xref: /linux/tools/lib/bpf/libbpf.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2 
3 /*
4  * Common eBPF ELF object loading operations.
5  *
6  * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7  * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8  * Copyright (C) 2015 Huawei Inc.
9  * Copyright (C) 2017 Nicira, Inc.
10  * Copyright (C) 2019 Isovalent, Inc.
11  */
12 
13 #ifndef _GNU_SOURCE
14 #define _GNU_SOURCE
15 #endif
16 #include <stdlib.h>
17 #include <stdio.h>
18 #include <stdarg.h>
19 #include <libgen.h>
20 #include <inttypes.h>
21 #include <limits.h>
22 #include <string.h>
23 #include <unistd.h>
24 #include <endian.h>
25 #include <fcntl.h>
26 #include <errno.h>
27 #include <ctype.h>
28 #include <asm/unistd.h>
29 #include <linux/err.h>
30 #include <linux/kernel.h>
31 #include <linux/bpf.h>
32 #include <linux/btf.h>
33 #include <linux/filter.h>
34 #include <linux/limits.h>
35 #include <linux/perf_event.h>
36 #include <linux/bpf_perf_event.h>
37 #include <linux/ring_buffer.h>
38 #include <sys/epoll.h>
39 #include <sys/ioctl.h>
40 #include <sys/mman.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <sys/vfs.h>
44 #include <sys/utsname.h>
45 #include <sys/resource.h>
46 #include <libelf.h>
47 #include <gelf.h>
48 #include <zlib.h>
49 
50 #include "libbpf.h"
51 #include "bpf.h"
52 #include "btf.h"
53 #include "str_error.h"
54 #include "libbpf_internal.h"
55 #include "hashmap.h"
56 #include "bpf_gen_internal.h"
57 #include "zip.h"
58 
59 #ifndef BPF_FS_MAGIC
60 #define BPF_FS_MAGIC		0xcafe4a11
61 #endif
62 
63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf"
64 
65 #define BPF_INSN_SZ (sizeof(struct bpf_insn))
66 
67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break
68  * compilation if user enables corresponding warning. Disable it explicitly.
69  */
70 #pragma GCC diagnostic ignored "-Wformat-nonliteral"
71 
72 #define __printf(a, b)	__attribute__((format(printf, a, b)))
73 
74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
76 static int map_set_def_max_entries(struct bpf_map *map);
77 
78 static const char * const attach_type_name[] = {
79 	[BPF_CGROUP_INET_INGRESS]	= "cgroup_inet_ingress",
80 	[BPF_CGROUP_INET_EGRESS]	= "cgroup_inet_egress",
81 	[BPF_CGROUP_INET_SOCK_CREATE]	= "cgroup_inet_sock_create",
82 	[BPF_CGROUP_INET_SOCK_RELEASE]	= "cgroup_inet_sock_release",
83 	[BPF_CGROUP_SOCK_OPS]		= "cgroup_sock_ops",
84 	[BPF_CGROUP_DEVICE]		= "cgroup_device",
85 	[BPF_CGROUP_INET4_BIND]		= "cgroup_inet4_bind",
86 	[BPF_CGROUP_INET6_BIND]		= "cgroup_inet6_bind",
87 	[BPF_CGROUP_INET4_CONNECT]	= "cgroup_inet4_connect",
88 	[BPF_CGROUP_INET6_CONNECT]	= "cgroup_inet6_connect",
89 	[BPF_CGROUP_UNIX_CONNECT]       = "cgroup_unix_connect",
90 	[BPF_CGROUP_INET4_POST_BIND]	= "cgroup_inet4_post_bind",
91 	[BPF_CGROUP_INET6_POST_BIND]	= "cgroup_inet6_post_bind",
92 	[BPF_CGROUP_INET4_GETPEERNAME]	= "cgroup_inet4_getpeername",
93 	[BPF_CGROUP_INET6_GETPEERNAME]	= "cgroup_inet6_getpeername",
94 	[BPF_CGROUP_UNIX_GETPEERNAME]	= "cgroup_unix_getpeername",
95 	[BPF_CGROUP_INET4_GETSOCKNAME]	= "cgroup_inet4_getsockname",
96 	[BPF_CGROUP_INET6_GETSOCKNAME]	= "cgroup_inet6_getsockname",
97 	[BPF_CGROUP_UNIX_GETSOCKNAME]	= "cgroup_unix_getsockname",
98 	[BPF_CGROUP_UDP4_SENDMSG]	= "cgroup_udp4_sendmsg",
99 	[BPF_CGROUP_UDP6_SENDMSG]	= "cgroup_udp6_sendmsg",
100 	[BPF_CGROUP_UNIX_SENDMSG]	= "cgroup_unix_sendmsg",
101 	[BPF_CGROUP_SYSCTL]		= "cgroup_sysctl",
102 	[BPF_CGROUP_UDP4_RECVMSG]	= "cgroup_udp4_recvmsg",
103 	[BPF_CGROUP_UDP6_RECVMSG]	= "cgroup_udp6_recvmsg",
104 	[BPF_CGROUP_UNIX_RECVMSG]	= "cgroup_unix_recvmsg",
105 	[BPF_CGROUP_GETSOCKOPT]		= "cgroup_getsockopt",
106 	[BPF_CGROUP_SETSOCKOPT]		= "cgroup_setsockopt",
107 	[BPF_SK_SKB_STREAM_PARSER]	= "sk_skb_stream_parser",
108 	[BPF_SK_SKB_STREAM_VERDICT]	= "sk_skb_stream_verdict",
109 	[BPF_SK_SKB_VERDICT]		= "sk_skb_verdict",
110 	[BPF_SK_MSG_VERDICT]		= "sk_msg_verdict",
111 	[BPF_LIRC_MODE2]		= "lirc_mode2",
112 	[BPF_FLOW_DISSECTOR]		= "flow_dissector",
113 	[BPF_TRACE_RAW_TP]		= "trace_raw_tp",
114 	[BPF_TRACE_FENTRY]		= "trace_fentry",
115 	[BPF_TRACE_FEXIT]		= "trace_fexit",
116 	[BPF_MODIFY_RETURN]		= "modify_return",
117 	[BPF_LSM_MAC]			= "lsm_mac",
118 	[BPF_LSM_CGROUP]		= "lsm_cgroup",
119 	[BPF_SK_LOOKUP]			= "sk_lookup",
120 	[BPF_TRACE_ITER]		= "trace_iter",
121 	[BPF_XDP_DEVMAP]		= "xdp_devmap",
122 	[BPF_XDP_CPUMAP]		= "xdp_cpumap",
123 	[BPF_XDP]			= "xdp",
124 	[BPF_SK_REUSEPORT_SELECT]	= "sk_reuseport_select",
125 	[BPF_SK_REUSEPORT_SELECT_OR_MIGRATE]	= "sk_reuseport_select_or_migrate",
126 	[BPF_PERF_EVENT]		= "perf_event",
127 	[BPF_TRACE_KPROBE_MULTI]	= "trace_kprobe_multi",
128 	[BPF_STRUCT_OPS]		= "struct_ops",
129 	[BPF_NETFILTER]			= "netfilter",
130 	[BPF_TCX_INGRESS]		= "tcx_ingress",
131 	[BPF_TCX_EGRESS]		= "tcx_egress",
132 	[BPF_TRACE_UPROBE_MULTI]	= "trace_uprobe_multi",
133 	[BPF_NETKIT_PRIMARY]		= "netkit_primary",
134 	[BPF_NETKIT_PEER]		= "netkit_peer",
135 };
136 
137 static const char * const link_type_name[] = {
138 	[BPF_LINK_TYPE_UNSPEC]			= "unspec",
139 	[BPF_LINK_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
140 	[BPF_LINK_TYPE_TRACING]			= "tracing",
141 	[BPF_LINK_TYPE_CGROUP]			= "cgroup",
142 	[BPF_LINK_TYPE_ITER]			= "iter",
143 	[BPF_LINK_TYPE_NETNS]			= "netns",
144 	[BPF_LINK_TYPE_XDP]			= "xdp",
145 	[BPF_LINK_TYPE_PERF_EVENT]		= "perf_event",
146 	[BPF_LINK_TYPE_KPROBE_MULTI]		= "kprobe_multi",
147 	[BPF_LINK_TYPE_STRUCT_OPS]		= "struct_ops",
148 	[BPF_LINK_TYPE_NETFILTER]		= "netfilter",
149 	[BPF_LINK_TYPE_TCX]			= "tcx",
150 	[BPF_LINK_TYPE_UPROBE_MULTI]		= "uprobe_multi",
151 	[BPF_LINK_TYPE_NETKIT]			= "netkit",
152 };
153 
154 static const char * const map_type_name[] = {
155 	[BPF_MAP_TYPE_UNSPEC]			= "unspec",
156 	[BPF_MAP_TYPE_HASH]			= "hash",
157 	[BPF_MAP_TYPE_ARRAY]			= "array",
158 	[BPF_MAP_TYPE_PROG_ARRAY]		= "prog_array",
159 	[BPF_MAP_TYPE_PERF_EVENT_ARRAY]		= "perf_event_array",
160 	[BPF_MAP_TYPE_PERCPU_HASH]		= "percpu_hash",
161 	[BPF_MAP_TYPE_PERCPU_ARRAY]		= "percpu_array",
162 	[BPF_MAP_TYPE_STACK_TRACE]		= "stack_trace",
163 	[BPF_MAP_TYPE_CGROUP_ARRAY]		= "cgroup_array",
164 	[BPF_MAP_TYPE_LRU_HASH]			= "lru_hash",
165 	[BPF_MAP_TYPE_LRU_PERCPU_HASH]		= "lru_percpu_hash",
166 	[BPF_MAP_TYPE_LPM_TRIE]			= "lpm_trie",
167 	[BPF_MAP_TYPE_ARRAY_OF_MAPS]		= "array_of_maps",
168 	[BPF_MAP_TYPE_HASH_OF_MAPS]		= "hash_of_maps",
169 	[BPF_MAP_TYPE_DEVMAP]			= "devmap",
170 	[BPF_MAP_TYPE_DEVMAP_HASH]		= "devmap_hash",
171 	[BPF_MAP_TYPE_SOCKMAP]			= "sockmap",
172 	[BPF_MAP_TYPE_CPUMAP]			= "cpumap",
173 	[BPF_MAP_TYPE_XSKMAP]			= "xskmap",
174 	[BPF_MAP_TYPE_SOCKHASH]			= "sockhash",
175 	[BPF_MAP_TYPE_CGROUP_STORAGE]		= "cgroup_storage",
176 	[BPF_MAP_TYPE_REUSEPORT_SOCKARRAY]	= "reuseport_sockarray",
177 	[BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE]	= "percpu_cgroup_storage",
178 	[BPF_MAP_TYPE_QUEUE]			= "queue",
179 	[BPF_MAP_TYPE_STACK]			= "stack",
180 	[BPF_MAP_TYPE_SK_STORAGE]		= "sk_storage",
181 	[BPF_MAP_TYPE_STRUCT_OPS]		= "struct_ops",
182 	[BPF_MAP_TYPE_RINGBUF]			= "ringbuf",
183 	[BPF_MAP_TYPE_INODE_STORAGE]		= "inode_storage",
184 	[BPF_MAP_TYPE_TASK_STORAGE]		= "task_storage",
185 	[BPF_MAP_TYPE_BLOOM_FILTER]		= "bloom_filter",
186 	[BPF_MAP_TYPE_USER_RINGBUF]             = "user_ringbuf",
187 	[BPF_MAP_TYPE_CGRP_STORAGE]		= "cgrp_storage",
188 	[BPF_MAP_TYPE_ARENA]			= "arena",
189 };
190 
191 static const char * const prog_type_name[] = {
192 	[BPF_PROG_TYPE_UNSPEC]			= "unspec",
193 	[BPF_PROG_TYPE_SOCKET_FILTER]		= "socket_filter",
194 	[BPF_PROG_TYPE_KPROBE]			= "kprobe",
195 	[BPF_PROG_TYPE_SCHED_CLS]		= "sched_cls",
196 	[BPF_PROG_TYPE_SCHED_ACT]		= "sched_act",
197 	[BPF_PROG_TYPE_TRACEPOINT]		= "tracepoint",
198 	[BPF_PROG_TYPE_XDP]			= "xdp",
199 	[BPF_PROG_TYPE_PERF_EVENT]		= "perf_event",
200 	[BPF_PROG_TYPE_CGROUP_SKB]		= "cgroup_skb",
201 	[BPF_PROG_TYPE_CGROUP_SOCK]		= "cgroup_sock",
202 	[BPF_PROG_TYPE_LWT_IN]			= "lwt_in",
203 	[BPF_PROG_TYPE_LWT_OUT]			= "lwt_out",
204 	[BPF_PROG_TYPE_LWT_XMIT]		= "lwt_xmit",
205 	[BPF_PROG_TYPE_SOCK_OPS]		= "sock_ops",
206 	[BPF_PROG_TYPE_SK_SKB]			= "sk_skb",
207 	[BPF_PROG_TYPE_CGROUP_DEVICE]		= "cgroup_device",
208 	[BPF_PROG_TYPE_SK_MSG]			= "sk_msg",
209 	[BPF_PROG_TYPE_RAW_TRACEPOINT]		= "raw_tracepoint",
210 	[BPF_PROG_TYPE_CGROUP_SOCK_ADDR]	= "cgroup_sock_addr",
211 	[BPF_PROG_TYPE_LWT_SEG6LOCAL]		= "lwt_seg6local",
212 	[BPF_PROG_TYPE_LIRC_MODE2]		= "lirc_mode2",
213 	[BPF_PROG_TYPE_SK_REUSEPORT]		= "sk_reuseport",
214 	[BPF_PROG_TYPE_FLOW_DISSECTOR]		= "flow_dissector",
215 	[BPF_PROG_TYPE_CGROUP_SYSCTL]		= "cgroup_sysctl",
216 	[BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE]	= "raw_tracepoint_writable",
217 	[BPF_PROG_TYPE_CGROUP_SOCKOPT]		= "cgroup_sockopt",
218 	[BPF_PROG_TYPE_TRACING]			= "tracing",
219 	[BPF_PROG_TYPE_STRUCT_OPS]		= "struct_ops",
220 	[BPF_PROG_TYPE_EXT]			= "ext",
221 	[BPF_PROG_TYPE_LSM]			= "lsm",
222 	[BPF_PROG_TYPE_SK_LOOKUP]		= "sk_lookup",
223 	[BPF_PROG_TYPE_SYSCALL]			= "syscall",
224 	[BPF_PROG_TYPE_NETFILTER]		= "netfilter",
225 };
226 
227 static int __base_pr(enum libbpf_print_level level, const char *format,
228 		     va_list args)
229 {
230 	if (level == LIBBPF_DEBUG)
231 		return 0;
232 
233 	return vfprintf(stderr, format, args);
234 }
235 
236 static libbpf_print_fn_t __libbpf_pr = __base_pr;
237 
238 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
239 {
240 	libbpf_print_fn_t old_print_fn;
241 
242 	old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
243 
244 	return old_print_fn;
245 }
246 
247 __printf(2, 3)
248 void libbpf_print(enum libbpf_print_level level, const char *format, ...)
249 {
250 	va_list args;
251 	int old_errno;
252 	libbpf_print_fn_t print_fn;
253 
254 	print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
255 	if (!print_fn)
256 		return;
257 
258 	old_errno = errno;
259 
260 	va_start(args, format);
261 	__libbpf_pr(level, format, args);
262 	va_end(args);
263 
264 	errno = old_errno;
265 }
266 
267 static void pr_perm_msg(int err)
268 {
269 	struct rlimit limit;
270 	char buf[100];
271 
272 	if (err != -EPERM || geteuid() != 0)
273 		return;
274 
275 	err = getrlimit(RLIMIT_MEMLOCK, &limit);
276 	if (err)
277 		return;
278 
279 	if (limit.rlim_cur == RLIM_INFINITY)
280 		return;
281 
282 	if (limit.rlim_cur < 1024)
283 		snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
284 	else if (limit.rlim_cur < 1024*1024)
285 		snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
286 	else
287 		snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
288 
289 	pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
290 		buf);
291 }
292 
293 #define STRERR_BUFSIZE  128
294 
295 /* Copied from tools/perf/util/util.h */
296 #ifndef zfree
297 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
298 #endif
299 
300 #ifndef zclose
301 # define zclose(fd) ({			\
302 	int ___err = 0;			\
303 	if ((fd) >= 0)			\
304 		___err = close((fd));	\
305 	fd = -1;			\
306 	___err; })
307 #endif
308 
309 static inline __u64 ptr_to_u64(const void *ptr)
310 {
311 	return (__u64) (unsigned long) ptr;
312 }
313 
314 int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
315 {
316 	/* as of v1.0 libbpf_set_strict_mode() is a no-op */
317 	return 0;
318 }
319 
320 __u32 libbpf_major_version(void)
321 {
322 	return LIBBPF_MAJOR_VERSION;
323 }
324 
325 __u32 libbpf_minor_version(void)
326 {
327 	return LIBBPF_MINOR_VERSION;
328 }
329 
330 const char *libbpf_version_string(void)
331 {
332 #define __S(X) #X
333 #define _S(X) __S(X)
334 	return  "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
335 #undef _S
336 #undef __S
337 }
338 
339 enum reloc_type {
340 	RELO_LD64,
341 	RELO_CALL,
342 	RELO_DATA,
343 	RELO_EXTERN_LD64,
344 	RELO_EXTERN_CALL,
345 	RELO_SUBPROG_ADDR,
346 	RELO_CORE,
347 };
348 
349 struct reloc_desc {
350 	enum reloc_type type;
351 	int insn_idx;
352 	union {
353 		const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
354 		struct {
355 			int map_idx;
356 			int sym_off;
357 			int ext_idx;
358 		};
359 	};
360 };
361 
362 /* stored as sec_def->cookie for all libbpf-supported SEC()s */
363 enum sec_def_flags {
364 	SEC_NONE = 0,
365 	/* expected_attach_type is optional, if kernel doesn't support that */
366 	SEC_EXP_ATTACH_OPT = 1,
367 	/* legacy, only used by libbpf_get_type_names() and
368 	 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
369 	 * This used to be associated with cgroup (and few other) BPF programs
370 	 * that were attachable through BPF_PROG_ATTACH command. Pretty
371 	 * meaningless nowadays, though.
372 	 */
373 	SEC_ATTACHABLE = 2,
374 	SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
375 	/* attachment target is specified through BTF ID in either kernel or
376 	 * other BPF program's BTF object
377 	 */
378 	SEC_ATTACH_BTF = 4,
379 	/* BPF program type allows sleeping/blocking in kernel */
380 	SEC_SLEEPABLE = 8,
381 	/* BPF program support non-linear XDP buffer */
382 	SEC_XDP_FRAGS = 16,
383 	/* Setup proper attach type for usdt probes. */
384 	SEC_USDT = 32,
385 };
386 
387 struct bpf_sec_def {
388 	char *sec;
389 	enum bpf_prog_type prog_type;
390 	enum bpf_attach_type expected_attach_type;
391 	long cookie;
392 	int handler_id;
393 
394 	libbpf_prog_setup_fn_t prog_setup_fn;
395 	libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
396 	libbpf_prog_attach_fn_t prog_attach_fn;
397 };
398 
399 /*
400  * bpf_prog should be a better name but it has been used in
401  * linux/filter.h.
402  */
403 struct bpf_program {
404 	char *name;
405 	char *sec_name;
406 	size_t sec_idx;
407 	const struct bpf_sec_def *sec_def;
408 	/* this program's instruction offset (in number of instructions)
409 	 * within its containing ELF section
410 	 */
411 	size_t sec_insn_off;
412 	/* number of original instructions in ELF section belonging to this
413 	 * program, not taking into account subprogram instructions possible
414 	 * appended later during relocation
415 	 */
416 	size_t sec_insn_cnt;
417 	/* Offset (in number of instructions) of the start of instruction
418 	 * belonging to this BPF program  within its containing main BPF
419 	 * program. For the entry-point (main) BPF program, this is always
420 	 * zero. For a sub-program, this gets reset before each of main BPF
421 	 * programs are processed and relocated and is used to determined
422 	 * whether sub-program was already appended to the main program, and
423 	 * if yes, at which instruction offset.
424 	 */
425 	size_t sub_insn_off;
426 
427 	/* instructions that belong to BPF program; insns[0] is located at
428 	 * sec_insn_off instruction within its ELF section in ELF file, so
429 	 * when mapping ELF file instruction index to the local instruction,
430 	 * one needs to subtract sec_insn_off; and vice versa.
431 	 */
432 	struct bpf_insn *insns;
433 	/* actual number of instruction in this BPF program's image; for
434 	 * entry-point BPF programs this includes the size of main program
435 	 * itself plus all the used sub-programs, appended at the end
436 	 */
437 	size_t insns_cnt;
438 
439 	struct reloc_desc *reloc_desc;
440 	int nr_reloc;
441 
442 	/* BPF verifier log settings */
443 	char *log_buf;
444 	size_t log_size;
445 	__u32 log_level;
446 
447 	struct bpf_object *obj;
448 
449 	int fd;
450 	bool autoload;
451 	bool autoattach;
452 	bool sym_global;
453 	bool mark_btf_static;
454 	enum bpf_prog_type type;
455 	enum bpf_attach_type expected_attach_type;
456 	int exception_cb_idx;
457 
458 	int prog_ifindex;
459 	__u32 attach_btf_obj_fd;
460 	__u32 attach_btf_id;
461 	__u32 attach_prog_fd;
462 
463 	void *func_info;
464 	__u32 func_info_rec_size;
465 	__u32 func_info_cnt;
466 
467 	void *line_info;
468 	__u32 line_info_rec_size;
469 	__u32 line_info_cnt;
470 	__u32 prog_flags;
471 };
472 
473 struct bpf_struct_ops {
474 	const char *tname;
475 	const struct btf_type *type;
476 	struct bpf_program **progs;
477 	__u32 *kern_func_off;
478 	/* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
479 	void *data;
480 	/* e.g. struct bpf_struct_ops_tcp_congestion_ops in
481 	 *      btf_vmlinux's format.
482 	 * struct bpf_struct_ops_tcp_congestion_ops {
483 	 *	[... some other kernel fields ...]
484 	 *	struct tcp_congestion_ops data;
485 	 * }
486 	 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
487 	 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
488 	 * from "data".
489 	 */
490 	void *kern_vdata;
491 	__u32 type_id;
492 };
493 
494 #define DATA_SEC ".data"
495 #define BSS_SEC ".bss"
496 #define RODATA_SEC ".rodata"
497 #define KCONFIG_SEC ".kconfig"
498 #define KSYMS_SEC ".ksyms"
499 #define STRUCT_OPS_SEC ".struct_ops"
500 #define STRUCT_OPS_LINK_SEC ".struct_ops.link"
501 #define ARENA_SEC ".arena.1"
502 
503 enum libbpf_map_type {
504 	LIBBPF_MAP_UNSPEC,
505 	LIBBPF_MAP_DATA,
506 	LIBBPF_MAP_BSS,
507 	LIBBPF_MAP_RODATA,
508 	LIBBPF_MAP_KCONFIG,
509 };
510 
511 struct bpf_map_def {
512 	unsigned int type;
513 	unsigned int key_size;
514 	unsigned int value_size;
515 	unsigned int max_entries;
516 	unsigned int map_flags;
517 };
518 
519 struct bpf_map {
520 	struct bpf_object *obj;
521 	char *name;
522 	/* real_name is defined for special internal maps (.rodata*,
523 	 * .data*, .bss, .kconfig) and preserves their original ELF section
524 	 * name. This is important to be able to find corresponding BTF
525 	 * DATASEC information.
526 	 */
527 	char *real_name;
528 	int fd;
529 	int sec_idx;
530 	size_t sec_offset;
531 	int map_ifindex;
532 	int inner_map_fd;
533 	struct bpf_map_def def;
534 	__u32 numa_node;
535 	__u32 btf_var_idx;
536 	int mod_btf_fd;
537 	__u32 btf_key_type_id;
538 	__u32 btf_value_type_id;
539 	__u32 btf_vmlinux_value_type_id;
540 	enum libbpf_map_type libbpf_type;
541 	void *mmaped;
542 	struct bpf_struct_ops *st_ops;
543 	struct bpf_map *inner_map;
544 	void **init_slots;
545 	int init_slots_sz;
546 	char *pin_path;
547 	bool pinned;
548 	bool reused;
549 	bool autocreate;
550 	__u64 map_extra;
551 };
552 
553 enum extern_type {
554 	EXT_UNKNOWN,
555 	EXT_KCFG,
556 	EXT_KSYM,
557 };
558 
559 enum kcfg_type {
560 	KCFG_UNKNOWN,
561 	KCFG_CHAR,
562 	KCFG_BOOL,
563 	KCFG_INT,
564 	KCFG_TRISTATE,
565 	KCFG_CHAR_ARR,
566 };
567 
568 struct extern_desc {
569 	enum extern_type type;
570 	int sym_idx;
571 	int btf_id;
572 	int sec_btf_id;
573 	const char *name;
574 	char *essent_name;
575 	bool is_set;
576 	bool is_weak;
577 	union {
578 		struct {
579 			enum kcfg_type type;
580 			int sz;
581 			int align;
582 			int data_off;
583 			bool is_signed;
584 		} kcfg;
585 		struct {
586 			unsigned long long addr;
587 
588 			/* target btf_id of the corresponding kernel var. */
589 			int kernel_btf_obj_fd;
590 			int kernel_btf_id;
591 
592 			/* local btf_id of the ksym extern's type. */
593 			__u32 type_id;
594 			/* BTF fd index to be patched in for insn->off, this is
595 			 * 0 for vmlinux BTF, index in obj->fd_array for module
596 			 * BTF
597 			 */
598 			__s16 btf_fd_idx;
599 		} ksym;
600 	};
601 };
602 
603 struct module_btf {
604 	struct btf *btf;
605 	char *name;
606 	__u32 id;
607 	int fd;
608 	int fd_array_idx;
609 };
610 
611 enum sec_type {
612 	SEC_UNUSED = 0,
613 	SEC_RELO,
614 	SEC_BSS,
615 	SEC_DATA,
616 	SEC_RODATA,
617 	SEC_ST_OPS,
618 };
619 
620 struct elf_sec_desc {
621 	enum sec_type sec_type;
622 	Elf64_Shdr *shdr;
623 	Elf_Data *data;
624 };
625 
626 struct elf_state {
627 	int fd;
628 	const void *obj_buf;
629 	size_t obj_buf_sz;
630 	Elf *elf;
631 	Elf64_Ehdr *ehdr;
632 	Elf_Data *symbols;
633 	Elf_Data *arena_data;
634 	size_t shstrndx; /* section index for section name strings */
635 	size_t strtabidx;
636 	struct elf_sec_desc *secs;
637 	size_t sec_cnt;
638 	int btf_maps_shndx;
639 	__u32 btf_maps_sec_btf_id;
640 	int text_shndx;
641 	int symbols_shndx;
642 	bool has_st_ops;
643 	int arena_data_shndx;
644 };
645 
646 struct usdt_manager;
647 
648 struct bpf_object {
649 	char name[BPF_OBJ_NAME_LEN];
650 	char license[64];
651 	__u32 kern_version;
652 
653 	struct bpf_program *programs;
654 	size_t nr_programs;
655 	struct bpf_map *maps;
656 	size_t nr_maps;
657 	size_t maps_cap;
658 
659 	char *kconfig;
660 	struct extern_desc *externs;
661 	int nr_extern;
662 	int kconfig_map_idx;
663 
664 	bool loaded;
665 	bool has_subcalls;
666 	bool has_rodata;
667 
668 	struct bpf_gen *gen_loader;
669 
670 	/* Information when doing ELF related work. Only valid if efile.elf is not NULL */
671 	struct elf_state efile;
672 
673 	struct btf *btf;
674 	struct btf_ext *btf_ext;
675 
676 	/* Parse and load BTF vmlinux if any of the programs in the object need
677 	 * it at load time.
678 	 */
679 	struct btf *btf_vmlinux;
680 	/* Path to the custom BTF to be used for BPF CO-RE relocations as an
681 	 * override for vmlinux BTF.
682 	 */
683 	char *btf_custom_path;
684 	/* vmlinux BTF override for CO-RE relocations */
685 	struct btf *btf_vmlinux_override;
686 	/* Lazily initialized kernel module BTFs */
687 	struct module_btf *btf_modules;
688 	bool btf_modules_loaded;
689 	size_t btf_module_cnt;
690 	size_t btf_module_cap;
691 
692 	/* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
693 	char *log_buf;
694 	size_t log_size;
695 	__u32 log_level;
696 
697 	int *fd_array;
698 	size_t fd_array_cap;
699 	size_t fd_array_cnt;
700 
701 	struct usdt_manager *usdt_man;
702 
703 	struct bpf_map *arena_map;
704 	void *arena_data;
705 	size_t arena_data_sz;
706 
707 	struct kern_feature_cache *feat_cache;
708 	char *token_path;
709 	int token_fd;
710 
711 	char path[];
712 };
713 
714 static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
715 static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
716 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
717 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
718 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
719 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
720 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
721 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
722 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
723 
724 void bpf_program__unload(struct bpf_program *prog)
725 {
726 	if (!prog)
727 		return;
728 
729 	zclose(prog->fd);
730 
731 	zfree(&prog->func_info);
732 	zfree(&prog->line_info);
733 }
734 
735 static void bpf_program__exit(struct bpf_program *prog)
736 {
737 	if (!prog)
738 		return;
739 
740 	bpf_program__unload(prog);
741 	zfree(&prog->name);
742 	zfree(&prog->sec_name);
743 	zfree(&prog->insns);
744 	zfree(&prog->reloc_desc);
745 
746 	prog->nr_reloc = 0;
747 	prog->insns_cnt = 0;
748 	prog->sec_idx = -1;
749 }
750 
751 static bool insn_is_subprog_call(const struct bpf_insn *insn)
752 {
753 	return BPF_CLASS(insn->code) == BPF_JMP &&
754 	       BPF_OP(insn->code) == BPF_CALL &&
755 	       BPF_SRC(insn->code) == BPF_K &&
756 	       insn->src_reg == BPF_PSEUDO_CALL &&
757 	       insn->dst_reg == 0 &&
758 	       insn->off == 0;
759 }
760 
761 static bool is_call_insn(const struct bpf_insn *insn)
762 {
763 	return insn->code == (BPF_JMP | BPF_CALL);
764 }
765 
766 static bool insn_is_pseudo_func(struct bpf_insn *insn)
767 {
768 	return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
769 }
770 
771 static int
772 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
773 		      const char *name, size_t sec_idx, const char *sec_name,
774 		      size_t sec_off, void *insn_data, size_t insn_data_sz)
775 {
776 	if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
777 		pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
778 			sec_name, name, sec_off, insn_data_sz);
779 		return -EINVAL;
780 	}
781 
782 	memset(prog, 0, sizeof(*prog));
783 	prog->obj = obj;
784 
785 	prog->sec_idx = sec_idx;
786 	prog->sec_insn_off = sec_off / BPF_INSN_SZ;
787 	prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
788 	/* insns_cnt can later be increased by appending used subprograms */
789 	prog->insns_cnt = prog->sec_insn_cnt;
790 
791 	prog->type = BPF_PROG_TYPE_UNSPEC;
792 	prog->fd = -1;
793 	prog->exception_cb_idx = -1;
794 
795 	/* libbpf's convention for SEC("?abc...") is that it's just like
796 	 * SEC("abc...") but the corresponding bpf_program starts out with
797 	 * autoload set to false.
798 	 */
799 	if (sec_name[0] == '?') {
800 		prog->autoload = false;
801 		/* from now on forget there was ? in section name */
802 		sec_name++;
803 	} else {
804 		prog->autoload = true;
805 	}
806 
807 	prog->autoattach = true;
808 
809 	/* inherit object's log_level */
810 	prog->log_level = obj->log_level;
811 
812 	prog->sec_name = strdup(sec_name);
813 	if (!prog->sec_name)
814 		goto errout;
815 
816 	prog->name = strdup(name);
817 	if (!prog->name)
818 		goto errout;
819 
820 	prog->insns = malloc(insn_data_sz);
821 	if (!prog->insns)
822 		goto errout;
823 	memcpy(prog->insns, insn_data, insn_data_sz);
824 
825 	return 0;
826 errout:
827 	pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
828 	bpf_program__exit(prog);
829 	return -ENOMEM;
830 }
831 
832 static int
833 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
834 			 const char *sec_name, int sec_idx)
835 {
836 	Elf_Data *symbols = obj->efile.symbols;
837 	struct bpf_program *prog, *progs;
838 	void *data = sec_data->d_buf;
839 	size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
840 	int nr_progs, err, i;
841 	const char *name;
842 	Elf64_Sym *sym;
843 
844 	progs = obj->programs;
845 	nr_progs = obj->nr_programs;
846 	nr_syms = symbols->d_size / sizeof(Elf64_Sym);
847 
848 	for (i = 0; i < nr_syms; i++) {
849 		sym = elf_sym_by_idx(obj, i);
850 
851 		if (sym->st_shndx != sec_idx)
852 			continue;
853 		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
854 			continue;
855 
856 		prog_sz = sym->st_size;
857 		sec_off = sym->st_value;
858 
859 		name = elf_sym_str(obj, sym->st_name);
860 		if (!name) {
861 			pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
862 				sec_name, sec_off);
863 			return -LIBBPF_ERRNO__FORMAT;
864 		}
865 
866 		if (sec_off + prog_sz > sec_sz) {
867 			pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
868 				sec_name, sec_off);
869 			return -LIBBPF_ERRNO__FORMAT;
870 		}
871 
872 		if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
873 			pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
874 			return -ENOTSUP;
875 		}
876 
877 		pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
878 			 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
879 
880 		progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
881 		if (!progs) {
882 			/*
883 			 * In this case the original obj->programs
884 			 * is still valid, so don't need special treat for
885 			 * bpf_close_object().
886 			 */
887 			pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
888 				sec_name, name);
889 			return -ENOMEM;
890 		}
891 		obj->programs = progs;
892 
893 		prog = &progs[nr_progs];
894 
895 		err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
896 					    sec_off, data + sec_off, prog_sz);
897 		if (err)
898 			return err;
899 
900 		if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL)
901 			prog->sym_global = true;
902 
903 		/* if function is a global/weak symbol, but has restricted
904 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
905 		 * as static to enable more permissive BPF verification mode
906 		 * with more outside context available to BPF verifier
907 		 */
908 		if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
909 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
910 			prog->mark_btf_static = true;
911 
912 		nr_progs++;
913 		obj->nr_programs = nr_progs;
914 	}
915 
916 	return 0;
917 }
918 
919 static const struct btf_member *
920 find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
921 {
922 	struct btf_member *m;
923 	int i;
924 
925 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
926 		if (btf_member_bit_offset(t, i) == bit_offset)
927 			return m;
928 	}
929 
930 	return NULL;
931 }
932 
933 static const struct btf_member *
934 find_member_by_name(const struct btf *btf, const struct btf_type *t,
935 		    const char *name)
936 {
937 	struct btf_member *m;
938 	int i;
939 
940 	for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
941 		if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
942 			return m;
943 	}
944 
945 	return NULL;
946 }
947 
948 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
949 			    __u16 kind, struct btf **res_btf,
950 			    struct module_btf **res_mod_btf);
951 
952 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
953 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
954 				   const char *name, __u32 kind);
955 
956 static int
957 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw,
958 			   struct module_btf **mod_btf,
959 			   const struct btf_type **type, __u32 *type_id,
960 			   const struct btf_type **vtype, __u32 *vtype_id,
961 			   const struct btf_member **data_member)
962 {
963 	const struct btf_type *kern_type, *kern_vtype;
964 	const struct btf_member *kern_data_member;
965 	struct btf *btf;
966 	__s32 kern_vtype_id, kern_type_id;
967 	char tname[256];
968 	__u32 i;
969 
970 	snprintf(tname, sizeof(tname), "%.*s",
971 		 (int)bpf_core_essential_name_len(tname_raw), tname_raw);
972 
973 	kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT,
974 					&btf, mod_btf);
975 	if (kern_type_id < 0) {
976 		pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
977 			tname);
978 		return kern_type_id;
979 	}
980 	kern_type = btf__type_by_id(btf, kern_type_id);
981 
982 	/* Find the corresponding "map_value" type that will be used
983 	 * in map_update(BPF_MAP_TYPE_STRUCT_OPS).  For example,
984 	 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
985 	 * btf_vmlinux.
986 	 */
987 	kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
988 						tname, BTF_KIND_STRUCT);
989 	if (kern_vtype_id < 0) {
990 		pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
991 			STRUCT_OPS_VALUE_PREFIX, tname);
992 		return kern_vtype_id;
993 	}
994 	kern_vtype = btf__type_by_id(btf, kern_vtype_id);
995 
996 	/* Find "struct tcp_congestion_ops" from
997 	 * struct bpf_struct_ops_tcp_congestion_ops {
998 	 *	[ ... ]
999 	 *	struct tcp_congestion_ops data;
1000 	 * }
1001 	 */
1002 	kern_data_member = btf_members(kern_vtype);
1003 	for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
1004 		if (kern_data_member->type == kern_type_id)
1005 			break;
1006 	}
1007 	if (i == btf_vlen(kern_vtype)) {
1008 		pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
1009 			tname, STRUCT_OPS_VALUE_PREFIX, tname);
1010 		return -EINVAL;
1011 	}
1012 
1013 	*type = kern_type;
1014 	*type_id = kern_type_id;
1015 	*vtype = kern_vtype;
1016 	*vtype_id = kern_vtype_id;
1017 	*data_member = kern_data_member;
1018 
1019 	return 0;
1020 }
1021 
1022 static bool bpf_map__is_struct_ops(const struct bpf_map *map)
1023 {
1024 	return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
1025 }
1026 
1027 static bool is_valid_st_ops_program(struct bpf_object *obj,
1028 				    const struct bpf_program *prog)
1029 {
1030 	int i;
1031 
1032 	for (i = 0; i < obj->nr_programs; i++) {
1033 		if (&obj->programs[i] == prog)
1034 			return prog->type == BPF_PROG_TYPE_STRUCT_OPS;
1035 	}
1036 
1037 	return false;
1038 }
1039 
1040 /* For each struct_ops program P, referenced from some struct_ops map M,
1041  * enable P.autoload if there are Ms for which M.autocreate is true,
1042  * disable P.autoload if for all Ms M.autocreate is false.
1043  * Don't change P.autoload for programs that are not referenced from any maps.
1044  */
1045 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj)
1046 {
1047 	struct bpf_program *prog, *slot_prog;
1048 	struct bpf_map *map;
1049 	int i, j, k, vlen;
1050 
1051 	for (i = 0; i < obj->nr_programs; ++i) {
1052 		int should_load = false;
1053 		int use_cnt = 0;
1054 
1055 		prog = &obj->programs[i];
1056 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS)
1057 			continue;
1058 
1059 		for (j = 0; j < obj->nr_maps; ++j) {
1060 			map = &obj->maps[j];
1061 			if (!bpf_map__is_struct_ops(map))
1062 				continue;
1063 
1064 			vlen = btf_vlen(map->st_ops->type);
1065 			for (k = 0; k < vlen; ++k) {
1066 				slot_prog = map->st_ops->progs[k];
1067 				if (prog != slot_prog)
1068 					continue;
1069 
1070 				use_cnt++;
1071 				if (map->autocreate)
1072 					should_load = true;
1073 			}
1074 		}
1075 		if (use_cnt)
1076 			prog->autoload = should_load;
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 /* Init the map's fields that depend on kern_btf */
1083 static int bpf_map__init_kern_struct_ops(struct bpf_map *map)
1084 {
1085 	const struct btf_member *member, *kern_member, *kern_data_member;
1086 	const struct btf_type *type, *kern_type, *kern_vtype;
1087 	__u32 i, kern_type_id, kern_vtype_id, kern_data_off;
1088 	struct bpf_object *obj = map->obj;
1089 	const struct btf *btf = obj->btf;
1090 	struct bpf_struct_ops *st_ops;
1091 	const struct btf *kern_btf;
1092 	struct module_btf *mod_btf;
1093 	void *data, *kern_data;
1094 	const char *tname;
1095 	int err;
1096 
1097 	st_ops = map->st_ops;
1098 	type = st_ops->type;
1099 	tname = st_ops->tname;
1100 	err = find_struct_ops_kern_types(obj, tname, &mod_btf,
1101 					 &kern_type, &kern_type_id,
1102 					 &kern_vtype, &kern_vtype_id,
1103 					 &kern_data_member);
1104 	if (err)
1105 		return err;
1106 
1107 	kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux;
1108 
1109 	pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1110 		 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1111 
1112 	map->mod_btf_fd = mod_btf ? mod_btf->fd : -1;
1113 	map->def.value_size = kern_vtype->size;
1114 	map->btf_vmlinux_value_type_id = kern_vtype_id;
1115 
1116 	st_ops->kern_vdata = calloc(1, kern_vtype->size);
1117 	if (!st_ops->kern_vdata)
1118 		return -ENOMEM;
1119 
1120 	data = st_ops->data;
1121 	kern_data_off = kern_data_member->offset / 8;
1122 	kern_data = st_ops->kern_vdata + kern_data_off;
1123 
1124 	member = btf_members(type);
1125 	for (i = 0; i < btf_vlen(type); i++, member++) {
1126 		const struct btf_type *mtype, *kern_mtype;
1127 		__u32 mtype_id, kern_mtype_id;
1128 		void *mdata, *kern_mdata;
1129 		__s64 msize, kern_msize;
1130 		__u32 moff, kern_moff;
1131 		__u32 kern_member_idx;
1132 		const char *mname;
1133 
1134 		mname = btf__name_by_offset(btf, member->name_off);
1135 		kern_member = find_member_by_name(kern_btf, kern_type, mname);
1136 		if (!kern_member) {
1137 			pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1138 				map->name, mname);
1139 			return -ENOTSUP;
1140 		}
1141 
1142 		kern_member_idx = kern_member - btf_members(kern_type);
1143 		if (btf_member_bitfield_size(type, i) ||
1144 		    btf_member_bitfield_size(kern_type, kern_member_idx)) {
1145 			pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1146 				map->name, mname);
1147 			return -ENOTSUP;
1148 		}
1149 
1150 		moff = member->offset / 8;
1151 		kern_moff = kern_member->offset / 8;
1152 
1153 		mdata = data + moff;
1154 		kern_mdata = kern_data + kern_moff;
1155 
1156 		mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1157 		kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1158 						    &kern_mtype_id);
1159 		if (BTF_INFO_KIND(mtype->info) !=
1160 		    BTF_INFO_KIND(kern_mtype->info)) {
1161 			pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1162 				map->name, mname, BTF_INFO_KIND(mtype->info),
1163 				BTF_INFO_KIND(kern_mtype->info));
1164 			return -ENOTSUP;
1165 		}
1166 
1167 		if (btf_is_ptr(mtype)) {
1168 			struct bpf_program *prog;
1169 
1170 			/* Update the value from the shadow type */
1171 			prog = *(void **)mdata;
1172 			st_ops->progs[i] = prog;
1173 			if (!prog)
1174 				continue;
1175 			if (!is_valid_st_ops_program(obj, prog)) {
1176 				pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n",
1177 					map->name, mname);
1178 				return -ENOTSUP;
1179 			}
1180 
1181 			kern_mtype = skip_mods_and_typedefs(kern_btf,
1182 							    kern_mtype->type,
1183 							    &kern_mtype_id);
1184 
1185 			/* mtype->type must be a func_proto which was
1186 			 * guaranteed in bpf_object__collect_st_ops_relos(),
1187 			 * so only check kern_mtype for func_proto here.
1188 			 */
1189 			if (!btf_is_func_proto(kern_mtype)) {
1190 				pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1191 					map->name, mname);
1192 				return -ENOTSUP;
1193 			}
1194 
1195 			if (mod_btf)
1196 				prog->attach_btf_obj_fd = mod_btf->fd;
1197 
1198 			/* if we haven't yet processed this BPF program, record proper
1199 			 * attach_btf_id and member_idx
1200 			 */
1201 			if (!prog->attach_btf_id) {
1202 				prog->attach_btf_id = kern_type_id;
1203 				prog->expected_attach_type = kern_member_idx;
1204 			}
1205 
1206 			/* struct_ops BPF prog can be re-used between multiple
1207 			 * .struct_ops & .struct_ops.link as long as it's the
1208 			 * same struct_ops struct definition and the same
1209 			 * function pointer field
1210 			 */
1211 			if (prog->attach_btf_id != kern_type_id) {
1212 				pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n",
1213 					map->name, mname, prog->name, prog->sec_name, prog->type,
1214 					prog->attach_btf_id, kern_type_id);
1215 				return -EINVAL;
1216 			}
1217 			if (prog->expected_attach_type != kern_member_idx) {
1218 				pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n",
1219 					map->name, mname, prog->name, prog->sec_name, prog->type,
1220 					prog->expected_attach_type, kern_member_idx);
1221 				return -EINVAL;
1222 			}
1223 
1224 			st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1225 
1226 			pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1227 				 map->name, mname, prog->name, moff,
1228 				 kern_moff);
1229 
1230 			continue;
1231 		}
1232 
1233 		msize = btf__resolve_size(btf, mtype_id);
1234 		kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1235 		if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1236 			pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1237 				map->name, mname, (ssize_t)msize,
1238 				(ssize_t)kern_msize);
1239 			return -ENOTSUP;
1240 		}
1241 
1242 		pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1243 			 map->name, mname, (unsigned int)msize,
1244 			 moff, kern_moff);
1245 		memcpy(kern_mdata, mdata, msize);
1246 	}
1247 
1248 	return 0;
1249 }
1250 
1251 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1252 {
1253 	struct bpf_map *map;
1254 	size_t i;
1255 	int err;
1256 
1257 	for (i = 0; i < obj->nr_maps; i++) {
1258 		map = &obj->maps[i];
1259 
1260 		if (!bpf_map__is_struct_ops(map))
1261 			continue;
1262 
1263 		if (!map->autocreate)
1264 			continue;
1265 
1266 		err = bpf_map__init_kern_struct_ops(map);
1267 		if (err)
1268 			return err;
1269 	}
1270 
1271 	return 0;
1272 }
1273 
1274 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1275 				int shndx, Elf_Data *data)
1276 {
1277 	const struct btf_type *type, *datasec;
1278 	const struct btf_var_secinfo *vsi;
1279 	struct bpf_struct_ops *st_ops;
1280 	const char *tname, *var_name;
1281 	__s32 type_id, datasec_id;
1282 	const struct btf *btf;
1283 	struct bpf_map *map;
1284 	__u32 i;
1285 
1286 	if (shndx == -1)
1287 		return 0;
1288 
1289 	btf = obj->btf;
1290 	datasec_id = btf__find_by_name_kind(btf, sec_name,
1291 					    BTF_KIND_DATASEC);
1292 	if (datasec_id < 0) {
1293 		pr_warn("struct_ops init: DATASEC %s not found\n",
1294 			sec_name);
1295 		return -EINVAL;
1296 	}
1297 
1298 	datasec = btf__type_by_id(btf, datasec_id);
1299 	vsi = btf_var_secinfos(datasec);
1300 	for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1301 		type = btf__type_by_id(obj->btf, vsi->type);
1302 		var_name = btf__name_by_offset(obj->btf, type->name_off);
1303 
1304 		type_id = btf__resolve_type(obj->btf, vsi->type);
1305 		if (type_id < 0) {
1306 			pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1307 				vsi->type, sec_name);
1308 			return -EINVAL;
1309 		}
1310 
1311 		type = btf__type_by_id(obj->btf, type_id);
1312 		tname = btf__name_by_offset(obj->btf, type->name_off);
1313 		if (!tname[0]) {
1314 			pr_warn("struct_ops init: anonymous type is not supported\n");
1315 			return -ENOTSUP;
1316 		}
1317 		if (!btf_is_struct(type)) {
1318 			pr_warn("struct_ops init: %s is not a struct\n", tname);
1319 			return -EINVAL;
1320 		}
1321 
1322 		map = bpf_object__add_map(obj);
1323 		if (IS_ERR(map))
1324 			return PTR_ERR(map);
1325 
1326 		map->sec_idx = shndx;
1327 		map->sec_offset = vsi->offset;
1328 		map->name = strdup(var_name);
1329 		if (!map->name)
1330 			return -ENOMEM;
1331 		map->btf_value_type_id = type_id;
1332 
1333 		/* Follow same convention as for programs autoload:
1334 		 * SEC("?.struct_ops") means map is not created by default.
1335 		 */
1336 		if (sec_name[0] == '?') {
1337 			map->autocreate = false;
1338 			/* from now on forget there was ? in section name */
1339 			sec_name++;
1340 		}
1341 
1342 		map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1343 		map->def.key_size = sizeof(int);
1344 		map->def.value_size = type->size;
1345 		map->def.max_entries = 1;
1346 		map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0;
1347 
1348 		map->st_ops = calloc(1, sizeof(*map->st_ops));
1349 		if (!map->st_ops)
1350 			return -ENOMEM;
1351 		st_ops = map->st_ops;
1352 		st_ops->data = malloc(type->size);
1353 		st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1354 		st_ops->kern_func_off = malloc(btf_vlen(type) *
1355 					       sizeof(*st_ops->kern_func_off));
1356 		if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1357 			return -ENOMEM;
1358 
1359 		if (vsi->offset + type->size > data->d_size) {
1360 			pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1361 				var_name, sec_name);
1362 			return -EINVAL;
1363 		}
1364 
1365 		memcpy(st_ops->data,
1366 		       data->d_buf + vsi->offset,
1367 		       type->size);
1368 		st_ops->tname = tname;
1369 		st_ops->type = type;
1370 		st_ops->type_id = type_id;
1371 
1372 		pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1373 			 tname, type_id, var_name, vsi->offset);
1374 	}
1375 
1376 	return 0;
1377 }
1378 
1379 static int bpf_object_init_struct_ops(struct bpf_object *obj)
1380 {
1381 	const char *sec_name;
1382 	int sec_idx, err;
1383 
1384 	for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) {
1385 		struct elf_sec_desc *desc = &obj->efile.secs[sec_idx];
1386 
1387 		if (desc->sec_type != SEC_ST_OPS)
1388 			continue;
1389 
1390 		sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1391 		if (!sec_name)
1392 			return -LIBBPF_ERRNO__FORMAT;
1393 
1394 		err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data);
1395 		if (err)
1396 			return err;
1397 	}
1398 
1399 	return 0;
1400 }
1401 
1402 static struct bpf_object *bpf_object__new(const char *path,
1403 					  const void *obj_buf,
1404 					  size_t obj_buf_sz,
1405 					  const char *obj_name)
1406 {
1407 	struct bpf_object *obj;
1408 	char *end;
1409 
1410 	obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1411 	if (!obj) {
1412 		pr_warn("alloc memory failed for %s\n", path);
1413 		return ERR_PTR(-ENOMEM);
1414 	}
1415 
1416 	strcpy(obj->path, path);
1417 	if (obj_name) {
1418 		libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1419 	} else {
1420 		/* Using basename() GNU version which doesn't modify arg. */
1421 		libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1422 		end = strchr(obj->name, '.');
1423 		if (end)
1424 			*end = 0;
1425 	}
1426 
1427 	obj->efile.fd = -1;
1428 	/*
1429 	 * Caller of this function should also call
1430 	 * bpf_object__elf_finish() after data collection to return
1431 	 * obj_buf to user. If not, we should duplicate the buffer to
1432 	 * avoid user freeing them before elf finish.
1433 	 */
1434 	obj->efile.obj_buf = obj_buf;
1435 	obj->efile.obj_buf_sz = obj_buf_sz;
1436 	obj->efile.btf_maps_shndx = -1;
1437 	obj->kconfig_map_idx = -1;
1438 
1439 	obj->kern_version = get_kernel_version();
1440 	obj->loaded = false;
1441 
1442 	return obj;
1443 }
1444 
1445 static void bpf_object__elf_finish(struct bpf_object *obj)
1446 {
1447 	if (!obj->efile.elf)
1448 		return;
1449 
1450 	elf_end(obj->efile.elf);
1451 	obj->efile.elf = NULL;
1452 	obj->efile.symbols = NULL;
1453 	obj->efile.arena_data = NULL;
1454 
1455 	zfree(&obj->efile.secs);
1456 	obj->efile.sec_cnt = 0;
1457 	zclose(obj->efile.fd);
1458 	obj->efile.obj_buf = NULL;
1459 	obj->efile.obj_buf_sz = 0;
1460 }
1461 
1462 static int bpf_object__elf_init(struct bpf_object *obj)
1463 {
1464 	Elf64_Ehdr *ehdr;
1465 	int err = 0;
1466 	Elf *elf;
1467 
1468 	if (obj->efile.elf) {
1469 		pr_warn("elf: init internal error\n");
1470 		return -LIBBPF_ERRNO__LIBELF;
1471 	}
1472 
1473 	if (obj->efile.obj_buf_sz > 0) {
1474 		/* obj_buf should have been validated by bpf_object__open_mem(). */
1475 		elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1476 	} else {
1477 		obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1478 		if (obj->efile.fd < 0) {
1479 			char errmsg[STRERR_BUFSIZE], *cp;
1480 
1481 			err = -errno;
1482 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1483 			pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1484 			return err;
1485 		}
1486 
1487 		elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1488 	}
1489 
1490 	if (!elf) {
1491 		pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1492 		err = -LIBBPF_ERRNO__LIBELF;
1493 		goto errout;
1494 	}
1495 
1496 	obj->efile.elf = elf;
1497 
1498 	if (elf_kind(elf) != ELF_K_ELF) {
1499 		err = -LIBBPF_ERRNO__FORMAT;
1500 		pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1501 		goto errout;
1502 	}
1503 
1504 	if (gelf_getclass(elf) != ELFCLASS64) {
1505 		err = -LIBBPF_ERRNO__FORMAT;
1506 		pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1507 		goto errout;
1508 	}
1509 
1510 	obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1511 	if (!obj->efile.ehdr) {
1512 		pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1513 		err = -LIBBPF_ERRNO__FORMAT;
1514 		goto errout;
1515 	}
1516 
1517 	if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1518 		pr_warn("elf: failed to get section names section index for %s: %s\n",
1519 			obj->path, elf_errmsg(-1));
1520 		err = -LIBBPF_ERRNO__FORMAT;
1521 		goto errout;
1522 	}
1523 
1524 	/* ELF is corrupted/truncated, avoid calling elf_strptr. */
1525 	if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1526 		pr_warn("elf: failed to get section names strings from %s: %s\n",
1527 			obj->path, elf_errmsg(-1));
1528 		err = -LIBBPF_ERRNO__FORMAT;
1529 		goto errout;
1530 	}
1531 
1532 	/* Old LLVM set e_machine to EM_NONE */
1533 	if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1534 		pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1535 		err = -LIBBPF_ERRNO__FORMAT;
1536 		goto errout;
1537 	}
1538 
1539 	return 0;
1540 errout:
1541 	bpf_object__elf_finish(obj);
1542 	return err;
1543 }
1544 
1545 static int bpf_object__check_endianness(struct bpf_object *obj)
1546 {
1547 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1548 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1549 		return 0;
1550 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1551 	if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1552 		return 0;
1553 #else
1554 # error "Unrecognized __BYTE_ORDER__"
1555 #endif
1556 	pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1557 	return -LIBBPF_ERRNO__ENDIAN;
1558 }
1559 
1560 static int
1561 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1562 {
1563 	if (!data) {
1564 		pr_warn("invalid license section in %s\n", obj->path);
1565 		return -LIBBPF_ERRNO__FORMAT;
1566 	}
1567 	/* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1568 	 * go over allowed ELF data section buffer
1569 	 */
1570 	libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1571 	pr_debug("license of %s is %s\n", obj->path, obj->license);
1572 	return 0;
1573 }
1574 
1575 static int
1576 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1577 {
1578 	__u32 kver;
1579 
1580 	if (!data || size != sizeof(kver)) {
1581 		pr_warn("invalid kver section in %s\n", obj->path);
1582 		return -LIBBPF_ERRNO__FORMAT;
1583 	}
1584 	memcpy(&kver, data, sizeof(kver));
1585 	obj->kern_version = kver;
1586 	pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1587 	return 0;
1588 }
1589 
1590 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1591 {
1592 	if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1593 	    type == BPF_MAP_TYPE_HASH_OF_MAPS)
1594 		return true;
1595 	return false;
1596 }
1597 
1598 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1599 {
1600 	Elf_Data *data;
1601 	Elf_Scn *scn;
1602 
1603 	if (!name)
1604 		return -EINVAL;
1605 
1606 	scn = elf_sec_by_name(obj, name);
1607 	data = elf_sec_data(obj, scn);
1608 	if (data) {
1609 		*size = data->d_size;
1610 		return 0; /* found it */
1611 	}
1612 
1613 	return -ENOENT;
1614 }
1615 
1616 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1617 {
1618 	Elf_Data *symbols = obj->efile.symbols;
1619 	const char *sname;
1620 	size_t si;
1621 
1622 	for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1623 		Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1624 
1625 		if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1626 			continue;
1627 
1628 		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1629 		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1630 			continue;
1631 
1632 		sname = elf_sym_str(obj, sym->st_name);
1633 		if (!sname) {
1634 			pr_warn("failed to get sym name string for var %s\n", name);
1635 			return ERR_PTR(-EIO);
1636 		}
1637 		if (strcmp(name, sname) == 0)
1638 			return sym;
1639 	}
1640 
1641 	return ERR_PTR(-ENOENT);
1642 }
1643 
1644 /* Some versions of Android don't provide memfd_create() in their libc
1645  * implementation, so avoid complications and just go straight to Linux
1646  * syscall.
1647  */
1648 static int sys_memfd_create(const char *name, unsigned flags)
1649 {
1650 	return syscall(__NR_memfd_create, name, flags);
1651 }
1652 
1653 static int create_placeholder_fd(void)
1654 {
1655 	int fd;
1656 
1657 	fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC));
1658 	if (fd < 0)
1659 		return -errno;
1660 	return fd;
1661 }
1662 
1663 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1664 {
1665 	struct bpf_map *map;
1666 	int err;
1667 
1668 	err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1669 				sizeof(*obj->maps), obj->nr_maps + 1);
1670 	if (err)
1671 		return ERR_PTR(err);
1672 
1673 	map = &obj->maps[obj->nr_maps++];
1674 	map->obj = obj;
1675 	/* Preallocate map FD without actually creating BPF map just yet.
1676 	 * These map FD "placeholders" will be reused later without changing
1677 	 * FD value when map is actually created in the kernel.
1678 	 *
1679 	 * This is useful to be able to perform BPF program relocations
1680 	 * without having to create BPF maps before that step. This allows us
1681 	 * to finalize and load BTF very late in BPF object's loading phase,
1682 	 * right before BPF maps have to be created and BPF programs have to
1683 	 * be loaded. By having these map FD placeholders we can perform all
1684 	 * the sanitizations, relocations, and any other adjustments before we
1685 	 * start creating actual BPF kernel objects (BTF, maps, progs).
1686 	 */
1687 	map->fd = create_placeholder_fd();
1688 	if (map->fd < 0)
1689 		return ERR_PTR(map->fd);
1690 	map->inner_map_fd = -1;
1691 	map->autocreate = true;
1692 
1693 	return map;
1694 }
1695 
1696 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries)
1697 {
1698 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1699 	size_t map_sz;
1700 
1701 	map_sz = (size_t)roundup(value_sz, 8) * max_entries;
1702 	map_sz = roundup(map_sz, page_sz);
1703 	return map_sz;
1704 }
1705 
1706 static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1707 {
1708 	const long page_sz = sysconf(_SC_PAGE_SIZE);
1709 
1710 	switch (map->def.type) {
1711 	case BPF_MAP_TYPE_ARRAY:
1712 		return array_map_mmap_sz(map->def.value_size, map->def.max_entries);
1713 	case BPF_MAP_TYPE_ARENA:
1714 		return page_sz * map->def.max_entries;
1715 	default:
1716 		return 0; /* not supported */
1717 	}
1718 }
1719 
1720 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz)
1721 {
1722 	void *mmaped;
1723 
1724 	if (!map->mmaped)
1725 		return -EINVAL;
1726 
1727 	if (old_sz == new_sz)
1728 		return 0;
1729 
1730 	mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1731 	if (mmaped == MAP_FAILED)
1732 		return -errno;
1733 
1734 	memcpy(mmaped, map->mmaped, min(old_sz, new_sz));
1735 	munmap(map->mmaped, old_sz);
1736 	map->mmaped = mmaped;
1737 	return 0;
1738 }
1739 
1740 static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1741 {
1742 	char map_name[BPF_OBJ_NAME_LEN], *p;
1743 	int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1744 
1745 	/* This is one of the more confusing parts of libbpf for various
1746 	 * reasons, some of which are historical. The original idea for naming
1747 	 * internal names was to include as much of BPF object name prefix as
1748 	 * possible, so that it can be distinguished from similar internal
1749 	 * maps of a different BPF object.
1750 	 * As an example, let's say we have bpf_object named 'my_object_name'
1751 	 * and internal map corresponding to '.rodata' ELF section. The final
1752 	 * map name advertised to user and to the kernel will be
1753 	 * 'my_objec.rodata', taking first 8 characters of object name and
1754 	 * entire 7 characters of '.rodata'.
1755 	 * Somewhat confusingly, if internal map ELF section name is shorter
1756 	 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1757 	 * for the suffix, even though we only have 4 actual characters, and
1758 	 * resulting map will be called 'my_objec.bss', not even using all 15
1759 	 * characters allowed by the kernel. Oh well, at least the truncated
1760 	 * object name is somewhat consistent in this case. But if the map
1761 	 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1762 	 * (8 chars) and thus will be left with only first 7 characters of the
1763 	 * object name ('my_obje'). Happy guessing, user, that the final map
1764 	 * name will be "my_obje.kconfig".
1765 	 * Now, with libbpf starting to support arbitrarily named .rodata.*
1766 	 * and .data.* data sections, it's possible that ELF section name is
1767 	 * longer than allowed 15 chars, so we now need to be careful to take
1768 	 * only up to 15 first characters of ELF name, taking no BPF object
1769 	 * name characters at all. So '.rodata.abracadabra' will result in
1770 	 * '.rodata.abracad' kernel and user-visible name.
1771 	 * We need to keep this convoluted logic intact for .data, .bss and
1772 	 * .rodata maps, but for new custom .data.custom and .rodata.custom
1773 	 * maps we use their ELF names as is, not prepending bpf_object name
1774 	 * in front. We still need to truncate them to 15 characters for the
1775 	 * kernel. Full name can be recovered for such maps by using DATASEC
1776 	 * BTF type associated with such map's value type, though.
1777 	 */
1778 	if (sfx_len >= BPF_OBJ_NAME_LEN)
1779 		sfx_len = BPF_OBJ_NAME_LEN - 1;
1780 
1781 	/* if there are two or more dots in map name, it's a custom dot map */
1782 	if (strchr(real_name + 1, '.') != NULL)
1783 		pfx_len = 0;
1784 	else
1785 		pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1786 
1787 	snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1788 		 sfx_len, real_name);
1789 
1790 	/* sanitise map name to characters allowed by kernel */
1791 	for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1792 		if (!isalnum(*p) && *p != '_' && *p != '.')
1793 			*p = '_';
1794 
1795 	return strdup(map_name);
1796 }
1797 
1798 static int
1799 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1800 
1801 /* Internal BPF map is mmap()'able only if at least one of corresponding
1802  * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1803  * variable and it's not marked as __hidden (which turns it into, effectively,
1804  * a STATIC variable).
1805  */
1806 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1807 {
1808 	const struct btf_type *t, *vt;
1809 	struct btf_var_secinfo *vsi;
1810 	int i, n;
1811 
1812 	if (!map->btf_value_type_id)
1813 		return false;
1814 
1815 	t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1816 	if (!btf_is_datasec(t))
1817 		return false;
1818 
1819 	vsi = btf_var_secinfos(t);
1820 	for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1821 		vt = btf__type_by_id(obj->btf, vsi->type);
1822 		if (!btf_is_var(vt))
1823 			continue;
1824 
1825 		if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1826 			return true;
1827 	}
1828 
1829 	return false;
1830 }
1831 
1832 static int
1833 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1834 			      const char *real_name, int sec_idx, void *data, size_t data_sz)
1835 {
1836 	struct bpf_map_def *def;
1837 	struct bpf_map *map;
1838 	size_t mmap_sz;
1839 	int err;
1840 
1841 	map = bpf_object__add_map(obj);
1842 	if (IS_ERR(map))
1843 		return PTR_ERR(map);
1844 
1845 	map->libbpf_type = type;
1846 	map->sec_idx = sec_idx;
1847 	map->sec_offset = 0;
1848 	map->real_name = strdup(real_name);
1849 	map->name = internal_map_name(obj, real_name);
1850 	if (!map->real_name || !map->name) {
1851 		zfree(&map->real_name);
1852 		zfree(&map->name);
1853 		return -ENOMEM;
1854 	}
1855 
1856 	def = &map->def;
1857 	def->type = BPF_MAP_TYPE_ARRAY;
1858 	def->key_size = sizeof(int);
1859 	def->value_size = data_sz;
1860 	def->max_entries = 1;
1861 	def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1862 		? BPF_F_RDONLY_PROG : 0;
1863 
1864 	/* failures are fine because of maps like .rodata.str1.1 */
1865 	(void) map_fill_btf_type_info(obj, map);
1866 
1867 	if (map_is_mmapable(obj, map))
1868 		def->map_flags |= BPF_F_MMAPABLE;
1869 
1870 	pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1871 		 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1872 
1873 	mmap_sz = bpf_map_mmap_sz(map);
1874 	map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE,
1875 			   MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1876 	if (map->mmaped == MAP_FAILED) {
1877 		err = -errno;
1878 		map->mmaped = NULL;
1879 		pr_warn("failed to alloc map '%s' content buffer: %d\n",
1880 			map->name, err);
1881 		zfree(&map->real_name);
1882 		zfree(&map->name);
1883 		return err;
1884 	}
1885 
1886 	if (data)
1887 		memcpy(map->mmaped, data, data_sz);
1888 
1889 	pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1890 	return 0;
1891 }
1892 
1893 static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1894 {
1895 	struct elf_sec_desc *sec_desc;
1896 	const char *sec_name;
1897 	int err = 0, sec_idx;
1898 
1899 	/*
1900 	 * Populate obj->maps with libbpf internal maps.
1901 	 */
1902 	for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1903 		sec_desc = &obj->efile.secs[sec_idx];
1904 
1905 		/* Skip recognized sections with size 0. */
1906 		if (!sec_desc->data || sec_desc->data->d_size == 0)
1907 			continue;
1908 
1909 		switch (sec_desc->sec_type) {
1910 		case SEC_DATA:
1911 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1912 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1913 							    sec_name, sec_idx,
1914 							    sec_desc->data->d_buf,
1915 							    sec_desc->data->d_size);
1916 			break;
1917 		case SEC_RODATA:
1918 			obj->has_rodata = true;
1919 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1920 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1921 							    sec_name, sec_idx,
1922 							    sec_desc->data->d_buf,
1923 							    sec_desc->data->d_size);
1924 			break;
1925 		case SEC_BSS:
1926 			sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1927 			err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1928 							    sec_name, sec_idx,
1929 							    NULL,
1930 							    sec_desc->data->d_size);
1931 			break;
1932 		default:
1933 			/* skip */
1934 			break;
1935 		}
1936 		if (err)
1937 			return err;
1938 	}
1939 	return 0;
1940 }
1941 
1942 
1943 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1944 					       const void *name)
1945 {
1946 	int i;
1947 
1948 	for (i = 0; i < obj->nr_extern; i++) {
1949 		if (strcmp(obj->externs[i].name, name) == 0)
1950 			return &obj->externs[i];
1951 	}
1952 	return NULL;
1953 }
1954 
1955 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1956 			      char value)
1957 {
1958 	switch (ext->kcfg.type) {
1959 	case KCFG_BOOL:
1960 		if (value == 'm') {
1961 			pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1962 				ext->name, value);
1963 			return -EINVAL;
1964 		}
1965 		*(bool *)ext_val = value == 'y' ? true : false;
1966 		break;
1967 	case KCFG_TRISTATE:
1968 		if (value == 'y')
1969 			*(enum libbpf_tristate *)ext_val = TRI_YES;
1970 		else if (value == 'm')
1971 			*(enum libbpf_tristate *)ext_val = TRI_MODULE;
1972 		else /* value == 'n' */
1973 			*(enum libbpf_tristate *)ext_val = TRI_NO;
1974 		break;
1975 	case KCFG_CHAR:
1976 		*(char *)ext_val = value;
1977 		break;
1978 	case KCFG_UNKNOWN:
1979 	case KCFG_INT:
1980 	case KCFG_CHAR_ARR:
1981 	default:
1982 		pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1983 			ext->name, value);
1984 		return -EINVAL;
1985 	}
1986 	ext->is_set = true;
1987 	return 0;
1988 }
1989 
1990 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1991 			      const char *value)
1992 {
1993 	size_t len;
1994 
1995 	if (ext->kcfg.type != KCFG_CHAR_ARR) {
1996 		pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1997 			ext->name, value);
1998 		return -EINVAL;
1999 	}
2000 
2001 	len = strlen(value);
2002 	if (value[len - 1] != '"') {
2003 		pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
2004 			ext->name, value);
2005 		return -EINVAL;
2006 	}
2007 
2008 	/* strip quotes */
2009 	len -= 2;
2010 	if (len >= ext->kcfg.sz) {
2011 		pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
2012 			ext->name, value, len, ext->kcfg.sz - 1);
2013 		len = ext->kcfg.sz - 1;
2014 	}
2015 	memcpy(ext_val, value + 1, len);
2016 	ext_val[len] = '\0';
2017 	ext->is_set = true;
2018 	return 0;
2019 }
2020 
2021 static int parse_u64(const char *value, __u64 *res)
2022 {
2023 	char *value_end;
2024 	int err;
2025 
2026 	errno = 0;
2027 	*res = strtoull(value, &value_end, 0);
2028 	if (errno) {
2029 		err = -errno;
2030 		pr_warn("failed to parse '%s' as integer: %d\n", value, err);
2031 		return err;
2032 	}
2033 	if (*value_end) {
2034 		pr_warn("failed to parse '%s' as integer completely\n", value);
2035 		return -EINVAL;
2036 	}
2037 	return 0;
2038 }
2039 
2040 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
2041 {
2042 	int bit_sz = ext->kcfg.sz * 8;
2043 
2044 	if (ext->kcfg.sz == 8)
2045 		return true;
2046 
2047 	/* Validate that value stored in u64 fits in integer of `ext->sz`
2048 	 * bytes size without any loss of information. If the target integer
2049 	 * is signed, we rely on the following limits of integer type of
2050 	 * Y bits and subsequent transformation:
2051 	 *
2052 	 *     -2^(Y-1) <= X           <= 2^(Y-1) - 1
2053 	 *            0 <= X + 2^(Y-1) <= 2^Y - 1
2054 	 *            0 <= X + 2^(Y-1) <  2^Y
2055 	 *
2056 	 *  For unsigned target integer, check that all the (64 - Y) bits are
2057 	 *  zero.
2058 	 */
2059 	if (ext->kcfg.is_signed)
2060 		return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
2061 	else
2062 		return (v >> bit_sz) == 0;
2063 }
2064 
2065 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
2066 			      __u64 value)
2067 {
2068 	if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
2069 	    ext->kcfg.type != KCFG_BOOL) {
2070 		pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
2071 			ext->name, (unsigned long long)value);
2072 		return -EINVAL;
2073 	}
2074 	if (ext->kcfg.type == KCFG_BOOL && value > 1) {
2075 		pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
2076 			ext->name, (unsigned long long)value);
2077 		return -EINVAL;
2078 
2079 	}
2080 	if (!is_kcfg_value_in_range(ext, value)) {
2081 		pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
2082 			ext->name, (unsigned long long)value, ext->kcfg.sz);
2083 		return -ERANGE;
2084 	}
2085 	switch (ext->kcfg.sz) {
2086 	case 1:
2087 		*(__u8 *)ext_val = value;
2088 		break;
2089 	case 2:
2090 		*(__u16 *)ext_val = value;
2091 		break;
2092 	case 4:
2093 		*(__u32 *)ext_val = value;
2094 		break;
2095 	case 8:
2096 		*(__u64 *)ext_val = value;
2097 		break;
2098 	default:
2099 		return -EINVAL;
2100 	}
2101 	ext->is_set = true;
2102 	return 0;
2103 }
2104 
2105 static int bpf_object__process_kconfig_line(struct bpf_object *obj,
2106 					    char *buf, void *data)
2107 {
2108 	struct extern_desc *ext;
2109 	char *sep, *value;
2110 	int len, err = 0;
2111 	void *ext_val;
2112 	__u64 num;
2113 
2114 	if (!str_has_pfx(buf, "CONFIG_"))
2115 		return 0;
2116 
2117 	sep = strchr(buf, '=');
2118 	if (!sep) {
2119 		pr_warn("failed to parse '%s': no separator\n", buf);
2120 		return -EINVAL;
2121 	}
2122 
2123 	/* Trim ending '\n' */
2124 	len = strlen(buf);
2125 	if (buf[len - 1] == '\n')
2126 		buf[len - 1] = '\0';
2127 	/* Split on '=' and ensure that a value is present. */
2128 	*sep = '\0';
2129 	if (!sep[1]) {
2130 		*sep = '=';
2131 		pr_warn("failed to parse '%s': no value\n", buf);
2132 		return -EINVAL;
2133 	}
2134 
2135 	ext = find_extern_by_name(obj, buf);
2136 	if (!ext || ext->is_set)
2137 		return 0;
2138 
2139 	ext_val = data + ext->kcfg.data_off;
2140 	value = sep + 1;
2141 
2142 	switch (*value) {
2143 	case 'y': case 'n': case 'm':
2144 		err = set_kcfg_value_tri(ext, ext_val, *value);
2145 		break;
2146 	case '"':
2147 		err = set_kcfg_value_str(ext, ext_val, value);
2148 		break;
2149 	default:
2150 		/* assume integer */
2151 		err = parse_u64(value, &num);
2152 		if (err) {
2153 			pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
2154 			return err;
2155 		}
2156 		if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
2157 			pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
2158 			return -EINVAL;
2159 		}
2160 		err = set_kcfg_value_num(ext, ext_val, num);
2161 		break;
2162 	}
2163 	if (err)
2164 		return err;
2165 	pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
2166 	return 0;
2167 }
2168 
2169 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
2170 {
2171 	char buf[PATH_MAX];
2172 	struct utsname uts;
2173 	int len, err = 0;
2174 	gzFile file;
2175 
2176 	uname(&uts);
2177 	len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
2178 	if (len < 0)
2179 		return -EINVAL;
2180 	else if (len >= PATH_MAX)
2181 		return -ENAMETOOLONG;
2182 
2183 	/* gzopen also accepts uncompressed files. */
2184 	file = gzopen(buf, "re");
2185 	if (!file)
2186 		file = gzopen("/proc/config.gz", "re");
2187 
2188 	if (!file) {
2189 		pr_warn("failed to open system Kconfig\n");
2190 		return -ENOENT;
2191 	}
2192 
2193 	while (gzgets(file, buf, sizeof(buf))) {
2194 		err = bpf_object__process_kconfig_line(obj, buf, data);
2195 		if (err) {
2196 			pr_warn("error parsing system Kconfig line '%s': %d\n",
2197 				buf, err);
2198 			goto out;
2199 		}
2200 	}
2201 
2202 out:
2203 	gzclose(file);
2204 	return err;
2205 }
2206 
2207 static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
2208 					const char *config, void *data)
2209 {
2210 	char buf[PATH_MAX];
2211 	int err = 0;
2212 	FILE *file;
2213 
2214 	file = fmemopen((void *)config, strlen(config), "r");
2215 	if (!file) {
2216 		err = -errno;
2217 		pr_warn("failed to open in-memory Kconfig: %d\n", err);
2218 		return err;
2219 	}
2220 
2221 	while (fgets(buf, sizeof(buf), file)) {
2222 		err = bpf_object__process_kconfig_line(obj, buf, data);
2223 		if (err) {
2224 			pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
2225 				buf, err);
2226 			break;
2227 		}
2228 	}
2229 
2230 	fclose(file);
2231 	return err;
2232 }
2233 
2234 static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2235 {
2236 	struct extern_desc *last_ext = NULL, *ext;
2237 	size_t map_sz;
2238 	int i, err;
2239 
2240 	for (i = 0; i < obj->nr_extern; i++) {
2241 		ext = &obj->externs[i];
2242 		if (ext->type == EXT_KCFG)
2243 			last_ext = ext;
2244 	}
2245 
2246 	if (!last_ext)
2247 		return 0;
2248 
2249 	map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2250 	err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2251 					    ".kconfig", obj->efile.symbols_shndx,
2252 					    NULL, map_sz);
2253 	if (err)
2254 		return err;
2255 
2256 	obj->kconfig_map_idx = obj->nr_maps - 1;
2257 
2258 	return 0;
2259 }
2260 
2261 const struct btf_type *
2262 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2263 {
2264 	const struct btf_type *t = btf__type_by_id(btf, id);
2265 
2266 	if (res_id)
2267 		*res_id = id;
2268 
2269 	while (btf_is_mod(t) || btf_is_typedef(t)) {
2270 		if (res_id)
2271 			*res_id = t->type;
2272 		t = btf__type_by_id(btf, t->type);
2273 	}
2274 
2275 	return t;
2276 }
2277 
2278 static const struct btf_type *
2279 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2280 {
2281 	const struct btf_type *t;
2282 
2283 	t = skip_mods_and_typedefs(btf, id, NULL);
2284 	if (!btf_is_ptr(t))
2285 		return NULL;
2286 
2287 	t = skip_mods_and_typedefs(btf, t->type, res_id);
2288 
2289 	return btf_is_func_proto(t) ? t : NULL;
2290 }
2291 
2292 static const char *__btf_kind_str(__u16 kind)
2293 {
2294 	switch (kind) {
2295 	case BTF_KIND_UNKN: return "void";
2296 	case BTF_KIND_INT: return "int";
2297 	case BTF_KIND_PTR: return "ptr";
2298 	case BTF_KIND_ARRAY: return "array";
2299 	case BTF_KIND_STRUCT: return "struct";
2300 	case BTF_KIND_UNION: return "union";
2301 	case BTF_KIND_ENUM: return "enum";
2302 	case BTF_KIND_FWD: return "fwd";
2303 	case BTF_KIND_TYPEDEF: return "typedef";
2304 	case BTF_KIND_VOLATILE: return "volatile";
2305 	case BTF_KIND_CONST: return "const";
2306 	case BTF_KIND_RESTRICT: return "restrict";
2307 	case BTF_KIND_FUNC: return "func";
2308 	case BTF_KIND_FUNC_PROTO: return "func_proto";
2309 	case BTF_KIND_VAR: return "var";
2310 	case BTF_KIND_DATASEC: return "datasec";
2311 	case BTF_KIND_FLOAT: return "float";
2312 	case BTF_KIND_DECL_TAG: return "decl_tag";
2313 	case BTF_KIND_TYPE_TAG: return "type_tag";
2314 	case BTF_KIND_ENUM64: return "enum64";
2315 	default: return "unknown";
2316 	}
2317 }
2318 
2319 const char *btf_kind_str(const struct btf_type *t)
2320 {
2321 	return __btf_kind_str(btf_kind(t));
2322 }
2323 
2324 /*
2325  * Fetch integer attribute of BTF map definition. Such attributes are
2326  * represented using a pointer to an array, in which dimensionality of array
2327  * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2328  * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2329  * type definition, while using only sizeof(void *) space in ELF data section.
2330  */
2331 static bool get_map_field_int(const char *map_name, const struct btf *btf,
2332 			      const struct btf_member *m, __u32 *res)
2333 {
2334 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2335 	const char *name = btf__name_by_offset(btf, m->name_off);
2336 	const struct btf_array *arr_info;
2337 	const struct btf_type *arr_t;
2338 
2339 	if (!btf_is_ptr(t)) {
2340 		pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2341 			map_name, name, btf_kind_str(t));
2342 		return false;
2343 	}
2344 
2345 	arr_t = btf__type_by_id(btf, t->type);
2346 	if (!arr_t) {
2347 		pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2348 			map_name, name, t->type);
2349 		return false;
2350 	}
2351 	if (!btf_is_array(arr_t)) {
2352 		pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2353 			map_name, name, btf_kind_str(arr_t));
2354 		return false;
2355 	}
2356 	arr_info = btf_array(arr_t);
2357 	*res = arr_info->nelems;
2358 	return true;
2359 }
2360 
2361 static bool get_map_field_long(const char *map_name, const struct btf *btf,
2362 			       const struct btf_member *m, __u64 *res)
2363 {
2364 	const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2365 	const char *name = btf__name_by_offset(btf, m->name_off);
2366 
2367 	if (btf_is_ptr(t)) {
2368 		__u32 res32;
2369 		bool ret;
2370 
2371 		ret = get_map_field_int(map_name, btf, m, &res32);
2372 		if (ret)
2373 			*res = (__u64)res32;
2374 		return ret;
2375 	}
2376 
2377 	if (!btf_is_enum(t) && !btf_is_enum64(t)) {
2378 		pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n",
2379 			map_name, name, btf_kind_str(t));
2380 		return false;
2381 	}
2382 
2383 	if (btf_vlen(t) != 1) {
2384 		pr_warn("map '%s': attr '%s': invalid __ulong\n",
2385 			map_name, name);
2386 		return false;
2387 	}
2388 
2389 	if (btf_is_enum(t)) {
2390 		const struct btf_enum *e = btf_enum(t);
2391 
2392 		*res = e->val;
2393 	} else {
2394 		const struct btf_enum64 *e = btf_enum64(t);
2395 
2396 		*res = btf_enum64_value(e);
2397 	}
2398 	return true;
2399 }
2400 
2401 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2402 {
2403 	int len;
2404 
2405 	len = snprintf(buf, buf_sz, "%s/%s", path, name);
2406 	if (len < 0)
2407 		return -EINVAL;
2408 	if (len >= buf_sz)
2409 		return -ENAMETOOLONG;
2410 
2411 	return 0;
2412 }
2413 
2414 static int build_map_pin_path(struct bpf_map *map, const char *path)
2415 {
2416 	char buf[PATH_MAX];
2417 	int err;
2418 
2419 	if (!path)
2420 		path = BPF_FS_DEFAULT_PATH;
2421 
2422 	err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2423 	if (err)
2424 		return err;
2425 
2426 	return bpf_map__set_pin_path(map, buf);
2427 }
2428 
2429 /* should match definition in bpf_helpers.h */
2430 enum libbpf_pin_type {
2431 	LIBBPF_PIN_NONE,
2432 	/* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2433 	LIBBPF_PIN_BY_NAME,
2434 };
2435 
2436 int parse_btf_map_def(const char *map_name, struct btf *btf,
2437 		      const struct btf_type *def_t, bool strict,
2438 		      struct btf_map_def *map_def, struct btf_map_def *inner_def)
2439 {
2440 	const struct btf_type *t;
2441 	const struct btf_member *m;
2442 	bool is_inner = inner_def == NULL;
2443 	int vlen, i;
2444 
2445 	vlen = btf_vlen(def_t);
2446 	m = btf_members(def_t);
2447 	for (i = 0; i < vlen; i++, m++) {
2448 		const char *name = btf__name_by_offset(btf, m->name_off);
2449 
2450 		if (!name) {
2451 			pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2452 			return -EINVAL;
2453 		}
2454 		if (strcmp(name, "type") == 0) {
2455 			if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2456 				return -EINVAL;
2457 			map_def->parts |= MAP_DEF_MAP_TYPE;
2458 		} else if (strcmp(name, "max_entries") == 0) {
2459 			if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2460 				return -EINVAL;
2461 			map_def->parts |= MAP_DEF_MAX_ENTRIES;
2462 		} else if (strcmp(name, "map_flags") == 0) {
2463 			if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2464 				return -EINVAL;
2465 			map_def->parts |= MAP_DEF_MAP_FLAGS;
2466 		} else if (strcmp(name, "numa_node") == 0) {
2467 			if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2468 				return -EINVAL;
2469 			map_def->parts |= MAP_DEF_NUMA_NODE;
2470 		} else if (strcmp(name, "key_size") == 0) {
2471 			__u32 sz;
2472 
2473 			if (!get_map_field_int(map_name, btf, m, &sz))
2474 				return -EINVAL;
2475 			if (map_def->key_size && map_def->key_size != sz) {
2476 				pr_warn("map '%s': conflicting key size %u != %u.\n",
2477 					map_name, map_def->key_size, sz);
2478 				return -EINVAL;
2479 			}
2480 			map_def->key_size = sz;
2481 			map_def->parts |= MAP_DEF_KEY_SIZE;
2482 		} else if (strcmp(name, "key") == 0) {
2483 			__s64 sz;
2484 
2485 			t = btf__type_by_id(btf, m->type);
2486 			if (!t) {
2487 				pr_warn("map '%s': key type [%d] not found.\n",
2488 					map_name, m->type);
2489 				return -EINVAL;
2490 			}
2491 			if (!btf_is_ptr(t)) {
2492 				pr_warn("map '%s': key spec is not PTR: %s.\n",
2493 					map_name, btf_kind_str(t));
2494 				return -EINVAL;
2495 			}
2496 			sz = btf__resolve_size(btf, t->type);
2497 			if (sz < 0) {
2498 				pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2499 					map_name, t->type, (ssize_t)sz);
2500 				return sz;
2501 			}
2502 			if (map_def->key_size && map_def->key_size != sz) {
2503 				pr_warn("map '%s': conflicting key size %u != %zd.\n",
2504 					map_name, map_def->key_size, (ssize_t)sz);
2505 				return -EINVAL;
2506 			}
2507 			map_def->key_size = sz;
2508 			map_def->key_type_id = t->type;
2509 			map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2510 		} else if (strcmp(name, "value_size") == 0) {
2511 			__u32 sz;
2512 
2513 			if (!get_map_field_int(map_name, btf, m, &sz))
2514 				return -EINVAL;
2515 			if (map_def->value_size && map_def->value_size != sz) {
2516 				pr_warn("map '%s': conflicting value size %u != %u.\n",
2517 					map_name, map_def->value_size, sz);
2518 				return -EINVAL;
2519 			}
2520 			map_def->value_size = sz;
2521 			map_def->parts |= MAP_DEF_VALUE_SIZE;
2522 		} else if (strcmp(name, "value") == 0) {
2523 			__s64 sz;
2524 
2525 			t = btf__type_by_id(btf, m->type);
2526 			if (!t) {
2527 				pr_warn("map '%s': value type [%d] not found.\n",
2528 					map_name, m->type);
2529 				return -EINVAL;
2530 			}
2531 			if (!btf_is_ptr(t)) {
2532 				pr_warn("map '%s': value spec is not PTR: %s.\n",
2533 					map_name, btf_kind_str(t));
2534 				return -EINVAL;
2535 			}
2536 			sz = btf__resolve_size(btf, t->type);
2537 			if (sz < 0) {
2538 				pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2539 					map_name, t->type, (ssize_t)sz);
2540 				return sz;
2541 			}
2542 			if (map_def->value_size && map_def->value_size != sz) {
2543 				pr_warn("map '%s': conflicting value size %u != %zd.\n",
2544 					map_name, map_def->value_size, (ssize_t)sz);
2545 				return -EINVAL;
2546 			}
2547 			map_def->value_size = sz;
2548 			map_def->value_type_id = t->type;
2549 			map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2550 		}
2551 		else if (strcmp(name, "values") == 0) {
2552 			bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2553 			bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2554 			const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2555 			char inner_map_name[128];
2556 			int err;
2557 
2558 			if (is_inner) {
2559 				pr_warn("map '%s': multi-level inner maps not supported.\n",
2560 					map_name);
2561 				return -ENOTSUP;
2562 			}
2563 			if (i != vlen - 1) {
2564 				pr_warn("map '%s': '%s' member should be last.\n",
2565 					map_name, name);
2566 				return -EINVAL;
2567 			}
2568 			if (!is_map_in_map && !is_prog_array) {
2569 				pr_warn("map '%s': should be map-in-map or prog-array.\n",
2570 					map_name);
2571 				return -ENOTSUP;
2572 			}
2573 			if (map_def->value_size && map_def->value_size != 4) {
2574 				pr_warn("map '%s': conflicting value size %u != 4.\n",
2575 					map_name, map_def->value_size);
2576 				return -EINVAL;
2577 			}
2578 			map_def->value_size = 4;
2579 			t = btf__type_by_id(btf, m->type);
2580 			if (!t) {
2581 				pr_warn("map '%s': %s type [%d] not found.\n",
2582 					map_name, desc, m->type);
2583 				return -EINVAL;
2584 			}
2585 			if (!btf_is_array(t) || btf_array(t)->nelems) {
2586 				pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2587 					map_name, desc);
2588 				return -EINVAL;
2589 			}
2590 			t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2591 			if (!btf_is_ptr(t)) {
2592 				pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2593 					map_name, desc, btf_kind_str(t));
2594 				return -EINVAL;
2595 			}
2596 			t = skip_mods_and_typedefs(btf, t->type, NULL);
2597 			if (is_prog_array) {
2598 				if (!btf_is_func_proto(t)) {
2599 					pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2600 						map_name, btf_kind_str(t));
2601 					return -EINVAL;
2602 				}
2603 				continue;
2604 			}
2605 			if (!btf_is_struct(t)) {
2606 				pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2607 					map_name, btf_kind_str(t));
2608 				return -EINVAL;
2609 			}
2610 
2611 			snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2612 			err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2613 			if (err)
2614 				return err;
2615 
2616 			map_def->parts |= MAP_DEF_INNER_MAP;
2617 		} else if (strcmp(name, "pinning") == 0) {
2618 			__u32 val;
2619 
2620 			if (is_inner) {
2621 				pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2622 				return -EINVAL;
2623 			}
2624 			if (!get_map_field_int(map_name, btf, m, &val))
2625 				return -EINVAL;
2626 			if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2627 				pr_warn("map '%s': invalid pinning value %u.\n",
2628 					map_name, val);
2629 				return -EINVAL;
2630 			}
2631 			map_def->pinning = val;
2632 			map_def->parts |= MAP_DEF_PINNING;
2633 		} else if (strcmp(name, "map_extra") == 0) {
2634 			__u64 map_extra;
2635 
2636 			if (!get_map_field_long(map_name, btf, m, &map_extra))
2637 				return -EINVAL;
2638 			map_def->map_extra = map_extra;
2639 			map_def->parts |= MAP_DEF_MAP_EXTRA;
2640 		} else {
2641 			if (strict) {
2642 				pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2643 				return -ENOTSUP;
2644 			}
2645 			pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2646 		}
2647 	}
2648 
2649 	if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2650 		pr_warn("map '%s': map type isn't specified.\n", map_name);
2651 		return -EINVAL;
2652 	}
2653 
2654 	return 0;
2655 }
2656 
2657 static size_t adjust_ringbuf_sz(size_t sz)
2658 {
2659 	__u32 page_sz = sysconf(_SC_PAGE_SIZE);
2660 	__u32 mul;
2661 
2662 	/* if user forgot to set any size, make sure they see error */
2663 	if (sz == 0)
2664 		return 0;
2665 	/* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2666 	 * a power-of-2 multiple of kernel's page size. If user diligently
2667 	 * satisified these conditions, pass the size through.
2668 	 */
2669 	if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2670 		return sz;
2671 
2672 	/* Otherwise find closest (page_sz * power_of_2) product bigger than
2673 	 * user-set size to satisfy both user size request and kernel
2674 	 * requirements and substitute correct max_entries for map creation.
2675 	 */
2676 	for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2677 		if (mul * page_sz > sz)
2678 			return mul * page_sz;
2679 	}
2680 
2681 	/* if it's impossible to satisfy the conditions (i.e., user size is
2682 	 * very close to UINT_MAX but is not a power-of-2 multiple of
2683 	 * page_size) then just return original size and let kernel reject it
2684 	 */
2685 	return sz;
2686 }
2687 
2688 static bool map_is_ringbuf(const struct bpf_map *map)
2689 {
2690 	return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2691 	       map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2692 }
2693 
2694 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2695 {
2696 	map->def.type = def->map_type;
2697 	map->def.key_size = def->key_size;
2698 	map->def.value_size = def->value_size;
2699 	map->def.max_entries = def->max_entries;
2700 	map->def.map_flags = def->map_flags;
2701 	map->map_extra = def->map_extra;
2702 
2703 	map->numa_node = def->numa_node;
2704 	map->btf_key_type_id = def->key_type_id;
2705 	map->btf_value_type_id = def->value_type_id;
2706 
2707 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2708 	if (map_is_ringbuf(map))
2709 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2710 
2711 	if (def->parts & MAP_DEF_MAP_TYPE)
2712 		pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2713 
2714 	if (def->parts & MAP_DEF_KEY_TYPE)
2715 		pr_debug("map '%s': found key [%u], sz = %u.\n",
2716 			 map->name, def->key_type_id, def->key_size);
2717 	else if (def->parts & MAP_DEF_KEY_SIZE)
2718 		pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2719 
2720 	if (def->parts & MAP_DEF_VALUE_TYPE)
2721 		pr_debug("map '%s': found value [%u], sz = %u.\n",
2722 			 map->name, def->value_type_id, def->value_size);
2723 	else if (def->parts & MAP_DEF_VALUE_SIZE)
2724 		pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2725 
2726 	if (def->parts & MAP_DEF_MAX_ENTRIES)
2727 		pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2728 	if (def->parts & MAP_DEF_MAP_FLAGS)
2729 		pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2730 	if (def->parts & MAP_DEF_MAP_EXTRA)
2731 		pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2732 			 (unsigned long long)def->map_extra);
2733 	if (def->parts & MAP_DEF_PINNING)
2734 		pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2735 	if (def->parts & MAP_DEF_NUMA_NODE)
2736 		pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2737 
2738 	if (def->parts & MAP_DEF_INNER_MAP)
2739 		pr_debug("map '%s': found inner map definition.\n", map->name);
2740 }
2741 
2742 static const char *btf_var_linkage_str(__u32 linkage)
2743 {
2744 	switch (linkage) {
2745 	case BTF_VAR_STATIC: return "static";
2746 	case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2747 	case BTF_VAR_GLOBAL_EXTERN: return "extern";
2748 	default: return "unknown";
2749 	}
2750 }
2751 
2752 static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2753 					 const struct btf_type *sec,
2754 					 int var_idx, int sec_idx,
2755 					 const Elf_Data *data, bool strict,
2756 					 const char *pin_root_path)
2757 {
2758 	struct btf_map_def map_def = {}, inner_def = {};
2759 	const struct btf_type *var, *def;
2760 	const struct btf_var_secinfo *vi;
2761 	const struct btf_var *var_extra;
2762 	const char *map_name;
2763 	struct bpf_map *map;
2764 	int err;
2765 
2766 	vi = btf_var_secinfos(sec) + var_idx;
2767 	var = btf__type_by_id(obj->btf, vi->type);
2768 	var_extra = btf_var(var);
2769 	map_name = btf__name_by_offset(obj->btf, var->name_off);
2770 
2771 	if (map_name == NULL || map_name[0] == '\0') {
2772 		pr_warn("map #%d: empty name.\n", var_idx);
2773 		return -EINVAL;
2774 	}
2775 	if ((__u64)vi->offset + vi->size > data->d_size) {
2776 		pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2777 		return -EINVAL;
2778 	}
2779 	if (!btf_is_var(var)) {
2780 		pr_warn("map '%s': unexpected var kind %s.\n",
2781 			map_name, btf_kind_str(var));
2782 		return -EINVAL;
2783 	}
2784 	if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2785 		pr_warn("map '%s': unsupported map linkage %s.\n",
2786 			map_name, btf_var_linkage_str(var_extra->linkage));
2787 		return -EOPNOTSUPP;
2788 	}
2789 
2790 	def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2791 	if (!btf_is_struct(def)) {
2792 		pr_warn("map '%s': unexpected def kind %s.\n",
2793 			map_name, btf_kind_str(var));
2794 		return -EINVAL;
2795 	}
2796 	if (def->size > vi->size) {
2797 		pr_warn("map '%s': invalid def size.\n", map_name);
2798 		return -EINVAL;
2799 	}
2800 
2801 	map = bpf_object__add_map(obj);
2802 	if (IS_ERR(map))
2803 		return PTR_ERR(map);
2804 	map->name = strdup(map_name);
2805 	if (!map->name) {
2806 		pr_warn("map '%s': failed to alloc map name.\n", map_name);
2807 		return -ENOMEM;
2808 	}
2809 	map->libbpf_type = LIBBPF_MAP_UNSPEC;
2810 	map->def.type = BPF_MAP_TYPE_UNSPEC;
2811 	map->sec_idx = sec_idx;
2812 	map->sec_offset = vi->offset;
2813 	map->btf_var_idx = var_idx;
2814 	pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2815 		 map_name, map->sec_idx, map->sec_offset);
2816 
2817 	err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2818 	if (err)
2819 		return err;
2820 
2821 	fill_map_from_def(map, &map_def);
2822 
2823 	if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2824 		err = build_map_pin_path(map, pin_root_path);
2825 		if (err) {
2826 			pr_warn("map '%s': couldn't build pin path.\n", map->name);
2827 			return err;
2828 		}
2829 	}
2830 
2831 	if (map_def.parts & MAP_DEF_INNER_MAP) {
2832 		map->inner_map = calloc(1, sizeof(*map->inner_map));
2833 		if (!map->inner_map)
2834 			return -ENOMEM;
2835 		map->inner_map->fd = create_placeholder_fd();
2836 		if (map->inner_map->fd < 0)
2837 			return map->inner_map->fd;
2838 		map->inner_map->sec_idx = sec_idx;
2839 		map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2840 		if (!map->inner_map->name)
2841 			return -ENOMEM;
2842 		sprintf(map->inner_map->name, "%s.inner", map_name);
2843 
2844 		fill_map_from_def(map->inner_map, &inner_def);
2845 	}
2846 
2847 	err = map_fill_btf_type_info(obj, map);
2848 	if (err)
2849 		return err;
2850 
2851 	return 0;
2852 }
2853 
2854 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map,
2855 			       const char *sec_name, int sec_idx,
2856 			       void *data, size_t data_sz)
2857 {
2858 	const long page_sz = sysconf(_SC_PAGE_SIZE);
2859 	size_t mmap_sz;
2860 
2861 	mmap_sz = bpf_map_mmap_sz(obj->arena_map);
2862 	if (roundup(data_sz, page_sz) > mmap_sz) {
2863 		pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n",
2864 			sec_name, mmap_sz, data_sz);
2865 		return -E2BIG;
2866 	}
2867 
2868 	obj->arena_data = malloc(data_sz);
2869 	if (!obj->arena_data)
2870 		return -ENOMEM;
2871 	memcpy(obj->arena_data, data, data_sz);
2872 	obj->arena_data_sz = data_sz;
2873 
2874 	/* make bpf_map__init_value() work for ARENA maps */
2875 	map->mmaped = obj->arena_data;
2876 
2877 	return 0;
2878 }
2879 
2880 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2881 					  const char *pin_root_path)
2882 {
2883 	const struct btf_type *sec = NULL;
2884 	int nr_types, i, vlen, err;
2885 	const struct btf_type *t;
2886 	const char *name;
2887 	Elf_Data *data;
2888 	Elf_Scn *scn;
2889 
2890 	if (obj->efile.btf_maps_shndx < 0)
2891 		return 0;
2892 
2893 	scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2894 	data = elf_sec_data(obj, scn);
2895 	if (!scn || !data) {
2896 		pr_warn("elf: failed to get %s map definitions for %s\n",
2897 			MAPS_ELF_SEC, obj->path);
2898 		return -EINVAL;
2899 	}
2900 
2901 	nr_types = btf__type_cnt(obj->btf);
2902 	for (i = 1; i < nr_types; i++) {
2903 		t = btf__type_by_id(obj->btf, i);
2904 		if (!btf_is_datasec(t))
2905 			continue;
2906 		name = btf__name_by_offset(obj->btf, t->name_off);
2907 		if (strcmp(name, MAPS_ELF_SEC) == 0) {
2908 			sec = t;
2909 			obj->efile.btf_maps_sec_btf_id = i;
2910 			break;
2911 		}
2912 	}
2913 
2914 	if (!sec) {
2915 		pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2916 		return -ENOENT;
2917 	}
2918 
2919 	vlen = btf_vlen(sec);
2920 	for (i = 0; i < vlen; i++) {
2921 		err = bpf_object__init_user_btf_map(obj, sec, i,
2922 						    obj->efile.btf_maps_shndx,
2923 						    data, strict,
2924 						    pin_root_path);
2925 		if (err)
2926 			return err;
2927 	}
2928 
2929 	for (i = 0; i < obj->nr_maps; i++) {
2930 		struct bpf_map *map = &obj->maps[i];
2931 
2932 		if (map->def.type != BPF_MAP_TYPE_ARENA)
2933 			continue;
2934 
2935 		if (obj->arena_map) {
2936 			pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n",
2937 				map->name, obj->arena_map->name);
2938 			return -EINVAL;
2939 		}
2940 		obj->arena_map = map;
2941 
2942 		if (obj->efile.arena_data) {
2943 			err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx,
2944 						  obj->efile.arena_data->d_buf,
2945 						  obj->efile.arena_data->d_size);
2946 			if (err)
2947 				return err;
2948 		}
2949 	}
2950 	if (obj->efile.arena_data && !obj->arena_map) {
2951 		pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n",
2952 			ARENA_SEC);
2953 		return -ENOENT;
2954 	}
2955 
2956 	return 0;
2957 }
2958 
2959 static int bpf_object__init_maps(struct bpf_object *obj,
2960 				 const struct bpf_object_open_opts *opts)
2961 {
2962 	const char *pin_root_path;
2963 	bool strict;
2964 	int err = 0;
2965 
2966 	strict = !OPTS_GET(opts, relaxed_maps, false);
2967 	pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2968 
2969 	err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2970 	err = err ?: bpf_object__init_global_data_maps(obj);
2971 	err = err ?: bpf_object__init_kconfig_map(obj);
2972 	err = err ?: bpf_object_init_struct_ops(obj);
2973 
2974 	return err;
2975 }
2976 
2977 static bool section_have_execinstr(struct bpf_object *obj, int idx)
2978 {
2979 	Elf64_Shdr *sh;
2980 
2981 	sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2982 	if (!sh)
2983 		return false;
2984 
2985 	return sh->sh_flags & SHF_EXECINSTR;
2986 }
2987 
2988 static bool starts_with_qmark(const char *s)
2989 {
2990 	return s && s[0] == '?';
2991 }
2992 
2993 static bool btf_needs_sanitization(struct bpf_object *obj)
2994 {
2995 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2996 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2997 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2998 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2999 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3000 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3001 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3002 	bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3003 
3004 	return !has_func || !has_datasec || !has_func_global || !has_float ||
3005 	       !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec;
3006 }
3007 
3008 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
3009 {
3010 	bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
3011 	bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
3012 	bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
3013 	bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
3014 	bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
3015 	bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
3016 	bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
3017 	bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC);
3018 	int enum64_placeholder_id = 0;
3019 	struct btf_type *t;
3020 	int i, j, vlen;
3021 
3022 	for (i = 1; i < btf__type_cnt(btf); i++) {
3023 		t = (struct btf_type *)btf__type_by_id(btf, i);
3024 
3025 		if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
3026 			/* replace VAR/DECL_TAG with INT */
3027 			t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
3028 			/*
3029 			 * using size = 1 is the safest choice, 4 will be too
3030 			 * big and cause kernel BTF validation failure if
3031 			 * original variable took less than 4 bytes
3032 			 */
3033 			t->size = 1;
3034 			*(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
3035 		} else if (!has_datasec && btf_is_datasec(t)) {
3036 			/* replace DATASEC with STRUCT */
3037 			const struct btf_var_secinfo *v = btf_var_secinfos(t);
3038 			struct btf_member *m = btf_members(t);
3039 			struct btf_type *vt;
3040 			char *name;
3041 
3042 			name = (char *)btf__name_by_offset(btf, t->name_off);
3043 			while (*name) {
3044 				if (*name == '.' || *name == '?')
3045 					*name = '_';
3046 				name++;
3047 			}
3048 
3049 			vlen = btf_vlen(t);
3050 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
3051 			for (j = 0; j < vlen; j++, v++, m++) {
3052 				/* order of field assignments is important */
3053 				m->offset = v->offset * 8;
3054 				m->type = v->type;
3055 				/* preserve variable name as member name */
3056 				vt = (void *)btf__type_by_id(btf, v->type);
3057 				m->name_off = vt->name_off;
3058 			}
3059 		} else if (!has_qmark_datasec && btf_is_datasec(t) &&
3060 			   starts_with_qmark(btf__name_by_offset(btf, t->name_off))) {
3061 			/* replace '?' prefix with '_' for DATASEC names */
3062 			char *name;
3063 
3064 			name = (char *)btf__name_by_offset(btf, t->name_off);
3065 			if (name[0] == '?')
3066 				name[0] = '_';
3067 		} else if (!has_func && btf_is_func_proto(t)) {
3068 			/* replace FUNC_PROTO with ENUM */
3069 			vlen = btf_vlen(t);
3070 			t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
3071 			t->size = sizeof(__u32); /* kernel enforced */
3072 		} else if (!has_func && btf_is_func(t)) {
3073 			/* replace FUNC with TYPEDEF */
3074 			t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
3075 		} else if (!has_func_global && btf_is_func(t)) {
3076 			/* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
3077 			t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
3078 		} else if (!has_float && btf_is_float(t)) {
3079 			/* replace FLOAT with an equally-sized empty STRUCT;
3080 			 * since C compilers do not accept e.g. "float" as a
3081 			 * valid struct name, make it anonymous
3082 			 */
3083 			t->name_off = 0;
3084 			t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
3085 		} else if (!has_type_tag && btf_is_type_tag(t)) {
3086 			/* replace TYPE_TAG with a CONST */
3087 			t->name_off = 0;
3088 			t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
3089 		} else if (!has_enum64 && btf_is_enum(t)) {
3090 			/* clear the kflag */
3091 			t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
3092 		} else if (!has_enum64 && btf_is_enum64(t)) {
3093 			/* replace ENUM64 with a union */
3094 			struct btf_member *m;
3095 
3096 			if (enum64_placeholder_id == 0) {
3097 				enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
3098 				if (enum64_placeholder_id < 0)
3099 					return enum64_placeholder_id;
3100 
3101 				t = (struct btf_type *)btf__type_by_id(btf, i);
3102 			}
3103 
3104 			m = btf_members(t);
3105 			vlen = btf_vlen(t);
3106 			t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
3107 			for (j = 0; j < vlen; j++, m++) {
3108 				m->type = enum64_placeholder_id;
3109 				m->offset = 0;
3110 			}
3111 		}
3112 	}
3113 
3114 	return 0;
3115 }
3116 
3117 static bool libbpf_needs_btf(const struct bpf_object *obj)
3118 {
3119 	return obj->efile.btf_maps_shndx >= 0 ||
3120 	       obj->efile.has_st_ops ||
3121 	       obj->nr_extern > 0;
3122 }
3123 
3124 static bool kernel_needs_btf(const struct bpf_object *obj)
3125 {
3126 	return obj->efile.has_st_ops;
3127 }
3128 
3129 static int bpf_object__init_btf(struct bpf_object *obj,
3130 				Elf_Data *btf_data,
3131 				Elf_Data *btf_ext_data)
3132 {
3133 	int err = -ENOENT;
3134 
3135 	if (btf_data) {
3136 		obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
3137 		err = libbpf_get_error(obj->btf);
3138 		if (err) {
3139 			obj->btf = NULL;
3140 			pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
3141 			goto out;
3142 		}
3143 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3144 		btf__set_pointer_size(obj->btf, 8);
3145 	}
3146 	if (btf_ext_data) {
3147 		struct btf_ext_info *ext_segs[3];
3148 		int seg_num, sec_num;
3149 
3150 		if (!obj->btf) {
3151 			pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
3152 				 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
3153 			goto out;
3154 		}
3155 		obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
3156 		err = libbpf_get_error(obj->btf_ext);
3157 		if (err) {
3158 			pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
3159 				BTF_EXT_ELF_SEC, err);
3160 			obj->btf_ext = NULL;
3161 			goto out;
3162 		}
3163 
3164 		/* setup .BTF.ext to ELF section mapping */
3165 		ext_segs[0] = &obj->btf_ext->func_info;
3166 		ext_segs[1] = &obj->btf_ext->line_info;
3167 		ext_segs[2] = &obj->btf_ext->core_relo_info;
3168 		for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
3169 			struct btf_ext_info *seg = ext_segs[seg_num];
3170 			const struct btf_ext_info_sec *sec;
3171 			const char *sec_name;
3172 			Elf_Scn *scn;
3173 
3174 			if (seg->sec_cnt == 0)
3175 				continue;
3176 
3177 			seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
3178 			if (!seg->sec_idxs) {
3179 				err = -ENOMEM;
3180 				goto out;
3181 			}
3182 
3183 			sec_num = 0;
3184 			for_each_btf_ext_sec(seg, sec) {
3185 				/* preventively increment index to avoid doing
3186 				 * this before every continue below
3187 				 */
3188 				sec_num++;
3189 
3190 				sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
3191 				if (str_is_empty(sec_name))
3192 					continue;
3193 				scn = elf_sec_by_name(obj, sec_name);
3194 				if (!scn)
3195 					continue;
3196 
3197 				seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
3198 			}
3199 		}
3200 	}
3201 out:
3202 	if (err && libbpf_needs_btf(obj)) {
3203 		pr_warn("BTF is required, but is missing or corrupted.\n");
3204 		return err;
3205 	}
3206 	return 0;
3207 }
3208 
3209 static int compare_vsi_off(const void *_a, const void *_b)
3210 {
3211 	const struct btf_var_secinfo *a = _a;
3212 	const struct btf_var_secinfo *b = _b;
3213 
3214 	return a->offset - b->offset;
3215 }
3216 
3217 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
3218 			     struct btf_type *t)
3219 {
3220 	__u32 size = 0, i, vars = btf_vlen(t);
3221 	const char *sec_name = btf__name_by_offset(btf, t->name_off);
3222 	struct btf_var_secinfo *vsi;
3223 	bool fixup_offsets = false;
3224 	int err;
3225 
3226 	if (!sec_name) {
3227 		pr_debug("No name found in string section for DATASEC kind.\n");
3228 		return -ENOENT;
3229 	}
3230 
3231 	/* Extern-backing datasecs (.ksyms, .kconfig) have their size and
3232 	 * variable offsets set at the previous step. Further, not every
3233 	 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
3234 	 * all fixups altogether for such sections and go straight to sorting
3235 	 * VARs within their DATASEC.
3236 	 */
3237 	if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
3238 		goto sort_vars;
3239 
3240 	/* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
3241 	 * fix this up. But BPF static linker already fixes this up and fills
3242 	 * all the sizes and offsets during static linking. So this step has
3243 	 * to be optional. But the STV_HIDDEN handling is non-optional for any
3244 	 * non-extern DATASEC, so the variable fixup loop below handles both
3245 	 * functions at the same time, paying the cost of BTF VAR <-> ELF
3246 	 * symbol matching just once.
3247 	 */
3248 	if (t->size == 0) {
3249 		err = find_elf_sec_sz(obj, sec_name, &size);
3250 		if (err || !size) {
3251 			pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
3252 				 sec_name, size, err);
3253 			return -ENOENT;
3254 		}
3255 
3256 		t->size = size;
3257 		fixup_offsets = true;
3258 	}
3259 
3260 	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
3261 		const struct btf_type *t_var;
3262 		struct btf_var *var;
3263 		const char *var_name;
3264 		Elf64_Sym *sym;
3265 
3266 		t_var = btf__type_by_id(btf, vsi->type);
3267 		if (!t_var || !btf_is_var(t_var)) {
3268 			pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
3269 			return -EINVAL;
3270 		}
3271 
3272 		var = btf_var(t_var);
3273 		if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
3274 			continue;
3275 
3276 		var_name = btf__name_by_offset(btf, t_var->name_off);
3277 		if (!var_name) {
3278 			pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
3279 				 sec_name, i);
3280 			return -ENOENT;
3281 		}
3282 
3283 		sym = find_elf_var_sym(obj, var_name);
3284 		if (IS_ERR(sym)) {
3285 			pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
3286 				 sec_name, var_name);
3287 			return -ENOENT;
3288 		}
3289 
3290 		if (fixup_offsets)
3291 			vsi->offset = sym->st_value;
3292 
3293 		/* if variable is a global/weak symbol, but has restricted
3294 		 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
3295 		 * as static. This follows similar logic for functions (BPF
3296 		 * subprogs) and influences libbpf's further decisions about
3297 		 * whether to make global data BPF array maps as
3298 		 * BPF_F_MMAPABLE.
3299 		 */
3300 		if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
3301 		    || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
3302 			var->linkage = BTF_VAR_STATIC;
3303 	}
3304 
3305 sort_vars:
3306 	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
3307 	return 0;
3308 }
3309 
3310 static int bpf_object_fixup_btf(struct bpf_object *obj)
3311 {
3312 	int i, n, err = 0;
3313 
3314 	if (!obj->btf)
3315 		return 0;
3316 
3317 	n = btf__type_cnt(obj->btf);
3318 	for (i = 1; i < n; i++) {
3319 		struct btf_type *t = btf_type_by_id(obj->btf, i);
3320 
3321 		/* Loader needs to fix up some of the things compiler
3322 		 * couldn't get its hands on while emitting BTF. This
3323 		 * is section size and global variable offset. We use
3324 		 * the info from the ELF itself for this purpose.
3325 		 */
3326 		if (btf_is_datasec(t)) {
3327 			err = btf_fixup_datasec(obj, obj->btf, t);
3328 			if (err)
3329 				return err;
3330 		}
3331 	}
3332 
3333 	return 0;
3334 }
3335 
3336 static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
3337 {
3338 	if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3339 	    prog->type == BPF_PROG_TYPE_LSM)
3340 		return true;
3341 
3342 	/* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3343 	 * also need vmlinux BTF
3344 	 */
3345 	if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3346 		return true;
3347 
3348 	return false;
3349 }
3350 
3351 static bool map_needs_vmlinux_btf(struct bpf_map *map)
3352 {
3353 	return bpf_map__is_struct_ops(map);
3354 }
3355 
3356 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3357 {
3358 	struct bpf_program *prog;
3359 	struct bpf_map *map;
3360 	int i;
3361 
3362 	/* CO-RE relocations need kernel BTF, only when btf_custom_path
3363 	 * is not specified
3364 	 */
3365 	if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3366 		return true;
3367 
3368 	/* Support for typed ksyms needs kernel BTF */
3369 	for (i = 0; i < obj->nr_extern; i++) {
3370 		const struct extern_desc *ext;
3371 
3372 		ext = &obj->externs[i];
3373 		if (ext->type == EXT_KSYM && ext->ksym.type_id)
3374 			return true;
3375 	}
3376 
3377 	bpf_object__for_each_program(prog, obj) {
3378 		if (!prog->autoload)
3379 			continue;
3380 		if (prog_needs_vmlinux_btf(prog))
3381 			return true;
3382 	}
3383 
3384 	bpf_object__for_each_map(map, obj) {
3385 		if (map_needs_vmlinux_btf(map))
3386 			return true;
3387 	}
3388 
3389 	return false;
3390 }
3391 
3392 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3393 {
3394 	int err;
3395 
3396 	/* btf_vmlinux could be loaded earlier */
3397 	if (obj->btf_vmlinux || obj->gen_loader)
3398 		return 0;
3399 
3400 	if (!force && !obj_needs_vmlinux_btf(obj))
3401 		return 0;
3402 
3403 	obj->btf_vmlinux = btf__load_vmlinux_btf();
3404 	err = libbpf_get_error(obj->btf_vmlinux);
3405 	if (err) {
3406 		pr_warn("Error loading vmlinux BTF: %d\n", err);
3407 		obj->btf_vmlinux = NULL;
3408 		return err;
3409 	}
3410 	return 0;
3411 }
3412 
3413 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3414 {
3415 	struct btf *kern_btf = obj->btf;
3416 	bool btf_mandatory, sanitize;
3417 	int i, err = 0;
3418 
3419 	if (!obj->btf)
3420 		return 0;
3421 
3422 	if (!kernel_supports(obj, FEAT_BTF)) {
3423 		if (kernel_needs_btf(obj)) {
3424 			err = -EOPNOTSUPP;
3425 			goto report;
3426 		}
3427 		pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3428 		return 0;
3429 	}
3430 
3431 	/* Even though some subprogs are global/weak, user might prefer more
3432 	 * permissive BPF verification process that BPF verifier performs for
3433 	 * static functions, taking into account more context from the caller
3434 	 * functions. In such case, they need to mark such subprogs with
3435 	 * __attribute__((visibility("hidden"))) and libbpf will adjust
3436 	 * corresponding FUNC BTF type to be marked as static and trigger more
3437 	 * involved BPF verification process.
3438 	 */
3439 	for (i = 0; i < obj->nr_programs; i++) {
3440 		struct bpf_program *prog = &obj->programs[i];
3441 		struct btf_type *t;
3442 		const char *name;
3443 		int j, n;
3444 
3445 		if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3446 			continue;
3447 
3448 		n = btf__type_cnt(obj->btf);
3449 		for (j = 1; j < n; j++) {
3450 			t = btf_type_by_id(obj->btf, j);
3451 			if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3452 				continue;
3453 
3454 			name = btf__str_by_offset(obj->btf, t->name_off);
3455 			if (strcmp(name, prog->name) != 0)
3456 				continue;
3457 
3458 			t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3459 			break;
3460 		}
3461 	}
3462 
3463 	sanitize = btf_needs_sanitization(obj);
3464 	if (sanitize) {
3465 		const void *raw_data;
3466 		__u32 sz;
3467 
3468 		/* clone BTF to sanitize a copy and leave the original intact */
3469 		raw_data = btf__raw_data(obj->btf, &sz);
3470 		kern_btf = btf__new(raw_data, sz);
3471 		err = libbpf_get_error(kern_btf);
3472 		if (err)
3473 			return err;
3474 
3475 		/* enforce 8-byte pointers for BPF-targeted BTFs */
3476 		btf__set_pointer_size(obj->btf, 8);
3477 		err = bpf_object__sanitize_btf(obj, kern_btf);
3478 		if (err)
3479 			return err;
3480 	}
3481 
3482 	if (obj->gen_loader) {
3483 		__u32 raw_size = 0;
3484 		const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3485 
3486 		if (!raw_data)
3487 			return -ENOMEM;
3488 		bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3489 		/* Pretend to have valid FD to pass various fd >= 0 checks.
3490 		 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3491 		 */
3492 		btf__set_fd(kern_btf, 0);
3493 	} else {
3494 		/* currently BPF_BTF_LOAD only supports log_level 1 */
3495 		err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3496 					   obj->log_level ? 1 : 0, obj->token_fd);
3497 	}
3498 	if (sanitize) {
3499 		if (!err) {
3500 			/* move fd to libbpf's BTF */
3501 			btf__set_fd(obj->btf, btf__fd(kern_btf));
3502 			btf__set_fd(kern_btf, -1);
3503 		}
3504 		btf__free(kern_btf);
3505 	}
3506 report:
3507 	if (err) {
3508 		btf_mandatory = kernel_needs_btf(obj);
3509 		pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3510 			btf_mandatory ? "BTF is mandatory, can't proceed."
3511 				      : "BTF is optional, ignoring.");
3512 		if (!btf_mandatory)
3513 			err = 0;
3514 	}
3515 	return err;
3516 }
3517 
3518 static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3519 {
3520 	const char *name;
3521 
3522 	name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3523 	if (!name) {
3524 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3525 			off, obj->path, elf_errmsg(-1));
3526 		return NULL;
3527 	}
3528 
3529 	return name;
3530 }
3531 
3532 static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3533 {
3534 	const char *name;
3535 
3536 	name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3537 	if (!name) {
3538 		pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3539 			off, obj->path, elf_errmsg(-1));
3540 		return NULL;
3541 	}
3542 
3543 	return name;
3544 }
3545 
3546 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3547 {
3548 	Elf_Scn *scn;
3549 
3550 	scn = elf_getscn(obj->efile.elf, idx);
3551 	if (!scn) {
3552 		pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3553 			idx, obj->path, elf_errmsg(-1));
3554 		return NULL;
3555 	}
3556 	return scn;
3557 }
3558 
3559 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3560 {
3561 	Elf_Scn *scn = NULL;
3562 	Elf *elf = obj->efile.elf;
3563 	const char *sec_name;
3564 
3565 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3566 		sec_name = elf_sec_name(obj, scn);
3567 		if (!sec_name)
3568 			return NULL;
3569 
3570 		if (strcmp(sec_name, name) != 0)
3571 			continue;
3572 
3573 		return scn;
3574 	}
3575 	return NULL;
3576 }
3577 
3578 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3579 {
3580 	Elf64_Shdr *shdr;
3581 
3582 	if (!scn)
3583 		return NULL;
3584 
3585 	shdr = elf64_getshdr(scn);
3586 	if (!shdr) {
3587 		pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3588 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3589 		return NULL;
3590 	}
3591 
3592 	return shdr;
3593 }
3594 
3595 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3596 {
3597 	const char *name;
3598 	Elf64_Shdr *sh;
3599 
3600 	if (!scn)
3601 		return NULL;
3602 
3603 	sh = elf_sec_hdr(obj, scn);
3604 	if (!sh)
3605 		return NULL;
3606 
3607 	name = elf_sec_str(obj, sh->sh_name);
3608 	if (!name) {
3609 		pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3610 			elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3611 		return NULL;
3612 	}
3613 
3614 	return name;
3615 }
3616 
3617 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3618 {
3619 	Elf_Data *data;
3620 
3621 	if (!scn)
3622 		return NULL;
3623 
3624 	data = elf_getdata(scn, 0);
3625 	if (!data) {
3626 		pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3627 			elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3628 			obj->path, elf_errmsg(-1));
3629 		return NULL;
3630 	}
3631 
3632 	return data;
3633 }
3634 
3635 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3636 {
3637 	if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3638 		return NULL;
3639 
3640 	return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3641 }
3642 
3643 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3644 {
3645 	if (idx >= data->d_size / sizeof(Elf64_Rel))
3646 		return NULL;
3647 
3648 	return (Elf64_Rel *)data->d_buf + idx;
3649 }
3650 
3651 static bool is_sec_name_dwarf(const char *name)
3652 {
3653 	/* approximation, but the actual list is too long */
3654 	return str_has_pfx(name, ".debug_");
3655 }
3656 
3657 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3658 {
3659 	/* no special handling of .strtab */
3660 	if (hdr->sh_type == SHT_STRTAB)
3661 		return true;
3662 
3663 	/* ignore .llvm_addrsig section as well */
3664 	if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3665 		return true;
3666 
3667 	/* no subprograms will lead to an empty .text section, ignore it */
3668 	if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3669 	    strcmp(name, ".text") == 0)
3670 		return true;
3671 
3672 	/* DWARF sections */
3673 	if (is_sec_name_dwarf(name))
3674 		return true;
3675 
3676 	if (str_has_pfx(name, ".rel")) {
3677 		name += sizeof(".rel") - 1;
3678 		/* DWARF section relocations */
3679 		if (is_sec_name_dwarf(name))
3680 			return true;
3681 
3682 		/* .BTF and .BTF.ext don't need relocations */
3683 		if (strcmp(name, BTF_ELF_SEC) == 0 ||
3684 		    strcmp(name, BTF_EXT_ELF_SEC) == 0)
3685 			return true;
3686 	}
3687 
3688 	return false;
3689 }
3690 
3691 static int cmp_progs(const void *_a, const void *_b)
3692 {
3693 	const struct bpf_program *a = _a;
3694 	const struct bpf_program *b = _b;
3695 
3696 	if (a->sec_idx != b->sec_idx)
3697 		return a->sec_idx < b->sec_idx ? -1 : 1;
3698 
3699 	/* sec_insn_off can't be the same within the section */
3700 	return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3701 }
3702 
3703 static int bpf_object__elf_collect(struct bpf_object *obj)
3704 {
3705 	struct elf_sec_desc *sec_desc;
3706 	Elf *elf = obj->efile.elf;
3707 	Elf_Data *btf_ext_data = NULL;
3708 	Elf_Data *btf_data = NULL;
3709 	int idx = 0, err = 0;
3710 	const char *name;
3711 	Elf_Data *data;
3712 	Elf_Scn *scn;
3713 	Elf64_Shdr *sh;
3714 
3715 	/* ELF section indices are 0-based, but sec #0 is special "invalid"
3716 	 * section. Since section count retrieved by elf_getshdrnum() does
3717 	 * include sec #0, it is already the necessary size of an array to keep
3718 	 * all the sections.
3719 	 */
3720 	if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3721 		pr_warn("elf: failed to get the number of sections for %s: %s\n",
3722 			obj->path, elf_errmsg(-1));
3723 		return -LIBBPF_ERRNO__FORMAT;
3724 	}
3725 	obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3726 	if (!obj->efile.secs)
3727 		return -ENOMEM;
3728 
3729 	/* a bunch of ELF parsing functionality depends on processing symbols,
3730 	 * so do the first pass and find the symbol table
3731 	 */
3732 	scn = NULL;
3733 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3734 		sh = elf_sec_hdr(obj, scn);
3735 		if (!sh)
3736 			return -LIBBPF_ERRNO__FORMAT;
3737 
3738 		if (sh->sh_type == SHT_SYMTAB) {
3739 			if (obj->efile.symbols) {
3740 				pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3741 				return -LIBBPF_ERRNO__FORMAT;
3742 			}
3743 
3744 			data = elf_sec_data(obj, scn);
3745 			if (!data)
3746 				return -LIBBPF_ERRNO__FORMAT;
3747 
3748 			idx = elf_ndxscn(scn);
3749 
3750 			obj->efile.symbols = data;
3751 			obj->efile.symbols_shndx = idx;
3752 			obj->efile.strtabidx = sh->sh_link;
3753 		}
3754 	}
3755 
3756 	if (!obj->efile.symbols) {
3757 		pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3758 			obj->path);
3759 		return -ENOENT;
3760 	}
3761 
3762 	scn = NULL;
3763 	while ((scn = elf_nextscn(elf, scn)) != NULL) {
3764 		idx = elf_ndxscn(scn);
3765 		sec_desc = &obj->efile.secs[idx];
3766 
3767 		sh = elf_sec_hdr(obj, scn);
3768 		if (!sh)
3769 			return -LIBBPF_ERRNO__FORMAT;
3770 
3771 		name = elf_sec_str(obj, sh->sh_name);
3772 		if (!name)
3773 			return -LIBBPF_ERRNO__FORMAT;
3774 
3775 		if (ignore_elf_section(sh, name))
3776 			continue;
3777 
3778 		data = elf_sec_data(obj, scn);
3779 		if (!data)
3780 			return -LIBBPF_ERRNO__FORMAT;
3781 
3782 		pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3783 			 idx, name, (unsigned long)data->d_size,
3784 			 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3785 			 (int)sh->sh_type);
3786 
3787 		if (strcmp(name, "license") == 0) {
3788 			err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3789 			if (err)
3790 				return err;
3791 		} else if (strcmp(name, "version") == 0) {
3792 			err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3793 			if (err)
3794 				return err;
3795 		} else if (strcmp(name, "maps") == 0) {
3796 			pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3797 			return -ENOTSUP;
3798 		} else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3799 			obj->efile.btf_maps_shndx = idx;
3800 		} else if (strcmp(name, BTF_ELF_SEC) == 0) {
3801 			if (sh->sh_type != SHT_PROGBITS)
3802 				return -LIBBPF_ERRNO__FORMAT;
3803 			btf_data = data;
3804 		} else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3805 			if (sh->sh_type != SHT_PROGBITS)
3806 				return -LIBBPF_ERRNO__FORMAT;
3807 			btf_ext_data = data;
3808 		} else if (sh->sh_type == SHT_SYMTAB) {
3809 			/* already processed during the first pass above */
3810 		} else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3811 			if (sh->sh_flags & SHF_EXECINSTR) {
3812 				if (strcmp(name, ".text") == 0)
3813 					obj->efile.text_shndx = idx;
3814 				err = bpf_object__add_programs(obj, data, name, idx);
3815 				if (err)
3816 					return err;
3817 			} else if (strcmp(name, DATA_SEC) == 0 ||
3818 				   str_has_pfx(name, DATA_SEC ".")) {
3819 				sec_desc->sec_type = SEC_DATA;
3820 				sec_desc->shdr = sh;
3821 				sec_desc->data = data;
3822 			} else if (strcmp(name, RODATA_SEC) == 0 ||
3823 				   str_has_pfx(name, RODATA_SEC ".")) {
3824 				sec_desc->sec_type = SEC_RODATA;
3825 				sec_desc->shdr = sh;
3826 				sec_desc->data = data;
3827 			} else if (strcmp(name, STRUCT_OPS_SEC) == 0 ||
3828 				   strcmp(name, STRUCT_OPS_LINK_SEC) == 0 ||
3829 				   strcmp(name, "?" STRUCT_OPS_SEC) == 0 ||
3830 				   strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) {
3831 				sec_desc->sec_type = SEC_ST_OPS;
3832 				sec_desc->shdr = sh;
3833 				sec_desc->data = data;
3834 				obj->efile.has_st_ops = true;
3835 			} else if (strcmp(name, ARENA_SEC) == 0) {
3836 				obj->efile.arena_data = data;
3837 				obj->efile.arena_data_shndx = idx;
3838 			} else {
3839 				pr_info("elf: skipping unrecognized data section(%d) %s\n",
3840 					idx, name);
3841 			}
3842 		} else if (sh->sh_type == SHT_REL) {
3843 			int targ_sec_idx = sh->sh_info; /* points to other section */
3844 
3845 			if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3846 			    targ_sec_idx >= obj->efile.sec_cnt)
3847 				return -LIBBPF_ERRNO__FORMAT;
3848 
3849 			/* Only do relo for section with exec instructions */
3850 			if (!section_have_execinstr(obj, targ_sec_idx) &&
3851 			    strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3852 			    strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3853 			    strcmp(name, ".rel?" STRUCT_OPS_SEC) &&
3854 			    strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) &&
3855 			    strcmp(name, ".rel" MAPS_ELF_SEC)) {
3856 				pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3857 					idx, name, targ_sec_idx,
3858 					elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3859 				continue;
3860 			}
3861 
3862 			sec_desc->sec_type = SEC_RELO;
3863 			sec_desc->shdr = sh;
3864 			sec_desc->data = data;
3865 		} else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3866 							 str_has_pfx(name, BSS_SEC "."))) {
3867 			sec_desc->sec_type = SEC_BSS;
3868 			sec_desc->shdr = sh;
3869 			sec_desc->data = data;
3870 		} else {
3871 			pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3872 				(size_t)sh->sh_size);
3873 		}
3874 	}
3875 
3876 	if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3877 		pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3878 		return -LIBBPF_ERRNO__FORMAT;
3879 	}
3880 
3881 	/* sort BPF programs by section name and in-section instruction offset
3882 	 * for faster search
3883 	 */
3884 	if (obj->nr_programs)
3885 		qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3886 
3887 	return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3888 }
3889 
3890 static bool sym_is_extern(const Elf64_Sym *sym)
3891 {
3892 	int bind = ELF64_ST_BIND(sym->st_info);
3893 	/* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3894 	return sym->st_shndx == SHN_UNDEF &&
3895 	       (bind == STB_GLOBAL || bind == STB_WEAK) &&
3896 	       ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3897 }
3898 
3899 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3900 {
3901 	int bind = ELF64_ST_BIND(sym->st_info);
3902 	int type = ELF64_ST_TYPE(sym->st_info);
3903 
3904 	/* in .text section */
3905 	if (sym->st_shndx != text_shndx)
3906 		return false;
3907 
3908 	/* local function */
3909 	if (bind == STB_LOCAL && type == STT_SECTION)
3910 		return true;
3911 
3912 	/* global function */
3913 	return bind == STB_GLOBAL && type == STT_FUNC;
3914 }
3915 
3916 static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3917 {
3918 	const struct btf_type *t;
3919 	const char *tname;
3920 	int i, n;
3921 
3922 	if (!btf)
3923 		return -ESRCH;
3924 
3925 	n = btf__type_cnt(btf);
3926 	for (i = 1; i < n; i++) {
3927 		t = btf__type_by_id(btf, i);
3928 
3929 		if (!btf_is_var(t) && !btf_is_func(t))
3930 			continue;
3931 
3932 		tname = btf__name_by_offset(btf, t->name_off);
3933 		if (strcmp(tname, ext_name))
3934 			continue;
3935 
3936 		if (btf_is_var(t) &&
3937 		    btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3938 			return -EINVAL;
3939 
3940 		if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3941 			return -EINVAL;
3942 
3943 		return i;
3944 	}
3945 
3946 	return -ENOENT;
3947 }
3948 
3949 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3950 	const struct btf_var_secinfo *vs;
3951 	const struct btf_type *t;
3952 	int i, j, n;
3953 
3954 	if (!btf)
3955 		return -ESRCH;
3956 
3957 	n = btf__type_cnt(btf);
3958 	for (i = 1; i < n; i++) {
3959 		t = btf__type_by_id(btf, i);
3960 
3961 		if (!btf_is_datasec(t))
3962 			continue;
3963 
3964 		vs = btf_var_secinfos(t);
3965 		for (j = 0; j < btf_vlen(t); j++, vs++) {
3966 			if (vs->type == ext_btf_id)
3967 				return i;
3968 		}
3969 	}
3970 
3971 	return -ENOENT;
3972 }
3973 
3974 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3975 				     bool *is_signed)
3976 {
3977 	const struct btf_type *t;
3978 	const char *name;
3979 
3980 	t = skip_mods_and_typedefs(btf, id, NULL);
3981 	name = btf__name_by_offset(btf, t->name_off);
3982 
3983 	if (is_signed)
3984 		*is_signed = false;
3985 	switch (btf_kind(t)) {
3986 	case BTF_KIND_INT: {
3987 		int enc = btf_int_encoding(t);
3988 
3989 		if (enc & BTF_INT_BOOL)
3990 			return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3991 		if (is_signed)
3992 			*is_signed = enc & BTF_INT_SIGNED;
3993 		if (t->size == 1)
3994 			return KCFG_CHAR;
3995 		if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3996 			return KCFG_UNKNOWN;
3997 		return KCFG_INT;
3998 	}
3999 	case BTF_KIND_ENUM:
4000 		if (t->size != 4)
4001 			return KCFG_UNKNOWN;
4002 		if (strcmp(name, "libbpf_tristate"))
4003 			return KCFG_UNKNOWN;
4004 		return KCFG_TRISTATE;
4005 	case BTF_KIND_ENUM64:
4006 		if (strcmp(name, "libbpf_tristate"))
4007 			return KCFG_UNKNOWN;
4008 		return KCFG_TRISTATE;
4009 	case BTF_KIND_ARRAY:
4010 		if (btf_array(t)->nelems == 0)
4011 			return KCFG_UNKNOWN;
4012 		if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
4013 			return KCFG_UNKNOWN;
4014 		return KCFG_CHAR_ARR;
4015 	default:
4016 		return KCFG_UNKNOWN;
4017 	}
4018 }
4019 
4020 static int cmp_externs(const void *_a, const void *_b)
4021 {
4022 	const struct extern_desc *a = _a;
4023 	const struct extern_desc *b = _b;
4024 
4025 	if (a->type != b->type)
4026 		return a->type < b->type ? -1 : 1;
4027 
4028 	if (a->type == EXT_KCFG) {
4029 		/* descending order by alignment requirements */
4030 		if (a->kcfg.align != b->kcfg.align)
4031 			return a->kcfg.align > b->kcfg.align ? -1 : 1;
4032 		/* ascending order by size, within same alignment class */
4033 		if (a->kcfg.sz != b->kcfg.sz)
4034 			return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
4035 	}
4036 
4037 	/* resolve ties by name */
4038 	return strcmp(a->name, b->name);
4039 }
4040 
4041 static int find_int_btf_id(const struct btf *btf)
4042 {
4043 	const struct btf_type *t;
4044 	int i, n;
4045 
4046 	n = btf__type_cnt(btf);
4047 	for (i = 1; i < n; i++) {
4048 		t = btf__type_by_id(btf, i);
4049 
4050 		if (btf_is_int(t) && btf_int_bits(t) == 32)
4051 			return i;
4052 	}
4053 
4054 	return 0;
4055 }
4056 
4057 static int add_dummy_ksym_var(struct btf *btf)
4058 {
4059 	int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
4060 	const struct btf_var_secinfo *vs;
4061 	const struct btf_type *sec;
4062 
4063 	if (!btf)
4064 		return 0;
4065 
4066 	sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
4067 					    BTF_KIND_DATASEC);
4068 	if (sec_btf_id < 0)
4069 		return 0;
4070 
4071 	sec = btf__type_by_id(btf, sec_btf_id);
4072 	vs = btf_var_secinfos(sec);
4073 	for (i = 0; i < btf_vlen(sec); i++, vs++) {
4074 		const struct btf_type *vt;
4075 
4076 		vt = btf__type_by_id(btf, vs->type);
4077 		if (btf_is_func(vt))
4078 			break;
4079 	}
4080 
4081 	/* No func in ksyms sec.  No need to add dummy var. */
4082 	if (i == btf_vlen(sec))
4083 		return 0;
4084 
4085 	int_btf_id = find_int_btf_id(btf);
4086 	dummy_var_btf_id = btf__add_var(btf,
4087 					"dummy_ksym",
4088 					BTF_VAR_GLOBAL_ALLOCATED,
4089 					int_btf_id);
4090 	if (dummy_var_btf_id < 0)
4091 		pr_warn("cannot create a dummy_ksym var\n");
4092 
4093 	return dummy_var_btf_id;
4094 }
4095 
4096 static int bpf_object__collect_externs(struct bpf_object *obj)
4097 {
4098 	struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
4099 	const struct btf_type *t;
4100 	struct extern_desc *ext;
4101 	int i, n, off, dummy_var_btf_id;
4102 	const char *ext_name, *sec_name;
4103 	size_t ext_essent_len;
4104 	Elf_Scn *scn;
4105 	Elf64_Shdr *sh;
4106 
4107 	if (!obj->efile.symbols)
4108 		return 0;
4109 
4110 	scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
4111 	sh = elf_sec_hdr(obj, scn);
4112 	if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
4113 		return -LIBBPF_ERRNO__FORMAT;
4114 
4115 	dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
4116 	if (dummy_var_btf_id < 0)
4117 		return dummy_var_btf_id;
4118 
4119 	n = sh->sh_size / sh->sh_entsize;
4120 	pr_debug("looking for externs among %d symbols...\n", n);
4121 
4122 	for (i = 0; i < n; i++) {
4123 		Elf64_Sym *sym = elf_sym_by_idx(obj, i);
4124 
4125 		if (!sym)
4126 			return -LIBBPF_ERRNO__FORMAT;
4127 		if (!sym_is_extern(sym))
4128 			continue;
4129 		ext_name = elf_sym_str(obj, sym->st_name);
4130 		if (!ext_name || !ext_name[0])
4131 			continue;
4132 
4133 		ext = obj->externs;
4134 		ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
4135 		if (!ext)
4136 			return -ENOMEM;
4137 		obj->externs = ext;
4138 		ext = &ext[obj->nr_extern];
4139 		memset(ext, 0, sizeof(*ext));
4140 		obj->nr_extern++;
4141 
4142 		ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
4143 		if (ext->btf_id <= 0) {
4144 			pr_warn("failed to find BTF for extern '%s': %d\n",
4145 				ext_name, ext->btf_id);
4146 			return ext->btf_id;
4147 		}
4148 		t = btf__type_by_id(obj->btf, ext->btf_id);
4149 		ext->name = btf__name_by_offset(obj->btf, t->name_off);
4150 		ext->sym_idx = i;
4151 		ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
4152 
4153 		ext_essent_len = bpf_core_essential_name_len(ext->name);
4154 		ext->essent_name = NULL;
4155 		if (ext_essent_len != strlen(ext->name)) {
4156 			ext->essent_name = strndup(ext->name, ext_essent_len);
4157 			if (!ext->essent_name)
4158 				return -ENOMEM;
4159 		}
4160 
4161 		ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
4162 		if (ext->sec_btf_id <= 0) {
4163 			pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
4164 				ext_name, ext->btf_id, ext->sec_btf_id);
4165 			return ext->sec_btf_id;
4166 		}
4167 		sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
4168 		sec_name = btf__name_by_offset(obj->btf, sec->name_off);
4169 
4170 		if (strcmp(sec_name, KCONFIG_SEC) == 0) {
4171 			if (btf_is_func(t)) {
4172 				pr_warn("extern function %s is unsupported under %s section\n",
4173 					ext->name, KCONFIG_SEC);
4174 				return -ENOTSUP;
4175 			}
4176 			kcfg_sec = sec;
4177 			ext->type = EXT_KCFG;
4178 			ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
4179 			if (ext->kcfg.sz <= 0) {
4180 				pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
4181 					ext_name, ext->kcfg.sz);
4182 				return ext->kcfg.sz;
4183 			}
4184 			ext->kcfg.align = btf__align_of(obj->btf, t->type);
4185 			if (ext->kcfg.align <= 0) {
4186 				pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
4187 					ext_name, ext->kcfg.align);
4188 				return -EINVAL;
4189 			}
4190 			ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
4191 							&ext->kcfg.is_signed);
4192 			if (ext->kcfg.type == KCFG_UNKNOWN) {
4193 				pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
4194 				return -ENOTSUP;
4195 			}
4196 		} else if (strcmp(sec_name, KSYMS_SEC) == 0) {
4197 			ksym_sec = sec;
4198 			ext->type = EXT_KSYM;
4199 			skip_mods_and_typedefs(obj->btf, t->type,
4200 					       &ext->ksym.type_id);
4201 		} else {
4202 			pr_warn("unrecognized extern section '%s'\n", sec_name);
4203 			return -ENOTSUP;
4204 		}
4205 	}
4206 	pr_debug("collected %d externs total\n", obj->nr_extern);
4207 
4208 	if (!obj->nr_extern)
4209 		return 0;
4210 
4211 	/* sort externs by type, for kcfg ones also by (align, size, name) */
4212 	qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
4213 
4214 	/* for .ksyms section, we need to turn all externs into allocated
4215 	 * variables in BTF to pass kernel verification; we do this by
4216 	 * pretending that each extern is a 8-byte variable
4217 	 */
4218 	if (ksym_sec) {
4219 		/* find existing 4-byte integer type in BTF to use for fake
4220 		 * extern variables in DATASEC
4221 		 */
4222 		int int_btf_id = find_int_btf_id(obj->btf);
4223 		/* For extern function, a dummy_var added earlier
4224 		 * will be used to replace the vs->type and
4225 		 * its name string will be used to refill
4226 		 * the missing param's name.
4227 		 */
4228 		const struct btf_type *dummy_var;
4229 
4230 		dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
4231 		for (i = 0; i < obj->nr_extern; i++) {
4232 			ext = &obj->externs[i];
4233 			if (ext->type != EXT_KSYM)
4234 				continue;
4235 			pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
4236 				 i, ext->sym_idx, ext->name);
4237 		}
4238 
4239 		sec = ksym_sec;
4240 		n = btf_vlen(sec);
4241 		for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
4242 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4243 			struct btf_type *vt;
4244 
4245 			vt = (void *)btf__type_by_id(obj->btf, vs->type);
4246 			ext_name = btf__name_by_offset(obj->btf, vt->name_off);
4247 			ext = find_extern_by_name(obj, ext_name);
4248 			if (!ext) {
4249 				pr_warn("failed to find extern definition for BTF %s '%s'\n",
4250 					btf_kind_str(vt), ext_name);
4251 				return -ESRCH;
4252 			}
4253 			if (btf_is_func(vt)) {
4254 				const struct btf_type *func_proto;
4255 				struct btf_param *param;
4256 				int j;
4257 
4258 				func_proto = btf__type_by_id(obj->btf,
4259 							     vt->type);
4260 				param = btf_params(func_proto);
4261 				/* Reuse the dummy_var string if the
4262 				 * func proto does not have param name.
4263 				 */
4264 				for (j = 0; j < btf_vlen(func_proto); j++)
4265 					if (param[j].type && !param[j].name_off)
4266 						param[j].name_off =
4267 							dummy_var->name_off;
4268 				vs->type = dummy_var_btf_id;
4269 				vt->info &= ~0xffff;
4270 				vt->info |= BTF_FUNC_GLOBAL;
4271 			} else {
4272 				btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4273 				vt->type = int_btf_id;
4274 			}
4275 			vs->offset = off;
4276 			vs->size = sizeof(int);
4277 		}
4278 		sec->size = off;
4279 	}
4280 
4281 	if (kcfg_sec) {
4282 		sec = kcfg_sec;
4283 		/* for kcfg externs calculate their offsets within a .kconfig map */
4284 		off = 0;
4285 		for (i = 0; i < obj->nr_extern; i++) {
4286 			ext = &obj->externs[i];
4287 			if (ext->type != EXT_KCFG)
4288 				continue;
4289 
4290 			ext->kcfg.data_off = roundup(off, ext->kcfg.align);
4291 			off = ext->kcfg.data_off + ext->kcfg.sz;
4292 			pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
4293 				 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
4294 		}
4295 		sec->size = off;
4296 		n = btf_vlen(sec);
4297 		for (i = 0; i < n; i++) {
4298 			struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
4299 
4300 			t = btf__type_by_id(obj->btf, vs->type);
4301 			ext_name = btf__name_by_offset(obj->btf, t->name_off);
4302 			ext = find_extern_by_name(obj, ext_name);
4303 			if (!ext) {
4304 				pr_warn("failed to find extern definition for BTF var '%s'\n",
4305 					ext_name);
4306 				return -ESRCH;
4307 			}
4308 			btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
4309 			vs->offset = ext->kcfg.data_off;
4310 		}
4311 	}
4312 	return 0;
4313 }
4314 
4315 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
4316 {
4317 	return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
4318 }
4319 
4320 struct bpf_program *
4321 bpf_object__find_program_by_name(const struct bpf_object *obj,
4322 				 const char *name)
4323 {
4324 	struct bpf_program *prog;
4325 
4326 	bpf_object__for_each_program(prog, obj) {
4327 		if (prog_is_subprog(obj, prog))
4328 			continue;
4329 		if (!strcmp(prog->name, name))
4330 			return prog;
4331 	}
4332 	return errno = ENOENT, NULL;
4333 }
4334 
4335 static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
4336 				      int shndx)
4337 {
4338 	switch (obj->efile.secs[shndx].sec_type) {
4339 	case SEC_BSS:
4340 	case SEC_DATA:
4341 	case SEC_RODATA:
4342 		return true;
4343 	default:
4344 		return false;
4345 	}
4346 }
4347 
4348 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
4349 				      int shndx)
4350 {
4351 	return shndx == obj->efile.btf_maps_shndx;
4352 }
4353 
4354 static enum libbpf_map_type
4355 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
4356 {
4357 	if (shndx == obj->efile.symbols_shndx)
4358 		return LIBBPF_MAP_KCONFIG;
4359 
4360 	switch (obj->efile.secs[shndx].sec_type) {
4361 	case SEC_BSS:
4362 		return LIBBPF_MAP_BSS;
4363 	case SEC_DATA:
4364 		return LIBBPF_MAP_DATA;
4365 	case SEC_RODATA:
4366 		return LIBBPF_MAP_RODATA;
4367 	default:
4368 		return LIBBPF_MAP_UNSPEC;
4369 	}
4370 }
4371 
4372 static int bpf_program__record_reloc(struct bpf_program *prog,
4373 				     struct reloc_desc *reloc_desc,
4374 				     __u32 insn_idx, const char *sym_name,
4375 				     const Elf64_Sym *sym, const Elf64_Rel *rel)
4376 {
4377 	struct bpf_insn *insn = &prog->insns[insn_idx];
4378 	size_t map_idx, nr_maps = prog->obj->nr_maps;
4379 	struct bpf_object *obj = prog->obj;
4380 	__u32 shdr_idx = sym->st_shndx;
4381 	enum libbpf_map_type type;
4382 	const char *sym_sec_name;
4383 	struct bpf_map *map;
4384 
4385 	if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4386 		pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4387 			prog->name, sym_name, insn_idx, insn->code);
4388 		return -LIBBPF_ERRNO__RELOC;
4389 	}
4390 
4391 	if (sym_is_extern(sym)) {
4392 		int sym_idx = ELF64_R_SYM(rel->r_info);
4393 		int i, n = obj->nr_extern;
4394 		struct extern_desc *ext;
4395 
4396 		for (i = 0; i < n; i++) {
4397 			ext = &obj->externs[i];
4398 			if (ext->sym_idx == sym_idx)
4399 				break;
4400 		}
4401 		if (i >= n) {
4402 			pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4403 				prog->name, sym_name, sym_idx);
4404 			return -LIBBPF_ERRNO__RELOC;
4405 		}
4406 		pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4407 			 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4408 		if (insn->code == (BPF_JMP | BPF_CALL))
4409 			reloc_desc->type = RELO_EXTERN_CALL;
4410 		else
4411 			reloc_desc->type = RELO_EXTERN_LD64;
4412 		reloc_desc->insn_idx = insn_idx;
4413 		reloc_desc->ext_idx = i;
4414 		return 0;
4415 	}
4416 
4417 	/* sub-program call relocation */
4418 	if (is_call_insn(insn)) {
4419 		if (insn->src_reg != BPF_PSEUDO_CALL) {
4420 			pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4421 			return -LIBBPF_ERRNO__RELOC;
4422 		}
4423 		/* text_shndx can be 0, if no default "main" program exists */
4424 		if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4425 			sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4426 			pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4427 				prog->name, sym_name, sym_sec_name);
4428 			return -LIBBPF_ERRNO__RELOC;
4429 		}
4430 		if (sym->st_value % BPF_INSN_SZ) {
4431 			pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4432 				prog->name, sym_name, (size_t)sym->st_value);
4433 			return -LIBBPF_ERRNO__RELOC;
4434 		}
4435 		reloc_desc->type = RELO_CALL;
4436 		reloc_desc->insn_idx = insn_idx;
4437 		reloc_desc->sym_off = sym->st_value;
4438 		return 0;
4439 	}
4440 
4441 	if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4442 		pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4443 			prog->name, sym_name, shdr_idx);
4444 		return -LIBBPF_ERRNO__RELOC;
4445 	}
4446 
4447 	/* loading subprog addresses */
4448 	if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4449 		/* global_func: sym->st_value = offset in the section, insn->imm = 0.
4450 		 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4451 		 */
4452 		if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4453 			pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4454 				prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4455 			return -LIBBPF_ERRNO__RELOC;
4456 		}
4457 
4458 		reloc_desc->type = RELO_SUBPROG_ADDR;
4459 		reloc_desc->insn_idx = insn_idx;
4460 		reloc_desc->sym_off = sym->st_value;
4461 		return 0;
4462 	}
4463 
4464 	type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4465 	sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4466 
4467 	/* arena data relocation */
4468 	if (shdr_idx == obj->efile.arena_data_shndx) {
4469 		reloc_desc->type = RELO_DATA;
4470 		reloc_desc->insn_idx = insn_idx;
4471 		reloc_desc->map_idx = obj->arena_map - obj->maps;
4472 		reloc_desc->sym_off = sym->st_value;
4473 		return 0;
4474 	}
4475 
4476 	/* generic map reference relocation */
4477 	if (type == LIBBPF_MAP_UNSPEC) {
4478 		if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4479 			pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4480 				prog->name, sym_name, sym_sec_name);
4481 			return -LIBBPF_ERRNO__RELOC;
4482 		}
4483 		for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4484 			map = &obj->maps[map_idx];
4485 			if (map->libbpf_type != type ||
4486 			    map->sec_idx != sym->st_shndx ||
4487 			    map->sec_offset != sym->st_value)
4488 				continue;
4489 			pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4490 				 prog->name, map_idx, map->name, map->sec_idx,
4491 				 map->sec_offset, insn_idx);
4492 			break;
4493 		}
4494 		if (map_idx >= nr_maps) {
4495 			pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4496 				prog->name, sym_sec_name, (size_t)sym->st_value);
4497 			return -LIBBPF_ERRNO__RELOC;
4498 		}
4499 		reloc_desc->type = RELO_LD64;
4500 		reloc_desc->insn_idx = insn_idx;
4501 		reloc_desc->map_idx = map_idx;
4502 		reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4503 		return 0;
4504 	}
4505 
4506 	/* global data map relocation */
4507 	if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4508 		pr_warn("prog '%s': bad data relo against section '%s'\n",
4509 			prog->name, sym_sec_name);
4510 		return -LIBBPF_ERRNO__RELOC;
4511 	}
4512 	for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4513 		map = &obj->maps[map_idx];
4514 		if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4515 			continue;
4516 		pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4517 			 prog->name, map_idx, map->name, map->sec_idx,
4518 			 map->sec_offset, insn_idx);
4519 		break;
4520 	}
4521 	if (map_idx >= nr_maps) {
4522 		pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4523 			prog->name, sym_sec_name);
4524 		return -LIBBPF_ERRNO__RELOC;
4525 	}
4526 
4527 	reloc_desc->type = RELO_DATA;
4528 	reloc_desc->insn_idx = insn_idx;
4529 	reloc_desc->map_idx = map_idx;
4530 	reloc_desc->sym_off = sym->st_value;
4531 	return 0;
4532 }
4533 
4534 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4535 {
4536 	return insn_idx >= prog->sec_insn_off &&
4537 	       insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4538 }
4539 
4540 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4541 						 size_t sec_idx, size_t insn_idx)
4542 {
4543 	int l = 0, r = obj->nr_programs - 1, m;
4544 	struct bpf_program *prog;
4545 
4546 	if (!obj->nr_programs)
4547 		return NULL;
4548 
4549 	while (l < r) {
4550 		m = l + (r - l + 1) / 2;
4551 		prog = &obj->programs[m];
4552 
4553 		if (prog->sec_idx < sec_idx ||
4554 		    (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4555 			l = m;
4556 		else
4557 			r = m - 1;
4558 	}
4559 	/* matching program could be at index l, but it still might be the
4560 	 * wrong one, so we need to double check conditions for the last time
4561 	 */
4562 	prog = &obj->programs[l];
4563 	if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4564 		return prog;
4565 	return NULL;
4566 }
4567 
4568 static int
4569 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4570 {
4571 	const char *relo_sec_name, *sec_name;
4572 	size_t sec_idx = shdr->sh_info, sym_idx;
4573 	struct bpf_program *prog;
4574 	struct reloc_desc *relos;
4575 	int err, i, nrels;
4576 	const char *sym_name;
4577 	__u32 insn_idx;
4578 	Elf_Scn *scn;
4579 	Elf_Data *scn_data;
4580 	Elf64_Sym *sym;
4581 	Elf64_Rel *rel;
4582 
4583 	if (sec_idx >= obj->efile.sec_cnt)
4584 		return -EINVAL;
4585 
4586 	scn = elf_sec_by_idx(obj, sec_idx);
4587 	scn_data = elf_sec_data(obj, scn);
4588 	if (!scn_data)
4589 		return -LIBBPF_ERRNO__FORMAT;
4590 
4591 	relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4592 	sec_name = elf_sec_name(obj, scn);
4593 	if (!relo_sec_name || !sec_name)
4594 		return -EINVAL;
4595 
4596 	pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4597 		 relo_sec_name, sec_idx, sec_name);
4598 	nrels = shdr->sh_size / shdr->sh_entsize;
4599 
4600 	for (i = 0; i < nrels; i++) {
4601 		rel = elf_rel_by_idx(data, i);
4602 		if (!rel) {
4603 			pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4604 			return -LIBBPF_ERRNO__FORMAT;
4605 		}
4606 
4607 		sym_idx = ELF64_R_SYM(rel->r_info);
4608 		sym = elf_sym_by_idx(obj, sym_idx);
4609 		if (!sym) {
4610 			pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4611 				relo_sec_name, sym_idx, i);
4612 			return -LIBBPF_ERRNO__FORMAT;
4613 		}
4614 
4615 		if (sym->st_shndx >= obj->efile.sec_cnt) {
4616 			pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4617 				relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4618 			return -LIBBPF_ERRNO__FORMAT;
4619 		}
4620 
4621 		if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4622 			pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4623 				relo_sec_name, (size_t)rel->r_offset, i);
4624 			return -LIBBPF_ERRNO__FORMAT;
4625 		}
4626 
4627 		insn_idx = rel->r_offset / BPF_INSN_SZ;
4628 		/* relocations against static functions are recorded as
4629 		 * relocations against the section that contains a function;
4630 		 * in such case, symbol will be STT_SECTION and sym.st_name
4631 		 * will point to empty string (0), so fetch section name
4632 		 * instead
4633 		 */
4634 		if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4635 			sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4636 		else
4637 			sym_name = elf_sym_str(obj, sym->st_name);
4638 		sym_name = sym_name ?: "<?";
4639 
4640 		pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4641 			 relo_sec_name, i, insn_idx, sym_name);
4642 
4643 		prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4644 		if (!prog) {
4645 			pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4646 				relo_sec_name, i, sec_name, insn_idx);
4647 			continue;
4648 		}
4649 
4650 		relos = libbpf_reallocarray(prog->reloc_desc,
4651 					    prog->nr_reloc + 1, sizeof(*relos));
4652 		if (!relos)
4653 			return -ENOMEM;
4654 		prog->reloc_desc = relos;
4655 
4656 		/* adjust insn_idx to local BPF program frame of reference */
4657 		insn_idx -= prog->sec_insn_off;
4658 		err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4659 						insn_idx, sym_name, sym, rel);
4660 		if (err)
4661 			return err;
4662 
4663 		prog->nr_reloc++;
4664 	}
4665 	return 0;
4666 }
4667 
4668 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4669 {
4670 	int id;
4671 
4672 	if (!obj->btf)
4673 		return -ENOENT;
4674 
4675 	/* if it's BTF-defined map, we don't need to search for type IDs.
4676 	 * For struct_ops map, it does not need btf_key_type_id and
4677 	 * btf_value_type_id.
4678 	 */
4679 	if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4680 		return 0;
4681 
4682 	/*
4683 	 * LLVM annotates global data differently in BTF, that is,
4684 	 * only as '.data', '.bss' or '.rodata'.
4685 	 */
4686 	if (!bpf_map__is_internal(map))
4687 		return -ENOENT;
4688 
4689 	id = btf__find_by_name(obj->btf, map->real_name);
4690 	if (id < 0)
4691 		return id;
4692 
4693 	map->btf_key_type_id = 0;
4694 	map->btf_value_type_id = id;
4695 	return 0;
4696 }
4697 
4698 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4699 {
4700 	char file[PATH_MAX], buff[4096];
4701 	FILE *fp;
4702 	__u32 val;
4703 	int err;
4704 
4705 	snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4706 	memset(info, 0, sizeof(*info));
4707 
4708 	fp = fopen(file, "re");
4709 	if (!fp) {
4710 		err = -errno;
4711 		pr_warn("failed to open %s: %d. No procfs support?\n", file,
4712 			err);
4713 		return err;
4714 	}
4715 
4716 	while (fgets(buff, sizeof(buff), fp)) {
4717 		if (sscanf(buff, "map_type:\t%u", &val) == 1)
4718 			info->type = val;
4719 		else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4720 			info->key_size = val;
4721 		else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4722 			info->value_size = val;
4723 		else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4724 			info->max_entries = val;
4725 		else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4726 			info->map_flags = val;
4727 	}
4728 
4729 	fclose(fp);
4730 
4731 	return 0;
4732 }
4733 
4734 bool bpf_map__autocreate(const struct bpf_map *map)
4735 {
4736 	return map->autocreate;
4737 }
4738 
4739 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4740 {
4741 	if (map->obj->loaded)
4742 		return libbpf_err(-EBUSY);
4743 
4744 	map->autocreate = autocreate;
4745 	return 0;
4746 }
4747 
4748 int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4749 {
4750 	struct bpf_map_info info;
4751 	__u32 len = sizeof(info), name_len;
4752 	int new_fd, err;
4753 	char *new_name;
4754 
4755 	memset(&info, 0, len);
4756 	err = bpf_map_get_info_by_fd(fd, &info, &len);
4757 	if (err && errno == EINVAL)
4758 		err = bpf_get_map_info_from_fdinfo(fd, &info);
4759 	if (err)
4760 		return libbpf_err(err);
4761 
4762 	name_len = strlen(info.name);
4763 	if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4764 		new_name = strdup(map->name);
4765 	else
4766 		new_name = strdup(info.name);
4767 
4768 	if (!new_name)
4769 		return libbpf_err(-errno);
4770 
4771 	/*
4772 	 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set.
4773 	 * This is similar to what we do in ensure_good_fd(), but without
4774 	 * closing original FD.
4775 	 */
4776 	new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3);
4777 	if (new_fd < 0) {
4778 		err = -errno;
4779 		goto err_free_new_name;
4780 	}
4781 
4782 	err = reuse_fd(map->fd, new_fd);
4783 	if (err)
4784 		goto err_free_new_name;
4785 
4786 	free(map->name);
4787 
4788 	map->name = new_name;
4789 	map->def.type = info.type;
4790 	map->def.key_size = info.key_size;
4791 	map->def.value_size = info.value_size;
4792 	map->def.max_entries = info.max_entries;
4793 	map->def.map_flags = info.map_flags;
4794 	map->btf_key_type_id = info.btf_key_type_id;
4795 	map->btf_value_type_id = info.btf_value_type_id;
4796 	map->reused = true;
4797 	map->map_extra = info.map_extra;
4798 
4799 	return 0;
4800 
4801 err_free_new_name:
4802 	free(new_name);
4803 	return libbpf_err(err);
4804 }
4805 
4806 __u32 bpf_map__max_entries(const struct bpf_map *map)
4807 {
4808 	return map->def.max_entries;
4809 }
4810 
4811 struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4812 {
4813 	if (!bpf_map_type__is_map_in_map(map->def.type))
4814 		return errno = EINVAL, NULL;
4815 
4816 	return map->inner_map;
4817 }
4818 
4819 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4820 {
4821 	if (map->obj->loaded)
4822 		return libbpf_err(-EBUSY);
4823 
4824 	map->def.max_entries = max_entries;
4825 
4826 	/* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4827 	if (map_is_ringbuf(map))
4828 		map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4829 
4830 	return 0;
4831 }
4832 
4833 static int bpf_object_prepare_token(struct bpf_object *obj)
4834 {
4835 	const char *bpffs_path;
4836 	int bpffs_fd = -1, token_fd, err;
4837 	bool mandatory;
4838 	enum libbpf_print_level level;
4839 
4840 	/* token is explicitly prevented */
4841 	if (obj->token_path && obj->token_path[0] == '\0') {
4842 		pr_debug("object '%s': token is prevented, skipping...\n", obj->name);
4843 		return 0;
4844 	}
4845 
4846 	mandatory = obj->token_path != NULL;
4847 	level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG;
4848 
4849 	bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH;
4850 	bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR);
4851 	if (bpffs_fd < 0) {
4852 		err = -errno;
4853 		__pr(level, "object '%s': failed (%d) to open BPF FS mount at '%s'%s\n",
4854 		     obj->name, err, bpffs_path,
4855 		     mandatory ? "" : ", skipping optional step...");
4856 		return mandatory ? err : 0;
4857 	}
4858 
4859 	token_fd = bpf_token_create(bpffs_fd, 0);
4860 	close(bpffs_fd);
4861 	if (token_fd < 0) {
4862 		if (!mandatory && token_fd == -ENOENT) {
4863 			pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n",
4864 				 obj->name, bpffs_path);
4865 			return 0;
4866 		}
4867 		__pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n",
4868 		     obj->name, token_fd, bpffs_path,
4869 		     mandatory ? "" : ", skipping optional step...");
4870 		return mandatory ? token_fd : 0;
4871 	}
4872 
4873 	obj->feat_cache = calloc(1, sizeof(*obj->feat_cache));
4874 	if (!obj->feat_cache) {
4875 		close(token_fd);
4876 		return -ENOMEM;
4877 	}
4878 
4879 	obj->token_fd = token_fd;
4880 	obj->feat_cache->token_fd = token_fd;
4881 
4882 	return 0;
4883 }
4884 
4885 static int
4886 bpf_object__probe_loading(struct bpf_object *obj)
4887 {
4888 	char *cp, errmsg[STRERR_BUFSIZE];
4889 	struct bpf_insn insns[] = {
4890 		BPF_MOV64_IMM(BPF_REG_0, 0),
4891 		BPF_EXIT_INSN(),
4892 	};
4893 	int ret, insn_cnt = ARRAY_SIZE(insns);
4894 	LIBBPF_OPTS(bpf_prog_load_opts, opts,
4895 		.token_fd = obj->token_fd,
4896 		.prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0,
4897 	);
4898 
4899 	if (obj->gen_loader)
4900 		return 0;
4901 
4902 	ret = bump_rlimit_memlock();
4903 	if (ret)
4904 		pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4905 
4906 	/* make sure basic loading works */
4907 	ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts);
4908 	if (ret < 0)
4909 		ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts);
4910 	if (ret < 0) {
4911 		ret = errno;
4912 		cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4913 		pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4914 			"program. Make sure your kernel supports BPF "
4915 			"(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4916 			"set to big enough value.\n", __func__, cp, ret);
4917 		return -ret;
4918 	}
4919 	close(ret);
4920 
4921 	return 0;
4922 }
4923 
4924 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4925 {
4926 	if (obj->gen_loader)
4927 		/* To generate loader program assume the latest kernel
4928 		 * to avoid doing extra prog_load, map_create syscalls.
4929 		 */
4930 		return true;
4931 
4932 	if (obj->token_fd)
4933 		return feat_supported(obj->feat_cache, feat_id);
4934 
4935 	return feat_supported(NULL, feat_id);
4936 }
4937 
4938 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4939 {
4940 	struct bpf_map_info map_info;
4941 	char msg[STRERR_BUFSIZE];
4942 	__u32 map_info_len = sizeof(map_info);
4943 	int err;
4944 
4945 	memset(&map_info, 0, map_info_len);
4946 	err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
4947 	if (err && errno == EINVAL)
4948 		err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4949 	if (err) {
4950 		pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4951 			libbpf_strerror_r(errno, msg, sizeof(msg)));
4952 		return false;
4953 	}
4954 
4955 	return (map_info.type == map->def.type &&
4956 		map_info.key_size == map->def.key_size &&
4957 		map_info.value_size == map->def.value_size &&
4958 		map_info.max_entries == map->def.max_entries &&
4959 		map_info.map_flags == map->def.map_flags &&
4960 		map_info.map_extra == map->map_extra);
4961 }
4962 
4963 static int
4964 bpf_object__reuse_map(struct bpf_map *map)
4965 {
4966 	char *cp, errmsg[STRERR_BUFSIZE];
4967 	int err, pin_fd;
4968 
4969 	pin_fd = bpf_obj_get(map->pin_path);
4970 	if (pin_fd < 0) {
4971 		err = -errno;
4972 		if (err == -ENOENT) {
4973 			pr_debug("found no pinned map to reuse at '%s'\n",
4974 				 map->pin_path);
4975 			return 0;
4976 		}
4977 
4978 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4979 		pr_warn("couldn't retrieve pinned map '%s': %s\n",
4980 			map->pin_path, cp);
4981 		return err;
4982 	}
4983 
4984 	if (!map_is_reuse_compat(map, pin_fd)) {
4985 		pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4986 			map->pin_path);
4987 		close(pin_fd);
4988 		return -EINVAL;
4989 	}
4990 
4991 	err = bpf_map__reuse_fd(map, pin_fd);
4992 	close(pin_fd);
4993 	if (err)
4994 		return err;
4995 
4996 	map->pinned = true;
4997 	pr_debug("reused pinned map at '%s'\n", map->pin_path);
4998 
4999 	return 0;
5000 }
5001 
5002 static int
5003 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
5004 {
5005 	enum libbpf_map_type map_type = map->libbpf_type;
5006 	char *cp, errmsg[STRERR_BUFSIZE];
5007 	int err, zero = 0;
5008 
5009 	if (obj->gen_loader) {
5010 		bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
5011 					 map->mmaped, map->def.value_size);
5012 		if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
5013 			bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
5014 		return 0;
5015 	}
5016 
5017 	err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
5018 	if (err) {
5019 		err = -errno;
5020 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5021 		pr_warn("Error setting initial map(%s) contents: %s\n",
5022 			map->name, cp);
5023 		return err;
5024 	}
5025 
5026 	/* Freeze .rodata and .kconfig map as read-only from syscall side. */
5027 	if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5028 		err = bpf_map_freeze(map->fd);
5029 		if (err) {
5030 			err = -errno;
5031 			cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5032 			pr_warn("Error freezing map(%s) as read-only: %s\n",
5033 				map->name, cp);
5034 			return err;
5035 		}
5036 	}
5037 	return 0;
5038 }
5039 
5040 static void bpf_map__destroy(struct bpf_map *map);
5041 
5042 static bool map_is_created(const struct bpf_map *map)
5043 {
5044 	return map->obj->loaded || map->reused;
5045 }
5046 
5047 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5048 {
5049 	LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5050 	struct bpf_map_def *def = &map->def;
5051 	const char *map_name = NULL;
5052 	int err = 0, map_fd;
5053 
5054 	if (kernel_supports(obj, FEAT_PROG_NAME))
5055 		map_name = map->name;
5056 	create_attr.map_ifindex = map->map_ifindex;
5057 	create_attr.map_flags = def->map_flags;
5058 	create_attr.numa_node = map->numa_node;
5059 	create_attr.map_extra = map->map_extra;
5060 	create_attr.token_fd = obj->token_fd;
5061 	if (obj->token_fd)
5062 		create_attr.map_flags |= BPF_F_TOKEN_FD;
5063 
5064 	if (bpf_map__is_struct_ops(map)) {
5065 		create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5066 		if (map->mod_btf_fd >= 0) {
5067 			create_attr.value_type_btf_obj_fd = map->mod_btf_fd;
5068 			create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD;
5069 		}
5070 	}
5071 
5072 	if (obj->btf && btf__fd(obj->btf) >= 0) {
5073 		create_attr.btf_fd = btf__fd(obj->btf);
5074 		create_attr.btf_key_type_id = map->btf_key_type_id;
5075 		create_attr.btf_value_type_id = map->btf_value_type_id;
5076 	}
5077 
5078 	if (bpf_map_type__is_map_in_map(def->type)) {
5079 		if (map->inner_map) {
5080 			err = map_set_def_max_entries(map->inner_map);
5081 			if (err)
5082 				return err;
5083 			err = bpf_object__create_map(obj, map->inner_map, true);
5084 			if (err) {
5085 				pr_warn("map '%s': failed to create inner map: %d\n",
5086 					map->name, err);
5087 				return err;
5088 			}
5089 			map->inner_map_fd = map->inner_map->fd;
5090 		}
5091 		if (map->inner_map_fd >= 0)
5092 			create_attr.inner_map_fd = map->inner_map_fd;
5093 	}
5094 
5095 	switch (def->type) {
5096 	case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5097 	case BPF_MAP_TYPE_CGROUP_ARRAY:
5098 	case BPF_MAP_TYPE_STACK_TRACE:
5099 	case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5100 	case BPF_MAP_TYPE_HASH_OF_MAPS:
5101 	case BPF_MAP_TYPE_DEVMAP:
5102 	case BPF_MAP_TYPE_DEVMAP_HASH:
5103 	case BPF_MAP_TYPE_CPUMAP:
5104 	case BPF_MAP_TYPE_XSKMAP:
5105 	case BPF_MAP_TYPE_SOCKMAP:
5106 	case BPF_MAP_TYPE_SOCKHASH:
5107 	case BPF_MAP_TYPE_QUEUE:
5108 	case BPF_MAP_TYPE_STACK:
5109 	case BPF_MAP_TYPE_ARENA:
5110 		create_attr.btf_fd = 0;
5111 		create_attr.btf_key_type_id = 0;
5112 		create_attr.btf_value_type_id = 0;
5113 		map->btf_key_type_id = 0;
5114 		map->btf_value_type_id = 0;
5115 		break;
5116 	case BPF_MAP_TYPE_STRUCT_OPS:
5117 		create_attr.btf_value_type_id = 0;
5118 		break;
5119 	default:
5120 		break;
5121 	}
5122 
5123 	if (obj->gen_loader) {
5124 		bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5125 				    def->key_size, def->value_size, def->max_entries,
5126 				    &create_attr, is_inner ? -1 : map - obj->maps);
5127 		/* We keep pretenting we have valid FD to pass various fd >= 0
5128 		 * checks by just keeping original placeholder FDs in place.
5129 		 * See bpf_object__add_map() comment.
5130 		 * This placeholder fd will not be used with any syscall and
5131 		 * will be reset to -1 eventually.
5132 		 */
5133 		map_fd = map->fd;
5134 	} else {
5135 		map_fd = bpf_map_create(def->type, map_name,
5136 					def->key_size, def->value_size,
5137 					def->max_entries, &create_attr);
5138 	}
5139 	if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) {
5140 		char *cp, errmsg[STRERR_BUFSIZE];
5141 
5142 		err = -errno;
5143 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5144 		pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5145 			map->name, cp, err);
5146 		create_attr.btf_fd = 0;
5147 		create_attr.btf_key_type_id = 0;
5148 		create_attr.btf_value_type_id = 0;
5149 		map->btf_key_type_id = 0;
5150 		map->btf_value_type_id = 0;
5151 		map_fd = bpf_map_create(def->type, map_name,
5152 					def->key_size, def->value_size,
5153 					def->max_entries, &create_attr);
5154 	}
5155 
5156 	if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5157 		if (obj->gen_loader)
5158 			map->inner_map->fd = -1;
5159 		bpf_map__destroy(map->inner_map);
5160 		zfree(&map->inner_map);
5161 	}
5162 
5163 	if (map_fd < 0)
5164 		return map_fd;
5165 
5166 	/* obj->gen_loader case, prevent reuse_fd() from closing map_fd */
5167 	if (map->fd == map_fd)
5168 		return 0;
5169 
5170 	/* Keep placeholder FD value but now point it to the BPF map object.
5171 	 * This way everything that relied on this map's FD (e.g., relocated
5172 	 * ldimm64 instructions) will stay valid and won't need adjustments.
5173 	 * map->fd stays valid but now point to what map_fd points to.
5174 	 */
5175 	return reuse_fd(map->fd, map_fd);
5176 }
5177 
5178 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5179 {
5180 	const struct bpf_map *targ_map;
5181 	unsigned int i;
5182 	int fd, err = 0;
5183 
5184 	for (i = 0; i < map->init_slots_sz; i++) {
5185 		if (!map->init_slots[i])
5186 			continue;
5187 
5188 		targ_map = map->init_slots[i];
5189 		fd = targ_map->fd;
5190 
5191 		if (obj->gen_loader) {
5192 			bpf_gen__populate_outer_map(obj->gen_loader,
5193 						    map - obj->maps, i,
5194 						    targ_map - obj->maps);
5195 		} else {
5196 			err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5197 		}
5198 		if (err) {
5199 			err = -errno;
5200 			pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5201 				map->name, i, targ_map->name, fd, err);
5202 			return err;
5203 		}
5204 		pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5205 			 map->name, i, targ_map->name, fd);
5206 	}
5207 
5208 	zfree(&map->init_slots);
5209 	map->init_slots_sz = 0;
5210 
5211 	return 0;
5212 }
5213 
5214 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5215 {
5216 	const struct bpf_program *targ_prog;
5217 	unsigned int i;
5218 	int fd, err;
5219 
5220 	if (obj->gen_loader)
5221 		return -ENOTSUP;
5222 
5223 	for (i = 0; i < map->init_slots_sz; i++) {
5224 		if (!map->init_slots[i])
5225 			continue;
5226 
5227 		targ_prog = map->init_slots[i];
5228 		fd = bpf_program__fd(targ_prog);
5229 
5230 		err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5231 		if (err) {
5232 			err = -errno;
5233 			pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5234 				map->name, i, targ_prog->name, fd, err);
5235 			return err;
5236 		}
5237 		pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5238 			 map->name, i, targ_prog->name, fd);
5239 	}
5240 
5241 	zfree(&map->init_slots);
5242 	map->init_slots_sz = 0;
5243 
5244 	return 0;
5245 }
5246 
5247 static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5248 {
5249 	struct bpf_map *map;
5250 	int i, err;
5251 
5252 	for (i = 0; i < obj->nr_maps; i++) {
5253 		map = &obj->maps[i];
5254 
5255 		if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5256 			continue;
5257 
5258 		err = init_prog_array_slots(obj, map);
5259 		if (err < 0)
5260 			return err;
5261 	}
5262 	return 0;
5263 }
5264 
5265 static int map_set_def_max_entries(struct bpf_map *map)
5266 {
5267 	if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5268 		int nr_cpus;
5269 
5270 		nr_cpus = libbpf_num_possible_cpus();
5271 		if (nr_cpus < 0) {
5272 			pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5273 				map->name, nr_cpus);
5274 			return nr_cpus;
5275 		}
5276 		pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5277 		map->def.max_entries = nr_cpus;
5278 	}
5279 
5280 	return 0;
5281 }
5282 
5283 static int
5284 bpf_object__create_maps(struct bpf_object *obj)
5285 {
5286 	struct bpf_map *map;
5287 	char *cp, errmsg[STRERR_BUFSIZE];
5288 	unsigned int i, j;
5289 	int err;
5290 	bool retried;
5291 
5292 	for (i = 0; i < obj->nr_maps; i++) {
5293 		map = &obj->maps[i];
5294 
5295 		/* To support old kernels, we skip creating global data maps
5296 		 * (.rodata, .data, .kconfig, etc); later on, during program
5297 		 * loading, if we detect that at least one of the to-be-loaded
5298 		 * programs is referencing any global data map, we'll error
5299 		 * out with program name and relocation index logged.
5300 		 * This approach allows to accommodate Clang emitting
5301 		 * unnecessary .rodata.str1.1 sections for string literals,
5302 		 * but also it allows to have CO-RE applications that use
5303 		 * global variables in some of BPF programs, but not others.
5304 		 * If those global variable-using programs are not loaded at
5305 		 * runtime due to bpf_program__set_autoload(prog, false),
5306 		 * bpf_object loading will succeed just fine even on old
5307 		 * kernels.
5308 		 */
5309 		if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5310 			map->autocreate = false;
5311 
5312 		if (!map->autocreate) {
5313 			pr_debug("map '%s': skipped auto-creating...\n", map->name);
5314 			continue;
5315 		}
5316 
5317 		err = map_set_def_max_entries(map);
5318 		if (err)
5319 			goto err_out;
5320 
5321 		retried = false;
5322 retry:
5323 		if (map->pin_path) {
5324 			err = bpf_object__reuse_map(map);
5325 			if (err) {
5326 				pr_warn("map '%s': error reusing pinned map\n",
5327 					map->name);
5328 				goto err_out;
5329 			}
5330 			if (retried && map->fd < 0) {
5331 				pr_warn("map '%s': cannot find pinned map\n",
5332 					map->name);
5333 				err = -ENOENT;
5334 				goto err_out;
5335 			}
5336 		}
5337 
5338 		if (map->reused) {
5339 			pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5340 				 map->name, map->fd);
5341 		} else {
5342 			err = bpf_object__create_map(obj, map, false);
5343 			if (err)
5344 				goto err_out;
5345 
5346 			pr_debug("map '%s': created successfully, fd=%d\n",
5347 				 map->name, map->fd);
5348 
5349 			if (bpf_map__is_internal(map)) {
5350 				err = bpf_object__populate_internal_map(obj, map);
5351 				if (err < 0)
5352 					goto err_out;
5353 			}
5354 			if (map->def.type == BPF_MAP_TYPE_ARENA) {
5355 				map->mmaped = mmap((void *)map->map_extra, bpf_map_mmap_sz(map),
5356 						   PROT_READ | PROT_WRITE,
5357 						   map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED,
5358 						   map->fd, 0);
5359 				if (map->mmaped == MAP_FAILED) {
5360 					err = -errno;
5361 					map->mmaped = NULL;
5362 					pr_warn("map '%s': failed to mmap arena: %d\n",
5363 						map->name, err);
5364 					return err;
5365 				}
5366 				if (obj->arena_data) {
5367 					memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz);
5368 					zfree(&obj->arena_data);
5369 				}
5370 			}
5371 			if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5372 				err = init_map_in_map_slots(obj, map);
5373 				if (err < 0)
5374 					goto err_out;
5375 			}
5376 		}
5377 
5378 		if (map->pin_path && !map->pinned) {
5379 			err = bpf_map__pin(map, NULL);
5380 			if (err) {
5381 				if (!retried && err == -EEXIST) {
5382 					retried = true;
5383 					goto retry;
5384 				}
5385 				pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5386 					map->name, map->pin_path, err);
5387 				goto err_out;
5388 			}
5389 		}
5390 	}
5391 
5392 	return 0;
5393 
5394 err_out:
5395 	cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5396 	pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5397 	pr_perm_msg(err);
5398 	for (j = 0; j < i; j++)
5399 		zclose(obj->maps[j].fd);
5400 	return err;
5401 }
5402 
5403 static bool bpf_core_is_flavor_sep(const char *s)
5404 {
5405 	/* check X___Y name pattern, where X and Y are not underscores */
5406 	return s[0] != '_' &&				      /* X */
5407 	       s[1] == '_' && s[2] == '_' && s[3] == '_' &&   /* ___ */
5408 	       s[4] != '_';				      /* Y */
5409 }
5410 
5411 /* Given 'some_struct_name___with_flavor' return the length of a name prefix
5412  * before last triple underscore. Struct name part after last triple
5413  * underscore is ignored by BPF CO-RE relocation during relocation matching.
5414  */
5415 size_t bpf_core_essential_name_len(const char *name)
5416 {
5417 	size_t n = strlen(name);
5418 	int i;
5419 
5420 	for (i = n - 5; i >= 0; i--) {
5421 		if (bpf_core_is_flavor_sep(name + i))
5422 			return i + 1;
5423 	}
5424 	return n;
5425 }
5426 
5427 void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5428 {
5429 	if (!cands)
5430 		return;
5431 
5432 	free(cands->cands);
5433 	free(cands);
5434 }
5435 
5436 int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5437 		       size_t local_essent_len,
5438 		       const struct btf *targ_btf,
5439 		       const char *targ_btf_name,
5440 		       int targ_start_id,
5441 		       struct bpf_core_cand_list *cands)
5442 {
5443 	struct bpf_core_cand *new_cands, *cand;
5444 	const struct btf_type *t, *local_t;
5445 	const char *targ_name, *local_name;
5446 	size_t targ_essent_len;
5447 	int n, i;
5448 
5449 	local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5450 	local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5451 
5452 	n = btf__type_cnt(targ_btf);
5453 	for (i = targ_start_id; i < n; i++) {
5454 		t = btf__type_by_id(targ_btf, i);
5455 		if (!btf_kind_core_compat(t, local_t))
5456 			continue;
5457 
5458 		targ_name = btf__name_by_offset(targ_btf, t->name_off);
5459 		if (str_is_empty(targ_name))
5460 			continue;
5461 
5462 		targ_essent_len = bpf_core_essential_name_len(targ_name);
5463 		if (targ_essent_len != local_essent_len)
5464 			continue;
5465 
5466 		if (strncmp(local_name, targ_name, local_essent_len) != 0)
5467 			continue;
5468 
5469 		pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5470 			 local_cand->id, btf_kind_str(local_t),
5471 			 local_name, i, btf_kind_str(t), targ_name,
5472 			 targ_btf_name);
5473 		new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5474 					      sizeof(*cands->cands));
5475 		if (!new_cands)
5476 			return -ENOMEM;
5477 
5478 		cand = &new_cands[cands->len];
5479 		cand->btf = targ_btf;
5480 		cand->id = i;
5481 
5482 		cands->cands = new_cands;
5483 		cands->len++;
5484 	}
5485 	return 0;
5486 }
5487 
5488 static int load_module_btfs(struct bpf_object *obj)
5489 {
5490 	struct bpf_btf_info info;
5491 	struct module_btf *mod_btf;
5492 	struct btf *btf;
5493 	char name[64];
5494 	__u32 id = 0, len;
5495 	int err, fd;
5496 
5497 	if (obj->btf_modules_loaded)
5498 		return 0;
5499 
5500 	if (obj->gen_loader)
5501 		return 0;
5502 
5503 	/* don't do this again, even if we find no module BTFs */
5504 	obj->btf_modules_loaded = true;
5505 
5506 	/* kernel too old to support module BTFs */
5507 	if (!kernel_supports(obj, FEAT_MODULE_BTF))
5508 		return 0;
5509 
5510 	while (true) {
5511 		err = bpf_btf_get_next_id(id, &id);
5512 		if (err && errno == ENOENT)
5513 			return 0;
5514 		if (err && errno == EPERM) {
5515 			pr_debug("skipping module BTFs loading, missing privileges\n");
5516 			return 0;
5517 		}
5518 		if (err) {
5519 			err = -errno;
5520 			pr_warn("failed to iterate BTF objects: %d\n", err);
5521 			return err;
5522 		}
5523 
5524 		fd = bpf_btf_get_fd_by_id(id);
5525 		if (fd < 0) {
5526 			if (errno == ENOENT)
5527 				continue; /* expected race: BTF was unloaded */
5528 			err = -errno;
5529 			pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5530 			return err;
5531 		}
5532 
5533 		len = sizeof(info);
5534 		memset(&info, 0, sizeof(info));
5535 		info.name = ptr_to_u64(name);
5536 		info.name_len = sizeof(name);
5537 
5538 		err = bpf_btf_get_info_by_fd(fd, &info, &len);
5539 		if (err) {
5540 			err = -errno;
5541 			pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5542 			goto err_out;
5543 		}
5544 
5545 		/* ignore non-module BTFs */
5546 		if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5547 			close(fd);
5548 			continue;
5549 		}
5550 
5551 		btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5552 		err = libbpf_get_error(btf);
5553 		if (err) {
5554 			pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5555 				name, id, err);
5556 			goto err_out;
5557 		}
5558 
5559 		err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5560 					sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5561 		if (err)
5562 			goto err_out;
5563 
5564 		mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5565 
5566 		mod_btf->btf = btf;
5567 		mod_btf->id = id;
5568 		mod_btf->fd = fd;
5569 		mod_btf->name = strdup(name);
5570 		if (!mod_btf->name) {
5571 			err = -ENOMEM;
5572 			goto err_out;
5573 		}
5574 		continue;
5575 
5576 err_out:
5577 		close(fd);
5578 		return err;
5579 	}
5580 
5581 	return 0;
5582 }
5583 
5584 static struct bpf_core_cand_list *
5585 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5586 {
5587 	struct bpf_core_cand local_cand = {};
5588 	struct bpf_core_cand_list *cands;
5589 	const struct btf *main_btf;
5590 	const struct btf_type *local_t;
5591 	const char *local_name;
5592 	size_t local_essent_len;
5593 	int err, i;
5594 
5595 	local_cand.btf = local_btf;
5596 	local_cand.id = local_type_id;
5597 	local_t = btf__type_by_id(local_btf, local_type_id);
5598 	if (!local_t)
5599 		return ERR_PTR(-EINVAL);
5600 
5601 	local_name = btf__name_by_offset(local_btf, local_t->name_off);
5602 	if (str_is_empty(local_name))
5603 		return ERR_PTR(-EINVAL);
5604 	local_essent_len = bpf_core_essential_name_len(local_name);
5605 
5606 	cands = calloc(1, sizeof(*cands));
5607 	if (!cands)
5608 		return ERR_PTR(-ENOMEM);
5609 
5610 	/* Attempt to find target candidates in vmlinux BTF first */
5611 	main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5612 	err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5613 	if (err)
5614 		goto err_out;
5615 
5616 	/* if vmlinux BTF has any candidate, don't got for module BTFs */
5617 	if (cands->len)
5618 		return cands;
5619 
5620 	/* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5621 	if (obj->btf_vmlinux_override)
5622 		return cands;
5623 
5624 	/* now look through module BTFs, trying to still find candidates */
5625 	err = load_module_btfs(obj);
5626 	if (err)
5627 		goto err_out;
5628 
5629 	for (i = 0; i < obj->btf_module_cnt; i++) {
5630 		err = bpf_core_add_cands(&local_cand, local_essent_len,
5631 					 obj->btf_modules[i].btf,
5632 					 obj->btf_modules[i].name,
5633 					 btf__type_cnt(obj->btf_vmlinux),
5634 					 cands);
5635 		if (err)
5636 			goto err_out;
5637 	}
5638 
5639 	return cands;
5640 err_out:
5641 	bpf_core_free_cands(cands);
5642 	return ERR_PTR(err);
5643 }
5644 
5645 /* Check local and target types for compatibility. This check is used for
5646  * type-based CO-RE relocations and follow slightly different rules than
5647  * field-based relocations. This function assumes that root types were already
5648  * checked for name match. Beyond that initial root-level name check, names
5649  * are completely ignored. Compatibility rules are as follows:
5650  *   - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5651  *     kind should match for local and target types (i.e., STRUCT is not
5652  *     compatible with UNION);
5653  *   - for ENUMs, the size is ignored;
5654  *   - for INT, size and signedness are ignored;
5655  *   - for ARRAY, dimensionality is ignored, element types are checked for
5656  *     compatibility recursively;
5657  *   - CONST/VOLATILE/RESTRICT modifiers are ignored;
5658  *   - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5659  *   - FUNC_PROTOs are compatible if they have compatible signature: same
5660  *     number of input args and compatible return and argument types.
5661  * These rules are not set in stone and probably will be adjusted as we get
5662  * more experience with using BPF CO-RE relocations.
5663  */
5664 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5665 			      const struct btf *targ_btf, __u32 targ_id)
5666 {
5667 	return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5668 }
5669 
5670 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5671 			 const struct btf *targ_btf, __u32 targ_id)
5672 {
5673 	return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5674 }
5675 
5676 static size_t bpf_core_hash_fn(const long key, void *ctx)
5677 {
5678 	return key;
5679 }
5680 
5681 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5682 {
5683 	return k1 == k2;
5684 }
5685 
5686 static int record_relo_core(struct bpf_program *prog,
5687 			    const struct bpf_core_relo *core_relo, int insn_idx)
5688 {
5689 	struct reloc_desc *relos, *relo;
5690 
5691 	relos = libbpf_reallocarray(prog->reloc_desc,
5692 				    prog->nr_reloc + 1, sizeof(*relos));
5693 	if (!relos)
5694 		return -ENOMEM;
5695 	relo = &relos[prog->nr_reloc];
5696 	relo->type = RELO_CORE;
5697 	relo->insn_idx = insn_idx;
5698 	relo->core_relo = core_relo;
5699 	prog->reloc_desc = relos;
5700 	prog->nr_reloc++;
5701 	return 0;
5702 }
5703 
5704 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5705 {
5706 	struct reloc_desc *relo;
5707 	int i;
5708 
5709 	for (i = 0; i < prog->nr_reloc; i++) {
5710 		relo = &prog->reloc_desc[i];
5711 		if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5712 			continue;
5713 
5714 		return relo->core_relo;
5715 	}
5716 
5717 	return NULL;
5718 }
5719 
5720 static int bpf_core_resolve_relo(struct bpf_program *prog,
5721 				 const struct bpf_core_relo *relo,
5722 				 int relo_idx,
5723 				 const struct btf *local_btf,
5724 				 struct hashmap *cand_cache,
5725 				 struct bpf_core_relo_res *targ_res)
5726 {
5727 	struct bpf_core_spec specs_scratch[3] = {};
5728 	struct bpf_core_cand_list *cands = NULL;
5729 	const char *prog_name = prog->name;
5730 	const struct btf_type *local_type;
5731 	const char *local_name;
5732 	__u32 local_id = relo->type_id;
5733 	int err;
5734 
5735 	local_type = btf__type_by_id(local_btf, local_id);
5736 	if (!local_type)
5737 		return -EINVAL;
5738 
5739 	local_name = btf__name_by_offset(local_btf, local_type->name_off);
5740 	if (!local_name)
5741 		return -EINVAL;
5742 
5743 	if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5744 	    !hashmap__find(cand_cache, local_id, &cands)) {
5745 		cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5746 		if (IS_ERR(cands)) {
5747 			pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5748 				prog_name, relo_idx, local_id, btf_kind_str(local_type),
5749 				local_name, PTR_ERR(cands));
5750 			return PTR_ERR(cands);
5751 		}
5752 		err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5753 		if (err) {
5754 			bpf_core_free_cands(cands);
5755 			return err;
5756 		}
5757 	}
5758 
5759 	return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5760 				       targ_res);
5761 }
5762 
5763 static int
5764 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5765 {
5766 	const struct btf_ext_info_sec *sec;
5767 	struct bpf_core_relo_res targ_res;
5768 	const struct bpf_core_relo *rec;
5769 	const struct btf_ext_info *seg;
5770 	struct hashmap_entry *entry;
5771 	struct hashmap *cand_cache = NULL;
5772 	struct bpf_program *prog;
5773 	struct bpf_insn *insn;
5774 	const char *sec_name;
5775 	int i, err = 0, insn_idx, sec_idx, sec_num;
5776 
5777 	if (obj->btf_ext->core_relo_info.len == 0)
5778 		return 0;
5779 
5780 	if (targ_btf_path) {
5781 		obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5782 		err = libbpf_get_error(obj->btf_vmlinux_override);
5783 		if (err) {
5784 			pr_warn("failed to parse target BTF: %d\n", err);
5785 			return err;
5786 		}
5787 	}
5788 
5789 	cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5790 	if (IS_ERR(cand_cache)) {
5791 		err = PTR_ERR(cand_cache);
5792 		goto out;
5793 	}
5794 
5795 	seg = &obj->btf_ext->core_relo_info;
5796 	sec_num = 0;
5797 	for_each_btf_ext_sec(seg, sec) {
5798 		sec_idx = seg->sec_idxs[sec_num];
5799 		sec_num++;
5800 
5801 		sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5802 		if (str_is_empty(sec_name)) {
5803 			err = -EINVAL;
5804 			goto out;
5805 		}
5806 
5807 		pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5808 
5809 		for_each_btf_ext_rec(seg, sec, i, rec) {
5810 			if (rec->insn_off % BPF_INSN_SZ)
5811 				return -EINVAL;
5812 			insn_idx = rec->insn_off / BPF_INSN_SZ;
5813 			prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5814 			if (!prog) {
5815 				/* When __weak subprog is "overridden" by another instance
5816 				 * of the subprog from a different object file, linker still
5817 				 * appends all the .BTF.ext info that used to belong to that
5818 				 * eliminated subprogram.
5819 				 * This is similar to what x86-64 linker does for relocations.
5820 				 * So just ignore such relocations just like we ignore
5821 				 * subprog instructions when discovering subprograms.
5822 				 */
5823 				pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5824 					 sec_name, i, insn_idx);
5825 				continue;
5826 			}
5827 			/* no need to apply CO-RE relocation if the program is
5828 			 * not going to be loaded
5829 			 */
5830 			if (!prog->autoload)
5831 				continue;
5832 
5833 			/* adjust insn_idx from section frame of reference to the local
5834 			 * program's frame of reference; (sub-)program code is not yet
5835 			 * relocated, so it's enough to just subtract in-section offset
5836 			 */
5837 			insn_idx = insn_idx - prog->sec_insn_off;
5838 			if (insn_idx >= prog->insns_cnt)
5839 				return -EINVAL;
5840 			insn = &prog->insns[insn_idx];
5841 
5842 			err = record_relo_core(prog, rec, insn_idx);
5843 			if (err) {
5844 				pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5845 					prog->name, i, err);
5846 				goto out;
5847 			}
5848 
5849 			if (prog->obj->gen_loader)
5850 				continue;
5851 
5852 			err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5853 			if (err) {
5854 				pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5855 					prog->name, i, err);
5856 				goto out;
5857 			}
5858 
5859 			err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5860 			if (err) {
5861 				pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5862 					prog->name, i, insn_idx, err);
5863 				goto out;
5864 			}
5865 		}
5866 	}
5867 
5868 out:
5869 	/* obj->btf_vmlinux and module BTFs are freed after object load */
5870 	btf__free(obj->btf_vmlinux_override);
5871 	obj->btf_vmlinux_override = NULL;
5872 
5873 	if (!IS_ERR_OR_NULL(cand_cache)) {
5874 		hashmap__for_each_entry(cand_cache, entry, i) {
5875 			bpf_core_free_cands(entry->pvalue);
5876 		}
5877 		hashmap__free(cand_cache);
5878 	}
5879 	return err;
5880 }
5881 
5882 /* base map load ldimm64 special constant, used also for log fixup logic */
5883 #define POISON_LDIMM64_MAP_BASE 2001000000
5884 #define POISON_LDIMM64_MAP_PFX "200100"
5885 
5886 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5887 			       int insn_idx, struct bpf_insn *insn,
5888 			       int map_idx, const struct bpf_map *map)
5889 {
5890 	int i;
5891 
5892 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5893 		 prog->name, relo_idx, insn_idx, map_idx, map->name);
5894 
5895 	/* we turn single ldimm64 into two identical invalid calls */
5896 	for (i = 0; i < 2; i++) {
5897 		insn->code = BPF_JMP | BPF_CALL;
5898 		insn->dst_reg = 0;
5899 		insn->src_reg = 0;
5900 		insn->off = 0;
5901 		/* if this instruction is reachable (not a dead code),
5902 		 * verifier will complain with something like:
5903 		 * invalid func unknown#2001000123
5904 		 * where lower 123 is map index into obj->maps[] array
5905 		 */
5906 		insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5907 
5908 		insn++;
5909 	}
5910 }
5911 
5912 /* unresolved kfunc call special constant, used also for log fixup logic */
5913 #define POISON_CALL_KFUNC_BASE 2002000000
5914 #define POISON_CALL_KFUNC_PFX "2002"
5915 
5916 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5917 			      int insn_idx, struct bpf_insn *insn,
5918 			      int ext_idx, const struct extern_desc *ext)
5919 {
5920 	pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5921 		 prog->name, relo_idx, insn_idx, ext->name);
5922 
5923 	/* we turn kfunc call into invalid helper call with identifiable constant */
5924 	insn->code = BPF_JMP | BPF_CALL;
5925 	insn->dst_reg = 0;
5926 	insn->src_reg = 0;
5927 	insn->off = 0;
5928 	/* if this instruction is reachable (not a dead code),
5929 	 * verifier will complain with something like:
5930 	 * invalid func unknown#2001000123
5931 	 * where lower 123 is extern index into obj->externs[] array
5932 	 */
5933 	insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5934 }
5935 
5936 /* Relocate data references within program code:
5937  *  - map references;
5938  *  - global variable references;
5939  *  - extern references.
5940  */
5941 static int
5942 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5943 {
5944 	int i;
5945 
5946 	for (i = 0; i < prog->nr_reloc; i++) {
5947 		struct reloc_desc *relo = &prog->reloc_desc[i];
5948 		struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5949 		const struct bpf_map *map;
5950 		struct extern_desc *ext;
5951 
5952 		switch (relo->type) {
5953 		case RELO_LD64:
5954 			map = &obj->maps[relo->map_idx];
5955 			if (obj->gen_loader) {
5956 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5957 				insn[0].imm = relo->map_idx;
5958 			} else if (map->autocreate) {
5959 				insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5960 				insn[0].imm = map->fd;
5961 			} else {
5962 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5963 						   relo->map_idx, map);
5964 			}
5965 			break;
5966 		case RELO_DATA:
5967 			map = &obj->maps[relo->map_idx];
5968 			insn[1].imm = insn[0].imm + relo->sym_off;
5969 			if (obj->gen_loader) {
5970 				insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5971 				insn[0].imm = relo->map_idx;
5972 			} else if (map->autocreate) {
5973 				insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5974 				insn[0].imm = map->fd;
5975 			} else {
5976 				poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5977 						   relo->map_idx, map);
5978 			}
5979 			break;
5980 		case RELO_EXTERN_LD64:
5981 			ext = &obj->externs[relo->ext_idx];
5982 			if (ext->type == EXT_KCFG) {
5983 				if (obj->gen_loader) {
5984 					insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5985 					insn[0].imm = obj->kconfig_map_idx;
5986 				} else {
5987 					insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5988 					insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5989 				}
5990 				insn[1].imm = ext->kcfg.data_off;
5991 			} else /* EXT_KSYM */ {
5992 				if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5993 					insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5994 					insn[0].imm = ext->ksym.kernel_btf_id;
5995 					insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5996 				} else { /* typeless ksyms or unresolved typed ksyms */
5997 					insn[0].imm = (__u32)ext->ksym.addr;
5998 					insn[1].imm = ext->ksym.addr >> 32;
5999 				}
6000 			}
6001 			break;
6002 		case RELO_EXTERN_CALL:
6003 			ext = &obj->externs[relo->ext_idx];
6004 			insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
6005 			if (ext->is_set) {
6006 				insn[0].imm = ext->ksym.kernel_btf_id;
6007 				insn[0].off = ext->ksym.btf_fd_idx;
6008 			} else { /* unresolved weak kfunc call */
6009 				poison_kfunc_call(prog, i, relo->insn_idx, insn,
6010 						  relo->ext_idx, ext);
6011 			}
6012 			break;
6013 		case RELO_SUBPROG_ADDR:
6014 			if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
6015 				pr_warn("prog '%s': relo #%d: bad insn\n",
6016 					prog->name, i);
6017 				return -EINVAL;
6018 			}
6019 			/* handled already */
6020 			break;
6021 		case RELO_CALL:
6022 			/* handled already */
6023 			break;
6024 		case RELO_CORE:
6025 			/* will be handled by bpf_program_record_relos() */
6026 			break;
6027 		default:
6028 			pr_warn("prog '%s': relo #%d: bad relo type %d\n",
6029 				prog->name, i, relo->type);
6030 			return -EINVAL;
6031 		}
6032 	}
6033 
6034 	return 0;
6035 }
6036 
6037 static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
6038 				    const struct bpf_program *prog,
6039 				    const struct btf_ext_info *ext_info,
6040 				    void **prog_info, __u32 *prog_rec_cnt,
6041 				    __u32 *prog_rec_sz)
6042 {
6043 	void *copy_start = NULL, *copy_end = NULL;
6044 	void *rec, *rec_end, *new_prog_info;
6045 	const struct btf_ext_info_sec *sec;
6046 	size_t old_sz, new_sz;
6047 	int i, sec_num, sec_idx, off_adj;
6048 
6049 	sec_num = 0;
6050 	for_each_btf_ext_sec(ext_info, sec) {
6051 		sec_idx = ext_info->sec_idxs[sec_num];
6052 		sec_num++;
6053 		if (prog->sec_idx != sec_idx)
6054 			continue;
6055 
6056 		for_each_btf_ext_rec(ext_info, sec, i, rec) {
6057 			__u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
6058 
6059 			if (insn_off < prog->sec_insn_off)
6060 				continue;
6061 			if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
6062 				break;
6063 
6064 			if (!copy_start)
6065 				copy_start = rec;
6066 			copy_end = rec + ext_info->rec_size;
6067 		}
6068 
6069 		if (!copy_start)
6070 			return -ENOENT;
6071 
6072 		/* append func/line info of a given (sub-)program to the main
6073 		 * program func/line info
6074 		 */
6075 		old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6076 		new_sz = old_sz + (copy_end - copy_start);
6077 		new_prog_info = realloc(*prog_info, new_sz);
6078 		if (!new_prog_info)
6079 			return -ENOMEM;
6080 		*prog_info = new_prog_info;
6081 		*prog_rec_cnt = new_sz / ext_info->rec_size;
6082 		memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6083 
6084 		/* Kernel instruction offsets are in units of 8-byte
6085 		 * instructions, while .BTF.ext instruction offsets generated
6086 		 * by Clang are in units of bytes. So convert Clang offsets
6087 		 * into kernel offsets and adjust offset according to program
6088 		 * relocated position.
6089 		 */
6090 		off_adj = prog->sub_insn_off - prog->sec_insn_off;
6091 		rec = new_prog_info + old_sz;
6092 		rec_end = new_prog_info + new_sz;
6093 		for (; rec < rec_end; rec += ext_info->rec_size) {
6094 			__u32 *insn_off = rec;
6095 
6096 			*insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6097 		}
6098 		*prog_rec_sz = ext_info->rec_size;
6099 		return 0;
6100 	}
6101 
6102 	return -ENOENT;
6103 }
6104 
6105 static int
6106 reloc_prog_func_and_line_info(const struct bpf_object *obj,
6107 			      struct bpf_program *main_prog,
6108 			      const struct bpf_program *prog)
6109 {
6110 	int err;
6111 
6112 	/* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6113 	 * support func/line info
6114 	 */
6115 	if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6116 		return 0;
6117 
6118 	/* only attempt func info relocation if main program's func_info
6119 	 * relocation was successful
6120 	 */
6121 	if (main_prog != prog && !main_prog->func_info)
6122 		goto line_info;
6123 
6124 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6125 				       &main_prog->func_info,
6126 				       &main_prog->func_info_cnt,
6127 				       &main_prog->func_info_rec_size);
6128 	if (err) {
6129 		if (err != -ENOENT) {
6130 			pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6131 				prog->name, err);
6132 			return err;
6133 		}
6134 		if (main_prog->func_info) {
6135 			/*
6136 			 * Some info has already been found but has problem
6137 			 * in the last btf_ext reloc. Must have to error out.
6138 			 */
6139 			pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6140 			return err;
6141 		}
6142 		/* Have problem loading the very first info. Ignore the rest. */
6143 		pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6144 			prog->name);
6145 	}
6146 
6147 line_info:
6148 	/* don't relocate line info if main program's relocation failed */
6149 	if (main_prog != prog && !main_prog->line_info)
6150 		return 0;
6151 
6152 	err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6153 				       &main_prog->line_info,
6154 				       &main_prog->line_info_cnt,
6155 				       &main_prog->line_info_rec_size);
6156 	if (err) {
6157 		if (err != -ENOENT) {
6158 			pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6159 				prog->name, err);
6160 			return err;
6161 		}
6162 		if (main_prog->line_info) {
6163 			/*
6164 			 * Some info has already been found but has problem
6165 			 * in the last btf_ext reloc. Must have to error out.
6166 			 */
6167 			pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6168 			return err;
6169 		}
6170 		/* Have problem loading the very first info. Ignore the rest. */
6171 		pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6172 			prog->name);
6173 	}
6174 	return 0;
6175 }
6176 
6177 static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6178 {
6179 	size_t insn_idx = *(const size_t *)key;
6180 	const struct reloc_desc *relo = elem;
6181 
6182 	if (insn_idx == relo->insn_idx)
6183 		return 0;
6184 	return insn_idx < relo->insn_idx ? -1 : 1;
6185 }
6186 
6187 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6188 {
6189 	if (!prog->nr_reloc)
6190 		return NULL;
6191 	return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6192 		       sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6193 }
6194 
6195 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6196 {
6197 	int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6198 	struct reloc_desc *relos;
6199 	int i;
6200 
6201 	if (main_prog == subprog)
6202 		return 0;
6203 	relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6204 	/* if new count is zero, reallocarray can return a valid NULL result;
6205 	 * in this case the previous pointer will be freed, so we *have to*
6206 	 * reassign old pointer to the new value (even if it's NULL)
6207 	 */
6208 	if (!relos && new_cnt)
6209 		return -ENOMEM;
6210 	if (subprog->nr_reloc)
6211 		memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6212 		       sizeof(*relos) * subprog->nr_reloc);
6213 
6214 	for (i = main_prog->nr_reloc; i < new_cnt; i++)
6215 		relos[i].insn_idx += subprog->sub_insn_off;
6216 	/* After insn_idx adjustment the 'relos' array is still sorted
6217 	 * by insn_idx and doesn't break bsearch.
6218 	 */
6219 	main_prog->reloc_desc = relos;
6220 	main_prog->nr_reloc = new_cnt;
6221 	return 0;
6222 }
6223 
6224 static int
6225 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog,
6226 				struct bpf_program *subprog)
6227 {
6228        struct bpf_insn *insns;
6229        size_t new_cnt;
6230        int err;
6231 
6232        subprog->sub_insn_off = main_prog->insns_cnt;
6233 
6234        new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6235        insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6236        if (!insns) {
6237                pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6238                return -ENOMEM;
6239        }
6240        main_prog->insns = insns;
6241        main_prog->insns_cnt = new_cnt;
6242 
6243        memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6244               subprog->insns_cnt * sizeof(*insns));
6245 
6246        pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6247                 main_prog->name, subprog->insns_cnt, subprog->name);
6248 
6249        /* The subprog insns are now appended. Append its relos too. */
6250        err = append_subprog_relos(main_prog, subprog);
6251        if (err)
6252                return err;
6253        return 0;
6254 }
6255 
6256 static int
6257 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6258 		       struct bpf_program *prog)
6259 {
6260 	size_t sub_insn_idx, insn_idx;
6261 	struct bpf_program *subprog;
6262 	struct reloc_desc *relo;
6263 	struct bpf_insn *insn;
6264 	int err;
6265 
6266 	err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6267 	if (err)
6268 		return err;
6269 
6270 	for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6271 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6272 		if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6273 			continue;
6274 
6275 		relo = find_prog_insn_relo(prog, insn_idx);
6276 		if (relo && relo->type == RELO_EXTERN_CALL)
6277 			/* kfunc relocations will be handled later
6278 			 * in bpf_object__relocate_data()
6279 			 */
6280 			continue;
6281 		if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6282 			pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6283 				prog->name, insn_idx, relo->type);
6284 			return -LIBBPF_ERRNO__RELOC;
6285 		}
6286 		if (relo) {
6287 			/* sub-program instruction index is a combination of
6288 			 * an offset of a symbol pointed to by relocation and
6289 			 * call instruction's imm field; for global functions,
6290 			 * call always has imm = -1, but for static functions
6291 			 * relocation is against STT_SECTION and insn->imm
6292 			 * points to a start of a static function
6293 			 *
6294 			 * for subprog addr relocation, the relo->sym_off + insn->imm is
6295 			 * the byte offset in the corresponding section.
6296 			 */
6297 			if (relo->type == RELO_CALL)
6298 				sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6299 			else
6300 				sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6301 		} else if (insn_is_pseudo_func(insn)) {
6302 			/*
6303 			 * RELO_SUBPROG_ADDR relo is always emitted even if both
6304 			 * functions are in the same section, so it shouldn't reach here.
6305 			 */
6306 			pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6307 				prog->name, insn_idx);
6308 			return -LIBBPF_ERRNO__RELOC;
6309 		} else {
6310 			/* if subprogram call is to a static function within
6311 			 * the same ELF section, there won't be any relocation
6312 			 * emitted, but it also means there is no additional
6313 			 * offset necessary, insns->imm is relative to
6314 			 * instruction's original position within the section
6315 			 */
6316 			sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6317 		}
6318 
6319 		/* we enforce that sub-programs should be in .text section */
6320 		subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6321 		if (!subprog) {
6322 			pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6323 				prog->name);
6324 			return -LIBBPF_ERRNO__RELOC;
6325 		}
6326 
6327 		/* if it's the first call instruction calling into this
6328 		 * subprogram (meaning this subprog hasn't been processed
6329 		 * yet) within the context of current main program:
6330 		 *   - append it at the end of main program's instructions blog;
6331 		 *   - process is recursively, while current program is put on hold;
6332 		 *   - if that subprogram calls some other not yet processes
6333 		 *   subprogram, same thing will happen recursively until
6334 		 *   there are no more unprocesses subprograms left to append
6335 		 *   and relocate.
6336 		 */
6337 		if (subprog->sub_insn_off == 0) {
6338 			err = bpf_object__append_subprog_code(obj, main_prog, subprog);
6339 			if (err)
6340 				return err;
6341 			err = bpf_object__reloc_code(obj, main_prog, subprog);
6342 			if (err)
6343 				return err;
6344 		}
6345 
6346 		/* main_prog->insns memory could have been re-allocated, so
6347 		 * calculate pointer again
6348 		 */
6349 		insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6350 		/* calculate correct instruction position within current main
6351 		 * prog; each main prog can have a different set of
6352 		 * subprograms appended (potentially in different order as
6353 		 * well), so position of any subprog can be different for
6354 		 * different main programs
6355 		 */
6356 		insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6357 
6358 		pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6359 			 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6360 	}
6361 
6362 	return 0;
6363 }
6364 
6365 /*
6366  * Relocate sub-program calls.
6367  *
6368  * Algorithm operates as follows. Each entry-point BPF program (referred to as
6369  * main prog) is processed separately. For each subprog (non-entry functions,
6370  * that can be called from either entry progs or other subprogs) gets their
6371  * sub_insn_off reset to zero. This serves as indicator that this subprogram
6372  * hasn't been yet appended and relocated within current main prog. Once its
6373  * relocated, sub_insn_off will point at the position within current main prog
6374  * where given subprog was appended. This will further be used to relocate all
6375  * the call instructions jumping into this subprog.
6376  *
6377  * We start with main program and process all call instructions. If the call
6378  * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6379  * is zero), subprog instructions are appended at the end of main program's
6380  * instruction array. Then main program is "put on hold" while we recursively
6381  * process newly appended subprogram. If that subprogram calls into another
6382  * subprogram that hasn't been appended, new subprogram is appended again to
6383  * the *main* prog's instructions (subprog's instructions are always left
6384  * untouched, as they need to be in unmodified state for subsequent main progs
6385  * and subprog instructions are always sent only as part of a main prog) and
6386  * the process continues recursively. Once all the subprogs called from a main
6387  * prog or any of its subprogs are appended (and relocated), all their
6388  * positions within finalized instructions array are known, so it's easy to
6389  * rewrite call instructions with correct relative offsets, corresponding to
6390  * desired target subprog.
6391  *
6392  * Its important to realize that some subprogs might not be called from some
6393  * main prog and any of its called/used subprogs. Those will keep their
6394  * subprog->sub_insn_off as zero at all times and won't be appended to current
6395  * main prog and won't be relocated within the context of current main prog.
6396  * They might still be used from other main progs later.
6397  *
6398  * Visually this process can be shown as below. Suppose we have two main
6399  * programs mainA and mainB and BPF object contains three subprogs: subA,
6400  * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6401  * subC both call subB:
6402  *
6403  *        +--------+ +-------+
6404  *        |        v v       |
6405  *     +--+---+ +--+-+-+ +---+--+
6406  *     | subA | | subB | | subC |
6407  *     +--+---+ +------+ +---+--+
6408  *        ^                  ^
6409  *        |                  |
6410  *    +---+-------+   +------+----+
6411  *    |   mainA   |   |   mainB   |
6412  *    +-----------+   +-----------+
6413  *
6414  * We'll start relocating mainA, will find subA, append it and start
6415  * processing sub A recursively:
6416  *
6417  *    +-----------+------+
6418  *    |   mainA   | subA |
6419  *    +-----------+------+
6420  *
6421  * At this point we notice that subB is used from subA, so we append it and
6422  * relocate (there are no further subcalls from subB):
6423  *
6424  *    +-----------+------+------+
6425  *    |   mainA   | subA | subB |
6426  *    +-----------+------+------+
6427  *
6428  * At this point, we relocate subA calls, then go one level up and finish with
6429  * relocatin mainA calls. mainA is done.
6430  *
6431  * For mainB process is similar but results in different order. We start with
6432  * mainB and skip subA and subB, as mainB never calls them (at least
6433  * directly), but we see subC is needed, so we append and start processing it:
6434  *
6435  *    +-----------+------+
6436  *    |   mainB   | subC |
6437  *    +-----------+------+
6438  * Now we see subC needs subB, so we go back to it, append and relocate it:
6439  *
6440  *    +-----------+------+------+
6441  *    |   mainB   | subC | subB |
6442  *    +-----------+------+------+
6443  *
6444  * At this point we unwind recursion, relocate calls in subC, then in mainB.
6445  */
6446 static int
6447 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6448 {
6449 	struct bpf_program *subprog;
6450 	int i, err;
6451 
6452 	/* mark all subprogs as not relocated (yet) within the context of
6453 	 * current main program
6454 	 */
6455 	for (i = 0; i < obj->nr_programs; i++) {
6456 		subprog = &obj->programs[i];
6457 		if (!prog_is_subprog(obj, subprog))
6458 			continue;
6459 
6460 		subprog->sub_insn_off = 0;
6461 	}
6462 
6463 	err = bpf_object__reloc_code(obj, prog, prog);
6464 	if (err)
6465 		return err;
6466 
6467 	return 0;
6468 }
6469 
6470 static void
6471 bpf_object__free_relocs(struct bpf_object *obj)
6472 {
6473 	struct bpf_program *prog;
6474 	int i;
6475 
6476 	/* free up relocation descriptors */
6477 	for (i = 0; i < obj->nr_programs; i++) {
6478 		prog = &obj->programs[i];
6479 		zfree(&prog->reloc_desc);
6480 		prog->nr_reloc = 0;
6481 	}
6482 }
6483 
6484 static int cmp_relocs(const void *_a, const void *_b)
6485 {
6486 	const struct reloc_desc *a = _a;
6487 	const struct reloc_desc *b = _b;
6488 
6489 	if (a->insn_idx != b->insn_idx)
6490 		return a->insn_idx < b->insn_idx ? -1 : 1;
6491 
6492 	/* no two relocations should have the same insn_idx, but ... */
6493 	if (a->type != b->type)
6494 		return a->type < b->type ? -1 : 1;
6495 
6496 	return 0;
6497 }
6498 
6499 static void bpf_object__sort_relos(struct bpf_object *obj)
6500 {
6501 	int i;
6502 
6503 	for (i = 0; i < obj->nr_programs; i++) {
6504 		struct bpf_program *p = &obj->programs[i];
6505 
6506 		if (!p->nr_reloc)
6507 			continue;
6508 
6509 		qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6510 	}
6511 }
6512 
6513 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog)
6514 {
6515 	const char *str = "exception_callback:";
6516 	size_t pfx_len = strlen(str);
6517 	int i, j, n;
6518 
6519 	if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG))
6520 		return 0;
6521 
6522 	n = btf__type_cnt(obj->btf);
6523 	for (i = 1; i < n; i++) {
6524 		const char *name;
6525 		struct btf_type *t;
6526 
6527 		t = btf_type_by_id(obj->btf, i);
6528 		if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1)
6529 			continue;
6530 
6531 		name = btf__str_by_offset(obj->btf, t->name_off);
6532 		if (strncmp(name, str, pfx_len) != 0)
6533 			continue;
6534 
6535 		t = btf_type_by_id(obj->btf, t->type);
6536 		if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) {
6537 			pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n",
6538 				prog->name);
6539 			return -EINVAL;
6540 		}
6541 		if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0)
6542 			continue;
6543 		/* Multiple callbacks are specified for the same prog,
6544 		 * the verifier will eventually return an error for this
6545 		 * case, hence simply skip appending a subprog.
6546 		 */
6547 		if (prog->exception_cb_idx >= 0) {
6548 			prog->exception_cb_idx = -1;
6549 			break;
6550 		}
6551 
6552 		name += pfx_len;
6553 		if (str_is_empty(name)) {
6554 			pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n",
6555 				prog->name);
6556 			return -EINVAL;
6557 		}
6558 
6559 		for (j = 0; j < obj->nr_programs; j++) {
6560 			struct bpf_program *subprog = &obj->programs[j];
6561 
6562 			if (!prog_is_subprog(obj, subprog))
6563 				continue;
6564 			if (strcmp(name, subprog->name) != 0)
6565 				continue;
6566 			/* Enforce non-hidden, as from verifier point of
6567 			 * view it expects global functions, whereas the
6568 			 * mark_btf_static fixes up linkage as static.
6569 			 */
6570 			if (!subprog->sym_global || subprog->mark_btf_static) {
6571 				pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n",
6572 					prog->name, subprog->name);
6573 				return -EINVAL;
6574 			}
6575 			/* Let's see if we already saw a static exception callback with the same name */
6576 			if (prog->exception_cb_idx >= 0) {
6577 				pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n",
6578 					prog->name, subprog->name);
6579 				return -EINVAL;
6580 			}
6581 			prog->exception_cb_idx = j;
6582 			break;
6583 		}
6584 
6585 		if (prog->exception_cb_idx >= 0)
6586 			continue;
6587 
6588 		pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name);
6589 		return -ENOENT;
6590 	}
6591 
6592 	return 0;
6593 }
6594 
6595 static struct {
6596 	enum bpf_prog_type prog_type;
6597 	const char *ctx_name;
6598 } global_ctx_map[] = {
6599 	{ BPF_PROG_TYPE_CGROUP_DEVICE,           "bpf_cgroup_dev_ctx" },
6600 	{ BPF_PROG_TYPE_CGROUP_SKB,              "__sk_buff" },
6601 	{ BPF_PROG_TYPE_CGROUP_SOCK,             "bpf_sock" },
6602 	{ BPF_PROG_TYPE_CGROUP_SOCK_ADDR,        "bpf_sock_addr" },
6603 	{ BPF_PROG_TYPE_CGROUP_SOCKOPT,          "bpf_sockopt" },
6604 	{ BPF_PROG_TYPE_CGROUP_SYSCTL,           "bpf_sysctl" },
6605 	{ BPF_PROG_TYPE_FLOW_DISSECTOR,          "__sk_buff" },
6606 	{ BPF_PROG_TYPE_KPROBE,                  "bpf_user_pt_regs_t" },
6607 	{ BPF_PROG_TYPE_LWT_IN,                  "__sk_buff" },
6608 	{ BPF_PROG_TYPE_LWT_OUT,                 "__sk_buff" },
6609 	{ BPF_PROG_TYPE_LWT_SEG6LOCAL,           "__sk_buff" },
6610 	{ BPF_PROG_TYPE_LWT_XMIT,                "__sk_buff" },
6611 	{ BPF_PROG_TYPE_NETFILTER,               "bpf_nf_ctx" },
6612 	{ BPF_PROG_TYPE_PERF_EVENT,              "bpf_perf_event_data" },
6613 	{ BPF_PROG_TYPE_RAW_TRACEPOINT,          "bpf_raw_tracepoint_args" },
6614 	{ BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" },
6615 	{ BPF_PROG_TYPE_SCHED_ACT,               "__sk_buff" },
6616 	{ BPF_PROG_TYPE_SCHED_CLS,               "__sk_buff" },
6617 	{ BPF_PROG_TYPE_SK_LOOKUP,               "bpf_sk_lookup" },
6618 	{ BPF_PROG_TYPE_SK_MSG,                  "sk_msg_md" },
6619 	{ BPF_PROG_TYPE_SK_REUSEPORT,            "sk_reuseport_md" },
6620 	{ BPF_PROG_TYPE_SK_SKB,                  "__sk_buff" },
6621 	{ BPF_PROG_TYPE_SOCK_OPS,                "bpf_sock_ops" },
6622 	{ BPF_PROG_TYPE_SOCKET_FILTER,           "__sk_buff" },
6623 	{ BPF_PROG_TYPE_XDP,                     "xdp_md" },
6624 	/* all other program types don't have "named" context structs */
6625 };
6626 
6627 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef,
6628  * for below __builtin_types_compatible_p() checks;
6629  * with this approach we don't need any extra arch-specific #ifdef guards
6630  */
6631 struct pt_regs;
6632 struct user_pt_regs;
6633 struct user_regs_struct;
6634 
6635 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog,
6636 				     const char *subprog_name, int arg_idx,
6637 				     int arg_type_id, const char *ctx_name)
6638 {
6639 	const struct btf_type *t;
6640 	const char *tname;
6641 
6642 	/* check if existing parameter already matches verifier expectations */
6643 	t = skip_mods_and_typedefs(btf, arg_type_id, NULL);
6644 	if (!btf_is_ptr(t))
6645 		goto out_warn;
6646 
6647 	/* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe
6648 	 * and perf_event programs, so check this case early on and forget
6649 	 * about it for subsequent checks
6650 	 */
6651 	while (btf_is_mod(t))
6652 		t = btf__type_by_id(btf, t->type);
6653 	if (btf_is_typedef(t) &&
6654 	    (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) {
6655 		tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6656 		if (strcmp(tname, "bpf_user_pt_regs_t") == 0)
6657 			return false; /* canonical type for kprobe/perf_event */
6658 	}
6659 
6660 	/* now we can ignore typedefs moving forward */
6661 	t = skip_mods_and_typedefs(btf, t->type, NULL);
6662 
6663 	/* if it's `void *`, definitely fix up BTF info */
6664 	if (btf_is_void(t))
6665 		return true;
6666 
6667 	/* if it's already proper canonical type, no need to fix up */
6668 	tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>";
6669 	if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0)
6670 		return false;
6671 
6672 	/* special cases */
6673 	switch (prog->type) {
6674 	case BPF_PROG_TYPE_KPROBE:
6675 		/* `struct pt_regs *` is expected, but we need to fix up */
6676 		if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6677 			return true;
6678 		break;
6679 	case BPF_PROG_TYPE_PERF_EVENT:
6680 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
6681 		    btf_is_struct(t) && strcmp(tname, "pt_regs") == 0)
6682 			return true;
6683 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
6684 		    btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
6685 			return true;
6686 		if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
6687 		    btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
6688 			return true;
6689 		break;
6690 	case BPF_PROG_TYPE_RAW_TRACEPOINT:
6691 	case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
6692 		/* allow u64* as ctx */
6693 		if (btf_is_int(t) && t->size == 8)
6694 			return true;
6695 		break;
6696 	default:
6697 		break;
6698 	}
6699 
6700 out_warn:
6701 	pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n",
6702 		prog->name, subprog_name, arg_idx, ctx_name);
6703 	return false;
6704 }
6705 
6706 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog)
6707 {
6708 	int fn_id, fn_proto_id, ret_type_id, orig_proto_id;
6709 	int i, err, arg_cnt, fn_name_off, linkage;
6710 	struct btf_type *fn_t, *fn_proto_t, *t;
6711 	struct btf_param *p;
6712 
6713 	/* caller already validated FUNC -> FUNC_PROTO validity */
6714 	fn_t = btf_type_by_id(btf, orig_fn_id);
6715 	fn_proto_t = btf_type_by_id(btf, fn_t->type);
6716 
6717 	/* Note that each btf__add_xxx() operation invalidates
6718 	 * all btf_type and string pointers, so we need to be
6719 	 * very careful when cloning BTF types. BTF type
6720 	 * pointers have to be always refetched. And to avoid
6721 	 * problems with invalidated string pointers, we
6722 	 * add empty strings initially, then just fix up
6723 	 * name_off offsets in place. Offsets are stable for
6724 	 * existing strings, so that works out.
6725 	 */
6726 	fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */
6727 	linkage = btf_func_linkage(fn_t);
6728 	orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */
6729 	ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */
6730 	arg_cnt = btf_vlen(fn_proto_t);
6731 
6732 	/* clone FUNC_PROTO and its params */
6733 	fn_proto_id = btf__add_func_proto(btf, ret_type_id);
6734 	if (fn_proto_id < 0)
6735 		return -EINVAL;
6736 
6737 	for (i = 0; i < arg_cnt; i++) {
6738 		int name_off;
6739 
6740 		/* copy original parameter data */
6741 		t = btf_type_by_id(btf, orig_proto_id);
6742 		p = &btf_params(t)[i];
6743 		name_off = p->name_off;
6744 
6745 		err = btf__add_func_param(btf, "", p->type);
6746 		if (err)
6747 			return err;
6748 
6749 		fn_proto_t = btf_type_by_id(btf, fn_proto_id);
6750 		p = &btf_params(fn_proto_t)[i];
6751 		p->name_off = name_off; /* use remembered str offset */
6752 	}
6753 
6754 	/* clone FUNC now, btf__add_func() enforces non-empty name, so use
6755 	 * entry program's name as a placeholder, which we replace immediately
6756 	 * with original name_off
6757 	 */
6758 	fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id);
6759 	if (fn_id < 0)
6760 		return -EINVAL;
6761 
6762 	fn_t = btf_type_by_id(btf, fn_id);
6763 	fn_t->name_off = fn_name_off; /* reuse original string */
6764 
6765 	return fn_id;
6766 }
6767 
6768 /* Check if main program or global subprog's function prototype has `arg:ctx`
6769  * argument tags, and, if necessary, substitute correct type to match what BPF
6770  * verifier would expect, taking into account specific program type. This
6771  * allows to support __arg_ctx tag transparently on old kernels that don't yet
6772  * have a native support for it in the verifier, making user's life much
6773  * easier.
6774  */
6775 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog)
6776 {
6777 	const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name;
6778 	struct bpf_func_info_min *func_rec;
6779 	struct btf_type *fn_t, *fn_proto_t;
6780 	struct btf *btf = obj->btf;
6781 	const struct btf_type *t;
6782 	struct btf_param *p;
6783 	int ptr_id = 0, struct_id, tag_id, orig_fn_id;
6784 	int i, n, arg_idx, arg_cnt, err, rec_idx;
6785 	int *orig_ids;
6786 
6787 	/* no .BTF.ext, no problem */
6788 	if (!obj->btf_ext || !prog->func_info)
6789 		return 0;
6790 
6791 	/* don't do any fix ups if kernel natively supports __arg_ctx */
6792 	if (kernel_supports(obj, FEAT_ARG_CTX_TAG))
6793 		return 0;
6794 
6795 	/* some BPF program types just don't have named context structs, so
6796 	 * this fallback mechanism doesn't work for them
6797 	 */
6798 	for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) {
6799 		if (global_ctx_map[i].prog_type != prog->type)
6800 			continue;
6801 		ctx_name = global_ctx_map[i].ctx_name;
6802 		break;
6803 	}
6804 	if (!ctx_name)
6805 		return 0;
6806 
6807 	/* remember original func BTF IDs to detect if we already cloned them */
6808 	orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids));
6809 	if (!orig_ids)
6810 		return -ENOMEM;
6811 	for (i = 0; i < prog->func_info_cnt; i++) {
6812 		func_rec = prog->func_info + prog->func_info_rec_size * i;
6813 		orig_ids[i] = func_rec->type_id;
6814 	}
6815 
6816 	/* go through each DECL_TAG with "arg:ctx" and see if it points to one
6817 	 * of our subprogs; if yes and subprog is global and needs adjustment,
6818 	 * clone and adjust FUNC -> FUNC_PROTO combo
6819 	 */
6820 	for (i = 1, n = btf__type_cnt(btf); i < n; i++) {
6821 		/* only DECL_TAG with "arg:ctx" value are interesting */
6822 		t = btf__type_by_id(btf, i);
6823 		if (!btf_is_decl_tag(t))
6824 			continue;
6825 		if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0)
6826 			continue;
6827 
6828 		/* only global funcs need adjustment, if at all */
6829 		orig_fn_id = t->type;
6830 		fn_t = btf_type_by_id(btf, orig_fn_id);
6831 		if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL)
6832 			continue;
6833 
6834 		/* sanity check FUNC -> FUNC_PROTO chain, just in case */
6835 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
6836 		if (!fn_proto_t || !btf_is_func_proto(fn_proto_t))
6837 			continue;
6838 
6839 		/* find corresponding func_info record */
6840 		func_rec = NULL;
6841 		for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) {
6842 			if (orig_ids[rec_idx] == t->type) {
6843 				func_rec = prog->func_info + prog->func_info_rec_size * rec_idx;
6844 				break;
6845 			}
6846 		}
6847 		/* current main program doesn't call into this subprog */
6848 		if (!func_rec)
6849 			continue;
6850 
6851 		/* some more sanity checking of DECL_TAG */
6852 		arg_cnt = btf_vlen(fn_proto_t);
6853 		arg_idx = btf_decl_tag(t)->component_idx;
6854 		if (arg_idx < 0 || arg_idx >= arg_cnt)
6855 			continue;
6856 
6857 		/* check if we should fix up argument type */
6858 		p = &btf_params(fn_proto_t)[arg_idx];
6859 		fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>";
6860 		if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name))
6861 			continue;
6862 
6863 		/* clone fn/fn_proto, unless we already did it for another arg */
6864 		if (func_rec->type_id == orig_fn_id) {
6865 			int fn_id;
6866 
6867 			fn_id = clone_func_btf_info(btf, orig_fn_id, prog);
6868 			if (fn_id < 0) {
6869 				err = fn_id;
6870 				goto err_out;
6871 			}
6872 
6873 			/* point func_info record to a cloned FUNC type */
6874 			func_rec->type_id = fn_id;
6875 		}
6876 
6877 		/* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument;
6878 		 * we do it just once per main BPF program, as all global
6879 		 * funcs share the same program type, so need only PTR ->
6880 		 * STRUCT type chain
6881 		 */
6882 		if (ptr_id == 0) {
6883 			struct_id = btf__add_struct(btf, ctx_name, 0);
6884 			ptr_id = btf__add_ptr(btf, struct_id);
6885 			if (ptr_id < 0 || struct_id < 0) {
6886 				err = -EINVAL;
6887 				goto err_out;
6888 			}
6889 		}
6890 
6891 		/* for completeness, clone DECL_TAG and point it to cloned param */
6892 		tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx);
6893 		if (tag_id < 0) {
6894 			err = -EINVAL;
6895 			goto err_out;
6896 		}
6897 
6898 		/* all the BTF manipulations invalidated pointers, refetch them */
6899 		fn_t = btf_type_by_id(btf, func_rec->type_id);
6900 		fn_proto_t = btf_type_by_id(btf, fn_t->type);
6901 
6902 		/* fix up type ID pointed to by param */
6903 		p = &btf_params(fn_proto_t)[arg_idx];
6904 		p->type = ptr_id;
6905 	}
6906 
6907 	free(orig_ids);
6908 	return 0;
6909 err_out:
6910 	free(orig_ids);
6911 	return err;
6912 }
6913 
6914 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6915 {
6916 	struct bpf_program *prog;
6917 	size_t i, j;
6918 	int err;
6919 
6920 	if (obj->btf_ext) {
6921 		err = bpf_object__relocate_core(obj, targ_btf_path);
6922 		if (err) {
6923 			pr_warn("failed to perform CO-RE relocations: %d\n",
6924 				err);
6925 			return err;
6926 		}
6927 		bpf_object__sort_relos(obj);
6928 	}
6929 
6930 	/* Before relocating calls pre-process relocations and mark
6931 	 * few ld_imm64 instructions that points to subprogs.
6932 	 * Otherwise bpf_object__reloc_code() later would have to consider
6933 	 * all ld_imm64 insns as relocation candidates. That would
6934 	 * reduce relocation speed, since amount of find_prog_insn_relo()
6935 	 * would increase and most of them will fail to find a relo.
6936 	 */
6937 	for (i = 0; i < obj->nr_programs; i++) {
6938 		prog = &obj->programs[i];
6939 		for (j = 0; j < prog->nr_reloc; j++) {
6940 			struct reloc_desc *relo = &prog->reloc_desc[j];
6941 			struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6942 
6943 			/* mark the insn, so it's recognized by insn_is_pseudo_func() */
6944 			if (relo->type == RELO_SUBPROG_ADDR)
6945 				insn[0].src_reg = BPF_PSEUDO_FUNC;
6946 		}
6947 	}
6948 
6949 	/* relocate subprogram calls and append used subprograms to main
6950 	 * programs; each copy of subprogram code needs to be relocated
6951 	 * differently for each main program, because its code location might
6952 	 * have changed.
6953 	 * Append subprog relos to main programs to allow data relos to be
6954 	 * processed after text is completely relocated.
6955 	 */
6956 	for (i = 0; i < obj->nr_programs; i++) {
6957 		prog = &obj->programs[i];
6958 		/* sub-program's sub-calls are relocated within the context of
6959 		 * its main program only
6960 		 */
6961 		if (prog_is_subprog(obj, prog))
6962 			continue;
6963 		if (!prog->autoload)
6964 			continue;
6965 
6966 		err = bpf_object__relocate_calls(obj, prog);
6967 		if (err) {
6968 			pr_warn("prog '%s': failed to relocate calls: %d\n",
6969 				prog->name, err);
6970 			return err;
6971 		}
6972 
6973 		err = bpf_prog_assign_exc_cb(obj, prog);
6974 		if (err)
6975 			return err;
6976 		/* Now, also append exception callback if it has not been done already. */
6977 		if (prog->exception_cb_idx >= 0) {
6978 			struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx];
6979 
6980 			/* Calling exception callback directly is disallowed, which the
6981 			 * verifier will reject later. In case it was processed already,
6982 			 * we can skip this step, otherwise for all other valid cases we
6983 			 * have to append exception callback now.
6984 			 */
6985 			if (subprog->sub_insn_off == 0) {
6986 				err = bpf_object__append_subprog_code(obj, prog, subprog);
6987 				if (err)
6988 					return err;
6989 				err = bpf_object__reloc_code(obj, prog, subprog);
6990 				if (err)
6991 					return err;
6992 			}
6993 		}
6994 	}
6995 	for (i = 0; i < obj->nr_programs; i++) {
6996 		prog = &obj->programs[i];
6997 		if (prog_is_subprog(obj, prog))
6998 			continue;
6999 		if (!prog->autoload)
7000 			continue;
7001 
7002 		/* Process data relos for main programs */
7003 		err = bpf_object__relocate_data(obj, prog);
7004 		if (err) {
7005 			pr_warn("prog '%s': failed to relocate data references: %d\n",
7006 				prog->name, err);
7007 			return err;
7008 		}
7009 
7010 		/* Fix up .BTF.ext information, if necessary */
7011 		err = bpf_program_fixup_func_info(obj, prog);
7012 		if (err) {
7013 			pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n",
7014 				prog->name, err);
7015 			return err;
7016 		}
7017 	}
7018 
7019 	return 0;
7020 }
7021 
7022 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
7023 					    Elf64_Shdr *shdr, Elf_Data *data);
7024 
7025 static int bpf_object__collect_map_relos(struct bpf_object *obj,
7026 					 Elf64_Shdr *shdr, Elf_Data *data)
7027 {
7028 	const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
7029 	int i, j, nrels, new_sz;
7030 	const struct btf_var_secinfo *vi = NULL;
7031 	const struct btf_type *sec, *var, *def;
7032 	struct bpf_map *map = NULL, *targ_map = NULL;
7033 	struct bpf_program *targ_prog = NULL;
7034 	bool is_prog_array, is_map_in_map;
7035 	const struct btf_member *member;
7036 	const char *name, *mname, *type;
7037 	unsigned int moff;
7038 	Elf64_Sym *sym;
7039 	Elf64_Rel *rel;
7040 	void *tmp;
7041 
7042 	if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
7043 		return -EINVAL;
7044 	sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
7045 	if (!sec)
7046 		return -EINVAL;
7047 
7048 	nrels = shdr->sh_size / shdr->sh_entsize;
7049 	for (i = 0; i < nrels; i++) {
7050 		rel = elf_rel_by_idx(data, i);
7051 		if (!rel) {
7052 			pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
7053 			return -LIBBPF_ERRNO__FORMAT;
7054 		}
7055 
7056 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
7057 		if (!sym) {
7058 			pr_warn(".maps relo #%d: symbol %zx not found\n",
7059 				i, (size_t)ELF64_R_SYM(rel->r_info));
7060 			return -LIBBPF_ERRNO__FORMAT;
7061 		}
7062 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
7063 
7064 		pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
7065 			 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
7066 			 (size_t)rel->r_offset, sym->st_name, name);
7067 
7068 		for (j = 0; j < obj->nr_maps; j++) {
7069 			map = &obj->maps[j];
7070 			if (map->sec_idx != obj->efile.btf_maps_shndx)
7071 				continue;
7072 
7073 			vi = btf_var_secinfos(sec) + map->btf_var_idx;
7074 			if (vi->offset <= rel->r_offset &&
7075 			    rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
7076 				break;
7077 		}
7078 		if (j == obj->nr_maps) {
7079 			pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
7080 				i, name, (size_t)rel->r_offset);
7081 			return -EINVAL;
7082 		}
7083 
7084 		is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
7085 		is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
7086 		type = is_map_in_map ? "map" : "prog";
7087 		if (is_map_in_map) {
7088 			if (sym->st_shndx != obj->efile.btf_maps_shndx) {
7089 				pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
7090 					i, name);
7091 				return -LIBBPF_ERRNO__RELOC;
7092 			}
7093 			if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
7094 			    map->def.key_size != sizeof(int)) {
7095 				pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
7096 					i, map->name, sizeof(int));
7097 				return -EINVAL;
7098 			}
7099 			targ_map = bpf_object__find_map_by_name(obj, name);
7100 			if (!targ_map) {
7101 				pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
7102 					i, name);
7103 				return -ESRCH;
7104 			}
7105 		} else if (is_prog_array) {
7106 			targ_prog = bpf_object__find_program_by_name(obj, name);
7107 			if (!targ_prog) {
7108 				pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
7109 					i, name);
7110 				return -ESRCH;
7111 			}
7112 			if (targ_prog->sec_idx != sym->st_shndx ||
7113 			    targ_prog->sec_insn_off * 8 != sym->st_value ||
7114 			    prog_is_subprog(obj, targ_prog)) {
7115 				pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
7116 					i, name);
7117 				return -LIBBPF_ERRNO__RELOC;
7118 			}
7119 		} else {
7120 			return -EINVAL;
7121 		}
7122 
7123 		var = btf__type_by_id(obj->btf, vi->type);
7124 		def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
7125 		if (btf_vlen(def) == 0)
7126 			return -EINVAL;
7127 		member = btf_members(def) + btf_vlen(def) - 1;
7128 		mname = btf__name_by_offset(obj->btf, member->name_off);
7129 		if (strcmp(mname, "values"))
7130 			return -EINVAL;
7131 
7132 		moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
7133 		if (rel->r_offset - vi->offset < moff)
7134 			return -EINVAL;
7135 
7136 		moff = rel->r_offset - vi->offset - moff;
7137 		/* here we use BPF pointer size, which is always 64 bit, as we
7138 		 * are parsing ELF that was built for BPF target
7139 		 */
7140 		if (moff % bpf_ptr_sz)
7141 			return -EINVAL;
7142 		moff /= bpf_ptr_sz;
7143 		if (moff >= map->init_slots_sz) {
7144 			new_sz = moff + 1;
7145 			tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
7146 			if (!tmp)
7147 				return -ENOMEM;
7148 			map->init_slots = tmp;
7149 			memset(map->init_slots + map->init_slots_sz, 0,
7150 			       (new_sz - map->init_slots_sz) * host_ptr_sz);
7151 			map->init_slots_sz = new_sz;
7152 		}
7153 		map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
7154 
7155 		pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
7156 			 i, map->name, moff, type, name);
7157 	}
7158 
7159 	return 0;
7160 }
7161 
7162 static int bpf_object__collect_relos(struct bpf_object *obj)
7163 {
7164 	int i, err;
7165 
7166 	for (i = 0; i < obj->efile.sec_cnt; i++) {
7167 		struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
7168 		Elf64_Shdr *shdr;
7169 		Elf_Data *data;
7170 		int idx;
7171 
7172 		if (sec_desc->sec_type != SEC_RELO)
7173 			continue;
7174 
7175 		shdr = sec_desc->shdr;
7176 		data = sec_desc->data;
7177 		idx = shdr->sh_info;
7178 
7179 		if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) {
7180 			pr_warn("internal error at %d\n", __LINE__);
7181 			return -LIBBPF_ERRNO__INTERNAL;
7182 		}
7183 
7184 		if (obj->efile.secs[idx].sec_type == SEC_ST_OPS)
7185 			err = bpf_object__collect_st_ops_relos(obj, shdr, data);
7186 		else if (idx == obj->efile.btf_maps_shndx)
7187 			err = bpf_object__collect_map_relos(obj, shdr, data);
7188 		else
7189 			err = bpf_object__collect_prog_relos(obj, shdr, data);
7190 		if (err)
7191 			return err;
7192 	}
7193 
7194 	bpf_object__sort_relos(obj);
7195 	return 0;
7196 }
7197 
7198 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
7199 {
7200 	if (BPF_CLASS(insn->code) == BPF_JMP &&
7201 	    BPF_OP(insn->code) == BPF_CALL &&
7202 	    BPF_SRC(insn->code) == BPF_K &&
7203 	    insn->src_reg == 0 &&
7204 	    insn->dst_reg == 0) {
7205 		    *func_id = insn->imm;
7206 		    return true;
7207 	}
7208 	return false;
7209 }
7210 
7211 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
7212 {
7213 	struct bpf_insn *insn = prog->insns;
7214 	enum bpf_func_id func_id;
7215 	int i;
7216 
7217 	if (obj->gen_loader)
7218 		return 0;
7219 
7220 	for (i = 0; i < prog->insns_cnt; i++, insn++) {
7221 		if (!insn_is_helper_call(insn, &func_id))
7222 			continue;
7223 
7224 		/* on kernels that don't yet support
7225 		 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
7226 		 * to bpf_probe_read() which works well for old kernels
7227 		 */
7228 		switch (func_id) {
7229 		case BPF_FUNC_probe_read_kernel:
7230 		case BPF_FUNC_probe_read_user:
7231 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7232 				insn->imm = BPF_FUNC_probe_read;
7233 			break;
7234 		case BPF_FUNC_probe_read_kernel_str:
7235 		case BPF_FUNC_probe_read_user_str:
7236 			if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
7237 				insn->imm = BPF_FUNC_probe_read_str;
7238 			break;
7239 		default:
7240 			break;
7241 		}
7242 	}
7243 	return 0;
7244 }
7245 
7246 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
7247 				     int *btf_obj_fd, int *btf_type_id);
7248 
7249 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
7250 static int libbpf_prepare_prog_load(struct bpf_program *prog,
7251 				    struct bpf_prog_load_opts *opts, long cookie)
7252 {
7253 	enum sec_def_flags def = cookie;
7254 
7255 	/* old kernels might not support specifying expected_attach_type */
7256 	if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
7257 		opts->expected_attach_type = 0;
7258 
7259 	if (def & SEC_SLEEPABLE)
7260 		opts->prog_flags |= BPF_F_SLEEPABLE;
7261 
7262 	if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
7263 		opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
7264 
7265 	/* special check for usdt to use uprobe_multi link */
7266 	if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK))
7267 		prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI;
7268 
7269 	if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
7270 		int btf_obj_fd = 0, btf_type_id = 0, err;
7271 		const char *attach_name;
7272 
7273 		attach_name = strchr(prog->sec_name, '/');
7274 		if (!attach_name) {
7275 			/* if BPF program is annotated with just SEC("fentry")
7276 			 * (or similar) without declaratively specifying
7277 			 * target, then it is expected that target will be
7278 			 * specified with bpf_program__set_attach_target() at
7279 			 * runtime before BPF object load step. If not, then
7280 			 * there is nothing to load into the kernel as BPF
7281 			 * verifier won't be able to validate BPF program
7282 			 * correctness anyways.
7283 			 */
7284 			pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
7285 				prog->name);
7286 			return -EINVAL;
7287 		}
7288 		attach_name++; /* skip over / */
7289 
7290 		err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
7291 		if (err)
7292 			return err;
7293 
7294 		/* cache resolved BTF FD and BTF type ID in the prog */
7295 		prog->attach_btf_obj_fd = btf_obj_fd;
7296 		prog->attach_btf_id = btf_type_id;
7297 
7298 		/* but by now libbpf common logic is not utilizing
7299 		 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
7300 		 * this callback is called after opts were populated by
7301 		 * libbpf, so this callback has to update opts explicitly here
7302 		 */
7303 		opts->attach_btf_obj_fd = btf_obj_fd;
7304 		opts->attach_btf_id = btf_type_id;
7305 	}
7306 	return 0;
7307 }
7308 
7309 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
7310 
7311 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
7312 				struct bpf_insn *insns, int insns_cnt,
7313 				const char *license, __u32 kern_version, int *prog_fd)
7314 {
7315 	LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
7316 	const char *prog_name = NULL;
7317 	char *cp, errmsg[STRERR_BUFSIZE];
7318 	size_t log_buf_size = 0;
7319 	char *log_buf = NULL, *tmp;
7320 	int btf_fd, ret, err;
7321 	bool own_log_buf = true;
7322 	__u32 log_level = prog->log_level;
7323 
7324 	if (prog->type == BPF_PROG_TYPE_UNSPEC) {
7325 		/*
7326 		 * The program type must be set.  Most likely we couldn't find a proper
7327 		 * section definition at load time, and thus we didn't infer the type.
7328 		 */
7329 		pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
7330 			prog->name, prog->sec_name);
7331 		return -EINVAL;
7332 	}
7333 
7334 	if (!insns || !insns_cnt)
7335 		return -EINVAL;
7336 
7337 	if (kernel_supports(obj, FEAT_PROG_NAME))
7338 		prog_name = prog->name;
7339 	load_attr.attach_prog_fd = prog->attach_prog_fd;
7340 	load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
7341 	load_attr.attach_btf_id = prog->attach_btf_id;
7342 	load_attr.kern_version = kern_version;
7343 	load_attr.prog_ifindex = prog->prog_ifindex;
7344 
7345 	/* specify func_info/line_info only if kernel supports them */
7346 	btf_fd = btf__fd(obj->btf);
7347 	if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
7348 		load_attr.prog_btf_fd = btf_fd;
7349 		load_attr.func_info = prog->func_info;
7350 		load_attr.func_info_rec_size = prog->func_info_rec_size;
7351 		load_attr.func_info_cnt = prog->func_info_cnt;
7352 		load_attr.line_info = prog->line_info;
7353 		load_attr.line_info_rec_size = prog->line_info_rec_size;
7354 		load_attr.line_info_cnt = prog->line_info_cnt;
7355 	}
7356 	load_attr.log_level = log_level;
7357 	load_attr.prog_flags = prog->prog_flags;
7358 	load_attr.fd_array = obj->fd_array;
7359 
7360 	load_attr.token_fd = obj->token_fd;
7361 	if (obj->token_fd)
7362 		load_attr.prog_flags |= BPF_F_TOKEN_FD;
7363 
7364 	/* adjust load_attr if sec_def provides custom preload callback */
7365 	if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
7366 		err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
7367 		if (err < 0) {
7368 			pr_warn("prog '%s': failed to prepare load attributes: %d\n",
7369 				prog->name, err);
7370 			return err;
7371 		}
7372 		insns = prog->insns;
7373 		insns_cnt = prog->insns_cnt;
7374 	}
7375 
7376 	/* allow prog_prepare_load_fn to change expected_attach_type */
7377 	load_attr.expected_attach_type = prog->expected_attach_type;
7378 
7379 	if (obj->gen_loader) {
7380 		bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
7381 				   license, insns, insns_cnt, &load_attr,
7382 				   prog - obj->programs);
7383 		*prog_fd = -1;
7384 		return 0;
7385 	}
7386 
7387 retry_load:
7388 	/* if log_level is zero, we don't request logs initially even if
7389 	 * custom log_buf is specified; if the program load fails, then we'll
7390 	 * bump log_level to 1 and use either custom log_buf or we'll allocate
7391 	 * our own and retry the load to get details on what failed
7392 	 */
7393 	if (log_level) {
7394 		if (prog->log_buf) {
7395 			log_buf = prog->log_buf;
7396 			log_buf_size = prog->log_size;
7397 			own_log_buf = false;
7398 		} else if (obj->log_buf) {
7399 			log_buf = obj->log_buf;
7400 			log_buf_size = obj->log_size;
7401 			own_log_buf = false;
7402 		} else {
7403 			log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
7404 			tmp = realloc(log_buf, log_buf_size);
7405 			if (!tmp) {
7406 				ret = -ENOMEM;
7407 				goto out;
7408 			}
7409 			log_buf = tmp;
7410 			log_buf[0] = '\0';
7411 			own_log_buf = true;
7412 		}
7413 	}
7414 
7415 	load_attr.log_buf = log_buf;
7416 	load_attr.log_size = log_buf_size;
7417 	load_attr.log_level = log_level;
7418 
7419 	ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
7420 	if (ret >= 0) {
7421 		if (log_level && own_log_buf) {
7422 			pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7423 				 prog->name, log_buf);
7424 		}
7425 
7426 		if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
7427 			struct bpf_map *map;
7428 			int i;
7429 
7430 			for (i = 0; i < obj->nr_maps; i++) {
7431 				map = &prog->obj->maps[i];
7432 				if (map->libbpf_type != LIBBPF_MAP_RODATA)
7433 					continue;
7434 
7435 				if (bpf_prog_bind_map(ret, map->fd, NULL)) {
7436 					cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7437 					pr_warn("prog '%s': failed to bind map '%s': %s\n",
7438 						prog->name, map->real_name, cp);
7439 					/* Don't fail hard if can't bind rodata. */
7440 				}
7441 			}
7442 		}
7443 
7444 		*prog_fd = ret;
7445 		ret = 0;
7446 		goto out;
7447 	}
7448 
7449 	if (log_level == 0) {
7450 		log_level = 1;
7451 		goto retry_load;
7452 	}
7453 	/* On ENOSPC, increase log buffer size and retry, unless custom
7454 	 * log_buf is specified.
7455 	 * Be careful to not overflow u32, though. Kernel's log buf size limit
7456 	 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
7457 	 * multiply by 2 unless we are sure we'll fit within 32 bits.
7458 	 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
7459 	 */
7460 	if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
7461 		goto retry_load;
7462 
7463 	ret = -errno;
7464 
7465 	/* post-process verifier log to improve error descriptions */
7466 	fixup_verifier_log(prog, log_buf, log_buf_size);
7467 
7468 	cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7469 	pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
7470 	pr_perm_msg(ret);
7471 
7472 	if (own_log_buf && log_buf && log_buf[0] != '\0') {
7473 		pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
7474 			prog->name, log_buf);
7475 	}
7476 
7477 out:
7478 	if (own_log_buf)
7479 		free(log_buf);
7480 	return ret;
7481 }
7482 
7483 static char *find_prev_line(char *buf, char *cur)
7484 {
7485 	char *p;
7486 
7487 	if (cur == buf) /* end of a log buf */
7488 		return NULL;
7489 
7490 	p = cur - 1;
7491 	while (p - 1 >= buf && *(p - 1) != '\n')
7492 		p--;
7493 
7494 	return p;
7495 }
7496 
7497 static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
7498 		      char *orig, size_t orig_sz, const char *patch)
7499 {
7500 	/* size of the remaining log content to the right from the to-be-replaced part */
7501 	size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
7502 	size_t patch_sz = strlen(patch);
7503 
7504 	if (patch_sz != orig_sz) {
7505 		/* If patch line(s) are longer than original piece of verifier log,
7506 		 * shift log contents by (patch_sz - orig_sz) bytes to the right
7507 		 * starting from after to-be-replaced part of the log.
7508 		 *
7509 		 * If patch line(s) are shorter than original piece of verifier log,
7510 		 * shift log contents by (orig_sz - patch_sz) bytes to the left
7511 		 * starting from after to-be-replaced part of the log
7512 		 *
7513 		 * We need to be careful about not overflowing available
7514 		 * buf_sz capacity. If that's the case, we'll truncate the end
7515 		 * of the original log, as necessary.
7516 		 */
7517 		if (patch_sz > orig_sz) {
7518 			if (orig + patch_sz >= buf + buf_sz) {
7519 				/* patch is big enough to cover remaining space completely */
7520 				patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
7521 				rem_sz = 0;
7522 			} else if (patch_sz - orig_sz > buf_sz - log_sz) {
7523 				/* patch causes part of remaining log to be truncated */
7524 				rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7525 			}
7526 		}
7527 		/* shift remaining log to the right by calculated amount */
7528 		memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7529 	}
7530 
7531 	memcpy(orig, patch, patch_sz);
7532 }
7533 
7534 static void fixup_log_failed_core_relo(struct bpf_program *prog,
7535 				       char *buf, size_t buf_sz, size_t log_sz,
7536 				       char *line1, char *line2, char *line3)
7537 {
7538 	/* Expected log for failed and not properly guarded CO-RE relocation:
7539 	 * line1 -> 123: (85) call unknown#195896080
7540 	 * line2 -> invalid func unknown#195896080
7541 	 * line3 -> <anything else or end of buffer>
7542 	 *
7543 	 * "123" is the index of the instruction that was poisoned. We extract
7544 	 * instruction index to find corresponding CO-RE relocation and
7545 	 * replace this part of the log with more relevant information about
7546 	 * failed CO-RE relocation.
7547 	 */
7548 	const struct bpf_core_relo *relo;
7549 	struct bpf_core_spec spec;
7550 	char patch[512], spec_buf[256];
7551 	int insn_idx, err, spec_len;
7552 
7553 	if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7554 		return;
7555 
7556 	relo = find_relo_core(prog, insn_idx);
7557 	if (!relo)
7558 		return;
7559 
7560 	err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7561 	if (err)
7562 		return;
7563 
7564 	spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7565 	snprintf(patch, sizeof(patch),
7566 		 "%d: <invalid CO-RE relocation>\n"
7567 		 "failed to resolve CO-RE relocation %s%s\n",
7568 		 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7569 
7570 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7571 }
7572 
7573 static void fixup_log_missing_map_load(struct bpf_program *prog,
7574 				       char *buf, size_t buf_sz, size_t log_sz,
7575 				       char *line1, char *line2, char *line3)
7576 {
7577 	/* Expected log for failed and not properly guarded map reference:
7578 	 * line1 -> 123: (85) call unknown#2001000345
7579 	 * line2 -> invalid func unknown#2001000345
7580 	 * line3 -> <anything else or end of buffer>
7581 	 *
7582 	 * "123" is the index of the instruction that was poisoned.
7583 	 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7584 	 */
7585 	struct bpf_object *obj = prog->obj;
7586 	const struct bpf_map *map;
7587 	int insn_idx, map_idx;
7588 	char patch[128];
7589 
7590 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7591 		return;
7592 
7593 	map_idx -= POISON_LDIMM64_MAP_BASE;
7594 	if (map_idx < 0 || map_idx >= obj->nr_maps)
7595 		return;
7596 	map = &obj->maps[map_idx];
7597 
7598 	snprintf(patch, sizeof(patch),
7599 		 "%d: <invalid BPF map reference>\n"
7600 		 "BPF map '%s' is referenced but wasn't created\n",
7601 		 insn_idx, map->name);
7602 
7603 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7604 }
7605 
7606 static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7607 					 char *buf, size_t buf_sz, size_t log_sz,
7608 					 char *line1, char *line2, char *line3)
7609 {
7610 	/* Expected log for failed and not properly guarded kfunc call:
7611 	 * line1 -> 123: (85) call unknown#2002000345
7612 	 * line2 -> invalid func unknown#2002000345
7613 	 * line3 -> <anything else or end of buffer>
7614 	 *
7615 	 * "123" is the index of the instruction that was poisoned.
7616 	 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7617 	 */
7618 	struct bpf_object *obj = prog->obj;
7619 	const struct extern_desc *ext;
7620 	int insn_idx, ext_idx;
7621 	char patch[128];
7622 
7623 	if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7624 		return;
7625 
7626 	ext_idx -= POISON_CALL_KFUNC_BASE;
7627 	if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7628 		return;
7629 	ext = &obj->externs[ext_idx];
7630 
7631 	snprintf(patch, sizeof(patch),
7632 		 "%d: <invalid kfunc call>\n"
7633 		 "kfunc '%s' is referenced but wasn't resolved\n",
7634 		 insn_idx, ext->name);
7635 
7636 	patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7637 }
7638 
7639 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7640 {
7641 	/* look for familiar error patterns in last N lines of the log */
7642 	const size_t max_last_line_cnt = 10;
7643 	char *prev_line, *cur_line, *next_line;
7644 	size_t log_sz;
7645 	int i;
7646 
7647 	if (!buf)
7648 		return;
7649 
7650 	log_sz = strlen(buf) + 1;
7651 	next_line = buf + log_sz - 1;
7652 
7653 	for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7654 		cur_line = find_prev_line(buf, next_line);
7655 		if (!cur_line)
7656 			return;
7657 
7658 		if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7659 			prev_line = find_prev_line(buf, cur_line);
7660 			if (!prev_line)
7661 				continue;
7662 
7663 			/* failed CO-RE relocation case */
7664 			fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7665 						   prev_line, cur_line, next_line);
7666 			return;
7667 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7668 			prev_line = find_prev_line(buf, cur_line);
7669 			if (!prev_line)
7670 				continue;
7671 
7672 			/* reference to uncreated BPF map */
7673 			fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7674 						   prev_line, cur_line, next_line);
7675 			return;
7676 		} else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7677 			prev_line = find_prev_line(buf, cur_line);
7678 			if (!prev_line)
7679 				continue;
7680 
7681 			/* reference to unresolved kfunc */
7682 			fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7683 						     prev_line, cur_line, next_line);
7684 			return;
7685 		}
7686 	}
7687 }
7688 
7689 static int bpf_program_record_relos(struct bpf_program *prog)
7690 {
7691 	struct bpf_object *obj = prog->obj;
7692 	int i;
7693 
7694 	for (i = 0; i < prog->nr_reloc; i++) {
7695 		struct reloc_desc *relo = &prog->reloc_desc[i];
7696 		struct extern_desc *ext = &obj->externs[relo->ext_idx];
7697 		int kind;
7698 
7699 		switch (relo->type) {
7700 		case RELO_EXTERN_LD64:
7701 			if (ext->type != EXT_KSYM)
7702 				continue;
7703 			kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7704 				BTF_KIND_VAR : BTF_KIND_FUNC;
7705 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7706 					       ext->is_weak, !ext->ksym.type_id,
7707 					       true, kind, relo->insn_idx);
7708 			break;
7709 		case RELO_EXTERN_CALL:
7710 			bpf_gen__record_extern(obj->gen_loader, ext->name,
7711 					       ext->is_weak, false, false, BTF_KIND_FUNC,
7712 					       relo->insn_idx);
7713 			break;
7714 		case RELO_CORE: {
7715 			struct bpf_core_relo cr = {
7716 				.insn_off = relo->insn_idx * 8,
7717 				.type_id = relo->core_relo->type_id,
7718 				.access_str_off = relo->core_relo->access_str_off,
7719 				.kind = relo->core_relo->kind,
7720 			};
7721 
7722 			bpf_gen__record_relo_core(obj->gen_loader, &cr);
7723 			break;
7724 		}
7725 		default:
7726 			continue;
7727 		}
7728 	}
7729 	return 0;
7730 }
7731 
7732 static int
7733 bpf_object__load_progs(struct bpf_object *obj, int log_level)
7734 {
7735 	struct bpf_program *prog;
7736 	size_t i;
7737 	int err;
7738 
7739 	for (i = 0; i < obj->nr_programs; i++) {
7740 		prog = &obj->programs[i];
7741 		err = bpf_object__sanitize_prog(obj, prog);
7742 		if (err)
7743 			return err;
7744 	}
7745 
7746 	for (i = 0; i < obj->nr_programs; i++) {
7747 		prog = &obj->programs[i];
7748 		if (prog_is_subprog(obj, prog))
7749 			continue;
7750 		if (!prog->autoload) {
7751 			pr_debug("prog '%s': skipped loading\n", prog->name);
7752 			continue;
7753 		}
7754 		prog->log_level |= log_level;
7755 
7756 		if (obj->gen_loader)
7757 			bpf_program_record_relos(prog);
7758 
7759 		err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7760 					   obj->license, obj->kern_version, &prog->fd);
7761 		if (err) {
7762 			pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7763 			return err;
7764 		}
7765 	}
7766 
7767 	bpf_object__free_relocs(obj);
7768 	return 0;
7769 }
7770 
7771 static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7772 
7773 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7774 {
7775 	struct bpf_program *prog;
7776 	int err;
7777 
7778 	bpf_object__for_each_program(prog, obj) {
7779 		prog->sec_def = find_sec_def(prog->sec_name);
7780 		if (!prog->sec_def) {
7781 			/* couldn't guess, but user might manually specify */
7782 			pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7783 				prog->name, prog->sec_name);
7784 			continue;
7785 		}
7786 
7787 		prog->type = prog->sec_def->prog_type;
7788 		prog->expected_attach_type = prog->sec_def->expected_attach_type;
7789 
7790 		/* sec_def can have custom callback which should be called
7791 		 * after bpf_program is initialized to adjust its properties
7792 		 */
7793 		if (prog->sec_def->prog_setup_fn) {
7794 			err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7795 			if (err < 0) {
7796 				pr_warn("prog '%s': failed to initialize: %d\n",
7797 					prog->name, err);
7798 				return err;
7799 			}
7800 		}
7801 	}
7802 
7803 	return 0;
7804 }
7805 
7806 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7807 					  const struct bpf_object_open_opts *opts)
7808 {
7809 	const char *obj_name, *kconfig, *btf_tmp_path, *token_path;
7810 	struct bpf_object *obj;
7811 	char tmp_name[64];
7812 	int err;
7813 	char *log_buf;
7814 	size_t log_size;
7815 	__u32 log_level;
7816 
7817 	if (elf_version(EV_CURRENT) == EV_NONE) {
7818 		pr_warn("failed to init libelf for %s\n",
7819 			path ? : "(mem buf)");
7820 		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7821 	}
7822 
7823 	if (!OPTS_VALID(opts, bpf_object_open_opts))
7824 		return ERR_PTR(-EINVAL);
7825 
7826 	obj_name = OPTS_GET(opts, object_name, NULL);
7827 	if (obj_buf) {
7828 		if (!obj_name) {
7829 			snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7830 				 (unsigned long)obj_buf,
7831 				 (unsigned long)obj_buf_sz);
7832 			obj_name = tmp_name;
7833 		}
7834 		path = obj_name;
7835 		pr_debug("loading object '%s' from buffer\n", obj_name);
7836 	}
7837 
7838 	log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7839 	log_size = OPTS_GET(opts, kernel_log_size, 0);
7840 	log_level = OPTS_GET(opts, kernel_log_level, 0);
7841 	if (log_size > UINT_MAX)
7842 		return ERR_PTR(-EINVAL);
7843 	if (log_size && !log_buf)
7844 		return ERR_PTR(-EINVAL);
7845 
7846 	token_path = OPTS_GET(opts, bpf_token_path, NULL);
7847 	/* if user didn't specify bpf_token_path explicitly, check if
7848 	 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path
7849 	 * option
7850 	 */
7851 	if (!token_path)
7852 		token_path = getenv("LIBBPF_BPF_TOKEN_PATH");
7853 	if (token_path && strlen(token_path) >= PATH_MAX)
7854 		return ERR_PTR(-ENAMETOOLONG);
7855 
7856 	obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7857 	if (IS_ERR(obj))
7858 		return obj;
7859 
7860 	obj->log_buf = log_buf;
7861 	obj->log_size = log_size;
7862 	obj->log_level = log_level;
7863 
7864 	if (token_path) {
7865 		obj->token_path = strdup(token_path);
7866 		if (!obj->token_path) {
7867 			err = -ENOMEM;
7868 			goto out;
7869 		}
7870 	}
7871 
7872 	btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7873 	if (btf_tmp_path) {
7874 		if (strlen(btf_tmp_path) >= PATH_MAX) {
7875 			err = -ENAMETOOLONG;
7876 			goto out;
7877 		}
7878 		obj->btf_custom_path = strdup(btf_tmp_path);
7879 		if (!obj->btf_custom_path) {
7880 			err = -ENOMEM;
7881 			goto out;
7882 		}
7883 	}
7884 
7885 	kconfig = OPTS_GET(opts, kconfig, NULL);
7886 	if (kconfig) {
7887 		obj->kconfig = strdup(kconfig);
7888 		if (!obj->kconfig) {
7889 			err = -ENOMEM;
7890 			goto out;
7891 		}
7892 	}
7893 
7894 	err = bpf_object__elf_init(obj);
7895 	err = err ? : bpf_object__check_endianness(obj);
7896 	err = err ? : bpf_object__elf_collect(obj);
7897 	err = err ? : bpf_object__collect_externs(obj);
7898 	err = err ? : bpf_object_fixup_btf(obj);
7899 	err = err ? : bpf_object__init_maps(obj, opts);
7900 	err = err ? : bpf_object_init_progs(obj, opts);
7901 	err = err ? : bpf_object__collect_relos(obj);
7902 	if (err)
7903 		goto out;
7904 
7905 	bpf_object__elf_finish(obj);
7906 
7907 	return obj;
7908 out:
7909 	bpf_object__close(obj);
7910 	return ERR_PTR(err);
7911 }
7912 
7913 struct bpf_object *
7914 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7915 {
7916 	if (!path)
7917 		return libbpf_err_ptr(-EINVAL);
7918 
7919 	pr_debug("loading %s\n", path);
7920 
7921 	return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7922 }
7923 
7924 struct bpf_object *bpf_object__open(const char *path)
7925 {
7926 	return bpf_object__open_file(path, NULL);
7927 }
7928 
7929 struct bpf_object *
7930 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7931 		     const struct bpf_object_open_opts *opts)
7932 {
7933 	if (!obj_buf || obj_buf_sz == 0)
7934 		return libbpf_err_ptr(-EINVAL);
7935 
7936 	return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7937 }
7938 
7939 static int bpf_object_unload(struct bpf_object *obj)
7940 {
7941 	size_t i;
7942 
7943 	if (!obj)
7944 		return libbpf_err(-EINVAL);
7945 
7946 	for (i = 0; i < obj->nr_maps; i++) {
7947 		zclose(obj->maps[i].fd);
7948 		if (obj->maps[i].st_ops)
7949 			zfree(&obj->maps[i].st_ops->kern_vdata);
7950 	}
7951 
7952 	for (i = 0; i < obj->nr_programs; i++)
7953 		bpf_program__unload(&obj->programs[i]);
7954 
7955 	return 0;
7956 }
7957 
7958 static int bpf_object__sanitize_maps(struct bpf_object *obj)
7959 {
7960 	struct bpf_map *m;
7961 
7962 	bpf_object__for_each_map(m, obj) {
7963 		if (!bpf_map__is_internal(m))
7964 			continue;
7965 		if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7966 			m->def.map_flags &= ~BPF_F_MMAPABLE;
7967 	}
7968 
7969 	return 0;
7970 }
7971 
7972 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7973 {
7974 	char sym_type, sym_name[500];
7975 	unsigned long long sym_addr;
7976 	int ret, err = 0;
7977 	FILE *f;
7978 
7979 	f = fopen("/proc/kallsyms", "re");
7980 	if (!f) {
7981 		err = -errno;
7982 		pr_warn("failed to open /proc/kallsyms: %d\n", err);
7983 		return err;
7984 	}
7985 
7986 	while (true) {
7987 		ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7988 			     &sym_addr, &sym_type, sym_name);
7989 		if (ret == EOF && feof(f))
7990 			break;
7991 		if (ret != 3) {
7992 			pr_warn("failed to read kallsyms entry: %d\n", ret);
7993 			err = -EINVAL;
7994 			break;
7995 		}
7996 
7997 		err = cb(sym_addr, sym_type, sym_name, ctx);
7998 		if (err)
7999 			break;
8000 	}
8001 
8002 	fclose(f);
8003 	return err;
8004 }
8005 
8006 static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
8007 		       const char *sym_name, void *ctx)
8008 {
8009 	struct bpf_object *obj = ctx;
8010 	const struct btf_type *t;
8011 	struct extern_desc *ext;
8012 
8013 	ext = find_extern_by_name(obj, sym_name);
8014 	if (!ext || ext->type != EXT_KSYM)
8015 		return 0;
8016 
8017 	t = btf__type_by_id(obj->btf, ext->btf_id);
8018 	if (!btf_is_var(t))
8019 		return 0;
8020 
8021 	if (ext->is_set && ext->ksym.addr != sym_addr) {
8022 		pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
8023 			sym_name, ext->ksym.addr, sym_addr);
8024 		return -EINVAL;
8025 	}
8026 	if (!ext->is_set) {
8027 		ext->is_set = true;
8028 		ext->ksym.addr = sym_addr;
8029 		pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
8030 	}
8031 	return 0;
8032 }
8033 
8034 static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
8035 {
8036 	return libbpf_kallsyms_parse(kallsyms_cb, obj);
8037 }
8038 
8039 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
8040 			    __u16 kind, struct btf **res_btf,
8041 			    struct module_btf **res_mod_btf)
8042 {
8043 	struct module_btf *mod_btf;
8044 	struct btf *btf;
8045 	int i, id, err;
8046 
8047 	btf = obj->btf_vmlinux;
8048 	mod_btf = NULL;
8049 	id = btf__find_by_name_kind(btf, ksym_name, kind);
8050 
8051 	if (id == -ENOENT) {
8052 		err = load_module_btfs(obj);
8053 		if (err)
8054 			return err;
8055 
8056 		for (i = 0; i < obj->btf_module_cnt; i++) {
8057 			/* we assume module_btf's BTF FD is always >0 */
8058 			mod_btf = &obj->btf_modules[i];
8059 			btf = mod_btf->btf;
8060 			id = btf__find_by_name_kind_own(btf, ksym_name, kind);
8061 			if (id != -ENOENT)
8062 				break;
8063 		}
8064 	}
8065 	if (id <= 0)
8066 		return -ESRCH;
8067 
8068 	*res_btf = btf;
8069 	*res_mod_btf = mod_btf;
8070 	return id;
8071 }
8072 
8073 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
8074 					       struct extern_desc *ext)
8075 {
8076 	const struct btf_type *targ_var, *targ_type;
8077 	__u32 targ_type_id, local_type_id;
8078 	struct module_btf *mod_btf = NULL;
8079 	const char *targ_var_name;
8080 	struct btf *btf = NULL;
8081 	int id, err;
8082 
8083 	id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
8084 	if (id < 0) {
8085 		if (id == -ESRCH && ext->is_weak)
8086 			return 0;
8087 		pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
8088 			ext->name);
8089 		return id;
8090 	}
8091 
8092 	/* find local type_id */
8093 	local_type_id = ext->ksym.type_id;
8094 
8095 	/* find target type_id */
8096 	targ_var = btf__type_by_id(btf, id);
8097 	targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
8098 	targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
8099 
8100 	err = bpf_core_types_are_compat(obj->btf, local_type_id,
8101 					btf, targ_type_id);
8102 	if (err <= 0) {
8103 		const struct btf_type *local_type;
8104 		const char *targ_name, *local_name;
8105 
8106 		local_type = btf__type_by_id(obj->btf, local_type_id);
8107 		local_name = btf__name_by_offset(obj->btf, local_type->name_off);
8108 		targ_name = btf__name_by_offset(btf, targ_type->name_off);
8109 
8110 		pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
8111 			ext->name, local_type_id,
8112 			btf_kind_str(local_type), local_name, targ_type_id,
8113 			btf_kind_str(targ_type), targ_name);
8114 		return -EINVAL;
8115 	}
8116 
8117 	ext->is_set = true;
8118 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8119 	ext->ksym.kernel_btf_id = id;
8120 	pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
8121 		 ext->name, id, btf_kind_str(targ_var), targ_var_name);
8122 
8123 	return 0;
8124 }
8125 
8126 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
8127 						struct extern_desc *ext)
8128 {
8129 	int local_func_proto_id, kfunc_proto_id, kfunc_id;
8130 	struct module_btf *mod_btf = NULL;
8131 	const struct btf_type *kern_func;
8132 	struct btf *kern_btf = NULL;
8133 	int ret;
8134 
8135 	local_func_proto_id = ext->ksym.type_id;
8136 
8137 	kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf,
8138 				    &mod_btf);
8139 	if (kfunc_id < 0) {
8140 		if (kfunc_id == -ESRCH && ext->is_weak)
8141 			return 0;
8142 		pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
8143 			ext->name);
8144 		return kfunc_id;
8145 	}
8146 
8147 	kern_func = btf__type_by_id(kern_btf, kfunc_id);
8148 	kfunc_proto_id = kern_func->type;
8149 
8150 	ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
8151 					kern_btf, kfunc_proto_id);
8152 	if (ret <= 0) {
8153 		if (ext->is_weak)
8154 			return 0;
8155 
8156 		pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
8157 			ext->name, local_func_proto_id,
8158 			mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
8159 		return -EINVAL;
8160 	}
8161 
8162 	/* set index for module BTF fd in fd_array, if unset */
8163 	if (mod_btf && !mod_btf->fd_array_idx) {
8164 		/* insn->off is s16 */
8165 		if (obj->fd_array_cnt == INT16_MAX) {
8166 			pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
8167 				ext->name, mod_btf->fd_array_idx);
8168 			return -E2BIG;
8169 		}
8170 		/* Cannot use index 0 for module BTF fd */
8171 		if (!obj->fd_array_cnt)
8172 			obj->fd_array_cnt = 1;
8173 
8174 		ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
8175 					obj->fd_array_cnt + 1);
8176 		if (ret)
8177 			return ret;
8178 		mod_btf->fd_array_idx = obj->fd_array_cnt;
8179 		/* we assume module BTF FD is always >0 */
8180 		obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
8181 	}
8182 
8183 	ext->is_set = true;
8184 	ext->ksym.kernel_btf_id = kfunc_id;
8185 	ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
8186 	/* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
8187 	 * populates FD into ld_imm64 insn when it's used to point to kfunc.
8188 	 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
8189 	 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
8190 	 */
8191 	ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
8192 	pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
8193 		 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
8194 
8195 	return 0;
8196 }
8197 
8198 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
8199 {
8200 	const struct btf_type *t;
8201 	struct extern_desc *ext;
8202 	int i, err;
8203 
8204 	for (i = 0; i < obj->nr_extern; i++) {
8205 		ext = &obj->externs[i];
8206 		if (ext->type != EXT_KSYM || !ext->ksym.type_id)
8207 			continue;
8208 
8209 		if (obj->gen_loader) {
8210 			ext->is_set = true;
8211 			ext->ksym.kernel_btf_obj_fd = 0;
8212 			ext->ksym.kernel_btf_id = 0;
8213 			continue;
8214 		}
8215 		t = btf__type_by_id(obj->btf, ext->btf_id);
8216 		if (btf_is_var(t))
8217 			err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
8218 		else
8219 			err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
8220 		if (err)
8221 			return err;
8222 	}
8223 	return 0;
8224 }
8225 
8226 static int bpf_object__resolve_externs(struct bpf_object *obj,
8227 				       const char *extra_kconfig)
8228 {
8229 	bool need_config = false, need_kallsyms = false;
8230 	bool need_vmlinux_btf = false;
8231 	struct extern_desc *ext;
8232 	void *kcfg_data = NULL;
8233 	int err, i;
8234 
8235 	if (obj->nr_extern == 0)
8236 		return 0;
8237 
8238 	if (obj->kconfig_map_idx >= 0)
8239 		kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
8240 
8241 	for (i = 0; i < obj->nr_extern; i++) {
8242 		ext = &obj->externs[i];
8243 
8244 		if (ext->type == EXT_KSYM) {
8245 			if (ext->ksym.type_id)
8246 				need_vmlinux_btf = true;
8247 			else
8248 				need_kallsyms = true;
8249 			continue;
8250 		} else if (ext->type == EXT_KCFG) {
8251 			void *ext_ptr = kcfg_data + ext->kcfg.data_off;
8252 			__u64 value = 0;
8253 
8254 			/* Kconfig externs need actual /proc/config.gz */
8255 			if (str_has_pfx(ext->name, "CONFIG_")) {
8256 				need_config = true;
8257 				continue;
8258 			}
8259 
8260 			/* Virtual kcfg externs are customly handled by libbpf */
8261 			if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
8262 				value = get_kernel_version();
8263 				if (!value) {
8264 					pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
8265 					return -EINVAL;
8266 				}
8267 			} else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
8268 				value = kernel_supports(obj, FEAT_BPF_COOKIE);
8269 			} else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
8270 				value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
8271 			} else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
8272 				/* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
8273 				 * __kconfig externs, where LINUX_ ones are virtual and filled out
8274 				 * customly by libbpf (their values don't come from Kconfig).
8275 				 * If LINUX_xxx variable is not recognized by libbpf, but is marked
8276 				 * __weak, it defaults to zero value, just like for CONFIG_xxx
8277 				 * externs.
8278 				 */
8279 				pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
8280 				return -EINVAL;
8281 			}
8282 
8283 			err = set_kcfg_value_num(ext, ext_ptr, value);
8284 			if (err)
8285 				return err;
8286 			pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
8287 				 ext->name, (long long)value);
8288 		} else {
8289 			pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
8290 			return -EINVAL;
8291 		}
8292 	}
8293 	if (need_config && extra_kconfig) {
8294 		err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
8295 		if (err)
8296 			return -EINVAL;
8297 		need_config = false;
8298 		for (i = 0; i < obj->nr_extern; i++) {
8299 			ext = &obj->externs[i];
8300 			if (ext->type == EXT_KCFG && !ext->is_set) {
8301 				need_config = true;
8302 				break;
8303 			}
8304 		}
8305 	}
8306 	if (need_config) {
8307 		err = bpf_object__read_kconfig_file(obj, kcfg_data);
8308 		if (err)
8309 			return -EINVAL;
8310 	}
8311 	if (need_kallsyms) {
8312 		err = bpf_object__read_kallsyms_file(obj);
8313 		if (err)
8314 			return -EINVAL;
8315 	}
8316 	if (need_vmlinux_btf) {
8317 		err = bpf_object__resolve_ksyms_btf_id(obj);
8318 		if (err)
8319 			return -EINVAL;
8320 	}
8321 	for (i = 0; i < obj->nr_extern; i++) {
8322 		ext = &obj->externs[i];
8323 
8324 		if (!ext->is_set && !ext->is_weak) {
8325 			pr_warn("extern '%s' (strong): not resolved\n", ext->name);
8326 			return -ESRCH;
8327 		} else if (!ext->is_set) {
8328 			pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
8329 				 ext->name);
8330 		}
8331 	}
8332 
8333 	return 0;
8334 }
8335 
8336 static void bpf_map_prepare_vdata(const struct bpf_map *map)
8337 {
8338 	struct bpf_struct_ops *st_ops;
8339 	__u32 i;
8340 
8341 	st_ops = map->st_ops;
8342 	for (i = 0; i < btf_vlen(st_ops->type); i++) {
8343 		struct bpf_program *prog = st_ops->progs[i];
8344 		void *kern_data;
8345 		int prog_fd;
8346 
8347 		if (!prog)
8348 			continue;
8349 
8350 		prog_fd = bpf_program__fd(prog);
8351 		kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
8352 		*(unsigned long *)kern_data = prog_fd;
8353 	}
8354 }
8355 
8356 static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
8357 {
8358 	struct bpf_map *map;
8359 	int i;
8360 
8361 	for (i = 0; i < obj->nr_maps; i++) {
8362 		map = &obj->maps[i];
8363 
8364 		if (!bpf_map__is_struct_ops(map))
8365 			continue;
8366 
8367 		if (!map->autocreate)
8368 			continue;
8369 
8370 		bpf_map_prepare_vdata(map);
8371 	}
8372 
8373 	return 0;
8374 }
8375 
8376 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
8377 {
8378 	int err, i;
8379 
8380 	if (!obj)
8381 		return libbpf_err(-EINVAL);
8382 
8383 	if (obj->loaded) {
8384 		pr_warn("object '%s': load can't be attempted twice\n", obj->name);
8385 		return libbpf_err(-EINVAL);
8386 	}
8387 
8388 	if (obj->gen_loader)
8389 		bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
8390 
8391 	err = bpf_object_prepare_token(obj);
8392 	err = err ? : bpf_object__probe_loading(obj);
8393 	err = err ? : bpf_object__load_vmlinux_btf(obj, false);
8394 	err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
8395 	err = err ? : bpf_object__sanitize_maps(obj);
8396 	err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
8397 	err = err ? : bpf_object_adjust_struct_ops_autoload(obj);
8398 	err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
8399 	err = err ? : bpf_object__sanitize_and_load_btf(obj);
8400 	err = err ? : bpf_object__create_maps(obj);
8401 	err = err ? : bpf_object__load_progs(obj, extra_log_level);
8402 	err = err ? : bpf_object_init_prog_arrays(obj);
8403 	err = err ? : bpf_object_prepare_struct_ops(obj);
8404 
8405 	if (obj->gen_loader) {
8406 		/* reset FDs */
8407 		if (obj->btf)
8408 			btf__set_fd(obj->btf, -1);
8409 		if (!err)
8410 			err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
8411 	}
8412 
8413 	/* clean up fd_array */
8414 	zfree(&obj->fd_array);
8415 
8416 	/* clean up module BTFs */
8417 	for (i = 0; i < obj->btf_module_cnt; i++) {
8418 		close(obj->btf_modules[i].fd);
8419 		btf__free(obj->btf_modules[i].btf);
8420 		free(obj->btf_modules[i].name);
8421 	}
8422 	free(obj->btf_modules);
8423 
8424 	/* clean up vmlinux BTF */
8425 	btf__free(obj->btf_vmlinux);
8426 	obj->btf_vmlinux = NULL;
8427 
8428 	obj->loaded = true; /* doesn't matter if successfully or not */
8429 
8430 	if (err)
8431 		goto out;
8432 
8433 	return 0;
8434 out:
8435 	/* unpin any maps that were auto-pinned during load */
8436 	for (i = 0; i < obj->nr_maps; i++)
8437 		if (obj->maps[i].pinned && !obj->maps[i].reused)
8438 			bpf_map__unpin(&obj->maps[i], NULL);
8439 
8440 	bpf_object_unload(obj);
8441 	pr_warn("failed to load object '%s'\n", obj->path);
8442 	return libbpf_err(err);
8443 }
8444 
8445 int bpf_object__load(struct bpf_object *obj)
8446 {
8447 	return bpf_object_load(obj, 0, NULL);
8448 }
8449 
8450 static int make_parent_dir(const char *path)
8451 {
8452 	char *cp, errmsg[STRERR_BUFSIZE];
8453 	char *dname, *dir;
8454 	int err = 0;
8455 
8456 	dname = strdup(path);
8457 	if (dname == NULL)
8458 		return -ENOMEM;
8459 
8460 	dir = dirname(dname);
8461 	if (mkdir(dir, 0700) && errno != EEXIST)
8462 		err = -errno;
8463 
8464 	free(dname);
8465 	if (err) {
8466 		cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8467 		pr_warn("failed to mkdir %s: %s\n", path, cp);
8468 	}
8469 	return err;
8470 }
8471 
8472 static int check_path(const char *path)
8473 {
8474 	char *cp, errmsg[STRERR_BUFSIZE];
8475 	struct statfs st_fs;
8476 	char *dname, *dir;
8477 	int err = 0;
8478 
8479 	if (path == NULL)
8480 		return -EINVAL;
8481 
8482 	dname = strdup(path);
8483 	if (dname == NULL)
8484 		return -ENOMEM;
8485 
8486 	dir = dirname(dname);
8487 	if (statfs(dir, &st_fs)) {
8488 		cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
8489 		pr_warn("failed to statfs %s: %s\n", dir, cp);
8490 		err = -errno;
8491 	}
8492 	free(dname);
8493 
8494 	if (!err && st_fs.f_type != BPF_FS_MAGIC) {
8495 		pr_warn("specified path %s is not on BPF FS\n", path);
8496 		err = -EINVAL;
8497 	}
8498 
8499 	return err;
8500 }
8501 
8502 int bpf_program__pin(struct bpf_program *prog, const char *path)
8503 {
8504 	char *cp, errmsg[STRERR_BUFSIZE];
8505 	int err;
8506 
8507 	if (prog->fd < 0) {
8508 		pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
8509 		return libbpf_err(-EINVAL);
8510 	}
8511 
8512 	err = make_parent_dir(path);
8513 	if (err)
8514 		return libbpf_err(err);
8515 
8516 	err = check_path(path);
8517 	if (err)
8518 		return libbpf_err(err);
8519 
8520 	if (bpf_obj_pin(prog->fd, path)) {
8521 		err = -errno;
8522 		cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
8523 		pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
8524 		return libbpf_err(err);
8525 	}
8526 
8527 	pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
8528 	return 0;
8529 }
8530 
8531 int bpf_program__unpin(struct bpf_program *prog, const char *path)
8532 {
8533 	int err;
8534 
8535 	if (prog->fd < 0) {
8536 		pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
8537 		return libbpf_err(-EINVAL);
8538 	}
8539 
8540 	err = check_path(path);
8541 	if (err)
8542 		return libbpf_err(err);
8543 
8544 	err = unlink(path);
8545 	if (err)
8546 		return libbpf_err(-errno);
8547 
8548 	pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
8549 	return 0;
8550 }
8551 
8552 int bpf_map__pin(struct bpf_map *map, const char *path)
8553 {
8554 	char *cp, errmsg[STRERR_BUFSIZE];
8555 	int err;
8556 
8557 	if (map == NULL) {
8558 		pr_warn("invalid map pointer\n");
8559 		return libbpf_err(-EINVAL);
8560 	}
8561 
8562 	if (map->pin_path) {
8563 		if (path && strcmp(path, map->pin_path)) {
8564 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8565 				bpf_map__name(map), map->pin_path, path);
8566 			return libbpf_err(-EINVAL);
8567 		} else if (map->pinned) {
8568 			pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8569 				 bpf_map__name(map), map->pin_path);
8570 			return 0;
8571 		}
8572 	} else {
8573 		if (!path) {
8574 			pr_warn("missing a path to pin map '%s' at\n",
8575 				bpf_map__name(map));
8576 			return libbpf_err(-EINVAL);
8577 		} else if (map->pinned) {
8578 			pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8579 			return libbpf_err(-EEXIST);
8580 		}
8581 
8582 		map->pin_path = strdup(path);
8583 		if (!map->pin_path) {
8584 			err = -errno;
8585 			goto out_err;
8586 		}
8587 	}
8588 
8589 	err = make_parent_dir(map->pin_path);
8590 	if (err)
8591 		return libbpf_err(err);
8592 
8593 	err = check_path(map->pin_path);
8594 	if (err)
8595 		return libbpf_err(err);
8596 
8597 	if (bpf_obj_pin(map->fd, map->pin_path)) {
8598 		err = -errno;
8599 		goto out_err;
8600 	}
8601 
8602 	map->pinned = true;
8603 	pr_debug("pinned map '%s'\n", map->pin_path);
8604 
8605 	return 0;
8606 
8607 out_err:
8608 	cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8609 	pr_warn("failed to pin map: %s\n", cp);
8610 	return libbpf_err(err);
8611 }
8612 
8613 int bpf_map__unpin(struct bpf_map *map, const char *path)
8614 {
8615 	int err;
8616 
8617 	if (map == NULL) {
8618 		pr_warn("invalid map pointer\n");
8619 		return libbpf_err(-EINVAL);
8620 	}
8621 
8622 	if (map->pin_path) {
8623 		if (path && strcmp(path, map->pin_path)) {
8624 			pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8625 				bpf_map__name(map), map->pin_path, path);
8626 			return libbpf_err(-EINVAL);
8627 		}
8628 		path = map->pin_path;
8629 	} else if (!path) {
8630 		pr_warn("no path to unpin map '%s' from\n",
8631 			bpf_map__name(map));
8632 		return libbpf_err(-EINVAL);
8633 	}
8634 
8635 	err = check_path(path);
8636 	if (err)
8637 		return libbpf_err(err);
8638 
8639 	err = unlink(path);
8640 	if (err != 0)
8641 		return libbpf_err(-errno);
8642 
8643 	map->pinned = false;
8644 	pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8645 
8646 	return 0;
8647 }
8648 
8649 int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8650 {
8651 	char *new = NULL;
8652 
8653 	if (path) {
8654 		new = strdup(path);
8655 		if (!new)
8656 			return libbpf_err(-errno);
8657 	}
8658 
8659 	free(map->pin_path);
8660 	map->pin_path = new;
8661 	return 0;
8662 }
8663 
8664 __alias(bpf_map__pin_path)
8665 const char *bpf_map__get_pin_path(const struct bpf_map *map);
8666 
8667 const char *bpf_map__pin_path(const struct bpf_map *map)
8668 {
8669 	return map->pin_path;
8670 }
8671 
8672 bool bpf_map__is_pinned(const struct bpf_map *map)
8673 {
8674 	return map->pinned;
8675 }
8676 
8677 static void sanitize_pin_path(char *s)
8678 {
8679 	/* bpffs disallows periods in path names */
8680 	while (*s) {
8681 		if (*s == '.')
8682 			*s = '_';
8683 		s++;
8684 	}
8685 }
8686 
8687 int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8688 {
8689 	struct bpf_map *map;
8690 	int err;
8691 
8692 	if (!obj)
8693 		return libbpf_err(-ENOENT);
8694 
8695 	if (!obj->loaded) {
8696 		pr_warn("object not yet loaded; load it first\n");
8697 		return libbpf_err(-ENOENT);
8698 	}
8699 
8700 	bpf_object__for_each_map(map, obj) {
8701 		char *pin_path = NULL;
8702 		char buf[PATH_MAX];
8703 
8704 		if (!map->autocreate)
8705 			continue;
8706 
8707 		if (path) {
8708 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8709 			if (err)
8710 				goto err_unpin_maps;
8711 			sanitize_pin_path(buf);
8712 			pin_path = buf;
8713 		} else if (!map->pin_path) {
8714 			continue;
8715 		}
8716 
8717 		err = bpf_map__pin(map, pin_path);
8718 		if (err)
8719 			goto err_unpin_maps;
8720 	}
8721 
8722 	return 0;
8723 
8724 err_unpin_maps:
8725 	while ((map = bpf_object__prev_map(obj, map))) {
8726 		if (!map->pin_path)
8727 			continue;
8728 
8729 		bpf_map__unpin(map, NULL);
8730 	}
8731 
8732 	return libbpf_err(err);
8733 }
8734 
8735 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8736 {
8737 	struct bpf_map *map;
8738 	int err;
8739 
8740 	if (!obj)
8741 		return libbpf_err(-ENOENT);
8742 
8743 	bpf_object__for_each_map(map, obj) {
8744 		char *pin_path = NULL;
8745 		char buf[PATH_MAX];
8746 
8747 		if (path) {
8748 			err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8749 			if (err)
8750 				return libbpf_err(err);
8751 			sanitize_pin_path(buf);
8752 			pin_path = buf;
8753 		} else if (!map->pin_path) {
8754 			continue;
8755 		}
8756 
8757 		err = bpf_map__unpin(map, pin_path);
8758 		if (err)
8759 			return libbpf_err(err);
8760 	}
8761 
8762 	return 0;
8763 }
8764 
8765 int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8766 {
8767 	struct bpf_program *prog;
8768 	char buf[PATH_MAX];
8769 	int err;
8770 
8771 	if (!obj)
8772 		return libbpf_err(-ENOENT);
8773 
8774 	if (!obj->loaded) {
8775 		pr_warn("object not yet loaded; load it first\n");
8776 		return libbpf_err(-ENOENT);
8777 	}
8778 
8779 	bpf_object__for_each_program(prog, obj) {
8780 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8781 		if (err)
8782 			goto err_unpin_programs;
8783 
8784 		err = bpf_program__pin(prog, buf);
8785 		if (err)
8786 			goto err_unpin_programs;
8787 	}
8788 
8789 	return 0;
8790 
8791 err_unpin_programs:
8792 	while ((prog = bpf_object__prev_program(obj, prog))) {
8793 		if (pathname_concat(buf, sizeof(buf), path, prog->name))
8794 			continue;
8795 
8796 		bpf_program__unpin(prog, buf);
8797 	}
8798 
8799 	return libbpf_err(err);
8800 }
8801 
8802 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8803 {
8804 	struct bpf_program *prog;
8805 	int err;
8806 
8807 	if (!obj)
8808 		return libbpf_err(-ENOENT);
8809 
8810 	bpf_object__for_each_program(prog, obj) {
8811 		char buf[PATH_MAX];
8812 
8813 		err = pathname_concat(buf, sizeof(buf), path, prog->name);
8814 		if (err)
8815 			return libbpf_err(err);
8816 
8817 		err = bpf_program__unpin(prog, buf);
8818 		if (err)
8819 			return libbpf_err(err);
8820 	}
8821 
8822 	return 0;
8823 }
8824 
8825 int bpf_object__pin(struct bpf_object *obj, const char *path)
8826 {
8827 	int err;
8828 
8829 	err = bpf_object__pin_maps(obj, path);
8830 	if (err)
8831 		return libbpf_err(err);
8832 
8833 	err = bpf_object__pin_programs(obj, path);
8834 	if (err) {
8835 		bpf_object__unpin_maps(obj, path);
8836 		return libbpf_err(err);
8837 	}
8838 
8839 	return 0;
8840 }
8841 
8842 int bpf_object__unpin(struct bpf_object *obj, const char *path)
8843 {
8844 	int err;
8845 
8846 	err = bpf_object__unpin_programs(obj, path);
8847 	if (err)
8848 		return libbpf_err(err);
8849 
8850 	err = bpf_object__unpin_maps(obj, path);
8851 	if (err)
8852 		return libbpf_err(err);
8853 
8854 	return 0;
8855 }
8856 
8857 static void bpf_map__destroy(struct bpf_map *map)
8858 {
8859 	if (map->inner_map) {
8860 		bpf_map__destroy(map->inner_map);
8861 		zfree(&map->inner_map);
8862 	}
8863 
8864 	zfree(&map->init_slots);
8865 	map->init_slots_sz = 0;
8866 
8867 	if (map->mmaped && map->mmaped != map->obj->arena_data)
8868 		munmap(map->mmaped, bpf_map_mmap_sz(map));
8869 	map->mmaped = NULL;
8870 
8871 	if (map->st_ops) {
8872 		zfree(&map->st_ops->data);
8873 		zfree(&map->st_ops->progs);
8874 		zfree(&map->st_ops->kern_func_off);
8875 		zfree(&map->st_ops);
8876 	}
8877 
8878 	zfree(&map->name);
8879 	zfree(&map->real_name);
8880 	zfree(&map->pin_path);
8881 
8882 	if (map->fd >= 0)
8883 		zclose(map->fd);
8884 }
8885 
8886 void bpf_object__close(struct bpf_object *obj)
8887 {
8888 	size_t i;
8889 
8890 	if (IS_ERR_OR_NULL(obj))
8891 		return;
8892 
8893 	usdt_manager_free(obj->usdt_man);
8894 	obj->usdt_man = NULL;
8895 
8896 	bpf_gen__free(obj->gen_loader);
8897 	bpf_object__elf_finish(obj);
8898 	bpf_object_unload(obj);
8899 	btf__free(obj->btf);
8900 	btf__free(obj->btf_vmlinux);
8901 	btf_ext__free(obj->btf_ext);
8902 
8903 	for (i = 0; i < obj->nr_maps; i++)
8904 		bpf_map__destroy(&obj->maps[i]);
8905 
8906 	zfree(&obj->btf_custom_path);
8907 	zfree(&obj->kconfig);
8908 
8909 	for (i = 0; i < obj->nr_extern; i++)
8910 		zfree(&obj->externs[i].essent_name);
8911 
8912 	zfree(&obj->externs);
8913 	obj->nr_extern = 0;
8914 
8915 	zfree(&obj->maps);
8916 	obj->nr_maps = 0;
8917 
8918 	if (obj->programs && obj->nr_programs) {
8919 		for (i = 0; i < obj->nr_programs; i++)
8920 			bpf_program__exit(&obj->programs[i]);
8921 	}
8922 	zfree(&obj->programs);
8923 
8924 	zfree(&obj->feat_cache);
8925 	zfree(&obj->token_path);
8926 	if (obj->token_fd > 0)
8927 		close(obj->token_fd);
8928 
8929 	zfree(&obj->arena_data);
8930 
8931 	free(obj);
8932 }
8933 
8934 const char *bpf_object__name(const struct bpf_object *obj)
8935 {
8936 	return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8937 }
8938 
8939 unsigned int bpf_object__kversion(const struct bpf_object *obj)
8940 {
8941 	return obj ? obj->kern_version : 0;
8942 }
8943 
8944 struct btf *bpf_object__btf(const struct bpf_object *obj)
8945 {
8946 	return obj ? obj->btf : NULL;
8947 }
8948 
8949 int bpf_object__btf_fd(const struct bpf_object *obj)
8950 {
8951 	return obj->btf ? btf__fd(obj->btf) : -1;
8952 }
8953 
8954 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8955 {
8956 	if (obj->loaded)
8957 		return libbpf_err(-EINVAL);
8958 
8959 	obj->kern_version = kern_version;
8960 
8961 	return 0;
8962 }
8963 
8964 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8965 {
8966 	struct bpf_gen *gen;
8967 
8968 	if (!opts)
8969 		return -EFAULT;
8970 	if (!OPTS_VALID(opts, gen_loader_opts))
8971 		return -EINVAL;
8972 	gen = calloc(sizeof(*gen), 1);
8973 	if (!gen)
8974 		return -ENOMEM;
8975 	gen->opts = opts;
8976 	obj->gen_loader = gen;
8977 	return 0;
8978 }
8979 
8980 static struct bpf_program *
8981 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8982 		    bool forward)
8983 {
8984 	size_t nr_programs = obj->nr_programs;
8985 	ssize_t idx;
8986 
8987 	if (!nr_programs)
8988 		return NULL;
8989 
8990 	if (!p)
8991 		/* Iter from the beginning */
8992 		return forward ? &obj->programs[0] :
8993 			&obj->programs[nr_programs - 1];
8994 
8995 	if (p->obj != obj) {
8996 		pr_warn("error: program handler doesn't match object\n");
8997 		return errno = EINVAL, NULL;
8998 	}
8999 
9000 	idx = (p - obj->programs) + (forward ? 1 : -1);
9001 	if (idx >= obj->nr_programs || idx < 0)
9002 		return NULL;
9003 	return &obj->programs[idx];
9004 }
9005 
9006 struct bpf_program *
9007 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
9008 {
9009 	struct bpf_program *prog = prev;
9010 
9011 	do {
9012 		prog = __bpf_program__iter(prog, obj, true);
9013 	} while (prog && prog_is_subprog(obj, prog));
9014 
9015 	return prog;
9016 }
9017 
9018 struct bpf_program *
9019 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
9020 {
9021 	struct bpf_program *prog = next;
9022 
9023 	do {
9024 		prog = __bpf_program__iter(prog, obj, false);
9025 	} while (prog && prog_is_subprog(obj, prog));
9026 
9027 	return prog;
9028 }
9029 
9030 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
9031 {
9032 	prog->prog_ifindex = ifindex;
9033 }
9034 
9035 const char *bpf_program__name(const struct bpf_program *prog)
9036 {
9037 	return prog->name;
9038 }
9039 
9040 const char *bpf_program__section_name(const struct bpf_program *prog)
9041 {
9042 	return prog->sec_name;
9043 }
9044 
9045 bool bpf_program__autoload(const struct bpf_program *prog)
9046 {
9047 	return prog->autoload;
9048 }
9049 
9050 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
9051 {
9052 	if (prog->obj->loaded)
9053 		return libbpf_err(-EINVAL);
9054 
9055 	prog->autoload = autoload;
9056 	return 0;
9057 }
9058 
9059 bool bpf_program__autoattach(const struct bpf_program *prog)
9060 {
9061 	return prog->autoattach;
9062 }
9063 
9064 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
9065 {
9066 	prog->autoattach = autoattach;
9067 }
9068 
9069 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
9070 {
9071 	return prog->insns;
9072 }
9073 
9074 size_t bpf_program__insn_cnt(const struct bpf_program *prog)
9075 {
9076 	return prog->insns_cnt;
9077 }
9078 
9079 int bpf_program__set_insns(struct bpf_program *prog,
9080 			   struct bpf_insn *new_insns, size_t new_insn_cnt)
9081 {
9082 	struct bpf_insn *insns;
9083 
9084 	if (prog->obj->loaded)
9085 		return -EBUSY;
9086 
9087 	insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
9088 	/* NULL is a valid return from reallocarray if the new count is zero */
9089 	if (!insns && new_insn_cnt) {
9090 		pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
9091 		return -ENOMEM;
9092 	}
9093 	memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
9094 
9095 	prog->insns = insns;
9096 	prog->insns_cnt = new_insn_cnt;
9097 	return 0;
9098 }
9099 
9100 int bpf_program__fd(const struct bpf_program *prog)
9101 {
9102 	if (!prog)
9103 		return libbpf_err(-EINVAL);
9104 
9105 	if (prog->fd < 0)
9106 		return libbpf_err(-ENOENT);
9107 
9108 	return prog->fd;
9109 }
9110 
9111 __alias(bpf_program__type)
9112 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
9113 
9114 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
9115 {
9116 	return prog->type;
9117 }
9118 
9119 static size_t custom_sec_def_cnt;
9120 static struct bpf_sec_def *custom_sec_defs;
9121 static struct bpf_sec_def custom_fallback_def;
9122 static bool has_custom_fallback_def;
9123 static int last_custom_sec_def_handler_id;
9124 
9125 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
9126 {
9127 	if (prog->obj->loaded)
9128 		return libbpf_err(-EBUSY);
9129 
9130 	/* if type is not changed, do nothing */
9131 	if (prog->type == type)
9132 		return 0;
9133 
9134 	prog->type = type;
9135 
9136 	/* If a program type was changed, we need to reset associated SEC()
9137 	 * handler, as it will be invalid now. The only exception is a generic
9138 	 * fallback handler, which by definition is program type-agnostic and
9139 	 * is a catch-all custom handler, optionally set by the application,
9140 	 * so should be able to handle any type of BPF program.
9141 	 */
9142 	if (prog->sec_def != &custom_fallback_def)
9143 		prog->sec_def = NULL;
9144 	return 0;
9145 }
9146 
9147 __alias(bpf_program__expected_attach_type)
9148 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
9149 
9150 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
9151 {
9152 	return prog->expected_attach_type;
9153 }
9154 
9155 int bpf_program__set_expected_attach_type(struct bpf_program *prog,
9156 					   enum bpf_attach_type type)
9157 {
9158 	if (prog->obj->loaded)
9159 		return libbpf_err(-EBUSY);
9160 
9161 	prog->expected_attach_type = type;
9162 	return 0;
9163 }
9164 
9165 __u32 bpf_program__flags(const struct bpf_program *prog)
9166 {
9167 	return prog->prog_flags;
9168 }
9169 
9170 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
9171 {
9172 	if (prog->obj->loaded)
9173 		return libbpf_err(-EBUSY);
9174 
9175 	prog->prog_flags = flags;
9176 	return 0;
9177 }
9178 
9179 __u32 bpf_program__log_level(const struct bpf_program *prog)
9180 {
9181 	return prog->log_level;
9182 }
9183 
9184 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
9185 {
9186 	if (prog->obj->loaded)
9187 		return libbpf_err(-EBUSY);
9188 
9189 	prog->log_level = log_level;
9190 	return 0;
9191 }
9192 
9193 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
9194 {
9195 	*log_size = prog->log_size;
9196 	return prog->log_buf;
9197 }
9198 
9199 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
9200 {
9201 	if (log_size && !log_buf)
9202 		return -EINVAL;
9203 	if (prog->log_size > UINT_MAX)
9204 		return -EINVAL;
9205 	if (prog->obj->loaded)
9206 		return -EBUSY;
9207 
9208 	prog->log_buf = log_buf;
9209 	prog->log_size = log_size;
9210 	return 0;
9211 }
9212 
9213 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) {			    \
9214 	.sec = (char *)sec_pfx,						    \
9215 	.prog_type = BPF_PROG_TYPE_##ptype,				    \
9216 	.expected_attach_type = atype,					    \
9217 	.cookie = (long)(flags),					    \
9218 	.prog_prepare_load_fn = libbpf_prepare_prog_load,		    \
9219 	__VA_ARGS__							    \
9220 }
9221 
9222 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9223 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9224 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9225 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9226 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9227 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9228 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9229 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9230 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9231 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9232 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
9233 
9234 static const struct bpf_sec_def section_defs[] = {
9235 	SEC_DEF("socket",		SOCKET_FILTER, 0, SEC_NONE),
9236 	SEC_DEF("sk_reuseport/migrate",	SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
9237 	SEC_DEF("sk_reuseport",		SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
9238 	SEC_DEF("kprobe+",		KPROBE,	0, SEC_NONE, attach_kprobe),
9239 	SEC_DEF("uprobe+",		KPROBE,	0, SEC_NONE, attach_uprobe),
9240 	SEC_DEF("uprobe.s+",		KPROBE,	0, SEC_SLEEPABLE, attach_uprobe),
9241 	SEC_DEF("kretprobe+",		KPROBE, 0, SEC_NONE, attach_kprobe),
9242 	SEC_DEF("uretprobe+",		KPROBE, 0, SEC_NONE, attach_uprobe),
9243 	SEC_DEF("uretprobe.s+",		KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
9244 	SEC_DEF("kprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9245 	SEC_DEF("kretprobe.multi+",	KPROBE,	BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
9246 	SEC_DEF("uprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9247 	SEC_DEF("uretprobe.multi+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi),
9248 	SEC_DEF("uprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9249 	SEC_DEF("uretprobe.multi.s+",	KPROBE,	BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi),
9250 	SEC_DEF("ksyscall+",		KPROBE,	0, SEC_NONE, attach_ksyscall),
9251 	SEC_DEF("kretsyscall+",		KPROBE, 0, SEC_NONE, attach_ksyscall),
9252 	SEC_DEF("usdt+",		KPROBE,	0, SEC_USDT, attach_usdt),
9253 	SEC_DEF("usdt.s+",		KPROBE,	0, SEC_USDT | SEC_SLEEPABLE, attach_usdt),
9254 	SEC_DEF("tc/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */
9255 	SEC_DEF("tc/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),  /* alias for tcx */
9256 	SEC_DEF("tcx/ingress",		SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE),
9257 	SEC_DEF("tcx/egress",		SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE),
9258 	SEC_DEF("tc",			SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9259 	SEC_DEF("classifier",		SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9260 	SEC_DEF("action",		SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */
9261 	SEC_DEF("netkit/primary",	SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE),
9262 	SEC_DEF("netkit/peer",		SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE),
9263 	SEC_DEF("tracepoint+",		TRACEPOINT, 0, SEC_NONE, attach_tp),
9264 	SEC_DEF("tp+",			TRACEPOINT, 0, SEC_NONE, attach_tp),
9265 	SEC_DEF("raw_tracepoint+",	RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9266 	SEC_DEF("raw_tp+",		RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
9267 	SEC_DEF("raw_tracepoint.w+",	RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9268 	SEC_DEF("raw_tp.w+",		RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
9269 	SEC_DEF("tp_btf+",		TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
9270 	SEC_DEF("fentry+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
9271 	SEC_DEF("fmod_ret+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
9272 	SEC_DEF("fexit+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
9273 	SEC_DEF("fentry.s+",		TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9274 	SEC_DEF("fmod_ret.s+",		TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9275 	SEC_DEF("fexit.s+",		TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
9276 	SEC_DEF("freplace+",		EXT, 0, SEC_ATTACH_BTF, attach_trace),
9277 	SEC_DEF("lsm+",			LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
9278 	SEC_DEF("lsm.s+",		LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
9279 	SEC_DEF("lsm_cgroup+",		LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
9280 	SEC_DEF("iter+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
9281 	SEC_DEF("iter.s+",		TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
9282 	SEC_DEF("syscall",		SYSCALL, 0, SEC_SLEEPABLE),
9283 	SEC_DEF("xdp.frags/devmap",	XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
9284 	SEC_DEF("xdp/devmap",		XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
9285 	SEC_DEF("xdp.frags/cpumap",	XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
9286 	SEC_DEF("xdp/cpumap",		XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
9287 	SEC_DEF("xdp.frags",		XDP, BPF_XDP, SEC_XDP_FRAGS),
9288 	SEC_DEF("xdp",			XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
9289 	SEC_DEF("perf_event",		PERF_EVENT, 0, SEC_NONE),
9290 	SEC_DEF("lwt_in",		LWT_IN, 0, SEC_NONE),
9291 	SEC_DEF("lwt_out",		LWT_OUT, 0, SEC_NONE),
9292 	SEC_DEF("lwt_xmit",		LWT_XMIT, 0, SEC_NONE),
9293 	SEC_DEF("lwt_seg6local",	LWT_SEG6LOCAL, 0, SEC_NONE),
9294 	SEC_DEF("sockops",		SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
9295 	SEC_DEF("sk_skb/stream_parser",	SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
9296 	SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
9297 	SEC_DEF("sk_skb",		SK_SKB, 0, SEC_NONE),
9298 	SEC_DEF("sk_msg",		SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
9299 	SEC_DEF("lirc_mode2",		LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
9300 	SEC_DEF("flow_dissector",	FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
9301 	SEC_DEF("cgroup_skb/ingress",	CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
9302 	SEC_DEF("cgroup_skb/egress",	CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
9303 	SEC_DEF("cgroup/skb",		CGROUP_SKB, 0, SEC_NONE),
9304 	SEC_DEF("cgroup/sock_create",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
9305 	SEC_DEF("cgroup/sock_release",	CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
9306 	SEC_DEF("cgroup/sock",		CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
9307 	SEC_DEF("cgroup/post_bind4",	CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
9308 	SEC_DEF("cgroup/post_bind6",	CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
9309 	SEC_DEF("cgroup/bind4",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
9310 	SEC_DEF("cgroup/bind6",		CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
9311 	SEC_DEF("cgroup/connect4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
9312 	SEC_DEF("cgroup/connect6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
9313 	SEC_DEF("cgroup/connect_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE),
9314 	SEC_DEF("cgroup/sendmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
9315 	SEC_DEF("cgroup/sendmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
9316 	SEC_DEF("cgroup/sendmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE),
9317 	SEC_DEF("cgroup/recvmsg4",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
9318 	SEC_DEF("cgroup/recvmsg6",	CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
9319 	SEC_DEF("cgroup/recvmsg_unix",	CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE),
9320 	SEC_DEF("cgroup/getpeername4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
9321 	SEC_DEF("cgroup/getpeername6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
9322 	SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE),
9323 	SEC_DEF("cgroup/getsockname4",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
9324 	SEC_DEF("cgroup/getsockname6",	CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
9325 	SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE),
9326 	SEC_DEF("cgroup/sysctl",	CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
9327 	SEC_DEF("cgroup/getsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
9328 	SEC_DEF("cgroup/setsockopt",	CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
9329 	SEC_DEF("cgroup/dev",		CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
9330 	SEC_DEF("struct_ops+",		STRUCT_OPS, 0, SEC_NONE),
9331 	SEC_DEF("struct_ops.s+",	STRUCT_OPS, 0, SEC_SLEEPABLE),
9332 	SEC_DEF("sk_lookup",		SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
9333 	SEC_DEF("netfilter",		NETFILTER, BPF_NETFILTER, SEC_NONE),
9334 };
9335 
9336 int libbpf_register_prog_handler(const char *sec,
9337 				 enum bpf_prog_type prog_type,
9338 				 enum bpf_attach_type exp_attach_type,
9339 				 const struct libbpf_prog_handler_opts *opts)
9340 {
9341 	struct bpf_sec_def *sec_def;
9342 
9343 	if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
9344 		return libbpf_err(-EINVAL);
9345 
9346 	if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
9347 		return libbpf_err(-E2BIG);
9348 
9349 	if (sec) {
9350 		sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
9351 					      sizeof(*sec_def));
9352 		if (!sec_def)
9353 			return libbpf_err(-ENOMEM);
9354 
9355 		custom_sec_defs = sec_def;
9356 		sec_def = &custom_sec_defs[custom_sec_def_cnt];
9357 	} else {
9358 		if (has_custom_fallback_def)
9359 			return libbpf_err(-EBUSY);
9360 
9361 		sec_def = &custom_fallback_def;
9362 	}
9363 
9364 	sec_def->sec = sec ? strdup(sec) : NULL;
9365 	if (sec && !sec_def->sec)
9366 		return libbpf_err(-ENOMEM);
9367 
9368 	sec_def->prog_type = prog_type;
9369 	sec_def->expected_attach_type = exp_attach_type;
9370 	sec_def->cookie = OPTS_GET(opts, cookie, 0);
9371 
9372 	sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
9373 	sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
9374 	sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
9375 
9376 	sec_def->handler_id = ++last_custom_sec_def_handler_id;
9377 
9378 	if (sec)
9379 		custom_sec_def_cnt++;
9380 	else
9381 		has_custom_fallback_def = true;
9382 
9383 	return sec_def->handler_id;
9384 }
9385 
9386 int libbpf_unregister_prog_handler(int handler_id)
9387 {
9388 	struct bpf_sec_def *sec_defs;
9389 	int i;
9390 
9391 	if (handler_id <= 0)
9392 		return libbpf_err(-EINVAL);
9393 
9394 	if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
9395 		memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
9396 		has_custom_fallback_def = false;
9397 		return 0;
9398 	}
9399 
9400 	for (i = 0; i < custom_sec_def_cnt; i++) {
9401 		if (custom_sec_defs[i].handler_id == handler_id)
9402 			break;
9403 	}
9404 
9405 	if (i == custom_sec_def_cnt)
9406 		return libbpf_err(-ENOENT);
9407 
9408 	free(custom_sec_defs[i].sec);
9409 	for (i = i + 1; i < custom_sec_def_cnt; i++)
9410 		custom_sec_defs[i - 1] = custom_sec_defs[i];
9411 	custom_sec_def_cnt--;
9412 
9413 	/* try to shrink the array, but it's ok if we couldn't */
9414 	sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
9415 	/* if new count is zero, reallocarray can return a valid NULL result;
9416 	 * in this case the previous pointer will be freed, so we *have to*
9417 	 * reassign old pointer to the new value (even if it's NULL)
9418 	 */
9419 	if (sec_defs || custom_sec_def_cnt == 0)
9420 		custom_sec_defs = sec_defs;
9421 
9422 	return 0;
9423 }
9424 
9425 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
9426 {
9427 	size_t len = strlen(sec_def->sec);
9428 
9429 	/* "type/" always has to have proper SEC("type/extras") form */
9430 	if (sec_def->sec[len - 1] == '/') {
9431 		if (str_has_pfx(sec_name, sec_def->sec))
9432 			return true;
9433 		return false;
9434 	}
9435 
9436 	/* "type+" means it can be either exact SEC("type") or
9437 	 * well-formed SEC("type/extras") with proper '/' separator
9438 	 */
9439 	if (sec_def->sec[len - 1] == '+') {
9440 		len--;
9441 		/* not even a prefix */
9442 		if (strncmp(sec_name, sec_def->sec, len) != 0)
9443 			return false;
9444 		/* exact match or has '/' separator */
9445 		if (sec_name[len] == '\0' || sec_name[len] == '/')
9446 			return true;
9447 		return false;
9448 	}
9449 
9450 	return strcmp(sec_name, sec_def->sec) == 0;
9451 }
9452 
9453 static const struct bpf_sec_def *find_sec_def(const char *sec_name)
9454 {
9455 	const struct bpf_sec_def *sec_def;
9456 	int i, n;
9457 
9458 	n = custom_sec_def_cnt;
9459 	for (i = 0; i < n; i++) {
9460 		sec_def = &custom_sec_defs[i];
9461 		if (sec_def_matches(sec_def, sec_name))
9462 			return sec_def;
9463 	}
9464 
9465 	n = ARRAY_SIZE(section_defs);
9466 	for (i = 0; i < n; i++) {
9467 		sec_def = &section_defs[i];
9468 		if (sec_def_matches(sec_def, sec_name))
9469 			return sec_def;
9470 	}
9471 
9472 	if (has_custom_fallback_def)
9473 		return &custom_fallback_def;
9474 
9475 	return NULL;
9476 }
9477 
9478 #define MAX_TYPE_NAME_SIZE 32
9479 
9480 static char *libbpf_get_type_names(bool attach_type)
9481 {
9482 	int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
9483 	char *buf;
9484 
9485 	buf = malloc(len);
9486 	if (!buf)
9487 		return NULL;
9488 
9489 	buf[0] = '\0';
9490 	/* Forge string buf with all available names */
9491 	for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
9492 		const struct bpf_sec_def *sec_def = &section_defs[i];
9493 
9494 		if (attach_type) {
9495 			if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9496 				continue;
9497 
9498 			if (!(sec_def->cookie & SEC_ATTACHABLE))
9499 				continue;
9500 		}
9501 
9502 		if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
9503 			free(buf);
9504 			return NULL;
9505 		}
9506 		strcat(buf, " ");
9507 		strcat(buf, section_defs[i].sec);
9508 	}
9509 
9510 	return buf;
9511 }
9512 
9513 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
9514 			     enum bpf_attach_type *expected_attach_type)
9515 {
9516 	const struct bpf_sec_def *sec_def;
9517 	char *type_names;
9518 
9519 	if (!name)
9520 		return libbpf_err(-EINVAL);
9521 
9522 	sec_def = find_sec_def(name);
9523 	if (sec_def) {
9524 		*prog_type = sec_def->prog_type;
9525 		*expected_attach_type = sec_def->expected_attach_type;
9526 		return 0;
9527 	}
9528 
9529 	pr_debug("failed to guess program type from ELF section '%s'\n", name);
9530 	type_names = libbpf_get_type_names(false);
9531 	if (type_names != NULL) {
9532 		pr_debug("supported section(type) names are:%s\n", type_names);
9533 		free(type_names);
9534 	}
9535 
9536 	return libbpf_err(-ESRCH);
9537 }
9538 
9539 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
9540 {
9541 	if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
9542 		return NULL;
9543 
9544 	return attach_type_name[t];
9545 }
9546 
9547 const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
9548 {
9549 	if (t < 0 || t >= ARRAY_SIZE(link_type_name))
9550 		return NULL;
9551 
9552 	return link_type_name[t];
9553 }
9554 
9555 const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
9556 {
9557 	if (t < 0 || t >= ARRAY_SIZE(map_type_name))
9558 		return NULL;
9559 
9560 	return map_type_name[t];
9561 }
9562 
9563 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
9564 {
9565 	if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
9566 		return NULL;
9567 
9568 	return prog_type_name[t];
9569 }
9570 
9571 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
9572 						     int sec_idx,
9573 						     size_t offset)
9574 {
9575 	struct bpf_map *map;
9576 	size_t i;
9577 
9578 	for (i = 0; i < obj->nr_maps; i++) {
9579 		map = &obj->maps[i];
9580 		if (!bpf_map__is_struct_ops(map))
9581 			continue;
9582 		if (map->sec_idx == sec_idx &&
9583 		    map->sec_offset <= offset &&
9584 		    offset - map->sec_offset < map->def.value_size)
9585 			return map;
9586 	}
9587 
9588 	return NULL;
9589 }
9590 
9591 /* Collect the reloc from ELF, populate the st_ops->progs[], and update
9592  * st_ops->data for shadow type.
9593  */
9594 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
9595 					    Elf64_Shdr *shdr, Elf_Data *data)
9596 {
9597 	const struct btf_member *member;
9598 	struct bpf_struct_ops *st_ops;
9599 	struct bpf_program *prog;
9600 	unsigned int shdr_idx;
9601 	const struct btf *btf;
9602 	struct bpf_map *map;
9603 	unsigned int moff, insn_idx;
9604 	const char *name;
9605 	__u32 member_idx;
9606 	Elf64_Sym *sym;
9607 	Elf64_Rel *rel;
9608 	int i, nrels;
9609 
9610 	btf = obj->btf;
9611 	nrels = shdr->sh_size / shdr->sh_entsize;
9612 	for (i = 0; i < nrels; i++) {
9613 		rel = elf_rel_by_idx(data, i);
9614 		if (!rel) {
9615 			pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
9616 			return -LIBBPF_ERRNO__FORMAT;
9617 		}
9618 
9619 		sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9620 		if (!sym) {
9621 			pr_warn("struct_ops reloc: symbol %zx not found\n",
9622 				(size_t)ELF64_R_SYM(rel->r_info));
9623 			return -LIBBPF_ERRNO__FORMAT;
9624 		}
9625 
9626 		name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9627 		map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9628 		if (!map) {
9629 			pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9630 				(size_t)rel->r_offset);
9631 			return -EINVAL;
9632 		}
9633 
9634 		moff = rel->r_offset - map->sec_offset;
9635 		shdr_idx = sym->st_shndx;
9636 		st_ops = map->st_ops;
9637 		pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9638 			 map->name,
9639 			 (long long)(rel->r_info >> 32),
9640 			 (long long)sym->st_value,
9641 			 shdr_idx, (size_t)rel->r_offset,
9642 			 map->sec_offset, sym->st_name, name);
9643 
9644 		if (shdr_idx >= SHN_LORESERVE) {
9645 			pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9646 				map->name, (size_t)rel->r_offset, shdr_idx);
9647 			return -LIBBPF_ERRNO__RELOC;
9648 		}
9649 		if (sym->st_value % BPF_INSN_SZ) {
9650 			pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9651 				map->name, (unsigned long long)sym->st_value);
9652 			return -LIBBPF_ERRNO__FORMAT;
9653 		}
9654 		insn_idx = sym->st_value / BPF_INSN_SZ;
9655 
9656 		member = find_member_by_offset(st_ops->type, moff * 8);
9657 		if (!member) {
9658 			pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9659 				map->name, moff);
9660 			return -EINVAL;
9661 		}
9662 		member_idx = member - btf_members(st_ops->type);
9663 		name = btf__name_by_offset(btf, member->name_off);
9664 
9665 		if (!resolve_func_ptr(btf, member->type, NULL)) {
9666 			pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9667 				map->name, name);
9668 			return -EINVAL;
9669 		}
9670 
9671 		prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9672 		if (!prog) {
9673 			pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9674 				map->name, shdr_idx, name);
9675 			return -EINVAL;
9676 		}
9677 
9678 		/* prevent the use of BPF prog with invalid type */
9679 		if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9680 			pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9681 				map->name, prog->name);
9682 			return -EINVAL;
9683 		}
9684 
9685 		st_ops->progs[member_idx] = prog;
9686 
9687 		/* st_ops->data will be exposed to users, being returned by
9688 		 * bpf_map__initial_value() as a pointer to the shadow
9689 		 * type. All function pointers in the original struct type
9690 		 * should be converted to a pointer to struct bpf_program
9691 		 * in the shadow type.
9692 		 */
9693 		*((struct bpf_program **)(st_ops->data + moff)) = prog;
9694 	}
9695 
9696 	return 0;
9697 }
9698 
9699 #define BTF_TRACE_PREFIX "btf_trace_"
9700 #define BTF_LSM_PREFIX "bpf_lsm_"
9701 #define BTF_ITER_PREFIX "bpf_iter_"
9702 #define BTF_MAX_NAME_SIZE 128
9703 
9704 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9705 				const char **prefix, int *kind)
9706 {
9707 	switch (attach_type) {
9708 	case BPF_TRACE_RAW_TP:
9709 		*prefix = BTF_TRACE_PREFIX;
9710 		*kind = BTF_KIND_TYPEDEF;
9711 		break;
9712 	case BPF_LSM_MAC:
9713 	case BPF_LSM_CGROUP:
9714 		*prefix = BTF_LSM_PREFIX;
9715 		*kind = BTF_KIND_FUNC;
9716 		break;
9717 	case BPF_TRACE_ITER:
9718 		*prefix = BTF_ITER_PREFIX;
9719 		*kind = BTF_KIND_FUNC;
9720 		break;
9721 	default:
9722 		*prefix = "";
9723 		*kind = BTF_KIND_FUNC;
9724 	}
9725 }
9726 
9727 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9728 				   const char *name, __u32 kind)
9729 {
9730 	char btf_type_name[BTF_MAX_NAME_SIZE];
9731 	int ret;
9732 
9733 	ret = snprintf(btf_type_name, sizeof(btf_type_name),
9734 		       "%s%s", prefix, name);
9735 	/* snprintf returns the number of characters written excluding the
9736 	 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9737 	 * indicates truncation.
9738 	 */
9739 	if (ret < 0 || ret >= sizeof(btf_type_name))
9740 		return -ENAMETOOLONG;
9741 	return btf__find_by_name_kind(btf, btf_type_name, kind);
9742 }
9743 
9744 static inline int find_attach_btf_id(struct btf *btf, const char *name,
9745 				     enum bpf_attach_type attach_type)
9746 {
9747 	const char *prefix;
9748 	int kind;
9749 
9750 	btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9751 	return find_btf_by_prefix_kind(btf, prefix, name, kind);
9752 }
9753 
9754 int libbpf_find_vmlinux_btf_id(const char *name,
9755 			       enum bpf_attach_type attach_type)
9756 {
9757 	struct btf *btf;
9758 	int err;
9759 
9760 	btf = btf__load_vmlinux_btf();
9761 	err = libbpf_get_error(btf);
9762 	if (err) {
9763 		pr_warn("vmlinux BTF is not found\n");
9764 		return libbpf_err(err);
9765 	}
9766 
9767 	err = find_attach_btf_id(btf, name, attach_type);
9768 	if (err <= 0)
9769 		pr_warn("%s is not found in vmlinux BTF\n", name);
9770 
9771 	btf__free(btf);
9772 	return libbpf_err(err);
9773 }
9774 
9775 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9776 {
9777 	struct bpf_prog_info info;
9778 	__u32 info_len = sizeof(info);
9779 	struct btf *btf;
9780 	int err;
9781 
9782 	memset(&info, 0, info_len);
9783 	err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9784 	if (err) {
9785 		pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9786 			attach_prog_fd, err);
9787 		return err;
9788 	}
9789 
9790 	err = -EINVAL;
9791 	if (!info.btf_id) {
9792 		pr_warn("The target program doesn't have BTF\n");
9793 		goto out;
9794 	}
9795 	btf = btf__load_from_kernel_by_id(info.btf_id);
9796 	err = libbpf_get_error(btf);
9797 	if (err) {
9798 		pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9799 		goto out;
9800 	}
9801 	err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9802 	btf__free(btf);
9803 	if (err <= 0) {
9804 		pr_warn("%s is not found in prog's BTF\n", name);
9805 		goto out;
9806 	}
9807 out:
9808 	return err;
9809 }
9810 
9811 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9812 			      enum bpf_attach_type attach_type,
9813 			      int *btf_obj_fd, int *btf_type_id)
9814 {
9815 	int ret, i;
9816 
9817 	ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9818 	if (ret > 0) {
9819 		*btf_obj_fd = 0; /* vmlinux BTF */
9820 		*btf_type_id = ret;
9821 		return 0;
9822 	}
9823 	if (ret != -ENOENT)
9824 		return ret;
9825 
9826 	ret = load_module_btfs(obj);
9827 	if (ret)
9828 		return ret;
9829 
9830 	for (i = 0; i < obj->btf_module_cnt; i++) {
9831 		const struct module_btf *mod = &obj->btf_modules[i];
9832 
9833 		ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9834 		if (ret > 0) {
9835 			*btf_obj_fd = mod->fd;
9836 			*btf_type_id = ret;
9837 			return 0;
9838 		}
9839 		if (ret == -ENOENT)
9840 			continue;
9841 
9842 		return ret;
9843 	}
9844 
9845 	return -ESRCH;
9846 }
9847 
9848 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9849 				     int *btf_obj_fd, int *btf_type_id)
9850 {
9851 	enum bpf_attach_type attach_type = prog->expected_attach_type;
9852 	__u32 attach_prog_fd = prog->attach_prog_fd;
9853 	int err = 0;
9854 
9855 	/* BPF program's BTF ID */
9856 	if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9857 		if (!attach_prog_fd) {
9858 			pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9859 			return -EINVAL;
9860 		}
9861 		err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9862 		if (err < 0) {
9863 			pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9864 				 prog->name, attach_prog_fd, attach_name, err);
9865 			return err;
9866 		}
9867 		*btf_obj_fd = 0;
9868 		*btf_type_id = err;
9869 		return 0;
9870 	}
9871 
9872 	/* kernel/module BTF ID */
9873 	if (prog->obj->gen_loader) {
9874 		bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9875 		*btf_obj_fd = 0;
9876 		*btf_type_id = 1;
9877 	} else {
9878 		err = find_kernel_btf_id(prog->obj, attach_name,
9879 					 attach_type, btf_obj_fd,
9880 					 btf_type_id);
9881 	}
9882 	if (err) {
9883 		pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9884 			prog->name, attach_name, err);
9885 		return err;
9886 	}
9887 	return 0;
9888 }
9889 
9890 int libbpf_attach_type_by_name(const char *name,
9891 			       enum bpf_attach_type *attach_type)
9892 {
9893 	char *type_names;
9894 	const struct bpf_sec_def *sec_def;
9895 
9896 	if (!name)
9897 		return libbpf_err(-EINVAL);
9898 
9899 	sec_def = find_sec_def(name);
9900 	if (!sec_def) {
9901 		pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9902 		type_names = libbpf_get_type_names(true);
9903 		if (type_names != NULL) {
9904 			pr_debug("attachable section(type) names are:%s\n", type_names);
9905 			free(type_names);
9906 		}
9907 
9908 		return libbpf_err(-EINVAL);
9909 	}
9910 
9911 	if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9912 		return libbpf_err(-EINVAL);
9913 	if (!(sec_def->cookie & SEC_ATTACHABLE))
9914 		return libbpf_err(-EINVAL);
9915 
9916 	*attach_type = sec_def->expected_attach_type;
9917 	return 0;
9918 }
9919 
9920 int bpf_map__fd(const struct bpf_map *map)
9921 {
9922 	if (!map)
9923 		return libbpf_err(-EINVAL);
9924 	if (!map_is_created(map))
9925 		return -1;
9926 	return map->fd;
9927 }
9928 
9929 static bool map_uses_real_name(const struct bpf_map *map)
9930 {
9931 	/* Since libbpf started to support custom .data.* and .rodata.* maps,
9932 	 * their user-visible name differs from kernel-visible name. Users see
9933 	 * such map's corresponding ELF section name as a map name.
9934 	 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9935 	 * maps to know which name has to be returned to the user.
9936 	 */
9937 	if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9938 		return true;
9939 	if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9940 		return true;
9941 	return false;
9942 }
9943 
9944 const char *bpf_map__name(const struct bpf_map *map)
9945 {
9946 	if (!map)
9947 		return NULL;
9948 
9949 	if (map_uses_real_name(map))
9950 		return map->real_name;
9951 
9952 	return map->name;
9953 }
9954 
9955 enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9956 {
9957 	return map->def.type;
9958 }
9959 
9960 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9961 {
9962 	if (map_is_created(map))
9963 		return libbpf_err(-EBUSY);
9964 	map->def.type = type;
9965 	return 0;
9966 }
9967 
9968 __u32 bpf_map__map_flags(const struct bpf_map *map)
9969 {
9970 	return map->def.map_flags;
9971 }
9972 
9973 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9974 {
9975 	if (map_is_created(map))
9976 		return libbpf_err(-EBUSY);
9977 	map->def.map_flags = flags;
9978 	return 0;
9979 }
9980 
9981 __u64 bpf_map__map_extra(const struct bpf_map *map)
9982 {
9983 	return map->map_extra;
9984 }
9985 
9986 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9987 {
9988 	if (map_is_created(map))
9989 		return libbpf_err(-EBUSY);
9990 	map->map_extra = map_extra;
9991 	return 0;
9992 }
9993 
9994 __u32 bpf_map__numa_node(const struct bpf_map *map)
9995 {
9996 	return map->numa_node;
9997 }
9998 
9999 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
10000 {
10001 	if (map_is_created(map))
10002 		return libbpf_err(-EBUSY);
10003 	map->numa_node = numa_node;
10004 	return 0;
10005 }
10006 
10007 __u32 bpf_map__key_size(const struct bpf_map *map)
10008 {
10009 	return map->def.key_size;
10010 }
10011 
10012 int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
10013 {
10014 	if (map_is_created(map))
10015 		return libbpf_err(-EBUSY);
10016 	map->def.key_size = size;
10017 	return 0;
10018 }
10019 
10020 __u32 bpf_map__value_size(const struct bpf_map *map)
10021 {
10022 	return map->def.value_size;
10023 }
10024 
10025 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size)
10026 {
10027 	struct btf *btf;
10028 	struct btf_type *datasec_type, *var_type;
10029 	struct btf_var_secinfo *var;
10030 	const struct btf_type *array_type;
10031 	const struct btf_array *array;
10032 	int vlen, element_sz, new_array_id;
10033 	__u32 nr_elements;
10034 
10035 	/* check btf existence */
10036 	btf = bpf_object__btf(map->obj);
10037 	if (!btf)
10038 		return -ENOENT;
10039 
10040 	/* verify map is datasec */
10041 	datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map));
10042 	if (!btf_is_datasec(datasec_type)) {
10043 		pr_warn("map '%s': cannot be resized, map value type is not a datasec\n",
10044 			bpf_map__name(map));
10045 		return -EINVAL;
10046 	}
10047 
10048 	/* verify datasec has at least one var */
10049 	vlen = btf_vlen(datasec_type);
10050 	if (vlen == 0) {
10051 		pr_warn("map '%s': cannot be resized, map value datasec is empty\n",
10052 			bpf_map__name(map));
10053 		return -EINVAL;
10054 	}
10055 
10056 	/* verify last var in the datasec is an array */
10057 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10058 	var_type = btf_type_by_id(btf, var->type);
10059 	array_type = skip_mods_and_typedefs(btf, var_type->type, NULL);
10060 	if (!btf_is_array(array_type)) {
10061 		pr_warn("map '%s': cannot be resized, last var must be an array\n",
10062 			bpf_map__name(map));
10063 		return -EINVAL;
10064 	}
10065 
10066 	/* verify request size aligns with array */
10067 	array = btf_array(array_type);
10068 	element_sz = btf__resolve_size(btf, array->type);
10069 	if (element_sz <= 0 || (size - var->offset) % element_sz != 0) {
10070 		pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n",
10071 			bpf_map__name(map), element_sz, size);
10072 		return -EINVAL;
10073 	}
10074 
10075 	/* create a new array based on the existing array, but with new length */
10076 	nr_elements = (size - var->offset) / element_sz;
10077 	new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements);
10078 	if (new_array_id < 0)
10079 		return new_array_id;
10080 
10081 	/* adding a new btf type invalidates existing pointers to btf objects,
10082 	 * so refresh pointers before proceeding
10083 	 */
10084 	datasec_type = btf_type_by_id(btf, map->btf_value_type_id);
10085 	var = &btf_var_secinfos(datasec_type)[vlen - 1];
10086 	var_type = btf_type_by_id(btf, var->type);
10087 
10088 	/* finally update btf info */
10089 	datasec_type->size = size;
10090 	var->size = size - var->offset;
10091 	var_type->type = new_array_id;
10092 
10093 	return 0;
10094 }
10095 
10096 int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
10097 {
10098 	if (map->obj->loaded || map->reused)
10099 		return libbpf_err(-EBUSY);
10100 
10101 	if (map->mmaped) {
10102 		size_t mmap_old_sz, mmap_new_sz;
10103 		int err;
10104 
10105 		if (map->def.type != BPF_MAP_TYPE_ARRAY)
10106 			return -EOPNOTSUPP;
10107 
10108 		mmap_old_sz = bpf_map_mmap_sz(map);
10109 		mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries);
10110 		err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz);
10111 		if (err) {
10112 			pr_warn("map '%s': failed to resize memory-mapped region: %d\n",
10113 				bpf_map__name(map), err);
10114 			return err;
10115 		}
10116 		err = map_btf_datasec_resize(map, size);
10117 		if (err && err != -ENOENT) {
10118 			pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n",
10119 				bpf_map__name(map), err);
10120 			map->btf_value_type_id = 0;
10121 			map->btf_key_type_id = 0;
10122 		}
10123 	}
10124 
10125 	map->def.value_size = size;
10126 	return 0;
10127 }
10128 
10129 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
10130 {
10131 	return map ? map->btf_key_type_id : 0;
10132 }
10133 
10134 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
10135 {
10136 	return map ? map->btf_value_type_id : 0;
10137 }
10138 
10139 int bpf_map__set_initial_value(struct bpf_map *map,
10140 			       const void *data, size_t size)
10141 {
10142 	size_t actual_sz;
10143 
10144 	if (map->obj->loaded || map->reused)
10145 		return libbpf_err(-EBUSY);
10146 
10147 	if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG)
10148 		return libbpf_err(-EINVAL);
10149 
10150 	if (map->def.type == BPF_MAP_TYPE_ARENA)
10151 		actual_sz = map->obj->arena_data_sz;
10152 	else
10153 		actual_sz = map->def.value_size;
10154 	if (size != actual_sz)
10155 		return libbpf_err(-EINVAL);
10156 
10157 	memcpy(map->mmaped, data, size);
10158 	return 0;
10159 }
10160 
10161 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize)
10162 {
10163 	if (bpf_map__is_struct_ops(map)) {
10164 		if (psize)
10165 			*psize = map->def.value_size;
10166 		return map->st_ops->data;
10167 	}
10168 
10169 	if (!map->mmaped)
10170 		return NULL;
10171 
10172 	if (map->def.type == BPF_MAP_TYPE_ARENA)
10173 		*psize = map->obj->arena_data_sz;
10174 	else
10175 		*psize = map->def.value_size;
10176 
10177 	return map->mmaped;
10178 }
10179 
10180 bool bpf_map__is_internal(const struct bpf_map *map)
10181 {
10182 	return map->libbpf_type != LIBBPF_MAP_UNSPEC;
10183 }
10184 
10185 __u32 bpf_map__ifindex(const struct bpf_map *map)
10186 {
10187 	return map->map_ifindex;
10188 }
10189 
10190 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
10191 {
10192 	if (map_is_created(map))
10193 		return libbpf_err(-EBUSY);
10194 	map->map_ifindex = ifindex;
10195 	return 0;
10196 }
10197 
10198 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
10199 {
10200 	if (!bpf_map_type__is_map_in_map(map->def.type)) {
10201 		pr_warn("error: unsupported map type\n");
10202 		return libbpf_err(-EINVAL);
10203 	}
10204 	if (map->inner_map_fd != -1) {
10205 		pr_warn("error: inner_map_fd already specified\n");
10206 		return libbpf_err(-EINVAL);
10207 	}
10208 	if (map->inner_map) {
10209 		bpf_map__destroy(map->inner_map);
10210 		zfree(&map->inner_map);
10211 	}
10212 	map->inner_map_fd = fd;
10213 	return 0;
10214 }
10215 
10216 static struct bpf_map *
10217 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
10218 {
10219 	ssize_t idx;
10220 	struct bpf_map *s, *e;
10221 
10222 	if (!obj || !obj->maps)
10223 		return errno = EINVAL, NULL;
10224 
10225 	s = obj->maps;
10226 	e = obj->maps + obj->nr_maps;
10227 
10228 	if ((m < s) || (m >= e)) {
10229 		pr_warn("error in %s: map handler doesn't belong to object\n",
10230 			 __func__);
10231 		return errno = EINVAL, NULL;
10232 	}
10233 
10234 	idx = (m - obj->maps) + i;
10235 	if (idx >= obj->nr_maps || idx < 0)
10236 		return NULL;
10237 	return &obj->maps[idx];
10238 }
10239 
10240 struct bpf_map *
10241 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
10242 {
10243 	if (prev == NULL)
10244 		return obj->maps;
10245 
10246 	return __bpf_map__iter(prev, obj, 1);
10247 }
10248 
10249 struct bpf_map *
10250 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
10251 {
10252 	if (next == NULL) {
10253 		if (!obj->nr_maps)
10254 			return NULL;
10255 		return obj->maps + obj->nr_maps - 1;
10256 	}
10257 
10258 	return __bpf_map__iter(next, obj, -1);
10259 }
10260 
10261 struct bpf_map *
10262 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
10263 {
10264 	struct bpf_map *pos;
10265 
10266 	bpf_object__for_each_map(pos, obj) {
10267 		/* if it's a special internal map name (which always starts
10268 		 * with dot) then check if that special name matches the
10269 		 * real map name (ELF section name)
10270 		 */
10271 		if (name[0] == '.') {
10272 			if (pos->real_name && strcmp(pos->real_name, name) == 0)
10273 				return pos;
10274 			continue;
10275 		}
10276 		/* otherwise map name has to be an exact match */
10277 		if (map_uses_real_name(pos)) {
10278 			if (strcmp(pos->real_name, name) == 0)
10279 				return pos;
10280 			continue;
10281 		}
10282 		if (strcmp(pos->name, name) == 0)
10283 			return pos;
10284 	}
10285 	return errno = ENOENT, NULL;
10286 }
10287 
10288 int
10289 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
10290 {
10291 	return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
10292 }
10293 
10294 static int validate_map_op(const struct bpf_map *map, size_t key_sz,
10295 			   size_t value_sz, bool check_value_sz)
10296 {
10297 	if (!map_is_created(map)) /* map is not yet created */
10298 		return -ENOENT;
10299 
10300 	if (map->def.key_size != key_sz) {
10301 		pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
10302 			map->name, key_sz, map->def.key_size);
10303 		return -EINVAL;
10304 	}
10305 
10306 	if (!check_value_sz)
10307 		return 0;
10308 
10309 	switch (map->def.type) {
10310 	case BPF_MAP_TYPE_PERCPU_ARRAY:
10311 	case BPF_MAP_TYPE_PERCPU_HASH:
10312 	case BPF_MAP_TYPE_LRU_PERCPU_HASH:
10313 	case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
10314 		int num_cpu = libbpf_num_possible_cpus();
10315 		size_t elem_sz = roundup(map->def.value_size, 8);
10316 
10317 		if (value_sz != num_cpu * elem_sz) {
10318 			pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
10319 				map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
10320 			return -EINVAL;
10321 		}
10322 		break;
10323 	}
10324 	default:
10325 		if (map->def.value_size != value_sz) {
10326 			pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
10327 				map->name, value_sz, map->def.value_size);
10328 			return -EINVAL;
10329 		}
10330 		break;
10331 	}
10332 	return 0;
10333 }
10334 
10335 int bpf_map__lookup_elem(const struct bpf_map *map,
10336 			 const void *key, size_t key_sz,
10337 			 void *value, size_t value_sz, __u64 flags)
10338 {
10339 	int err;
10340 
10341 	err = validate_map_op(map, key_sz, value_sz, true);
10342 	if (err)
10343 		return libbpf_err(err);
10344 
10345 	return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
10346 }
10347 
10348 int bpf_map__update_elem(const struct bpf_map *map,
10349 			 const void *key, size_t key_sz,
10350 			 const void *value, size_t value_sz, __u64 flags)
10351 {
10352 	int err;
10353 
10354 	err = validate_map_op(map, key_sz, value_sz, true);
10355 	if (err)
10356 		return libbpf_err(err);
10357 
10358 	return bpf_map_update_elem(map->fd, key, value, flags);
10359 }
10360 
10361 int bpf_map__delete_elem(const struct bpf_map *map,
10362 			 const void *key, size_t key_sz, __u64 flags)
10363 {
10364 	int err;
10365 
10366 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10367 	if (err)
10368 		return libbpf_err(err);
10369 
10370 	return bpf_map_delete_elem_flags(map->fd, key, flags);
10371 }
10372 
10373 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
10374 				    const void *key, size_t key_sz,
10375 				    void *value, size_t value_sz, __u64 flags)
10376 {
10377 	int err;
10378 
10379 	err = validate_map_op(map, key_sz, value_sz, true);
10380 	if (err)
10381 		return libbpf_err(err);
10382 
10383 	return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
10384 }
10385 
10386 int bpf_map__get_next_key(const struct bpf_map *map,
10387 			  const void *cur_key, void *next_key, size_t key_sz)
10388 {
10389 	int err;
10390 
10391 	err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
10392 	if (err)
10393 		return libbpf_err(err);
10394 
10395 	return bpf_map_get_next_key(map->fd, cur_key, next_key);
10396 }
10397 
10398 long libbpf_get_error(const void *ptr)
10399 {
10400 	if (!IS_ERR_OR_NULL(ptr))
10401 		return 0;
10402 
10403 	if (IS_ERR(ptr))
10404 		errno = -PTR_ERR(ptr);
10405 
10406 	/* If ptr == NULL, then errno should be already set by the failing
10407 	 * API, because libbpf never returns NULL on success and it now always
10408 	 * sets errno on error. So no extra errno handling for ptr == NULL
10409 	 * case.
10410 	 */
10411 	return -errno;
10412 }
10413 
10414 /* Replace link's underlying BPF program with the new one */
10415 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
10416 {
10417 	int ret;
10418 
10419 	ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
10420 	return libbpf_err_errno(ret);
10421 }
10422 
10423 /* Release "ownership" of underlying BPF resource (typically, BPF program
10424  * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
10425  * link, when destructed through bpf_link__destroy() call won't attempt to
10426  * detach/unregisted that BPF resource. This is useful in situations where,
10427  * say, attached BPF program has to outlive userspace program that attached it
10428  * in the system. Depending on type of BPF program, though, there might be
10429  * additional steps (like pinning BPF program in BPF FS) necessary to ensure
10430  * exit of userspace program doesn't trigger automatic detachment and clean up
10431  * inside the kernel.
10432  */
10433 void bpf_link__disconnect(struct bpf_link *link)
10434 {
10435 	link->disconnected = true;
10436 }
10437 
10438 int bpf_link__destroy(struct bpf_link *link)
10439 {
10440 	int err = 0;
10441 
10442 	if (IS_ERR_OR_NULL(link))
10443 		return 0;
10444 
10445 	if (!link->disconnected && link->detach)
10446 		err = link->detach(link);
10447 	if (link->pin_path)
10448 		free(link->pin_path);
10449 	if (link->dealloc)
10450 		link->dealloc(link);
10451 	else
10452 		free(link);
10453 
10454 	return libbpf_err(err);
10455 }
10456 
10457 int bpf_link__fd(const struct bpf_link *link)
10458 {
10459 	return link->fd;
10460 }
10461 
10462 const char *bpf_link__pin_path(const struct bpf_link *link)
10463 {
10464 	return link->pin_path;
10465 }
10466 
10467 static int bpf_link__detach_fd(struct bpf_link *link)
10468 {
10469 	return libbpf_err_errno(close(link->fd));
10470 }
10471 
10472 struct bpf_link *bpf_link__open(const char *path)
10473 {
10474 	struct bpf_link *link;
10475 	int fd;
10476 
10477 	fd = bpf_obj_get(path);
10478 	if (fd < 0) {
10479 		fd = -errno;
10480 		pr_warn("failed to open link at %s: %d\n", path, fd);
10481 		return libbpf_err_ptr(fd);
10482 	}
10483 
10484 	link = calloc(1, sizeof(*link));
10485 	if (!link) {
10486 		close(fd);
10487 		return libbpf_err_ptr(-ENOMEM);
10488 	}
10489 	link->detach = &bpf_link__detach_fd;
10490 	link->fd = fd;
10491 
10492 	link->pin_path = strdup(path);
10493 	if (!link->pin_path) {
10494 		bpf_link__destroy(link);
10495 		return libbpf_err_ptr(-ENOMEM);
10496 	}
10497 
10498 	return link;
10499 }
10500 
10501 int bpf_link__detach(struct bpf_link *link)
10502 {
10503 	return bpf_link_detach(link->fd) ? -errno : 0;
10504 }
10505 
10506 int bpf_link__pin(struct bpf_link *link, const char *path)
10507 {
10508 	int err;
10509 
10510 	if (link->pin_path)
10511 		return libbpf_err(-EBUSY);
10512 	err = make_parent_dir(path);
10513 	if (err)
10514 		return libbpf_err(err);
10515 	err = check_path(path);
10516 	if (err)
10517 		return libbpf_err(err);
10518 
10519 	link->pin_path = strdup(path);
10520 	if (!link->pin_path)
10521 		return libbpf_err(-ENOMEM);
10522 
10523 	if (bpf_obj_pin(link->fd, link->pin_path)) {
10524 		err = -errno;
10525 		zfree(&link->pin_path);
10526 		return libbpf_err(err);
10527 	}
10528 
10529 	pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
10530 	return 0;
10531 }
10532 
10533 int bpf_link__unpin(struct bpf_link *link)
10534 {
10535 	int err;
10536 
10537 	if (!link->pin_path)
10538 		return libbpf_err(-EINVAL);
10539 
10540 	err = unlink(link->pin_path);
10541 	if (err != 0)
10542 		return -errno;
10543 
10544 	pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
10545 	zfree(&link->pin_path);
10546 	return 0;
10547 }
10548 
10549 struct bpf_link_perf {
10550 	struct bpf_link link;
10551 	int perf_event_fd;
10552 	/* legacy kprobe support: keep track of probe identifier and type */
10553 	char *legacy_probe_name;
10554 	bool legacy_is_kprobe;
10555 	bool legacy_is_retprobe;
10556 };
10557 
10558 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
10559 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
10560 
10561 static int bpf_link_perf_detach(struct bpf_link *link)
10562 {
10563 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10564 	int err = 0;
10565 
10566 	if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
10567 		err = -errno;
10568 
10569 	if (perf_link->perf_event_fd != link->fd)
10570 		close(perf_link->perf_event_fd);
10571 	close(link->fd);
10572 
10573 	/* legacy uprobe/kprobe needs to be removed after perf event fd closure */
10574 	if (perf_link->legacy_probe_name) {
10575 		if (perf_link->legacy_is_kprobe) {
10576 			err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
10577 							 perf_link->legacy_is_retprobe);
10578 		} else {
10579 			err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
10580 							 perf_link->legacy_is_retprobe);
10581 		}
10582 	}
10583 
10584 	return err;
10585 }
10586 
10587 static void bpf_link_perf_dealloc(struct bpf_link *link)
10588 {
10589 	struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10590 
10591 	free(perf_link->legacy_probe_name);
10592 	free(perf_link);
10593 }
10594 
10595 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
10596 						     const struct bpf_perf_event_opts *opts)
10597 {
10598 	char errmsg[STRERR_BUFSIZE];
10599 	struct bpf_link_perf *link;
10600 	int prog_fd, link_fd = -1, err;
10601 	bool force_ioctl_attach;
10602 
10603 	if (!OPTS_VALID(opts, bpf_perf_event_opts))
10604 		return libbpf_err_ptr(-EINVAL);
10605 
10606 	if (pfd < 0) {
10607 		pr_warn("prog '%s': invalid perf event FD %d\n",
10608 			prog->name, pfd);
10609 		return libbpf_err_ptr(-EINVAL);
10610 	}
10611 	prog_fd = bpf_program__fd(prog);
10612 	if (prog_fd < 0) {
10613 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
10614 			prog->name);
10615 		return libbpf_err_ptr(-EINVAL);
10616 	}
10617 
10618 	link = calloc(1, sizeof(*link));
10619 	if (!link)
10620 		return libbpf_err_ptr(-ENOMEM);
10621 	link->link.detach = &bpf_link_perf_detach;
10622 	link->link.dealloc = &bpf_link_perf_dealloc;
10623 	link->perf_event_fd = pfd;
10624 
10625 	force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
10626 	if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
10627 		DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
10628 			.perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
10629 
10630 		link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
10631 		if (link_fd < 0) {
10632 			err = -errno;
10633 			pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
10634 				prog->name, pfd,
10635 				err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10636 			goto err_out;
10637 		}
10638 		link->link.fd = link_fd;
10639 	} else {
10640 		if (OPTS_GET(opts, bpf_cookie, 0)) {
10641 			pr_warn("prog '%s': user context value is not supported\n", prog->name);
10642 			err = -EOPNOTSUPP;
10643 			goto err_out;
10644 		}
10645 
10646 		if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
10647 			err = -errno;
10648 			pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
10649 				prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10650 			if (err == -EPROTO)
10651 				pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
10652 					prog->name, pfd);
10653 			goto err_out;
10654 		}
10655 		link->link.fd = pfd;
10656 	}
10657 	if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
10658 		err = -errno;
10659 		pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
10660 			prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10661 		goto err_out;
10662 	}
10663 
10664 	return &link->link;
10665 err_out:
10666 	if (link_fd >= 0)
10667 		close(link_fd);
10668 	free(link);
10669 	return libbpf_err_ptr(err);
10670 }
10671 
10672 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
10673 {
10674 	return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
10675 }
10676 
10677 /*
10678  * this function is expected to parse integer in the range of [0, 2^31-1] from
10679  * given file using scanf format string fmt. If actual parsed value is
10680  * negative, the result might be indistinguishable from error
10681  */
10682 static int parse_uint_from_file(const char *file, const char *fmt)
10683 {
10684 	char buf[STRERR_BUFSIZE];
10685 	int err, ret;
10686 	FILE *f;
10687 
10688 	f = fopen(file, "re");
10689 	if (!f) {
10690 		err = -errno;
10691 		pr_debug("failed to open '%s': %s\n", file,
10692 			 libbpf_strerror_r(err, buf, sizeof(buf)));
10693 		return err;
10694 	}
10695 	err = fscanf(f, fmt, &ret);
10696 	if (err != 1) {
10697 		err = err == EOF ? -EIO : -errno;
10698 		pr_debug("failed to parse '%s': %s\n", file,
10699 			libbpf_strerror_r(err, buf, sizeof(buf)));
10700 		fclose(f);
10701 		return err;
10702 	}
10703 	fclose(f);
10704 	return ret;
10705 }
10706 
10707 static int determine_kprobe_perf_type(void)
10708 {
10709 	const char *file = "/sys/bus/event_source/devices/kprobe/type";
10710 
10711 	return parse_uint_from_file(file, "%d\n");
10712 }
10713 
10714 static int determine_uprobe_perf_type(void)
10715 {
10716 	const char *file = "/sys/bus/event_source/devices/uprobe/type";
10717 
10718 	return parse_uint_from_file(file, "%d\n");
10719 }
10720 
10721 static int determine_kprobe_retprobe_bit(void)
10722 {
10723 	const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
10724 
10725 	return parse_uint_from_file(file, "config:%d\n");
10726 }
10727 
10728 static int determine_uprobe_retprobe_bit(void)
10729 {
10730 	const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10731 
10732 	return parse_uint_from_file(file, "config:%d\n");
10733 }
10734 
10735 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10736 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10737 
10738 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10739 				 uint64_t offset, int pid, size_t ref_ctr_off)
10740 {
10741 	const size_t attr_sz = sizeof(struct perf_event_attr);
10742 	struct perf_event_attr attr;
10743 	char errmsg[STRERR_BUFSIZE];
10744 	int type, pfd;
10745 
10746 	if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10747 		return -EINVAL;
10748 
10749 	memset(&attr, 0, attr_sz);
10750 
10751 	type = uprobe ? determine_uprobe_perf_type()
10752 		      : determine_kprobe_perf_type();
10753 	if (type < 0) {
10754 		pr_warn("failed to determine %s perf type: %s\n",
10755 			uprobe ? "uprobe" : "kprobe",
10756 			libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10757 		return type;
10758 	}
10759 	if (retprobe) {
10760 		int bit = uprobe ? determine_uprobe_retprobe_bit()
10761 				 : determine_kprobe_retprobe_bit();
10762 
10763 		if (bit < 0) {
10764 			pr_warn("failed to determine %s retprobe bit: %s\n",
10765 				uprobe ? "uprobe" : "kprobe",
10766 				libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10767 			return bit;
10768 		}
10769 		attr.config |= 1 << bit;
10770 	}
10771 	attr.size = attr_sz;
10772 	attr.type = type;
10773 	attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10774 	attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10775 	attr.config2 = offset;		 /* kprobe_addr or probe_offset */
10776 
10777 	/* pid filter is meaningful only for uprobes */
10778 	pfd = syscall(__NR_perf_event_open, &attr,
10779 		      pid < 0 ? -1 : pid /* pid */,
10780 		      pid == -1 ? 0 : -1 /* cpu */,
10781 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10782 	return pfd >= 0 ? pfd : -errno;
10783 }
10784 
10785 static int append_to_file(const char *file, const char *fmt, ...)
10786 {
10787 	int fd, n, err = 0;
10788 	va_list ap;
10789 	char buf[1024];
10790 
10791 	va_start(ap, fmt);
10792 	n = vsnprintf(buf, sizeof(buf), fmt, ap);
10793 	va_end(ap);
10794 
10795 	if (n < 0 || n >= sizeof(buf))
10796 		return -EINVAL;
10797 
10798 	fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10799 	if (fd < 0)
10800 		return -errno;
10801 
10802 	if (write(fd, buf, n) < 0)
10803 		err = -errno;
10804 
10805 	close(fd);
10806 	return err;
10807 }
10808 
10809 #define DEBUGFS "/sys/kernel/debug/tracing"
10810 #define TRACEFS "/sys/kernel/tracing"
10811 
10812 static bool use_debugfs(void)
10813 {
10814 	static int has_debugfs = -1;
10815 
10816 	if (has_debugfs < 0)
10817 		has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10818 
10819 	return has_debugfs == 1;
10820 }
10821 
10822 static const char *tracefs_path(void)
10823 {
10824 	return use_debugfs() ? DEBUGFS : TRACEFS;
10825 }
10826 
10827 static const char *tracefs_kprobe_events(void)
10828 {
10829 	return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10830 }
10831 
10832 static const char *tracefs_uprobe_events(void)
10833 {
10834 	return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10835 }
10836 
10837 static const char *tracefs_available_filter_functions(void)
10838 {
10839 	return use_debugfs() ? DEBUGFS"/available_filter_functions"
10840 			     : TRACEFS"/available_filter_functions";
10841 }
10842 
10843 static const char *tracefs_available_filter_functions_addrs(void)
10844 {
10845 	return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs"
10846 			     : TRACEFS"/available_filter_functions_addrs";
10847 }
10848 
10849 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10850 					 const char *kfunc_name, size_t offset)
10851 {
10852 	static int index = 0;
10853 	int i;
10854 
10855 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10856 		 __sync_fetch_and_add(&index, 1));
10857 
10858 	/* sanitize binary_path in the probe name */
10859 	for (i = 0; buf[i]; i++) {
10860 		if (!isalnum(buf[i]))
10861 			buf[i] = '_';
10862 	}
10863 }
10864 
10865 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10866 				   const char *kfunc_name, size_t offset)
10867 {
10868 	return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10869 			      retprobe ? 'r' : 'p',
10870 			      retprobe ? "kretprobes" : "kprobes",
10871 			      probe_name, kfunc_name, offset);
10872 }
10873 
10874 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10875 {
10876 	return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10877 			      retprobe ? "kretprobes" : "kprobes", probe_name);
10878 }
10879 
10880 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10881 {
10882 	char file[256];
10883 
10884 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10885 		 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10886 
10887 	return parse_uint_from_file(file, "%d\n");
10888 }
10889 
10890 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10891 					 const char *kfunc_name, size_t offset, int pid)
10892 {
10893 	const size_t attr_sz = sizeof(struct perf_event_attr);
10894 	struct perf_event_attr attr;
10895 	char errmsg[STRERR_BUFSIZE];
10896 	int type, pfd, err;
10897 
10898 	err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10899 	if (err < 0) {
10900 		pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10901 			kfunc_name, offset,
10902 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10903 		return err;
10904 	}
10905 	type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10906 	if (type < 0) {
10907 		err = type;
10908 		pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10909 			kfunc_name, offset,
10910 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10911 		goto err_clean_legacy;
10912 	}
10913 
10914 	memset(&attr, 0, attr_sz);
10915 	attr.size = attr_sz;
10916 	attr.config = type;
10917 	attr.type = PERF_TYPE_TRACEPOINT;
10918 
10919 	pfd = syscall(__NR_perf_event_open, &attr,
10920 		      pid < 0 ? -1 : pid, /* pid */
10921 		      pid == -1 ? 0 : -1, /* cpu */
10922 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
10923 	if (pfd < 0) {
10924 		err = -errno;
10925 		pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10926 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10927 		goto err_clean_legacy;
10928 	}
10929 	return pfd;
10930 
10931 err_clean_legacy:
10932 	/* Clear the newly added legacy kprobe_event */
10933 	remove_kprobe_event_legacy(probe_name, retprobe);
10934 	return err;
10935 }
10936 
10937 static const char *arch_specific_syscall_pfx(void)
10938 {
10939 #if defined(__x86_64__)
10940 	return "x64";
10941 #elif defined(__i386__)
10942 	return "ia32";
10943 #elif defined(__s390x__)
10944 	return "s390x";
10945 #elif defined(__s390__)
10946 	return "s390";
10947 #elif defined(__arm__)
10948 	return "arm";
10949 #elif defined(__aarch64__)
10950 	return "arm64";
10951 #elif defined(__mips__)
10952 	return "mips";
10953 #elif defined(__riscv)
10954 	return "riscv";
10955 #elif defined(__powerpc__)
10956 	return "powerpc";
10957 #elif defined(__powerpc64__)
10958 	return "powerpc64";
10959 #else
10960 	return NULL;
10961 #endif
10962 }
10963 
10964 int probe_kern_syscall_wrapper(int token_fd)
10965 {
10966 	char syscall_name[64];
10967 	const char *ksys_pfx;
10968 
10969 	ksys_pfx = arch_specific_syscall_pfx();
10970 	if (!ksys_pfx)
10971 		return 0;
10972 
10973 	snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10974 
10975 	if (determine_kprobe_perf_type() >= 0) {
10976 		int pfd;
10977 
10978 		pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10979 		if (pfd >= 0)
10980 			close(pfd);
10981 
10982 		return pfd >= 0 ? 1 : 0;
10983 	} else { /* legacy mode */
10984 		char probe_name[128];
10985 
10986 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10987 		if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10988 			return 0;
10989 
10990 		(void)remove_kprobe_event_legacy(probe_name, false);
10991 		return 1;
10992 	}
10993 }
10994 
10995 struct bpf_link *
10996 bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10997 				const char *func_name,
10998 				const struct bpf_kprobe_opts *opts)
10999 {
11000 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11001 	enum probe_attach_mode attach_mode;
11002 	char errmsg[STRERR_BUFSIZE];
11003 	char *legacy_probe = NULL;
11004 	struct bpf_link *link;
11005 	size_t offset;
11006 	bool retprobe, legacy;
11007 	int pfd, err;
11008 
11009 	if (!OPTS_VALID(opts, bpf_kprobe_opts))
11010 		return libbpf_err_ptr(-EINVAL);
11011 
11012 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11013 	retprobe = OPTS_GET(opts, retprobe, false);
11014 	offset = OPTS_GET(opts, offset, 0);
11015 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11016 
11017 	legacy = determine_kprobe_perf_type() < 0;
11018 	switch (attach_mode) {
11019 	case PROBE_ATTACH_MODE_LEGACY:
11020 		legacy = true;
11021 		pe_opts.force_ioctl_attach = true;
11022 		break;
11023 	case PROBE_ATTACH_MODE_PERF:
11024 		if (legacy)
11025 			return libbpf_err_ptr(-ENOTSUP);
11026 		pe_opts.force_ioctl_attach = true;
11027 		break;
11028 	case PROBE_ATTACH_MODE_LINK:
11029 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11030 			return libbpf_err_ptr(-ENOTSUP);
11031 		break;
11032 	case PROBE_ATTACH_MODE_DEFAULT:
11033 		break;
11034 	default:
11035 		return libbpf_err_ptr(-EINVAL);
11036 	}
11037 
11038 	if (!legacy) {
11039 		pfd = perf_event_open_probe(false /* uprobe */, retprobe,
11040 					    func_name, offset,
11041 					    -1 /* pid */, 0 /* ref_ctr_off */);
11042 	} else {
11043 		char probe_name[256];
11044 
11045 		gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
11046 					     func_name, offset);
11047 
11048 		legacy_probe = strdup(probe_name);
11049 		if (!legacy_probe)
11050 			return libbpf_err_ptr(-ENOMEM);
11051 
11052 		pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
11053 						    offset, -1 /* pid */);
11054 	}
11055 	if (pfd < 0) {
11056 		err = -errno;
11057 		pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
11058 			prog->name, retprobe ? "kretprobe" : "kprobe",
11059 			func_name, offset,
11060 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11061 		goto err_out;
11062 	}
11063 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11064 	err = libbpf_get_error(link);
11065 	if (err) {
11066 		close(pfd);
11067 		pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
11068 			prog->name, retprobe ? "kretprobe" : "kprobe",
11069 			func_name, offset,
11070 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11071 		goto err_clean_legacy;
11072 	}
11073 	if (legacy) {
11074 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11075 
11076 		perf_link->legacy_probe_name = legacy_probe;
11077 		perf_link->legacy_is_kprobe = true;
11078 		perf_link->legacy_is_retprobe = retprobe;
11079 	}
11080 
11081 	return link;
11082 
11083 err_clean_legacy:
11084 	if (legacy)
11085 		remove_kprobe_event_legacy(legacy_probe, retprobe);
11086 err_out:
11087 	free(legacy_probe);
11088 	return libbpf_err_ptr(err);
11089 }
11090 
11091 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
11092 					    bool retprobe,
11093 					    const char *func_name)
11094 {
11095 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
11096 		.retprobe = retprobe,
11097 	);
11098 
11099 	return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
11100 }
11101 
11102 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
11103 					      const char *syscall_name,
11104 					      const struct bpf_ksyscall_opts *opts)
11105 {
11106 	LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
11107 	char func_name[128];
11108 
11109 	if (!OPTS_VALID(opts, bpf_ksyscall_opts))
11110 		return libbpf_err_ptr(-EINVAL);
11111 
11112 	if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
11113 		/* arch_specific_syscall_pfx() should never return NULL here
11114 		 * because it is guarded by kernel_supports(). However, since
11115 		 * compiler does not know that we have an explicit conditional
11116 		 * as well.
11117 		 */
11118 		snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
11119 			 arch_specific_syscall_pfx() ? : "", syscall_name);
11120 	} else {
11121 		snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
11122 	}
11123 
11124 	kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
11125 	kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11126 
11127 	return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
11128 }
11129 
11130 /* Adapted from perf/util/string.c */
11131 bool glob_match(const char *str, const char *pat)
11132 {
11133 	while (*str && *pat && *pat != '*') {
11134 		if (*pat == '?') {      /* Matches any single character */
11135 			str++;
11136 			pat++;
11137 			continue;
11138 		}
11139 		if (*str != *pat)
11140 			return false;
11141 		str++;
11142 		pat++;
11143 	}
11144 	/* Check wild card */
11145 	if (*pat == '*') {
11146 		while (*pat == '*')
11147 			pat++;
11148 		if (!*pat) /* Tail wild card matches all */
11149 			return true;
11150 		while (*str)
11151 			if (glob_match(str++, pat))
11152 				return true;
11153 	}
11154 	return !*str && !*pat;
11155 }
11156 
11157 struct kprobe_multi_resolve {
11158 	const char *pattern;
11159 	unsigned long *addrs;
11160 	size_t cap;
11161 	size_t cnt;
11162 };
11163 
11164 struct avail_kallsyms_data {
11165 	char **syms;
11166 	size_t cnt;
11167 	struct kprobe_multi_resolve *res;
11168 };
11169 
11170 static int avail_func_cmp(const void *a, const void *b)
11171 {
11172 	return strcmp(*(const char **)a, *(const char **)b);
11173 }
11174 
11175 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type,
11176 			     const char *sym_name, void *ctx)
11177 {
11178 	struct avail_kallsyms_data *data = ctx;
11179 	struct kprobe_multi_resolve *res = data->res;
11180 	int err;
11181 
11182 	if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp))
11183 		return 0;
11184 
11185 	err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1);
11186 	if (err)
11187 		return err;
11188 
11189 	res->addrs[res->cnt++] = (unsigned long)sym_addr;
11190 	return 0;
11191 }
11192 
11193 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res)
11194 {
11195 	const char *available_functions_file = tracefs_available_filter_functions();
11196 	struct avail_kallsyms_data data;
11197 	char sym_name[500];
11198 	FILE *f;
11199 	int err = 0, ret, i;
11200 	char **syms = NULL;
11201 	size_t cap = 0, cnt = 0;
11202 
11203 	f = fopen(available_functions_file, "re");
11204 	if (!f) {
11205 		err = -errno;
11206 		pr_warn("failed to open %s: %d\n", available_functions_file, err);
11207 		return err;
11208 	}
11209 
11210 	while (true) {
11211 		char *name;
11212 
11213 		ret = fscanf(f, "%499s%*[^\n]\n", sym_name);
11214 		if (ret == EOF && feof(f))
11215 			break;
11216 
11217 		if (ret != 1) {
11218 			pr_warn("failed to parse available_filter_functions entry: %d\n", ret);
11219 			err = -EINVAL;
11220 			goto cleanup;
11221 		}
11222 
11223 		if (!glob_match(sym_name, res->pattern))
11224 			continue;
11225 
11226 		err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1);
11227 		if (err)
11228 			goto cleanup;
11229 
11230 		name = strdup(sym_name);
11231 		if (!name) {
11232 			err = -errno;
11233 			goto cleanup;
11234 		}
11235 
11236 		syms[cnt++] = name;
11237 	}
11238 
11239 	/* no entries found, bail out */
11240 	if (cnt == 0) {
11241 		err = -ENOENT;
11242 		goto cleanup;
11243 	}
11244 
11245 	/* sort available functions */
11246 	qsort(syms, cnt, sizeof(*syms), avail_func_cmp);
11247 
11248 	data.syms = syms;
11249 	data.res = res;
11250 	data.cnt = cnt;
11251 	libbpf_kallsyms_parse(avail_kallsyms_cb, &data);
11252 
11253 	if (res->cnt == 0)
11254 		err = -ENOENT;
11255 
11256 cleanup:
11257 	for (i = 0; i < cnt; i++)
11258 		free((char *)syms[i]);
11259 	free(syms);
11260 
11261 	fclose(f);
11262 	return err;
11263 }
11264 
11265 static bool has_available_filter_functions_addrs(void)
11266 {
11267 	return access(tracefs_available_filter_functions_addrs(), R_OK) != -1;
11268 }
11269 
11270 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res)
11271 {
11272 	const char *available_path = tracefs_available_filter_functions_addrs();
11273 	char sym_name[500];
11274 	FILE *f;
11275 	int ret, err = 0;
11276 	unsigned long long sym_addr;
11277 
11278 	f = fopen(available_path, "re");
11279 	if (!f) {
11280 		err = -errno;
11281 		pr_warn("failed to open %s: %d\n", available_path, err);
11282 		return err;
11283 	}
11284 
11285 	while (true) {
11286 		ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name);
11287 		if (ret == EOF && feof(f))
11288 			break;
11289 
11290 		if (ret != 2) {
11291 			pr_warn("failed to parse available_filter_functions_addrs entry: %d\n",
11292 				ret);
11293 			err = -EINVAL;
11294 			goto cleanup;
11295 		}
11296 
11297 		if (!glob_match(sym_name, res->pattern))
11298 			continue;
11299 
11300 		err = libbpf_ensure_mem((void **)&res->addrs, &res->cap,
11301 					sizeof(*res->addrs), res->cnt + 1);
11302 		if (err)
11303 			goto cleanup;
11304 
11305 		res->addrs[res->cnt++] = (unsigned long)sym_addr;
11306 	}
11307 
11308 	if (res->cnt == 0)
11309 		err = -ENOENT;
11310 
11311 cleanup:
11312 	fclose(f);
11313 	return err;
11314 }
11315 
11316 struct bpf_link *
11317 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
11318 				      const char *pattern,
11319 				      const struct bpf_kprobe_multi_opts *opts)
11320 {
11321 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11322 	struct kprobe_multi_resolve res = {
11323 		.pattern = pattern,
11324 	};
11325 	struct bpf_link *link = NULL;
11326 	char errmsg[STRERR_BUFSIZE];
11327 	const unsigned long *addrs;
11328 	int err, link_fd, prog_fd;
11329 	const __u64 *cookies;
11330 	const char **syms;
11331 	bool retprobe;
11332 	size_t cnt;
11333 
11334 	if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
11335 		return libbpf_err_ptr(-EINVAL);
11336 
11337 	syms    = OPTS_GET(opts, syms, false);
11338 	addrs   = OPTS_GET(opts, addrs, false);
11339 	cnt     = OPTS_GET(opts, cnt, false);
11340 	cookies = OPTS_GET(opts, cookies, false);
11341 
11342 	if (!pattern && !addrs && !syms)
11343 		return libbpf_err_ptr(-EINVAL);
11344 	if (pattern && (addrs || syms || cookies || cnt))
11345 		return libbpf_err_ptr(-EINVAL);
11346 	if (!pattern && !cnt)
11347 		return libbpf_err_ptr(-EINVAL);
11348 	if (addrs && syms)
11349 		return libbpf_err_ptr(-EINVAL);
11350 
11351 	if (pattern) {
11352 		if (has_available_filter_functions_addrs())
11353 			err = libbpf_available_kprobes_parse(&res);
11354 		else
11355 			err = libbpf_available_kallsyms_parse(&res);
11356 		if (err)
11357 			goto error;
11358 		addrs = res.addrs;
11359 		cnt = res.cnt;
11360 	}
11361 
11362 	retprobe = OPTS_GET(opts, retprobe, false);
11363 
11364 	lopts.kprobe_multi.syms = syms;
11365 	lopts.kprobe_multi.addrs = addrs;
11366 	lopts.kprobe_multi.cookies = cookies;
11367 	lopts.kprobe_multi.cnt = cnt;
11368 	lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
11369 
11370 	link = calloc(1, sizeof(*link));
11371 	if (!link) {
11372 		err = -ENOMEM;
11373 		goto error;
11374 	}
11375 	link->detach = &bpf_link__detach_fd;
11376 
11377 	prog_fd = bpf_program__fd(prog);
11378 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
11379 	if (link_fd < 0) {
11380 		err = -errno;
11381 		pr_warn("prog '%s': failed to attach: %s\n",
11382 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11383 		goto error;
11384 	}
11385 	link->fd = link_fd;
11386 	free(res.addrs);
11387 	return link;
11388 
11389 error:
11390 	free(link);
11391 	free(res.addrs);
11392 	return libbpf_err_ptr(err);
11393 }
11394 
11395 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11396 {
11397 	DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
11398 	unsigned long offset = 0;
11399 	const char *func_name;
11400 	char *func;
11401 	int n;
11402 
11403 	*link = NULL;
11404 
11405 	/* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
11406 	if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
11407 		return 0;
11408 
11409 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
11410 	if (opts.retprobe)
11411 		func_name = prog->sec_name + sizeof("kretprobe/") - 1;
11412 	else
11413 		func_name = prog->sec_name + sizeof("kprobe/") - 1;
11414 
11415 	n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
11416 	if (n < 1) {
11417 		pr_warn("kprobe name is invalid: %s\n", func_name);
11418 		return -EINVAL;
11419 	}
11420 	if (opts.retprobe && offset != 0) {
11421 		free(func);
11422 		pr_warn("kretprobes do not support offset specification\n");
11423 		return -EINVAL;
11424 	}
11425 
11426 	opts.offset = offset;
11427 	*link = bpf_program__attach_kprobe_opts(prog, func, &opts);
11428 	free(func);
11429 	return libbpf_get_error(*link);
11430 }
11431 
11432 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11433 {
11434 	LIBBPF_OPTS(bpf_ksyscall_opts, opts);
11435 	const char *syscall_name;
11436 
11437 	*link = NULL;
11438 
11439 	/* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
11440 	if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
11441 		return 0;
11442 
11443 	opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
11444 	if (opts.retprobe)
11445 		syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
11446 	else
11447 		syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
11448 
11449 	*link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
11450 	return *link ? 0 : -errno;
11451 }
11452 
11453 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11454 {
11455 	LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
11456 	const char *spec;
11457 	char *pattern;
11458 	int n;
11459 
11460 	*link = NULL;
11461 
11462 	/* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
11463 	if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
11464 	    strcmp(prog->sec_name, "kretprobe.multi") == 0)
11465 		return 0;
11466 
11467 	opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
11468 	if (opts.retprobe)
11469 		spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
11470 	else
11471 		spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
11472 
11473 	n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
11474 	if (n < 1) {
11475 		pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
11476 		return -EINVAL;
11477 	}
11478 
11479 	*link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
11480 	free(pattern);
11481 	return libbpf_get_error(*link);
11482 }
11483 
11484 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11485 {
11486 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11487 	LIBBPF_OPTS(bpf_uprobe_multi_opts, opts);
11488 	int n, ret = -EINVAL;
11489 
11490 	*link = NULL;
11491 
11492 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
11493 		   &probe_type, &binary_path, &func_name);
11494 	switch (n) {
11495 	case 1:
11496 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11497 		ret = 0;
11498 		break;
11499 	case 3:
11500 		opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0;
11501 		*link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts);
11502 		ret = libbpf_get_error(*link);
11503 		break;
11504 	default:
11505 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11506 			prog->sec_name);
11507 		break;
11508 	}
11509 	free(probe_type);
11510 	free(binary_path);
11511 	free(func_name);
11512 	return ret;
11513 }
11514 
11515 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
11516 					 const char *binary_path, uint64_t offset)
11517 {
11518 	int i;
11519 
11520 	snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
11521 
11522 	/* sanitize binary_path in the probe name */
11523 	for (i = 0; buf[i]; i++) {
11524 		if (!isalnum(buf[i]))
11525 			buf[i] = '_';
11526 	}
11527 }
11528 
11529 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
11530 					  const char *binary_path, size_t offset)
11531 {
11532 	return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
11533 			      retprobe ? 'r' : 'p',
11534 			      retprobe ? "uretprobes" : "uprobes",
11535 			      probe_name, binary_path, offset);
11536 }
11537 
11538 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
11539 {
11540 	return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
11541 			      retprobe ? "uretprobes" : "uprobes", probe_name);
11542 }
11543 
11544 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
11545 {
11546 	char file[512];
11547 
11548 	snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11549 		 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
11550 
11551 	return parse_uint_from_file(file, "%d\n");
11552 }
11553 
11554 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
11555 					 const char *binary_path, size_t offset, int pid)
11556 {
11557 	const size_t attr_sz = sizeof(struct perf_event_attr);
11558 	struct perf_event_attr attr;
11559 	int type, pfd, err;
11560 
11561 	err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
11562 	if (err < 0) {
11563 		pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
11564 			binary_path, (size_t)offset, err);
11565 		return err;
11566 	}
11567 	type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
11568 	if (type < 0) {
11569 		err = type;
11570 		pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
11571 			binary_path, offset, err);
11572 		goto err_clean_legacy;
11573 	}
11574 
11575 	memset(&attr, 0, attr_sz);
11576 	attr.size = attr_sz;
11577 	attr.config = type;
11578 	attr.type = PERF_TYPE_TRACEPOINT;
11579 
11580 	pfd = syscall(__NR_perf_event_open, &attr,
11581 		      pid < 0 ? -1 : pid, /* pid */
11582 		      pid == -1 ? 0 : -1, /* cpu */
11583 		      -1 /* group_fd */,  PERF_FLAG_FD_CLOEXEC);
11584 	if (pfd < 0) {
11585 		err = -errno;
11586 		pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
11587 		goto err_clean_legacy;
11588 	}
11589 	return pfd;
11590 
11591 err_clean_legacy:
11592 	/* Clear the newly added legacy uprobe_event */
11593 	remove_uprobe_event_legacy(probe_name, retprobe);
11594 	return err;
11595 }
11596 
11597 /* Find offset of function name in archive specified by path. Currently
11598  * supported are .zip files that do not compress their contents, as used on
11599  * Android in the form of APKs, for example. "file_name" is the name of the ELF
11600  * file inside the archive. "func_name" matches symbol name or name@@LIB for
11601  * library functions.
11602  *
11603  * An overview of the APK format specifically provided here:
11604  * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
11605  */
11606 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
11607 					      const char *func_name)
11608 {
11609 	struct zip_archive *archive;
11610 	struct zip_entry entry;
11611 	long ret;
11612 	Elf *elf;
11613 
11614 	archive = zip_archive_open(archive_path);
11615 	if (IS_ERR(archive)) {
11616 		ret = PTR_ERR(archive);
11617 		pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
11618 		return ret;
11619 	}
11620 
11621 	ret = zip_archive_find_entry(archive, file_name, &entry);
11622 	if (ret) {
11623 		pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
11624 			archive_path, ret);
11625 		goto out;
11626 	}
11627 	pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
11628 		 (unsigned long)entry.data_offset);
11629 
11630 	if (entry.compression) {
11631 		pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
11632 			archive_path);
11633 		ret = -LIBBPF_ERRNO__FORMAT;
11634 		goto out;
11635 	}
11636 
11637 	elf = elf_memory((void *)entry.data, entry.data_length);
11638 	if (!elf) {
11639 		pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
11640 			elf_errmsg(-1));
11641 		ret = -LIBBPF_ERRNO__LIBELF;
11642 		goto out;
11643 	}
11644 
11645 	ret = elf_find_func_offset(elf, file_name, func_name);
11646 	if (ret > 0) {
11647 		pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
11648 			 func_name, file_name, archive_path, entry.data_offset, ret,
11649 			 ret + entry.data_offset);
11650 		ret += entry.data_offset;
11651 	}
11652 	elf_end(elf);
11653 
11654 out:
11655 	zip_archive_close(archive);
11656 	return ret;
11657 }
11658 
11659 static const char *arch_specific_lib_paths(void)
11660 {
11661 	/*
11662 	 * Based on https://packages.debian.org/sid/libc6.
11663 	 *
11664 	 * Assume that the traced program is built for the same architecture
11665 	 * as libbpf, which should cover the vast majority of cases.
11666 	 */
11667 #if defined(__x86_64__)
11668 	return "/lib/x86_64-linux-gnu";
11669 #elif defined(__i386__)
11670 	return "/lib/i386-linux-gnu";
11671 #elif defined(__s390x__)
11672 	return "/lib/s390x-linux-gnu";
11673 #elif defined(__s390__)
11674 	return "/lib/s390-linux-gnu";
11675 #elif defined(__arm__) && defined(__SOFTFP__)
11676 	return "/lib/arm-linux-gnueabi";
11677 #elif defined(__arm__) && !defined(__SOFTFP__)
11678 	return "/lib/arm-linux-gnueabihf";
11679 #elif defined(__aarch64__)
11680 	return "/lib/aarch64-linux-gnu";
11681 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
11682 	return "/lib/mips64el-linux-gnuabi64";
11683 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
11684 	return "/lib/mipsel-linux-gnu";
11685 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
11686 	return "/lib/powerpc64le-linux-gnu";
11687 #elif defined(__sparc__) && defined(__arch64__)
11688 	return "/lib/sparc64-linux-gnu";
11689 #elif defined(__riscv) && __riscv_xlen == 64
11690 	return "/lib/riscv64-linux-gnu";
11691 #else
11692 	return NULL;
11693 #endif
11694 }
11695 
11696 /* Get full path to program/shared library. */
11697 static int resolve_full_path(const char *file, char *result, size_t result_sz)
11698 {
11699 	const char *search_paths[3] = {};
11700 	int i, perm;
11701 
11702 	if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
11703 		search_paths[0] = getenv("LD_LIBRARY_PATH");
11704 		search_paths[1] = "/usr/lib64:/usr/lib";
11705 		search_paths[2] = arch_specific_lib_paths();
11706 		perm = R_OK;
11707 	} else {
11708 		search_paths[0] = getenv("PATH");
11709 		search_paths[1] = "/usr/bin:/usr/sbin";
11710 		perm = R_OK | X_OK;
11711 	}
11712 
11713 	for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
11714 		const char *s;
11715 
11716 		if (!search_paths[i])
11717 			continue;
11718 		for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11719 			char *next_path;
11720 			int seg_len;
11721 
11722 			if (s[0] == ':')
11723 				s++;
11724 			next_path = strchr(s, ':');
11725 			seg_len = next_path ? next_path - s : strlen(s);
11726 			if (!seg_len)
11727 				continue;
11728 			snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11729 			/* ensure it has required permissions */
11730 			if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11731 				continue;
11732 			pr_debug("resolved '%s' to '%s'\n", file, result);
11733 			return 0;
11734 		}
11735 	}
11736 	return -ENOENT;
11737 }
11738 
11739 struct bpf_link *
11740 bpf_program__attach_uprobe_multi(const struct bpf_program *prog,
11741 				 pid_t pid,
11742 				 const char *path,
11743 				 const char *func_pattern,
11744 				 const struct bpf_uprobe_multi_opts *opts)
11745 {
11746 	const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL;
11747 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
11748 	unsigned long *resolved_offsets = NULL;
11749 	int err = 0, link_fd, prog_fd;
11750 	struct bpf_link *link = NULL;
11751 	char errmsg[STRERR_BUFSIZE];
11752 	char full_path[PATH_MAX];
11753 	const __u64 *cookies;
11754 	const char **syms;
11755 	size_t cnt;
11756 
11757 	if (!OPTS_VALID(opts, bpf_uprobe_multi_opts))
11758 		return libbpf_err_ptr(-EINVAL);
11759 
11760 	syms = OPTS_GET(opts, syms, NULL);
11761 	offsets = OPTS_GET(opts, offsets, NULL);
11762 	ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL);
11763 	cookies = OPTS_GET(opts, cookies, NULL);
11764 	cnt = OPTS_GET(opts, cnt, 0);
11765 
11766 	/*
11767 	 * User can specify 2 mutually exclusive set of inputs:
11768 	 *
11769 	 * 1) use only path/func_pattern/pid arguments
11770 	 *
11771 	 * 2) use path/pid with allowed combinations of:
11772 	 *    syms/offsets/ref_ctr_offsets/cookies/cnt
11773 	 *
11774 	 *    - syms and offsets are mutually exclusive
11775 	 *    - ref_ctr_offsets and cookies are optional
11776 	 *
11777 	 * Any other usage results in error.
11778 	 */
11779 
11780 	if (!path)
11781 		return libbpf_err_ptr(-EINVAL);
11782 	if (!func_pattern && cnt == 0)
11783 		return libbpf_err_ptr(-EINVAL);
11784 
11785 	if (func_pattern) {
11786 		if (syms || offsets || ref_ctr_offsets || cookies || cnt)
11787 			return libbpf_err_ptr(-EINVAL);
11788 	} else {
11789 		if (!!syms == !!offsets)
11790 			return libbpf_err_ptr(-EINVAL);
11791 	}
11792 
11793 	if (func_pattern) {
11794 		if (!strchr(path, '/')) {
11795 			err = resolve_full_path(path, full_path, sizeof(full_path));
11796 			if (err) {
11797 				pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11798 					prog->name, path, err);
11799 				return libbpf_err_ptr(err);
11800 			}
11801 			path = full_path;
11802 		}
11803 
11804 		err = elf_resolve_pattern_offsets(path, func_pattern,
11805 						  &resolved_offsets, &cnt);
11806 		if (err < 0)
11807 			return libbpf_err_ptr(err);
11808 		offsets = resolved_offsets;
11809 	} else if (syms) {
11810 		err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC);
11811 		if (err < 0)
11812 			return libbpf_err_ptr(err);
11813 		offsets = resolved_offsets;
11814 	}
11815 
11816 	lopts.uprobe_multi.path = path;
11817 	lopts.uprobe_multi.offsets = offsets;
11818 	lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets;
11819 	lopts.uprobe_multi.cookies = cookies;
11820 	lopts.uprobe_multi.cnt = cnt;
11821 	lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0;
11822 
11823 	if (pid == 0)
11824 		pid = getpid();
11825 	if (pid > 0)
11826 		lopts.uprobe_multi.pid = pid;
11827 
11828 	link = calloc(1, sizeof(*link));
11829 	if (!link) {
11830 		err = -ENOMEM;
11831 		goto error;
11832 	}
11833 	link->detach = &bpf_link__detach_fd;
11834 
11835 	prog_fd = bpf_program__fd(prog);
11836 	link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts);
11837 	if (link_fd < 0) {
11838 		err = -errno;
11839 		pr_warn("prog '%s': failed to attach multi-uprobe: %s\n",
11840 			prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11841 		goto error;
11842 	}
11843 	link->fd = link_fd;
11844 	free(resolved_offsets);
11845 	return link;
11846 
11847 error:
11848 	free(resolved_offsets);
11849 	free(link);
11850 	return libbpf_err_ptr(err);
11851 }
11852 
11853 LIBBPF_API struct bpf_link *
11854 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11855 				const char *binary_path, size_t func_offset,
11856 				const struct bpf_uprobe_opts *opts)
11857 {
11858 	const char *archive_path = NULL, *archive_sep = NULL;
11859 	char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11860 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11861 	enum probe_attach_mode attach_mode;
11862 	char full_path[PATH_MAX];
11863 	struct bpf_link *link;
11864 	size_t ref_ctr_off;
11865 	int pfd, err;
11866 	bool retprobe, legacy;
11867 	const char *func_name;
11868 
11869 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
11870 		return libbpf_err_ptr(-EINVAL);
11871 
11872 	attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11873 	retprobe = OPTS_GET(opts, retprobe, false);
11874 	ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11875 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11876 
11877 	if (!binary_path)
11878 		return libbpf_err_ptr(-EINVAL);
11879 
11880 	/* Check if "binary_path" refers to an archive. */
11881 	archive_sep = strstr(binary_path, "!/");
11882 	if (archive_sep) {
11883 		full_path[0] = '\0';
11884 		libbpf_strlcpy(full_path, binary_path,
11885 			       min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11886 		archive_path = full_path;
11887 		binary_path = archive_sep + 2;
11888 	} else if (!strchr(binary_path, '/')) {
11889 		err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11890 		if (err) {
11891 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11892 				prog->name, binary_path, err);
11893 			return libbpf_err_ptr(err);
11894 		}
11895 		binary_path = full_path;
11896 	}
11897 	func_name = OPTS_GET(opts, func_name, NULL);
11898 	if (func_name) {
11899 		long sym_off;
11900 
11901 		if (archive_path) {
11902 			sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11903 								    func_name);
11904 			binary_path = archive_path;
11905 		} else {
11906 			sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11907 		}
11908 		if (sym_off < 0)
11909 			return libbpf_err_ptr(sym_off);
11910 		func_offset += sym_off;
11911 	}
11912 
11913 	legacy = determine_uprobe_perf_type() < 0;
11914 	switch (attach_mode) {
11915 	case PROBE_ATTACH_MODE_LEGACY:
11916 		legacy = true;
11917 		pe_opts.force_ioctl_attach = true;
11918 		break;
11919 	case PROBE_ATTACH_MODE_PERF:
11920 		if (legacy)
11921 			return libbpf_err_ptr(-ENOTSUP);
11922 		pe_opts.force_ioctl_attach = true;
11923 		break;
11924 	case PROBE_ATTACH_MODE_LINK:
11925 		if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11926 			return libbpf_err_ptr(-ENOTSUP);
11927 		break;
11928 	case PROBE_ATTACH_MODE_DEFAULT:
11929 		break;
11930 	default:
11931 		return libbpf_err_ptr(-EINVAL);
11932 	}
11933 
11934 	if (!legacy) {
11935 		pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11936 					    func_offset, pid, ref_ctr_off);
11937 	} else {
11938 		char probe_name[PATH_MAX + 64];
11939 
11940 		if (ref_ctr_off)
11941 			return libbpf_err_ptr(-EINVAL);
11942 
11943 		gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11944 					     binary_path, func_offset);
11945 
11946 		legacy_probe = strdup(probe_name);
11947 		if (!legacy_probe)
11948 			return libbpf_err_ptr(-ENOMEM);
11949 
11950 		pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11951 						    binary_path, func_offset, pid);
11952 	}
11953 	if (pfd < 0) {
11954 		err = -errno;
11955 		pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11956 			prog->name, retprobe ? "uretprobe" : "uprobe",
11957 			binary_path, func_offset,
11958 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11959 		goto err_out;
11960 	}
11961 
11962 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11963 	err = libbpf_get_error(link);
11964 	if (err) {
11965 		close(pfd);
11966 		pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11967 			prog->name, retprobe ? "uretprobe" : "uprobe",
11968 			binary_path, func_offset,
11969 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11970 		goto err_clean_legacy;
11971 	}
11972 	if (legacy) {
11973 		struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11974 
11975 		perf_link->legacy_probe_name = legacy_probe;
11976 		perf_link->legacy_is_kprobe = false;
11977 		perf_link->legacy_is_retprobe = retprobe;
11978 	}
11979 	return link;
11980 
11981 err_clean_legacy:
11982 	if (legacy)
11983 		remove_uprobe_event_legacy(legacy_probe, retprobe);
11984 err_out:
11985 	free(legacy_probe);
11986 	return libbpf_err_ptr(err);
11987 }
11988 
11989 /* Format of u[ret]probe section definition supporting auto-attach:
11990  * u[ret]probe/binary:function[+offset]
11991  *
11992  * binary can be an absolute/relative path or a filename; the latter is resolved to a
11993  * full binary path via bpf_program__attach_uprobe_opts.
11994  *
11995  * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11996  * specified (and auto-attach is not possible) or the above format is specified for
11997  * auto-attach.
11998  */
11999 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12000 {
12001 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
12002 	char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off;
12003 	int n, c, ret = -EINVAL;
12004 	long offset = 0;
12005 
12006 	*link = NULL;
12007 
12008 	n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]",
12009 		   &probe_type, &binary_path, &func_name);
12010 	switch (n) {
12011 	case 1:
12012 		/* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
12013 		ret = 0;
12014 		break;
12015 	case 2:
12016 		pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
12017 			prog->name, prog->sec_name);
12018 		break;
12019 	case 3:
12020 		/* check if user specifies `+offset`, if yes, this should be
12021 		 * the last part of the string, make sure sscanf read to EOL
12022 		 */
12023 		func_off = strrchr(func_name, '+');
12024 		if (func_off) {
12025 			n = sscanf(func_off, "+%li%n", &offset, &c);
12026 			if (n == 1 && *(func_off + c) == '\0')
12027 				func_off[0] = '\0';
12028 			else
12029 				offset = 0;
12030 		}
12031 		opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
12032 				strcmp(probe_type, "uretprobe.s") == 0;
12033 		if (opts.retprobe && offset != 0) {
12034 			pr_warn("prog '%s': uretprobes do not support offset specification\n",
12035 				prog->name);
12036 			break;
12037 		}
12038 		opts.func_name = func_name;
12039 		*link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
12040 		ret = libbpf_get_error(*link);
12041 		break;
12042 	default:
12043 		pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
12044 			prog->sec_name);
12045 		break;
12046 	}
12047 	free(probe_type);
12048 	free(binary_path);
12049 	free(func_name);
12050 
12051 	return ret;
12052 }
12053 
12054 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
12055 					    bool retprobe, pid_t pid,
12056 					    const char *binary_path,
12057 					    size_t func_offset)
12058 {
12059 	DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
12060 
12061 	return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
12062 }
12063 
12064 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
12065 					  pid_t pid, const char *binary_path,
12066 					  const char *usdt_provider, const char *usdt_name,
12067 					  const struct bpf_usdt_opts *opts)
12068 {
12069 	char resolved_path[512];
12070 	struct bpf_object *obj = prog->obj;
12071 	struct bpf_link *link;
12072 	__u64 usdt_cookie;
12073 	int err;
12074 
12075 	if (!OPTS_VALID(opts, bpf_uprobe_opts))
12076 		return libbpf_err_ptr(-EINVAL);
12077 
12078 	if (bpf_program__fd(prog) < 0) {
12079 		pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
12080 			prog->name);
12081 		return libbpf_err_ptr(-EINVAL);
12082 	}
12083 
12084 	if (!binary_path)
12085 		return libbpf_err_ptr(-EINVAL);
12086 
12087 	if (!strchr(binary_path, '/')) {
12088 		err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
12089 		if (err) {
12090 			pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
12091 				prog->name, binary_path, err);
12092 			return libbpf_err_ptr(err);
12093 		}
12094 		binary_path = resolved_path;
12095 	}
12096 
12097 	/* USDT manager is instantiated lazily on first USDT attach. It will
12098 	 * be destroyed together with BPF object in bpf_object__close().
12099 	 */
12100 	if (IS_ERR(obj->usdt_man))
12101 		return libbpf_ptr(obj->usdt_man);
12102 	if (!obj->usdt_man) {
12103 		obj->usdt_man = usdt_manager_new(obj);
12104 		if (IS_ERR(obj->usdt_man))
12105 			return libbpf_ptr(obj->usdt_man);
12106 	}
12107 
12108 	usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
12109 	link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
12110 					usdt_provider, usdt_name, usdt_cookie);
12111 	err = libbpf_get_error(link);
12112 	if (err)
12113 		return libbpf_err_ptr(err);
12114 	return link;
12115 }
12116 
12117 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12118 {
12119 	char *path = NULL, *provider = NULL, *name = NULL;
12120 	const char *sec_name;
12121 	int n, err;
12122 
12123 	sec_name = bpf_program__section_name(prog);
12124 	if (strcmp(sec_name, "usdt") == 0) {
12125 		/* no auto-attach for just SEC("usdt") */
12126 		*link = NULL;
12127 		return 0;
12128 	}
12129 
12130 	n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
12131 	if (n != 3) {
12132 		pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
12133 			sec_name);
12134 		err = -EINVAL;
12135 	} else {
12136 		*link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
12137 						 provider, name, NULL);
12138 		err = libbpf_get_error(*link);
12139 	}
12140 	free(path);
12141 	free(provider);
12142 	free(name);
12143 	return err;
12144 }
12145 
12146 static int determine_tracepoint_id(const char *tp_category,
12147 				   const char *tp_name)
12148 {
12149 	char file[PATH_MAX];
12150 	int ret;
12151 
12152 	ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
12153 		       tracefs_path(), tp_category, tp_name);
12154 	if (ret < 0)
12155 		return -errno;
12156 	if (ret >= sizeof(file)) {
12157 		pr_debug("tracepoint %s/%s path is too long\n",
12158 			 tp_category, tp_name);
12159 		return -E2BIG;
12160 	}
12161 	return parse_uint_from_file(file, "%d\n");
12162 }
12163 
12164 static int perf_event_open_tracepoint(const char *tp_category,
12165 				      const char *tp_name)
12166 {
12167 	const size_t attr_sz = sizeof(struct perf_event_attr);
12168 	struct perf_event_attr attr;
12169 	char errmsg[STRERR_BUFSIZE];
12170 	int tp_id, pfd, err;
12171 
12172 	tp_id = determine_tracepoint_id(tp_category, tp_name);
12173 	if (tp_id < 0) {
12174 		pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
12175 			tp_category, tp_name,
12176 			libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
12177 		return tp_id;
12178 	}
12179 
12180 	memset(&attr, 0, attr_sz);
12181 	attr.type = PERF_TYPE_TRACEPOINT;
12182 	attr.size = attr_sz;
12183 	attr.config = tp_id;
12184 
12185 	pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
12186 		      -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
12187 	if (pfd < 0) {
12188 		err = -errno;
12189 		pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
12190 			tp_category, tp_name,
12191 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12192 		return err;
12193 	}
12194 	return pfd;
12195 }
12196 
12197 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
12198 						     const char *tp_category,
12199 						     const char *tp_name,
12200 						     const struct bpf_tracepoint_opts *opts)
12201 {
12202 	DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
12203 	char errmsg[STRERR_BUFSIZE];
12204 	struct bpf_link *link;
12205 	int pfd, err;
12206 
12207 	if (!OPTS_VALID(opts, bpf_tracepoint_opts))
12208 		return libbpf_err_ptr(-EINVAL);
12209 
12210 	pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
12211 
12212 	pfd = perf_event_open_tracepoint(tp_category, tp_name);
12213 	if (pfd < 0) {
12214 		pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
12215 			prog->name, tp_category, tp_name,
12216 			libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12217 		return libbpf_err_ptr(pfd);
12218 	}
12219 	link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
12220 	err = libbpf_get_error(link);
12221 	if (err) {
12222 		close(pfd);
12223 		pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
12224 			prog->name, tp_category, tp_name,
12225 			libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
12226 		return libbpf_err_ptr(err);
12227 	}
12228 	return link;
12229 }
12230 
12231 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
12232 						const char *tp_category,
12233 						const char *tp_name)
12234 {
12235 	return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
12236 }
12237 
12238 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12239 {
12240 	char *sec_name, *tp_cat, *tp_name;
12241 
12242 	*link = NULL;
12243 
12244 	/* no auto-attach for SEC("tp") or SEC("tracepoint") */
12245 	if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
12246 		return 0;
12247 
12248 	sec_name = strdup(prog->sec_name);
12249 	if (!sec_name)
12250 		return -ENOMEM;
12251 
12252 	/* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
12253 	if (str_has_pfx(prog->sec_name, "tp/"))
12254 		tp_cat = sec_name + sizeof("tp/") - 1;
12255 	else
12256 		tp_cat = sec_name + sizeof("tracepoint/") - 1;
12257 	tp_name = strchr(tp_cat, '/');
12258 	if (!tp_name) {
12259 		free(sec_name);
12260 		return -EINVAL;
12261 	}
12262 	*tp_name = '\0';
12263 	tp_name++;
12264 
12265 	*link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
12266 	free(sec_name);
12267 	return libbpf_get_error(*link);
12268 }
12269 
12270 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
12271 						    const char *tp_name)
12272 {
12273 	char errmsg[STRERR_BUFSIZE];
12274 	struct bpf_link *link;
12275 	int prog_fd, pfd;
12276 
12277 	prog_fd = bpf_program__fd(prog);
12278 	if (prog_fd < 0) {
12279 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12280 		return libbpf_err_ptr(-EINVAL);
12281 	}
12282 
12283 	link = calloc(1, sizeof(*link));
12284 	if (!link)
12285 		return libbpf_err_ptr(-ENOMEM);
12286 	link->detach = &bpf_link__detach_fd;
12287 
12288 	pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
12289 	if (pfd < 0) {
12290 		pfd = -errno;
12291 		free(link);
12292 		pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
12293 			prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12294 		return libbpf_err_ptr(pfd);
12295 	}
12296 	link->fd = pfd;
12297 	return link;
12298 }
12299 
12300 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12301 {
12302 	static const char *const prefixes[] = {
12303 		"raw_tp",
12304 		"raw_tracepoint",
12305 		"raw_tp.w",
12306 		"raw_tracepoint.w",
12307 	};
12308 	size_t i;
12309 	const char *tp_name = NULL;
12310 
12311 	*link = NULL;
12312 
12313 	for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
12314 		size_t pfx_len;
12315 
12316 		if (!str_has_pfx(prog->sec_name, prefixes[i]))
12317 			continue;
12318 
12319 		pfx_len = strlen(prefixes[i]);
12320 		/* no auto-attach case of, e.g., SEC("raw_tp") */
12321 		if (prog->sec_name[pfx_len] == '\0')
12322 			return 0;
12323 
12324 		if (prog->sec_name[pfx_len] != '/')
12325 			continue;
12326 
12327 		tp_name = prog->sec_name + pfx_len + 1;
12328 		break;
12329 	}
12330 
12331 	if (!tp_name) {
12332 		pr_warn("prog '%s': invalid section name '%s'\n",
12333 			prog->name, prog->sec_name);
12334 		return -EINVAL;
12335 	}
12336 
12337 	*link = bpf_program__attach_raw_tracepoint(prog, tp_name);
12338 	return libbpf_get_error(*link);
12339 }
12340 
12341 /* Common logic for all BPF program types that attach to a btf_id */
12342 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
12343 						   const struct bpf_trace_opts *opts)
12344 {
12345 	LIBBPF_OPTS(bpf_link_create_opts, link_opts);
12346 	char errmsg[STRERR_BUFSIZE];
12347 	struct bpf_link *link;
12348 	int prog_fd, pfd;
12349 
12350 	if (!OPTS_VALID(opts, bpf_trace_opts))
12351 		return libbpf_err_ptr(-EINVAL);
12352 
12353 	prog_fd = bpf_program__fd(prog);
12354 	if (prog_fd < 0) {
12355 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12356 		return libbpf_err_ptr(-EINVAL);
12357 	}
12358 
12359 	link = calloc(1, sizeof(*link));
12360 	if (!link)
12361 		return libbpf_err_ptr(-ENOMEM);
12362 	link->detach = &bpf_link__detach_fd;
12363 
12364 	/* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
12365 	link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
12366 	pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
12367 	if (pfd < 0) {
12368 		pfd = -errno;
12369 		free(link);
12370 		pr_warn("prog '%s': failed to attach: %s\n",
12371 			prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
12372 		return libbpf_err_ptr(pfd);
12373 	}
12374 	link->fd = pfd;
12375 	return link;
12376 }
12377 
12378 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
12379 {
12380 	return bpf_program__attach_btf_id(prog, NULL);
12381 }
12382 
12383 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
12384 						const struct bpf_trace_opts *opts)
12385 {
12386 	return bpf_program__attach_btf_id(prog, opts);
12387 }
12388 
12389 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
12390 {
12391 	return bpf_program__attach_btf_id(prog, NULL);
12392 }
12393 
12394 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12395 {
12396 	*link = bpf_program__attach_trace(prog);
12397 	return libbpf_get_error(*link);
12398 }
12399 
12400 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12401 {
12402 	*link = bpf_program__attach_lsm(prog);
12403 	return libbpf_get_error(*link);
12404 }
12405 
12406 static struct bpf_link *
12407 bpf_program_attach_fd(const struct bpf_program *prog,
12408 		      int target_fd, const char *target_name,
12409 		      const struct bpf_link_create_opts *opts)
12410 {
12411 	enum bpf_attach_type attach_type;
12412 	char errmsg[STRERR_BUFSIZE];
12413 	struct bpf_link *link;
12414 	int prog_fd, link_fd;
12415 
12416 	prog_fd = bpf_program__fd(prog);
12417 	if (prog_fd < 0) {
12418 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12419 		return libbpf_err_ptr(-EINVAL);
12420 	}
12421 
12422 	link = calloc(1, sizeof(*link));
12423 	if (!link)
12424 		return libbpf_err_ptr(-ENOMEM);
12425 	link->detach = &bpf_link__detach_fd;
12426 
12427 	attach_type = bpf_program__expected_attach_type(prog);
12428 	link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts);
12429 	if (link_fd < 0) {
12430 		link_fd = -errno;
12431 		free(link);
12432 		pr_warn("prog '%s': failed to attach to %s: %s\n",
12433 			prog->name, target_name,
12434 			libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12435 		return libbpf_err_ptr(link_fd);
12436 	}
12437 	link->fd = link_fd;
12438 	return link;
12439 }
12440 
12441 struct bpf_link *
12442 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
12443 {
12444 	return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL);
12445 }
12446 
12447 struct bpf_link *
12448 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
12449 {
12450 	return bpf_program_attach_fd(prog, netns_fd, "netns", NULL);
12451 }
12452 
12453 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
12454 {
12455 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12456 	return bpf_program_attach_fd(prog, ifindex, "xdp", NULL);
12457 }
12458 
12459 struct bpf_link *
12460 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex,
12461 			const struct bpf_tcx_opts *opts)
12462 {
12463 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12464 	__u32 relative_id;
12465 	int relative_fd;
12466 
12467 	if (!OPTS_VALID(opts, bpf_tcx_opts))
12468 		return libbpf_err_ptr(-EINVAL);
12469 
12470 	relative_id = OPTS_GET(opts, relative_id, 0);
12471 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12472 
12473 	/* validate we don't have unexpected combinations of non-zero fields */
12474 	if (!ifindex) {
12475 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12476 			prog->name);
12477 		return libbpf_err_ptr(-EINVAL);
12478 	}
12479 	if (relative_fd && relative_id) {
12480 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12481 			prog->name);
12482 		return libbpf_err_ptr(-EINVAL);
12483 	}
12484 
12485 	link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0);
12486 	link_create_opts.tcx.relative_fd = relative_fd;
12487 	link_create_opts.tcx.relative_id = relative_id;
12488 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12489 
12490 	/* target_fd/target_ifindex use the same field in LINK_CREATE */
12491 	return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts);
12492 }
12493 
12494 struct bpf_link *
12495 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
12496 			   const struct bpf_netkit_opts *opts)
12497 {
12498 	LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12499 	__u32 relative_id;
12500 	int relative_fd;
12501 
12502 	if (!OPTS_VALID(opts, bpf_netkit_opts))
12503 		return libbpf_err_ptr(-EINVAL);
12504 
12505 	relative_id = OPTS_GET(opts, relative_id, 0);
12506 	relative_fd = OPTS_GET(opts, relative_fd, 0);
12507 
12508 	/* validate we don't have unexpected combinations of non-zero fields */
12509 	if (!ifindex) {
12510 		pr_warn("prog '%s': target netdevice ifindex cannot be zero\n",
12511 			prog->name);
12512 		return libbpf_err_ptr(-EINVAL);
12513 	}
12514 	if (relative_fd && relative_id) {
12515 		pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n",
12516 			prog->name);
12517 		return libbpf_err_ptr(-EINVAL);
12518 	}
12519 
12520 	link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0);
12521 	link_create_opts.netkit.relative_fd = relative_fd;
12522 	link_create_opts.netkit.relative_id = relative_id;
12523 	link_create_opts.flags = OPTS_GET(opts, flags, 0);
12524 
12525 	return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts);
12526 }
12527 
12528 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
12529 					      int target_fd,
12530 					      const char *attach_func_name)
12531 {
12532 	int btf_id;
12533 
12534 	if (!!target_fd != !!attach_func_name) {
12535 		pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
12536 			prog->name);
12537 		return libbpf_err_ptr(-EINVAL);
12538 	}
12539 
12540 	if (prog->type != BPF_PROG_TYPE_EXT) {
12541 		pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
12542 			prog->name);
12543 		return libbpf_err_ptr(-EINVAL);
12544 	}
12545 
12546 	if (target_fd) {
12547 		LIBBPF_OPTS(bpf_link_create_opts, target_opts);
12548 
12549 		btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
12550 		if (btf_id < 0)
12551 			return libbpf_err_ptr(btf_id);
12552 
12553 		target_opts.target_btf_id = btf_id;
12554 
12555 		return bpf_program_attach_fd(prog, target_fd, "freplace",
12556 					     &target_opts);
12557 	} else {
12558 		/* no target, so use raw_tracepoint_open for compatibility
12559 		 * with old kernels
12560 		 */
12561 		return bpf_program__attach_trace(prog);
12562 	}
12563 }
12564 
12565 struct bpf_link *
12566 bpf_program__attach_iter(const struct bpf_program *prog,
12567 			 const struct bpf_iter_attach_opts *opts)
12568 {
12569 	DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
12570 	char errmsg[STRERR_BUFSIZE];
12571 	struct bpf_link *link;
12572 	int prog_fd, link_fd;
12573 	__u32 target_fd = 0;
12574 
12575 	if (!OPTS_VALID(opts, bpf_iter_attach_opts))
12576 		return libbpf_err_ptr(-EINVAL);
12577 
12578 	link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
12579 	link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
12580 
12581 	prog_fd = bpf_program__fd(prog);
12582 	if (prog_fd < 0) {
12583 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12584 		return libbpf_err_ptr(-EINVAL);
12585 	}
12586 
12587 	link = calloc(1, sizeof(*link));
12588 	if (!link)
12589 		return libbpf_err_ptr(-ENOMEM);
12590 	link->detach = &bpf_link__detach_fd;
12591 
12592 	link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
12593 				  &link_create_opts);
12594 	if (link_fd < 0) {
12595 		link_fd = -errno;
12596 		free(link);
12597 		pr_warn("prog '%s': failed to attach to iterator: %s\n",
12598 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12599 		return libbpf_err_ptr(link_fd);
12600 	}
12601 	link->fd = link_fd;
12602 	return link;
12603 }
12604 
12605 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
12606 {
12607 	*link = bpf_program__attach_iter(prog, NULL);
12608 	return libbpf_get_error(*link);
12609 }
12610 
12611 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog,
12612 					       const struct bpf_netfilter_opts *opts)
12613 {
12614 	LIBBPF_OPTS(bpf_link_create_opts, lopts);
12615 	struct bpf_link *link;
12616 	int prog_fd, link_fd;
12617 
12618 	if (!OPTS_VALID(opts, bpf_netfilter_opts))
12619 		return libbpf_err_ptr(-EINVAL);
12620 
12621 	prog_fd = bpf_program__fd(prog);
12622 	if (prog_fd < 0) {
12623 		pr_warn("prog '%s': can't attach before loaded\n", prog->name);
12624 		return libbpf_err_ptr(-EINVAL);
12625 	}
12626 
12627 	link = calloc(1, sizeof(*link));
12628 	if (!link)
12629 		return libbpf_err_ptr(-ENOMEM);
12630 
12631 	link->detach = &bpf_link__detach_fd;
12632 
12633 	lopts.netfilter.pf = OPTS_GET(opts, pf, 0);
12634 	lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0);
12635 	lopts.netfilter.priority = OPTS_GET(opts, priority, 0);
12636 	lopts.netfilter.flags = OPTS_GET(opts, flags, 0);
12637 
12638 	link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts);
12639 	if (link_fd < 0) {
12640 		char errmsg[STRERR_BUFSIZE];
12641 
12642 		link_fd = -errno;
12643 		free(link);
12644 		pr_warn("prog '%s': failed to attach to netfilter: %s\n",
12645 			prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
12646 		return libbpf_err_ptr(link_fd);
12647 	}
12648 	link->fd = link_fd;
12649 
12650 	return link;
12651 }
12652 
12653 struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
12654 {
12655 	struct bpf_link *link = NULL;
12656 	int err;
12657 
12658 	if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12659 		return libbpf_err_ptr(-EOPNOTSUPP);
12660 
12661 	err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
12662 	if (err)
12663 		return libbpf_err_ptr(err);
12664 
12665 	/* When calling bpf_program__attach() explicitly, auto-attach support
12666 	 * is expected to work, so NULL returned link is considered an error.
12667 	 * This is different for skeleton's attach, see comment in
12668 	 * bpf_object__attach_skeleton().
12669 	 */
12670 	if (!link)
12671 		return libbpf_err_ptr(-EOPNOTSUPP);
12672 
12673 	return link;
12674 }
12675 
12676 struct bpf_link_struct_ops {
12677 	struct bpf_link link;
12678 	int map_fd;
12679 };
12680 
12681 static int bpf_link__detach_struct_ops(struct bpf_link *link)
12682 {
12683 	struct bpf_link_struct_ops *st_link;
12684 	__u32 zero = 0;
12685 
12686 	st_link = container_of(link, struct bpf_link_struct_ops, link);
12687 
12688 	if (st_link->map_fd < 0)
12689 		/* w/o a real link */
12690 		return bpf_map_delete_elem(link->fd, &zero);
12691 
12692 	return close(link->fd);
12693 }
12694 
12695 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
12696 {
12697 	struct bpf_link_struct_ops *link;
12698 	__u32 zero = 0;
12699 	int err, fd;
12700 
12701 	if (!bpf_map__is_struct_ops(map) || map->fd == -1)
12702 		return libbpf_err_ptr(-EINVAL);
12703 
12704 	link = calloc(1, sizeof(*link));
12705 	if (!link)
12706 		return libbpf_err_ptr(-EINVAL);
12707 
12708 	/* kern_vdata should be prepared during the loading phase. */
12709 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12710 	/* It can be EBUSY if the map has been used to create or
12711 	 * update a link before.  We don't allow updating the value of
12712 	 * a struct_ops once it is set.  That ensures that the value
12713 	 * never changed.  So, it is safe to skip EBUSY.
12714 	 */
12715 	if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
12716 		free(link);
12717 		return libbpf_err_ptr(err);
12718 	}
12719 
12720 	link->link.detach = bpf_link__detach_struct_ops;
12721 
12722 	if (!(map->def.map_flags & BPF_F_LINK)) {
12723 		/* w/o a real link */
12724 		link->link.fd = map->fd;
12725 		link->map_fd = -1;
12726 		return &link->link;
12727 	}
12728 
12729 	fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
12730 	if (fd < 0) {
12731 		free(link);
12732 		return libbpf_err_ptr(fd);
12733 	}
12734 
12735 	link->link.fd = fd;
12736 	link->map_fd = map->fd;
12737 
12738 	return &link->link;
12739 }
12740 
12741 /*
12742  * Swap the back struct_ops of a link with a new struct_ops map.
12743  */
12744 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
12745 {
12746 	struct bpf_link_struct_ops *st_ops_link;
12747 	__u32 zero = 0;
12748 	int err;
12749 
12750 	if (!bpf_map__is_struct_ops(map) || !map_is_created(map))
12751 		return -EINVAL;
12752 
12753 	st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
12754 	/* Ensure the type of a link is correct */
12755 	if (st_ops_link->map_fd < 0)
12756 		return -EINVAL;
12757 
12758 	err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
12759 	/* It can be EBUSY if the map has been used to create or
12760 	 * update a link before.  We don't allow updating the value of
12761 	 * a struct_ops once it is set.  That ensures that the value
12762 	 * never changed.  So, it is safe to skip EBUSY.
12763 	 */
12764 	if (err && err != -EBUSY)
12765 		return err;
12766 
12767 	err = bpf_link_update(link->fd, map->fd, NULL);
12768 	if (err < 0)
12769 		return err;
12770 
12771 	st_ops_link->map_fd = map->fd;
12772 
12773 	return 0;
12774 }
12775 
12776 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
12777 							  void *private_data);
12778 
12779 static enum bpf_perf_event_ret
12780 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
12781 		       void **copy_mem, size_t *copy_size,
12782 		       bpf_perf_event_print_t fn, void *private_data)
12783 {
12784 	struct perf_event_mmap_page *header = mmap_mem;
12785 	__u64 data_head = ring_buffer_read_head(header);
12786 	__u64 data_tail = header->data_tail;
12787 	void *base = ((__u8 *)header) + page_size;
12788 	int ret = LIBBPF_PERF_EVENT_CONT;
12789 	struct perf_event_header *ehdr;
12790 	size_t ehdr_size;
12791 
12792 	while (data_head != data_tail) {
12793 		ehdr = base + (data_tail & (mmap_size - 1));
12794 		ehdr_size = ehdr->size;
12795 
12796 		if (((void *)ehdr) + ehdr_size > base + mmap_size) {
12797 			void *copy_start = ehdr;
12798 			size_t len_first = base + mmap_size - copy_start;
12799 			size_t len_secnd = ehdr_size - len_first;
12800 
12801 			if (*copy_size < ehdr_size) {
12802 				free(*copy_mem);
12803 				*copy_mem = malloc(ehdr_size);
12804 				if (!*copy_mem) {
12805 					*copy_size = 0;
12806 					ret = LIBBPF_PERF_EVENT_ERROR;
12807 					break;
12808 				}
12809 				*copy_size = ehdr_size;
12810 			}
12811 
12812 			memcpy(*copy_mem, copy_start, len_first);
12813 			memcpy(*copy_mem + len_first, base, len_secnd);
12814 			ehdr = *copy_mem;
12815 		}
12816 
12817 		ret = fn(ehdr, private_data);
12818 		data_tail += ehdr_size;
12819 		if (ret != LIBBPF_PERF_EVENT_CONT)
12820 			break;
12821 	}
12822 
12823 	ring_buffer_write_tail(header, data_tail);
12824 	return libbpf_err(ret);
12825 }
12826 
12827 struct perf_buffer;
12828 
12829 struct perf_buffer_params {
12830 	struct perf_event_attr *attr;
12831 	/* if event_cb is specified, it takes precendence */
12832 	perf_buffer_event_fn event_cb;
12833 	/* sample_cb and lost_cb are higher-level common-case callbacks */
12834 	perf_buffer_sample_fn sample_cb;
12835 	perf_buffer_lost_fn lost_cb;
12836 	void *ctx;
12837 	int cpu_cnt;
12838 	int *cpus;
12839 	int *map_keys;
12840 };
12841 
12842 struct perf_cpu_buf {
12843 	struct perf_buffer *pb;
12844 	void *base; /* mmap()'ed memory */
12845 	void *buf; /* for reconstructing segmented data */
12846 	size_t buf_size;
12847 	int fd;
12848 	int cpu;
12849 	int map_key;
12850 };
12851 
12852 struct perf_buffer {
12853 	perf_buffer_event_fn event_cb;
12854 	perf_buffer_sample_fn sample_cb;
12855 	perf_buffer_lost_fn lost_cb;
12856 	void *ctx; /* passed into callbacks */
12857 
12858 	size_t page_size;
12859 	size_t mmap_size;
12860 	struct perf_cpu_buf **cpu_bufs;
12861 	struct epoll_event *events;
12862 	int cpu_cnt; /* number of allocated CPU buffers */
12863 	int epoll_fd; /* perf event FD */
12864 	int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
12865 };
12866 
12867 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
12868 				      struct perf_cpu_buf *cpu_buf)
12869 {
12870 	if (!cpu_buf)
12871 		return;
12872 	if (cpu_buf->base &&
12873 	    munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
12874 		pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
12875 	if (cpu_buf->fd >= 0) {
12876 		ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
12877 		close(cpu_buf->fd);
12878 	}
12879 	free(cpu_buf->buf);
12880 	free(cpu_buf);
12881 }
12882 
12883 void perf_buffer__free(struct perf_buffer *pb)
12884 {
12885 	int i;
12886 
12887 	if (IS_ERR_OR_NULL(pb))
12888 		return;
12889 	if (pb->cpu_bufs) {
12890 		for (i = 0; i < pb->cpu_cnt; i++) {
12891 			struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12892 
12893 			if (!cpu_buf)
12894 				continue;
12895 
12896 			bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
12897 			perf_buffer__free_cpu_buf(pb, cpu_buf);
12898 		}
12899 		free(pb->cpu_bufs);
12900 	}
12901 	if (pb->epoll_fd >= 0)
12902 		close(pb->epoll_fd);
12903 	free(pb->events);
12904 	free(pb);
12905 }
12906 
12907 static struct perf_cpu_buf *
12908 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
12909 			  int cpu, int map_key)
12910 {
12911 	struct perf_cpu_buf *cpu_buf;
12912 	char msg[STRERR_BUFSIZE];
12913 	int err;
12914 
12915 	cpu_buf = calloc(1, sizeof(*cpu_buf));
12916 	if (!cpu_buf)
12917 		return ERR_PTR(-ENOMEM);
12918 
12919 	cpu_buf->pb = pb;
12920 	cpu_buf->cpu = cpu;
12921 	cpu_buf->map_key = map_key;
12922 
12923 	cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
12924 			      -1, PERF_FLAG_FD_CLOEXEC);
12925 	if (cpu_buf->fd < 0) {
12926 		err = -errno;
12927 		pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
12928 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12929 		goto error;
12930 	}
12931 
12932 	cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
12933 			     PROT_READ | PROT_WRITE, MAP_SHARED,
12934 			     cpu_buf->fd, 0);
12935 	if (cpu_buf->base == MAP_FAILED) {
12936 		cpu_buf->base = NULL;
12937 		err = -errno;
12938 		pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
12939 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12940 		goto error;
12941 	}
12942 
12943 	if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
12944 		err = -errno;
12945 		pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
12946 			cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
12947 		goto error;
12948 	}
12949 
12950 	return cpu_buf;
12951 
12952 error:
12953 	perf_buffer__free_cpu_buf(pb, cpu_buf);
12954 	return (struct perf_cpu_buf *)ERR_PTR(err);
12955 }
12956 
12957 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12958 					      struct perf_buffer_params *p);
12959 
12960 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12961 				     perf_buffer_sample_fn sample_cb,
12962 				     perf_buffer_lost_fn lost_cb,
12963 				     void *ctx,
12964 				     const struct perf_buffer_opts *opts)
12965 {
12966 	const size_t attr_sz = sizeof(struct perf_event_attr);
12967 	struct perf_buffer_params p = {};
12968 	struct perf_event_attr attr;
12969 	__u32 sample_period;
12970 
12971 	if (!OPTS_VALID(opts, perf_buffer_opts))
12972 		return libbpf_err_ptr(-EINVAL);
12973 
12974 	sample_period = OPTS_GET(opts, sample_period, 1);
12975 	if (!sample_period)
12976 		sample_period = 1;
12977 
12978 	memset(&attr, 0, attr_sz);
12979 	attr.size = attr_sz;
12980 	attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12981 	attr.type = PERF_TYPE_SOFTWARE;
12982 	attr.sample_type = PERF_SAMPLE_RAW;
12983 	attr.sample_period = sample_period;
12984 	attr.wakeup_events = sample_period;
12985 
12986 	p.attr = &attr;
12987 	p.sample_cb = sample_cb;
12988 	p.lost_cb = lost_cb;
12989 	p.ctx = ctx;
12990 
12991 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12992 }
12993 
12994 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12995 					 struct perf_event_attr *attr,
12996 					 perf_buffer_event_fn event_cb, void *ctx,
12997 					 const struct perf_buffer_raw_opts *opts)
12998 {
12999 	struct perf_buffer_params p = {};
13000 
13001 	if (!attr)
13002 		return libbpf_err_ptr(-EINVAL);
13003 
13004 	if (!OPTS_VALID(opts, perf_buffer_raw_opts))
13005 		return libbpf_err_ptr(-EINVAL);
13006 
13007 	p.attr = attr;
13008 	p.event_cb = event_cb;
13009 	p.ctx = ctx;
13010 	p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
13011 	p.cpus = OPTS_GET(opts, cpus, NULL);
13012 	p.map_keys = OPTS_GET(opts, map_keys, NULL);
13013 
13014 	return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
13015 }
13016 
13017 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
13018 					      struct perf_buffer_params *p)
13019 {
13020 	const char *online_cpus_file = "/sys/devices/system/cpu/online";
13021 	struct bpf_map_info map;
13022 	char msg[STRERR_BUFSIZE];
13023 	struct perf_buffer *pb;
13024 	bool *online = NULL;
13025 	__u32 map_info_len;
13026 	int err, i, j, n;
13027 
13028 	if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
13029 		pr_warn("page count should be power of two, but is %zu\n",
13030 			page_cnt);
13031 		return ERR_PTR(-EINVAL);
13032 	}
13033 
13034 	/* best-effort sanity checks */
13035 	memset(&map, 0, sizeof(map));
13036 	map_info_len = sizeof(map);
13037 	err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
13038 	if (err) {
13039 		err = -errno;
13040 		/* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
13041 		 * -EBADFD, -EFAULT, or -E2BIG on real error
13042 		 */
13043 		if (err != -EINVAL) {
13044 			pr_warn("failed to get map info for map FD %d: %s\n",
13045 				map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
13046 			return ERR_PTR(err);
13047 		}
13048 		pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
13049 			 map_fd);
13050 	} else {
13051 		if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
13052 			pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
13053 				map.name);
13054 			return ERR_PTR(-EINVAL);
13055 		}
13056 	}
13057 
13058 	pb = calloc(1, sizeof(*pb));
13059 	if (!pb)
13060 		return ERR_PTR(-ENOMEM);
13061 
13062 	pb->event_cb = p->event_cb;
13063 	pb->sample_cb = p->sample_cb;
13064 	pb->lost_cb = p->lost_cb;
13065 	pb->ctx = p->ctx;
13066 
13067 	pb->page_size = getpagesize();
13068 	pb->mmap_size = pb->page_size * page_cnt;
13069 	pb->map_fd = map_fd;
13070 
13071 	pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
13072 	if (pb->epoll_fd < 0) {
13073 		err = -errno;
13074 		pr_warn("failed to create epoll instance: %s\n",
13075 			libbpf_strerror_r(err, msg, sizeof(msg)));
13076 		goto error;
13077 	}
13078 
13079 	if (p->cpu_cnt > 0) {
13080 		pb->cpu_cnt = p->cpu_cnt;
13081 	} else {
13082 		pb->cpu_cnt = libbpf_num_possible_cpus();
13083 		if (pb->cpu_cnt < 0) {
13084 			err = pb->cpu_cnt;
13085 			goto error;
13086 		}
13087 		if (map.max_entries && map.max_entries < pb->cpu_cnt)
13088 			pb->cpu_cnt = map.max_entries;
13089 	}
13090 
13091 	pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
13092 	if (!pb->events) {
13093 		err = -ENOMEM;
13094 		pr_warn("failed to allocate events: out of memory\n");
13095 		goto error;
13096 	}
13097 	pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
13098 	if (!pb->cpu_bufs) {
13099 		err = -ENOMEM;
13100 		pr_warn("failed to allocate buffers: out of memory\n");
13101 		goto error;
13102 	}
13103 
13104 	err = parse_cpu_mask_file(online_cpus_file, &online, &n);
13105 	if (err) {
13106 		pr_warn("failed to get online CPU mask: %d\n", err);
13107 		goto error;
13108 	}
13109 
13110 	for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
13111 		struct perf_cpu_buf *cpu_buf;
13112 		int cpu, map_key;
13113 
13114 		cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
13115 		map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
13116 
13117 		/* in case user didn't explicitly requested particular CPUs to
13118 		 * be attached to, skip offline/not present CPUs
13119 		 */
13120 		if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
13121 			continue;
13122 
13123 		cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
13124 		if (IS_ERR(cpu_buf)) {
13125 			err = PTR_ERR(cpu_buf);
13126 			goto error;
13127 		}
13128 
13129 		pb->cpu_bufs[j] = cpu_buf;
13130 
13131 		err = bpf_map_update_elem(pb->map_fd, &map_key,
13132 					  &cpu_buf->fd, 0);
13133 		if (err) {
13134 			err = -errno;
13135 			pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
13136 				cpu, map_key, cpu_buf->fd,
13137 				libbpf_strerror_r(err, msg, sizeof(msg)));
13138 			goto error;
13139 		}
13140 
13141 		pb->events[j].events = EPOLLIN;
13142 		pb->events[j].data.ptr = cpu_buf;
13143 		if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
13144 			      &pb->events[j]) < 0) {
13145 			err = -errno;
13146 			pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
13147 				cpu, cpu_buf->fd,
13148 				libbpf_strerror_r(err, msg, sizeof(msg)));
13149 			goto error;
13150 		}
13151 		j++;
13152 	}
13153 	pb->cpu_cnt = j;
13154 	free(online);
13155 
13156 	return pb;
13157 
13158 error:
13159 	free(online);
13160 	if (pb)
13161 		perf_buffer__free(pb);
13162 	return ERR_PTR(err);
13163 }
13164 
13165 struct perf_sample_raw {
13166 	struct perf_event_header header;
13167 	uint32_t size;
13168 	char data[];
13169 };
13170 
13171 struct perf_sample_lost {
13172 	struct perf_event_header header;
13173 	uint64_t id;
13174 	uint64_t lost;
13175 	uint64_t sample_id;
13176 };
13177 
13178 static enum bpf_perf_event_ret
13179 perf_buffer__process_record(struct perf_event_header *e, void *ctx)
13180 {
13181 	struct perf_cpu_buf *cpu_buf = ctx;
13182 	struct perf_buffer *pb = cpu_buf->pb;
13183 	void *data = e;
13184 
13185 	/* user wants full control over parsing perf event */
13186 	if (pb->event_cb)
13187 		return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
13188 
13189 	switch (e->type) {
13190 	case PERF_RECORD_SAMPLE: {
13191 		struct perf_sample_raw *s = data;
13192 
13193 		if (pb->sample_cb)
13194 			pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
13195 		break;
13196 	}
13197 	case PERF_RECORD_LOST: {
13198 		struct perf_sample_lost *s = data;
13199 
13200 		if (pb->lost_cb)
13201 			pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
13202 		break;
13203 	}
13204 	default:
13205 		pr_warn("unknown perf sample type %d\n", e->type);
13206 		return LIBBPF_PERF_EVENT_ERROR;
13207 	}
13208 	return LIBBPF_PERF_EVENT_CONT;
13209 }
13210 
13211 static int perf_buffer__process_records(struct perf_buffer *pb,
13212 					struct perf_cpu_buf *cpu_buf)
13213 {
13214 	enum bpf_perf_event_ret ret;
13215 
13216 	ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
13217 				     pb->page_size, &cpu_buf->buf,
13218 				     &cpu_buf->buf_size,
13219 				     perf_buffer__process_record, cpu_buf);
13220 	if (ret != LIBBPF_PERF_EVENT_CONT)
13221 		return ret;
13222 	return 0;
13223 }
13224 
13225 int perf_buffer__epoll_fd(const struct perf_buffer *pb)
13226 {
13227 	return pb->epoll_fd;
13228 }
13229 
13230 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
13231 {
13232 	int i, cnt, err;
13233 
13234 	cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
13235 	if (cnt < 0)
13236 		return -errno;
13237 
13238 	for (i = 0; i < cnt; i++) {
13239 		struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
13240 
13241 		err = perf_buffer__process_records(pb, cpu_buf);
13242 		if (err) {
13243 			pr_warn("error while processing records: %d\n", err);
13244 			return libbpf_err(err);
13245 		}
13246 	}
13247 	return cnt;
13248 }
13249 
13250 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
13251  * manager.
13252  */
13253 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
13254 {
13255 	return pb->cpu_cnt;
13256 }
13257 
13258 /*
13259  * Return perf_event FD of a ring buffer in *buf_idx* slot of
13260  * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
13261  * select()/poll()/epoll() Linux syscalls.
13262  */
13263 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
13264 {
13265 	struct perf_cpu_buf *cpu_buf;
13266 
13267 	if (buf_idx >= pb->cpu_cnt)
13268 		return libbpf_err(-EINVAL);
13269 
13270 	cpu_buf = pb->cpu_bufs[buf_idx];
13271 	if (!cpu_buf)
13272 		return libbpf_err(-ENOENT);
13273 
13274 	return cpu_buf->fd;
13275 }
13276 
13277 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
13278 {
13279 	struct perf_cpu_buf *cpu_buf;
13280 
13281 	if (buf_idx >= pb->cpu_cnt)
13282 		return libbpf_err(-EINVAL);
13283 
13284 	cpu_buf = pb->cpu_bufs[buf_idx];
13285 	if (!cpu_buf)
13286 		return libbpf_err(-ENOENT);
13287 
13288 	*buf = cpu_buf->base;
13289 	*buf_size = pb->mmap_size;
13290 	return 0;
13291 }
13292 
13293 /*
13294  * Consume data from perf ring buffer corresponding to slot *buf_idx* in
13295  * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
13296  * consume, do nothing and return success.
13297  * Returns:
13298  *   - 0 on success;
13299  *   - <0 on failure.
13300  */
13301 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
13302 {
13303 	struct perf_cpu_buf *cpu_buf;
13304 
13305 	if (buf_idx >= pb->cpu_cnt)
13306 		return libbpf_err(-EINVAL);
13307 
13308 	cpu_buf = pb->cpu_bufs[buf_idx];
13309 	if (!cpu_buf)
13310 		return libbpf_err(-ENOENT);
13311 
13312 	return perf_buffer__process_records(pb, cpu_buf);
13313 }
13314 
13315 int perf_buffer__consume(struct perf_buffer *pb)
13316 {
13317 	int i, err;
13318 
13319 	for (i = 0; i < pb->cpu_cnt; i++) {
13320 		struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
13321 
13322 		if (!cpu_buf)
13323 			continue;
13324 
13325 		err = perf_buffer__process_records(pb, cpu_buf);
13326 		if (err) {
13327 			pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
13328 			return libbpf_err(err);
13329 		}
13330 	}
13331 	return 0;
13332 }
13333 
13334 int bpf_program__set_attach_target(struct bpf_program *prog,
13335 				   int attach_prog_fd,
13336 				   const char *attach_func_name)
13337 {
13338 	int btf_obj_fd = 0, btf_id = 0, err;
13339 
13340 	if (!prog || attach_prog_fd < 0)
13341 		return libbpf_err(-EINVAL);
13342 
13343 	if (prog->obj->loaded)
13344 		return libbpf_err(-EINVAL);
13345 
13346 	if (attach_prog_fd && !attach_func_name) {
13347 		/* remember attach_prog_fd and let bpf_program__load() find
13348 		 * BTF ID during the program load
13349 		 */
13350 		prog->attach_prog_fd = attach_prog_fd;
13351 		return 0;
13352 	}
13353 
13354 	if (attach_prog_fd) {
13355 		btf_id = libbpf_find_prog_btf_id(attach_func_name,
13356 						 attach_prog_fd);
13357 		if (btf_id < 0)
13358 			return libbpf_err(btf_id);
13359 	} else {
13360 		if (!attach_func_name)
13361 			return libbpf_err(-EINVAL);
13362 
13363 		/* load btf_vmlinux, if not yet */
13364 		err = bpf_object__load_vmlinux_btf(prog->obj, true);
13365 		if (err)
13366 			return libbpf_err(err);
13367 		err = find_kernel_btf_id(prog->obj, attach_func_name,
13368 					 prog->expected_attach_type,
13369 					 &btf_obj_fd, &btf_id);
13370 		if (err)
13371 			return libbpf_err(err);
13372 	}
13373 
13374 	prog->attach_btf_id = btf_id;
13375 	prog->attach_btf_obj_fd = btf_obj_fd;
13376 	prog->attach_prog_fd = attach_prog_fd;
13377 	return 0;
13378 }
13379 
13380 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
13381 {
13382 	int err = 0, n, len, start, end = -1;
13383 	bool *tmp;
13384 
13385 	*mask = NULL;
13386 	*mask_sz = 0;
13387 
13388 	/* Each sub string separated by ',' has format \d+-\d+ or \d+ */
13389 	while (*s) {
13390 		if (*s == ',' || *s == '\n') {
13391 			s++;
13392 			continue;
13393 		}
13394 		n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
13395 		if (n <= 0 || n > 2) {
13396 			pr_warn("Failed to get CPU range %s: %d\n", s, n);
13397 			err = -EINVAL;
13398 			goto cleanup;
13399 		} else if (n == 1) {
13400 			end = start;
13401 		}
13402 		if (start < 0 || start > end) {
13403 			pr_warn("Invalid CPU range [%d,%d] in %s\n",
13404 				start, end, s);
13405 			err = -EINVAL;
13406 			goto cleanup;
13407 		}
13408 		tmp = realloc(*mask, end + 1);
13409 		if (!tmp) {
13410 			err = -ENOMEM;
13411 			goto cleanup;
13412 		}
13413 		*mask = tmp;
13414 		memset(tmp + *mask_sz, 0, start - *mask_sz);
13415 		memset(tmp + start, 1, end - start + 1);
13416 		*mask_sz = end + 1;
13417 		s += len;
13418 	}
13419 	if (!*mask_sz) {
13420 		pr_warn("Empty CPU range\n");
13421 		return -EINVAL;
13422 	}
13423 	return 0;
13424 cleanup:
13425 	free(*mask);
13426 	*mask = NULL;
13427 	return err;
13428 }
13429 
13430 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
13431 {
13432 	int fd, err = 0, len;
13433 	char buf[128];
13434 
13435 	fd = open(fcpu, O_RDONLY | O_CLOEXEC);
13436 	if (fd < 0) {
13437 		err = -errno;
13438 		pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
13439 		return err;
13440 	}
13441 	len = read(fd, buf, sizeof(buf));
13442 	close(fd);
13443 	if (len <= 0) {
13444 		err = len ? -errno : -EINVAL;
13445 		pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
13446 		return err;
13447 	}
13448 	if (len >= sizeof(buf)) {
13449 		pr_warn("CPU mask is too big in file %s\n", fcpu);
13450 		return -E2BIG;
13451 	}
13452 	buf[len] = '\0';
13453 
13454 	return parse_cpu_mask_str(buf, mask, mask_sz);
13455 }
13456 
13457 int libbpf_num_possible_cpus(void)
13458 {
13459 	static const char *fcpu = "/sys/devices/system/cpu/possible";
13460 	static int cpus;
13461 	int err, n, i, tmp_cpus;
13462 	bool *mask;
13463 
13464 	tmp_cpus = READ_ONCE(cpus);
13465 	if (tmp_cpus > 0)
13466 		return tmp_cpus;
13467 
13468 	err = parse_cpu_mask_file(fcpu, &mask, &n);
13469 	if (err)
13470 		return libbpf_err(err);
13471 
13472 	tmp_cpus = 0;
13473 	for (i = 0; i < n; i++) {
13474 		if (mask[i])
13475 			tmp_cpus++;
13476 	}
13477 	free(mask);
13478 
13479 	WRITE_ONCE(cpus, tmp_cpus);
13480 	return tmp_cpus;
13481 }
13482 
13483 static int populate_skeleton_maps(const struct bpf_object *obj,
13484 				  struct bpf_map_skeleton *maps,
13485 				  size_t map_cnt)
13486 {
13487 	int i;
13488 
13489 	for (i = 0; i < map_cnt; i++) {
13490 		struct bpf_map **map = maps[i].map;
13491 		const char *name = maps[i].name;
13492 		void **mmaped = maps[i].mmaped;
13493 
13494 		*map = bpf_object__find_map_by_name(obj, name);
13495 		if (!*map) {
13496 			pr_warn("failed to find skeleton map '%s'\n", name);
13497 			return -ESRCH;
13498 		}
13499 
13500 		/* externs shouldn't be pre-setup from user code */
13501 		if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
13502 			*mmaped = (*map)->mmaped;
13503 	}
13504 	return 0;
13505 }
13506 
13507 static int populate_skeleton_progs(const struct bpf_object *obj,
13508 				   struct bpf_prog_skeleton *progs,
13509 				   size_t prog_cnt)
13510 {
13511 	int i;
13512 
13513 	for (i = 0; i < prog_cnt; i++) {
13514 		struct bpf_program **prog = progs[i].prog;
13515 		const char *name = progs[i].name;
13516 
13517 		*prog = bpf_object__find_program_by_name(obj, name);
13518 		if (!*prog) {
13519 			pr_warn("failed to find skeleton program '%s'\n", name);
13520 			return -ESRCH;
13521 		}
13522 	}
13523 	return 0;
13524 }
13525 
13526 int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
13527 			      const struct bpf_object_open_opts *opts)
13528 {
13529 	DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
13530 		.object_name = s->name,
13531 	);
13532 	struct bpf_object *obj;
13533 	int err;
13534 
13535 	/* Attempt to preserve opts->object_name, unless overriden by user
13536 	 * explicitly. Overwriting object name for skeletons is discouraged,
13537 	 * as it breaks global data maps, because they contain object name
13538 	 * prefix as their own map name prefix. When skeleton is generated,
13539 	 * bpftool is making an assumption that this name will stay the same.
13540 	 */
13541 	if (opts) {
13542 		memcpy(&skel_opts, opts, sizeof(*opts));
13543 		if (!opts->object_name)
13544 			skel_opts.object_name = s->name;
13545 	}
13546 
13547 	obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
13548 	err = libbpf_get_error(obj);
13549 	if (err) {
13550 		pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
13551 			s->name, err);
13552 		return libbpf_err(err);
13553 	}
13554 
13555 	*s->obj = obj;
13556 	err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
13557 	if (err) {
13558 		pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
13559 		return libbpf_err(err);
13560 	}
13561 
13562 	err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
13563 	if (err) {
13564 		pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
13565 		return libbpf_err(err);
13566 	}
13567 
13568 	return 0;
13569 }
13570 
13571 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
13572 {
13573 	int err, len, var_idx, i;
13574 	const char *var_name;
13575 	const struct bpf_map *map;
13576 	struct btf *btf;
13577 	__u32 map_type_id;
13578 	const struct btf_type *map_type, *var_type;
13579 	const struct bpf_var_skeleton *var_skel;
13580 	struct btf_var_secinfo *var;
13581 
13582 	if (!s->obj)
13583 		return libbpf_err(-EINVAL);
13584 
13585 	btf = bpf_object__btf(s->obj);
13586 	if (!btf) {
13587 		pr_warn("subskeletons require BTF at runtime (object %s)\n",
13588 			bpf_object__name(s->obj));
13589 		return libbpf_err(-errno);
13590 	}
13591 
13592 	err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
13593 	if (err) {
13594 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13595 		return libbpf_err(err);
13596 	}
13597 
13598 	err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
13599 	if (err) {
13600 		pr_warn("failed to populate subskeleton maps: %d\n", err);
13601 		return libbpf_err(err);
13602 	}
13603 
13604 	for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
13605 		var_skel = &s->vars[var_idx];
13606 		map = *var_skel->map;
13607 		map_type_id = bpf_map__btf_value_type_id(map);
13608 		map_type = btf__type_by_id(btf, map_type_id);
13609 
13610 		if (!btf_is_datasec(map_type)) {
13611 			pr_warn("type for map '%1$s' is not a datasec: %2$s",
13612 				bpf_map__name(map),
13613 				__btf_kind_str(btf_kind(map_type)));
13614 			return libbpf_err(-EINVAL);
13615 		}
13616 
13617 		len = btf_vlen(map_type);
13618 		var = btf_var_secinfos(map_type);
13619 		for (i = 0; i < len; i++, var++) {
13620 			var_type = btf__type_by_id(btf, var->type);
13621 			var_name = btf__name_by_offset(btf, var_type->name_off);
13622 			if (strcmp(var_name, var_skel->name) == 0) {
13623 				*var_skel->addr = map->mmaped + var->offset;
13624 				break;
13625 			}
13626 		}
13627 	}
13628 	return 0;
13629 }
13630 
13631 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
13632 {
13633 	if (!s)
13634 		return;
13635 	free(s->maps);
13636 	free(s->progs);
13637 	free(s->vars);
13638 	free(s);
13639 }
13640 
13641 int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
13642 {
13643 	int i, err;
13644 
13645 	err = bpf_object__load(*s->obj);
13646 	if (err) {
13647 		pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
13648 		return libbpf_err(err);
13649 	}
13650 
13651 	for (i = 0; i < s->map_cnt; i++) {
13652 		struct bpf_map *map = *s->maps[i].map;
13653 		size_t mmap_sz = bpf_map_mmap_sz(map);
13654 		int prot, map_fd = map->fd;
13655 		void **mmaped = s->maps[i].mmaped;
13656 
13657 		if (!mmaped)
13658 			continue;
13659 
13660 		if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
13661 			*mmaped = NULL;
13662 			continue;
13663 		}
13664 
13665 		if (map->def.type == BPF_MAP_TYPE_ARENA) {
13666 			*mmaped = map->mmaped;
13667 			continue;
13668 		}
13669 
13670 		if (map->def.map_flags & BPF_F_RDONLY_PROG)
13671 			prot = PROT_READ;
13672 		else
13673 			prot = PROT_READ | PROT_WRITE;
13674 
13675 		/* Remap anonymous mmap()-ed "map initialization image" as
13676 		 * a BPF map-backed mmap()-ed memory, but preserving the same
13677 		 * memory address. This will cause kernel to change process'
13678 		 * page table to point to a different piece of kernel memory,
13679 		 * but from userspace point of view memory address (and its
13680 		 * contents, being identical at this point) will stay the
13681 		 * same. This mapping will be released by bpf_object__close()
13682 		 * as per normal clean up procedure, so we don't need to worry
13683 		 * about it from skeleton's clean up perspective.
13684 		 */
13685 		*mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0);
13686 		if (*mmaped == MAP_FAILED) {
13687 			err = -errno;
13688 			*mmaped = NULL;
13689 			pr_warn("failed to re-mmap() map '%s': %d\n",
13690 				 bpf_map__name(map), err);
13691 			return libbpf_err(err);
13692 		}
13693 	}
13694 
13695 	return 0;
13696 }
13697 
13698 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
13699 {
13700 	int i, err;
13701 
13702 	for (i = 0; i < s->prog_cnt; i++) {
13703 		struct bpf_program *prog = *s->progs[i].prog;
13704 		struct bpf_link **link = s->progs[i].link;
13705 
13706 		if (!prog->autoload || !prog->autoattach)
13707 			continue;
13708 
13709 		/* auto-attaching not supported for this program */
13710 		if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
13711 			continue;
13712 
13713 		/* if user already set the link manually, don't attempt auto-attach */
13714 		if (*link)
13715 			continue;
13716 
13717 		err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
13718 		if (err) {
13719 			pr_warn("prog '%s': failed to auto-attach: %d\n",
13720 				bpf_program__name(prog), err);
13721 			return libbpf_err(err);
13722 		}
13723 
13724 		/* It's possible that for some SEC() definitions auto-attach
13725 		 * is supported in some cases (e.g., if definition completely
13726 		 * specifies target information), but is not in other cases.
13727 		 * SEC("uprobe") is one such case. If user specified target
13728 		 * binary and function name, such BPF program can be
13729 		 * auto-attached. But if not, it shouldn't trigger skeleton's
13730 		 * attach to fail. It should just be skipped.
13731 		 * attach_fn signals such case with returning 0 (no error) and
13732 		 * setting link to NULL.
13733 		 */
13734 	}
13735 
13736 	return 0;
13737 }
13738 
13739 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
13740 {
13741 	int i;
13742 
13743 	for (i = 0; i < s->prog_cnt; i++) {
13744 		struct bpf_link **link = s->progs[i].link;
13745 
13746 		bpf_link__destroy(*link);
13747 		*link = NULL;
13748 	}
13749 }
13750 
13751 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
13752 {
13753 	if (!s)
13754 		return;
13755 
13756 	if (s->progs)
13757 		bpf_object__detach_skeleton(s);
13758 	if (s->obj)
13759 		bpf_object__close(*s->obj);
13760 	free(s->maps);
13761 	free(s->progs);
13762 	free(s);
13763 }
13764