = 0; i < vlen; i++, m++) { 1570 const char *name = btf__name_by_offset(obj->btf, m->name_off); 1571 1572 if (!name) { 1573 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 1574 return -EINVAL; 1575 } 1576 if (strcmp(name, "type") == 0) { 1577 if (!get_map_field_int(map_name, obj->btf, def, m, 1578 &map->def.type)) 1579 return -EINVAL; 1580 pr_debug("map '%s': found type = %u.\n", 1581 map_name, map->def.type); 1582 } else if (strcmp(name, "max_entries") == 0) { 1583 if (!get_map_field_int(map_name, obj->btf, def, m, 1584 &map->def.max_entries)) 1585 return -EINVAL; 1586 pr_debug("map '%s': found max_entries = %u.\n", 1587 map_name, map->def.max_entries); 1588 } else if (strcmp(name, "map_flags") == 0) { 1589 if (!get_map_field_int(map_name, obj->btf, def, m, 1590 &map->def.map_flags)) 1591 return -EINVAL; 1592 pr_debug("map '%s': found map_flags = %u.\n", 1593 map_name, map->def.map_flags); 1594 } else if (strcmp(name, "key_size") == 0) { 1595 __u32 sz; 1596 1597 if (!get_map_field_int(map_name, obj->btf, def, m, 1598 &sz)) 1599 return -EINVAL; 1600 pr_debug("map '%s': found key_size = %u.\n", 1601 map_name, sz); 1602 if (map->def.key_size && map->def.key_size != sz) { 1603 pr_warn("map '%s': conflicting key size %u != %u.\n", 1604 map_name, map->def.key_size, sz); 1605 return -EINVAL; 1606 } 1607 map->def.key_size = sz; 1608 } else if (strcmp(name, "key") == 0) { 1609 __s64 sz; 1610 1611 t = btf__type_by_id(obj->btf, m->type); 1612 if (!t) { 1613 pr_warn("map '%s': key type [%d] not found.\n", 1614 map_name, m->type); 1615 return -EINVAL; 1616 } 1617 if (!btf_is_ptr(t)) { 1618 pr_warn("map '%s': key spec is not PTR: %u.\n", 1619 map_name, btf_kind(t)); 1620 return -EINVAL; 1621 } 1622 sz = btf__resolve_size(obj->btf, t->type); 1623 if (sz < 0) { 1624 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 1625 map_name, t->type, (ssize_t)sz); 1626 return sz; 1627 } 1628 pr_debug("map '%s': found key [%u], sz = %zd.\n", 1629 map_name, t->type, (ssize_t)sz); 1630 if (map->def.key_size && map->def.key_size != sz) { 1631 pr_warn("map '%s': conflicting key size %u != %zd.\n", 1632 map_name, map->def.key_size, (ssize_t)sz); 1633 return -EINVAL; 1634 } 1635 map->def.key_size = sz; 1636 map->btf_key_type_id = t->type; 1637 } else if (strcmp(name, "value_size") == 0) { 1638 __u32 sz; 1639 1640 if (!get_map_field_int(map_name, obj->btf, def, m, 1641 &sz)) 1642 return -EINVAL; 1643 pr_debug("map '%s': found value_size = %u.\n", 1644 map_name, sz); 1645 if (map->def.value_size && map->def.value_size != sz) { 1646 pr_warn("map '%s': conflicting value size %u != %u.\n", 1647 map_name, map->def.value_size, sz); 1648 return -EINVAL; 1649 } 1650 map->def.value_size = sz; 1651 } else if (strcmp(name, "value") == 0) { 1652 __s64 sz; 1653 1654 t = btf__type_by_id(obj->btf, m->type); 1655 if (!t) { 1656 pr_warn("map '%s': value type [%d] not found.\n", 1657 map_name, m->type); 1658 return -EINVAL; 1659 } 1660 if (!btf_is_ptr(t)) { 1661 pr_warn("map '%s': value spec is not PTR: %u.\n", 1662 map_name, btf_kind(t)); 1663 return -EINVAL; 1664 } 1665 sz = btf__resolve_size(obj->btf, t->type); 1666 if (sz < 0) { 1667 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 1668 map_name, t->type, (ssize_t)sz); 1669 return sz; 1670 } 1671 pr_debug("map '%s': found value [%u], sz = %zd.\n", 1672 map_name, t->type, (ssize_t)sz); 1673 if (map->def.value_size && map->def.value_size != sz) { 1674 pr_warn("map '%s': conflicting value size %u != %zd.\n", 1675 map_name, map->def.value_size, (ssize_t)sz); 1676 return -EINVAL; 1677 } 1678 map->def.value_size = sz; 1679 map->btf_value_type_id = t->type; 1680 } else if (strcmp(name, "pinning") == 0) { 1681 __u32 val; 1682 int err; 1683 1684 if (!get_map_field_int(map_name, obj->btf, def, m, 1685 &val)) 1686 return -EINVAL; 1687 pr_debug("map '%s': found pinning = %u.\n", 1688 map_name, val); 1689 1690 if (val != LIBBPF_PIN_NONE && 1691 val != LIBBPF_PIN_BY_NAME) { 1692 pr_warn("map '%s': invalid pinning value %u.\n", 1693 map_name, val); 1694 return -EINVAL; 1695 } 1696 if (val == LIBBPF_PIN_BY_NAME) { 1697 err = build_map_pin_path(map, pin_root_path); 1698 if (err) { 1699 pr_warn("map '%s': couldn't build pin path.\n", 1700 map_name); 1701 return err; 1702 } 1703 } 1704 } else { 1705 if (strict) { 1706 pr_warn("map '%s': unknown field '%s'.\n", 1707 map_name, name); 1708 return -ENOTSUP; 1709 } 1710 pr_debug("map '%s': ignoring unknown field '%s'.\n", 1711 map_name, name); 1712 } 1713 } 1714 1715 if (map->def.type == BPF_MAP_TYPE_UNSPEC) { 1716 pr_warn("map '%s': map type isn't specified.\n", map_name); 1717 return -EINVAL; 1718 } 1719 1720 return 0; 1721 } 1722 1723 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 1724 const char *pin_root_path) 1725 { 1726 const struct btf_type *sec = NULL; 1727 int nr_types, i, vlen, err; 1728 const struct btf_type *t; 1729 const char *name; 1730 Elf_Data *data; 1731 Elf_Scn *scn; 1732 1733 if (obj->efile.btf_maps_shndx < 0) 1734 return 0; 1735 1736 scn = elf_getscn(obj->efile.elf, obj->efile.btf_maps_shndx); 1737 if (scn) 1738 data = elf_getdata(scn, NULL); 1739 if (!scn || !data) { 1740 pr_warn("failed to get Elf_Data from map section %d (%s)\n", 1741 obj->efile.maps_shndx, MAPS_ELF_SEC); 1742 return -EINVAL; 1743 } 1744 1745 nr_types = btf__get_nr_types(obj->btf); 1746 for (i = 1; i <= nr_types; i++) { 1747 t = btf__type_by_id(obj->btf, i); 1748 if (!btf_is_datasec(t)) 1749 continue; 1750 name = btf__name_by_offset(obj->btf, t->name_off); 1751 if (strcmp(name, MAPS_ELF_SEC) == 0) { 1752 sec = t; 1753 break; 1754 } 1755 } 1756 1757 if (!sec) { 1758 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 1759 return -ENOENT; 1760 } 1761 1762 vlen = btf_vlen(sec); 1763 for (i = 0; i < vlen; i++) { 1764 err = bpf_object__init_user_btf_map(obj, sec, i, 1765 obj->efile.btf_maps_shndx, 1766 data, strict, 1767 pin_root_path); 1768 if (err) 1769 return err; 1770 } 1771 1772 return 0; 1773 } 1774 1775 static int bpf_object__init_maps(struct bpf_object *obj, 1776 const struct bpf_object_open_opts *opts) 1777 { 1778 const char *pin_root_path; 1779 bool strict; 1780 int err; 1781 1782 strict = !OPTS_GET(opts, relaxed_maps, false); 1783 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 1784 1785 err = bpf_object__init_user_maps(obj, strict); 1786 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 1787 err = err ?: bpf_object__init_global_data_maps(obj); 1788 err = err ?: bpf_object__init_kconfig_map(obj); 1789 if (err) 1790 return err; 1791 1792 if (obj->nr_maps) { 1793 qsort(obj->maps, obj->nr_maps, sizeof(obj->maps[0]), 1794 compare_bpf_map); 1795 } 1796 return 0; 1797 } 1798 1799 static bool section_have_execinstr(struct bpf_object *obj, int idx) 1800 { 1801 Elf_Scn *scn; 1802 GElf_Shdr sh; 1803 1804 scn = elf_getscn(obj->efile.elf, idx); 1805 if (!scn) 1806 return false; 1807 1808 if (gelf_getshdr(scn, &sh) != &sh) 1809 return false; 1810 1811 if (sh.sh_flags & SHF_EXECINSTR) 1812 return true; 1813 1814 return false; 1815 } 1816 1817 static void bpf_object__sanitize_btf(struct bpf_object *obj) 1818 { 1819 bool has_datasec = obj->caps.btf_datasec; 1820 bool has_func = obj->caps.btf_func; 1821 struct btf *btf = obj->btf; 1822 struct btf_type *t; 1823 int i, j, vlen; 1824 1825 if (!obj->btf || (has_func && has_datasec)) 1826 return; 1827 1828 for (i = 1; i <= btf__get_nr_types(btf); i++) { 1829 t = (struct btf_type *)btf__type_by_id(btf, i); 1830 1831 if (!has_datasec && btf_is_var(t)) { 1832 /* replace VAR with INT */ 1833 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 1834 /* 1835 * using size = 1 is the safest choice, 4 will be too 1836 * big and cause kernel BTF validation failure if 1837 * original variable took less than 4 bytes 1838 */ 1839 t->size = 1; 1840 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 1841 } else if (!has_datasec && btf_is_datasec(t)) { 1842 /* replace DATASEC with STRUCT */ 1843 const struct btf_var_secinfo *v = btf_var_secinfos(t); 1844 struct btf_member *m = btf_members(t); 1845 struct btf_type *vt; 1846 char *name; 1847 1848 name = (char *)btf__name_by_offset(btf, t->name_off); 1849 while (*name) { 1850 if (*name == '.') 1851 *name = '_'; 1852 name++; 1853 } 1854 1855 vlen = btf_vlen(t); 1856 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 1857 for (j = 0; j < vlen; j++, v++, m++) { 1858 /* order of field assignments is important */ 1859 m->offset = v->offset * 8; 1860 m->type = v->type; 1861 /* preserve variable name as member name */ 1862 vt = (void *)btf__type_by_id(btf, v->type); 1863 m->name_off = vt->name_off; 1864 } 1865 } else if (!has_func && btf_is_func_proto(t)) { 1866 /* replace FUNC_PROTO with ENUM */ 1867 vlen = btf_vlen(t); 1868 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 1869 t->size = sizeof(__u32); /* kernel enforced */ 1870 } else if (!has_func && btf_is_func(t)) { 1871 /* replace FUNC with TYPEDEF */ 1872 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 1873 } 1874 } 1875 } 1876 1877 static void bpf_object__sanitize_btf_ext(struct bpf_object *obj) 1878 { 1879 if (!obj->btf_ext) 1880 return; 1881 1882 if (!obj->caps.btf_func) { 1883 btf_ext__free(obj->btf_ext); 1884 obj->btf_ext = NULL; 1885 } 1886 } 1887 1888 static bool bpf_object__is_btf_mandatory(const struct bpf_object *obj) 1889 { 1890 return obj->efile.btf_maps_shndx >= 0 || 1891 obj->nr_extern > 0; 1892 } 1893 1894 static int bpf_object__init_btf(struct bpf_object *obj, 1895 Elf_Data *btf_data, 1896 Elf_Data *btf_ext_data) 1897 { 1898 bool btf_required = bpf_object__is_btf_mandatory(obj); 1899 int err = 0; 1900 1901 if (btf_data) { 1902 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 1903 if (IS_ERR(obj->btf)) { 1904 pr_warn("Error loading ELF section %s: %d.\n", 1905 BTF_ELF_SEC, err); 1906 goto out; 1907 } 1908 } 1909 if (btf_ext_data) { 1910 if (!obj->btf) { 1911 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 1912 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 1913 goto out; 1914 } 1915 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, 1916 btf_ext_data->d_size); 1917 if (IS_ERR(obj->btf_ext)) { 1918 pr_warn("Error loading ELF section %s: %ld. Ignored and continue.\n", 1919 BTF_EXT_ELF_SEC, PTR_ERR(obj->btf_ext)); 1920 obj->btf_ext = NULL; 1921 goto out; 1922 } 1923 } 1924 out: 1925 if (err || IS_ERR(obj->btf)) { 1926 if (btf_required) 1927 err = err ? : PTR_ERR(obj->btf); 1928 else 1929 err = 0; 1930 if (!IS_ERR_OR_NULL(obj->btf)) 1931 btf__free(obj->btf); 1932 obj->btf = NULL; 1933 } 1934 if (btf_required && !obj->btf) { 1935 pr_warn("BTF is required, but is missing or corrupted.\n"); 1936 return err == 0 ? -ENOENT : err; 1937 } 1938 return 0; 1939 } 1940 1941 static int bpf_object__finalize_btf(struct bpf_object *obj) 1942 { 1943 int err; 1944 1945 if (!obj->btf) 1946 return 0; 1947 1948 err = btf__finalize_data(obj, obj->btf); 1949 if (!err) 1950 return 0; 1951 1952 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 1953 btf__free(obj->btf); 1954 obj->btf = NULL; 1955 btf_ext__free(obj->btf_ext); 1956 obj->btf_ext = NULL; 1957 1958 if (bpf_object__is_btf_mandatory(obj)) { 1959 pr_warn("BTF is required, but is missing or corrupted.\n"); 1960 return -ENOENT; 1961 } 1962 return 0; 1963 } 1964 1965 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 1966 { 1967 int err = 0; 1968 1969 if (!obj->btf) 1970 return 0; 1971 1972 bpf_object__sanitize_btf(obj); 1973 bpf_object__sanitize_btf_ext(obj); 1974 1975 err = btf__load(obj->btf); 1976 if (err) { 1977 pr_warn("Error loading %s into kernel: %d.\n", 1978 BTF_ELF_SEC, err); 1979 btf__free(obj->btf); 1980 obj->btf = NULL; 1981 /* btf_ext can't exist without btf, so free it as well */ 1982 if (obj->btf_ext) { 1983 btf_ext__free(obj->btf_ext); 1984 obj->btf_ext = NULL; 1985 } 1986 1987 if (bpf_object__is_btf_mandatory(obj)) 1988 return err; 1989 } 1990 return 0; 1991 } 1992 1993 static int bpf_object__elf_collect(struct bpf_object *obj) 1994 { 1995 Elf *elf = obj->efile.elf; 1996 GElf_Ehdr *ep = &obj->efile.ehdr; 1997 Elf_Data *btf_ext_data = NULL; 1998 Elf_Data *btf_data = NULL; 1999 Elf_Scn *scn = NULL; 2000 int idx = 0, err = 0; 2001 2002 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 2003 if (!elf_rawdata(elf_getscn(elf, ep->e_shstrndx), NULL)) { 2004 pr_warn("failed to get e_shstrndx from %s\n", obj->path); 2005 return -LIBBPF_ERRNO__FORMAT; 2006 } 2007 2008 while ((scn = elf_nextscn(elf, scn)) != NULL) { 2009 char *name; 2010 GElf_Shdr sh; 2011 Elf_Data *data; 2012 2013 idx++; 2014 if (gelf_getshdr(scn, &sh) != &sh) { 2015 pr_warn("failed to get section(%d) header from %s\n", 2016 idx, obj->path); 2017 return -LIBBPF_ERRNO__FORMAT; 2018 } 2019 2020 name = elf_strptr(elf, ep->e_shstrndx, sh.sh_name); 2021 if (!name) { 2022 pr_warn("failed to get section(%d) name from %s\n", 2023 idx, obj->path); 2024 return -LIBBPF_ERRNO__FORMAT; 2025 } 2026 2027 data = elf_getdata(scn, 0); 2028 if (!data) { 2029 pr_warn("failed to get section(%d) data from %s(%s)\n", 2030 idx, name, obj->path); 2031 return -LIBBPF_ERRNO__FORMAT; 2032 } 2033 pr_debug("section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 2034 idx, name, (unsigned long)data->d_size, 2035 (int)sh.sh_link, (unsigned long)sh.sh_flags, 2036 (int)sh.sh_type); 2037 2038 if (strcmp(name, "license") == 0) { 2039 err = bpf_object__init_license(obj, 2040 data->d_buf, 2041 data->d_size); 2042 if (err) 2043 return err; 2044 } else if (strcmp(name, "version") == 0) { 2045 err = bpf_object__init_kversion(obj, 2046 data->d_buf, 2047 data->d_size); 2048 if (err) 2049 return err; 2050 } else if (strcmp(name, "maps") == 0) { 2051 obj->efile.maps_shndx = idx; 2052 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 2053 obj->efile.btf_maps_shndx = idx; 2054 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 2055 btf_data = data; 2056 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 2057 btf_ext_data = data; 2058 } else if (sh.sh_type == SHT_SYMTAB) { 2059 if (obj->efile.symbols) { 2060 pr_warn("bpf: multiple SYMTAB in %s\n", 2061 obj->path); 2062 return -LIBBPF_ERRNO__FORMAT; 2063 } 2064 obj->efile.symbols = data; 2065 obj->efile.symbols_shndx = idx; 2066 obj->efile.strtabidx = sh.sh_link; 2067 } else if (sh.sh_type == SHT_PROGBITS && data->d_size > 0) { 2068 if (sh.sh_flags & SHF_EXECINSTR) { 2069 if (strcmp(name, ".text") == 0) 2070 obj->efile.text_shndx = idx; 2071 err = bpf_object__add_program(obj, data->d_buf, 2072 data->d_size, 2073 name, idx); 2074 if (err) { 2075 char errmsg[STRERR_BUFSIZE]; 2076 char *cp; 2077 2078 cp = libbpf_strerror_r(-err, errmsg, 2079 sizeof(errmsg)); 2080 pr_warn("failed to alloc program %s (%s): %s", 2081 name, obj->path, cp); 2082 return err; 2083 } 2084 } else if (strcmp(name, DATA_SEC) == 0) { 2085 obj->efile.data = data; 2086 obj->efile.data_shndx = idx; 2087 } else if (strcmp(name, RODATA_SEC) == 0) { 2088 obj->efile.rodata = data; 2089 obj->efile.rodata_shndx = idx; 2090 } else { 2091 pr_debug("skip section(%d) %s\n", idx, name); 2092 } 2093 } else if (sh.sh_type == SHT_REL) { 2094 int nr_sects = obj->efile.nr_reloc_sects; 2095 void *sects = obj->efile.reloc_sects; 2096 int sec = sh.sh_info; /* points to other section */ 2097 2098 /* Only do relo for section with exec instructions */ 2099 if (!section_have_execinstr(obj, sec)) { 2100 pr_debug("skip relo %s(%d) for section(%d)\n", 2101 name, idx, sec); 2102 continue; 2103 } 2104 2105 sects = reallocarray(sects, nr_sects + 1, 2106 sizeof(*obj->efile.reloc_sects)); 2107 if (!sects) { 2108 pr_warn("reloc_sects realloc failed\n"); 2109 return -ENOMEM; 2110 } 2111 2112 obj->efile.reloc_sects = sects; 2113 obj->efile.nr_reloc_sects++; 2114 2115 obj->efile.reloc_sects[nr_sects].shdr = sh; 2116 obj->efile.reloc_sects[nr_sects].data = data; 2117 } else if (sh.sh_type == SHT_NOBITS && 2118 strcmp(name, BSS_SEC) == 0) { 2119 obj->efile.bss = data; 2120 obj->efile.bss_shndx = idx; 2121 } else { 2122 pr_debug("skip section(%d) %s\n", idx, name); 2123 } 2124 } 2125 2126 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 2127 pr_warn("Corrupted ELF file: index of strtab invalid\n"); 2128 return -LIBBPF_ERRNO__FORMAT; 2129 } 2130 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 2131 } 2132 2133 static bool sym_is_extern(const GElf_Sym *sym) 2134 { 2135 int bind = GELF_ST_BIND(sym->st_info); 2136 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 2137 return sym->st_shndx == SHN_UNDEF && 2138 (bind == STB_GLOBAL || bind == STB_WEAK) && 2139 GELF_ST_TYPE(sym->st_info) == STT_NOTYPE; 2140 } 2141 2142 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 2143 { 2144 const struct btf_type *t; 2145 const char *var_name; 2146 int i, n; 2147 2148 if (!btf) 2149 return -ESRCH; 2150 2151 n = btf__get_nr_types(btf); 2152 for (i = 1; i <= n; i++) { 2153 t = btf__type_by_id(btf, i); 2154 2155 if (!btf_is_var(t)) 2156 continue; 2157 2158 var_name = btf__name_by_offset(btf, t->name_off); 2159 if (strcmp(var_name, ext_name)) 2160 continue; 2161 2162 if (btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 2163 return -EINVAL; 2164 2165 return i; 2166 } 2167 2168 return -ENOENT; 2169 } 2170 2171 static enum extern_type find_extern_type(const struct btf *btf, int id, 2172 bool *is_signed) 2173 { 2174 const struct btf_type *t; 2175 const char *name; 2176 2177 t = skip_mods_and_typedefs(btf, id, NULL); 2178 name = btf__name_by_offset(btf, t->name_off); 2179 2180 if (is_signed) 2181 *is_signed = false; 2182 switch (btf_kind(t)) { 2183 case BTF_KIND_INT: { 2184 int enc = btf_int_encoding(t); 2185 2186 if (enc & BTF_INT_BOOL) 2187 return t->size == 1 ? EXT_BOOL : EXT_UNKNOWN; 2188 if (is_signed) 2189 *is_signed = enc & BTF_INT_SIGNED; 2190 if (t->size == 1) 2191 return EXT_CHAR; 2192 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 2193 return EXT_UNKNOWN; 2194 return EXT_INT; 2195 } 2196 case BTF_KIND_ENUM: 2197 if (t->size != 4) 2198 return EXT_UNKNOWN; 2199 if (strcmp(name, "libbpf_tristate")) 2200 return EXT_UNKNOWN; 2201 return EXT_TRISTATE; 2202 case BTF_KIND_ARRAY: 2203 if (btf_array(t)->nelems == 0) 2204 return EXT_UNKNOWN; 2205 if (find_extern_type(btf, btf_array(t)->type, NULL) != EXT_CHAR) 2206 return EXT_UNKNOWN; 2207 return EXT_CHAR_ARR; 2208 default: 2209 return EXT_UNKNOWN; 2210 } 2211 } 2212 2213 static int cmp_externs(const void *_a, const void *_b) 2214 { 2215 const struct extern_desc *a = _a; 2216 const struct extern_desc *b = _b; 2217 2218 /* descending order by alignment requirements */ 2219 if (a->align != b->align) 2220 return a->align > b->align ? -1 : 1; 2221 /* ascending order by size, within same alignment class */ 2222 if (a->sz != b->sz) 2223 return a->sz < b->sz ? -1 : 1; 2224 /* resolve ties by name */ 2225 return strcmp(a->name, b->name); 2226 } 2227 2228 static int bpf_object__collect_externs(struct bpf_object *obj) 2229 { 2230 const struct btf_type *t; 2231 struct extern_desc *ext; 2232 int i, n, off, btf_id; 2233 struct btf_type *sec; 2234 const char *ext_name; 2235 Elf_Scn *scn; 2236 GElf_Shdr sh; 2237 2238 if (!obj->efile.symbols) 2239 return 0; 2240 2241 scn = elf_getscn(obj->efile.elf, obj->efile.symbols_shndx); 2242 if (!scn) 2243 return -LIBBPF_ERRNO__FORMAT; 2244 if (gelf_getshdr(scn, &sh) != &sh) 2245 return -LIBBPF_ERRNO__FORMAT; 2246 n = sh.sh_size / sh.sh_entsize; 2247 2248 pr_debug("looking for externs among %d symbols...\n", n); 2249 for (i = 0; i < n; i++) { 2250 GElf_Sym sym; 2251 2252 if (!gelf_getsym(obj->efile.symbols, i, &sym)) 2253 return -LIBBPF_ERRNO__FORMAT; 2254 if (!sym_is_extern(&sym)) 2255 continue; 2256 ext_name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 2257 sym.st_name); 2258 if (!ext_name || !ext_name[0]) 2259 continue; 2260 2261 ext = obj->externs; 2262 ext = reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 2263 if (!ext) 2264 return -ENOMEM; 2265 obj->externs = ext; 2266 ext = &ext[obj->nr_extern]; 2267 memset(ext, 0, sizeof(*ext)); 2268 obj->nr_extern++; 2269 2270 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 2271 if (ext->btf_id <= 0) { 2272 pr_warn("failed to find BTF for extern '%s': %d\n", 2273 ext_name, ext->btf_id); 2274 return ext->btf_id; 2275 } 2276 t = btf__type_by_id(obj->btf, ext->btf_id); 2277 ext->name = btf__name_by_offset(obj->btf, t->name_off); 2278 ext->sym_idx = i; 2279 ext->is_weak = GELF_ST_BIND(sym.st_info) == STB_WEAK; 2280 ext->sz = btf__resolve_size(obj->btf, t->type); 2281 if (ext->sz <= 0) { 2282 pr_warn("failed to resolve size of extern '%s': %d\n", 2283 ext_name, ext->sz); 2284 return ext->sz; 2285 } 2286 ext->align = btf__align_of(obj->btf, t->type); 2287 if (ext->align <= 0) { 2288 pr_warn("failed to determine alignment of extern '%s': %d\n", 2289 ext_name, ext->align); 2290 return -EINVAL; 2291 } 2292 ext->type = find_extern_type(obj->btf, t->type, 2293 &ext->is_signed); 2294 if (ext->type == EXT_UNKNOWN) { 2295 pr_warn("extern '%s' type is unsupported\n", ext_name); 2296 return -ENOTSUP; 2297 } 2298 } 2299 pr_debug("collected %d externs total\n", obj->nr_extern); 2300 2301 if (!obj->nr_extern) 2302 return 0; 2303 2304 /* sort externs by (alignment, size, name) and calculate their offsets 2305 * within a map */ 2306 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 2307 off = 0; 2308 for (i = 0; i < obj->nr_extern; i++) { 2309 ext = &obj->externs[i]; 2310 ext->data_off = roundup(off, ext->align); 2311 off = ext->data_off + ext->sz; 2312 pr_debug("extern #%d: symbol %d, off %u, name %s\n", 2313 i, ext->sym_idx, ext->data_off, ext->name); 2314 } 2315 2316 btf_id = btf__find_by_name(obj->btf, KCONFIG_SEC); 2317 if (btf_id <= 0) { 2318 pr_warn("no BTF info found for '%s' datasec\n", KCONFIG_SEC); 2319 return -ESRCH; 2320 } 2321 2322 sec = (struct btf_type *)btf__type_by_id(obj->btf, btf_id); 2323 sec->size = off; 2324 n = btf_vlen(sec); 2325 for (i = 0; i < n; i++) { 2326 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 2327 2328 t = btf__type_by_id(obj->btf, vs->type); 2329 ext_name = btf__name_by_offset(obj->btf, t->name_off); 2330 ext = find_extern_by_name(obj, ext_name); 2331 if (!ext) { 2332 pr_warn("failed to find extern definition for BTF var '%s'\n", 2333 ext_name); 2334 return -ESRCH; 2335 } 2336 vs->offset = ext->data_off; 2337 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 2338 } 2339 2340 return 0; 2341 } 2342 2343 static struct bpf_program * 2344 bpf_object__find_prog_by_idx(struct bpf_object *obj, int idx) 2345 { 2346 struct bpf_program *prog; 2347 size_t i; 2348 2349 for (i = 0; i < obj->nr_programs; i++) { 2350 prog = &obj->programs[i]; 2351 if (prog->idx == idx) 2352 return prog; 2353 } 2354 return NULL; 2355 } 2356 2357 struct bpf_program * 2358 bpf_object__find_program_by_title(const struct bpf_object *obj, 2359 const char *title) 2360 { 2361 struct bpf_program *pos; 2362 2363 bpf_object__for_each_program(pos, obj) { 2364 if (pos->section_name && !strcmp(pos->section_name, title)) 2365 return pos; 2366 } 2367 return NULL; 2368 } 2369 2370 struct bpf_program * 2371 bpf_object__find_program_by_name(const struct bpf_object *obj, 2372 const char *name) 2373 { 2374 struct bpf_program *prog; 2375 2376 bpf_object__for_each_program(prog, obj) { 2377 if (!strcmp(prog->name, name)) 2378 return prog; 2379 } 2380 return NULL; 2381 } 2382 2383 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 2384 int shndx) 2385 { 2386 return shndx == obj->efile.data_shndx || 2387 shndx == obj->efile.bss_shndx || 2388 shndx == obj->efile.rodata_shndx; 2389 } 2390 2391 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 2392 int shndx) 2393 { 2394 return shndx == obj->efile.maps_shndx || 2395 shndx == obj->efile.btf_maps_shndx; 2396 } 2397 2398 static enum libbpf_map_type 2399 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 2400 { 2401 if (shndx == obj->efile.data_shndx) 2402 return LIBBPF_MAP_DATA; 2403 else if (shndx == obj->efile.bss_shndx) 2404 return LIBBPF_MAP_BSS; 2405 else if (shndx == obj->efile.rodata_shndx) 2406 return LIBBPF_MAP_RODATA; 2407 else if (shndx == obj->efile.symbols_shndx) 2408 return LIBBPF_MAP_KCONFIG; 2409 else 2410 return LIBBPF_MAP_UNSPEC; 2411 } 2412 2413 static int bpf_program__record_reloc(struct bpf_program *prog, 2414 struct reloc_desc *reloc_desc, 2415 __u32 insn_idx, const char *name, 2416 const GElf_Sym *sym, const GElf_Rel *rel) 2417 { 2418 struct bpf_insn *insn = &prog->insns[insn_idx]; 2419 size_t map_idx, nr_maps = prog->obj->nr_maps; 2420 struct bpf_object *obj = prog->obj; 2421 __u32 shdr_idx = sym->st_shndx; 2422 enum libbpf_map_type type; 2423 struct bpf_map *map; 2424 2425 /* sub-program call relocation */ 2426 if (insn->code == (BPF_JMP | BPF_CALL)) { 2427 if (insn->src_reg != BPF_PSEUDO_CALL) { 2428 pr_warn("incorrect bpf_call opcode\n"); 2429 return -LIBBPF_ERRNO__RELOC; 2430 } 2431 /* text_shndx can be 0, if no default "main" program exists */ 2432 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 2433 pr_warn("bad call relo against section %u\n", shdr_idx); 2434 return -LIBBPF_ERRNO__RELOC; 2435 } 2436 if (sym->st_value % 8) { 2437 pr_warn("bad call relo offset: %zu\n", 2438 (size_t)sym->st_value); 2439 return -LIBBPF_ERRNO__RELOC; 2440 } 2441 reloc_desc->type = RELO_CALL; 2442 reloc_desc->insn_idx = insn_idx; 2443 reloc_desc->sym_off = sym->st_value; 2444 obj->has_pseudo_calls = true; 2445 return 0; 2446 } 2447 2448 if (insn->code != (BPF_LD | BPF_IMM | BPF_DW)) { 2449 pr_warn("invalid relo for insns[%d].code 0x%x\n", 2450 insn_idx, insn->code); 2451 return -LIBBPF_ERRNO__RELOC; 2452 } 2453 2454 if (sym_is_extern(sym)) { 2455 int sym_idx = GELF_R_SYM(rel->r_info); 2456 int i, n = obj->nr_extern; 2457 struct extern_desc *ext; 2458 2459 for (i = 0; i < n; i++) { 2460 ext = &obj->externs[i]; 2461 if (ext->sym_idx == sym_idx) 2462 break; 2463 } 2464 if (i >= n) { 2465 pr_warn("extern relo failed to find extern for sym %d\n", 2466 sym_idx); 2467 return -LIBBPF_ERRNO__RELOC; 2468 } 2469 pr_debug("found extern #%d '%s' (sym %d, off %u) for insn %u\n", 2470 i, ext->name, ext->sym_idx, ext->data_off, insn_idx); 2471 reloc_desc->type = RELO_EXTERN; 2472 reloc_desc->insn_idx = insn_idx; 2473 reloc_desc->sym_off = ext->data_off; 2474 return 0; 2475 } 2476 2477 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 2478 pr_warn("invalid relo for \'%s\' in special section 0x%x; forgot to initialize global var?..\n", 2479 name, shdr_idx); 2480 return -LIBBPF_ERRNO__RELOC; 2481 } 2482 2483 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 2484 2485 /* generic map reference relocation */ 2486 if (type == LIBBPF_MAP_UNSPEC) { 2487 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 2488 pr_warn("bad map relo against section %u\n", 2489 shdr_idx); 2490 return -LIBBPF_ERRNO__RELOC; 2491 } 2492 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 2493 map = &obj->maps[map_idx]; 2494 if (map->libbpf_type != type || 2495 map->sec_idx != sym->st_shndx || 2496 map->sec_offset != sym->st_value) 2497 continue; 2498 pr_debug("found map %zd (%s, sec %d, off %zu) for insn %u\n", 2499 map_idx, map->name, map->sec_idx, 2500 map->sec_offset, insn_idx); 2501 break; 2502 } 2503 if (map_idx >= nr_maps) { 2504 pr_warn("map relo failed to find map for sec %u, off %zu\n", 2505 shdr_idx, (size_t)sym->st_value); 2506 return -LIBBPF_ERRNO__RELOC; 2507 } 2508 reloc_desc->type = RELO_LD64; 2509 reloc_desc->insn_idx = insn_idx; 2510 reloc_desc->map_idx = map_idx; 2511 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 2512 return 0; 2513 } 2514 2515 /* global data map relocation */ 2516 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 2517 pr_warn("bad data relo against section %u\n", shdr_idx); 2518 return -LIBBPF_ERRNO__RELOC; 2519 } 2520 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 2521 map = &obj->maps[map_idx]; 2522 if (map->libbpf_type != type) 2523 continue; 2524 pr_debug("found data map %zd (%s, sec %d, off %zu) for insn %u\n", 2525 map_idx, map->name, map->sec_idx, map->sec_offset, 2526 insn_idx); 2527 break; 2528 } 2529 if (map_idx >= nr_maps) { 2530 pr_warn("data relo failed to find map for sec %u\n", 2531 shdr_idx); 2532 return -LIBBPF_ERRNO__RELOC; 2533 } 2534 2535 reloc_desc->type = RELO_DATA; 2536 reloc_desc->insn_idx = insn_idx; 2537 reloc_desc->map_idx = map_idx; 2538 reloc_desc->sym_off = sym->st_value; 2539 return 0; 2540 } 2541 2542 static int 2543 bpf_program__collect_reloc(struct bpf_program *prog, GElf_Shdr *shdr, 2544 Elf_Data *data, struct bpf_object *obj) 2545 { 2546 Elf_Data *symbols = obj->efile.symbols; 2547 int err, i, nrels; 2548 2549 pr_debug("collecting relocating info for: '%s'\n", prog->section_name); 2550 nrels = shdr->sh_size / shdr->sh_entsize; 2551 2552 prog->reloc_desc = malloc(sizeof(*prog->reloc_desc) * nrels); 2553 if (!prog->reloc_desc) { 2554 pr_warn("failed to alloc memory in relocation\n"); 2555 return -ENOMEM; 2556 } 2557 prog->nr_reloc = nrels; 2558 2559 for (i = 0; i < nrels; i++) { 2560 const char *name; 2561 __u32 insn_idx; 2562 GElf_Sym sym; 2563 GElf_Rel rel; 2564 2565 if (!gelf_getrel(data, i, &rel)) { 2566 pr_warn("relocation: failed to get %d reloc\n", i); 2567 return -LIBBPF_ERRNO__FORMAT; 2568 } 2569 if (!gelf_getsym(symbols, GELF_R_SYM(rel.r_info), &sym)) { 2570 pr_warn("relocation: symbol %"PRIx64" not found\n", 2571 GELF_R_SYM(rel.r_info)); 2572 return -LIBBPF_ERRNO__FORMAT; 2573 } 2574 if (rel.r_offset % sizeof(struct bpf_insn)) 2575 return -LIBBPF_ERRNO__FORMAT; 2576 2577 insn_idx = rel.r_offset / sizeof(struct bpf_insn); 2578 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, 2579 sym.st_name) ? : "<?>"; 2580 2581 pr_debug("relo for shdr %u, symb %zu, value %zu, type %d, bind %d, name %d (\'%s\'), insn %u\n", 2582 (__u32)sym.st_shndx, (size_t)GELF_R_SYM(rel.r_info), 2583 (size_t)sym.st_value, GELF_ST_TYPE(sym.st_info), 2584 GELF_ST_BIND(sym.st_info), sym.st_name, name, 2585 insn_idx); 2586 2587 err = bpf_program__record_reloc(prog, &prog->reloc_desc[i], 2588 insn_idx, name, &sym, &rel); 2589 if (err) 2590 return err; 2591 } 2592 return 0; 2593 } 2594 2595 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 2596 { 2597 struct bpf_map_def *def = &map->def; 2598 __u32 key_type_id = 0, value_type_id = 0; 2599 int ret; 2600 2601 /* if it's BTF-defined map, we don't need to search for type IDs */ 2602 if (map->sec_idx == obj->efile.btf_maps_shndx) 2603 return 0; 2604 2605 if (!bpf_map__is_internal(map)) { 2606 ret = btf__get_map_kv_tids(obj->btf, map->name, def->key_size, 2607 def->value_size, &key_type_id, 2608 &value_type_id); 2609 } else { 2610 /* 2611 * LLVM annotates global data differently in BTF, that is, 2612 * only as '.data', '.bss' or '.rodata'. 2613 */ 2614 ret = btf__find_by_name(obj->btf, 2615 libbpf_type_to_btf_name[map->libbpf_type]); 2616 } 2617 if (ret < 0) 2618 return ret; 2619 2620 map->btf_key_type_id = key_type_id; 2621 map->btf_value_type_id = bpf_map__is_internal(map) ? 2622 ret : value_type_id; 2623 return 0; 2624 } 2625 2626 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 2627 { 2628 struct bpf_map_info info = {}; 2629 __u32 len = sizeof(info); 2630 int new_fd, err; 2631 char *new_name; 2632 2633 err = bpf_obj_get_info_by_fd(fd, &info, &len); 2634 if (err) 2635 return err; 2636 2637 new_name = strdup(info.name); 2638 if (!new_name) 2639 return -errno; 2640 2641 new_fd = open("/", O_RDONLY | O_CLOEXEC); 2642 if (new_fd < 0) { 2643 err = -errno; 2644 goto err_free_new_name; 2645 } 2646 2647 new_fd = dup3(fd, new_fd, O_CLOEXEC); 2648 if (new_fd < 0) { 2649 err = -errno; 2650 goto err_close_new_fd; 2651 } 2652 2653 err = zclose(map->fd); 2654 if (err) { 2655 err = -errno; 2656 goto err_close_new_fd; 2657 } 2658 free(map->name); 2659 2660 map->fd = new_fd; 2661 map->name = new_name; 2662 map->def.type = info.type; 2663 map->def.key_size = info.key_size; 2664 map->def.value_size = info.value_size; 2665 map->def.max_entries = info.max_entries; 2666 map->def.map_flags = info.map_flags; 2667 map->btf_key_type_id = info.btf_key_type_id; 2668 map->btf_value_type_id = info.btf_value_type_id; 2669 map->reused = true; 2670 2671 return 0; 2672 2673 err_close_new_fd: 2674 close(new_fd); 2675 err_free_new_name: 2676 free(new_name); 2677 return err; 2678 } 2679 2680 int bpf_map__resize(struct bpf_map *map, __u32 max_entries) 2681 { 2682 if (!map || !max_entries) 2683 return -EINVAL; 2684 2685 /* If map already created, its attributes can't be changed. */ 2686 if (map->fd >= 0) 2687 return -EBUSY; 2688 2689 map->def.max_entries = max_entries; 2690 2691 return 0; 2692 } 2693 2694 static int 2695 bpf_object__probe_name(struct bpf_object *obj) 2696 { 2697 struct bpf_load_program_attr attr; 2698 char *cp, errmsg[STRERR_BUFSIZE]; 2699 struct bpf_insn insns[] = { 2700 BPF_MOV64_IMM(BPF_REG_0, 0), 2701 BPF_EXIT_INSN(), 2702 }; 2703 int ret; 2704 2705 /* make sure basic loading works */ 2706 2707 memset(&attr, 0, sizeof(attr)); 2708 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 2709 attr.insns = insns; 2710 attr.insns_cnt = ARRAY_SIZE(insns); 2711 attr.license = "GPL"; 2712 2713 ret = bpf_load_program_xattr(&attr, NULL, 0); 2714 if (ret < 0) { 2715 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 2716 pr_warn("Error in %s():%s(%d). Couldn't load basic 'r0 = 0' BPF program.\n", 2717 __func__, cp, errno); 2718 return -errno; 2719 } 2720 close(ret); 2721 2722 /* now try the same program, but with the name */ 2723 2724 attr.name = "test"; 2725 ret = bpf_load_program_xattr(&attr, NULL, 0); 2726 if (ret >= 0) { 2727 obj->caps.name = 1; 2728 close(ret); 2729 } 2730 2731 return 0; 2732 } 2733 2734 static int 2735 bpf_object__probe_global_data(struct bpf_object *obj) 2736 { 2737 struct bpf_load_program_attr prg_attr; 2738 struct bpf_create_map_attr map_attr; 2739 char *cp, errmsg[STRERR_BUFSIZE]; 2740 struct bpf_insn insns[] = { 2741 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 2742 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 2743 BPF_MOV64_IMM(BPF_REG_0, 0), 2744 BPF_EXIT_INSN(), 2745 }; 2746 int ret, map; 2747 2748 memset(&map_attr, 0, sizeof(map_attr)); 2749 map_attr.map_type = BPF_MAP_TYPE_ARRAY; 2750 map_attr.key_size = sizeof(int); 2751 map_attr.value_size = 32; 2752 map_attr.max_entries = 1; 2753 2754 map = bpf_create_map_xattr(&map_attr); 2755 if (map < 0) { 2756 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 2757 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 2758 __func__, cp, errno); 2759 return -errno; 2760 } 2761 2762 insns[0].imm = map; 2763 2764 memset(&prg_attr, 0, sizeof(prg_attr)); 2765 prg_attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 2766 prg_attr.insns = insns; 2767 prg_attr.insns_cnt = ARRAY_SIZE(insns); 2768 prg_attr.license = "GPL"; 2769 2770 ret = bpf_load_program_xattr(&prg_attr, NULL, 0); 2771 if (ret >= 0) { 2772 obj->caps.global_data = 1; 2773 close(ret); 2774 } 2775 2776 close(map); 2777 return 0; 2778 } 2779 2780 static int bpf_object__probe_btf_func(struct bpf_object *obj) 2781 { 2782 static const char strs[] = "\0int\0x\0a"; 2783 /* void x(int a) {} */ 2784 __u32 types[] = { 2785 /* int */ 2786 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 2787 /* FUNC_PROTO */ /* [2] */ 2788 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 2789 BTF_PARAM_ENC(7, 1), 2790 /* FUNC x */ /* [3] */ 2791 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 2792 }; 2793 int btf_fd; 2794 2795 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), 2796 strs, sizeof(strs)); 2797 if (btf_fd >= 0) { 2798 obj->caps.btf_func = 1; 2799 close(btf_fd); 2800 return 1; 2801 } 2802 2803 return 0; 2804 } 2805 2806 static int bpf_object__probe_btf_datasec(struct bpf_object *obj) 2807 { 2808 static const char strs[] = "\0x\0.data"; 2809 /* static int a; */ 2810 __u32 types[] = { 2811 /* int */ 2812 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 2813 /* VAR x */ /* [2] */ 2814 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 2815 BTF_VAR_STATIC, 2816 /* DATASEC val */ /* [3] */ 2817 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 2818 BTF_VAR_SECINFO_ENC(2, 0, 4), 2819 }; 2820 int btf_fd; 2821 2822 btf_fd = libbpf__load_raw_btf((char *)types, sizeof(types), 2823 strs, sizeof(strs)); 2824 if (btf_fd >= 0) { 2825 obj->caps.btf_datasec = 1; 2826 close(btf_fd); 2827 return 1; 2828 } 2829 2830 return 0; 2831 } 2832 2833 static int bpf_object__probe_array_mmap(struct bpf_object *obj) 2834 { 2835 struct bpf_create_map_attr attr = { 2836 .map_type = BPF_MAP_TYPE_ARRAY, 2837 .map_flags = BPF_F_MMAPABLE, 2838 .key_size = sizeof(int), 2839 .value_size = sizeof(int), 2840 .max_entries = 1, 2841 }; 2842 int fd; 2843 2844 fd = bpf_create_map_xattr(&attr); 2845 if (fd >= 0) { 2846 obj->caps.array_mmap = 1; 2847 close(fd); 2848 return 1; 2849 } 2850 2851 return 0; 2852 } 2853 2854 static int 2855 bpf_object__probe_caps(struct bpf_object *obj) 2856 { 2857 int (*probe_fn[])(struct bpf_object *obj) = { 2858 bpf_object__probe_name, 2859 bpf_object__probe_global_data, 2860 bpf_object__probe_btf_func, 2861 bpf_object__probe_btf_datasec, 2862 bpf_object__probe_array_mmap, 2863 }; 2864 int i, ret; 2865 2866 for (i = 0; i < ARRAY_SIZE(probe_fn); i++) { 2867 ret = probe_fn[i](obj); 2868 if (ret < 0) 2869 pr_debug("Probe #%d failed with %d.\n", i, ret); 2870 } 2871 2872 return 0; 2873 } 2874 2875 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 2876 { 2877 struct bpf_map_info map_info = {}; 2878 char msg[STRERR_BUFSIZE]; 2879 __u32 map_info_len; 2880 2881 map_info_len = sizeof(map_info); 2882 2883 if (bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len)) { 2884 pr_warn("failed to get map info for map FD %d: %s\n", 2885 map_fd, libbpf_strerror_r(errno, msg, sizeof(msg))); 2886 return false; 2887 } 2888 2889 return (map_info.type == map->def.type && 2890 map_info.key_size == map->def.key_size && 2891 map_info.value_size == map->def.value_size && 2892 map_info.max_entries == map->def.max_entries && 2893 map_info.map_flags == map->def.map_flags); 2894 } 2895 2896 static int 2897 bpf_object__reuse_map(struct bpf_map *map) 2898 { 2899 char *cp, errmsg[STRERR_BUFSIZE]; 2900 int err, pin_fd; 2901 2902 pin_fd = bpf_obj_get(map->pin_path); 2903 if (pin_fd < 0) { 2904 err = -errno; 2905 if (err == -ENOENT) { 2906 pr_debug("found no pinned map to reuse at '%s'\n", 2907 map->pin_path); 2908 return 0; 2909 } 2910 2911 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 2912 pr_warn("couldn't retrieve pinned map '%s': %s\n", 2913 map->pin_path, cp); 2914 return err; 2915 } 2916 2917 if (!map_is_reuse_compat(map, pin_fd)) { 2918 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 2919 map->pin_path); 2920 close(pin_fd); 2921 return -EINVAL; 2922 } 2923 2924 err = bpf_map__reuse_fd(map, pin_fd); 2925 if (err) { 2926 close(pin_fd); 2927 return err; 2928 } 2929 map->pinned = true; 2930 pr_debug("reused pinned map at '%s'\n", map->pin_path); 2931 2932 return 0; 2933 } 2934 2935 static int 2936 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 2937 { 2938 enum libbpf_map_type map_type = map->libbpf_type; 2939 char *cp, errmsg[STRERR_BUFSIZE]; 2940 int err, zero = 0; 2941 2942 /* kernel already zero-initializes .bss map. */ 2943 if (map_type == LIBBPF_MAP_BSS) 2944 return 0; 2945 2946 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 2947 if (err) { 2948 err = -errno; 2949 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 2950 pr_warn("Error setting initial map(%s) contents: %s\n", 2951 map->name, cp); 2952 return err; 2953 } 2954 2955 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 2956 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 2957 err = bpf_map_freeze(map->fd); 2958 if (err) { 2959 err = -errno; 2960 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 2961 pr_warn("Error freezing map(%s) as read-only: %s\n", 2962 map->name, cp); 2963 return err; 2964 } 2965 } 2966 return 0; 2967 } 2968 2969 static int 2970 bpf_object__create_maps(struct bpf_object *obj) 2971 { 2972 struct bpf_create_map_attr create_attr = {}; 2973 int nr_cpus = 0; 2974 unsigned int i; 2975 int err; 2976 2977 for (i = 0; i < obj->nr_maps; i++) { 2978 struct bpf_map *map = &obj->maps[i]; 2979 struct bpf_map_def *def = &map->def; 2980 char *cp, errmsg[STRERR_BUFSIZE]; 2981 int *pfd = &map->fd; 2982 2983 if (map->pin_path) { 2984 err = bpf_object__reuse_map(map); 2985 if (err) { 2986 pr_warn("error reusing pinned map %s\n", 2987 map->name); 2988 return err; 2989 } 2990 } 2991 2992 if (map->fd >= 0) { 2993 pr_debug("skip map create (preset) %s: fd=%d\n", 2994 map->name, map->fd); 2995 continue; 2996 } 2997 2998 if (obj->caps.name) 2999 create_attr.name = map->name; 3000 create_attr.map_ifindex = map->map_ifindex; 3001 create_attr.map_type = def->type; 3002 create_attr.map_flags = def->map_flags; 3003 create_attr.key_size = def->key_size; 3004 create_attr.value_size = def->value_size; 3005 if (def->type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && 3006 !def->max_entries) { 3007 if (!nr_cpus) 3008 nr_cpus = libbpf_num_possible_cpus(); 3009 if (nr_cpus < 0) { 3010 pr_warn("failed to determine number of system CPUs: %d\n", 3011 nr_cpus); 3012 err = nr_cpus; 3013 goto err_out; 3014 } 3015 pr_debug("map '%s': setting size to %d\n", 3016 map->name, nr_cpus); 3017 create_attr.max_entries = nr_cpus; 3018 } else { 3019 create_attr.max_entries = def->max_entries; 3020 } 3021 create_attr.btf_fd = 0; 3022 create_attr.btf_key_type_id = 0; 3023 create_attr.btf_value_type_id = 0; 3024 if (bpf_map_type__is_map_in_map(def->type) && 3025 map->inner_map_fd >= 0) 3026 create_attr.inner_map_fd = map->inner_map_fd; 3027 3028 if (obj->btf && !bpf_map_find_btf_info(obj, map)) { 3029 create_attr.btf_fd = btf__fd(obj->btf); 3030 create_attr.btf_key_type_id = map->btf_key_type_id; 3031 create_attr.btf_value_type_id = map->btf_value_type_id; 3032 } 3033 3034 *pfd = bpf_create_map_xattr(&create_attr); 3035 if (*pfd < 0 && (create_attr.btf_key_type_id || 3036 create_attr.btf_value_type_id)) { 3037 err = -errno; 3038 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3039 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 3040 map->name, cp, err); 3041 create_attr.btf_fd = 0; 3042 create_attr.btf_key_type_id = 0; 3043 create_attr.btf_value_type_id = 0; 3044 map->btf_key_type_id = 0; 3045 map->btf_value_type_id = 0; 3046 *pfd = bpf_create_map_xattr(&create_attr); 3047 } 3048 3049 if (*pfd < 0) { 3050 size_t j; 3051 3052 err = -errno; 3053 err_out: 3054 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 3055 pr_warn("failed to create map (name: '%s'): %s(%d)\n", 3056 map->name, cp, err); 3057 pr_perm_msg(err); 3058 for (j = 0; j < i; j++) 3059 zclose(obj->maps[j].fd); 3060 return err; 3061 } 3062 3063 if (bpf_map__is_internal(map)) { 3064 err = bpf_object__populate_internal_map(obj, map); 3065 if (err < 0) { 3066 zclose(*pfd); 3067 goto err_out; 3068 } 3069 } 3070 3071 if (map->pin_path && !map->pinned) { 3072 err = bpf_map__pin(map, NULL); 3073 if (err) { 3074 pr_warn("failed to auto-pin map name '%s' at '%s'\n", 3075 map->name, map->pin_path); 3076 return err; 3077 } 3078 } 3079 3080 pr_debug("created map %s: fd=%d\n", map->name, *pfd); 3081 } 3082 3083 return 0; 3084 } 3085 3086 static int 3087 check_btf_ext_reloc_err(struct bpf_program *prog, int err, 3088 void *btf_prog_info, const char *info_name) 3089 { 3090 if (err != -ENOENT) { 3091 pr_warn("Error in loading %s for sec %s.\n", 3092 info_name, prog->section_name); 3093 return err; 3094 } 3095 3096 /* err == -ENOENT (i.e. prog->section_name not found in btf_ext) */ 3097 3098 if (btf_prog_info) { 3099 /* 3100 * Some info has already been found but has problem 3101 * in the last btf_ext reloc. Must have to error out. 3102 */ 3103 pr_warn("Error in relocating %s for sec %s.\n", 3104 info_name, prog->section_name); 3105 return err; 3106 } 3107 3108 /* Have problem loading the very first info. Ignore the rest. */ 3109 pr_warn("Cannot find %s for main program sec %s. Ignore all %s.\n", 3110 info_name, prog->section_name, info_name); 3111 return 0; 3112 } 3113 3114 static int 3115 bpf_program_reloc_btf_ext(struct bpf_program *prog, struct bpf_object *obj, 3116 const char *section_name, __u32 insn_offset) 3117 { 3118 int err; 3119 3120 if (!insn_offset || prog->func_info) { 3121 /* 3122 * !insn_offset => main program 3123 * 3124 * For sub prog, the main program's func_info has to 3125 * be loaded first (i.e. prog->func_info != NULL) 3126 */ 3127 err = btf_ext__reloc_func_info(obj->btf, obj->btf_ext, 3128 section_name, insn_offset, 3129 &prog->func_info, 3130 &prog->func_info_cnt); 3131 if (err) 3132 return check_btf_ext_reloc_err(prog, err, 3133 prog->func_info, 3134 "bpf_func_info"); 3135 3136 prog->func_info_rec_size = btf_ext__func_info_rec_size(obj->btf_ext); 3137 } 3138 3139 if (!insn_offset || prog->line_info) { 3140 err = btf_ext__reloc_line_info(obj->btf, obj->btf_ext, 3141 section_name, insn_offset, 3142 &prog->line_info, 3143 &prog->line_info_cnt); 3144 if (err) 3145 return check_btf_ext_reloc_err(prog, err, 3146 prog->line_info, 3147 "bpf_line_info"); 3148 3149 prog->line_info_rec_size = btf_ext__line_info_rec_size(obj->btf_ext); 3150 } 3151 3152 return 0; 3153 } 3154 3155 #define BPF_CORE_SPEC_MAX_LEN 64 3156 3157 /* represents BPF CO-RE field or array element accessor */ 3158 struct bpf_core_accessor { 3159 __u32 type_id; /* struct/union type or array element type */ 3160 __u32 idx; /* field index or array index */ 3161 const char *name; /* field name or NULL for array accessor */ 3162 }; 3163 3164 struct bpf_core_spec { 3165 const struct btf *btf; 3166 /* high-level spec: named fields and array indices only */ 3167 struct bpf_core_accessor spec[BPF_CORE_SPEC_MAX_LEN]; 3168 /* high-level spec length */ 3169 int len; 3170 /* raw, low-level spec: 1-to-1 with accessor spec string */ 3171 int raw_spec[BPF_CORE_SPEC_MAX_LEN]; 3172 /* raw spec length */ 3173 int raw_len; 3174 /* field bit offset represented by spec */ 3175 __u32 bit_offset; 3176 }; 3177 3178 static bool str_is_empty(const char *s) 3179 { 3180 return !s || !s[0]; 3181 } 3182 3183 static bool is_flex_arr(const struct btf *btf, 3184 const struct bpf_core_accessor *acc, 3185 const struct btf_array *arr) 3186 { 3187 const struct btf_type *t; 3188 3189 /* not a flexible array, if not inside a struct or has non-zero size */ 3190 if (!acc->name || arr->nelems > 0) 3191 return false; 3192 3193 /* has to be the last member of enclosing struct */ 3194 t = btf__type_by_id(btf, acc->type_id); 3195 return acc->idx == btf_vlen(t) - 1; 3196 } 3197 3198 /* 3199 * Turn bpf_field_reloc into a low- and high-level spec representation, 3200 * validating correctness along the way, as well as calculating resulting 3201 * field bit offset, specified by accessor string. Low-level spec captures 3202 * every single level of nestedness, including traversing anonymous 3203 * struct/union members. High-level one only captures semantically meaningful 3204 * "turning points": named fields and array indicies. 3205 * E.g., for this case: 3206 * 3207 * struct sample { 3208 * int __unimportant; 3209 * struct { 3210 * int __1; 3211 * int __2; 3212 * int a[7]; 3213 * }; 3214 * }; 3215 * 3216 * struct sample *s = ...; 3217 * 3218 * int x = &s->a[3]; // access string = '0:1:2:3' 3219 * 3220 * Low-level spec has 1:1 mapping with each element of access string (it's 3221 * just a parsed access string representation): [0, 1, 2, 3]. 3222 * 3223 * High-level spec will capture only 3 points: 3224 * - intial zero-index access by pointer (&s->... is the same as &s[0]...); 3225 * - field 'a' access (corresponds to '2' in low-level spec); 3226 * - array element #3 access (corresponds to '3' in low-level spec). 3227 * 3228 */ 3229 static int bpf_core_spec_parse(const struct btf *btf, 3230 __u32 type_id, 3231 const char *spec_str, 3232 struct bpf_core_spec *spec) 3233 { 3234 int access_idx, parsed_len, i; 3235 struct bpf_core_accessor *acc; 3236 const struct btf_type *t; 3237 const char *name; 3238 __u32 id; 3239 __s64 sz; 3240 3241 if (str_is_empty(spec_str) || *spec_str == ':') 3242 return -EINVAL; 3243 3244 memset(spec, 0, sizeof(*spec)); 3245 spec->btf = btf; 3246 3247 /* parse spec_str="0:1:2:3:4" into array raw_spec=[0, 1, 2, 3, 4] */ 3248 while (*spec_str) { 3249 if (*spec_str == ':') 3250 ++spec_str; 3251 if (sscanf(spec_str, "%d%n", &access_idx, &parsed_len) != 1) 3252 return -EINVAL; 3253 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 3254 return -E2BIG; 3255 spec_str += parsed_len; 3256 spec->raw_spec[spec->raw_len++] = access_idx; 3257 } 3258 3259 if (spec->raw_len == 0) 3260 return -EINVAL; 3261 3262 /* first spec value is always reloc type array index */ 3263 t = skip_mods_and_typedefs(btf, type_id, &id); 3264 if (!t) 3265 return -EINVAL; 3266 3267 access_idx = spec->raw_spec[0]; 3268 spec->spec[0].type_id = id; 3269 spec->spec[0].idx = access_idx; 3270 spec->len++; 3271 3272 sz = btf__resolve_size(btf, id); 3273 if (sz < 0) 3274 return sz; 3275 spec->bit_offset = access_idx * sz * 8; 3276 3277 for (i = 1; i < spec->raw_len; i++) { 3278 t = skip_mods_and_typedefs(btf, id, &id); 3279 if (!t) 3280 return -EINVAL; 3281 3282 access_idx = spec->raw_spec[i]; 3283 acc = &spec->spec[spec->len]; 3284 3285 if (btf_is_composite(t)) { 3286 const struct btf_member *m; 3287 __u32 bit_offset; 3288 3289 if (access_idx >= btf_vlen(t)) 3290 return -EINVAL; 3291 3292 bit_offset = btf_member_bit_offset(t, access_idx); 3293 spec->bit_offset += bit_offset; 3294 3295 m = btf_members(t) + access_idx; 3296 if (m->name_off) { 3297 name = btf__name_by_offset(btf, m->name_off); 3298 if (str_is_empty(name)) 3299 return -EINVAL; 3300 3301 acc->type_id = id; 3302 acc->idx = access_idx; 3303 acc->name = name; 3304 spec->len++; 3305 } 3306 3307 id = m->type; 3308 } else if (btf_is_array(t)) { 3309 const struct btf_array *a = btf_array(t); 3310 bool flex; 3311 3312 t = skip_mods_and_typedefs(btf, a->type, &id); 3313 if (!t) 3314 return -EINVAL; 3315 3316 flex = is_flex_arr(btf, acc - 1, a); 3317 if (!flex && access_idx >= a->nelems) 3318 return -EINVAL; 3319 3320 spec->spec[spec->len].type_id = id; 3321 spec->spec[spec->len].idx = access_idx; 3322 spec->len++; 3323 3324 sz = btf__resolve_size(btf, id); 3325 if (sz < 0) 3326 return sz; 3327 spec->bit_offset += access_idx * sz * 8; 3328 } else { 3329 pr_warn("relo for [%u] %s (at idx %d) captures type [%d] of unexpected kind %d\n", 3330 type_id, spec_str, i, id, btf_kind(t)); 3331 return -EINVAL; 3332 } 3333 } 3334 3335 return 0; 3336 } 3337 3338 static bool bpf_core_is_flavor_sep(const char *s) 3339 { 3340 /* check X___Y name pattern, where X and Y are not underscores */ 3341 return s[0] != '_' && /* X */ 3342 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 3343 s[4] != '_'; /* Y */ 3344 } 3345 3346 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 3347 * before last triple underscore. Struct name part after last triple 3348 * underscore is ignored by BPF CO-RE relocation during relocation matching. 3349 */ 3350 static size_t bpf_core_essential_name_len(const char *name) 3351 { 3352 size_t n = strlen(name); 3353 int i; 3354 3355 for (i = n - 5; i >= 0; i--) { 3356 if (bpf_core_is_flavor_sep(name + i)) 3357 return i + 1; 3358 } 3359 return n; 3360 } 3361 3362 /* dynamically sized list of type IDs */ 3363 struct ids_vec { 3364 __u32 *data; 3365 int len; 3366 }; 3367 3368 static void bpf_core_free_cands(struct ids_vec *cand_ids) 3369 { 3370 free(cand_ids->data); 3371 free(cand_ids); 3372 } 3373 3374 static struct ids_vec *bpf_core_find_cands(const struct btf *local_btf, 3375 __u32 local_type_id, 3376 const struct btf *targ_btf) 3377 { 3378 size_t local_essent_len, targ_essent_len; 3379 const char *local_name, *targ_name; 3380 const struct btf_type *t; 3381 struct ids_vec *cand_ids; 3382 __u32 *new_ids; 3383 int i, err, n; 3384 3385 t = btf__type_by_id(local_btf, local_type_id); 3386 if (!t) 3387 return ERR_PTR(-EINVAL); 3388 3389 local_name = btf__name_by_offset(local_btf, t->name_off); 3390 if (str_is_empty(local_name)) 3391 return ERR_PTR(-EINVAL); 3392 local_essent_len = bpf_core_essential_name_len(local_name); 3393 3394 cand_ids = calloc(1, sizeof(*cand_ids)); 3395 if (!cand_ids) 3396 return ERR_PTR(-ENOMEM); 3397 3398 n = btf__get_nr_types(targ_btf); 3399 for (i = 1; i <= n; i++) { 3400 t = btf__type_by_id(targ_btf, i); 3401 targ_name = btf__name_by_offset(targ_btf, t->name_off); 3402 if (str_is_empty(targ_name)) 3403 continue; 3404 3405 targ_essent_len = bpf_core_essential_name_len(targ_name); 3406 if (targ_essent_len != local_essent_len) 3407 continue; 3408 3409 if (strncmp(local_name, targ_name, local_essent_len) == 0) { 3410 pr_debug("[%d] %s: found candidate [%d] %s\n", 3411 local_type_id, local_name, i, targ_name); 3412 new_ids = realloc(cand_ids->data, cand_ids->len + 1); 3413 if (!new_ids) { 3414 err = -ENOMEM; 3415 goto err_out; 3416 } 3417 cand_ids->data = new_ids; 3418 cand_ids->data[cand_ids->len++] = i; 3419 } 3420 } 3421 return cand_ids; 3422 err_out: 3423 bpf_core_free_cands(cand_ids); 3424 return ERR_PTR(err); 3425 } 3426 3427 /* Check two types for compatibility, skipping const/volatile/restrict and 3428 * typedefs, to ensure we are relocating compatible entities: 3429 * - any two STRUCTs/UNIONs are compatible and can be mixed; 3430 * - any two FWDs are compatible, if their names match (modulo flavor suffix); 3431 * - any two PTRs are always compatible; 3432 * - for ENUMs, names should be the same (ignoring flavor suffix) or at 3433 * least one of enums should be anonymous; 3434 * - for ENUMs, check sizes, names are ignored; 3435 * - for INT, size and signedness are ignored; 3436 * - for ARRAY, dimensionality is ignored, element types are checked for 3437 * compatibility recursively; 3438 * - everything else shouldn't be ever a target of relocation. 3439 * These rules are not set in stone and probably will be adjusted as we get 3440 * more experience with using BPF CO-RE relocations. 3441 */ 3442 static int bpf_core_fields_are_compat(const struct btf *local_btf, 3443 __u32 local_id, 3444 const struct btf *targ_btf, 3445 __u32 targ_id) 3446 { 3447 const struct btf_type *local_type, *targ_type; 3448 3449 recur: 3450 local_type = skip_mods_and_typedefs(local_btf, local_id, &local_id); 3451 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 3452 if (!local_type || !targ_type) 3453 return -EINVAL; 3454 3455 if (btf_is_composite(local_type) && btf_is_composite(targ_type)) 3456 return 1; 3457 if (btf_kind(local_type) != btf_kind(targ_type)) 3458 return 0; 3459 3460 switch (btf_kind(local_type)) { 3461 case BTF_KIND_PTR: 3462 return 1; 3463 case BTF_KIND_FWD: 3464 case BTF_KIND_ENUM: { 3465 const char *local_name, *targ_name; 3466 size_t local_len, targ_len; 3467 3468 local_name = btf__name_by_offset(local_btf, 3469 local_type->name_off); 3470 targ_name = btf__name_by_offset(targ_btf, targ_type->name_off); 3471 local_len = bpf_core_essential_name_len(local_name); 3472 targ_len = bpf_core_essential_name_len(targ_name); 3473 /* one of them is anonymous or both w/ same flavor-less names */ 3474 return local_len == 0 || targ_len == 0 || 3475 (local_len == targ_len && 3476 strncmp(local_name, targ_name, local_len) == 0); 3477 } 3478 case BTF_KIND_INT: 3479 /* just reject deprecated bitfield-like integers; all other 3480 * integers are by default compatible between each other 3481 */ 3482 return btf_int_offset(local_type) == 0 && 3483 btf_int_offset(targ_type) == 0; 3484 case BTF_KIND_ARRAY: 3485 local_id = btf_array(local_type)->type; 3486 targ_id = btf_array(targ_type)->type; 3487 goto recur; 3488 default: 3489 pr_warn("unexpected kind %d relocated, local [%d], target [%d]\n", 3490 btf_kind(local_type), local_id, targ_id); 3491 return 0; 3492 } 3493 } 3494 3495 /* 3496 * Given single high-level named field accessor in local type, find 3497 * corresponding high-level accessor for a target type. Along the way, 3498 * maintain low-level spec for target as well. Also keep updating target 3499 * bit offset. 3500 * 3501 * Searching is performed through recursive exhaustive enumeration of all 3502 * fields of a struct/union. If there are any anonymous (embedded) 3503 * structs/unions, they are recursively searched as well. If field with 3504 * desired name is found, check compatibility between local and target types, 3505 * before returning result. 3506 * 3507 * 1 is returned, if field is found. 3508 * 0 is returned if no compatible field is found. 3509 * <0 is returned on error. 3510 */ 3511 static int bpf_core_match_member(const struct btf *local_btf, 3512 const struct bpf_core_accessor *local_acc, 3513 const struct btf *targ_btf, 3514 __u32 targ_id, 3515 struct bpf_core_spec *spec, 3516 __u32 *next_targ_id) 3517 { 3518 const struct btf_type *local_type, *targ_type; 3519 const struct btf_member *local_member, *m; 3520 const char *local_name, *targ_name; 3521 __u32 local_id; 3522 int i, n, found; 3523 3524 targ_type = skip_mods_and_typedefs(targ_btf, targ_id, &targ_id); 3525 if (!targ_type) 3526 return -EINVAL; 3527 if (!btf_is_composite(targ_type)) 3528 return 0; 3529 3530 local_id = local_acc->type_id; 3531 local_type = btf__type_by_id(local_btf, local_id); 3532 local_member = btf_members(local_type) + local_acc->idx; 3533 local_name = btf__name_by_offset(local_btf, local_member->name_off); 3534 3535 n = btf_vlen(targ_type); 3536 m = btf_members(targ_type); 3537 for (i = 0; i < n; i++, m++) { 3538 __u32 bit_offset; 3539 3540 bit_offset = btf_member_bit_offset(targ_type, i); 3541 3542 /* too deep struct/union/array nesting */ 3543 if (spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 3544 return -E2BIG; 3545 3546 /* speculate this member will be the good one */ 3547 spec->bit_offset += bit_offset; 3548 spec->raw_spec[spec->raw_len++] = i; 3549 3550 targ_name = btf__name_by_offset(targ_btf, m->name_off); 3551 if (str_is_empty(targ_name)) { 3552 /* embedded struct/union, we need to go deeper */ 3553 found = bpf_core_match_member(local_btf, local_acc, 3554 targ_btf, m->type, 3555 spec, next_targ_id); 3556 if (found) /* either found or error */ 3557 return found; 3558 } else if (strcmp(local_name, targ_name) == 0) { 3559 /* matching named field */ 3560 struct bpf_core_accessor *targ_acc; 3561 3562 targ_acc = &spec->spec[spec->len++]; 3563 targ_acc->type_id = targ_id; 3564 targ_acc->idx = i; 3565 targ_acc->name = targ_name; 3566 3567 *next_targ_id = m->type; 3568 found = bpf_core_fields_are_compat(local_btf, 3569 local_member->type, 3570 targ_btf, m->type); 3571 if (!found) 3572 spec->len--; /* pop accessor */ 3573 return found; 3574 } 3575 /* member turned out not to be what we looked for */ 3576 spec->bit_offset -= bit_offset; 3577 spec->raw_len--; 3578 } 3579 3580 return 0; 3581 } 3582 3583 /* 3584 * Try to match local spec to a target type and, if successful, produce full 3585 * target spec (high-level, low-level + bit offset). 3586 */ 3587 static int bpf_core_spec_match(struct bpf_core_spec *local_spec, 3588 const struct btf *targ_btf, __u32 targ_id, 3589 struct bpf_core_spec *targ_spec) 3590 { 3591 const struct btf_type *targ_type; 3592 const struct bpf_core_accessor *local_acc; 3593 struct bpf_core_accessor *targ_acc; 3594 int i, sz, matched; 3595 3596 memset(targ_spec, 0, sizeof(*targ_spec)); 3597 targ_spec->btf = targ_btf; 3598 3599 local_acc = &local_spec->spec[0]; 3600 targ_acc = &targ_spec->spec[0]; 3601 3602 for (i = 0; i < local_spec->len; i++, local_acc++, targ_acc++) { 3603 targ_type = skip_mods_and_typedefs(targ_spec->btf, targ_id, 3604 &targ_id); 3605 if (!targ_type) 3606 return -EINVAL; 3607 3608 if (local_acc->name) { 3609 matched = bpf_core_match_member(local_spec->btf, 3610 local_acc, 3611 targ_btf, targ_id, 3612 targ_spec, &targ_id); 3613 if (matched <= 0) 3614 return matched; 3615 } else { 3616 /* for i=0, targ_id is already treated as array element 3617 * type (because it's the original struct), for others 3618 * we should find array element type first 3619 */ 3620 if (i > 0) { 3621 const struct btf_array *a; 3622 bool flex; 3623 3624 if (!btf_is_array(targ_type)) 3625 return 0; 3626 3627 a = btf_array(targ_type); 3628 flex = is_flex_arr(targ_btf, targ_acc - 1, a); 3629 if (!flex && local_acc->idx >= a->nelems) 3630 return 0; 3631 if (!skip_mods_and_typedefs(targ_btf, a->type, 3632 &targ_id)) 3633 return -EINVAL; 3634 } 3635 3636 /* too deep struct/union/array nesting */ 3637 if (targ_spec->raw_len == BPF_CORE_SPEC_MAX_LEN) 3638 return -E2BIG; 3639 3640 targ_acc->type_id = targ_id; 3641 targ_acc->idx = local_acc->idx; 3642 targ_acc->name = NULL; 3643 targ_spec->len++; 3644 targ_spec->raw_spec[targ_spec->raw_len] = targ_acc->idx; 3645 targ_spec->raw_len++; 3646 3647 sz = btf__resolve_size(targ_btf, targ_id); 3648 if (sz < 0) 3649 return sz; 3650 targ_spec->bit_offset += local_acc->idx * sz * 8; 3651 } 3652 } 3653 3654 return 1; 3655 } 3656 3657 static int bpf_core_calc_field_relo(const struct bpf_program *prog, 3658 const struct bpf_field_reloc *relo, 3659 const struct bpf_core_spec *spec, 3660 __u32 *val, bool *validate) 3661 { 3662 const struct bpf_core_accessor *acc = &spec->spec[spec->len - 1]; 3663 const struct btf_type *t = btf__type_by_id(spec->btf, acc->type_id); 3664 __u32 byte_off, byte_sz, bit_off, bit_sz; 3665 const struct btf_member *m; 3666 const struct btf_type *mt; 3667 bool bitfield; 3668 __s64 sz; 3669 3670 /* a[n] accessor needs special handling */ 3671 if (!acc->name) { 3672 if (relo->kind == BPF_FIELD_BYTE_OFFSET) { 3673 *val = spec->bit_offset / 8; 3674 } else if (relo->kind == BPF_FIELD_BYTE_SIZE) { 3675 sz = btf__resolve_size(spec->btf, acc->type_id); 3676 if (sz < 0) 3677 return -EINVAL; 3678 *val = sz; 3679 } else { 3680 pr_warn("prog '%s': relo %d at insn #%d can't be applied to array access\n", 3681 bpf_program__title(prog, false), 3682 relo->kind, relo->insn_off / 8); 3683 return -EINVAL; 3684 } 3685 if (validate) 3686 *validate = true; 3687 return 0; 3688 } 3689 3690 m = btf_members(t) + acc->idx; 3691 mt = skip_mods_and_typedefs(spec->btf, m->type, NULL); 3692 bit_off = spec->bit_offset; 3693 bit_sz = btf_member_bitfield_size(t, acc->idx); 3694 3695 bitfield = bit_sz > 0; 3696 if (bitfield) { 3697 byte_sz = mt->size; 3698 byte_off = bit_off / 8 / byte_sz * byte_sz; 3699 /* figure out smallest int size necessary for bitfield load */ 3700 while (bit_off + bit_sz - byte_off * 8 > byte_sz * 8) { 3701 if (byte_sz >= 8) { 3702 /* bitfield can't be read with 64-bit read */ 3703 pr_warn("prog '%s': relo %d at insn #%d can't be satisfied for bitfield\n", 3704 bpf_program__title(prog, false), 3705 relo->kind, relo->insn_off / 8); 3706 return -E2BIG; 3707 } 3708 byte_sz *= 2; 3709 byte_off = bit_off / 8 / byte_sz * byte_sz; 3710 } 3711 } else { 3712 sz = btf__resolve_size(spec->btf, m->type); 3713 if (sz < 0) 3714 return -EINVAL; 3715 byte_sz = sz; 3716 byte_off = spec->bit_offset / 8; 3717 bit_sz = byte_sz * 8; 3718 } 3719 3720 /* for bitfields, all the relocatable aspects are ambiguous and we 3721 * might disagree with compiler, so turn off validation of expected 3722 * value, except for signedness 3723 */ 3724 if (validate) 3725 *validate = !bitfield; 3726 3727 switch (relo->kind) { 3728 case BPF_FIELD_BYTE_OFFSET: 3729 *val = byte_off; 3730 break; 3731 case BPF_FIELD_BYTE_SIZE: 3732 *val = byte_sz; 3733 break; 3734 case BPF_FIELD_SIGNED: 3735 /* enums will be assumed unsigned */ 3736 *val = btf_is_enum(mt) || 3737 (btf_int_encoding(mt) & BTF_INT_SIGNED); 3738 if (validate) 3739 *validate = true; /* signedness is never ambiguous */ 3740 break; 3741 case BPF_FIELD_LSHIFT_U64: 3742 #if __BYTE_ORDER == __LITTLE_ENDIAN 3743 *val = 64 - (bit_off + bit_sz - byte_off * 8); 3744 #else 3745 *val = (8 - byte_sz) * 8 + (bit_off - byte_off * 8); 3746 #endif 3747 break; 3748 case BPF_FIELD_RSHIFT_U64: 3749 *val = 64 - bit_sz; 3750 if (validate) 3751 *validate = true; /* right shift is never ambiguous */ 3752 break; 3753 case BPF_FIELD_EXISTS: 3754 default: 3755 pr_warn("prog '%s': unknown relo %d at insn #%d\n", 3756 bpf_program__title(prog, false), 3757 relo->kind, relo->insn_off / 8); 3758 return -EINVAL; 3759 } 3760 3761 return 0; 3762 } 3763 3764 /* 3765 * Patch relocatable BPF instruction. 3766 * 3767 * Patched value is determined by relocation kind and target specification. 3768 * For field existence relocation target spec will be NULL if field is not 3769 * found. 3770 * Expected insn->imm value is determined using relocation kind and local 3771 * spec, and is checked before patching instruction. If actual insn->imm value 3772 * is wrong, bail out with error. 3773 * 3774 * Currently three kinds of BPF instructions are supported: 3775 * 1. rX = <imm> (assignment with immediate operand); 3776 * 2. rX += <imm> (arithmetic operations with immediate operand); 3777 */ 3778 static int bpf_core_reloc_insn(struct bpf_program *prog, 3779 const struct bpf_field_reloc *relo, 3780 const struct bpf_core_spec *local_spec, 3781 const struct bpf_core_spec *targ_spec) 3782 { 3783 bool failed = false, validate = true; 3784 __u32 orig_val, new_val; 3785 struct bpf_insn *insn; 3786 int insn_idx, err; 3787 __u8 class; 3788 3789 if (relo->insn_off % sizeof(struct bpf_insn)) 3790 return -EINVAL; 3791 insn_idx = relo->insn_off / sizeof(struct bpf_insn); 3792 3793 if (relo->kind == BPF_FIELD_EXISTS) { 3794 orig_val = 1; /* can't generate EXISTS relo w/o local field */ 3795 new_val = targ_spec ? 1 : 0; 3796 } else if (!targ_spec) { 3797 failed = true; 3798 new_val = (__u32)-1; 3799 } else { 3800 err = bpf_core_calc_field_relo(prog, relo, local_spec, 3801 &orig_val, &validate); 3802 if (err) 3803 return err; 3804 err = bpf_core_calc_field_relo(prog, relo, targ_spec, 3805 &new_val, NULL); 3806 if (err) 3807 return err; 3808 } 3809 3810 insn = &prog->insns[insn_idx]; 3811 class = BPF_CLASS(insn->code); 3812 3813 if (class == BPF_ALU || class == BPF_ALU64) { 3814 if (BPF_SRC(insn->code) != BPF_K) 3815 return -EINVAL; 3816 if (!failed && validate && insn->imm != orig_val) { 3817 pr_warn("prog '%s': unexpected insn #%d value: got %u, exp %u -> %u\n", 3818 bpf_program__title(prog, false), insn_idx, 3819 insn->imm, orig_val, new_val); 3820 return -EINVAL; 3821 } 3822 orig_val = insn->imm; 3823 insn->imm = new_val; 3824 pr_debug("prog '%s': patched insn #%d (ALU/ALU64)%s imm %u -> %u\n", 3825 bpf_program__title(prog, false), insn_idx, 3826 failed ? " w/ failed reloc" : "", orig_val, new_val); 3827 } else { 3828 pr_warn("prog '%s': trying to relocate unrecognized insn #%d, code:%x, src:%x, dst:%x, off:%x, imm:%x\n", 3829 bpf_program__title(prog, false), 3830 insn_idx, insn->code, insn->src_reg, insn->dst_reg, 3831 insn->off, insn->imm); 3832 return -EINVAL; 3833 } 3834 3835 return 0; 3836 } 3837 3838 static struct btf *btf_load_raw(const char *path) 3839 { 3840 struct btf *btf; 3841 size_t read_cnt; 3842 struct stat st; 3843 void *data; 3844 FILE *f; 3845 3846 if (stat(path, &st)) 3847 return ERR_PTR(-errno); 3848 3849 data = malloc(st.st_size); 3850 if (!data) 3851 return ERR_PTR(-ENOMEM); 3852 3853 f = fopen(path, "rb"); 3854 if (!f) { 3855 btf = ERR_PTR(-errno); 3856 goto cleanup; 3857 } 3858 3859 read_cnt = fread(data, 1, st.st_size, f); 3860 fclose(f); 3861 if (read_cnt < st.st_size) { 3862 btf = ERR_PTR(-EBADF); 3863 goto cleanup; 3864 } 3865 3866 btf = btf__new(data, read_cnt); 3867 3868 cleanup: 3869 free(data); 3870 return btf; 3871 } 3872 3873 /* 3874 * Probe few well-known locations for vmlinux kernel image and try to load BTF 3875 * data out of it to use for target BTF. 3876 */ 3877 static struct btf *bpf_core_find_kernel_btf(void) 3878 { 3879 struct { 3880 const char *path_fmt; 3881 bool raw_btf; 3882 } locations[] = { 3883 /* try canonical vmlinux BTF through sysfs first */ 3884 { "/sys/kernel/btf/vmlinux", true /* raw BTF */ }, 3885 /* fall back to trying to find vmlinux ELF on disk otherwise */ 3886 { "/boot/vmlinux-%1$s" }, 3887 { "/lib/modules/%1$s/vmlinux-%1$s" }, 3888 { "/lib/modules/%1$s/build/vmlinux" }, 3889 { "/usr/lib/modules/%1$s/kernel/vmlinux" }, 3890 { "/usr/lib/debug/boot/vmlinux-%1$s" }, 3891 { "/usr/lib/debug/boot/vmlinux-%1$s.debug" }, 3892 { "/usr/lib/debug/lib/modules/%1$s/vmlinux" }, 3893 }; 3894 char path[PATH_MAX + 1]; 3895 struct utsname buf; 3896 struct btf *btf; 3897 int i; 3898 3899 uname(&buf); 3900 3901 for (i = 0; i < ARRAY_SIZE(locations); i++) { 3902 snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release); 3903 3904 if (access(path, R_OK)) 3905 continue; 3906 3907 if (locations[i].raw_btf) 3908 btf = btf_load_raw(path); 3909 else 3910 btf = btf__parse_elf(path, NULL); 3911 3912 pr_debug("loading kernel BTF '%s': %ld\n", 3913 path, IS_ERR(btf) ? PTR_ERR(btf) : 0); 3914 if (IS_ERR(btf)) 3915 continue; 3916 3917 return btf; 3918 } 3919 3920 pr_warn("failed to find valid kernel BTF\n"); 3921 return ERR_PTR(-ESRCH); 3922 } 3923 3924 /* Output spec definition in the format: 3925 * [<type-id>] (<type-name>) + <raw-spec> => <offset>@<spec>, 3926 * where <spec> is a C-syntax view of recorded field access, e.g.: x.a[3].b 3927 */ 3928 static void bpf_core_dump_spec(int level, const struct bpf_core_spec *spec) 3929 { 3930 const struct btf_type *t; 3931 const char *s; 3932 __u32 type_id; 3933 int i; 3934 3935 type_id = spec->spec[0].type_id; 3936 t = btf__type_by_id(spec->btf, type_id); 3937 s = btf__name_by_offset(spec->btf, t->name_off); 3938 libbpf_print(level, "[%u] %s + ", type_id, s); 3939 3940 for (i = 0; i < spec->raw_len; i++) 3941 libbpf_print(level, "%d%s", spec->raw_spec[i], 3942 i == spec->raw_len - 1 ? " => " : ":"); 3943 3944 libbpf_print(level, "%u.%u @ &x", 3945 spec->bit_offset / 8, spec->bit_offset % 8); 3946 3947 for (i = 0; i < spec->len; i++) { 3948 if (spec->spec[i].name) 3949 libbpf_print(level, ".%s", spec->spec[i].name); 3950 else 3951 libbpf_print(level, "[%u]", spec->spec[i].idx); 3952 } 3953 3954 } 3955 3956 static size_t bpf_core_hash_fn(const void *key, void *ctx) 3957 { 3958 return (size_t)key; 3959 } 3960 3961 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 3962 { 3963 return k1 == k2; 3964 } 3965 3966 static void *u32_as_hash_key(__u32 x) 3967 { 3968 return (void *)(uintptr_t)x; 3969 } 3970 3971 /* 3972 * CO-RE relocate single instruction. 3973 * 3974 * The outline and important points of the algorithm: 3975 * 1. For given local type, find corresponding candidate target types. 3976 * Candidate type is a type with the same "essential" name, ignoring 3977 * everything after last triple underscore (___). E.g., `sample`, 3978 * `sample___flavor_one`, `sample___flavor_another_one`, are all candidates 3979 * for each other. Names with triple underscore are referred to as 3980 * "flavors" and are useful, among other things, to allow to 3981 * specify/support incompatible variations of the same kernel struct, which 3982 * might differ between different kernel versions and/or build 3983 * configurations. 3984 * 3985 * N.B. Struct "flavors" could be generated by bpftool's BTF-to-C 3986 * converter, when deduplicated BTF of a kernel still contains more than 3987 * one different types with the same name. In that case, ___2, ___3, etc 3988 * are appended starting from second name conflict. But start flavors are 3989 * also useful to be defined "locally", in BPF program, to extract same 3990 * data from incompatible changes between different kernel 3991 * versions/configurations. For instance, to handle field renames between 3992 * kernel versions, one can use two flavors of the struct name with the 3993 * same common name and use conditional relocations to extract that field, 3994 * depending on target kernel version. 3995 * 2. For each candidate type, try to match local specification to this 3996 * candidate target type. Matching involves finding corresponding 3997 * high-level spec accessors, meaning that all named fields should match, 3998 * as well as all array accesses should be within the actual bounds. Also, 3999 * types should be compatible (see bpf_core_fields_are_compat for details). 4000 * 3. It is supported and expected that there might be multiple flavors 4001 * matching the spec. As long as all the specs resolve to the same set of 4002 * offsets across all candidates, there is no error. If there is any 4003 * ambiguity, CO-RE relocation will fail. This is necessary to accomodate 4004 * imprefection of BTF deduplication, which can cause slight duplication of 4005 * the same BTF type, if some directly or indirectly referenced (by 4006 * pointer) type gets resolved to different actual types in different 4007 * object files. If such situation occurs, deduplicated BTF will end up 4008 * with two (or more) structurally identical types, which differ only in 4009 * types they refer to through pointer. This should be OK in most cases and 4010 * is not an error. 4011 * 4. Candidate types search is performed by linearly scanning through all 4012 * types in target BTF. It is anticipated that this is overall more 4013 * efficient memory-wise and not significantly worse (if not better) 4014 * CPU-wise compared to prebuilding a map from all local type names to 4015 * a list of candidate type names. It's also sped up by caching resolved 4016 * list of matching candidates per each local "root" type ID, that has at 4017 * least one bpf_field_reloc associated with it. This list is shared 4018 * between multiple relocations for the same type ID and is updated as some 4019 * of the candidates are pruned due to structural incompatibility. 4020 */ 4021 static int bpf_core_reloc_field(struct bpf_program *prog, 4022 const struct bpf_field_reloc *relo, 4023 int relo_idx, 4024 const struct btf *local_btf, 4025 const struct btf *targ_btf, 4026 struct hashmap *cand_cache) 4027 { 4028 const char *prog_name = bpf_program__title(prog, false); 4029 struct bpf_core_spec local_spec, cand_spec, targ_spec; 4030 const void *type_key = u32_as_hash_key(relo->type_id); 4031 const struct btf_type *local_type, *cand_type; 4032 const char *local_name, *cand_name; 4033 struct ids_vec *cand_ids; 4034 __u32 local_id, cand_id; 4035 const char *spec_str; 4036 int i, j, err; 4037 4038 local_id = relo->type_id; 4039 local_type = btf__type_by_id(local_btf, local_id); 4040 if (!local_type) 4041 return -EINVAL; 4042 4043 local_name = btf__name_by_offset(local_btf, local_type->name_off); 4044 if (str_is_empty(local_name)) 4045 return -EINVAL; 4046 4047 spec_str = btf__name_by_offset(local_btf, relo->access_str_off); 4048 if (str_is_empty(spec_str)) 4049 return -EINVAL; 4050 4051 err = bpf_core_spec_parse(local_btf, local_id, spec_str, &local_spec); 4052 if (err) { 4053 pr_warn("prog '%s': relo #%d: parsing [%d] %s + %s failed: %d\n", 4054 prog_name, relo_idx, local_id, local_name, spec_str, 4055 err); 4056 return -EINVAL; 4057 } 4058 4059 pr_debug("prog '%s': relo #%d: kind %d, spec is ", prog_name, relo_idx, 4060 relo->kind); 4061 bpf_core_dump_spec(LIBBPF_DEBUG, &local_spec); 4062 libbpf_print(LIBBPF_DEBUG, "\n"); 4063 4064 if (!hashmap__find(cand_cache, type_key, (void **)&cand_ids)) { 4065 cand_ids = bpf_core_find_cands(local_btf, local_id, targ_btf); 4066 if (IS_ERR(cand_ids)) { 4067 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s: %ld", 4068 prog_name, relo_idx, local_id, local_name, 4069 PTR_ERR(cand_ids)); 4070 return PTR_ERR(cand_ids); 4071 } 4072 err = hashmap__set(cand_cache, type_key, cand_ids, NULL, NULL); 4073 if (err) { 4074 bpf_core_free_cands(cand_ids); 4075 return err; 4076 } 4077 } 4078 4079 for (i = 0, j = 0; i < cand_ids->len; i++) { 4080 cand_id = cand_ids->data[i]; 4081 cand_type = btf__type_by_id(targ_btf, cand_id); 4082 cand_name = btf__name_by_offset(targ_btf, cand_type->name_off); 4083 4084 err = bpf_core_spec_match(&local_spec, targ_btf, 4085 cand_id, &cand_spec); 4086 pr_debug("prog '%s': relo #%d: matching candidate #%d %s against spec ", 4087 prog_name, relo_idx, i, cand_name); 4088 bpf_core_dump_spec(LIBBPF_DEBUG, &cand_spec); 4089 libbpf_print(LIBBPF_DEBUG, ": %d\n", err); 4090 if (err < 0) { 4091 pr_warn("prog '%s': relo #%d: matching error: %d\n", 4092 prog_name, relo_idx, err); 4093 return err; 4094 } 4095 if (err == 0) 4096 continue; 4097 4098 if (j == 0) { 4099 targ_spec = cand_spec; 4100 } else if (cand_spec.bit_offset != targ_spec.bit_offset) { 4101 /* if there are many candidates, they should all 4102 * resolve to the same bit offset 4103 */ 4104 pr_warn("prog '%s': relo #%d: offset ambiguity: %u != %u\n", 4105 prog_name, relo_idx, cand_spec.bit_offset, 4106 targ_spec.bit_offset); 4107 return -EINVAL; 4108 } 4109 4110 cand_ids->data[j++] = cand_spec.spec[0].type_id; 4111 } 4112 4113 /* 4114 * For BPF_FIELD_EXISTS relo or when relaxed CO-RE reloc mode is 4115 * requested, it's expected that we might not find any candidates. 4116 * In this case, if field wasn't found in any candidate, the list of 4117 * candidates shouldn't change at all, we'll just handle relocating 4118 * appropriately, depending on relo's kind. 4119 */ 4120 if (j > 0) 4121 cand_ids->len = j; 4122 4123 if (j == 0 && !prog->obj->relaxed_core_relocs && 4124 relo->kind != BPF_FIELD_EXISTS) { 4125 pr_warn("prog '%s': relo #%d: no matching targets found for [%d] %s + %s\n", 4126 prog_name, relo_idx, local_id, local_name, spec_str); 4127 return -ESRCH; 4128 } 4129 4130 /* bpf_core_reloc_insn should know how to handle missing targ_spec */ 4131 err = bpf_core_reloc_insn(prog, relo, &local_spec, 4132 j ? &targ_spec : NULL); 4133 if (err) { 4134 pr_warn("prog '%s': relo #%d: failed to patch insn at offset %d: %d\n", 4135 prog_name, relo_idx, relo->insn_off, err); 4136 return -EINVAL; 4137 } 4138 4139 return 0; 4140 } 4141 4142 static int 4143 bpf_core_reloc_fields(struct bpf_object *obj, const char *targ_btf_path) 4144 { 4145 const struct btf_ext_info_sec *sec; 4146 const struct bpf_field_reloc *rec; 4147 const struct btf_ext_info *seg; 4148 struct hashmap_entry *entry; 4149 struct hashmap *cand_cache = NULL; 4150 struct bpf_program *prog; 4151 struct btf *targ_btf; 4152 const char *sec_name; 4153 int i, err = 0; 4154 4155 if (targ_btf_path) 4156 targ_btf = btf__parse_elf(targ_btf_path, NULL); 4157 else 4158 targ_btf = bpf_core_find_kernel_btf(); 4159 if (IS_ERR(targ_btf)) { 4160 pr_warn("failed to get target BTF: %ld\n", PTR_ERR(targ_btf)); 4161 return PTR_ERR(targ_btf); 4162 } 4163 4164 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 4165 if (IS_ERR(cand_cache)) { 4166 err = PTR_ERR(cand_cache); 4167 goto out; 4168 } 4169 4170 seg = &obj->btf_ext->field_reloc_info; 4171 for_each_btf_ext_sec(seg, sec) { 4172 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 4173 if (str_is_empty(sec_name)) { 4174 err = -EINVAL; 4175 goto out; 4176 } 4177 prog = bpf_object__find_program_by_title(obj, sec_name); 4178 if (!prog) { 4179 pr_warn("failed to find program '%s' for CO-RE offset relocation\n", 4180 sec_name); 4181 err = -EINVAL; 4182 goto out; 4183 } 4184 4185 pr_debug("prog '%s': performing %d CO-RE offset relocs\n", 4186 sec_name, sec->num_info); 4187 4188 for_each_btf_ext_rec(seg, sec, i, rec) { 4189 err = bpf_core_reloc_field(prog, rec, i, obj->btf, 4190 targ_btf, cand_cache); 4191 if (err) { 4192 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 4193 sec_name, i, err); 4194 goto out; 4195 } 4196 } 4197 } 4198 4199 out: 4200 btf__free(targ_btf); 4201 if (!IS_ERR_OR_NULL(cand_cache)) { 4202 hashmap__for_each_entry(cand_cache, entry, i) { 4203 bpf_core_free_cands(entry->value); 4204 } 4205 hashmap__free(cand_cache); 4206 } 4207 return err; 4208 } 4209 4210 static int 4211 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 4212 { 4213 int err = 0; 4214 4215 if (obj->btf_ext->field_reloc_info.len) 4216 err = bpf_core_reloc_fields(obj, targ_btf_path); 4217 4218 return err; 4219 } 4220 4221 static int 4222 bpf_program__reloc_text(struct bpf_program *prog, struct bpf_object *obj, 4223 struct reloc_desc *relo) 4224 { 4225 struct bpf_insn *insn, *new_insn; 4226 struct bpf_program *text; 4227 size_t new_cnt; 4228 int err; 4229 4230 if (prog->idx == obj->efile.text_shndx) { 4231 pr_warn("relo in .text insn %d into off %d (insn #%d)\n", 4232 relo->insn_idx, relo->sym_off, relo->sym_off / 8); 4233 return -LIBBPF_ERRNO__RELOC; 4234 } 4235 4236 if (prog->main_prog_cnt == 0) { 4237 text = bpf_object__find_prog_by_idx(obj, obj->efile.text_shndx); 4238 if (!text) { 4239 pr_warn("no .text section found yet relo into text exist\n"); 4240 return -LIBBPF_ERRNO__RELOC; 4241 } 4242 new_cnt = prog->insns_cnt + text->insns_cnt; 4243 new_insn = reallocarray(prog->insns, new_cnt, sizeof(*insn)); 4244 if (!new_insn) { 4245 pr_warn("oom in prog realloc\n"); 4246 return -ENOMEM; 4247 } 4248 prog->insns = new_insn; 4249 4250 if (obj->btf_ext) { 4251 err = bpf_program_reloc_btf_ext(prog, obj, 4252 text->section_name, 4253 prog->insns_cnt); 4254 if (err) 4255 return err; 4256 } 4257 4258 memcpy(new_insn + prog->insns_cnt, text->insns, 4259 text->insns_cnt * sizeof(*insn)); 4260 prog->main_prog_cnt = prog->insns_cnt; 4261 prog->insns_cnt = new_cnt; 4262 pr_debug("added %zd insn from %s to prog %s\n", 4263 text->insns_cnt, text->section_name, 4264 prog->section_name); 4265 } 4266 insn = &prog->insns[relo->insn_idx]; 4267 insn->imm += relo->sym_off / 8 + prog->main_prog_cnt - relo->insn_idx; 4268 return 0; 4269 } 4270 4271 static int 4272 bpf_program__relocate(struct bpf_program *prog, struct bpf_object *obj) 4273 { 4274 int i, err; 4275 4276 if (!prog) 4277 return 0; 4278 4279 if (obj->btf_ext) { 4280 err = bpf_program_reloc_btf_ext(prog, obj, 4281 prog->section_name, 0); 4282 if (err) 4283 return err; 4284 } 4285 4286 if (!prog->reloc_desc) 4287 return 0; 4288 4289 for (i = 0; i < prog->nr_reloc; i++) { 4290 struct reloc_desc *relo = &prog->reloc_desc[i]; 4291 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 4292 4293 if (relo->insn_idx + 1 >= (int)prog->insns_cnt) { 4294 pr_warn("relocation out of range: '%s'\n", 4295 prog->section_name); 4296 return -LIBBPF_ERRNO__RELOC; 4297 } 4298 4299 switch (relo->type) { 4300 case RELO_LD64: 4301 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 4302 insn[0].imm = obj->maps[relo->map_idx].fd; 4303 break; 4304 case RELO_DATA: 4305 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 4306 insn[1].imm = insn[0].imm + relo->sym_off; 4307 insn[0].imm = obj->maps[relo->map_idx].fd; 4308 break; 4309 case RELO_EXTERN: 4310 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 4311 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 4312 insn[1].imm = relo->sym_off; 4313 break; 4314 case RELO_CALL: 4315 err = bpf_program__reloc_text(prog, obj, relo); 4316 if (err) 4317 return err; 4318 break; 4319 default: 4320 pr_warn("relo #%d: bad relo type %d\n", i, relo->type); 4321 return -EINVAL; 4322 } 4323 } 4324 4325 zfree(&prog->reloc_desc); 4326 prog->nr_reloc = 0; 4327 return 0; 4328 } 4329 4330 static int 4331 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 4332 { 4333 struct bpf_program *prog; 4334 size_t i; 4335 int err; 4336 4337 if (obj->btf_ext) { 4338 err = bpf_object__relocate_core(obj, targ_btf_path); 4339 if (err) { 4340 pr_warn("failed to perform CO-RE relocations: %d\n", 4341 err); 4342 return err; 4343 } 4344 } 4345 for (i = 0; i < obj->nr_programs; i++) { 4346 prog = &obj->programs[i]; 4347 4348 err = bpf_program__relocate(prog, obj); 4349 if (err) { 4350 pr_warn("failed to relocate '%s'\n", prog->section_name); 4351 return err; 4352 } 4353 } 4354 return 0; 4355 } 4356 4357 static int bpf_object__collect_reloc(struct bpf_object *obj) 4358 { 4359 int i, err; 4360 4361 if (!obj_elf_valid(obj)) { 4362 pr_warn("Internal error: elf object is closed\n"); 4363 return -LIBBPF_ERRNO__INTERNAL; 4364 } 4365 4366 for (i = 0; i < obj->efile.nr_reloc_sects; i++) { 4367 GElf_Shdr *shdr = &obj->efile.reloc_sects[i].shdr; 4368 Elf_Data *data = obj->efile.reloc_sects[i].data; 4369 int idx = shdr->sh_info; 4370 struct bpf_program *prog; 4371 4372 if (shdr->sh_type != SHT_REL) { 4373 pr_warn("internal error at %d\n", __LINE__); 4374 return -LIBBPF_ERRNO__INTERNAL; 4375 } 4376 4377 prog = bpf_object__find_prog_by_idx(obj, idx); 4378 if (!prog) { 4379 pr_warn("relocation failed: no section(%d)\n", idx); 4380 return -LIBBPF_ERRNO__RELOC; 4381 } 4382 4383 err = bpf_program__collect_reloc(prog, shdr, data, obj); 4384 if (err) 4385 return err; 4386 } 4387 return 0; 4388 } 4389 4390 static int 4391 load_program(struct bpf_program *prog, struct bpf_insn *insns, int insns_cnt, 4392 char *license, __u32 kern_version, int *pfd) 4393 { 4394 struct bpf_load_program_attr load_attr; 4395 char *cp, errmsg[STRERR_BUFSIZE]; 4396 int log_buf_size = BPF_LOG_BUF_SIZE; 4397 char *log_buf; 4398 int btf_fd, ret; 4399 4400 if (!insns || !insns_cnt) 4401 return -EINVAL; 4402 4403 memset(&load_attr, 0, sizeof(struct bpf_load_program_attr)); 4404 load_attr.prog_type = prog->type; 4405 load_attr.expected_attach_type = prog->expected_attach_type; 4406 if (prog->caps->name) 4407 load_attr.name = prog->name; 4408 load_attr.insns = insns; 4409 load_attr.insns_cnt = insns_cnt; 4410 load_attr.license = license; 4411 if (prog->type == BPF_PROG_TYPE_TRACING) { 4412 load_attr.attach_prog_fd = prog->attach_prog_fd; 4413 load_attr.attach_btf_id = prog->attach_btf_id; 4414 } else { 4415 load_attr.kern_version = kern_version; 4416 load_attr.prog_ifindex = prog->prog_ifindex; 4417 } 4418 /* if .BTF.ext was loaded, kernel supports associated BTF for prog */ 4419 if (prog->obj->btf_ext) 4420 btf_fd = bpf_object__btf_fd(prog->obj); 4421 else 4422 btf_fd = -1; 4423 load_attr.prog_btf_fd = btf_fd >= 0 ? btf_fd : 0; 4424 load_attr.func_info = prog->func_info; 4425 load_attr.func_info_rec_size = prog->func_info_rec_size; 4426 load_attr.func_info_cnt = prog->func_info_cnt; 4427 load_attr.line_info = prog->line_info; 4428 load_attr.line_info_rec_size = prog->line_info_rec_size; 4429 load_attr.line_info_cnt = prog->line_info_cnt; 4430 load_attr.log_level = prog->log_level; 4431 load_attr.prog_flags = prog->prog_flags; 4432 4433 retry_load: 4434 log_buf = malloc(log_buf_size); 4435 if (!log_buf) 4436 pr_warn("Alloc log buffer for bpf loader error, continue without log\n"); 4437 4438 ret = bpf_load_program_xattr(&load_attr, log_buf, log_buf_size); 4439 4440 if (ret >= 0) { 4441 if (load_attr.log_level) 4442 pr_debug("verifier log:\n%s", log_buf); 4443 *pfd = ret; 4444 ret = 0; 4445 goto out; 4446 } 4447 4448 if (errno == ENOSPC) { 4449 log_buf_size <<= 1; 4450 free(log_buf); 4451 goto retry_load; 4452 } 4453 ret = -errno; 4454 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 4455 pr_warn("load bpf program failed: %s\n", cp); 4456 pr_perm_msg(ret); 4457 4458 if (log_buf && log_buf[0] != '\0') { 4459 ret = -LIBBPF_ERRNO__VERIFY; 4460 pr_warn("-- BEGIN DUMP LOG ---\n"); 4461 pr_warn("\n%s\n", log_buf); 4462 pr_warn("-- END LOG --\n"); 4463 } else if (load_attr.insns_cnt >= BPF_MAXINSNS) { 4464 pr_warn("Program too large (%zu insns), at most %d insns\n", 4465 load_attr.insns_cnt, BPF_MAXINSNS); 4466 ret = -LIBBPF_ERRNO__PROG2BIG; 4467 } else if (load_attr.prog_type != BPF_PROG_TYPE_KPROBE) { 4468 /* Wrong program type? */ 4469 int fd; 4470 4471 load_attr.prog_type = BPF_PROG_TYPE_KPROBE; 4472 load_attr.expected_attach_type = 0; 4473 fd = bpf_load_program_xattr(&load_attr, NULL, 0); 4474 if (fd >= 0) { 4475 close(fd); 4476 ret = -LIBBPF_ERRNO__PROGTYPE; 4477 goto out; 4478 } 4479 } 4480 4481 out: 4482 free(log_buf); 4483 return ret; 4484 } 4485 4486 static int libbpf_find_attach_btf_id(const char *name, 4487 enum bpf_attach_type attach_type, 4488 __u32 attach_prog_fd); 4489 4490 int bpf_program__load(struct bpf_program *prog, char *license, __u32 kern_ver) 4491 { 4492 int err = 0, fd, i, btf_id; 4493 4494 if (prog->type == BPF_PROG_TYPE_TRACING) { 4495 btf_id = libbpf_find_attach_btf_id(prog->section_name, 4496 prog->expected_attach_type, 4497 prog->attach_prog_fd); 4498 if (btf_id <= 0) 4499 return btf_id; 4500 prog->attach_btf_id = btf_id; 4501 } 4502 4503 if (prog->instances.nr < 0 || !prog->instances.fds) { 4504 if (prog->preprocessor) { 4505 pr_warn("Internal error: can't load program '%s'\n", 4506 prog->section_name); 4507 return -LIBBPF_ERRNO__INTERNAL; 4508 } 4509 4510 prog->instances.fds = malloc(sizeof(int)); 4511 if (!prog->instances.fds) { 4512 pr_warn("Not enough memory for BPF fds\n"); 4513 return -ENOMEM; 4514 } 4515 prog->instances.nr = 1; 4516 prog->instances.fds[0] = -1; 4517 } 4518 4519 if (!prog->preprocessor) { 4520 if (prog->instances.nr != 1) { 4521 pr_warn("Program '%s' is inconsistent: nr(%d) != 1\n", 4522 prog->section_name, prog->instances.nr); 4523 } 4524 err = load_program(prog, prog->insns, prog->insns_cnt, 4525 license, kern_ver, &fd); 4526 if (!err) 4527 prog->instances.fds[0] = fd; 4528 goto out; 4529 } 4530 4531 for (i = 0; i < prog->instances.nr; i++) { 4532 struct bpf_prog_prep_result result; 4533 bpf_program_prep_t preprocessor = prog->preprocessor; 4534 4535 memset(&result, 0, sizeof(result)); 4536 err = preprocessor(prog, i, prog->insns, 4537 prog->insns_cnt, &result); 4538 if (err) { 4539 pr_warn("Preprocessing the %dth instance of program '%s' failed\n", 4540 i, prog->section_name); 4541 goto out; 4542 } 4543 4544 if (!result.new_insn_ptr || !result.new_insn_cnt) { 4545 pr_debug("Skip loading the %dth instance of program '%s'\n", 4546 i, prog->section_name); 4547 prog->instances.fds[i] = -1; 4548 if (result.pfd) 4549 *result.pfd = -1; 4550 continue; 4551 } 4552 4553 err = load_program(prog, result.new_insn_ptr, 4554 result.new_insn_cnt, license, kern_ver, &fd); 4555 if (err) { 4556 pr_warn("Loading the %dth instance of program '%s' failed\n", 4557 i, prog->section_name); 4558 goto out; 4559 } 4560 4561 if (result.pfd) 4562 *result.pfd = fd; 4563 prog->instances.fds[i] = fd; 4564 } 4565 out: 4566 if (err) 4567 pr_warn("failed to load program '%s'\n", prog->section_name); 4568 zfree(&prog->insns); 4569 prog->insns_cnt = 0; 4570 return err; 4571 } 4572 4573 static bool bpf_program__is_function_storage(const struct bpf_program *prog, 4574 const struct bpf_object *obj) 4575 { 4576 return prog->idx == obj->efile.text_shndx && obj->has_pseudo_calls; 4577 } 4578 4579 static int 4580 bpf_object__load_progs(struct bpf_object *obj, int log_level) 4581 { 4582 size_t i; 4583 int err; 4584 4585 for (i = 0; i < obj->nr_programs; i++) { 4586 if (bpf_program__is_function_storage(&obj->programs[i], obj)) 4587 continue; 4588 obj->programs[i].log_level |= log_level; 4589 err = bpf_program__load(&obj->programs[i], 4590 obj->license, 4591 obj->kern_version); 4592 if (err) 4593 return err; 4594 } 4595 return 0; 4596 } 4597 4598 static struct bpf_object * 4599 __bpf_object__open(const char *path, const void *obj_buf, size_t obj_buf_sz, 4600 const struct bpf_object_open_opts *opts) 4601 { 4602 const char *obj_name, *kconfig; 4603 struct bpf_program *prog; 4604 struct bpf_object *obj; 4605 char tmp_name[64]; 4606 int err; 4607 4608 if (elf_version(EV_CURRENT) == EV_NONE) { 4609 pr_warn("failed to init libelf for %s\n", 4610 path ? : "(mem buf)"); 4611 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 4612 } 4613 4614 if (!OPTS_VALID(opts, bpf_object_open_opts)) 4615 return ERR_PTR(-EINVAL); 4616 4617 obj_name = OPTS_GET(opts, object_name, NULL); 4618 if (obj_buf) { 4619 if (!obj_name) { 4620 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 4621 (unsigned long)obj_buf, 4622 (unsigned long)obj_buf_sz); 4623 obj_name = tmp_name; 4624 } 4625 path = obj_name; 4626 pr_debug("loading object '%s' from buffer\n", obj_name); 4627 } 4628 4629 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 4630 if (IS_ERR(obj)) 4631 return obj; 4632 4633 obj->relaxed_core_relocs = OPTS_GET(opts, relaxed_core_relocs, false); 4634 kconfig = OPTS_GET(opts, kconfig, NULL); 4635 if (kconfig) { 4636 obj->kconfig = strdup(kconfig); 4637 if (!obj->kconfig) 4638 return ERR_PTR(-ENOMEM); 4639 } 4640 4641 err = bpf_object__elf_init(obj); 4642 err = err ? : bpf_object__check_endianness(obj); 4643 err = err ? : bpf_object__elf_collect(obj); 4644 err = err ? : bpf_object__collect_externs(obj); 4645 err = err ? : bpf_object__finalize_btf(obj); 4646 err = err ? : bpf_object__init_maps(obj, opts); 4647 err = err ? : bpf_object__init_prog_names(obj); 4648 err = err ? : bpf_object__collect_reloc(obj); 4649 if (err) 4650 goto out; 4651 bpf_object__elf_finish(obj); 4652 4653 bpf_object__for_each_program(prog, obj) { 4654 enum bpf_prog_type prog_type; 4655 enum bpf_attach_type attach_type; 4656 4657 err = libbpf_prog_type_by_name(prog->section_name, &prog_type, 4658 &attach_type); 4659 if (err == -ESRCH) 4660 /* couldn't guess, but user might manually specify */ 4661 continue; 4662 if (err) 4663 goto out; 4664 4665 bpf_program__set_type(prog, prog_type); 4666 bpf_program__set_expected_attach_type(prog, attach_type); 4667 if (prog_type == BPF_PROG_TYPE_TRACING) 4668 prog->attach_prog_fd = OPTS_GET(opts, attach_prog_fd, 0); 4669 } 4670 4671 return obj; 4672 out: 4673 bpf_object__close(obj); 4674 return ERR_PTR(err); 4675 } 4676 4677 static struct bpf_object * 4678 __bpf_object__open_xattr(struct bpf_object_open_attr *attr, int flags) 4679 { 4680 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 4681 .relaxed_maps = flags & MAPS_RELAX_COMPAT, 4682 ); 4683 4684 /* param validation */ 4685 if (!attr->file) 4686 return NULL; 4687 4688 pr_debug("loading %s\n", attr->file); 4689 return __bpf_object__open(attr->file, NULL, 0, &opts); 4690 } 4691 4692 struct bpf_object *bpf_object__open_xattr(struct bpf_object_open_attr *attr) 4693 { 4694 return __bpf_object__open_xattr(attr, 0); 4695 } 4696 4697 struct bpf_object *bpf_object__open(const char *path) 4698 { 4699 struct bpf_object_open_attr attr = { 4700 .file = path, 4701 .prog_type = BPF_PROG_TYPE_UNSPEC, 4702 }; 4703 4704 return bpf_object__open_xattr(&attr); 4705 } 4706 4707 struct bpf_object * 4708 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 4709 { 4710 if (!path) 4711 return ERR_PTR(-EINVAL); 4712 4713 pr_debug("loading %s\n", path); 4714 4715 return __bpf_object__open(path, NULL, 0, opts); 4716 } 4717 4718 struct bpf_object * 4719 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 4720 const struct bpf_object_open_opts *opts) 4721 { 4722 if (!obj_buf || obj_buf_sz == 0) 4723 return ERR_PTR(-EINVAL); 4724 4725 return __bpf_object__open(NULL, obj_buf, obj_buf_sz, opts); 4726 } 4727 4728 struct bpf_object * 4729 bpf_object__open_buffer(const void *obj_buf, size_t obj_buf_sz, 4730 const char *name) 4731 { 4732 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, opts, 4733 .object_name = name, 4734 /* wrong default, but backwards-compatible */ 4735 .relaxed_maps = true, 4736 ); 4737 4738 /* returning NULL is wrong, but backwards-compatible */ 4739 if (!obj_buf || obj_buf_sz == 0) 4740 return NULL; 4741 4742 return bpf_object__open_mem(obj_buf, obj_buf_sz, &opts); 4743 } 4744 4745 int bpf_object__unload(struct bpf_object *obj) 4746 { 4747 size_t i; 4748 4749 if (!obj) 4750 return -EINVAL; 4751 4752 for (i = 0; i < obj->nr_maps; i++) 4753 zclose(obj->maps[i].fd); 4754 4755 for (i = 0; i < obj->nr_programs; i++) 4756 bpf_program__unload(&obj->programs[i]); 4757 4758 return 0; 4759 } 4760 4761 static int bpf_object__sanitize_maps(struct bpf_object *obj) 4762 { 4763 struct bpf_map *m; 4764 4765 bpf_object__for_each_map(m, obj) { 4766 if (!bpf_map__is_internal(m)) 4767 continue; 4768 if (!obj->caps.global_data) { 4769 pr_warn("kernel doesn't support global data\n"); 4770 return -ENOTSUP; 4771 } 4772 if (!obj->caps.array_mmap) 4773 m->def.map_flags ^= BPF_F_MMAPABLE; 4774 } 4775 4776 return 0; 4777 } 4778 4779 static int bpf_object__resolve_externs(struct bpf_object *obj, 4780 const char *extra_kconfig) 4781 { 4782 bool need_config = false; 4783 struct extern_desc *ext; 4784 int err, i; 4785 void *data; 4786 4787 if (obj->nr_extern == 0) 4788 return 0; 4789 4790 data = obj->maps[obj->kconfig_map_idx].mmaped; 4791 4792 for (i = 0; i < obj->nr_extern; i++) { 4793 ext = &obj->externs[i]; 4794 4795 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 4796 void *ext_val = data + ext->data_off; 4797 __u32 kver = get_kernel_version(); 4798 4799 if (!kver) { 4800 pr_warn("failed to get kernel version\n"); 4801 return -EINVAL; 4802 } 4803 err = set_ext_value_num(ext, ext_val, kver); 4804 if (err) 4805 return err; 4806 pr_debug("extern %s=0x%x\n", ext->name, kver); 4807 } else if (strncmp(ext->name, "CONFIG_", 7) == 0) { 4808 need_config = true; 4809 } else { 4810 pr_warn("unrecognized extern '%s'\n", ext->name); 4811 return -EINVAL; 4812 } 4813 } 4814 if (need_config && extra_kconfig) { 4815 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, data); 4816 if (err) 4817 return -EINVAL; 4818 need_config = false; 4819 for (i = 0; i < obj->nr_extern; i++) { 4820 ext = &obj->externs[i]; 4821 if (!ext->is_set) { 4822 need_config = true; 4823 break; 4824 } 4825 } 4826 } 4827 if (need_config) { 4828 err = bpf_object__read_kconfig_file(obj, data); 4829 if (err) 4830 return -EINVAL; 4831 } 4832 for (i = 0; i < obj->nr_extern; i++) { 4833 ext = &obj->externs[i]; 4834 4835 if (!ext->is_set && !ext->is_weak) { 4836 pr_warn("extern %s (strong) not resolved\n", ext->name); 4837 return -ESRCH; 4838 } else if (!ext->is_set) { 4839 pr_debug("extern %s (weak) not resolved, defaulting to zero\n", 4840 ext->name); 4841 } 4842 } 4843 4844 return 0; 4845 } 4846 4847 int bpf_object__load_xattr(struct bpf_object_load_attr *attr) 4848 { 4849 struct bpf_object *obj; 4850 int err, i; 4851 4852 if (!attr) 4853 return -EINVAL; 4854 obj = attr->obj; 4855 if (!obj) 4856 return -EINVAL; 4857 4858 if (obj->loaded) { 4859 pr_warn("object should not be loaded twice\n"); 4860 return -EINVAL; 4861 } 4862 4863 obj->loaded = true; 4864 4865 err = bpf_object__probe_caps(obj); 4866 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 4867 err = err ? : bpf_object__sanitize_and_load_btf(obj); 4868 err = err ? : bpf_object__sanitize_maps(obj); 4869 err = err ? : bpf_object__create_maps(obj); 4870 err = err ? : bpf_object__relocate(obj, attr->target_btf_path); 4871 err = err ? : bpf_object__load_progs(obj, attr->log_level); 4872 if (err) 4873 goto out; 4874 4875 return 0; 4876 out: 4877 /* unpin any maps that were auto-pinned during load */ 4878 for (i = 0; i < obj->nr_maps; i++) 4879 if (obj->maps[i].pinned && !obj->maps[i].reused) 4880 bpf_map__unpin(&obj->maps[i], NULL); 4881 4882 bpf_object__unload(obj); 4883 pr_warn("failed to load object '%s'\n", obj->path); 4884 return err; 4885 } 4886 4887 int bpf_object__load(struct bpf_object *obj) 4888 { 4889 struct bpf_object_load_attr attr = { 4890 .obj = obj, 4891 }; 4892 4893 return bpf_object__load_xattr(&attr); 4894 } 4895 4896 static int make_parent_dir(const char *path) 4897 { 4898 char *cp, errmsg[STRERR_BUFSIZE]; 4899 char *dname, *dir; 4900 int err = 0; 4901 4902 dname = strdup(path); 4903 if (dname == NULL) 4904 return -ENOMEM; 4905 4906 dir = dirname(dname); 4907 if (mkdir(dir, 0700) && errno != EEXIST) 4908 err = -errno; 4909 4910 free(dname); 4911 if (err) { 4912 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4913 pr_warn("failed to mkdir %s: %s\n", path, cp); 4914 } 4915 return err; 4916 } 4917 4918 static int check_path(const char *path) 4919 { 4920 char *cp, errmsg[STRERR_BUFSIZE]; 4921 struct statfs st_fs; 4922 char *dname, *dir; 4923 int err = 0; 4924 4925 if (path == NULL) 4926 return -EINVAL; 4927 4928 dname = strdup(path); 4929 if (dname == NULL) 4930 return -ENOMEM; 4931 4932 dir = dirname(dname); 4933 if (statfs(dir, &st_fs)) { 4934 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 4935 pr_warn("failed to statfs %s: %s\n", dir, cp); 4936 err = -errno; 4937 } 4938 free(dname); 4939 4940 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 4941 pr_warn("specified path %s is not on BPF FS\n", path); 4942 err = -EINVAL; 4943 } 4944 4945 return err; 4946 } 4947 4948 int bpf_program__pin_instance(struct bpf_program *prog, const char *path, 4949 int instance) 4950 { 4951 char *cp, errmsg[STRERR_BUFSIZE]; 4952 int err; 4953 4954 err = make_parent_dir(path); 4955 if (err) 4956 return err; 4957 4958 err = check_path(path); 4959 if (err) 4960 return err; 4961 4962 if (prog == NULL) { 4963 pr_warn("invalid program pointer\n"); 4964 return -EINVAL; 4965 } 4966 4967 if (instance < 0 || instance >= prog->instances.nr) { 4968 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 4969 instance, prog->section_name, prog->instances.nr); 4970 return -EINVAL; 4971 } 4972 4973 if (bpf_obj_pin(prog->instances.fds[instance], path)) { 4974 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 4975 pr_warn("failed to pin program: %s\n", cp); 4976 return -errno; 4977 } 4978 pr_debug("pinned program '%s'\n", path); 4979 4980 return 0; 4981 } 4982 4983 int bpf_program__unpin_instance(struct bpf_program *prog, const char *path, 4984 int instance) 4985 { 4986 int err; 4987 4988 err = check_path(path); 4989 if (err) 4990 return err; 4991 4992 if (prog == NULL) { 4993 pr_warn("invalid program pointer\n"); 4994 return -EINVAL; 4995 } 4996 4997 if (instance < 0 || instance >= prog->instances.nr) { 4998 pr_warn("invalid prog instance %d of prog %s (max %d)\n", 4999 instance, prog->section_name, prog->instances.nr); 5000 return -EINVAL; 5001 } 5002 5003 err = unlink(path); 5004 if (err != 0) 5005 return -errno; 5006 pr_debug("unpinned program '%s'\n", path); 5007 5008 return 0; 5009 } 5010 5011 int bpf_program__pin(struct bpf_program *prog, const char *path) 5012 { 5013 int i, err; 5014 5015 err = make_parent_dir(path); 5016 if (err) 5017 return err; 5018 5019 err = check_path(path); 5020 if (err) 5021 return err; 5022 5023 if (prog == NULL) { 5024 pr_warn("invalid program pointer\n"); 5025 return -EINVAL; 5026 } 5027 5028 if (prog->instances.nr <= 0) { 5029 pr_warn("no instances of prog %s to pin\n", 5030 prog->section_name); 5031 return -EINVAL; 5032 } 5033 5034 if (prog->instances.nr == 1) { 5035 /* don't create subdirs when pinning single instance */ 5036 return bpf_program__pin_instance(prog, path, 0); 5037 } 5038 5039 for (i = 0; i < prog->instances.nr; i++) { 5040 char buf[PATH_MAX]; 5041 int len; 5042 5043 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 5044 if (len < 0) { 5045 err = -EINVAL; 5046 goto err_unpin; 5047 } else if (len >= PATH_MAX) { 5048 err = -ENAMETOOLONG; 5049 goto err_unpin; 5050 } 5051 5052 err = bpf_program__pin_instance(prog, buf, i); 5053 if (err) 5054 goto err_unpin; 5055 } 5056 5057 return 0; 5058 5059 err_unpin: 5060 for (i = i - 1; i >= 0; i--) { 5061 char buf[PATH_MAX]; 5062 int len; 5063 5064 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 5065 if (len < 0) 5066 continue; 5067 else if (len >= PATH_MAX) 5068 continue; 5069 5070 bpf_program__unpin_instance(prog, buf, i); 5071 } 5072 5073 rmdir(path); 5074 5075 return err; 5076 } 5077 5078 int bpf_program__unpin(struct bpf_program *prog, const char *path) 5079 { 5080 int i, err; 5081 5082 err = check_path(path); 5083 if (err) 5084 return err; 5085 5086 if (prog == NULL) { 5087 pr_warn("invalid program pointer\n"); 5088 return -EINVAL; 5089 } 5090 5091 if (prog->instances.nr <= 0) { 5092 pr_warn("no instances of prog %s to pin\n", 5093 prog->section_name); 5094 return -EINVAL; 5095 } 5096 5097 if (prog->instances.nr == 1) { 5098 /* don't create subdirs when pinning single instance */ 5099 return bpf_program__unpin_instance(prog, path, 0); 5100 } 5101 5102 for (i = 0; i < prog->instances.nr; i++) { 5103 char buf[PATH_MAX]; 5104 int len; 5105 5106 len = snprintf(buf, PATH_MAX, "%s/%d", path, i); 5107 if (len < 0) 5108 return -EINVAL; 5109 else if (len >= PATH_MAX) 5110 return -ENAMETOOLONG; 5111 5112 err = bpf_program__unpin_instance(prog, buf, i); 5113 if (err) 5114 return err; 5115 } 5116 5117 err = rmdir(path); 5118 if (err) 5119 return -errno; 5120 5121 return 0; 5122 } 5123 5124 int bpf_map__pin(struct bpf_map *map, const char *path) 5125 { 5126 char *cp, errmsg[STRERR_BUFSIZE]; 5127 int err; 5128 5129 if (map == NULL) { 5130 pr_warn("invalid map pointer\n"); 5131 return -EINVAL; 5132 } 5133 5134 if (map->pin_path) { 5135 if (path && strcmp(path, map->pin_path)) { 5136 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 5137 bpf_map__name(map), map->pin_path, path); 5138 return -EINVAL; 5139 } else if (map->pinned) { 5140 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 5141 bpf_map__name(map), map->pin_path); 5142 return 0; 5143 } 5144 } else { 5145 if (!path) { 5146 pr_warn("missing a path to pin map '%s' at\n", 5147 bpf_map__name(map)); 5148 return -EINVAL; 5149 } else if (map->pinned) { 5150 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 5151 return -EEXIST; 5152 } 5153 5154 map->pin_path = strdup(path); 5155 if (!map->pin_path) { 5156 err = -errno; 5157 goto out_err; 5158 } 5159 } 5160 5161 err = make_parent_dir(map->pin_path); 5162 if (err) 5163 return err; 5164 5165 err = check_path(map->pin_path); 5166 if (err) 5167 return err; 5168 5169 if (bpf_obj_pin(map->fd, map->pin_path)) { 5170 err = -errno; 5171 goto out_err; 5172 } 5173 5174 map->pinned = true; 5175 pr_debug("pinned map '%s'\n", map->pin_path); 5176 5177 return 0; 5178 5179 out_err: 5180 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5181 pr_warn("failed to pin map: %s\n", cp); 5182 return err; 5183 } 5184 5185 int bpf_map__unpin(struct bpf_map *map, const char *path) 5186 { 5187 int err; 5188 5189 if (map == NULL) { 5190 pr_warn("invalid map pointer\n"); 5191 return -EINVAL; 5192 } 5193 5194 if (map->pin_path) { 5195 if (path && strcmp(path, map->pin_path)) { 5196 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 5197 bpf_map__name(map), map->pin_path, path); 5198 return -EINVAL; 5199 } 5200 path = map->pin_path; 5201 } else if (!path) { 5202 pr_warn("no path to unpin map '%s' from\n", 5203 bpf_map__name(map)); 5204 return -EINVAL; 5205 } 5206 5207 err = check_path(path); 5208 if (err) 5209 return err; 5210 5211 err = unlink(path); 5212 if (err != 0) 5213 return -errno; 5214 5215 map->pinned = false; 5216 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 5217 5218 return 0; 5219 } 5220 5221 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 5222 { 5223 char *new = NULL; 5224 5225 if (path) { 5226 new = strdup(path); 5227 if (!new) 5228 return -errno; 5229 } 5230 5231 free(map->pin_path); 5232 map->pin_path = new; 5233 return 0; 5234 } 5235 5236 const char *bpf_map__get_pin_path(const struct bpf_map *map) 5237 { 5238 return map->pin_path; 5239 } 5240 5241 bool bpf_map__is_pinned(const struct bpf_map *map) 5242 { 5243 return map->pinned; 5244 } 5245 5246 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 5247 { 5248 struct bpf_map *map; 5249 int err; 5250 5251 if (!obj) 5252 return -ENOENT; 5253 5254 if (!obj->loaded) { 5255 pr_warn("object not yet loaded; load it first\n"); 5256 return -ENOENT; 5257 } 5258 5259 bpf_object__for_each_map(map, obj) { 5260 char *pin_path = NULL; 5261 char buf[PATH_MAX]; 5262 5263 if (path) { 5264 int len; 5265 5266 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5267 bpf_map__name(map)); 5268 if (len < 0) { 5269 err = -EINVAL; 5270 goto err_unpin_maps; 5271 } else if (len >= PATH_MAX) { 5272 err = -ENAMETOOLONG; 5273 goto err_unpin_maps; 5274 } 5275 pin_path = buf; 5276 } else if (!map->pin_path) { 5277 continue; 5278 } 5279 5280 err = bpf_map__pin(map, pin_path); 5281 if (err) 5282 goto err_unpin_maps; 5283 } 5284 5285 return 0; 5286 5287 err_unpin_maps: 5288 while ((map = bpf_map__prev(map, obj))) { 5289 if (!map->pin_path) 5290 continue; 5291 5292 bpf_map__unpin(map, NULL); 5293 } 5294 5295 return err; 5296 } 5297 5298 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 5299 { 5300 struct bpf_map *map; 5301 int err; 5302 5303 if (!obj) 5304 return -ENOENT; 5305 5306 bpf_object__for_each_map(map, obj) { 5307 char *pin_path = NULL; 5308 char buf[PATH_MAX]; 5309 5310 if (path) { 5311 int len; 5312 5313 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5314 bpf_map__name(map)); 5315 if (len < 0) 5316 return -EINVAL; 5317 else if (len >= PATH_MAX) 5318 return -ENAMETOOLONG; 5319 pin_path = buf; 5320 } else if (!map->pin_path) { 5321 continue; 5322 } 5323 5324 err = bpf_map__unpin(map, pin_path); 5325 if (err) 5326 return err; 5327 } 5328 5329 return 0; 5330 } 5331 5332 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 5333 { 5334 struct bpf_program *prog; 5335 int err; 5336 5337 if (!obj) 5338 return -ENOENT; 5339 5340 if (!obj->loaded) { 5341 pr_warn("object not yet loaded; load it first\n"); 5342 return -ENOENT; 5343 } 5344 5345 bpf_object__for_each_program(prog, obj) { 5346 char buf[PATH_MAX]; 5347 int len; 5348 5349 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5350 prog->pin_name); 5351 if (len < 0) { 5352 err = -EINVAL; 5353 goto err_unpin_programs; 5354 } else if (len >= PATH_MAX) { 5355 err = -ENAMETOOLONG; 5356 goto err_unpin_programs; 5357 } 5358 5359 err = bpf_program__pin(prog, buf); 5360 if (err) 5361 goto err_unpin_programs; 5362 } 5363 5364 return 0; 5365 5366 err_unpin_programs: 5367 while ((prog = bpf_program__prev(prog, obj))) { 5368 char buf[PATH_MAX]; 5369 int len; 5370 5371 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5372 prog->pin_name); 5373 if (len < 0) 5374 continue; 5375 else if (len >= PATH_MAX) 5376 continue; 5377 5378 bpf_program__unpin(prog, buf); 5379 } 5380 5381 return err; 5382 } 5383 5384 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 5385 { 5386 struct bpf_program *prog; 5387 int err; 5388 5389 if (!obj) 5390 return -ENOENT; 5391 5392 bpf_object__for_each_program(prog, obj) { 5393 char buf[PATH_MAX]; 5394 int len; 5395 5396 len = snprintf(buf, PATH_MAX, "%s/%s", path, 5397 prog->pin_name); 5398 if (len < 0) 5399 return -EINVAL; 5400 else if (len >= PATH_MAX) 5401 return -ENAMETOOLONG; 5402 5403 err = bpf_program__unpin(prog, buf); 5404 if (err) 5405 return err; 5406 } 5407 5408 return 0; 5409 } 5410 5411 int bpf_object__pin(struct bpf_object *obj, const char *path) 5412 { 5413 int err; 5414 5415 err = bpf_object__pin_maps(obj, path); 5416 if (err) 5417 return err; 5418 5419 err = bpf_object__pin_programs(obj, path); 5420 if (err) { 5421 bpf_object__unpin_maps(obj, path); 5422 return err; 5423 } 5424 5425 return 0; 5426 } 5427 5428 void bpf_object__close(struct bpf_object *obj) 5429 { 5430 size_t i; 5431 5432 if (!obj) 5433 return; 5434 5435 if (obj->clear_priv) 5436 obj->clear_priv(obj, obj->priv); 5437 5438 bpf_object__elf_finish(obj); 5439 bpf_object__unload(obj); 5440 btf__free(obj->btf); 5441 btf_ext__free(obj->btf_ext); 5442 5443 for (i = 0; i < obj->nr_maps; i++) { 5444 struct bpf_map *map = &obj->maps[i]; 5445 5446 if (map->clear_priv) 5447 map->clear_priv(map, map->priv); 5448 map->priv = NULL; 5449 map->clear_priv = NULL; 5450 5451 if (map->mmaped) { 5452 munmap(map->mmaped, bpf_map_mmap_sz(map)); 5453 map->mmaped = NULL; 5454 } 5455 5456 zfree(&map->name); 5457 zfree(&map->pin_path); 5458 } 5459 5460 zfree(&obj->kconfig); 5461 zfree(&obj->externs); 5462 obj->nr_extern = 0; 5463 5464 zfree(&obj->maps); 5465 obj->nr_maps = 0; 5466 5467 if (obj->programs && obj->nr_programs) { 5468 for (i = 0; i < obj->nr_programs; i++) 5469 bpf_program__exit(&obj->programs[i]); 5470 } 5471 zfree(&obj->programs); 5472 5473 list_del(&obj->list); 5474 free(obj); 5475 } 5476 5477 struct bpf_object * 5478 bpf_object__next(struct bpf_object *prev) 5479 { 5480 struct bpf_object *next; 5481 5482 if (!prev) 5483 next = list_first_entry(&bpf_objects_list, 5484 struct bpf_object, 5485 list); 5486 else 5487 next = list_next_entry(prev, list); 5488 5489 /* Empty list is noticed here so don't need checking on entry. */ 5490 if (&next->list == &bpf_objects_list) 5491 return NULL; 5492 5493 return next; 5494 } 5495 5496 const char *bpf_object__name(const struct bpf_object *obj) 5497 { 5498 return obj ? obj->name : ERR_PTR(-EINVAL); 5499 } 5500 5501 unsigned int bpf_object__kversion(const struct bpf_object *obj) 5502 { 5503 return obj ? obj->kern_version : 0; 5504 } 5505 5506 struct btf *bpf_object__btf(const struct bpf_object *obj) 5507 { 5508 return obj ? obj->btf : NULL; 5509 } 5510 5511 int bpf_object__btf_fd(const struct bpf_object *obj) 5512 { 5513 return obj->btf ? btf__fd(obj->btf) : -1; 5514 } 5515 5516 int bpf_object__set_priv(struct bpf_object *obj, void *priv, 5517 bpf_object_clear_priv_t clear_priv) 5518 { 5519 if (obj->priv && obj->clear_priv) 5520 obj->clear_priv(obj, obj->priv); 5521 5522 obj->priv = priv; 5523 obj->clear_priv = clear_priv; 5524 return 0; 5525 } 5526 5527 void *bpf_object__priv(const struct bpf_object *obj) 5528 { 5529 return obj ? obj->priv : ERR_PTR(-EINVAL); 5530 } 5531 5532 static struct bpf_program * 5533 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 5534 bool forward) 5535 { 5536 size_t nr_programs = obj->nr_programs; 5537 ssize_t idx; 5538 5539 if (!nr_programs) 5540 return NULL; 5541 5542 if (!p) 5543 /* Iter from the beginning */ 5544 return forward ? &obj->programs[0] : 5545 &obj->programs[nr_programs - 1]; 5546 5547 if (p->obj != obj) { 5548 pr_warn("error: program handler doesn't match object\n"); 5549 return NULL; 5550 } 5551 5552 idx = (p - obj->programs) + (forward ? 1 : -1); 5553 if (idx >= obj->nr_programs || idx < 0) 5554 return NULL; 5555 return &obj->programs[idx]; 5556 } 5557 5558 struct bpf_program * 5559 bpf_program__next(struct bpf_program *prev, const struct bpf_object *obj) 5560 { 5561 struct bpf_program *prog = prev; 5562 5563 do { 5564 prog = __bpf_program__iter(prog, obj, true); 5565 } while (prog && bpf_program__is_function_storage(prog, obj)); 5566 5567 return prog; 5568 } 5569 5570 struct bpf_program * 5571 bpf_program__prev(struct bpf_program *next, const struct bpf_object *obj) 5572 { 5573 struct bpf_program *prog = next; 5574 5575 do { 5576 prog = __bpf_program__iter(prog, obj, false); 5577 } while (prog && bpf_program__is_function_storage(prog, obj)); 5578 5579 return prog; 5580 } 5581 5582 int bpf_program__set_priv(struct bpf_program *prog, void *priv, 5583 bpf_program_clear_priv_t clear_priv) 5584 { 5585 if (prog->priv && prog->clear_priv) 5586 prog->clear_priv(prog, prog->priv); 5587 5588 prog->priv = priv; 5589 prog->clear_priv = clear_priv; 5590 return 0; 5591 } 5592 5593 void *bpf_program__priv(const struct bpf_program *prog) 5594 { 5595 return prog ? prog->priv : ERR_PTR(-EINVAL); 5596 } 5597 5598 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 5599 { 5600 prog->prog_ifindex = ifindex; 5601 } 5602 5603 const char *bpf_program__name(const struct bpf_program *prog) 5604 { 5605 return prog->name; 5606 } 5607 5608 const char *bpf_program__title(const struct bpf_program *prog, bool needs_copy) 5609 { 5610 const char *title; 5611 5612 title = prog->section_name; 5613 if (needs_copy) { 5614 title = strdup(title); 5615 if (!title) { 5616 pr_warn("failed to strdup program title\n"); 5617 return ERR_PTR(-ENOMEM); 5618 } 5619 } 5620 5621 return title; 5622 } 5623 5624 int bpf_program__fd(const struct bpf_program *prog) 5625 { 5626 return bpf_program__nth_fd(prog, 0); 5627 } 5628 5629 size_t bpf_program__size(const struct bpf_program *prog) 5630 { 5631 return prog->insns_cnt * sizeof(struct bpf_insn); 5632 } 5633 5634 int bpf_program__set_prep(struct bpf_program *prog, int nr_instances, 5635 bpf_program_prep_t prep) 5636 { 5637 int *instances_fds; 5638 5639 if (nr_instances <= 0 || !prep) 5640 return -EINVAL; 5641 5642 if (prog->instances.nr > 0 || prog->instances.fds) { 5643 pr_warn("Can't set pre-processor after loading\n"); 5644 return -EINVAL; 5645 } 5646 5647 instances_fds = malloc(sizeof(int) * nr_instances); 5648 if (!instances_fds) { 5649 pr_warn("alloc memory failed for fds\n"); 5650 return -ENOMEM; 5651 } 5652 5653 /* fill all fd with -1 */ 5654 memset(instances_fds, -1, sizeof(int) * nr_instances); 5655 5656 prog->instances.nr = nr_instances; 5657 prog->instances.fds = instances_fds; 5658 prog->preprocessor = prep; 5659 return 0; 5660 } 5661 5662 int bpf_program__nth_fd(const struct bpf_program *prog, int n) 5663 { 5664 int fd; 5665 5666 if (!prog) 5667 return -EINVAL; 5668 5669 if (n >= prog->instances.nr || n < 0) { 5670 pr_warn("Can't get the %dth fd from program %s: only %d instances\n", 5671 n, prog->section_name, prog->instances.nr); 5672 return -EINVAL; 5673 } 5674 5675 fd = prog->instances.fds[n]; 5676 if (fd < 0) { 5677 pr_warn("%dth instance of program '%s' is invalid\n", 5678 n, prog->section_name); 5679 return -ENOENT; 5680 } 5681 5682 return fd; 5683 } 5684 5685 enum bpf_prog_type bpf_program__get_type(struct bpf_program *prog) 5686 { 5687 return prog->type; 5688 } 5689 5690 void bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 5691 { 5692 prog->type = type; 5693 } 5694 5695 static bool bpf_program__is_type(const struct bpf_program *prog, 5696 enum bpf_prog_type type) 5697 { 5698 return prog ? (prog->type == type) : false; 5699 } 5700 5701 #define BPF_PROG_TYPE_FNS(NAME, TYPE) \ 5702 int bpf_program__set_##NAME(struct bpf_program *prog) \ 5703 { \ 5704 if (!prog) \ 5705 return -EINVAL; \ 5706 bpf_program__set_type(prog, TYPE); \ 5707 return 0; \ 5708 } \ 5709 \ 5710 bool bpf_program__is_##NAME(const struct bpf_program *prog) \ 5711 { \ 5712 return bpf_program__is_type(prog, TYPE); \ 5713 } \ 5714 5715 BPF_PROG_TYPE_FNS(socket_filter, BPF_PROG_TYPE_SOCKET_FILTER); 5716 BPF_PROG_TYPE_FNS(kprobe, BPF_PROG_TYPE_KPROBE); 5717 BPF_PROG_TYPE_FNS(sched_cls, BPF_PROG_TYPE_SCHED_CLS); 5718 BPF_PROG_TYPE_FNS(sched_act, BPF_PROG_TYPE_SCHED_ACT); 5719 BPF_PROG_TYPE_FNS(tracepoint, BPF_PROG_TYPE_TRACEPOINT); 5720 BPF_PROG_TYPE_FNS(raw_tracepoint, BPF_PROG_TYPE_RAW_TRACEPOINT); 5721 BPF_PROG_TYPE_FNS(xdp, BPF_PROG_TYPE_XDP); 5722 BPF_PROG_TYPE_FNS(perf_event, BPF_PROG_TYPE_PERF_EVENT); 5723 BPF_PROG_TYPE_FNS(tracing, BPF_PROG_TYPE_TRACING); 5724 5725 enum bpf_attach_type 5726 bpf_program__get_expected_attach_type(struct bpf_program *prog) 5727 { 5728 return prog->expected_attach_type; 5729 } 5730 5731 void bpf_program__set_expected_attach_type(struct bpf_program *prog, 5732 enum bpf_attach_type type) 5733 { 5734 prog->expected_attach_type = type; 5735 } 5736 5737 #define BPF_PROG_SEC_IMPL(string, ptype, eatype, is_attachable, btf, atype) \ 5738 { string, sizeof(string) - 1, ptype, eatype, is_attachable, btf, atype } 5739 5740 /* Programs that can NOT be attached. */ 5741 #define BPF_PROG_SEC(string, ptype) BPF_PROG_SEC_IMPL(string, ptype, 0, 0, 0, 0) 5742 5743 /* Programs that can be attached. */ 5744 #define BPF_APROG_SEC(string, ptype, atype) \ 5745 BPF_PROG_SEC_IMPL(string, ptype, 0, 1, 0, atype) 5746 5747 /* Programs that must specify expected attach type at load time. */ 5748 #define BPF_EAPROG_SEC(string, ptype, eatype) \ 5749 BPF_PROG_SEC_IMPL(string, ptype, eatype, 1, 0, eatype) 5750 5751 /* Programs that use BTF to identify attach point */ 5752 #define BPF_PROG_BTF(string, ptype, eatype) \ 5753 BPF_PROG_SEC_IMPL(string, ptype, eatype, 0, 1, 0) 5754 5755 /* Programs that can be attached but attach type can't be identified by section 5756 * name. Kept for backward compatibility. 5757 */ 5758 #define BPF_APROG_COMPAT(string, ptype) BPF_PROG_SEC(string, ptype) 5759 5760 #define SEC_DEF(sec_pfx, ptype, ...) { \ 5761 .sec = sec_pfx, \ 5762 .len = sizeof(sec_pfx) - 1, \ 5763 .prog_type = BPF_PROG_TYPE_##ptype, \ 5764 __VA_ARGS__ \ 5765 } 5766 5767 struct bpf_sec_def; 5768 5769 typedef struct bpf_link *(*attach_fn_t)(const struct bpf_sec_def *sec, 5770 struct bpf_program *prog); 5771 5772 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 5773 struct bpf_program *prog); 5774 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 5775 struct bpf_program *prog); 5776 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 5777 struct bpf_program *prog); 5778 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 5779 struct bpf_program *prog); 5780 5781 struct bpf_sec_def { 5782 const char *sec; 5783 size_t len; 5784 enum bpf_prog_type prog_type; 5785 enum bpf_attach_type expected_attach_type; 5786 bool is_attachable; 5787 bool is_attach_btf; 5788 enum bpf_attach_type attach_type; 5789 attach_fn_t attach_fn; 5790 }; 5791 5792 static const struct bpf_sec_def section_defs[] = { 5793 BPF_PROG_SEC("socket", BPF_PROG_TYPE_SOCKET_FILTER), 5794 BPF_PROG_SEC("sk_reuseport", BPF_PROG_TYPE_SK_REUSEPORT), 5795 SEC_DEF("kprobe/", KPROBE, 5796 .attach_fn = attach_kprobe), 5797 BPF_PROG_SEC("uprobe/", BPF_PROG_TYPE_KPROBE), 5798 SEC_DEF("kretprobe/", KPROBE, 5799 .attach_fn = attach_kprobe), 5800 BPF_PROG_SEC("uretprobe/", BPF_PROG_TYPE_KPROBE), 5801 BPF_PROG_SEC("classifier", BPF_PROG_TYPE_SCHED_CLS), 5802 BPF_PROG_SEC("action", BPF_PROG_TYPE_SCHED_ACT), 5803 SEC_DEF("tracepoint/", TRACEPOINT, 5804 .attach_fn = attach_tp), 5805 SEC_DEF("tp/", TRACEPOINT, 5806 .attach_fn = attach_tp), 5807 SEC_DEF("raw_tracepoint/", RAW_TRACEPOINT, 5808 .attach_fn = attach_raw_tp), 5809 SEC_DEF("raw_tp/", RAW_TRACEPOINT, 5810 .attach_fn = attach_raw_tp), 5811 SEC_DEF("tp_btf/", TRACING, 5812 .expected_attach_type = BPF_TRACE_RAW_TP, 5813 .is_attach_btf = true, 5814 .attach_fn = attach_trace), 5815 SEC_DEF("fentry/", TRACING, 5816 .expected_attach_type = BPF_TRACE_FENTRY, 5817 .is_attach_btf = true, 5818 .attach_fn = attach_trace), 5819 SEC_DEF("fexit/", TRACING, 5820 .expected_attach_type = BPF_TRACE_FEXIT, 5821 .is_attach_btf = true, 5822 .attach_fn = attach_trace), 5823 BPF_PROG_SEC("xdp", BPF_PROG_TYPE_XDP), 5824 BPF_PROG_SEC("perf_event", BPF_PROG_TYPE_PERF_EVENT), 5825 BPF_PROG_SEC("lwt_in", BPF_PROG_TYPE_LWT_IN), 5826 BPF_PROG_SEC("lwt_out", BPF_PROG_TYPE_LWT_OUT), 5827 BPF_PROG_SEC("lwt_xmit", BPF_PROG_TYPE_LWT_XMIT), 5828 BPF_PROG_SEC("lwt_seg6local", BPF_PROG_TYPE_LWT_SEG6LOCAL), 5829 BPF_APROG_SEC("cgroup_skb/ingress", BPF_PROG_TYPE_CGROUP_SKB, 5830 BPF_CGROUP_INET_INGRESS), 5831 BPF_APROG_SEC("cgroup_skb/egress", BPF_PROG_TYPE_CGROUP_SKB, 5832 BPF_CGROUP_INET_EGRESS), 5833 BPF_APROG_COMPAT("cgroup/skb", BPF_PROG_TYPE_CGROUP_SKB), 5834 BPF_APROG_SEC("cgroup/sock", BPF_PROG_TYPE_CGROUP_SOCK, 5835 BPF_CGROUP_INET_SOCK_CREATE), 5836 BPF_EAPROG_SEC("cgroup/post_bind4", BPF_PROG_TYPE_CGROUP_SOCK, 5837 BPF_CGROUP_INET4_POST_BIND), 5838 BPF_EAPROG_SEC("cgroup/post_bind6", BPF_PROG_TYPE_CGROUP_SOCK, 5839 BPF_CGROUP_INET6_POST_BIND), 5840 BPF_APROG_SEC("cgroup/dev", BPF_PROG_TYPE_CGROUP_DEVICE, 5841 BPF_CGROUP_DEVICE), 5842 BPF_APROG_SEC("sockops", BPF_PROG_TYPE_SOCK_OPS, 5843 BPF_CGROUP_SOCK_OPS), 5844 BPF_APROG_SEC("sk_skb/stream_parser", BPF_PROG_TYPE_SK_SKB, 5845 BPF_SK_SKB_STREAM_PARSER), 5846 BPF_APROG_SEC("sk_skb/stream_verdict", BPF_PROG_TYPE_SK_SKB, 5847 BPF_SK_SKB_STREAM_VERDICT), 5848 BPF_APROG_COMPAT("sk_skb", BPF_PROG_TYPE_SK_SKB), 5849 BPF_APROG_SEC("sk_msg", BPF_PROG_TYPE_SK_MSG, 5850 BPF_SK_MSG_VERDICT), 5851 BPF_APROG_SEC("lirc_mode2", BPF_PROG_TYPE_LIRC_MODE2, 5852 BPF_LIRC_MODE2), 5853 BPF_APROG_SEC("flow_dissector", BPF_PROG_TYPE_FLOW_DISSECTOR, 5854 BPF_FLOW_DISSECTOR), 5855 BPF_EAPROG_SEC("cgroup/bind4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 5856 BPF_CGROUP_INET4_BIND), 5857 BPF_EAPROG_SEC("cgroup/bind6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 5858 BPF_CGROUP_INET6_BIND), 5859 BPF_EAPROG_SEC("cgroup/connect4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 5860 BPF_CGROUP_INET4_CONNECT), 5861 BPF_EAPROG_SEC("cgroup/connect6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 5862 BPF_CGROUP_INET6_CONNECT), 5863 BPF_EAPROG_SEC("cgroup/sendmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 5864 BPF_CGROUP_UDP4_SENDMSG), 5865 BPF_EAPROG_SEC("cgroup/sendmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 5866 BPF_CGROUP_UDP6_SENDMSG), 5867 BPF_EAPROG_SEC("cgroup/recvmsg4", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 5868 BPF_CGROUP_UDP4_RECVMSG), 5869 BPF_EAPROG_SEC("cgroup/recvmsg6", BPF_PROG_TYPE_CGROUP_SOCK_ADDR, 5870 BPF_CGROUP_UDP6_RECVMSG), 5871 BPF_EAPROG_SEC("cgroup/sysctl", BPF_PROG_TYPE_CGROUP_SYSCTL, 5872 BPF_CGROUP_SYSCTL), 5873 BPF_EAPROG_SEC("cgroup/getsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 5874 BPF_CGROUP_GETSOCKOPT), 5875 BPF_EAPROG_SEC("cgroup/setsockopt", BPF_PROG_TYPE_CGROUP_SOCKOPT, 5876 BPF_CGROUP_SETSOCKOPT), 5877 }; 5878 5879 #undef BPF_PROG_SEC_IMPL 5880 #undef BPF_PROG_SEC 5881 #undef BPF_APROG_SEC 5882 #undef BPF_EAPROG_SEC 5883 #undef BPF_APROG_COMPAT 5884 #undef SEC_DEF 5885 5886 #define MAX_TYPE_NAME_SIZE 32 5887 5888 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 5889 { 5890 int i, n = ARRAY_SIZE(section_defs); 5891 5892 for (i = 0; i < n; i++) { 5893 if (strncmp(sec_name, 5894 section_defs[i].sec, section_defs[i].len)) 5895 continue; 5896 return §ion_defs[i]; 5897 } 5898 return NULL; 5899 } 5900 5901 static char *libbpf_get_type_names(bool attach_type) 5902 { 5903 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 5904 char *buf; 5905 5906 buf = malloc(len); 5907 if (!buf) 5908 return NULL; 5909 5910 buf[0] = '\0'; 5911 /* Forge string buf with all available names */ 5912 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 5913 if (attach_type && !section_defs[i].is_attachable) 5914 continue; 5915 5916 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 5917 free(buf); 5918 return NULL; 5919 } 5920 strcat(buf, " "); 5921 strcat(buf, section_defs[i].sec); 5922 } 5923 5924 return buf; 5925 } 5926 5927 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 5928 enum bpf_attach_type *expected_attach_type) 5929 { 5930 const struct bpf_sec_def *sec_def; 5931 char *type_names; 5932 5933 if (!name) 5934 return -EINVAL; 5935 5936 sec_def = find_sec_def(name); 5937 if (sec_def) { 5938 *prog_type = sec_def->prog_type; 5939 *expected_attach_type = sec_def->expected_attach_type; 5940 return 0; 5941 } 5942 5943 pr_debug("failed to guess program type from ELF section '%s'\n", name); 5944 type_names = libbpf_get_type_names(false); 5945 if (type_names != NULL) { 5946 pr_debug("supported section(type) names are:%s\n", type_names); 5947 free(type_names); 5948 } 5949 5950 return -ESRCH; 5951 } 5952 5953 #define BTF_PREFIX "btf_trace_" 5954 int libbpf_find_vmlinux_btf_id(const char *name, 5955 enum bpf_attach_type attach_type) 5956 { 5957 struct btf *btf = bpf_core_find_kernel_btf(); 5958 char raw_tp_btf[128] = BTF_PREFIX; 5959 char *dst = raw_tp_btf + sizeof(BTF_PREFIX) - 1; 5960 const char *btf_name; 5961 int err = -EINVAL; 5962 __u32 kind; 5963 5964 if (IS_ERR(btf)) { 5965 pr_warn("vmlinux BTF is not found\n"); 5966 return -EINVAL; 5967 } 5968 5969 if (attach_type == BPF_TRACE_RAW_TP) { 5970 /* prepend "btf_trace_" prefix per kernel convention */ 5971 strncat(dst, name, sizeof(raw_tp_btf) - sizeof(BTF_PREFIX)); 5972 btf_name = raw_tp_btf; 5973 kind = BTF_KIND_TYPEDEF; 5974 } else { 5975 btf_name = name; 5976 kind = BTF_KIND_FUNC; 5977 } 5978 err = btf__find_by_name_kind(btf, btf_name, kind); 5979 btf__free(btf); 5980 return err; 5981 } 5982 5983 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 5984 { 5985 struct bpf_prog_info_linear *info_linear; 5986 struct bpf_prog_info *info; 5987 struct btf *btf = NULL; 5988 int err = -EINVAL; 5989 5990 info_linear = bpf_program__get_prog_info_linear(attach_prog_fd, 0); 5991 if (IS_ERR_OR_NULL(info_linear)) { 5992 pr_warn("failed get_prog_info_linear for FD %d\n", 5993 attach_prog_fd); 5994 return -EINVAL; 5995 } 5996 info = &info_linear->info; 5997 if (!info->btf_id) { 5998 pr_warn("The target program doesn't have BTF\n"); 5999 goto out; 6000 } 6001 if (btf__get_from_id(info->btf_id, &btf)) { 6002 pr_warn("Failed to get BTF of the program\n"); 6003 goto out; 6004 } 6005 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 6006 btf__free(btf); 6007 if (err <= 0) { 6008 pr_warn("%s is not found in prog's BTF\n", name); 6009 goto out; 6010 } 6011 out: 6012 free(info_linear); 6013 return err; 6014 } 6015 6016 static int libbpf_find_attach_btf_id(const char *name, 6017 enum bpf_attach_type attach_type, 6018 __u32 attach_prog_fd) 6019 { 6020 int i, err; 6021 6022 if (!name) 6023 return -EINVAL; 6024 6025 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 6026 if (!section_defs[i].is_attach_btf) 6027 continue; 6028 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 6029 continue; 6030 if (attach_prog_fd) 6031 err = libbpf_find_prog_btf_id(name + section_defs[i].len, 6032 attach_prog_fd); 6033 else 6034 err = libbpf_find_vmlinux_btf_id(name + section_defs[i].len, 6035 attach_type); 6036 if (err <= 0) 6037 pr_warn("%s is not found in vmlinux BTF\n", name); 6038 return err; 6039 } 6040 pr_warn("failed to identify btf_id based on ELF section name '%s'\n", name); 6041 return -ESRCH; 6042 } 6043 6044 int libbpf_attach_type_by_name(const char *name, 6045 enum bpf_attach_type *attach_type) 6046 { 6047 char *type_names; 6048 int i; 6049 6050 if (!name) 6051 return -EINVAL; 6052 6053 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 6054 if (strncmp(name, section_defs[i].sec, section_defs[i].len)) 6055 continue; 6056 if (!section_defs[i].is_attachable) 6057 return -EINVAL; 6058 *attach_type = section_defs[i].attach_type; 6059 return 0; 6060 } 6061 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 6062 type_names = libbpf_get_type_names(true); 6063 if (type_names != NULL) { 6064 pr_debug("attachable section(type) names are:%s\n", type_names); 6065 free(type_names); 6066 } 6067 6068 return -EINVAL; 6069 } 6070 6071 int bpf_map__fd(const struct bpf_map *map) 6072 { 6073 return map ? map->fd : -EINVAL; 6074 } 6075 6076 const struct bpf_map_def *bpf_map__def(const struct bpf_map *map) 6077 { 6078 return map ? &map->def : ERR_PTR(-EINVAL); 6079 } 6080 6081 const char *bpf_map__name(const struct bpf_map *map) 6082 { 6083 return map ? map->name : NULL; 6084 } 6085 6086 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 6087 { 6088 return map ? map->btf_key_type_id : 0; 6089 } 6090 6091 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 6092 { 6093 return map ? map->btf_value_type_id : 0; 6094 } 6095 6096 int bpf_map__set_priv(struct bpf_map *map, void *priv, 6097 bpf_map_clear_priv_t clear_priv) 6098 { 6099 if (!map) 6100 return -EINVAL; 6101 6102 if (map->priv) { 6103 if (map->clear_priv) 6104 map->clear_priv(map, map->priv); 6105 } 6106 6107 map->priv = priv; 6108 map->clear_priv = clear_priv; 6109 return 0; 6110 } 6111 6112 void *bpf_map__priv(const struct bpf_map *map) 6113 { 6114 return map ? map->priv : ERR_PTR(-EINVAL); 6115 } 6116 6117 bool bpf_map__is_offload_neutral(const struct bpf_map *map) 6118 { 6119 return map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY; 6120 } 6121 6122 bool bpf_map__is_internal(const struct bpf_map *map) 6123 { 6124 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 6125 } 6126 6127 void bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 6128 { 6129 map->map_ifindex = ifindex; 6130 } 6131 6132 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 6133 { 6134 if (!bpf_map_type__is_map_in_map(map->def.type)) { 6135 pr_warn("error: unsupported map type\n"); 6136 return -EINVAL; 6137 } 6138 if (map->inner_map_fd != -1) { 6139 pr_warn("error: inner_map_fd already specified\n"); 6140 return -EINVAL; 6141 } 6142 map->inner_map_fd = fd; 6143 return 0; 6144 } 6145 6146 static struct bpf_map * 6147 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 6148 { 6149 ssize_t idx; 6150 struct bpf_map *s, *e; 6151 6152 if (!obj || !obj->maps) 6153 return NULL; 6154 6155 s = obj->maps; 6156 e = obj->maps + obj->nr_maps; 6157 6158 if ((m < s) || (m >= e)) { 6159 pr_warn("error in %s: map handler doesn't belong to object\n", 6160 __func__); 6161 return NULL; 6162 } 6163 6164 idx = (m - obj->maps) + i; 6165 if (idx >= obj->nr_maps || idx < 0) 6166 return NULL; 6167 return &obj->maps[idx]; 6168 } 6169 6170 struct bpf_map * 6171 bpf_map__next(const struct bpf_map *prev, const struct bpf_object *obj) 6172 { 6173 if (prev == NULL) 6174 return obj->maps; 6175 6176 return __bpf_map__iter(prev, obj, 1); 6177 } 6178 6179 struct bpf_map * 6180 bpf_map__prev(const struct bpf_map *next, const struct bpf_object *obj) 6181 { 6182 if (next == NULL) { 6183 if (!obj->nr_maps) 6184 return NULL; 6185 return obj->maps + obj->nr_maps - 1; 6186 } 6187 6188 return __bpf_map__iter(next, obj, -1); 6189 } 6190 6191 struct bpf_map * 6192 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 6193 { 6194 struct bpf_map *pos; 6195 6196 bpf_object__for_each_map(pos, obj) { 6197 if (pos->name && !strcmp(pos->name, name)) 6198 return pos; 6199 } 6200 return NULL; 6201 } 6202 6203 int 6204 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 6205 { 6206 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 6207 } 6208 6209 struct bpf_map * 6210 bpf_object__find_map_by_offset(struct bpf_object *obj, size_t offset) 6211 { 6212 return ERR_PTR(-ENOTSUP); 6213 } 6214 6215 long libbpf_get_error(const void *ptr) 6216 { 6217 return PTR_ERR_OR_ZERO(ptr); 6218 } 6219 6220 int bpf_prog_load(const char *file, enum bpf_prog_type type, 6221 struct bpf_object **pobj, int *prog_fd) 6222 { 6223 struct bpf_prog_load_attr attr; 6224 6225 memset(&attr, 0, sizeof(struct bpf_prog_load_attr)); 6226 attr.file = file; 6227 attr.prog_type = type; 6228 attr.expected_attach_type = 0; 6229 6230 return bpf_prog_load_xattr(&attr, pobj, prog_fd); 6231 } 6232 6233 int bpf_prog_load_xattr(const struct bpf_prog_load_attr *attr, 6234 struct bpf_object **pobj, int *prog_fd) 6235 { 6236 struct bpf_object_open_attr open_attr = {}; 6237 struct bpf_program *prog, *first_prog = NULL; 6238 struct bpf_object *obj; 6239 struct bpf_map *map; 6240 int err; 6241 6242 if (!attr) 6243 return -EINVAL; 6244 if (!attr->file) 6245 return -EINVAL; 6246 6247 open_attr.file = attr->file; 6248 open_attr.prog_type = attr->prog_type; 6249 6250 obj = bpf_object__open_xattr(&open_attr); 6251 if (IS_ERR_OR_NULL(obj)) 6252 return -ENOENT; 6253 6254 bpf_object__for_each_program(prog, obj) { 6255 enum bpf_attach_type attach_type = attr->expected_attach_type; 6256 /* 6257 * to preserve backwards compatibility, bpf_prog_load treats 6258 * attr->prog_type, if specified, as an override to whatever 6259 * bpf_object__open guessed 6260 */ 6261 if (attr->prog_type != BPF_PROG_TYPE_UNSPEC) { 6262 bpf_program__set_type(prog, attr->prog_type); 6263 bpf_program__set_expected_attach_type(prog, 6264 attach_type); 6265 } 6266 if (bpf_program__get_type(prog) == BPF_PROG_TYPE_UNSPEC) { 6267 /* 6268 * we haven't guessed from section name and user 6269 * didn't provide a fallback type, too bad... 6270 */ 6271 bpf_object__close(obj); 6272 return -EINVAL; 6273 } 6274 6275 prog->prog_ifindex = attr->ifindex; 6276 prog->log_level = attr->log_level; 6277 prog->prog_flags = attr->prog_flags; 6278 if (!first_prog) 6279 first_prog = prog; 6280 } 6281 6282 bpf_object__for_each_map(map, obj) { 6283 if (!bpf_map__is_offload_neutral(map)) 6284 map->map_ifindex = attr->ifindex; 6285 } 6286 6287 if (!first_prog) { 6288 pr_warn("object file doesn't contain bpf program\n"); 6289 bpf_object__close(obj); 6290 return -ENOENT; 6291 } 6292 6293 err = bpf_object__load(obj); 6294 if (err) { 6295 bpf_object__close(obj); 6296 return -EINVAL; 6297 } 6298 6299 *pobj = obj; 6300 *prog_fd = bpf_program__fd(first_prog); 6301 return 0; 6302 } 6303 6304 struct bpf_link { 6305 int (*detach)(struct bpf_link *link); 6306 int (*destroy)(struct bpf_link *link); 6307 bool disconnected; 6308 }; 6309 6310 /* Release "ownership" of underlying BPF resource (typically, BPF program 6311 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 6312 * link, when destructed through bpf_link__destroy() call won't attempt to 6313 * detach/unregisted that BPF resource. This is useful in situations where, 6314 * say, attached BPF program has to outlive userspace program that attached it 6315 * in the system. Depending on type of BPF program, though, there might be 6316 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 6317 * exit of userspace program doesn't trigger automatic detachment and clean up 6318 * inside the kernel. 6319 */ 6320 void bpf_link__disconnect(struct bpf_link *link) 6321 { 6322 link->disconnected = true; 6323 } 6324 6325 int bpf_link__destroy(struct bpf_link *link) 6326 { 6327 int err = 0; 6328 6329 if (!link) 6330 return 0; 6331 6332 if (!link->disconnected && link->detach) 6333 err = link->detach(link); 6334 if (link->destroy) 6335 link->destroy(link); 6336 free(link); 6337 6338 return err; 6339 } 6340 6341 struct bpf_link_fd { 6342 struct bpf_link link; /* has to be at the top of struct */ 6343 int fd; /* hook FD */ 6344 }; 6345 6346 static int bpf_link__detach_perf_event(struct bpf_link *link) 6347 { 6348 struct bpf_link_fd *l = (void *)link; 6349 int err; 6350 6351 err = ioctl(l->fd, PERF_EVENT_IOC_DISABLE, 0); 6352 if (err) 6353 err = -errno; 6354 6355 close(l->fd); 6356 return err; 6357 } 6358 6359 struct bpf_link *bpf_program__attach_perf_event(struct bpf_program *prog, 6360 int pfd) 6361 { 6362 char errmsg[STRERR_BUFSIZE]; 6363 struct bpf_link_fd *link; 6364 int prog_fd, err; 6365 6366 if (pfd < 0) { 6367 pr_warn("program '%s': invalid perf event FD %d\n", 6368 bpf_program__title(prog, false), pfd); 6369 return ERR_PTR(-EINVAL); 6370 } 6371 prog_fd = bpf_program__fd(prog); 6372 if (prog_fd < 0) { 6373 pr_warn("program '%s': can't attach BPF program w/o FD (did you load it?)\n", 6374 bpf_program__title(prog, false)); 6375 return ERR_PTR(-EINVAL); 6376 } 6377 6378 link = calloc(1, sizeof(*link)); 6379 if (!link) 6380 return ERR_PTR(-ENOMEM); 6381 link->link.detach = &bpf_link__detach_perf_event; 6382 link->fd = pfd; 6383 6384 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 6385 err = -errno; 6386 free(link); 6387 pr_warn("program '%s': failed to attach to pfd %d: %s\n", 6388 bpf_program__title(prog, false), pfd, 6389 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 6390 return ERR_PTR(err); 6391 } 6392 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 6393 err = -errno; 6394 free(link); 6395 pr_warn("program '%s': failed to enable pfd %d: %s\n", 6396 bpf_program__title(prog, false), pfd, 6397 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 6398 return ERR_PTR(err); 6399 } 6400 return (struct bpf_link *)link; 6401 } 6402 6403 /* 6404 * this function is expected to parse integer in the range of [0, 2^31-1] from 6405 * given file using scanf format string fmt. If actual parsed value is 6406 * negative, the result might be indistinguishable from error 6407 */ 6408 static int parse_uint_from_file(const char *file, const char *fmt) 6409 { 6410 char buf[STRERR_BUFSIZE]; 6411 int err, ret; 6412 FILE *f; 6413 6414 f = fopen(file, "r"); 6415 if (!f) { 6416 err = -errno; 6417 pr_debug("failed to open '%s': %s\n", file, 6418 libbpf_strerror_r(err, buf, sizeof(buf))); 6419 return err; 6420 } 6421 err = fscanf(f, fmt, &ret); 6422 if (err != 1) { 6423 err = err == EOF ? -EIO : -errno; 6424 pr_debug("failed to parse '%s': %s\n", file, 6425 libbpf_strerror_r(err, buf, sizeof(buf))); 6426 fclose(f); 6427 return err; 6428 } 6429 fclose(f); 6430 return ret; 6431 } 6432 6433 static int determine_kprobe_perf_type(void) 6434 { 6435 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 6436 6437 return parse_uint_from_file(file, "%d\n"); 6438 } 6439 6440 static int determine_uprobe_perf_type(void) 6441 { 6442 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 6443 6444 return parse_uint_from_file(file, "%d\n"); 6445 } 6446 6447 static int determine_kprobe_retprobe_bit(void) 6448 { 6449 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 6450 6451 return parse_uint_from_file(file, "config:%d\n"); 6452 } 6453 6454 static int determine_uprobe_retprobe_bit(void) 6455 { 6456 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 6457 6458 return parse_uint_from_file(file, "config:%d\n"); 6459 } 6460 6461 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 6462 uint64_t offset, int pid) 6463 { 6464 struct perf_event_attr attr = {}; 6465 char errmsg[STRERR_BUFSIZE]; 6466 int type, pfd, err; 6467 6468 type = uprobe ? determine_uprobe_perf_type() 6469 : determine_kprobe_perf_type(); 6470 if (type < 0) { 6471 pr_warn("failed to determine %s perf type: %s\n", 6472 uprobe ? "uprobe" : "kprobe", 6473 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 6474 return type; 6475 } 6476 if (retprobe) { 6477 int bit = uprobe ? determine_uprobe_retprobe_bit() 6478 : determine_kprobe_retprobe_bit(); 6479 6480 if (bit < 0) { 6481 pr_warn("failed to determine %s retprobe bit: %s\n", 6482 uprobe ? "uprobe" : "kprobe", 6483 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 6484 return bit; 6485 } 6486 attr.config |= 1 << bit; 6487 } 6488 attr.size = sizeof(attr); 6489 attr.type = type; 6490 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 6491 attr.config2 = offset; /* kprobe_addr or probe_offset */ 6492 6493 /* pid filter is meaningful only for uprobes */ 6494 pfd = syscall(__NR_perf_event_open, &attr, 6495 pid < 0 ? -1 : pid /* pid */, 6496 pid == -1 ? 0 : -1 /* cpu */, 6497 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 6498 if (pfd < 0) { 6499 err = -errno; 6500 pr_warn("%s perf_event_open() failed: %s\n", 6501 uprobe ? "uprobe" : "kprobe", 6502 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 6503 return err; 6504 } 6505 return pfd; 6506 } 6507 6508 struct bpf_link *bpf_program__attach_kprobe(struct bpf_program *prog, 6509 bool retprobe, 6510 const char *func_name) 6511 { 6512 char errmsg[STRERR_BUFSIZE]; 6513 struct bpf_link *link; 6514 int pfd, err; 6515 6516 pfd = perf_event_open_probe(false /* uprobe */, retprobe, func_name, 6517 0 /* offset */, -1 /* pid */); 6518 if (pfd < 0) { 6519 pr_warn("program '%s': failed to create %s '%s' perf event: %s\n", 6520 bpf_program__title(prog, false), 6521 retprobe ? "kretprobe" : "kprobe", func_name, 6522 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 6523 return ERR_PTR(pfd); 6524 } 6525 link = bpf_program__attach_perf_event(prog, pfd); 6526 if (IS_ERR(link)) { 6527 close(pfd); 6528 err = PTR_ERR(link); 6529 pr_warn("program '%s': failed to attach to %s '%s': %s\n", 6530 bpf_program__title(prog, false), 6531 retprobe ? "kretprobe" : "kprobe", func_name, 6532 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 6533 return link; 6534 } 6535 return link; 6536 } 6537 6538 static struct bpf_link *attach_kprobe(const struct bpf_sec_def *sec, 6539 struct bpf_program *prog) 6540 { 6541 const char *func_name; 6542 bool retprobe; 6543 6544 func_name = bpf_program__title(prog, false) + sec->len; 6545 retprobe = strcmp(sec->sec, "kretprobe/") == 0; 6546 6547 return bpf_program__attach_kprobe(prog, retprobe, func_name); 6548 } 6549 6550 struct bpf_link *bpf_program__attach_uprobe(struct bpf_program *prog, 6551 bool retprobe, pid_t pid, 6552 const char *binary_path, 6553 size_t func_offset) 6554 { 6555 char errmsg[STRERR_BUFSIZE]; 6556 struct bpf_link *link; 6557 int pfd, err; 6558 6559 pfd = perf_event_open_probe(true /* uprobe */, retprobe, 6560 binary_path, func_offset, pid); 6561 if (pfd < 0) { 6562 pr_warn("program '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 6563 bpf_program__title(prog, false), 6564 retprobe ? "uretprobe" : "uprobe", 6565 binary_path, func_offset, 6566 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 6567 return ERR_PTR(pfd); 6568 } 6569 link = bpf_program__attach_perf_event(prog, pfd); 6570 if (IS_ERR(link)) { 6571 close(pfd); 6572 err = PTR_ERR(link); 6573 pr_warn("program '%s': failed to attach to %s '%s:0x%zx': %s\n", 6574 bpf_program__title(prog, false), 6575 retprobe ? "uretprobe" : "uprobe", 6576 binary_path, func_offset, 6577 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 6578 return link; 6579 } 6580 return link; 6581 } 6582 6583 static int determine_tracepoint_id(const char *tp_category, 6584 const char *tp_name) 6585 { 6586 char file[PATH_MAX]; 6587 int ret; 6588 6589 ret = snprintf(file, sizeof(file), 6590 "/sys/kernel/debug/tracing/events/%s/%s/id", 6591 tp_category, tp_name); 6592 if (ret < 0) 6593 return -errno; 6594 if (ret >= sizeof(file)) { 6595 pr_debug("tracepoint %s/%s path is too long\n", 6596 tp_category, tp_name); 6597 return -E2BIG; 6598 } 6599 return parse_uint_from_file(file, "%d\n"); 6600 } 6601 6602 static int perf_event_open_tracepoint(const char *tp_category, 6603 const char *tp_name) 6604 { 6605 struct perf_event_attr attr = {}; 6606 char errmsg[STRERR_BUFSIZE]; 6607 int tp_id, pfd, err; 6608 6609 tp_id = determine_tracepoint_id(tp_category, tp_name); 6610 if (tp_id < 0) { 6611 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 6612 tp_category, tp_name, 6613 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 6614 return tp_id; 6615 } 6616 6617 attr.type = PERF_TYPE_TRACEPOINT; 6618 attr.size = sizeof(attr); 6619 attr.config = tp_id; 6620 6621 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 6622 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 6623 if (pfd < 0) { 6624 err = -errno; 6625 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 6626 tp_category, tp_name, 6627 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 6628 return err; 6629 } 6630 return pfd; 6631 } 6632 6633 struct bpf_link *bpf_program__attach_tracepoint(struct bpf_program *prog, 6634 const char *tp_category, 6635 const char *tp_name) 6636 { 6637 char errmsg[STRERR_BUFSIZE]; 6638 struct bpf_link *link; 6639 int pfd, err; 6640 6641 pfd = perf_event_open_tracepoint(tp_category, tp_name); 6642 if (pfd < 0) { 6643 pr_warn("program '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 6644 bpf_program__title(prog, false), 6645 tp_category, tp_name, 6646 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 6647 return ERR_PTR(pfd); 6648 } 6649 link = bpf_program__attach_perf_event(prog, pfd); 6650 if (IS_ERR(link)) { 6651 close(pfd); 6652 err = PTR_ERR(link); 6653 pr_warn("program '%s': failed to attach to tracepoint '%s/%s': %s\n", 6654 bpf_program__title(prog, false), 6655 tp_category, tp_name, 6656 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 6657 return link; 6658 } 6659 return link; 6660 } 6661 6662 static struct bpf_link *attach_tp(const struct bpf_sec_def *sec, 6663 struct bpf_program *prog) 6664 { 6665 char *sec_name, *tp_cat, *tp_name; 6666 struct bpf_link *link; 6667 6668 sec_name = strdup(bpf_program__title(prog, false)); 6669 if (!sec_name) 6670 return ERR_PTR(-ENOMEM); 6671 6672 /* extract "tp/<category>/<name>" */ 6673 tp_cat = sec_name + sec->len; 6674 tp_name = strchr(tp_cat, '/'); 6675 if (!tp_name) { 6676 link = ERR_PTR(-EINVAL); 6677 goto out; 6678 } 6679 *tp_name = '\0'; 6680 tp_name++; 6681 6682 link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 6683 out: 6684 free(sec_name); 6685 return link; 6686 } 6687 6688 static int bpf_link__detach_fd(struct bpf_link *link) 6689 { 6690 struct bpf_link_fd *l = (void *)link; 6691 6692 return close(l->fd); 6693 } 6694 6695 struct bpf_link *bpf_program__attach_raw_tracepoint(struct bpf_program *prog, 6696 const char *tp_name) 6697 { 6698 char errmsg[STRERR_BUFSIZE]; 6699 struct bpf_link_fd *link; 6700 int prog_fd, pfd; 6701 6702 prog_fd = bpf_program__fd(prog); 6703 if (prog_fd < 0) { 6704 pr_warn("program '%s': can't attach before loaded\n", 6705 bpf_program__title(prog, false)); 6706 return ERR_PTR(-EINVAL); 6707 } 6708 6709 link = calloc(1, sizeof(*link)); 6710 if (!link) 6711 return ERR_PTR(-ENOMEM); 6712 link->link.detach = &bpf_link__detach_fd; 6713 6714 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 6715 if (pfd < 0) { 6716 pfd = -errno; 6717 free(link); 6718 pr_warn("program '%s': failed to attach to raw tracepoint '%s': %s\n", 6719 bpf_program__title(prog, false), tp_name, 6720 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 6721 return ERR_PTR(pfd); 6722 } 6723 link->fd = pfd; 6724 return (struct bpf_link *)link; 6725 } 6726 6727 static struct bpf_link *attach_raw_tp(const struct bpf_sec_def *sec, 6728 struct bpf_program *prog) 6729 { 6730 const char *tp_name = bpf_program__title(prog, false) + sec->len; 6731 6732 return bpf_program__attach_raw_tracepoint(prog, tp_name); 6733 } 6734 6735 struct bpf_link *bpf_program__attach_trace(struct bpf_program *prog) 6736 { 6737 char errmsg[STRERR_BUFSIZE]; 6738 struct bpf_link_fd *link; 6739 int prog_fd, pfd; 6740 6741 prog_fd = bpf_program__fd(prog); 6742 if (prog_fd < 0) { 6743 pr_warn("program '%s': can't attach before loaded\n", 6744 bpf_program__title(prog, false)); 6745 return ERR_PTR(-EINVAL); 6746 } 6747 6748 link = calloc(1, sizeof(*link)); 6749 if (!link) 6750 return ERR_PTR(-ENOMEM); 6751 link->link.detach = &bpf_link__detach_fd; 6752 6753 pfd = bpf_raw_tracepoint_open(NULL, prog_fd); 6754 if (pfd < 0) { 6755 pfd = -errno; 6756 free(link); 6757 pr_warn("program '%s': failed to attach to trace: %s\n", 6758 bpf_program__title(prog, false), 6759 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 6760 return ERR_PTR(pfd); 6761 } 6762 link->fd = pfd; 6763 return (struct bpf_link *)link; 6764 } 6765 6766 static struct bpf_link *attach_trace(const struct bpf_sec_def *sec, 6767 struct bpf_program *prog) 6768 { 6769 return bpf_program__attach_trace(prog); 6770 } 6771 6772 struct bpf_link *bpf_program__attach(struct bpf_program *prog) 6773 { 6774 const struct bpf_sec_def *sec_def; 6775 6776 sec_def = find_sec_def(bpf_program__title(prog, false)); 6777 if (!sec_def || !sec_def->attach_fn) 6778 return ERR_PTR(-ESRCH); 6779 6780 return sec_def->attach_fn(sec_def, prog); 6781 } 6782 6783 enum bpf_perf_event_ret 6784 bpf_perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 6785 void **copy_mem, size_t *copy_size, 6786 bpf_perf_event_print_t fn, void *private_data) 6787 { 6788 struct perf_event_mmap_page *header = mmap_mem; 6789 __u64 data_head = ring_buffer_read_head(header); 6790 __u64 data_tail = header->data_tail; 6791 void *base = ((__u8 *)header) + page_size; 6792 int ret = LIBBPF_PERF_EVENT_CONT; 6793 struct perf_event_header *ehdr; 6794 size_t ehdr_size; 6795 6796 while (data_head != data_tail) { 6797 ehdr = base + (data_tail & (mmap_size - 1)); 6798 ehdr_size = ehdr->size; 6799 6800 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 6801 void *copy_start = ehdr; 6802 size_t len_first = base + mmap_size - copy_start; 6803 size_t len_secnd = ehdr_size - len_first; 6804 6805 if (*copy_size < ehdr_size) { 6806 free(*copy_mem); 6807 *copy_mem = malloc(ehdr_size); 6808 if (!*copy_mem) { 6809 *copy_size = 0; 6810 ret = LIBBPF_PERF_EVENT_ERROR; 6811 break; 6812 } 6813 *copy_size = ehdr_size; 6814 } 6815 6816 memcpy(*copy_mem, copy_start, len_first); 6817 memcpy(*copy_mem + len_first, base, len_secnd); 6818 ehdr = *copy_mem; 6819 } 6820 6821 ret = fn(ehdr, private_data); 6822 data_tail += ehdr_size; 6823 if (ret != LIBBPF_PERF_EVENT_CONT) 6824 break; 6825 } 6826 6827 ring_buffer_write_tail(header, data_tail); 6828 return ret; 6829 } 6830 6831 struct perf_buffer; 6832 6833 struct perf_buffer_params { 6834 struct perf_event_attr *attr; 6835 /* if event_cb is specified, it takes precendence */ 6836 perf_buffer_event_fn event_cb; 6837 /* sample_cb and lost_cb are higher-level common-case callbacks */ 6838 perf_buffer_sample_fn sample_cb; 6839 perf_buffer_lost_fn lost_cb; 6840 void *ctx; 6841 int cpu_cnt; 6842 int *cpus; 6843 int *map_keys; 6844 }; 6845 6846 struct perf_cpu_buf { 6847 struct perf_buffer *pb; 6848 void *base; /* mmap()'ed memory */ 6849 void *buf; /* for reconstructing segmented data */ 6850 size_t buf_size; 6851 int fd; 6852 int cpu; 6853 int map_key; 6854 }; 6855 6856 struct perf_buffer { 6857 perf_buffer_event_fn event_cb; 6858 perf_buffer_sample_fn sample_cb; 6859 perf_buffer_lost_fn lost_cb; 6860 void *ctx; /* passed into callbacks */ 6861 6862 size_t page_size; 6863 size_t mmap_size; 6864 struct perf_cpu_buf **cpu_bufs; 6865 struct epoll_event *events; 6866 int cpu_cnt; /* number of allocated CPU buffers */ 6867 int epoll_fd; /* perf event FD */ 6868 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 6869 }; 6870 6871 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 6872 struct perf_cpu_buf *cpu_buf) 6873 { 6874 if (!cpu_buf) 6875 return; 6876 if (cpu_buf->base && 6877 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 6878 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 6879 if (cpu_buf->fd >= 0) { 6880 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 6881 close(cpu_buf->fd); 6882 } 6883 free(cpu_buf->buf); 6884 free(cpu_buf); 6885 } 6886 6887 void perf_buffer__free(struct perf_buffer *pb) 6888 { 6889 int i; 6890 6891 if (!pb) 6892 return; 6893 if (pb->cpu_bufs) { 6894 for (i = 0; i < pb->cpu_cnt && pb->cpu_bufs[i]; i++) { 6895 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 6896 6897 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 6898 perf_buffer__free_cpu_buf(pb, cpu_buf); 6899 } 6900 free(pb->cpu_bufs); 6901 } 6902 if (pb->epoll_fd >= 0) 6903 close(pb->epoll_fd); 6904 free(pb->events); 6905 free(pb); 6906 } 6907 6908 static struct perf_cpu_buf * 6909 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 6910 int cpu, int map_key) 6911 { 6912 struct perf_cpu_buf *cpu_buf; 6913 char msg[STRERR_BUFSIZE]; 6914 int err; 6915 6916 cpu_buf = calloc(1, sizeof(*cpu_buf)); 6917 if (!cpu_buf) 6918 return ERR_PTR(-ENOMEM); 6919 6920 cpu_buf->pb = pb; 6921 cpu_buf->cpu = cpu; 6922 cpu_buf->map_key = map_key; 6923 6924 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 6925 -1, PERF_FLAG_FD_CLOEXEC); 6926 if (cpu_buf->fd < 0) { 6927 err = -errno; 6928 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 6929 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 6930 goto error; 6931 } 6932 6933 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 6934 PROT_READ | PROT_WRITE, MAP_SHARED, 6935 cpu_buf->fd, 0); 6936 if (cpu_buf->base == MAP_FAILED) { 6937 cpu_buf->base = NULL; 6938 err = -errno; 6939 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 6940 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 6941 goto error; 6942 } 6943 6944 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 6945 err = -errno; 6946 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 6947 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 6948 goto error; 6949 } 6950 6951 return cpu_buf; 6952 6953 error: 6954 perf_buffer__free_cpu_buf(pb, cpu_buf); 6955 return (struct perf_cpu_buf *)ERR_PTR(err); 6956 } 6957 6958 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 6959 struct perf_buffer_params *p); 6960 6961 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 6962 const struct perf_buffer_opts *opts) 6963 { 6964 struct perf_buffer_params p = {}; 6965 struct perf_event_attr attr = { 0, }; 6966 6967 attr.config = PERF_COUNT_SW_BPF_OUTPUT, 6968 attr.type = PERF_TYPE_SOFTWARE; 6969 attr.sample_type = PERF_SAMPLE_RAW; 6970 attr.sample_period = 1; 6971 attr.wakeup_events = 1; 6972 6973 p.attr = &attr; 6974 p.sample_cb = opts ? opts->sample_cb : NULL; 6975 p.lost_cb = opts ? opts->lost_cb : NULL; 6976 p.ctx = opts ? opts->ctx : NULL; 6977 6978 return __perf_buffer__new(map_fd, page_cnt, &p); 6979 } 6980 6981 struct perf_buffer * 6982 perf_buffer__new_raw(int map_fd, size_t page_cnt, 6983 const struct perf_buffer_raw_opts *opts) 6984 { 6985 struct perf_buffer_params p = {}; 6986 6987 p.attr = opts->attr; 6988 p.event_cb = opts->event_cb; 6989 p.ctx = opts->ctx; 6990 p.cpu_cnt = opts->cpu_cnt; 6991 p.cpus = opts->cpus; 6992 p.map_keys = opts->map_keys; 6993 6994 return __perf_buffer__new(map_fd, page_cnt, &p); 6995 } 6996 6997 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 6998 struct perf_buffer_params *p) 6999 { 7000 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 7001 struct bpf_map_info map = {}; 7002 char msg[STRERR_BUFSIZE]; 7003 struct perf_buffer *pb; 7004 bool *online = NULL; 7005 __u32 map_info_len; 7006 int err, i, j, n; 7007 7008 if (page_cnt & (page_cnt - 1)) { 7009 pr_warn("page count should be power of two, but is %zu\n", 7010 page_cnt); 7011 return ERR_PTR(-EINVAL); 7012 } 7013 7014 map_info_len = sizeof(map); 7015 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 7016 if (err) { 7017 err = -errno; 7018 pr_warn("failed to get map info for map FD %d: %s\n", 7019 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 7020 return ERR_PTR(err); 7021 } 7022 7023 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 7024 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 7025 map.name); 7026 return ERR_PTR(-EINVAL); 7027 } 7028 7029 pb = calloc(1, sizeof(*pb)); 7030 if (!pb) 7031 return ERR_PTR(-ENOMEM); 7032 7033 pb->event_cb = p->event_cb; 7034 pb->sample_cb = p->sample_cb; 7035 pb->lost_cb = p->lost_cb; 7036 pb->ctx = p->ctx; 7037 7038 pb->page_size = getpagesize(); 7039 pb->mmap_size = pb->page_size * page_cnt; 7040 pb->map_fd = map_fd; 7041 7042 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 7043 if (pb->epoll_fd < 0) { 7044 err = -errno; 7045 pr_warn("failed to create epoll instance: %s\n", 7046 libbpf_strerror_r(err, msg, sizeof(msg))); 7047 goto error; 7048 } 7049 7050 if (p->cpu_cnt > 0) { 7051 pb->cpu_cnt = p->cpu_cnt; 7052 } else { 7053 pb->cpu_cnt = libbpf_num_possible_cpus(); 7054 if (pb->cpu_cnt < 0) { 7055 err = pb->cpu_cnt; 7056 goto error; 7057 } 7058 if (map.max_entries < pb->cpu_cnt) 7059 pb->cpu_cnt = map.max_entries; 7060 } 7061 7062 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 7063 if (!pb->events) { 7064 err = -ENOMEM; 7065 pr_warn("failed to allocate events: out of memory\n"); 7066 goto error; 7067 } 7068 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 7069 if (!pb->cpu_bufs) { 7070 err = -ENOMEM; 7071 pr_warn("failed to allocate buffers: out of memory\n"); 7072 goto error; 7073 } 7074 7075 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 7076 if (err) { 7077 pr_warn("failed to get online CPU mask: %d\n", err); 7078 goto error; 7079 } 7080 7081 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 7082 struct perf_cpu_buf *cpu_buf; 7083 int cpu, map_key; 7084 7085 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 7086 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 7087 7088 /* in case user didn't explicitly requested particular CPUs to 7089 * be attached to, skip offline/not present CPUs 7090 */ 7091 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 7092 continue; 7093 7094 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 7095 if (IS_ERR(cpu_buf)) { 7096 err = PTR_ERR(cpu_buf); 7097 goto error; 7098 } 7099 7100 pb->cpu_bufs[j] = cpu_buf; 7101 7102 err = bpf_map_update_elem(pb->map_fd, &map_key, 7103 &cpu_buf->fd, 0); 7104 if (err) { 7105 err = -errno; 7106 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 7107 cpu, map_key, cpu_buf->fd, 7108 libbpf_strerror_r(err, msg, sizeof(msg))); 7109 goto error; 7110 } 7111 7112 pb->events[j].events = EPOLLIN; 7113 pb->events[j].data.ptr = cpu_buf; 7114 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 7115 &pb->events[j]) < 0) { 7116 err = -errno; 7117 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 7118 cpu, cpu_buf->fd, 7119 libbpf_strerror_r(err, msg, sizeof(msg))); 7120 goto error; 7121 } 7122 j++; 7123 } 7124 pb->cpu_cnt = j; 7125 free(online); 7126 7127 return pb; 7128 7129 error: 7130 free(online); 7131 if (pb) 7132 perf_buffer__free(pb); 7133 return ERR_PTR(err); 7134 } 7135 7136 struct perf_sample_raw { 7137 struct perf_event_header header; 7138 uint32_t size; 7139 char data[0]; 7140 }; 7141 7142 struct perf_sample_lost { 7143 struct perf_event_header header; 7144 uint64_t id; 7145 uint64_t lost; 7146 uint64_t sample_id; 7147 }; 7148 7149 static enum bpf_perf_event_ret 7150 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 7151 { 7152 struct perf_cpu_buf *cpu_buf = ctx; 7153 struct perf_buffer *pb = cpu_buf->pb; 7154 void *data = e; 7155 7156 /* user wants full control over parsing perf event */ 7157 if (pb->event_cb) 7158 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 7159 7160 switch (e->type) { 7161 case PERF_RECORD_SAMPLE: { 7162 struct perf_sample_raw *s = data; 7163 7164 if (pb->sample_cb) 7165 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 7166 break; 7167 } 7168 case PERF_RECORD_LOST: { 7169 struct perf_sample_lost *s = data; 7170 7171 if (pb->lost_cb) 7172 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 7173 break; 7174 } 7175 default: 7176 pr_warn("unknown perf sample type %d\n", e->type); 7177 return LIBBPF_PERF_EVENT_ERROR; 7178 } 7179 return LIBBPF_PERF_EVENT_CONT; 7180 } 7181 7182 static int perf_buffer__process_records(struct perf_buffer *pb, 7183 struct perf_cpu_buf *cpu_buf) 7184 { 7185 enum bpf_perf_event_ret ret; 7186 7187 ret = bpf_perf_event_read_simple(cpu_buf->base, pb->mmap_size, 7188 pb->page_size, &cpu_buf->buf, 7189 &cpu_buf->buf_size, 7190 perf_buffer__process_record, cpu_buf); 7191 if (ret != LIBBPF_PERF_EVENT_CONT) 7192 return ret; 7193 return 0; 7194 } 7195 7196 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 7197 { 7198 int i, cnt, err; 7199 7200 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 7201 for (i = 0; i < cnt; i++) { 7202 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 7203 7204 err = perf_buffer__process_records(pb, cpu_buf); 7205 if (err) { 7206 pr_warn("error while processing records: %d\n", err); 7207 return err; 7208 } 7209 } 7210 return cnt < 0 ? -errno : cnt; 7211 } 7212 7213 struct bpf_prog_info_array_desc { 7214 int array_offset; /* e.g. offset of jited_prog_insns */ 7215 int count_offset; /* e.g. offset of jited_prog_len */ 7216 int size_offset; /* > 0: offset of rec size, 7217 * < 0: fix size of -size_offset 7218 */ 7219 }; 7220 7221 static struct bpf_prog_info_array_desc bpf_prog_info_array_desc[] = { 7222 [BPF_PROG_INFO_JITED_INSNS] = { 7223 offsetof(struct bpf_prog_info, jited_prog_insns), 7224 offsetof(struct bpf_prog_info, jited_prog_len), 7225 -1, 7226 }, 7227 [BPF_PROG_INFO_XLATED_INSNS] = { 7228 offsetof(struct bpf_prog_info, xlated_prog_insns), 7229 offsetof(struct bpf_prog_info, xlated_prog_len), 7230 -1, 7231 }, 7232 [BPF_PROG_INFO_MAP_IDS] = { 7233 offsetof(struct bpf_prog_info, map_ids), 7234 offsetof(struct bpf_prog_info, nr_map_ids), 7235 -(int)sizeof(__u32), 7236 }, 7237 [BPF_PROG_INFO_JITED_KSYMS] = { 7238 offsetof(struct bpf_prog_info, jited_ksyms), 7239 offsetof(struct bpf_prog_info, nr_jited_ksyms), 7240 -(int)sizeof(__u64), 7241 }, 7242 [BPF_PROG_INFO_JITED_FUNC_LENS] = { 7243 offsetof(struct bpf_prog_info, jited_func_lens), 7244 offsetof(struct bpf_prog_info, nr_jited_func_lens), 7245 -(int)sizeof(__u32), 7246 }, 7247 [BPF_PROG_INFO_FUNC_INFO] = { 7248 offsetof(struct bpf_prog_info, func_info), 7249 offsetof(struct bpf_prog_info, nr_func_info), 7250 offsetof(struct bpf_prog_info, func_info_rec_size), 7251 }, 7252 [BPF_PROG_INFO_LINE_INFO] = { 7253 offsetof(struct bpf_prog_info, line_info), 7254 offsetof(struct bpf_prog_info, nr_line_info), 7255 offsetof(struct bpf_prog_info, line_info_rec_size), 7256 }, 7257 [BPF_PROG_INFO_JITED_LINE_INFO] = { 7258 offsetof(struct bpf_prog_info, jited_line_info), 7259 offsetof(struct bpf_prog_info, nr_jited_line_info), 7260 offsetof(struct bpf_prog_info, jited_line_info_rec_size), 7261 }, 7262 [BPF_PROG_INFO_PROG_TAGS] = { 7263 offsetof(struct bpf_prog_info, prog_tags), 7264 offsetof(struct bpf_prog_info, nr_prog_tags), 7265 -(int)sizeof(__u8) * BPF_TAG_SIZE, 7266 }, 7267 7268 }; 7269 7270 static __u32 bpf_prog_info_read_offset_u32(struct bpf_prog_info *info, 7271 int offset) 7272 { 7273 __u32 *array = (__u32 *)info; 7274 7275 if (offset >= 0) 7276 return array[offset / sizeof(__u32)]; 7277 return -(int)offset; 7278 } 7279 7280 static __u64 bpf_prog_info_read_offset_u64(struct bpf_prog_info *info, 7281 int offset) 7282 { 7283 __u64 *array = (__u64 *)info; 7284 7285 if (offset >= 0) 7286 return array[offset / sizeof(__u64)]; 7287 return -(int)offset; 7288 } 7289 7290 static void bpf_prog_info_set_offset_u32(struct bpf_prog_info *info, int offset, 7291 __u32 val) 7292 { 7293 __u32 *array = (__u32 *)info; 7294 7295 if (offset >= 0) 7296 array[offset / sizeof(__u32)] = val; 7297 } 7298 7299 static void bpf_prog_info_set_offset_u64(struct bpf_prog_info *info, int offset, 7300 __u64 val) 7301 { 7302 __u64 *array = (__u64 *)info; 7303 7304 if (offset >= 0) 7305 array[offset / sizeof(__u64)] = val; 7306 } 7307 7308 struct bpf_prog_info_linear * 7309 bpf_program__get_prog_info_linear(int fd, __u64 arrays) 7310 { 7311 struct bpf_prog_info_linear *info_linear; 7312 struct bpf_prog_info info = {}; 7313 __u32 info_len = sizeof(info); 7314 __u32 data_len = 0; 7315 int i, err; 7316 void *ptr; 7317 7318 if (arrays >> BPF_PROG_INFO_LAST_ARRAY) 7319 return ERR_PTR(-EINVAL); 7320 7321 /* step 1: get array dimensions */ 7322 err = bpf_obj_get_info_by_fd(fd, &info, &info_len); 7323 if (err) { 7324 pr_debug("can't get prog info: %s", strerror(errno)); 7325 return ERR_PTR(-EFAULT); 7326 } 7327 7328 /* step 2: calculate total size of all arrays */ 7329 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 7330 bool include_array = (arrays & (1UL << i)) > 0; 7331 struct bpf_prog_info_array_desc *desc; 7332 __u32 count, size; 7333 7334 desc = bpf_prog_info_array_desc + i; 7335 7336 /* kernel is too old to support this field */ 7337 if (info_len < desc->array_offset + sizeof(__u32) || 7338 info_len < desc->count_offset + sizeof(__u32) || 7339 (desc->size_offset > 0 && info_len < desc->size_offset)) 7340 include_array = false; 7341 7342 if (!include_array) { 7343 arrays &= ~(1UL << i); /* clear the bit */ 7344 continue; 7345 } 7346 7347 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 7348 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 7349 7350 data_len += count * size; 7351 } 7352 7353 /* step 3: allocate continuous memory */ 7354 data_len = roundup(data_len, sizeof(__u64)); 7355 info_linear = malloc(sizeof(struct bpf_prog_info_linear) + data_len); 7356 if (!info_linear) 7357 return ERR_PTR(-ENOMEM); 7358 7359 /* step 4: fill data to info_linear->info */ 7360 info_linear->arrays = arrays; 7361 memset(&info_linear->info, 0, sizeof(info)); 7362 ptr = info_linear->data; 7363 7364 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 7365 struct bpf_prog_info_array_desc *desc; 7366 __u32 count, size; 7367 7368 if ((arrays & (1UL << i)) == 0) 7369 continue; 7370 7371 desc = bpf_prog_info_array_desc + i; 7372 count = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 7373 size = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 7374 bpf_prog_info_set_offset_u32(&info_linear->info, 7375 desc->count_offset, count); 7376 bpf_prog_info_set_offset_u32(&info_linear->info, 7377 desc->size_offset, size); 7378 bpf_prog_info_set_offset_u64(&info_linear->info, 7379 desc->array_offset, 7380 ptr_to_u64(ptr)); 7381 ptr += count * size; 7382 } 7383 7384 /* step 5: call syscall again to get required arrays */ 7385 err = bpf_obj_get_info_by_fd(fd, &info_linear->info, &info_len); 7386 if (err) { 7387 pr_debug("can't get prog info: %s", strerror(errno)); 7388 free(info_linear); 7389 return ERR_PTR(-EFAULT); 7390 } 7391 7392 /* step 6: verify the data */ 7393 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 7394 struct bpf_prog_info_array_desc *desc; 7395 __u32 v1, v2; 7396 7397 if ((arrays & (1UL << i)) == 0) 7398 continue; 7399 7400 desc = bpf_prog_info_array_desc + i; 7401 v1 = bpf_prog_info_read_offset_u32(&info, desc->count_offset); 7402 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 7403 desc->count_offset); 7404 if (v1 != v2) 7405 pr_warn("%s: mismatch in element count\n", __func__); 7406 7407 v1 = bpf_prog_info_read_offset_u32(&info, desc->size_offset); 7408 v2 = bpf_prog_info_read_offset_u32(&info_linear->info, 7409 desc->size_offset); 7410 if (v1 != v2) 7411 pr_warn("%s: mismatch in rec size\n", __func__); 7412 } 7413 7414 /* step 7: update info_len and data_len */ 7415 info_linear->info_len = sizeof(struct bpf_prog_info); 7416 info_linear->data_len = data_len; 7417 7418 return info_linear; 7419 } 7420 7421 void bpf_program__bpil_addr_to_offs(struct bpf_prog_info_linear *info_linear) 7422 { 7423 int i; 7424 7425 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 7426 struct bpf_prog_info_array_desc *desc; 7427 __u64 addr, offs; 7428 7429 if ((info_linear->arrays & (1UL << i)) == 0) 7430 continue; 7431 7432 desc = bpf_prog_info_array_desc + i; 7433 addr = bpf_prog_info_read_offset_u64(&info_linear->info, 7434 desc->array_offset); 7435 offs = addr - ptr_to_u64(info_linear->data); 7436 bpf_prog_info_set_offset_u64(&info_linear->info, 7437 desc->array_offset, offs); 7438 } 7439 } 7440 7441 void bpf_program__bpil_offs_to_addr(struct bpf_prog_info_linear *info_linear) 7442 { 7443 int i; 7444 7445 for (i = BPF_PROG_INFO_FIRST_ARRAY; i < BPF_PROG_INFO_LAST_ARRAY; ++i) { 7446 struct bpf_prog_info_array_desc *desc; 7447 __u64 addr, offs; 7448 7449 if ((info_linear->arrays & (1UL << i)) == 0) 7450 continue; 7451 7452 desc = bpf_prog_info_array_desc + i; 7453 offs = bpf_prog_info_read_offset_u64(&info_linear->info, 7454 desc->array_offset); 7455 addr = offs + ptr_to_u64(info_linear->data); 7456 bpf_prog_info_set_offset_u64(&info_linear->info, 7457 desc->array_offset, addr); 7458 } 7459 } 7460 7461 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 7462 { 7463 int err = 0, n, len, start, end = -1; 7464 bool *tmp; 7465 7466 *mask = NULL; 7467 *mask_sz = 0; 7468 7469 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 7470 while (*s) { 7471 if (*s == ',' || *s == '\n') { 7472 s++; 7473 continue; 7474 } 7475 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 7476 if (n <= 0 || n > 2) { 7477 pr_warn("Failed to get CPU range %s: %d\n", s, n); 7478 err = -EINVAL; 7479 goto cleanup; 7480 } else if (n == 1) { 7481 end = start; 7482 } 7483 if (start < 0 || start > end) { 7484 pr_warn("Invalid CPU range [%d,%d] in %s\n", 7485 start, end, s); 7486 err = -EINVAL; 7487 goto cleanup; 7488 } 7489 tmp = realloc(*mask, end + 1); 7490 if (!tmp) { 7491 err = -ENOMEM; 7492 goto cleanup; 7493 } 7494 *mask = tmp; 7495 memset(tmp + *mask_sz, 0, start - *mask_sz); 7496 memset(tmp + start, 1, end - start + 1); 7497 *mask_sz = end + 1; 7498 s += len; 7499 } 7500 if (!*mask_sz) { 7501 pr_warn("Empty CPU range\n"); 7502 return -EINVAL; 7503 } 7504 return 0; 7505 cleanup: 7506 free(*mask); 7507 *mask = NULL; 7508 return err; 7509 } 7510 7511 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 7512 { 7513 int fd, err = 0, len; 7514 char buf[128]; 7515 7516 fd = open(fcpu, O_RDONLY); 7517 if (fd < 0) { 7518 err = -errno; 7519 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 7520 return err; 7521 } 7522 len = read(fd, buf, sizeof(buf)); 7523 close(fd); 7524 if (len <= 0) { 7525 err = len ? -errno : -EINVAL; 7526 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 7527 return err; 7528 } 7529 if (len >= sizeof(buf)) { 7530 pr_warn("CPU mask is too big in file %s\n", fcpu); 7531 return -E2BIG; 7532 } 7533 buf[len] = '\0'; 7534 7535 return parse_cpu_mask_str(buf, mask, mask_sz); 7536 } 7537 7538 int libbpf_num_possible_cpus(void) 7539 { 7540 static const char *fcpu = "/sys/devices/system/cpu/possible"; 7541 static int cpus; 7542 int err, n, i, tmp_cpus; 7543 bool *mask; 7544 7545 tmp_cpus = READ_ONCE(cpus); 7546 if (tmp_cpus > 0) 7547 return tmp_cpus; 7548 7549 err = parse_cpu_mask_file(fcpu, &mask, &n); 7550 if (err) 7551 return err; 7552 7553 tmp_cpus = 0; 7554 for (i = 0; i < n; i++) { 7555 if (mask[i]) 7556 tmp_cpus++; 7557 } 7558 free(mask); 7559 7560 WRITE_ONCE(cpus, tmp_cpus); 7561 return tmp_cpus; 7562 } 7563 7564 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 7565 const struct bpf_object_open_opts *opts) 7566 { 7567 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 7568 .object_name = s->name, 7569 ); 7570 struct bpf_object *obj; 7571 int i; 7572 7573 /* Attempt to preserve opts->object_name, unless overriden by user 7574 * explicitly. Overwriting object name for skeletons is discouraged, 7575 * as it breaks global data maps, because they contain object name 7576 * prefix as their own map name prefix. When skeleton is generated, 7577 * bpftool is making an assumption that this name will stay the same. 7578 */ 7579 if (opts) { 7580 memcpy(&skel_opts, opts, sizeof(*opts)); 7581 if (!opts->object_name) 7582 skel_opts.object_name = s->name; 7583 } 7584 7585 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 7586 if (IS_ERR(obj)) { 7587 pr_warn("failed to initialize skeleton BPF object '%s': %ld\n", 7588 s->name, PTR_ERR(obj)); 7589 return PTR_ERR(obj); 7590 } 7591 7592 *s->obj = obj; 7593 7594 for (i = 0; i < s->map_cnt; i++) { 7595 struct bpf_map **map = s->maps[i].map; 7596 const char *name = s->maps[i].name; 7597 void **mmaped = s->maps[i].mmaped; 7598 7599 *map = bpf_object__find_map_by_name(obj, name); 7600 if (!*map) { 7601 pr_warn("failed to find skeleton map '%s'\n", name); 7602 return -ESRCH; 7603 } 7604 7605 /* externs shouldn't be pre-setup from user code */ 7606 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 7607 *mmaped = (*map)->mmaped; 7608 } 7609 7610 for (i = 0; i < s->prog_cnt; i++) { 7611 struct bpf_program **prog = s->progs[i].prog; 7612 const char *name = s->progs[i].name; 7613 7614 *prog = bpf_object__find_program_by_name(obj, name); 7615 if (!*prog) { 7616 pr_warn("failed to find skeleton program '%s'\n", name); 7617 return -ESRCH; 7618 } 7619 } 7620 7621 return 0; 7622 } 7623 7624 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 7625 { 7626 int i, err; 7627 7628 err = bpf_object__load(*s->obj); 7629 if (err) { 7630 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 7631 return err; 7632 } 7633 7634 for (i = 0; i < s->map_cnt; i++) { 7635 struct bpf_map *map = *s->maps[i].map; 7636 size_t mmap_sz = bpf_map_mmap_sz(map); 7637 int prot, map_fd = bpf_map__fd(map); 7638 void **mmaped = s->maps[i].mmaped; 7639 7640 if (!mmaped) 7641 continue; 7642 7643 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 7644 *mmaped = NULL; 7645 continue; 7646 } 7647 7648 if (map->def.map_flags & BPF_F_RDONLY_PROG) 7649 prot = PROT_READ; 7650 else 7651 prot = PROT_READ | PROT_WRITE; 7652 7653 /* Remap anonymous mmap()-ed "map initialization image" as 7654 * a BPF map-backed mmap()-ed memory, but preserving the same 7655 * memory address. This will cause kernel to change process' 7656 * page table to point to a different piece of kernel memory, 7657 * but from userspace point of view memory address (and its 7658 * contents, being identical at this point) will stay the 7659 * same. This mapping will be released by bpf_object__close() 7660 * as per normal clean up procedure, so we don't need to worry 7661 * about it from skeleton's clean up perspective. 7662 */ 7663 *mmaped = mmap(map->mmaped, mmap_sz, prot, 7664 MAP_SHARED | MAP_FIXED, map_fd, 0); 7665 if (*mmaped == MAP_FAILED) { 7666 err = -errno; 7667 *mmaped = NULL; 7668 pr_warn("failed to re-mmap() map '%s': %d\n", 7669 bpf_map__name(map), err); 7670 return err; 7671 } 7672 } 7673 7674 return 0; 7675 } 7676 7677 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 7678 { 7679 int i; 7680 7681 for (i = 0; i < s->prog_cnt; i++) { 7682 struct bpf_program *prog = *s->progs[i].prog; 7683 struct bpf_link **link = s->progs[i].link; 7684 const struct bpf_sec_def *sec_def; 7685 const char *sec_name = bpf_program__title(prog, false); 7686 7687 sec_def = find_sec_def(sec_name); 7688 if (!sec_def || !sec_def->attach_fn) 7689 continue; 7690 7691 *link = sec_def->attach_fn(sec_def, prog); 7692 if (IS_ERR(*link)) { 7693 pr_warn("failed to auto-attach program '%s': %ld\n", 7694 bpf_program__name(prog), PTR_ERR(*link)); 7695 return PTR_ERR(*link); 7696 } 7697 } 7698 7699 return 0; 7700 } 7701 7702 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 7703 { 7704 int i; 7705 7706 for (i = 0; i < s->prog_cnt; i++) { 7707 struct bpf_link **link = s->progs[i].link; 7708 7709 if (!IS_ERR_OR_NULL(*link)) 7710 bpf_link__destroy(*link); 7711 *link = NULL; 7712 } 7713 } 7714 7715 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 7716 { 7717 if (s->progs) 7718 bpf_object__detach_skeleton(s); 7719 if (s->obj) 7720 bpf_object__close(*s->obj); 7721 free(s->maps); 7722 free(s->progs); 7723 free(s); 7724 } 7725