1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/bpf_perf_event.h> 37 #include <linux/ring_buffer.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 #include "zip.h" 58 59 #ifndef BPF_FS_MAGIC 60 #define BPF_FS_MAGIC 0xcafe4a11 61 #endif 62 63 #define BPF_FS_DEFAULT_PATH "/sys/fs/bpf" 64 65 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 66 67 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 68 * compilation if user enables corresponding warning. Disable it explicitly. 69 */ 70 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 71 72 #define __printf(a, b) __attribute__((format(printf, a, b))) 73 74 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 75 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 76 static int map_set_def_max_entries(struct bpf_map *map); 77 78 static const char * const attach_type_name[] = { 79 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 80 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 81 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 82 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 83 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 84 [BPF_CGROUP_DEVICE] = "cgroup_device", 85 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 86 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 87 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 88 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 89 [BPF_CGROUP_UNIX_CONNECT] = "cgroup_unix_connect", 90 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 91 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 92 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 93 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 94 [BPF_CGROUP_UNIX_GETPEERNAME] = "cgroup_unix_getpeername", 95 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 96 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 97 [BPF_CGROUP_UNIX_GETSOCKNAME] = "cgroup_unix_getsockname", 98 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 99 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 100 [BPF_CGROUP_UNIX_SENDMSG] = "cgroup_unix_sendmsg", 101 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 102 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 103 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 104 [BPF_CGROUP_UNIX_RECVMSG] = "cgroup_unix_recvmsg", 105 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 106 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 107 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 108 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 109 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 110 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 111 [BPF_LIRC_MODE2] = "lirc_mode2", 112 [BPF_FLOW_DISSECTOR] = "flow_dissector", 113 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 114 [BPF_TRACE_FENTRY] = "trace_fentry", 115 [BPF_TRACE_FEXIT] = "trace_fexit", 116 [BPF_MODIFY_RETURN] = "modify_return", 117 [BPF_LSM_MAC] = "lsm_mac", 118 [BPF_LSM_CGROUP] = "lsm_cgroup", 119 [BPF_SK_LOOKUP] = "sk_lookup", 120 [BPF_TRACE_ITER] = "trace_iter", 121 [BPF_XDP_DEVMAP] = "xdp_devmap", 122 [BPF_XDP_CPUMAP] = "xdp_cpumap", 123 [BPF_XDP] = "xdp", 124 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 125 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 126 [BPF_PERF_EVENT] = "perf_event", 127 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 128 [BPF_STRUCT_OPS] = "struct_ops", 129 [BPF_NETFILTER] = "netfilter", 130 [BPF_TCX_INGRESS] = "tcx_ingress", 131 [BPF_TCX_EGRESS] = "tcx_egress", 132 [BPF_TRACE_UPROBE_MULTI] = "trace_uprobe_multi", 133 [BPF_NETKIT_PRIMARY] = "netkit_primary", 134 [BPF_NETKIT_PEER] = "netkit_peer", 135 }; 136 137 static const char * const link_type_name[] = { 138 [BPF_LINK_TYPE_UNSPEC] = "unspec", 139 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 140 [BPF_LINK_TYPE_TRACING] = "tracing", 141 [BPF_LINK_TYPE_CGROUP] = "cgroup", 142 [BPF_LINK_TYPE_ITER] = "iter", 143 [BPF_LINK_TYPE_NETNS] = "netns", 144 [BPF_LINK_TYPE_XDP] = "xdp", 145 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 146 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 147 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 148 [BPF_LINK_TYPE_NETFILTER] = "netfilter", 149 [BPF_LINK_TYPE_TCX] = "tcx", 150 [BPF_LINK_TYPE_UPROBE_MULTI] = "uprobe_multi", 151 [BPF_LINK_TYPE_NETKIT] = "netkit", 152 [BPF_LINK_TYPE_SOCKMAP] = "sockmap", 153 }; 154 155 static const char * const map_type_name[] = { 156 [BPF_MAP_TYPE_UNSPEC] = "unspec", 157 [BPF_MAP_TYPE_HASH] = "hash", 158 [BPF_MAP_TYPE_ARRAY] = "array", 159 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 160 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 161 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 162 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 163 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 164 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 165 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 166 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 167 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 168 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 169 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 170 [BPF_MAP_TYPE_DEVMAP] = "devmap", 171 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 172 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 173 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 174 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 175 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 176 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 177 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 178 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 179 [BPF_MAP_TYPE_QUEUE] = "queue", 180 [BPF_MAP_TYPE_STACK] = "stack", 181 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 182 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 183 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 184 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 185 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 186 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 187 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 188 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage", 189 [BPF_MAP_TYPE_ARENA] = "arena", 190 }; 191 192 static const char * const prog_type_name[] = { 193 [BPF_PROG_TYPE_UNSPEC] = "unspec", 194 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 195 [BPF_PROG_TYPE_KPROBE] = "kprobe", 196 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 197 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 198 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 199 [BPF_PROG_TYPE_XDP] = "xdp", 200 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 201 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 202 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 203 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 204 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 205 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 206 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 207 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 208 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 209 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 210 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 211 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 212 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 213 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 214 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 215 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 216 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 217 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 218 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 219 [BPF_PROG_TYPE_TRACING] = "tracing", 220 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 221 [BPF_PROG_TYPE_EXT] = "ext", 222 [BPF_PROG_TYPE_LSM] = "lsm", 223 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 224 [BPF_PROG_TYPE_SYSCALL] = "syscall", 225 [BPF_PROG_TYPE_NETFILTER] = "netfilter", 226 }; 227 228 static int __base_pr(enum libbpf_print_level level, const char *format, 229 va_list args) 230 { 231 if (level == LIBBPF_DEBUG) 232 return 0; 233 234 return vfprintf(stderr, format, args); 235 } 236 237 static libbpf_print_fn_t __libbpf_pr = __base_pr; 238 239 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 240 { 241 libbpf_print_fn_t old_print_fn; 242 243 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED); 244 245 return old_print_fn; 246 } 247 248 __printf(2, 3) 249 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 250 { 251 va_list args; 252 int old_errno; 253 libbpf_print_fn_t print_fn; 254 255 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED); 256 if (!print_fn) 257 return; 258 259 old_errno = errno; 260 261 va_start(args, format); 262 __libbpf_pr(level, format, args); 263 va_end(args); 264 265 errno = old_errno; 266 } 267 268 static void pr_perm_msg(int err) 269 { 270 struct rlimit limit; 271 char buf[100]; 272 273 if (err != -EPERM || geteuid() != 0) 274 return; 275 276 err = getrlimit(RLIMIT_MEMLOCK, &limit); 277 if (err) 278 return; 279 280 if (limit.rlim_cur == RLIM_INFINITY) 281 return; 282 283 if (limit.rlim_cur < 1024) 284 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 285 else if (limit.rlim_cur < 1024*1024) 286 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 287 else 288 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 289 290 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 291 buf); 292 } 293 294 #define STRERR_BUFSIZE 128 295 296 /* Copied from tools/perf/util/util.h */ 297 #ifndef zfree 298 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 299 #endif 300 301 #ifndef zclose 302 # define zclose(fd) ({ \ 303 int ___err = 0; \ 304 if ((fd) >= 0) \ 305 ___err = close((fd)); \ 306 fd = -1; \ 307 ___err; }) 308 #endif 309 310 static inline __u64 ptr_to_u64(const void *ptr) 311 { 312 return (__u64) (unsigned long) ptr; 313 } 314 315 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 316 { 317 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 318 return 0; 319 } 320 321 __u32 libbpf_major_version(void) 322 { 323 return LIBBPF_MAJOR_VERSION; 324 } 325 326 __u32 libbpf_minor_version(void) 327 { 328 return LIBBPF_MINOR_VERSION; 329 } 330 331 const char *libbpf_version_string(void) 332 { 333 #define __S(X) #X 334 #define _S(X) __S(X) 335 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 336 #undef _S 337 #undef __S 338 } 339 340 enum reloc_type { 341 RELO_LD64, 342 RELO_CALL, 343 RELO_DATA, 344 RELO_EXTERN_LD64, 345 RELO_EXTERN_CALL, 346 RELO_SUBPROG_ADDR, 347 RELO_CORE, 348 }; 349 350 struct reloc_desc { 351 enum reloc_type type; 352 int insn_idx; 353 union { 354 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 355 struct { 356 int map_idx; 357 int sym_off; 358 int ext_idx; 359 }; 360 }; 361 }; 362 363 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 364 enum sec_def_flags { 365 SEC_NONE = 0, 366 /* expected_attach_type is optional, if kernel doesn't support that */ 367 SEC_EXP_ATTACH_OPT = 1, 368 /* legacy, only used by libbpf_get_type_names() and 369 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 370 * This used to be associated with cgroup (and few other) BPF programs 371 * that were attachable through BPF_PROG_ATTACH command. Pretty 372 * meaningless nowadays, though. 373 */ 374 SEC_ATTACHABLE = 2, 375 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 376 /* attachment target is specified through BTF ID in either kernel or 377 * other BPF program's BTF object 378 */ 379 SEC_ATTACH_BTF = 4, 380 /* BPF program type allows sleeping/blocking in kernel */ 381 SEC_SLEEPABLE = 8, 382 /* BPF program support non-linear XDP buffer */ 383 SEC_XDP_FRAGS = 16, 384 /* Setup proper attach type for usdt probes. */ 385 SEC_USDT = 32, 386 }; 387 388 struct bpf_sec_def { 389 char *sec; 390 enum bpf_prog_type prog_type; 391 enum bpf_attach_type expected_attach_type; 392 long cookie; 393 int handler_id; 394 395 libbpf_prog_setup_fn_t prog_setup_fn; 396 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 397 libbpf_prog_attach_fn_t prog_attach_fn; 398 }; 399 400 /* 401 * bpf_prog should be a better name but it has been used in 402 * linux/filter.h. 403 */ 404 struct bpf_program { 405 char *name; 406 char *sec_name; 407 size_t sec_idx; 408 const struct bpf_sec_def *sec_def; 409 /* this program's instruction offset (in number of instructions) 410 * within its containing ELF section 411 */ 412 size_t sec_insn_off; 413 /* number of original instructions in ELF section belonging to this 414 * program, not taking into account subprogram instructions possible 415 * appended later during relocation 416 */ 417 size_t sec_insn_cnt; 418 /* Offset (in number of instructions) of the start of instruction 419 * belonging to this BPF program within its containing main BPF 420 * program. For the entry-point (main) BPF program, this is always 421 * zero. For a sub-program, this gets reset before each of main BPF 422 * programs are processed and relocated and is used to determined 423 * whether sub-program was already appended to the main program, and 424 * if yes, at which instruction offset. 425 */ 426 size_t sub_insn_off; 427 428 /* instructions that belong to BPF program; insns[0] is located at 429 * sec_insn_off instruction within its ELF section in ELF file, so 430 * when mapping ELF file instruction index to the local instruction, 431 * one needs to subtract sec_insn_off; and vice versa. 432 */ 433 struct bpf_insn *insns; 434 /* actual number of instruction in this BPF program's image; for 435 * entry-point BPF programs this includes the size of main program 436 * itself plus all the used sub-programs, appended at the end 437 */ 438 size_t insns_cnt; 439 440 struct reloc_desc *reloc_desc; 441 int nr_reloc; 442 443 /* BPF verifier log settings */ 444 char *log_buf; 445 size_t log_size; 446 __u32 log_level; 447 448 struct bpf_object *obj; 449 450 int fd; 451 bool autoload; 452 bool autoattach; 453 bool sym_global; 454 bool mark_btf_static; 455 enum bpf_prog_type type; 456 enum bpf_attach_type expected_attach_type; 457 int exception_cb_idx; 458 459 int prog_ifindex; 460 __u32 attach_btf_obj_fd; 461 __u32 attach_btf_id; 462 __u32 attach_prog_fd; 463 464 void *func_info; 465 __u32 func_info_rec_size; 466 __u32 func_info_cnt; 467 468 void *line_info; 469 __u32 line_info_rec_size; 470 __u32 line_info_cnt; 471 __u32 prog_flags; 472 }; 473 474 struct bpf_struct_ops { 475 const char *tname; 476 const struct btf_type *type; 477 struct bpf_program **progs; 478 __u32 *kern_func_off; 479 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 480 void *data; 481 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 482 * btf_vmlinux's format. 483 * struct bpf_struct_ops_tcp_congestion_ops { 484 * [... some other kernel fields ...] 485 * struct tcp_congestion_ops data; 486 * } 487 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 488 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 489 * from "data". 490 */ 491 void *kern_vdata; 492 __u32 type_id; 493 }; 494 495 #define DATA_SEC ".data" 496 #define BSS_SEC ".bss" 497 #define RODATA_SEC ".rodata" 498 #define KCONFIG_SEC ".kconfig" 499 #define KSYMS_SEC ".ksyms" 500 #define STRUCT_OPS_SEC ".struct_ops" 501 #define STRUCT_OPS_LINK_SEC ".struct_ops.link" 502 #define ARENA_SEC ".addr_space.1" 503 504 enum libbpf_map_type { 505 LIBBPF_MAP_UNSPEC, 506 LIBBPF_MAP_DATA, 507 LIBBPF_MAP_BSS, 508 LIBBPF_MAP_RODATA, 509 LIBBPF_MAP_KCONFIG, 510 }; 511 512 struct bpf_map_def { 513 unsigned int type; 514 unsigned int key_size; 515 unsigned int value_size; 516 unsigned int max_entries; 517 unsigned int map_flags; 518 }; 519 520 struct bpf_map { 521 struct bpf_object *obj; 522 char *name; 523 /* real_name is defined for special internal maps (.rodata*, 524 * .data*, .bss, .kconfig) and preserves their original ELF section 525 * name. This is important to be able to find corresponding BTF 526 * DATASEC information. 527 */ 528 char *real_name; 529 int fd; 530 int sec_idx; 531 size_t sec_offset; 532 int map_ifindex; 533 int inner_map_fd; 534 struct bpf_map_def def; 535 __u32 numa_node; 536 __u32 btf_var_idx; 537 int mod_btf_fd; 538 __u32 btf_key_type_id; 539 __u32 btf_value_type_id; 540 __u32 btf_vmlinux_value_type_id; 541 enum libbpf_map_type libbpf_type; 542 void *mmaped; 543 struct bpf_struct_ops *st_ops; 544 struct bpf_map *inner_map; 545 void **init_slots; 546 int init_slots_sz; 547 char *pin_path; 548 bool pinned; 549 bool reused; 550 bool autocreate; 551 __u64 map_extra; 552 }; 553 554 enum extern_type { 555 EXT_UNKNOWN, 556 EXT_KCFG, 557 EXT_KSYM, 558 }; 559 560 enum kcfg_type { 561 KCFG_UNKNOWN, 562 KCFG_CHAR, 563 KCFG_BOOL, 564 KCFG_INT, 565 KCFG_TRISTATE, 566 KCFG_CHAR_ARR, 567 }; 568 569 struct extern_desc { 570 enum extern_type type; 571 int sym_idx; 572 int btf_id; 573 int sec_btf_id; 574 const char *name; 575 char *essent_name; 576 bool is_set; 577 bool is_weak; 578 union { 579 struct { 580 enum kcfg_type type; 581 int sz; 582 int align; 583 int data_off; 584 bool is_signed; 585 } kcfg; 586 struct { 587 unsigned long long addr; 588 589 /* target btf_id of the corresponding kernel var. */ 590 int kernel_btf_obj_fd; 591 int kernel_btf_id; 592 593 /* local btf_id of the ksym extern's type. */ 594 __u32 type_id; 595 /* BTF fd index to be patched in for insn->off, this is 596 * 0 for vmlinux BTF, index in obj->fd_array for module 597 * BTF 598 */ 599 __s16 btf_fd_idx; 600 } ksym; 601 }; 602 }; 603 604 struct module_btf { 605 struct btf *btf; 606 char *name; 607 __u32 id; 608 int fd; 609 int fd_array_idx; 610 }; 611 612 enum sec_type { 613 SEC_UNUSED = 0, 614 SEC_RELO, 615 SEC_BSS, 616 SEC_DATA, 617 SEC_RODATA, 618 SEC_ST_OPS, 619 }; 620 621 struct elf_sec_desc { 622 enum sec_type sec_type; 623 Elf64_Shdr *shdr; 624 Elf_Data *data; 625 }; 626 627 struct elf_state { 628 int fd; 629 const void *obj_buf; 630 size_t obj_buf_sz; 631 Elf *elf; 632 Elf64_Ehdr *ehdr; 633 Elf_Data *symbols; 634 Elf_Data *arena_data; 635 size_t shstrndx; /* section index for section name strings */ 636 size_t strtabidx; 637 struct elf_sec_desc *secs; 638 size_t sec_cnt; 639 int btf_maps_shndx; 640 __u32 btf_maps_sec_btf_id; 641 int text_shndx; 642 int symbols_shndx; 643 bool has_st_ops; 644 int arena_data_shndx; 645 }; 646 647 struct usdt_manager; 648 649 struct bpf_object { 650 char name[BPF_OBJ_NAME_LEN]; 651 char license[64]; 652 __u32 kern_version; 653 654 struct bpf_program *programs; 655 size_t nr_programs; 656 struct bpf_map *maps; 657 size_t nr_maps; 658 size_t maps_cap; 659 660 char *kconfig; 661 struct extern_desc *externs; 662 int nr_extern; 663 int kconfig_map_idx; 664 665 bool loaded; 666 bool has_subcalls; 667 bool has_rodata; 668 669 struct bpf_gen *gen_loader; 670 671 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 672 struct elf_state efile; 673 674 struct btf *btf; 675 struct btf_ext *btf_ext; 676 677 /* Parse and load BTF vmlinux if any of the programs in the object need 678 * it at load time. 679 */ 680 struct btf *btf_vmlinux; 681 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 682 * override for vmlinux BTF. 683 */ 684 char *btf_custom_path; 685 /* vmlinux BTF override for CO-RE relocations */ 686 struct btf *btf_vmlinux_override; 687 /* Lazily initialized kernel module BTFs */ 688 struct module_btf *btf_modules; 689 bool btf_modules_loaded; 690 size_t btf_module_cnt; 691 size_t btf_module_cap; 692 693 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 694 char *log_buf; 695 size_t log_size; 696 __u32 log_level; 697 698 int *fd_array; 699 size_t fd_array_cap; 700 size_t fd_array_cnt; 701 702 struct usdt_manager *usdt_man; 703 704 struct bpf_map *arena_map; 705 void *arena_data; 706 size_t arena_data_sz; 707 708 struct kern_feature_cache *feat_cache; 709 char *token_path; 710 int token_fd; 711 712 char path[]; 713 }; 714 715 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 716 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 717 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 718 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 719 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 720 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 721 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 722 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 723 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 724 725 void bpf_program__unload(struct bpf_program *prog) 726 { 727 if (!prog) 728 return; 729 730 zclose(prog->fd); 731 732 zfree(&prog->func_info); 733 zfree(&prog->line_info); 734 } 735 736 static void bpf_program__exit(struct bpf_program *prog) 737 { 738 if (!prog) 739 return; 740 741 bpf_program__unload(prog); 742 zfree(&prog->name); 743 zfree(&prog->sec_name); 744 zfree(&prog->insns); 745 zfree(&prog->reloc_desc); 746 747 prog->nr_reloc = 0; 748 prog->insns_cnt = 0; 749 prog->sec_idx = -1; 750 } 751 752 static bool insn_is_subprog_call(const struct bpf_insn *insn) 753 { 754 return BPF_CLASS(insn->code) == BPF_JMP && 755 BPF_OP(insn->code) == BPF_CALL && 756 BPF_SRC(insn->code) == BPF_K && 757 insn->src_reg == BPF_PSEUDO_CALL && 758 insn->dst_reg == 0 && 759 insn->off == 0; 760 } 761 762 static bool is_call_insn(const struct bpf_insn *insn) 763 { 764 return insn->code == (BPF_JMP | BPF_CALL); 765 } 766 767 static bool insn_is_pseudo_func(struct bpf_insn *insn) 768 { 769 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 770 } 771 772 static int 773 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 774 const char *name, size_t sec_idx, const char *sec_name, 775 size_t sec_off, void *insn_data, size_t insn_data_sz) 776 { 777 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 778 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 779 sec_name, name, sec_off, insn_data_sz); 780 return -EINVAL; 781 } 782 783 memset(prog, 0, sizeof(*prog)); 784 prog->obj = obj; 785 786 prog->sec_idx = sec_idx; 787 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 788 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 789 /* insns_cnt can later be increased by appending used subprograms */ 790 prog->insns_cnt = prog->sec_insn_cnt; 791 792 prog->type = BPF_PROG_TYPE_UNSPEC; 793 prog->fd = -1; 794 prog->exception_cb_idx = -1; 795 796 /* libbpf's convention for SEC("?abc...") is that it's just like 797 * SEC("abc...") but the corresponding bpf_program starts out with 798 * autoload set to false. 799 */ 800 if (sec_name[0] == '?') { 801 prog->autoload = false; 802 /* from now on forget there was ? in section name */ 803 sec_name++; 804 } else { 805 prog->autoload = true; 806 } 807 808 prog->autoattach = true; 809 810 /* inherit object's log_level */ 811 prog->log_level = obj->log_level; 812 813 prog->sec_name = strdup(sec_name); 814 if (!prog->sec_name) 815 goto errout; 816 817 prog->name = strdup(name); 818 if (!prog->name) 819 goto errout; 820 821 prog->insns = malloc(insn_data_sz); 822 if (!prog->insns) 823 goto errout; 824 memcpy(prog->insns, insn_data, insn_data_sz); 825 826 return 0; 827 errout: 828 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 829 bpf_program__exit(prog); 830 return -ENOMEM; 831 } 832 833 static int 834 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 835 const char *sec_name, int sec_idx) 836 { 837 Elf_Data *symbols = obj->efile.symbols; 838 struct bpf_program *prog, *progs; 839 void *data = sec_data->d_buf; 840 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 841 int nr_progs, err, i; 842 const char *name; 843 Elf64_Sym *sym; 844 845 progs = obj->programs; 846 nr_progs = obj->nr_programs; 847 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 848 849 for (i = 0; i < nr_syms; i++) { 850 sym = elf_sym_by_idx(obj, i); 851 852 if (sym->st_shndx != sec_idx) 853 continue; 854 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 855 continue; 856 857 prog_sz = sym->st_size; 858 sec_off = sym->st_value; 859 860 name = elf_sym_str(obj, sym->st_name); 861 if (!name) { 862 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 863 sec_name, sec_off); 864 return -LIBBPF_ERRNO__FORMAT; 865 } 866 867 if (sec_off + prog_sz > sec_sz) { 868 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 869 sec_name, sec_off); 870 return -LIBBPF_ERRNO__FORMAT; 871 } 872 873 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 874 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 875 return -ENOTSUP; 876 } 877 878 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 879 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 880 881 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 882 if (!progs) { 883 /* 884 * In this case the original obj->programs 885 * is still valid, so don't need special treat for 886 * bpf_close_object(). 887 */ 888 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 889 sec_name, name); 890 return -ENOMEM; 891 } 892 obj->programs = progs; 893 894 prog = &progs[nr_progs]; 895 896 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 897 sec_off, data + sec_off, prog_sz); 898 if (err) 899 return err; 900 901 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL) 902 prog->sym_global = true; 903 904 /* if function is a global/weak symbol, but has restricted 905 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 906 * as static to enable more permissive BPF verification mode 907 * with more outside context available to BPF verifier 908 */ 909 if (prog->sym_global && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 910 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 911 prog->mark_btf_static = true; 912 913 nr_progs++; 914 obj->nr_programs = nr_progs; 915 } 916 917 return 0; 918 } 919 920 static const struct btf_member * 921 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 922 { 923 struct btf_member *m; 924 int i; 925 926 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 927 if (btf_member_bit_offset(t, i) == bit_offset) 928 return m; 929 } 930 931 return NULL; 932 } 933 934 static const struct btf_member * 935 find_member_by_name(const struct btf *btf, const struct btf_type *t, 936 const char *name) 937 { 938 struct btf_member *m; 939 int i; 940 941 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 942 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 943 return m; 944 } 945 946 return NULL; 947 } 948 949 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 950 __u16 kind, struct btf **res_btf, 951 struct module_btf **res_mod_btf); 952 953 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 954 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 955 const char *name, __u32 kind); 956 957 static int 958 find_struct_ops_kern_types(struct bpf_object *obj, const char *tname_raw, 959 struct module_btf **mod_btf, 960 const struct btf_type **type, __u32 *type_id, 961 const struct btf_type **vtype, __u32 *vtype_id, 962 const struct btf_member **data_member) 963 { 964 const struct btf_type *kern_type, *kern_vtype; 965 const struct btf_member *kern_data_member; 966 struct btf *btf; 967 __s32 kern_vtype_id, kern_type_id; 968 char tname[256]; 969 __u32 i; 970 971 snprintf(tname, sizeof(tname), "%.*s", 972 (int)bpf_core_essential_name_len(tname_raw), tname_raw); 973 974 kern_type_id = find_ksym_btf_id(obj, tname, BTF_KIND_STRUCT, 975 &btf, mod_btf); 976 if (kern_type_id < 0) { 977 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 978 tname); 979 return kern_type_id; 980 } 981 kern_type = btf__type_by_id(btf, kern_type_id); 982 983 /* Find the corresponding "map_value" type that will be used 984 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 985 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 986 * btf_vmlinux. 987 */ 988 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 989 tname, BTF_KIND_STRUCT); 990 if (kern_vtype_id < 0) { 991 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 992 STRUCT_OPS_VALUE_PREFIX, tname); 993 return kern_vtype_id; 994 } 995 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 996 997 /* Find "struct tcp_congestion_ops" from 998 * struct bpf_struct_ops_tcp_congestion_ops { 999 * [ ... ] 1000 * struct tcp_congestion_ops data; 1001 * } 1002 */ 1003 kern_data_member = btf_members(kern_vtype); 1004 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 1005 if (kern_data_member->type == kern_type_id) 1006 break; 1007 } 1008 if (i == btf_vlen(kern_vtype)) { 1009 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 1010 tname, STRUCT_OPS_VALUE_PREFIX, tname); 1011 return -EINVAL; 1012 } 1013 1014 *type = kern_type; 1015 *type_id = kern_type_id; 1016 *vtype = kern_vtype; 1017 *vtype_id = kern_vtype_id; 1018 *data_member = kern_data_member; 1019 1020 return 0; 1021 } 1022 1023 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1024 { 1025 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1026 } 1027 1028 static bool is_valid_st_ops_program(struct bpf_object *obj, 1029 const struct bpf_program *prog) 1030 { 1031 int i; 1032 1033 for (i = 0; i < obj->nr_programs; i++) { 1034 if (&obj->programs[i] == prog) 1035 return prog->type == BPF_PROG_TYPE_STRUCT_OPS; 1036 } 1037 1038 return false; 1039 } 1040 1041 /* For each struct_ops program P, referenced from some struct_ops map M, 1042 * enable P.autoload if there are Ms for which M.autocreate is true, 1043 * disable P.autoload if for all Ms M.autocreate is false. 1044 * Don't change P.autoload for programs that are not referenced from any maps. 1045 */ 1046 static int bpf_object_adjust_struct_ops_autoload(struct bpf_object *obj) 1047 { 1048 struct bpf_program *prog, *slot_prog; 1049 struct bpf_map *map; 1050 int i, j, k, vlen; 1051 1052 for (i = 0; i < obj->nr_programs; ++i) { 1053 int should_load = false; 1054 int use_cnt = 0; 1055 1056 prog = &obj->programs[i]; 1057 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) 1058 continue; 1059 1060 for (j = 0; j < obj->nr_maps; ++j) { 1061 map = &obj->maps[j]; 1062 if (!bpf_map__is_struct_ops(map)) 1063 continue; 1064 1065 vlen = btf_vlen(map->st_ops->type); 1066 for (k = 0; k < vlen; ++k) { 1067 slot_prog = map->st_ops->progs[k]; 1068 if (prog != slot_prog) 1069 continue; 1070 1071 use_cnt++; 1072 if (map->autocreate) 1073 should_load = true; 1074 } 1075 } 1076 if (use_cnt) 1077 prog->autoload = should_load; 1078 } 1079 1080 return 0; 1081 } 1082 1083 /* Init the map's fields that depend on kern_btf */ 1084 static int bpf_map__init_kern_struct_ops(struct bpf_map *map) 1085 { 1086 const struct btf_member *member, *kern_member, *kern_data_member; 1087 const struct btf_type *type, *kern_type, *kern_vtype; 1088 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1089 struct bpf_object *obj = map->obj; 1090 const struct btf *btf = obj->btf; 1091 struct bpf_struct_ops *st_ops; 1092 const struct btf *kern_btf; 1093 struct module_btf *mod_btf; 1094 void *data, *kern_data; 1095 const char *tname; 1096 int err; 1097 1098 st_ops = map->st_ops; 1099 type = st_ops->type; 1100 tname = st_ops->tname; 1101 err = find_struct_ops_kern_types(obj, tname, &mod_btf, 1102 &kern_type, &kern_type_id, 1103 &kern_vtype, &kern_vtype_id, 1104 &kern_data_member); 1105 if (err) 1106 return err; 1107 1108 kern_btf = mod_btf ? mod_btf->btf : obj->btf_vmlinux; 1109 1110 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1111 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1112 1113 map->mod_btf_fd = mod_btf ? mod_btf->fd : -1; 1114 map->def.value_size = kern_vtype->size; 1115 map->btf_vmlinux_value_type_id = kern_vtype_id; 1116 1117 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1118 if (!st_ops->kern_vdata) 1119 return -ENOMEM; 1120 1121 data = st_ops->data; 1122 kern_data_off = kern_data_member->offset / 8; 1123 kern_data = st_ops->kern_vdata + kern_data_off; 1124 1125 member = btf_members(type); 1126 for (i = 0; i < btf_vlen(type); i++, member++) { 1127 const struct btf_type *mtype, *kern_mtype; 1128 __u32 mtype_id, kern_mtype_id; 1129 void *mdata, *kern_mdata; 1130 __s64 msize, kern_msize; 1131 __u32 moff, kern_moff; 1132 __u32 kern_member_idx; 1133 const char *mname; 1134 1135 mname = btf__name_by_offset(btf, member->name_off); 1136 moff = member->offset / 8; 1137 mdata = data + moff; 1138 msize = btf__resolve_size(btf, member->type); 1139 if (msize < 0) { 1140 pr_warn("struct_ops init_kern %s: failed to resolve the size of member %s\n", 1141 map->name, mname); 1142 return msize; 1143 } 1144 1145 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1146 if (!kern_member) { 1147 /* Skip all zeros or null fields if they are not 1148 * presented in the kernel BTF. 1149 */ 1150 if (libbpf_is_mem_zeroed(mdata, msize)) { 1151 pr_info("struct_ops %s: member %s not found in kernel, skipping it as it's set to zero\n", 1152 map->name, mname); 1153 continue; 1154 } 1155 1156 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1157 map->name, mname); 1158 return -ENOTSUP; 1159 } 1160 1161 kern_member_idx = kern_member - btf_members(kern_type); 1162 if (btf_member_bitfield_size(type, i) || 1163 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1164 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1165 map->name, mname); 1166 return -ENOTSUP; 1167 } 1168 1169 kern_moff = kern_member->offset / 8; 1170 kern_mdata = kern_data + kern_moff; 1171 1172 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1173 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1174 &kern_mtype_id); 1175 if (BTF_INFO_KIND(mtype->info) != 1176 BTF_INFO_KIND(kern_mtype->info)) { 1177 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1178 map->name, mname, BTF_INFO_KIND(mtype->info), 1179 BTF_INFO_KIND(kern_mtype->info)); 1180 return -ENOTSUP; 1181 } 1182 1183 if (btf_is_ptr(mtype)) { 1184 struct bpf_program *prog; 1185 1186 /* Update the value from the shadow type */ 1187 prog = *(void **)mdata; 1188 st_ops->progs[i] = prog; 1189 if (!prog) 1190 continue; 1191 if (!is_valid_st_ops_program(obj, prog)) { 1192 pr_warn("struct_ops init_kern %s: member %s is not a struct_ops program\n", 1193 map->name, mname); 1194 return -ENOTSUP; 1195 } 1196 1197 kern_mtype = skip_mods_and_typedefs(kern_btf, 1198 kern_mtype->type, 1199 &kern_mtype_id); 1200 1201 /* mtype->type must be a func_proto which was 1202 * guaranteed in bpf_object__collect_st_ops_relos(), 1203 * so only check kern_mtype for func_proto here. 1204 */ 1205 if (!btf_is_func_proto(kern_mtype)) { 1206 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1207 map->name, mname); 1208 return -ENOTSUP; 1209 } 1210 1211 if (mod_btf) 1212 prog->attach_btf_obj_fd = mod_btf->fd; 1213 1214 /* if we haven't yet processed this BPF program, record proper 1215 * attach_btf_id and member_idx 1216 */ 1217 if (!prog->attach_btf_id) { 1218 prog->attach_btf_id = kern_type_id; 1219 prog->expected_attach_type = kern_member_idx; 1220 } 1221 1222 /* struct_ops BPF prog can be re-used between multiple 1223 * .struct_ops & .struct_ops.link as long as it's the 1224 * same struct_ops struct definition and the same 1225 * function pointer field 1226 */ 1227 if (prog->attach_btf_id != kern_type_id) { 1228 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: attach_btf_id %u != kern_type_id %u\n", 1229 map->name, mname, prog->name, prog->sec_name, prog->type, 1230 prog->attach_btf_id, kern_type_id); 1231 return -EINVAL; 1232 } 1233 if (prog->expected_attach_type != kern_member_idx) { 1234 pr_warn("struct_ops init_kern %s func ptr %s: invalid reuse of prog %s in sec %s with type %u: expected_attach_type %u != kern_member_idx %u\n", 1235 map->name, mname, prog->name, prog->sec_name, prog->type, 1236 prog->expected_attach_type, kern_member_idx); 1237 return -EINVAL; 1238 } 1239 1240 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1241 1242 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1243 map->name, mname, prog->name, moff, 1244 kern_moff); 1245 1246 continue; 1247 } 1248 1249 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1250 if (kern_msize < 0 || msize != kern_msize) { 1251 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1252 map->name, mname, (ssize_t)msize, 1253 (ssize_t)kern_msize); 1254 return -ENOTSUP; 1255 } 1256 1257 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1258 map->name, mname, (unsigned int)msize, 1259 moff, kern_moff); 1260 memcpy(kern_mdata, mdata, msize); 1261 } 1262 1263 return 0; 1264 } 1265 1266 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1267 { 1268 struct bpf_map *map; 1269 size_t i; 1270 int err; 1271 1272 for (i = 0; i < obj->nr_maps; i++) { 1273 map = &obj->maps[i]; 1274 1275 if (!bpf_map__is_struct_ops(map)) 1276 continue; 1277 1278 if (!map->autocreate) 1279 continue; 1280 1281 err = bpf_map__init_kern_struct_ops(map); 1282 if (err) 1283 return err; 1284 } 1285 1286 return 0; 1287 } 1288 1289 static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name, 1290 int shndx, Elf_Data *data) 1291 { 1292 const struct btf_type *type, *datasec; 1293 const struct btf_var_secinfo *vsi; 1294 struct bpf_struct_ops *st_ops; 1295 const char *tname, *var_name; 1296 __s32 type_id, datasec_id; 1297 const struct btf *btf; 1298 struct bpf_map *map; 1299 __u32 i; 1300 1301 if (shndx == -1) 1302 return 0; 1303 1304 btf = obj->btf; 1305 datasec_id = btf__find_by_name_kind(btf, sec_name, 1306 BTF_KIND_DATASEC); 1307 if (datasec_id < 0) { 1308 pr_warn("struct_ops init: DATASEC %s not found\n", 1309 sec_name); 1310 return -EINVAL; 1311 } 1312 1313 datasec = btf__type_by_id(btf, datasec_id); 1314 vsi = btf_var_secinfos(datasec); 1315 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1316 type = btf__type_by_id(obj->btf, vsi->type); 1317 var_name = btf__name_by_offset(obj->btf, type->name_off); 1318 1319 type_id = btf__resolve_type(obj->btf, vsi->type); 1320 if (type_id < 0) { 1321 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1322 vsi->type, sec_name); 1323 return -EINVAL; 1324 } 1325 1326 type = btf__type_by_id(obj->btf, type_id); 1327 tname = btf__name_by_offset(obj->btf, type->name_off); 1328 if (!tname[0]) { 1329 pr_warn("struct_ops init: anonymous type is not supported\n"); 1330 return -ENOTSUP; 1331 } 1332 if (!btf_is_struct(type)) { 1333 pr_warn("struct_ops init: %s is not a struct\n", tname); 1334 return -EINVAL; 1335 } 1336 1337 map = bpf_object__add_map(obj); 1338 if (IS_ERR(map)) 1339 return PTR_ERR(map); 1340 1341 map->sec_idx = shndx; 1342 map->sec_offset = vsi->offset; 1343 map->name = strdup(var_name); 1344 if (!map->name) 1345 return -ENOMEM; 1346 map->btf_value_type_id = type_id; 1347 1348 /* Follow same convention as for programs autoload: 1349 * SEC("?.struct_ops") means map is not created by default. 1350 */ 1351 if (sec_name[0] == '?') { 1352 map->autocreate = false; 1353 /* from now on forget there was ? in section name */ 1354 sec_name++; 1355 } 1356 1357 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1358 map->def.key_size = sizeof(int); 1359 map->def.value_size = type->size; 1360 map->def.max_entries = 1; 1361 map->def.map_flags = strcmp(sec_name, STRUCT_OPS_LINK_SEC) == 0 ? BPF_F_LINK : 0; 1362 1363 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1364 if (!map->st_ops) 1365 return -ENOMEM; 1366 st_ops = map->st_ops; 1367 st_ops->data = malloc(type->size); 1368 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1369 st_ops->kern_func_off = malloc(btf_vlen(type) * 1370 sizeof(*st_ops->kern_func_off)); 1371 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1372 return -ENOMEM; 1373 1374 if (vsi->offset + type->size > data->d_size) { 1375 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1376 var_name, sec_name); 1377 return -EINVAL; 1378 } 1379 1380 memcpy(st_ops->data, 1381 data->d_buf + vsi->offset, 1382 type->size); 1383 st_ops->tname = tname; 1384 st_ops->type = type; 1385 st_ops->type_id = type_id; 1386 1387 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1388 tname, type_id, var_name, vsi->offset); 1389 } 1390 1391 return 0; 1392 } 1393 1394 static int bpf_object_init_struct_ops(struct bpf_object *obj) 1395 { 1396 const char *sec_name; 1397 int sec_idx, err; 1398 1399 for (sec_idx = 0; sec_idx < obj->efile.sec_cnt; ++sec_idx) { 1400 struct elf_sec_desc *desc = &obj->efile.secs[sec_idx]; 1401 1402 if (desc->sec_type != SEC_ST_OPS) 1403 continue; 1404 1405 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1406 if (!sec_name) 1407 return -LIBBPF_ERRNO__FORMAT; 1408 1409 err = init_struct_ops_maps(obj, sec_name, sec_idx, desc->data); 1410 if (err) 1411 return err; 1412 } 1413 1414 return 0; 1415 } 1416 1417 static struct bpf_object *bpf_object__new(const char *path, 1418 const void *obj_buf, 1419 size_t obj_buf_sz, 1420 const char *obj_name) 1421 { 1422 struct bpf_object *obj; 1423 char *end; 1424 1425 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1426 if (!obj) { 1427 pr_warn("alloc memory failed for %s\n", path); 1428 return ERR_PTR(-ENOMEM); 1429 } 1430 1431 strcpy(obj->path, path); 1432 if (obj_name) { 1433 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1434 } else { 1435 /* Using basename() GNU version which doesn't modify arg. */ 1436 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1437 end = strchr(obj->name, '.'); 1438 if (end) 1439 *end = 0; 1440 } 1441 1442 obj->efile.fd = -1; 1443 /* 1444 * Caller of this function should also call 1445 * bpf_object__elf_finish() after data collection to return 1446 * obj_buf to user. If not, we should duplicate the buffer to 1447 * avoid user freeing them before elf finish. 1448 */ 1449 obj->efile.obj_buf = obj_buf; 1450 obj->efile.obj_buf_sz = obj_buf_sz; 1451 obj->efile.btf_maps_shndx = -1; 1452 obj->kconfig_map_idx = -1; 1453 1454 obj->kern_version = get_kernel_version(); 1455 obj->loaded = false; 1456 1457 return obj; 1458 } 1459 1460 static void bpf_object__elf_finish(struct bpf_object *obj) 1461 { 1462 if (!obj->efile.elf) 1463 return; 1464 1465 elf_end(obj->efile.elf); 1466 obj->efile.elf = NULL; 1467 obj->efile.symbols = NULL; 1468 obj->efile.arena_data = NULL; 1469 1470 zfree(&obj->efile.secs); 1471 obj->efile.sec_cnt = 0; 1472 zclose(obj->efile.fd); 1473 obj->efile.obj_buf = NULL; 1474 obj->efile.obj_buf_sz = 0; 1475 } 1476 1477 static int bpf_object__elf_init(struct bpf_object *obj) 1478 { 1479 Elf64_Ehdr *ehdr; 1480 int err = 0; 1481 Elf *elf; 1482 1483 if (obj->efile.elf) { 1484 pr_warn("elf: init internal error\n"); 1485 return -LIBBPF_ERRNO__LIBELF; 1486 } 1487 1488 if (obj->efile.obj_buf_sz > 0) { 1489 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1490 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1491 } else { 1492 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1493 if (obj->efile.fd < 0) { 1494 char errmsg[STRERR_BUFSIZE], *cp; 1495 1496 err = -errno; 1497 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1498 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1499 return err; 1500 } 1501 1502 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1503 } 1504 1505 if (!elf) { 1506 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1507 err = -LIBBPF_ERRNO__LIBELF; 1508 goto errout; 1509 } 1510 1511 obj->efile.elf = elf; 1512 1513 if (elf_kind(elf) != ELF_K_ELF) { 1514 err = -LIBBPF_ERRNO__FORMAT; 1515 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1516 goto errout; 1517 } 1518 1519 if (gelf_getclass(elf) != ELFCLASS64) { 1520 err = -LIBBPF_ERRNO__FORMAT; 1521 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1522 goto errout; 1523 } 1524 1525 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1526 if (!obj->efile.ehdr) { 1527 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1528 err = -LIBBPF_ERRNO__FORMAT; 1529 goto errout; 1530 } 1531 1532 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1533 pr_warn("elf: failed to get section names section index for %s: %s\n", 1534 obj->path, elf_errmsg(-1)); 1535 err = -LIBBPF_ERRNO__FORMAT; 1536 goto errout; 1537 } 1538 1539 /* ELF is corrupted/truncated, avoid calling elf_strptr. */ 1540 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1541 pr_warn("elf: failed to get section names strings from %s: %s\n", 1542 obj->path, elf_errmsg(-1)); 1543 err = -LIBBPF_ERRNO__FORMAT; 1544 goto errout; 1545 } 1546 1547 /* Old LLVM set e_machine to EM_NONE */ 1548 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1549 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1550 err = -LIBBPF_ERRNO__FORMAT; 1551 goto errout; 1552 } 1553 1554 return 0; 1555 errout: 1556 bpf_object__elf_finish(obj); 1557 return err; 1558 } 1559 1560 static int bpf_object__check_endianness(struct bpf_object *obj) 1561 { 1562 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1563 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1564 return 0; 1565 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1566 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1567 return 0; 1568 #else 1569 # error "Unrecognized __BYTE_ORDER__" 1570 #endif 1571 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1572 return -LIBBPF_ERRNO__ENDIAN; 1573 } 1574 1575 static int 1576 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1577 { 1578 if (!data) { 1579 pr_warn("invalid license section in %s\n", obj->path); 1580 return -LIBBPF_ERRNO__FORMAT; 1581 } 1582 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1583 * go over allowed ELF data section buffer 1584 */ 1585 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1586 pr_debug("license of %s is %s\n", obj->path, obj->license); 1587 return 0; 1588 } 1589 1590 static int 1591 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1592 { 1593 __u32 kver; 1594 1595 if (!data || size != sizeof(kver)) { 1596 pr_warn("invalid kver section in %s\n", obj->path); 1597 return -LIBBPF_ERRNO__FORMAT; 1598 } 1599 memcpy(&kver, data, sizeof(kver)); 1600 obj->kern_version = kver; 1601 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1602 return 0; 1603 } 1604 1605 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1606 { 1607 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1608 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1609 return true; 1610 return false; 1611 } 1612 1613 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1614 { 1615 Elf_Data *data; 1616 Elf_Scn *scn; 1617 1618 if (!name) 1619 return -EINVAL; 1620 1621 scn = elf_sec_by_name(obj, name); 1622 data = elf_sec_data(obj, scn); 1623 if (data) { 1624 *size = data->d_size; 1625 return 0; /* found it */ 1626 } 1627 1628 return -ENOENT; 1629 } 1630 1631 static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name) 1632 { 1633 Elf_Data *symbols = obj->efile.symbols; 1634 const char *sname; 1635 size_t si; 1636 1637 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1638 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1639 1640 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1641 continue; 1642 1643 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1644 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1645 continue; 1646 1647 sname = elf_sym_str(obj, sym->st_name); 1648 if (!sname) { 1649 pr_warn("failed to get sym name string for var %s\n", name); 1650 return ERR_PTR(-EIO); 1651 } 1652 if (strcmp(name, sname) == 0) 1653 return sym; 1654 } 1655 1656 return ERR_PTR(-ENOENT); 1657 } 1658 1659 /* Some versions of Android don't provide memfd_create() in their libc 1660 * implementation, so avoid complications and just go straight to Linux 1661 * syscall. 1662 */ 1663 static int sys_memfd_create(const char *name, unsigned flags) 1664 { 1665 return syscall(__NR_memfd_create, name, flags); 1666 } 1667 1668 #ifndef MFD_CLOEXEC 1669 #define MFD_CLOEXEC 0x0001U 1670 #endif 1671 1672 static int create_placeholder_fd(void) 1673 { 1674 int fd; 1675 1676 fd = ensure_good_fd(sys_memfd_create("libbpf-placeholder-fd", MFD_CLOEXEC)); 1677 if (fd < 0) 1678 return -errno; 1679 return fd; 1680 } 1681 1682 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1683 { 1684 struct bpf_map *map; 1685 int err; 1686 1687 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1688 sizeof(*obj->maps), obj->nr_maps + 1); 1689 if (err) 1690 return ERR_PTR(err); 1691 1692 map = &obj->maps[obj->nr_maps++]; 1693 map->obj = obj; 1694 /* Preallocate map FD without actually creating BPF map just yet. 1695 * These map FD "placeholders" will be reused later without changing 1696 * FD value when map is actually created in the kernel. 1697 * 1698 * This is useful to be able to perform BPF program relocations 1699 * without having to create BPF maps before that step. This allows us 1700 * to finalize and load BTF very late in BPF object's loading phase, 1701 * right before BPF maps have to be created and BPF programs have to 1702 * be loaded. By having these map FD placeholders we can perform all 1703 * the sanitizations, relocations, and any other adjustments before we 1704 * start creating actual BPF kernel objects (BTF, maps, progs). 1705 */ 1706 map->fd = create_placeholder_fd(); 1707 if (map->fd < 0) 1708 return ERR_PTR(map->fd); 1709 map->inner_map_fd = -1; 1710 map->autocreate = true; 1711 1712 return map; 1713 } 1714 1715 static size_t array_map_mmap_sz(unsigned int value_sz, unsigned int max_entries) 1716 { 1717 const long page_sz = sysconf(_SC_PAGE_SIZE); 1718 size_t map_sz; 1719 1720 map_sz = (size_t)roundup(value_sz, 8) * max_entries; 1721 map_sz = roundup(map_sz, page_sz); 1722 return map_sz; 1723 } 1724 1725 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1726 { 1727 const long page_sz = sysconf(_SC_PAGE_SIZE); 1728 1729 switch (map->def.type) { 1730 case BPF_MAP_TYPE_ARRAY: 1731 return array_map_mmap_sz(map->def.value_size, map->def.max_entries); 1732 case BPF_MAP_TYPE_ARENA: 1733 return page_sz * map->def.max_entries; 1734 default: 1735 return 0; /* not supported */ 1736 } 1737 } 1738 1739 static int bpf_map_mmap_resize(struct bpf_map *map, size_t old_sz, size_t new_sz) 1740 { 1741 void *mmaped; 1742 1743 if (!map->mmaped) 1744 return -EINVAL; 1745 1746 if (old_sz == new_sz) 1747 return 0; 1748 1749 mmaped = mmap(NULL, new_sz, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1750 if (mmaped == MAP_FAILED) 1751 return -errno; 1752 1753 memcpy(mmaped, map->mmaped, min(old_sz, new_sz)); 1754 munmap(map->mmaped, old_sz); 1755 map->mmaped = mmaped; 1756 return 0; 1757 } 1758 1759 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1760 { 1761 char map_name[BPF_OBJ_NAME_LEN], *p; 1762 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1763 1764 /* This is one of the more confusing parts of libbpf for various 1765 * reasons, some of which are historical. The original idea for naming 1766 * internal names was to include as much of BPF object name prefix as 1767 * possible, so that it can be distinguished from similar internal 1768 * maps of a different BPF object. 1769 * As an example, let's say we have bpf_object named 'my_object_name' 1770 * and internal map corresponding to '.rodata' ELF section. The final 1771 * map name advertised to user and to the kernel will be 1772 * 'my_objec.rodata', taking first 8 characters of object name and 1773 * entire 7 characters of '.rodata'. 1774 * Somewhat confusingly, if internal map ELF section name is shorter 1775 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1776 * for the suffix, even though we only have 4 actual characters, and 1777 * resulting map will be called 'my_objec.bss', not even using all 15 1778 * characters allowed by the kernel. Oh well, at least the truncated 1779 * object name is somewhat consistent in this case. But if the map 1780 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1781 * (8 chars) and thus will be left with only first 7 characters of the 1782 * object name ('my_obje'). Happy guessing, user, that the final map 1783 * name will be "my_obje.kconfig". 1784 * Now, with libbpf starting to support arbitrarily named .rodata.* 1785 * and .data.* data sections, it's possible that ELF section name is 1786 * longer than allowed 15 chars, so we now need to be careful to take 1787 * only up to 15 first characters of ELF name, taking no BPF object 1788 * name characters at all. So '.rodata.abracadabra' will result in 1789 * '.rodata.abracad' kernel and user-visible name. 1790 * We need to keep this convoluted logic intact for .data, .bss and 1791 * .rodata maps, but for new custom .data.custom and .rodata.custom 1792 * maps we use their ELF names as is, not prepending bpf_object name 1793 * in front. We still need to truncate them to 15 characters for the 1794 * kernel. Full name can be recovered for such maps by using DATASEC 1795 * BTF type associated with such map's value type, though. 1796 */ 1797 if (sfx_len >= BPF_OBJ_NAME_LEN) 1798 sfx_len = BPF_OBJ_NAME_LEN - 1; 1799 1800 /* if there are two or more dots in map name, it's a custom dot map */ 1801 if (strchr(real_name + 1, '.') != NULL) 1802 pfx_len = 0; 1803 else 1804 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1805 1806 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1807 sfx_len, real_name); 1808 1809 /* sanitise map name to characters allowed by kernel */ 1810 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1811 if (!isalnum(*p) && *p != '_' && *p != '.') 1812 *p = '_'; 1813 1814 return strdup(map_name); 1815 } 1816 1817 static int 1818 map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map); 1819 1820 /* Internal BPF map is mmap()'able only if at least one of corresponding 1821 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL 1822 * variable and it's not marked as __hidden (which turns it into, effectively, 1823 * a STATIC variable). 1824 */ 1825 static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map) 1826 { 1827 const struct btf_type *t, *vt; 1828 struct btf_var_secinfo *vsi; 1829 int i, n; 1830 1831 if (!map->btf_value_type_id) 1832 return false; 1833 1834 t = btf__type_by_id(obj->btf, map->btf_value_type_id); 1835 if (!btf_is_datasec(t)) 1836 return false; 1837 1838 vsi = btf_var_secinfos(t); 1839 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) { 1840 vt = btf__type_by_id(obj->btf, vsi->type); 1841 if (!btf_is_var(vt)) 1842 continue; 1843 1844 if (btf_var(vt)->linkage != BTF_VAR_STATIC) 1845 return true; 1846 } 1847 1848 return false; 1849 } 1850 1851 static int 1852 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1853 const char *real_name, int sec_idx, void *data, size_t data_sz) 1854 { 1855 struct bpf_map_def *def; 1856 struct bpf_map *map; 1857 size_t mmap_sz; 1858 int err; 1859 1860 map = bpf_object__add_map(obj); 1861 if (IS_ERR(map)) 1862 return PTR_ERR(map); 1863 1864 map->libbpf_type = type; 1865 map->sec_idx = sec_idx; 1866 map->sec_offset = 0; 1867 map->real_name = strdup(real_name); 1868 map->name = internal_map_name(obj, real_name); 1869 if (!map->real_name || !map->name) { 1870 zfree(&map->real_name); 1871 zfree(&map->name); 1872 return -ENOMEM; 1873 } 1874 1875 def = &map->def; 1876 def->type = BPF_MAP_TYPE_ARRAY; 1877 def->key_size = sizeof(int); 1878 def->value_size = data_sz; 1879 def->max_entries = 1; 1880 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1881 ? BPF_F_RDONLY_PROG : 0; 1882 1883 /* failures are fine because of maps like .rodata.str1.1 */ 1884 (void) map_fill_btf_type_info(obj, map); 1885 1886 if (map_is_mmapable(obj, map)) 1887 def->map_flags |= BPF_F_MMAPABLE; 1888 1889 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1890 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1891 1892 mmap_sz = bpf_map_mmap_sz(map); 1893 map->mmaped = mmap(NULL, mmap_sz, PROT_READ | PROT_WRITE, 1894 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1895 if (map->mmaped == MAP_FAILED) { 1896 err = -errno; 1897 map->mmaped = NULL; 1898 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1899 map->name, err); 1900 zfree(&map->real_name); 1901 zfree(&map->name); 1902 return err; 1903 } 1904 1905 if (data) 1906 memcpy(map->mmaped, data, data_sz); 1907 1908 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1909 return 0; 1910 } 1911 1912 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1913 { 1914 struct elf_sec_desc *sec_desc; 1915 const char *sec_name; 1916 int err = 0, sec_idx; 1917 1918 /* 1919 * Populate obj->maps with libbpf internal maps. 1920 */ 1921 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1922 sec_desc = &obj->efile.secs[sec_idx]; 1923 1924 /* Skip recognized sections with size 0. */ 1925 if (!sec_desc->data || sec_desc->data->d_size == 0) 1926 continue; 1927 1928 switch (sec_desc->sec_type) { 1929 case SEC_DATA: 1930 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1931 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1932 sec_name, sec_idx, 1933 sec_desc->data->d_buf, 1934 sec_desc->data->d_size); 1935 break; 1936 case SEC_RODATA: 1937 obj->has_rodata = true; 1938 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1939 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1940 sec_name, sec_idx, 1941 sec_desc->data->d_buf, 1942 sec_desc->data->d_size); 1943 break; 1944 case SEC_BSS: 1945 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1946 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1947 sec_name, sec_idx, 1948 NULL, 1949 sec_desc->data->d_size); 1950 break; 1951 default: 1952 /* skip */ 1953 break; 1954 } 1955 if (err) 1956 return err; 1957 } 1958 return 0; 1959 } 1960 1961 1962 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1963 const void *name) 1964 { 1965 int i; 1966 1967 for (i = 0; i < obj->nr_extern; i++) { 1968 if (strcmp(obj->externs[i].name, name) == 0) 1969 return &obj->externs[i]; 1970 } 1971 return NULL; 1972 } 1973 1974 static struct extern_desc *find_extern_by_name_with_len(const struct bpf_object *obj, 1975 const void *name, int len) 1976 { 1977 const char *ext_name; 1978 int i; 1979 1980 for (i = 0; i < obj->nr_extern; i++) { 1981 ext_name = obj->externs[i].name; 1982 if (strlen(ext_name) == len && strncmp(ext_name, name, len) == 0) 1983 return &obj->externs[i]; 1984 } 1985 return NULL; 1986 } 1987 1988 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1989 char value) 1990 { 1991 switch (ext->kcfg.type) { 1992 case KCFG_BOOL: 1993 if (value == 'm') { 1994 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1995 ext->name, value); 1996 return -EINVAL; 1997 } 1998 *(bool *)ext_val = value == 'y' ? true : false; 1999 break; 2000 case KCFG_TRISTATE: 2001 if (value == 'y') 2002 *(enum libbpf_tristate *)ext_val = TRI_YES; 2003 else if (value == 'm') 2004 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 2005 else /* value == 'n' */ 2006 *(enum libbpf_tristate *)ext_val = TRI_NO; 2007 break; 2008 case KCFG_CHAR: 2009 *(char *)ext_val = value; 2010 break; 2011 case KCFG_UNKNOWN: 2012 case KCFG_INT: 2013 case KCFG_CHAR_ARR: 2014 default: 2015 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 2016 ext->name, value); 2017 return -EINVAL; 2018 } 2019 ext->is_set = true; 2020 return 0; 2021 } 2022 2023 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 2024 const char *value) 2025 { 2026 size_t len; 2027 2028 if (ext->kcfg.type != KCFG_CHAR_ARR) { 2029 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 2030 ext->name, value); 2031 return -EINVAL; 2032 } 2033 2034 len = strlen(value); 2035 if (value[len - 1] != '"') { 2036 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 2037 ext->name, value); 2038 return -EINVAL; 2039 } 2040 2041 /* strip quotes */ 2042 len -= 2; 2043 if (len >= ext->kcfg.sz) { 2044 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 2045 ext->name, value, len, ext->kcfg.sz - 1); 2046 len = ext->kcfg.sz - 1; 2047 } 2048 memcpy(ext_val, value + 1, len); 2049 ext_val[len] = '\0'; 2050 ext->is_set = true; 2051 return 0; 2052 } 2053 2054 static int parse_u64(const char *value, __u64 *res) 2055 { 2056 char *value_end; 2057 int err; 2058 2059 errno = 0; 2060 *res = strtoull(value, &value_end, 0); 2061 if (errno) { 2062 err = -errno; 2063 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 2064 return err; 2065 } 2066 if (*value_end) { 2067 pr_warn("failed to parse '%s' as integer completely\n", value); 2068 return -EINVAL; 2069 } 2070 return 0; 2071 } 2072 2073 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 2074 { 2075 int bit_sz = ext->kcfg.sz * 8; 2076 2077 if (ext->kcfg.sz == 8) 2078 return true; 2079 2080 /* Validate that value stored in u64 fits in integer of `ext->sz` 2081 * bytes size without any loss of information. If the target integer 2082 * is signed, we rely on the following limits of integer type of 2083 * Y bits and subsequent transformation: 2084 * 2085 * -2^(Y-1) <= X <= 2^(Y-1) - 1 2086 * 0 <= X + 2^(Y-1) <= 2^Y - 1 2087 * 0 <= X + 2^(Y-1) < 2^Y 2088 * 2089 * For unsigned target integer, check that all the (64 - Y) bits are 2090 * zero. 2091 */ 2092 if (ext->kcfg.is_signed) 2093 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 2094 else 2095 return (v >> bit_sz) == 0; 2096 } 2097 2098 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 2099 __u64 value) 2100 { 2101 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 2102 ext->kcfg.type != KCFG_BOOL) { 2103 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 2104 ext->name, (unsigned long long)value); 2105 return -EINVAL; 2106 } 2107 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 2108 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 2109 ext->name, (unsigned long long)value); 2110 return -EINVAL; 2111 2112 } 2113 if (!is_kcfg_value_in_range(ext, value)) { 2114 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 2115 ext->name, (unsigned long long)value, ext->kcfg.sz); 2116 return -ERANGE; 2117 } 2118 switch (ext->kcfg.sz) { 2119 case 1: 2120 *(__u8 *)ext_val = value; 2121 break; 2122 case 2: 2123 *(__u16 *)ext_val = value; 2124 break; 2125 case 4: 2126 *(__u32 *)ext_val = value; 2127 break; 2128 case 8: 2129 *(__u64 *)ext_val = value; 2130 break; 2131 default: 2132 return -EINVAL; 2133 } 2134 ext->is_set = true; 2135 return 0; 2136 } 2137 2138 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 2139 char *buf, void *data) 2140 { 2141 struct extern_desc *ext; 2142 char *sep, *value; 2143 int len, err = 0; 2144 void *ext_val; 2145 __u64 num; 2146 2147 if (!str_has_pfx(buf, "CONFIG_")) 2148 return 0; 2149 2150 sep = strchr(buf, '='); 2151 if (!sep) { 2152 pr_warn("failed to parse '%s': no separator\n", buf); 2153 return -EINVAL; 2154 } 2155 2156 /* Trim ending '\n' */ 2157 len = strlen(buf); 2158 if (buf[len - 1] == '\n') 2159 buf[len - 1] = '\0'; 2160 /* Split on '=' and ensure that a value is present. */ 2161 *sep = '\0'; 2162 if (!sep[1]) { 2163 *sep = '='; 2164 pr_warn("failed to parse '%s': no value\n", buf); 2165 return -EINVAL; 2166 } 2167 2168 ext = find_extern_by_name(obj, buf); 2169 if (!ext || ext->is_set) 2170 return 0; 2171 2172 ext_val = data + ext->kcfg.data_off; 2173 value = sep + 1; 2174 2175 switch (*value) { 2176 case 'y': case 'n': case 'm': 2177 err = set_kcfg_value_tri(ext, ext_val, *value); 2178 break; 2179 case '"': 2180 err = set_kcfg_value_str(ext, ext_val, value); 2181 break; 2182 default: 2183 /* assume integer */ 2184 err = parse_u64(value, &num); 2185 if (err) { 2186 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 2187 return err; 2188 } 2189 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 2190 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 2191 return -EINVAL; 2192 } 2193 err = set_kcfg_value_num(ext, ext_val, num); 2194 break; 2195 } 2196 if (err) 2197 return err; 2198 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 2199 return 0; 2200 } 2201 2202 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 2203 { 2204 char buf[PATH_MAX]; 2205 struct utsname uts; 2206 int len, err = 0; 2207 gzFile file; 2208 2209 uname(&uts); 2210 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 2211 if (len < 0) 2212 return -EINVAL; 2213 else if (len >= PATH_MAX) 2214 return -ENAMETOOLONG; 2215 2216 /* gzopen also accepts uncompressed files. */ 2217 file = gzopen(buf, "re"); 2218 if (!file) 2219 file = gzopen("/proc/config.gz", "re"); 2220 2221 if (!file) { 2222 pr_warn("failed to open system Kconfig\n"); 2223 return -ENOENT; 2224 } 2225 2226 while (gzgets(file, buf, sizeof(buf))) { 2227 err = bpf_object__process_kconfig_line(obj, buf, data); 2228 if (err) { 2229 pr_warn("error parsing system Kconfig line '%s': %d\n", 2230 buf, err); 2231 goto out; 2232 } 2233 } 2234 2235 out: 2236 gzclose(file); 2237 return err; 2238 } 2239 2240 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 2241 const char *config, void *data) 2242 { 2243 char buf[PATH_MAX]; 2244 int err = 0; 2245 FILE *file; 2246 2247 file = fmemopen((void *)config, strlen(config), "r"); 2248 if (!file) { 2249 err = -errno; 2250 pr_warn("failed to open in-memory Kconfig: %d\n", err); 2251 return err; 2252 } 2253 2254 while (fgets(buf, sizeof(buf), file)) { 2255 err = bpf_object__process_kconfig_line(obj, buf, data); 2256 if (err) { 2257 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 2258 buf, err); 2259 break; 2260 } 2261 } 2262 2263 fclose(file); 2264 return err; 2265 } 2266 2267 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 2268 { 2269 struct extern_desc *last_ext = NULL, *ext; 2270 size_t map_sz; 2271 int i, err; 2272 2273 for (i = 0; i < obj->nr_extern; i++) { 2274 ext = &obj->externs[i]; 2275 if (ext->type == EXT_KCFG) 2276 last_ext = ext; 2277 } 2278 2279 if (!last_ext) 2280 return 0; 2281 2282 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 2283 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 2284 ".kconfig", obj->efile.symbols_shndx, 2285 NULL, map_sz); 2286 if (err) 2287 return err; 2288 2289 obj->kconfig_map_idx = obj->nr_maps - 1; 2290 2291 return 0; 2292 } 2293 2294 const struct btf_type * 2295 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2296 { 2297 const struct btf_type *t = btf__type_by_id(btf, id); 2298 2299 if (res_id) 2300 *res_id = id; 2301 2302 while (btf_is_mod(t) || btf_is_typedef(t)) { 2303 if (res_id) 2304 *res_id = t->type; 2305 t = btf__type_by_id(btf, t->type); 2306 } 2307 2308 return t; 2309 } 2310 2311 static const struct btf_type * 2312 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2313 { 2314 const struct btf_type *t; 2315 2316 t = skip_mods_and_typedefs(btf, id, NULL); 2317 if (!btf_is_ptr(t)) 2318 return NULL; 2319 2320 t = skip_mods_and_typedefs(btf, t->type, res_id); 2321 2322 return btf_is_func_proto(t) ? t : NULL; 2323 } 2324 2325 static const char *__btf_kind_str(__u16 kind) 2326 { 2327 switch (kind) { 2328 case BTF_KIND_UNKN: return "void"; 2329 case BTF_KIND_INT: return "int"; 2330 case BTF_KIND_PTR: return "ptr"; 2331 case BTF_KIND_ARRAY: return "array"; 2332 case BTF_KIND_STRUCT: return "struct"; 2333 case BTF_KIND_UNION: return "union"; 2334 case BTF_KIND_ENUM: return "enum"; 2335 case BTF_KIND_FWD: return "fwd"; 2336 case BTF_KIND_TYPEDEF: return "typedef"; 2337 case BTF_KIND_VOLATILE: return "volatile"; 2338 case BTF_KIND_CONST: return "const"; 2339 case BTF_KIND_RESTRICT: return "restrict"; 2340 case BTF_KIND_FUNC: return "func"; 2341 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2342 case BTF_KIND_VAR: return "var"; 2343 case BTF_KIND_DATASEC: return "datasec"; 2344 case BTF_KIND_FLOAT: return "float"; 2345 case BTF_KIND_DECL_TAG: return "decl_tag"; 2346 case BTF_KIND_TYPE_TAG: return "type_tag"; 2347 case BTF_KIND_ENUM64: return "enum64"; 2348 default: return "unknown"; 2349 } 2350 } 2351 2352 const char *btf_kind_str(const struct btf_type *t) 2353 { 2354 return __btf_kind_str(btf_kind(t)); 2355 } 2356 2357 /* 2358 * Fetch integer attribute of BTF map definition. Such attributes are 2359 * represented using a pointer to an array, in which dimensionality of array 2360 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2361 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2362 * type definition, while using only sizeof(void *) space in ELF data section. 2363 */ 2364 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2365 const struct btf_member *m, __u32 *res) 2366 { 2367 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2368 const char *name = btf__name_by_offset(btf, m->name_off); 2369 const struct btf_array *arr_info; 2370 const struct btf_type *arr_t; 2371 2372 if (!btf_is_ptr(t)) { 2373 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2374 map_name, name, btf_kind_str(t)); 2375 return false; 2376 } 2377 2378 arr_t = btf__type_by_id(btf, t->type); 2379 if (!arr_t) { 2380 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2381 map_name, name, t->type); 2382 return false; 2383 } 2384 if (!btf_is_array(arr_t)) { 2385 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2386 map_name, name, btf_kind_str(arr_t)); 2387 return false; 2388 } 2389 arr_info = btf_array(arr_t); 2390 *res = arr_info->nelems; 2391 return true; 2392 } 2393 2394 static bool get_map_field_long(const char *map_name, const struct btf *btf, 2395 const struct btf_member *m, __u64 *res) 2396 { 2397 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2398 const char *name = btf__name_by_offset(btf, m->name_off); 2399 2400 if (btf_is_ptr(t)) { 2401 __u32 res32; 2402 bool ret; 2403 2404 ret = get_map_field_int(map_name, btf, m, &res32); 2405 if (ret) 2406 *res = (__u64)res32; 2407 return ret; 2408 } 2409 2410 if (!btf_is_enum(t) && !btf_is_enum64(t)) { 2411 pr_warn("map '%s': attr '%s': expected ENUM or ENUM64, got %s.\n", 2412 map_name, name, btf_kind_str(t)); 2413 return false; 2414 } 2415 2416 if (btf_vlen(t) != 1) { 2417 pr_warn("map '%s': attr '%s': invalid __ulong\n", 2418 map_name, name); 2419 return false; 2420 } 2421 2422 if (btf_is_enum(t)) { 2423 const struct btf_enum *e = btf_enum(t); 2424 2425 *res = e->val; 2426 } else { 2427 const struct btf_enum64 *e = btf_enum64(t); 2428 2429 *res = btf_enum64_value(e); 2430 } 2431 return true; 2432 } 2433 2434 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2435 { 2436 int len; 2437 2438 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2439 if (len < 0) 2440 return -EINVAL; 2441 if (len >= buf_sz) 2442 return -ENAMETOOLONG; 2443 2444 return 0; 2445 } 2446 2447 static int build_map_pin_path(struct bpf_map *map, const char *path) 2448 { 2449 char buf[PATH_MAX]; 2450 int err; 2451 2452 if (!path) 2453 path = BPF_FS_DEFAULT_PATH; 2454 2455 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2456 if (err) 2457 return err; 2458 2459 return bpf_map__set_pin_path(map, buf); 2460 } 2461 2462 /* should match definition in bpf_helpers.h */ 2463 enum libbpf_pin_type { 2464 LIBBPF_PIN_NONE, 2465 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2466 LIBBPF_PIN_BY_NAME, 2467 }; 2468 2469 int parse_btf_map_def(const char *map_name, struct btf *btf, 2470 const struct btf_type *def_t, bool strict, 2471 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2472 { 2473 const struct btf_type *t; 2474 const struct btf_member *m; 2475 bool is_inner = inner_def == NULL; 2476 int vlen, i; 2477 2478 vlen = btf_vlen(def_t); 2479 m = btf_members(def_t); 2480 for (i = 0; i < vlen; i++, m++) { 2481 const char *name = btf__name_by_offset(btf, m->name_off); 2482 2483 if (!name) { 2484 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2485 return -EINVAL; 2486 } 2487 if (strcmp(name, "type") == 0) { 2488 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2489 return -EINVAL; 2490 map_def->parts |= MAP_DEF_MAP_TYPE; 2491 } else if (strcmp(name, "max_entries") == 0) { 2492 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2493 return -EINVAL; 2494 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2495 } else if (strcmp(name, "map_flags") == 0) { 2496 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2497 return -EINVAL; 2498 map_def->parts |= MAP_DEF_MAP_FLAGS; 2499 } else if (strcmp(name, "numa_node") == 0) { 2500 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2501 return -EINVAL; 2502 map_def->parts |= MAP_DEF_NUMA_NODE; 2503 } else if (strcmp(name, "key_size") == 0) { 2504 __u32 sz; 2505 2506 if (!get_map_field_int(map_name, btf, m, &sz)) 2507 return -EINVAL; 2508 if (map_def->key_size && map_def->key_size != sz) { 2509 pr_warn("map '%s': conflicting key size %u != %u.\n", 2510 map_name, map_def->key_size, sz); 2511 return -EINVAL; 2512 } 2513 map_def->key_size = sz; 2514 map_def->parts |= MAP_DEF_KEY_SIZE; 2515 } else if (strcmp(name, "key") == 0) { 2516 __s64 sz; 2517 2518 t = btf__type_by_id(btf, m->type); 2519 if (!t) { 2520 pr_warn("map '%s': key type [%d] not found.\n", 2521 map_name, m->type); 2522 return -EINVAL; 2523 } 2524 if (!btf_is_ptr(t)) { 2525 pr_warn("map '%s': key spec is not PTR: %s.\n", 2526 map_name, btf_kind_str(t)); 2527 return -EINVAL; 2528 } 2529 sz = btf__resolve_size(btf, t->type); 2530 if (sz < 0) { 2531 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2532 map_name, t->type, (ssize_t)sz); 2533 return sz; 2534 } 2535 if (map_def->key_size && map_def->key_size != sz) { 2536 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2537 map_name, map_def->key_size, (ssize_t)sz); 2538 return -EINVAL; 2539 } 2540 map_def->key_size = sz; 2541 map_def->key_type_id = t->type; 2542 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2543 } else if (strcmp(name, "value_size") == 0) { 2544 __u32 sz; 2545 2546 if (!get_map_field_int(map_name, btf, m, &sz)) 2547 return -EINVAL; 2548 if (map_def->value_size && map_def->value_size != sz) { 2549 pr_warn("map '%s': conflicting value size %u != %u.\n", 2550 map_name, map_def->value_size, sz); 2551 return -EINVAL; 2552 } 2553 map_def->value_size = sz; 2554 map_def->parts |= MAP_DEF_VALUE_SIZE; 2555 } else if (strcmp(name, "value") == 0) { 2556 __s64 sz; 2557 2558 t = btf__type_by_id(btf, m->type); 2559 if (!t) { 2560 pr_warn("map '%s': value type [%d] not found.\n", 2561 map_name, m->type); 2562 return -EINVAL; 2563 } 2564 if (!btf_is_ptr(t)) { 2565 pr_warn("map '%s': value spec is not PTR: %s.\n", 2566 map_name, btf_kind_str(t)); 2567 return -EINVAL; 2568 } 2569 sz = btf__resolve_size(btf, t->type); 2570 if (sz < 0) { 2571 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2572 map_name, t->type, (ssize_t)sz); 2573 return sz; 2574 } 2575 if (map_def->value_size && map_def->value_size != sz) { 2576 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2577 map_name, map_def->value_size, (ssize_t)sz); 2578 return -EINVAL; 2579 } 2580 map_def->value_size = sz; 2581 map_def->value_type_id = t->type; 2582 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2583 } 2584 else if (strcmp(name, "values") == 0) { 2585 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2586 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2587 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2588 char inner_map_name[128]; 2589 int err; 2590 2591 if (is_inner) { 2592 pr_warn("map '%s': multi-level inner maps not supported.\n", 2593 map_name); 2594 return -ENOTSUP; 2595 } 2596 if (i != vlen - 1) { 2597 pr_warn("map '%s': '%s' member should be last.\n", 2598 map_name, name); 2599 return -EINVAL; 2600 } 2601 if (!is_map_in_map && !is_prog_array) { 2602 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2603 map_name); 2604 return -ENOTSUP; 2605 } 2606 if (map_def->value_size && map_def->value_size != 4) { 2607 pr_warn("map '%s': conflicting value size %u != 4.\n", 2608 map_name, map_def->value_size); 2609 return -EINVAL; 2610 } 2611 map_def->value_size = 4; 2612 t = btf__type_by_id(btf, m->type); 2613 if (!t) { 2614 pr_warn("map '%s': %s type [%d] not found.\n", 2615 map_name, desc, m->type); 2616 return -EINVAL; 2617 } 2618 if (!btf_is_array(t) || btf_array(t)->nelems) { 2619 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2620 map_name, desc); 2621 return -EINVAL; 2622 } 2623 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2624 if (!btf_is_ptr(t)) { 2625 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2626 map_name, desc, btf_kind_str(t)); 2627 return -EINVAL; 2628 } 2629 t = skip_mods_and_typedefs(btf, t->type, NULL); 2630 if (is_prog_array) { 2631 if (!btf_is_func_proto(t)) { 2632 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2633 map_name, btf_kind_str(t)); 2634 return -EINVAL; 2635 } 2636 continue; 2637 } 2638 if (!btf_is_struct(t)) { 2639 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2640 map_name, btf_kind_str(t)); 2641 return -EINVAL; 2642 } 2643 2644 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2645 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2646 if (err) 2647 return err; 2648 2649 map_def->parts |= MAP_DEF_INNER_MAP; 2650 } else if (strcmp(name, "pinning") == 0) { 2651 __u32 val; 2652 2653 if (is_inner) { 2654 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2655 return -EINVAL; 2656 } 2657 if (!get_map_field_int(map_name, btf, m, &val)) 2658 return -EINVAL; 2659 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2660 pr_warn("map '%s': invalid pinning value %u.\n", 2661 map_name, val); 2662 return -EINVAL; 2663 } 2664 map_def->pinning = val; 2665 map_def->parts |= MAP_DEF_PINNING; 2666 } else if (strcmp(name, "map_extra") == 0) { 2667 __u64 map_extra; 2668 2669 if (!get_map_field_long(map_name, btf, m, &map_extra)) 2670 return -EINVAL; 2671 map_def->map_extra = map_extra; 2672 map_def->parts |= MAP_DEF_MAP_EXTRA; 2673 } else { 2674 if (strict) { 2675 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2676 return -ENOTSUP; 2677 } 2678 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2679 } 2680 } 2681 2682 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2683 pr_warn("map '%s': map type isn't specified.\n", map_name); 2684 return -EINVAL; 2685 } 2686 2687 return 0; 2688 } 2689 2690 static size_t adjust_ringbuf_sz(size_t sz) 2691 { 2692 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2693 __u32 mul; 2694 2695 /* if user forgot to set any size, make sure they see error */ 2696 if (sz == 0) 2697 return 0; 2698 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2699 * a power-of-2 multiple of kernel's page size. If user diligently 2700 * satisified these conditions, pass the size through. 2701 */ 2702 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2703 return sz; 2704 2705 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2706 * user-set size to satisfy both user size request and kernel 2707 * requirements and substitute correct max_entries for map creation. 2708 */ 2709 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2710 if (mul * page_sz > sz) 2711 return mul * page_sz; 2712 } 2713 2714 /* if it's impossible to satisfy the conditions (i.e., user size is 2715 * very close to UINT_MAX but is not a power-of-2 multiple of 2716 * page_size) then just return original size and let kernel reject it 2717 */ 2718 return sz; 2719 } 2720 2721 static bool map_is_ringbuf(const struct bpf_map *map) 2722 { 2723 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2724 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2725 } 2726 2727 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2728 { 2729 map->def.type = def->map_type; 2730 map->def.key_size = def->key_size; 2731 map->def.value_size = def->value_size; 2732 map->def.max_entries = def->max_entries; 2733 map->def.map_flags = def->map_flags; 2734 map->map_extra = def->map_extra; 2735 2736 map->numa_node = def->numa_node; 2737 map->btf_key_type_id = def->key_type_id; 2738 map->btf_value_type_id = def->value_type_id; 2739 2740 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2741 if (map_is_ringbuf(map)) 2742 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2743 2744 if (def->parts & MAP_DEF_MAP_TYPE) 2745 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2746 2747 if (def->parts & MAP_DEF_KEY_TYPE) 2748 pr_debug("map '%s': found key [%u], sz = %u.\n", 2749 map->name, def->key_type_id, def->key_size); 2750 else if (def->parts & MAP_DEF_KEY_SIZE) 2751 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2752 2753 if (def->parts & MAP_DEF_VALUE_TYPE) 2754 pr_debug("map '%s': found value [%u], sz = %u.\n", 2755 map->name, def->value_type_id, def->value_size); 2756 else if (def->parts & MAP_DEF_VALUE_SIZE) 2757 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2758 2759 if (def->parts & MAP_DEF_MAX_ENTRIES) 2760 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2761 if (def->parts & MAP_DEF_MAP_FLAGS) 2762 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2763 if (def->parts & MAP_DEF_MAP_EXTRA) 2764 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2765 (unsigned long long)def->map_extra); 2766 if (def->parts & MAP_DEF_PINNING) 2767 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2768 if (def->parts & MAP_DEF_NUMA_NODE) 2769 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2770 2771 if (def->parts & MAP_DEF_INNER_MAP) 2772 pr_debug("map '%s': found inner map definition.\n", map->name); 2773 } 2774 2775 static const char *btf_var_linkage_str(__u32 linkage) 2776 { 2777 switch (linkage) { 2778 case BTF_VAR_STATIC: return "static"; 2779 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2780 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2781 default: return "unknown"; 2782 } 2783 } 2784 2785 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2786 const struct btf_type *sec, 2787 int var_idx, int sec_idx, 2788 const Elf_Data *data, bool strict, 2789 const char *pin_root_path) 2790 { 2791 struct btf_map_def map_def = {}, inner_def = {}; 2792 const struct btf_type *var, *def; 2793 const struct btf_var_secinfo *vi; 2794 const struct btf_var *var_extra; 2795 const char *map_name; 2796 struct bpf_map *map; 2797 int err; 2798 2799 vi = btf_var_secinfos(sec) + var_idx; 2800 var = btf__type_by_id(obj->btf, vi->type); 2801 var_extra = btf_var(var); 2802 map_name = btf__name_by_offset(obj->btf, var->name_off); 2803 2804 if (map_name == NULL || map_name[0] == '\0') { 2805 pr_warn("map #%d: empty name.\n", var_idx); 2806 return -EINVAL; 2807 } 2808 if ((__u64)vi->offset + vi->size > data->d_size) { 2809 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2810 return -EINVAL; 2811 } 2812 if (!btf_is_var(var)) { 2813 pr_warn("map '%s': unexpected var kind %s.\n", 2814 map_name, btf_kind_str(var)); 2815 return -EINVAL; 2816 } 2817 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2818 pr_warn("map '%s': unsupported map linkage %s.\n", 2819 map_name, btf_var_linkage_str(var_extra->linkage)); 2820 return -EOPNOTSUPP; 2821 } 2822 2823 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2824 if (!btf_is_struct(def)) { 2825 pr_warn("map '%s': unexpected def kind %s.\n", 2826 map_name, btf_kind_str(var)); 2827 return -EINVAL; 2828 } 2829 if (def->size > vi->size) { 2830 pr_warn("map '%s': invalid def size.\n", map_name); 2831 return -EINVAL; 2832 } 2833 2834 map = bpf_object__add_map(obj); 2835 if (IS_ERR(map)) 2836 return PTR_ERR(map); 2837 map->name = strdup(map_name); 2838 if (!map->name) { 2839 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2840 return -ENOMEM; 2841 } 2842 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2843 map->def.type = BPF_MAP_TYPE_UNSPEC; 2844 map->sec_idx = sec_idx; 2845 map->sec_offset = vi->offset; 2846 map->btf_var_idx = var_idx; 2847 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2848 map_name, map->sec_idx, map->sec_offset); 2849 2850 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2851 if (err) 2852 return err; 2853 2854 fill_map_from_def(map, &map_def); 2855 2856 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2857 err = build_map_pin_path(map, pin_root_path); 2858 if (err) { 2859 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2860 return err; 2861 } 2862 } 2863 2864 if (map_def.parts & MAP_DEF_INNER_MAP) { 2865 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2866 if (!map->inner_map) 2867 return -ENOMEM; 2868 map->inner_map->fd = create_placeholder_fd(); 2869 if (map->inner_map->fd < 0) 2870 return map->inner_map->fd; 2871 map->inner_map->sec_idx = sec_idx; 2872 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2873 if (!map->inner_map->name) 2874 return -ENOMEM; 2875 sprintf(map->inner_map->name, "%s.inner", map_name); 2876 2877 fill_map_from_def(map->inner_map, &inner_def); 2878 } 2879 2880 err = map_fill_btf_type_info(obj, map); 2881 if (err) 2882 return err; 2883 2884 return 0; 2885 } 2886 2887 static int init_arena_map_data(struct bpf_object *obj, struct bpf_map *map, 2888 const char *sec_name, int sec_idx, 2889 void *data, size_t data_sz) 2890 { 2891 const long page_sz = sysconf(_SC_PAGE_SIZE); 2892 size_t mmap_sz; 2893 2894 mmap_sz = bpf_map_mmap_sz(obj->arena_map); 2895 if (roundup(data_sz, page_sz) > mmap_sz) { 2896 pr_warn("elf: sec '%s': declared ARENA map size (%zu) is too small to hold global __arena variables of size %zu\n", 2897 sec_name, mmap_sz, data_sz); 2898 return -E2BIG; 2899 } 2900 2901 obj->arena_data = malloc(data_sz); 2902 if (!obj->arena_data) 2903 return -ENOMEM; 2904 memcpy(obj->arena_data, data, data_sz); 2905 obj->arena_data_sz = data_sz; 2906 2907 /* make bpf_map__init_value() work for ARENA maps */ 2908 map->mmaped = obj->arena_data; 2909 2910 return 0; 2911 } 2912 2913 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2914 const char *pin_root_path) 2915 { 2916 const struct btf_type *sec = NULL; 2917 int nr_types, i, vlen, err; 2918 const struct btf_type *t; 2919 const char *name; 2920 Elf_Data *data; 2921 Elf_Scn *scn; 2922 2923 if (obj->efile.btf_maps_shndx < 0) 2924 return 0; 2925 2926 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2927 data = elf_sec_data(obj, scn); 2928 if (!scn || !data) { 2929 pr_warn("elf: failed to get %s map definitions for %s\n", 2930 MAPS_ELF_SEC, obj->path); 2931 return -EINVAL; 2932 } 2933 2934 nr_types = btf__type_cnt(obj->btf); 2935 for (i = 1; i < nr_types; i++) { 2936 t = btf__type_by_id(obj->btf, i); 2937 if (!btf_is_datasec(t)) 2938 continue; 2939 name = btf__name_by_offset(obj->btf, t->name_off); 2940 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2941 sec = t; 2942 obj->efile.btf_maps_sec_btf_id = i; 2943 break; 2944 } 2945 } 2946 2947 if (!sec) { 2948 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2949 return -ENOENT; 2950 } 2951 2952 vlen = btf_vlen(sec); 2953 for (i = 0; i < vlen; i++) { 2954 err = bpf_object__init_user_btf_map(obj, sec, i, 2955 obj->efile.btf_maps_shndx, 2956 data, strict, 2957 pin_root_path); 2958 if (err) 2959 return err; 2960 } 2961 2962 for (i = 0; i < obj->nr_maps; i++) { 2963 struct bpf_map *map = &obj->maps[i]; 2964 2965 if (map->def.type != BPF_MAP_TYPE_ARENA) 2966 continue; 2967 2968 if (obj->arena_map) { 2969 pr_warn("map '%s': only single ARENA map is supported (map '%s' is also ARENA)\n", 2970 map->name, obj->arena_map->name); 2971 return -EINVAL; 2972 } 2973 obj->arena_map = map; 2974 2975 if (obj->efile.arena_data) { 2976 err = init_arena_map_data(obj, map, ARENA_SEC, obj->efile.arena_data_shndx, 2977 obj->efile.arena_data->d_buf, 2978 obj->efile.arena_data->d_size); 2979 if (err) 2980 return err; 2981 } 2982 } 2983 if (obj->efile.arena_data && !obj->arena_map) { 2984 pr_warn("elf: sec '%s': to use global __arena variables the ARENA map should be explicitly declared in SEC(\".maps\")\n", 2985 ARENA_SEC); 2986 return -ENOENT; 2987 } 2988 2989 return 0; 2990 } 2991 2992 static int bpf_object__init_maps(struct bpf_object *obj, 2993 const struct bpf_object_open_opts *opts) 2994 { 2995 const char *pin_root_path; 2996 bool strict; 2997 int err = 0; 2998 2999 strict = !OPTS_GET(opts, relaxed_maps, false); 3000 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 3001 3002 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 3003 err = err ?: bpf_object__init_global_data_maps(obj); 3004 err = err ?: bpf_object__init_kconfig_map(obj); 3005 err = err ?: bpf_object_init_struct_ops(obj); 3006 3007 return err; 3008 } 3009 3010 static bool section_have_execinstr(struct bpf_object *obj, int idx) 3011 { 3012 Elf64_Shdr *sh; 3013 3014 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 3015 if (!sh) 3016 return false; 3017 3018 return sh->sh_flags & SHF_EXECINSTR; 3019 } 3020 3021 static bool starts_with_qmark(const char *s) 3022 { 3023 return s && s[0] == '?'; 3024 } 3025 3026 static bool btf_needs_sanitization(struct bpf_object *obj) 3027 { 3028 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3029 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3030 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3031 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3032 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3033 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3034 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3035 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3036 3037 return !has_func || !has_datasec || !has_func_global || !has_float || 3038 !has_decl_tag || !has_type_tag || !has_enum64 || !has_qmark_datasec; 3039 } 3040 3041 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 3042 { 3043 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 3044 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 3045 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 3046 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 3047 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 3048 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 3049 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 3050 bool has_qmark_datasec = kernel_supports(obj, FEAT_BTF_QMARK_DATASEC); 3051 int enum64_placeholder_id = 0; 3052 struct btf_type *t; 3053 int i, j, vlen; 3054 3055 for (i = 1; i < btf__type_cnt(btf); i++) { 3056 t = (struct btf_type *)btf__type_by_id(btf, i); 3057 3058 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 3059 /* replace VAR/DECL_TAG with INT */ 3060 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 3061 /* 3062 * using size = 1 is the safest choice, 4 will be too 3063 * big and cause kernel BTF validation failure if 3064 * original variable took less than 4 bytes 3065 */ 3066 t->size = 1; 3067 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 3068 } else if (!has_datasec && btf_is_datasec(t)) { 3069 /* replace DATASEC with STRUCT */ 3070 const struct btf_var_secinfo *v = btf_var_secinfos(t); 3071 struct btf_member *m = btf_members(t); 3072 struct btf_type *vt; 3073 char *name; 3074 3075 name = (char *)btf__name_by_offset(btf, t->name_off); 3076 while (*name) { 3077 if (*name == '.' || *name == '?') 3078 *name = '_'; 3079 name++; 3080 } 3081 3082 vlen = btf_vlen(t); 3083 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 3084 for (j = 0; j < vlen; j++, v++, m++) { 3085 /* order of field assignments is important */ 3086 m->offset = v->offset * 8; 3087 m->type = v->type; 3088 /* preserve variable name as member name */ 3089 vt = (void *)btf__type_by_id(btf, v->type); 3090 m->name_off = vt->name_off; 3091 } 3092 } else if (!has_qmark_datasec && btf_is_datasec(t) && 3093 starts_with_qmark(btf__name_by_offset(btf, t->name_off))) { 3094 /* replace '?' prefix with '_' for DATASEC names */ 3095 char *name; 3096 3097 name = (char *)btf__name_by_offset(btf, t->name_off); 3098 if (name[0] == '?') 3099 name[0] = '_'; 3100 } else if (!has_func && btf_is_func_proto(t)) { 3101 /* replace FUNC_PROTO with ENUM */ 3102 vlen = btf_vlen(t); 3103 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 3104 t->size = sizeof(__u32); /* kernel enforced */ 3105 } else if (!has_func && btf_is_func(t)) { 3106 /* replace FUNC with TYPEDEF */ 3107 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 3108 } else if (!has_func_global && btf_is_func(t)) { 3109 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 3110 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 3111 } else if (!has_float && btf_is_float(t)) { 3112 /* replace FLOAT with an equally-sized empty STRUCT; 3113 * since C compilers do not accept e.g. "float" as a 3114 * valid struct name, make it anonymous 3115 */ 3116 t->name_off = 0; 3117 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 3118 } else if (!has_type_tag && btf_is_type_tag(t)) { 3119 /* replace TYPE_TAG with a CONST */ 3120 t->name_off = 0; 3121 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 3122 } else if (!has_enum64 && btf_is_enum(t)) { 3123 /* clear the kflag */ 3124 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 3125 } else if (!has_enum64 && btf_is_enum64(t)) { 3126 /* replace ENUM64 with a union */ 3127 struct btf_member *m; 3128 3129 if (enum64_placeholder_id == 0) { 3130 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 3131 if (enum64_placeholder_id < 0) 3132 return enum64_placeholder_id; 3133 3134 t = (struct btf_type *)btf__type_by_id(btf, i); 3135 } 3136 3137 m = btf_members(t); 3138 vlen = btf_vlen(t); 3139 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 3140 for (j = 0; j < vlen; j++, m++) { 3141 m->type = enum64_placeholder_id; 3142 m->offset = 0; 3143 } 3144 } 3145 } 3146 3147 return 0; 3148 } 3149 3150 static bool libbpf_needs_btf(const struct bpf_object *obj) 3151 { 3152 return obj->efile.btf_maps_shndx >= 0 || 3153 obj->efile.has_st_ops || 3154 obj->nr_extern > 0; 3155 } 3156 3157 static bool kernel_needs_btf(const struct bpf_object *obj) 3158 { 3159 return obj->efile.has_st_ops; 3160 } 3161 3162 static int bpf_object__init_btf(struct bpf_object *obj, 3163 Elf_Data *btf_data, 3164 Elf_Data *btf_ext_data) 3165 { 3166 int err = -ENOENT; 3167 3168 if (btf_data) { 3169 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 3170 err = libbpf_get_error(obj->btf); 3171 if (err) { 3172 obj->btf = NULL; 3173 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 3174 goto out; 3175 } 3176 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3177 btf__set_pointer_size(obj->btf, 8); 3178 } 3179 if (btf_ext_data) { 3180 struct btf_ext_info *ext_segs[3]; 3181 int seg_num, sec_num; 3182 3183 if (!obj->btf) { 3184 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 3185 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 3186 goto out; 3187 } 3188 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 3189 err = libbpf_get_error(obj->btf_ext); 3190 if (err) { 3191 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 3192 BTF_EXT_ELF_SEC, err); 3193 obj->btf_ext = NULL; 3194 goto out; 3195 } 3196 3197 /* setup .BTF.ext to ELF section mapping */ 3198 ext_segs[0] = &obj->btf_ext->func_info; 3199 ext_segs[1] = &obj->btf_ext->line_info; 3200 ext_segs[2] = &obj->btf_ext->core_relo_info; 3201 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 3202 struct btf_ext_info *seg = ext_segs[seg_num]; 3203 const struct btf_ext_info_sec *sec; 3204 const char *sec_name; 3205 Elf_Scn *scn; 3206 3207 if (seg->sec_cnt == 0) 3208 continue; 3209 3210 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 3211 if (!seg->sec_idxs) { 3212 err = -ENOMEM; 3213 goto out; 3214 } 3215 3216 sec_num = 0; 3217 for_each_btf_ext_sec(seg, sec) { 3218 /* preventively increment index to avoid doing 3219 * this before every continue below 3220 */ 3221 sec_num++; 3222 3223 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 3224 if (str_is_empty(sec_name)) 3225 continue; 3226 scn = elf_sec_by_name(obj, sec_name); 3227 if (!scn) 3228 continue; 3229 3230 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 3231 } 3232 } 3233 } 3234 out: 3235 if (err && libbpf_needs_btf(obj)) { 3236 pr_warn("BTF is required, but is missing or corrupted.\n"); 3237 return err; 3238 } 3239 return 0; 3240 } 3241 3242 static int compare_vsi_off(const void *_a, const void *_b) 3243 { 3244 const struct btf_var_secinfo *a = _a; 3245 const struct btf_var_secinfo *b = _b; 3246 3247 return a->offset - b->offset; 3248 } 3249 3250 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 3251 struct btf_type *t) 3252 { 3253 __u32 size = 0, i, vars = btf_vlen(t); 3254 const char *sec_name = btf__name_by_offset(btf, t->name_off); 3255 struct btf_var_secinfo *vsi; 3256 bool fixup_offsets = false; 3257 int err; 3258 3259 if (!sec_name) { 3260 pr_debug("No name found in string section for DATASEC kind.\n"); 3261 return -ENOENT; 3262 } 3263 3264 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and 3265 * variable offsets set at the previous step. Further, not every 3266 * extern BTF VAR has corresponding ELF symbol preserved, so we skip 3267 * all fixups altogether for such sections and go straight to sorting 3268 * VARs within their DATASEC. 3269 */ 3270 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0) 3271 goto sort_vars; 3272 3273 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to 3274 * fix this up. But BPF static linker already fixes this up and fills 3275 * all the sizes and offsets during static linking. So this step has 3276 * to be optional. But the STV_HIDDEN handling is non-optional for any 3277 * non-extern DATASEC, so the variable fixup loop below handles both 3278 * functions at the same time, paying the cost of BTF VAR <-> ELF 3279 * symbol matching just once. 3280 */ 3281 if (t->size == 0) { 3282 err = find_elf_sec_sz(obj, sec_name, &size); 3283 if (err || !size) { 3284 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n", 3285 sec_name, size, err); 3286 return -ENOENT; 3287 } 3288 3289 t->size = size; 3290 fixup_offsets = true; 3291 } 3292 3293 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 3294 const struct btf_type *t_var; 3295 struct btf_var *var; 3296 const char *var_name; 3297 Elf64_Sym *sym; 3298 3299 t_var = btf__type_by_id(btf, vsi->type); 3300 if (!t_var || !btf_is_var(t_var)) { 3301 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name); 3302 return -EINVAL; 3303 } 3304 3305 var = btf_var(t_var); 3306 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN) 3307 continue; 3308 3309 var_name = btf__name_by_offset(btf, t_var->name_off); 3310 if (!var_name) { 3311 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n", 3312 sec_name, i); 3313 return -ENOENT; 3314 } 3315 3316 sym = find_elf_var_sym(obj, var_name); 3317 if (IS_ERR(sym)) { 3318 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n", 3319 sec_name, var_name); 3320 return -ENOENT; 3321 } 3322 3323 if (fixup_offsets) 3324 vsi->offset = sym->st_value; 3325 3326 /* if variable is a global/weak symbol, but has restricted 3327 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR 3328 * as static. This follows similar logic for functions (BPF 3329 * subprogs) and influences libbpf's further decisions about 3330 * whether to make global data BPF array maps as 3331 * BPF_F_MMAPABLE. 3332 */ 3333 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 3334 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL) 3335 var->linkage = BTF_VAR_STATIC; 3336 } 3337 3338 sort_vars: 3339 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 3340 return 0; 3341 } 3342 3343 static int bpf_object_fixup_btf(struct bpf_object *obj) 3344 { 3345 int i, n, err = 0; 3346 3347 if (!obj->btf) 3348 return 0; 3349 3350 n = btf__type_cnt(obj->btf); 3351 for (i = 1; i < n; i++) { 3352 struct btf_type *t = btf_type_by_id(obj->btf, i); 3353 3354 /* Loader needs to fix up some of the things compiler 3355 * couldn't get its hands on while emitting BTF. This 3356 * is section size and global variable offset. We use 3357 * the info from the ELF itself for this purpose. 3358 */ 3359 if (btf_is_datasec(t)) { 3360 err = btf_fixup_datasec(obj, obj->btf, t); 3361 if (err) 3362 return err; 3363 } 3364 } 3365 3366 return 0; 3367 } 3368 3369 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 3370 { 3371 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 3372 prog->type == BPF_PROG_TYPE_LSM) 3373 return true; 3374 3375 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 3376 * also need vmlinux BTF 3377 */ 3378 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 3379 return true; 3380 3381 return false; 3382 } 3383 3384 static bool map_needs_vmlinux_btf(struct bpf_map *map) 3385 { 3386 return bpf_map__is_struct_ops(map); 3387 } 3388 3389 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 3390 { 3391 struct bpf_program *prog; 3392 struct bpf_map *map; 3393 int i; 3394 3395 /* CO-RE relocations need kernel BTF, only when btf_custom_path 3396 * is not specified 3397 */ 3398 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 3399 return true; 3400 3401 /* Support for typed ksyms needs kernel BTF */ 3402 for (i = 0; i < obj->nr_extern; i++) { 3403 const struct extern_desc *ext; 3404 3405 ext = &obj->externs[i]; 3406 if (ext->type == EXT_KSYM && ext->ksym.type_id) 3407 return true; 3408 } 3409 3410 bpf_object__for_each_program(prog, obj) { 3411 if (!prog->autoload) 3412 continue; 3413 if (prog_needs_vmlinux_btf(prog)) 3414 return true; 3415 } 3416 3417 bpf_object__for_each_map(map, obj) { 3418 if (map_needs_vmlinux_btf(map)) 3419 return true; 3420 } 3421 3422 return false; 3423 } 3424 3425 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 3426 { 3427 int err; 3428 3429 /* btf_vmlinux could be loaded earlier */ 3430 if (obj->btf_vmlinux || obj->gen_loader) 3431 return 0; 3432 3433 if (!force && !obj_needs_vmlinux_btf(obj)) 3434 return 0; 3435 3436 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3437 err = libbpf_get_error(obj->btf_vmlinux); 3438 if (err) { 3439 pr_warn("Error loading vmlinux BTF: %d\n", err); 3440 obj->btf_vmlinux = NULL; 3441 return err; 3442 } 3443 return 0; 3444 } 3445 3446 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3447 { 3448 struct btf *kern_btf = obj->btf; 3449 bool btf_mandatory, sanitize; 3450 int i, err = 0; 3451 3452 if (!obj->btf) 3453 return 0; 3454 3455 if (!kernel_supports(obj, FEAT_BTF)) { 3456 if (kernel_needs_btf(obj)) { 3457 err = -EOPNOTSUPP; 3458 goto report; 3459 } 3460 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3461 return 0; 3462 } 3463 3464 /* Even though some subprogs are global/weak, user might prefer more 3465 * permissive BPF verification process that BPF verifier performs for 3466 * static functions, taking into account more context from the caller 3467 * functions. In such case, they need to mark such subprogs with 3468 * __attribute__((visibility("hidden"))) and libbpf will adjust 3469 * corresponding FUNC BTF type to be marked as static and trigger more 3470 * involved BPF verification process. 3471 */ 3472 for (i = 0; i < obj->nr_programs; i++) { 3473 struct bpf_program *prog = &obj->programs[i]; 3474 struct btf_type *t; 3475 const char *name; 3476 int j, n; 3477 3478 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3479 continue; 3480 3481 n = btf__type_cnt(obj->btf); 3482 for (j = 1; j < n; j++) { 3483 t = btf_type_by_id(obj->btf, j); 3484 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3485 continue; 3486 3487 name = btf__str_by_offset(obj->btf, t->name_off); 3488 if (strcmp(name, prog->name) != 0) 3489 continue; 3490 3491 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3492 break; 3493 } 3494 } 3495 3496 sanitize = btf_needs_sanitization(obj); 3497 if (sanitize) { 3498 const void *raw_data; 3499 __u32 sz; 3500 3501 /* clone BTF to sanitize a copy and leave the original intact */ 3502 raw_data = btf__raw_data(obj->btf, &sz); 3503 kern_btf = btf__new(raw_data, sz); 3504 err = libbpf_get_error(kern_btf); 3505 if (err) 3506 return err; 3507 3508 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3509 btf__set_pointer_size(obj->btf, 8); 3510 err = bpf_object__sanitize_btf(obj, kern_btf); 3511 if (err) 3512 return err; 3513 } 3514 3515 if (obj->gen_loader) { 3516 __u32 raw_size = 0; 3517 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3518 3519 if (!raw_data) 3520 return -ENOMEM; 3521 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3522 /* Pretend to have valid FD to pass various fd >= 0 checks. 3523 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3524 */ 3525 btf__set_fd(kern_btf, 0); 3526 } else { 3527 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3528 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3529 obj->log_level ? 1 : 0, obj->token_fd); 3530 } 3531 if (sanitize) { 3532 if (!err) { 3533 /* move fd to libbpf's BTF */ 3534 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3535 btf__set_fd(kern_btf, -1); 3536 } 3537 btf__free(kern_btf); 3538 } 3539 report: 3540 if (err) { 3541 btf_mandatory = kernel_needs_btf(obj); 3542 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3543 btf_mandatory ? "BTF is mandatory, can't proceed." 3544 : "BTF is optional, ignoring."); 3545 if (!btf_mandatory) 3546 err = 0; 3547 } 3548 return err; 3549 } 3550 3551 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3552 { 3553 const char *name; 3554 3555 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3556 if (!name) { 3557 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3558 off, obj->path, elf_errmsg(-1)); 3559 return NULL; 3560 } 3561 3562 return name; 3563 } 3564 3565 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3566 { 3567 const char *name; 3568 3569 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3570 if (!name) { 3571 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3572 off, obj->path, elf_errmsg(-1)); 3573 return NULL; 3574 } 3575 3576 return name; 3577 } 3578 3579 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3580 { 3581 Elf_Scn *scn; 3582 3583 scn = elf_getscn(obj->efile.elf, idx); 3584 if (!scn) { 3585 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3586 idx, obj->path, elf_errmsg(-1)); 3587 return NULL; 3588 } 3589 return scn; 3590 } 3591 3592 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3593 { 3594 Elf_Scn *scn = NULL; 3595 Elf *elf = obj->efile.elf; 3596 const char *sec_name; 3597 3598 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3599 sec_name = elf_sec_name(obj, scn); 3600 if (!sec_name) 3601 return NULL; 3602 3603 if (strcmp(sec_name, name) != 0) 3604 continue; 3605 3606 return scn; 3607 } 3608 return NULL; 3609 } 3610 3611 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3612 { 3613 Elf64_Shdr *shdr; 3614 3615 if (!scn) 3616 return NULL; 3617 3618 shdr = elf64_getshdr(scn); 3619 if (!shdr) { 3620 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3621 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3622 return NULL; 3623 } 3624 3625 return shdr; 3626 } 3627 3628 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3629 { 3630 const char *name; 3631 Elf64_Shdr *sh; 3632 3633 if (!scn) 3634 return NULL; 3635 3636 sh = elf_sec_hdr(obj, scn); 3637 if (!sh) 3638 return NULL; 3639 3640 name = elf_sec_str(obj, sh->sh_name); 3641 if (!name) { 3642 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3643 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3644 return NULL; 3645 } 3646 3647 return name; 3648 } 3649 3650 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3651 { 3652 Elf_Data *data; 3653 3654 if (!scn) 3655 return NULL; 3656 3657 data = elf_getdata(scn, 0); 3658 if (!data) { 3659 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3660 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3661 obj->path, elf_errmsg(-1)); 3662 return NULL; 3663 } 3664 3665 return data; 3666 } 3667 3668 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3669 { 3670 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3671 return NULL; 3672 3673 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3674 } 3675 3676 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3677 { 3678 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3679 return NULL; 3680 3681 return (Elf64_Rel *)data->d_buf + idx; 3682 } 3683 3684 static bool is_sec_name_dwarf(const char *name) 3685 { 3686 /* approximation, but the actual list is too long */ 3687 return str_has_pfx(name, ".debug_"); 3688 } 3689 3690 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3691 { 3692 /* no special handling of .strtab */ 3693 if (hdr->sh_type == SHT_STRTAB) 3694 return true; 3695 3696 /* ignore .llvm_addrsig section as well */ 3697 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3698 return true; 3699 3700 /* no subprograms will lead to an empty .text section, ignore it */ 3701 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3702 strcmp(name, ".text") == 0) 3703 return true; 3704 3705 /* DWARF sections */ 3706 if (is_sec_name_dwarf(name)) 3707 return true; 3708 3709 if (str_has_pfx(name, ".rel")) { 3710 name += sizeof(".rel") - 1; 3711 /* DWARF section relocations */ 3712 if (is_sec_name_dwarf(name)) 3713 return true; 3714 3715 /* .BTF and .BTF.ext don't need relocations */ 3716 if (strcmp(name, BTF_ELF_SEC) == 0 || 3717 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3718 return true; 3719 } 3720 3721 return false; 3722 } 3723 3724 static int cmp_progs(const void *_a, const void *_b) 3725 { 3726 const struct bpf_program *a = _a; 3727 const struct bpf_program *b = _b; 3728 3729 if (a->sec_idx != b->sec_idx) 3730 return a->sec_idx < b->sec_idx ? -1 : 1; 3731 3732 /* sec_insn_off can't be the same within the section */ 3733 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3734 } 3735 3736 static int bpf_object__elf_collect(struct bpf_object *obj) 3737 { 3738 struct elf_sec_desc *sec_desc; 3739 Elf *elf = obj->efile.elf; 3740 Elf_Data *btf_ext_data = NULL; 3741 Elf_Data *btf_data = NULL; 3742 int idx = 0, err = 0; 3743 const char *name; 3744 Elf_Data *data; 3745 Elf_Scn *scn; 3746 Elf64_Shdr *sh; 3747 3748 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3749 * section. Since section count retrieved by elf_getshdrnum() does 3750 * include sec #0, it is already the necessary size of an array to keep 3751 * all the sections. 3752 */ 3753 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3754 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3755 obj->path, elf_errmsg(-1)); 3756 return -LIBBPF_ERRNO__FORMAT; 3757 } 3758 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3759 if (!obj->efile.secs) 3760 return -ENOMEM; 3761 3762 /* a bunch of ELF parsing functionality depends on processing symbols, 3763 * so do the first pass and find the symbol table 3764 */ 3765 scn = NULL; 3766 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3767 sh = elf_sec_hdr(obj, scn); 3768 if (!sh) 3769 return -LIBBPF_ERRNO__FORMAT; 3770 3771 if (sh->sh_type == SHT_SYMTAB) { 3772 if (obj->efile.symbols) { 3773 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3774 return -LIBBPF_ERRNO__FORMAT; 3775 } 3776 3777 data = elf_sec_data(obj, scn); 3778 if (!data) 3779 return -LIBBPF_ERRNO__FORMAT; 3780 3781 idx = elf_ndxscn(scn); 3782 3783 obj->efile.symbols = data; 3784 obj->efile.symbols_shndx = idx; 3785 obj->efile.strtabidx = sh->sh_link; 3786 } 3787 } 3788 3789 if (!obj->efile.symbols) { 3790 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3791 obj->path); 3792 return -ENOENT; 3793 } 3794 3795 scn = NULL; 3796 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3797 idx = elf_ndxscn(scn); 3798 sec_desc = &obj->efile.secs[idx]; 3799 3800 sh = elf_sec_hdr(obj, scn); 3801 if (!sh) 3802 return -LIBBPF_ERRNO__FORMAT; 3803 3804 name = elf_sec_str(obj, sh->sh_name); 3805 if (!name) 3806 return -LIBBPF_ERRNO__FORMAT; 3807 3808 if (ignore_elf_section(sh, name)) 3809 continue; 3810 3811 data = elf_sec_data(obj, scn); 3812 if (!data) 3813 return -LIBBPF_ERRNO__FORMAT; 3814 3815 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3816 idx, name, (unsigned long)data->d_size, 3817 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3818 (int)sh->sh_type); 3819 3820 if (strcmp(name, "license") == 0) { 3821 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3822 if (err) 3823 return err; 3824 } else if (strcmp(name, "version") == 0) { 3825 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3826 if (err) 3827 return err; 3828 } else if (strcmp(name, "maps") == 0) { 3829 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3830 return -ENOTSUP; 3831 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3832 obj->efile.btf_maps_shndx = idx; 3833 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3834 if (sh->sh_type != SHT_PROGBITS) 3835 return -LIBBPF_ERRNO__FORMAT; 3836 btf_data = data; 3837 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3838 if (sh->sh_type != SHT_PROGBITS) 3839 return -LIBBPF_ERRNO__FORMAT; 3840 btf_ext_data = data; 3841 } else if (sh->sh_type == SHT_SYMTAB) { 3842 /* already processed during the first pass above */ 3843 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3844 if (sh->sh_flags & SHF_EXECINSTR) { 3845 if (strcmp(name, ".text") == 0) 3846 obj->efile.text_shndx = idx; 3847 err = bpf_object__add_programs(obj, data, name, idx); 3848 if (err) 3849 return err; 3850 } else if (strcmp(name, DATA_SEC) == 0 || 3851 str_has_pfx(name, DATA_SEC ".")) { 3852 sec_desc->sec_type = SEC_DATA; 3853 sec_desc->shdr = sh; 3854 sec_desc->data = data; 3855 } else if (strcmp(name, RODATA_SEC) == 0 || 3856 str_has_pfx(name, RODATA_SEC ".")) { 3857 sec_desc->sec_type = SEC_RODATA; 3858 sec_desc->shdr = sh; 3859 sec_desc->data = data; 3860 } else if (strcmp(name, STRUCT_OPS_SEC) == 0 || 3861 strcmp(name, STRUCT_OPS_LINK_SEC) == 0 || 3862 strcmp(name, "?" STRUCT_OPS_SEC) == 0 || 3863 strcmp(name, "?" STRUCT_OPS_LINK_SEC) == 0) { 3864 sec_desc->sec_type = SEC_ST_OPS; 3865 sec_desc->shdr = sh; 3866 sec_desc->data = data; 3867 obj->efile.has_st_ops = true; 3868 } else if (strcmp(name, ARENA_SEC) == 0) { 3869 obj->efile.arena_data = data; 3870 obj->efile.arena_data_shndx = idx; 3871 } else { 3872 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3873 idx, name); 3874 } 3875 } else if (sh->sh_type == SHT_REL) { 3876 int targ_sec_idx = sh->sh_info; /* points to other section */ 3877 3878 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3879 targ_sec_idx >= obj->efile.sec_cnt) 3880 return -LIBBPF_ERRNO__FORMAT; 3881 3882 /* Only do relo for section with exec instructions */ 3883 if (!section_have_execinstr(obj, targ_sec_idx) && 3884 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3885 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) && 3886 strcmp(name, ".rel?" STRUCT_OPS_SEC) && 3887 strcmp(name, ".rel?" STRUCT_OPS_LINK_SEC) && 3888 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3889 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3890 idx, name, targ_sec_idx, 3891 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3892 continue; 3893 } 3894 3895 sec_desc->sec_type = SEC_RELO; 3896 sec_desc->shdr = sh; 3897 sec_desc->data = data; 3898 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 || 3899 str_has_pfx(name, BSS_SEC "."))) { 3900 sec_desc->sec_type = SEC_BSS; 3901 sec_desc->shdr = sh; 3902 sec_desc->data = data; 3903 } else { 3904 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3905 (size_t)sh->sh_size); 3906 } 3907 } 3908 3909 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3910 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3911 return -LIBBPF_ERRNO__FORMAT; 3912 } 3913 3914 /* sort BPF programs by section name and in-section instruction offset 3915 * for faster search 3916 */ 3917 if (obj->nr_programs) 3918 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3919 3920 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3921 } 3922 3923 static bool sym_is_extern(const Elf64_Sym *sym) 3924 { 3925 int bind = ELF64_ST_BIND(sym->st_info); 3926 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3927 return sym->st_shndx == SHN_UNDEF && 3928 (bind == STB_GLOBAL || bind == STB_WEAK) && 3929 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3930 } 3931 3932 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3933 { 3934 int bind = ELF64_ST_BIND(sym->st_info); 3935 int type = ELF64_ST_TYPE(sym->st_info); 3936 3937 /* in .text section */ 3938 if (sym->st_shndx != text_shndx) 3939 return false; 3940 3941 /* local function */ 3942 if (bind == STB_LOCAL && type == STT_SECTION) 3943 return true; 3944 3945 /* global function */ 3946 return bind == STB_GLOBAL && type == STT_FUNC; 3947 } 3948 3949 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3950 { 3951 const struct btf_type *t; 3952 const char *tname; 3953 int i, n; 3954 3955 if (!btf) 3956 return -ESRCH; 3957 3958 n = btf__type_cnt(btf); 3959 for (i = 1; i < n; i++) { 3960 t = btf__type_by_id(btf, i); 3961 3962 if (!btf_is_var(t) && !btf_is_func(t)) 3963 continue; 3964 3965 tname = btf__name_by_offset(btf, t->name_off); 3966 if (strcmp(tname, ext_name)) 3967 continue; 3968 3969 if (btf_is_var(t) && 3970 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3971 return -EINVAL; 3972 3973 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3974 return -EINVAL; 3975 3976 return i; 3977 } 3978 3979 return -ENOENT; 3980 } 3981 3982 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3983 const struct btf_var_secinfo *vs; 3984 const struct btf_type *t; 3985 int i, j, n; 3986 3987 if (!btf) 3988 return -ESRCH; 3989 3990 n = btf__type_cnt(btf); 3991 for (i = 1; i < n; i++) { 3992 t = btf__type_by_id(btf, i); 3993 3994 if (!btf_is_datasec(t)) 3995 continue; 3996 3997 vs = btf_var_secinfos(t); 3998 for (j = 0; j < btf_vlen(t); j++, vs++) { 3999 if (vs->type == ext_btf_id) 4000 return i; 4001 } 4002 } 4003 4004 return -ENOENT; 4005 } 4006 4007 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 4008 bool *is_signed) 4009 { 4010 const struct btf_type *t; 4011 const char *name; 4012 4013 t = skip_mods_and_typedefs(btf, id, NULL); 4014 name = btf__name_by_offset(btf, t->name_off); 4015 4016 if (is_signed) 4017 *is_signed = false; 4018 switch (btf_kind(t)) { 4019 case BTF_KIND_INT: { 4020 int enc = btf_int_encoding(t); 4021 4022 if (enc & BTF_INT_BOOL) 4023 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 4024 if (is_signed) 4025 *is_signed = enc & BTF_INT_SIGNED; 4026 if (t->size == 1) 4027 return KCFG_CHAR; 4028 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 4029 return KCFG_UNKNOWN; 4030 return KCFG_INT; 4031 } 4032 case BTF_KIND_ENUM: 4033 if (t->size != 4) 4034 return KCFG_UNKNOWN; 4035 if (strcmp(name, "libbpf_tristate")) 4036 return KCFG_UNKNOWN; 4037 return KCFG_TRISTATE; 4038 case BTF_KIND_ENUM64: 4039 if (strcmp(name, "libbpf_tristate")) 4040 return KCFG_UNKNOWN; 4041 return KCFG_TRISTATE; 4042 case BTF_KIND_ARRAY: 4043 if (btf_array(t)->nelems == 0) 4044 return KCFG_UNKNOWN; 4045 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 4046 return KCFG_UNKNOWN; 4047 return KCFG_CHAR_ARR; 4048 default: 4049 return KCFG_UNKNOWN; 4050 } 4051 } 4052 4053 static int cmp_externs(const void *_a, const void *_b) 4054 { 4055 const struct extern_desc *a = _a; 4056 const struct extern_desc *b = _b; 4057 4058 if (a->type != b->type) 4059 return a->type < b->type ? -1 : 1; 4060 4061 if (a->type == EXT_KCFG) { 4062 /* descending order by alignment requirements */ 4063 if (a->kcfg.align != b->kcfg.align) 4064 return a->kcfg.align > b->kcfg.align ? -1 : 1; 4065 /* ascending order by size, within same alignment class */ 4066 if (a->kcfg.sz != b->kcfg.sz) 4067 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 4068 } 4069 4070 /* resolve ties by name */ 4071 return strcmp(a->name, b->name); 4072 } 4073 4074 static int find_int_btf_id(const struct btf *btf) 4075 { 4076 const struct btf_type *t; 4077 int i, n; 4078 4079 n = btf__type_cnt(btf); 4080 for (i = 1; i < n; i++) { 4081 t = btf__type_by_id(btf, i); 4082 4083 if (btf_is_int(t) && btf_int_bits(t) == 32) 4084 return i; 4085 } 4086 4087 return 0; 4088 } 4089 4090 static int add_dummy_ksym_var(struct btf *btf) 4091 { 4092 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 4093 const struct btf_var_secinfo *vs; 4094 const struct btf_type *sec; 4095 4096 if (!btf) 4097 return 0; 4098 4099 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 4100 BTF_KIND_DATASEC); 4101 if (sec_btf_id < 0) 4102 return 0; 4103 4104 sec = btf__type_by_id(btf, sec_btf_id); 4105 vs = btf_var_secinfos(sec); 4106 for (i = 0; i < btf_vlen(sec); i++, vs++) { 4107 const struct btf_type *vt; 4108 4109 vt = btf__type_by_id(btf, vs->type); 4110 if (btf_is_func(vt)) 4111 break; 4112 } 4113 4114 /* No func in ksyms sec. No need to add dummy var. */ 4115 if (i == btf_vlen(sec)) 4116 return 0; 4117 4118 int_btf_id = find_int_btf_id(btf); 4119 dummy_var_btf_id = btf__add_var(btf, 4120 "dummy_ksym", 4121 BTF_VAR_GLOBAL_ALLOCATED, 4122 int_btf_id); 4123 if (dummy_var_btf_id < 0) 4124 pr_warn("cannot create a dummy_ksym var\n"); 4125 4126 return dummy_var_btf_id; 4127 } 4128 4129 static int bpf_object__collect_externs(struct bpf_object *obj) 4130 { 4131 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 4132 const struct btf_type *t; 4133 struct extern_desc *ext; 4134 int i, n, off, dummy_var_btf_id; 4135 const char *ext_name, *sec_name; 4136 size_t ext_essent_len; 4137 Elf_Scn *scn; 4138 Elf64_Shdr *sh; 4139 4140 if (!obj->efile.symbols) 4141 return 0; 4142 4143 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 4144 sh = elf_sec_hdr(obj, scn); 4145 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 4146 return -LIBBPF_ERRNO__FORMAT; 4147 4148 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 4149 if (dummy_var_btf_id < 0) 4150 return dummy_var_btf_id; 4151 4152 n = sh->sh_size / sh->sh_entsize; 4153 pr_debug("looking for externs among %d symbols...\n", n); 4154 4155 for (i = 0; i < n; i++) { 4156 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 4157 4158 if (!sym) 4159 return -LIBBPF_ERRNO__FORMAT; 4160 if (!sym_is_extern(sym)) 4161 continue; 4162 ext_name = elf_sym_str(obj, sym->st_name); 4163 if (!ext_name || !ext_name[0]) 4164 continue; 4165 4166 ext = obj->externs; 4167 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 4168 if (!ext) 4169 return -ENOMEM; 4170 obj->externs = ext; 4171 ext = &ext[obj->nr_extern]; 4172 memset(ext, 0, sizeof(*ext)); 4173 obj->nr_extern++; 4174 4175 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 4176 if (ext->btf_id <= 0) { 4177 pr_warn("failed to find BTF for extern '%s': %d\n", 4178 ext_name, ext->btf_id); 4179 return ext->btf_id; 4180 } 4181 t = btf__type_by_id(obj->btf, ext->btf_id); 4182 ext->name = btf__name_by_offset(obj->btf, t->name_off); 4183 ext->sym_idx = i; 4184 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 4185 4186 ext_essent_len = bpf_core_essential_name_len(ext->name); 4187 ext->essent_name = NULL; 4188 if (ext_essent_len != strlen(ext->name)) { 4189 ext->essent_name = strndup(ext->name, ext_essent_len); 4190 if (!ext->essent_name) 4191 return -ENOMEM; 4192 } 4193 4194 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 4195 if (ext->sec_btf_id <= 0) { 4196 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 4197 ext_name, ext->btf_id, ext->sec_btf_id); 4198 return ext->sec_btf_id; 4199 } 4200 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 4201 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 4202 4203 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 4204 if (btf_is_func(t)) { 4205 pr_warn("extern function %s is unsupported under %s section\n", 4206 ext->name, KCONFIG_SEC); 4207 return -ENOTSUP; 4208 } 4209 kcfg_sec = sec; 4210 ext->type = EXT_KCFG; 4211 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 4212 if (ext->kcfg.sz <= 0) { 4213 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 4214 ext_name, ext->kcfg.sz); 4215 return ext->kcfg.sz; 4216 } 4217 ext->kcfg.align = btf__align_of(obj->btf, t->type); 4218 if (ext->kcfg.align <= 0) { 4219 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 4220 ext_name, ext->kcfg.align); 4221 return -EINVAL; 4222 } 4223 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 4224 &ext->kcfg.is_signed); 4225 if (ext->kcfg.type == KCFG_UNKNOWN) { 4226 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 4227 return -ENOTSUP; 4228 } 4229 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 4230 ksym_sec = sec; 4231 ext->type = EXT_KSYM; 4232 skip_mods_and_typedefs(obj->btf, t->type, 4233 &ext->ksym.type_id); 4234 } else { 4235 pr_warn("unrecognized extern section '%s'\n", sec_name); 4236 return -ENOTSUP; 4237 } 4238 } 4239 pr_debug("collected %d externs total\n", obj->nr_extern); 4240 4241 if (!obj->nr_extern) 4242 return 0; 4243 4244 /* sort externs by type, for kcfg ones also by (align, size, name) */ 4245 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 4246 4247 /* for .ksyms section, we need to turn all externs into allocated 4248 * variables in BTF to pass kernel verification; we do this by 4249 * pretending that each extern is a 8-byte variable 4250 */ 4251 if (ksym_sec) { 4252 /* find existing 4-byte integer type in BTF to use for fake 4253 * extern variables in DATASEC 4254 */ 4255 int int_btf_id = find_int_btf_id(obj->btf); 4256 /* For extern function, a dummy_var added earlier 4257 * will be used to replace the vs->type and 4258 * its name string will be used to refill 4259 * the missing param's name. 4260 */ 4261 const struct btf_type *dummy_var; 4262 4263 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 4264 for (i = 0; i < obj->nr_extern; i++) { 4265 ext = &obj->externs[i]; 4266 if (ext->type != EXT_KSYM) 4267 continue; 4268 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 4269 i, ext->sym_idx, ext->name); 4270 } 4271 4272 sec = ksym_sec; 4273 n = btf_vlen(sec); 4274 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 4275 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4276 struct btf_type *vt; 4277 4278 vt = (void *)btf__type_by_id(obj->btf, vs->type); 4279 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 4280 ext = find_extern_by_name(obj, ext_name); 4281 if (!ext) { 4282 pr_warn("failed to find extern definition for BTF %s '%s'\n", 4283 btf_kind_str(vt), ext_name); 4284 return -ESRCH; 4285 } 4286 if (btf_is_func(vt)) { 4287 const struct btf_type *func_proto; 4288 struct btf_param *param; 4289 int j; 4290 4291 func_proto = btf__type_by_id(obj->btf, 4292 vt->type); 4293 param = btf_params(func_proto); 4294 /* Reuse the dummy_var string if the 4295 * func proto does not have param name. 4296 */ 4297 for (j = 0; j < btf_vlen(func_proto); j++) 4298 if (param[j].type && !param[j].name_off) 4299 param[j].name_off = 4300 dummy_var->name_off; 4301 vs->type = dummy_var_btf_id; 4302 vt->info &= ~0xffff; 4303 vt->info |= BTF_FUNC_GLOBAL; 4304 } else { 4305 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4306 vt->type = int_btf_id; 4307 } 4308 vs->offset = off; 4309 vs->size = sizeof(int); 4310 } 4311 sec->size = off; 4312 } 4313 4314 if (kcfg_sec) { 4315 sec = kcfg_sec; 4316 /* for kcfg externs calculate their offsets within a .kconfig map */ 4317 off = 0; 4318 for (i = 0; i < obj->nr_extern; i++) { 4319 ext = &obj->externs[i]; 4320 if (ext->type != EXT_KCFG) 4321 continue; 4322 4323 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 4324 off = ext->kcfg.data_off + ext->kcfg.sz; 4325 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 4326 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 4327 } 4328 sec->size = off; 4329 n = btf_vlen(sec); 4330 for (i = 0; i < n; i++) { 4331 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 4332 4333 t = btf__type_by_id(obj->btf, vs->type); 4334 ext_name = btf__name_by_offset(obj->btf, t->name_off); 4335 ext = find_extern_by_name(obj, ext_name); 4336 if (!ext) { 4337 pr_warn("failed to find extern definition for BTF var '%s'\n", 4338 ext_name); 4339 return -ESRCH; 4340 } 4341 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 4342 vs->offset = ext->kcfg.data_off; 4343 } 4344 } 4345 return 0; 4346 } 4347 4348 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 4349 { 4350 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 4351 } 4352 4353 struct bpf_program * 4354 bpf_object__find_program_by_name(const struct bpf_object *obj, 4355 const char *name) 4356 { 4357 struct bpf_program *prog; 4358 4359 bpf_object__for_each_program(prog, obj) { 4360 if (prog_is_subprog(obj, prog)) 4361 continue; 4362 if (!strcmp(prog->name, name)) 4363 return prog; 4364 } 4365 return errno = ENOENT, NULL; 4366 } 4367 4368 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 4369 int shndx) 4370 { 4371 switch (obj->efile.secs[shndx].sec_type) { 4372 case SEC_BSS: 4373 case SEC_DATA: 4374 case SEC_RODATA: 4375 return true; 4376 default: 4377 return false; 4378 } 4379 } 4380 4381 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 4382 int shndx) 4383 { 4384 return shndx == obj->efile.btf_maps_shndx; 4385 } 4386 4387 static enum libbpf_map_type 4388 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 4389 { 4390 if (shndx == obj->efile.symbols_shndx) 4391 return LIBBPF_MAP_KCONFIG; 4392 4393 switch (obj->efile.secs[shndx].sec_type) { 4394 case SEC_BSS: 4395 return LIBBPF_MAP_BSS; 4396 case SEC_DATA: 4397 return LIBBPF_MAP_DATA; 4398 case SEC_RODATA: 4399 return LIBBPF_MAP_RODATA; 4400 default: 4401 return LIBBPF_MAP_UNSPEC; 4402 } 4403 } 4404 4405 static int bpf_program__record_reloc(struct bpf_program *prog, 4406 struct reloc_desc *reloc_desc, 4407 __u32 insn_idx, const char *sym_name, 4408 const Elf64_Sym *sym, const Elf64_Rel *rel) 4409 { 4410 struct bpf_insn *insn = &prog->insns[insn_idx]; 4411 size_t map_idx, nr_maps = prog->obj->nr_maps; 4412 struct bpf_object *obj = prog->obj; 4413 __u32 shdr_idx = sym->st_shndx; 4414 enum libbpf_map_type type; 4415 const char *sym_sec_name; 4416 struct bpf_map *map; 4417 4418 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 4419 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 4420 prog->name, sym_name, insn_idx, insn->code); 4421 return -LIBBPF_ERRNO__RELOC; 4422 } 4423 4424 if (sym_is_extern(sym)) { 4425 int sym_idx = ELF64_R_SYM(rel->r_info); 4426 int i, n = obj->nr_extern; 4427 struct extern_desc *ext; 4428 4429 for (i = 0; i < n; i++) { 4430 ext = &obj->externs[i]; 4431 if (ext->sym_idx == sym_idx) 4432 break; 4433 } 4434 if (i >= n) { 4435 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 4436 prog->name, sym_name, sym_idx); 4437 return -LIBBPF_ERRNO__RELOC; 4438 } 4439 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 4440 prog->name, i, ext->name, ext->sym_idx, insn_idx); 4441 if (insn->code == (BPF_JMP | BPF_CALL)) 4442 reloc_desc->type = RELO_EXTERN_CALL; 4443 else 4444 reloc_desc->type = RELO_EXTERN_LD64; 4445 reloc_desc->insn_idx = insn_idx; 4446 reloc_desc->ext_idx = i; 4447 return 0; 4448 } 4449 4450 /* sub-program call relocation */ 4451 if (is_call_insn(insn)) { 4452 if (insn->src_reg != BPF_PSEUDO_CALL) { 4453 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4454 return -LIBBPF_ERRNO__RELOC; 4455 } 4456 /* text_shndx can be 0, if no default "main" program exists */ 4457 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4458 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4459 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4460 prog->name, sym_name, sym_sec_name); 4461 return -LIBBPF_ERRNO__RELOC; 4462 } 4463 if (sym->st_value % BPF_INSN_SZ) { 4464 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4465 prog->name, sym_name, (size_t)sym->st_value); 4466 return -LIBBPF_ERRNO__RELOC; 4467 } 4468 reloc_desc->type = RELO_CALL; 4469 reloc_desc->insn_idx = insn_idx; 4470 reloc_desc->sym_off = sym->st_value; 4471 return 0; 4472 } 4473 4474 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4475 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4476 prog->name, sym_name, shdr_idx); 4477 return -LIBBPF_ERRNO__RELOC; 4478 } 4479 4480 /* loading subprog addresses */ 4481 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4482 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4483 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4484 */ 4485 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4486 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4487 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4488 return -LIBBPF_ERRNO__RELOC; 4489 } 4490 4491 reloc_desc->type = RELO_SUBPROG_ADDR; 4492 reloc_desc->insn_idx = insn_idx; 4493 reloc_desc->sym_off = sym->st_value; 4494 return 0; 4495 } 4496 4497 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4498 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4499 4500 /* arena data relocation */ 4501 if (shdr_idx == obj->efile.arena_data_shndx) { 4502 reloc_desc->type = RELO_DATA; 4503 reloc_desc->insn_idx = insn_idx; 4504 reloc_desc->map_idx = obj->arena_map - obj->maps; 4505 reloc_desc->sym_off = sym->st_value; 4506 return 0; 4507 } 4508 4509 /* generic map reference relocation */ 4510 if (type == LIBBPF_MAP_UNSPEC) { 4511 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4512 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4513 prog->name, sym_name, sym_sec_name); 4514 return -LIBBPF_ERRNO__RELOC; 4515 } 4516 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4517 map = &obj->maps[map_idx]; 4518 if (map->libbpf_type != type || 4519 map->sec_idx != sym->st_shndx || 4520 map->sec_offset != sym->st_value) 4521 continue; 4522 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4523 prog->name, map_idx, map->name, map->sec_idx, 4524 map->sec_offset, insn_idx); 4525 break; 4526 } 4527 if (map_idx >= nr_maps) { 4528 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4529 prog->name, sym_sec_name, (size_t)sym->st_value); 4530 return -LIBBPF_ERRNO__RELOC; 4531 } 4532 reloc_desc->type = RELO_LD64; 4533 reloc_desc->insn_idx = insn_idx; 4534 reloc_desc->map_idx = map_idx; 4535 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4536 return 0; 4537 } 4538 4539 /* global data map relocation */ 4540 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4541 pr_warn("prog '%s': bad data relo against section '%s'\n", 4542 prog->name, sym_sec_name); 4543 return -LIBBPF_ERRNO__RELOC; 4544 } 4545 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4546 map = &obj->maps[map_idx]; 4547 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4548 continue; 4549 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4550 prog->name, map_idx, map->name, map->sec_idx, 4551 map->sec_offset, insn_idx); 4552 break; 4553 } 4554 if (map_idx >= nr_maps) { 4555 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4556 prog->name, sym_sec_name); 4557 return -LIBBPF_ERRNO__RELOC; 4558 } 4559 4560 reloc_desc->type = RELO_DATA; 4561 reloc_desc->insn_idx = insn_idx; 4562 reloc_desc->map_idx = map_idx; 4563 reloc_desc->sym_off = sym->st_value; 4564 return 0; 4565 } 4566 4567 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4568 { 4569 return insn_idx >= prog->sec_insn_off && 4570 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4571 } 4572 4573 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4574 size_t sec_idx, size_t insn_idx) 4575 { 4576 int l = 0, r = obj->nr_programs - 1, m; 4577 struct bpf_program *prog; 4578 4579 if (!obj->nr_programs) 4580 return NULL; 4581 4582 while (l < r) { 4583 m = l + (r - l + 1) / 2; 4584 prog = &obj->programs[m]; 4585 4586 if (prog->sec_idx < sec_idx || 4587 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4588 l = m; 4589 else 4590 r = m - 1; 4591 } 4592 /* matching program could be at index l, but it still might be the 4593 * wrong one, so we need to double check conditions for the last time 4594 */ 4595 prog = &obj->programs[l]; 4596 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4597 return prog; 4598 return NULL; 4599 } 4600 4601 static int 4602 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4603 { 4604 const char *relo_sec_name, *sec_name; 4605 size_t sec_idx = shdr->sh_info, sym_idx; 4606 struct bpf_program *prog; 4607 struct reloc_desc *relos; 4608 int err, i, nrels; 4609 const char *sym_name; 4610 __u32 insn_idx; 4611 Elf_Scn *scn; 4612 Elf_Data *scn_data; 4613 Elf64_Sym *sym; 4614 Elf64_Rel *rel; 4615 4616 if (sec_idx >= obj->efile.sec_cnt) 4617 return -EINVAL; 4618 4619 scn = elf_sec_by_idx(obj, sec_idx); 4620 scn_data = elf_sec_data(obj, scn); 4621 if (!scn_data) 4622 return -LIBBPF_ERRNO__FORMAT; 4623 4624 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4625 sec_name = elf_sec_name(obj, scn); 4626 if (!relo_sec_name || !sec_name) 4627 return -EINVAL; 4628 4629 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4630 relo_sec_name, sec_idx, sec_name); 4631 nrels = shdr->sh_size / shdr->sh_entsize; 4632 4633 for (i = 0; i < nrels; i++) { 4634 rel = elf_rel_by_idx(data, i); 4635 if (!rel) { 4636 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4637 return -LIBBPF_ERRNO__FORMAT; 4638 } 4639 4640 sym_idx = ELF64_R_SYM(rel->r_info); 4641 sym = elf_sym_by_idx(obj, sym_idx); 4642 if (!sym) { 4643 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4644 relo_sec_name, sym_idx, i); 4645 return -LIBBPF_ERRNO__FORMAT; 4646 } 4647 4648 if (sym->st_shndx >= obj->efile.sec_cnt) { 4649 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4650 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4651 return -LIBBPF_ERRNO__FORMAT; 4652 } 4653 4654 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4655 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4656 relo_sec_name, (size_t)rel->r_offset, i); 4657 return -LIBBPF_ERRNO__FORMAT; 4658 } 4659 4660 insn_idx = rel->r_offset / BPF_INSN_SZ; 4661 /* relocations against static functions are recorded as 4662 * relocations against the section that contains a function; 4663 * in such case, symbol will be STT_SECTION and sym.st_name 4664 * will point to empty string (0), so fetch section name 4665 * instead 4666 */ 4667 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4668 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4669 else 4670 sym_name = elf_sym_str(obj, sym->st_name); 4671 sym_name = sym_name ?: "<?"; 4672 4673 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4674 relo_sec_name, i, insn_idx, sym_name); 4675 4676 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4677 if (!prog) { 4678 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4679 relo_sec_name, i, sec_name, insn_idx); 4680 continue; 4681 } 4682 4683 relos = libbpf_reallocarray(prog->reloc_desc, 4684 prog->nr_reloc + 1, sizeof(*relos)); 4685 if (!relos) 4686 return -ENOMEM; 4687 prog->reloc_desc = relos; 4688 4689 /* adjust insn_idx to local BPF program frame of reference */ 4690 insn_idx -= prog->sec_insn_off; 4691 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4692 insn_idx, sym_name, sym, rel); 4693 if (err) 4694 return err; 4695 4696 prog->nr_reloc++; 4697 } 4698 return 0; 4699 } 4700 4701 static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map) 4702 { 4703 int id; 4704 4705 if (!obj->btf) 4706 return -ENOENT; 4707 4708 /* if it's BTF-defined map, we don't need to search for type IDs. 4709 * For struct_ops map, it does not need btf_key_type_id and 4710 * btf_value_type_id. 4711 */ 4712 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4713 return 0; 4714 4715 /* 4716 * LLVM annotates global data differently in BTF, that is, 4717 * only as '.data', '.bss' or '.rodata'. 4718 */ 4719 if (!bpf_map__is_internal(map)) 4720 return -ENOENT; 4721 4722 id = btf__find_by_name(obj->btf, map->real_name); 4723 if (id < 0) 4724 return id; 4725 4726 map->btf_key_type_id = 0; 4727 map->btf_value_type_id = id; 4728 return 0; 4729 } 4730 4731 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4732 { 4733 char file[PATH_MAX], buff[4096]; 4734 FILE *fp; 4735 __u32 val; 4736 int err; 4737 4738 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4739 memset(info, 0, sizeof(*info)); 4740 4741 fp = fopen(file, "re"); 4742 if (!fp) { 4743 err = -errno; 4744 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4745 err); 4746 return err; 4747 } 4748 4749 while (fgets(buff, sizeof(buff), fp)) { 4750 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4751 info->type = val; 4752 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4753 info->key_size = val; 4754 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4755 info->value_size = val; 4756 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4757 info->max_entries = val; 4758 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4759 info->map_flags = val; 4760 } 4761 4762 fclose(fp); 4763 4764 return 0; 4765 } 4766 4767 bool bpf_map__autocreate(const struct bpf_map *map) 4768 { 4769 return map->autocreate; 4770 } 4771 4772 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4773 { 4774 if (map->obj->loaded) 4775 return libbpf_err(-EBUSY); 4776 4777 map->autocreate = autocreate; 4778 return 0; 4779 } 4780 4781 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4782 { 4783 struct bpf_map_info info; 4784 __u32 len = sizeof(info), name_len; 4785 int new_fd, err; 4786 char *new_name; 4787 4788 memset(&info, 0, len); 4789 err = bpf_map_get_info_by_fd(fd, &info, &len); 4790 if (err && errno == EINVAL) 4791 err = bpf_get_map_info_from_fdinfo(fd, &info); 4792 if (err) 4793 return libbpf_err(err); 4794 4795 name_len = strlen(info.name); 4796 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4797 new_name = strdup(map->name); 4798 else 4799 new_name = strdup(info.name); 4800 4801 if (!new_name) 4802 return libbpf_err(-errno); 4803 4804 /* 4805 * Like dup(), but make sure new FD is >= 3 and has O_CLOEXEC set. 4806 * This is similar to what we do in ensure_good_fd(), but without 4807 * closing original FD. 4808 */ 4809 new_fd = fcntl(fd, F_DUPFD_CLOEXEC, 3); 4810 if (new_fd < 0) { 4811 err = -errno; 4812 goto err_free_new_name; 4813 } 4814 4815 err = reuse_fd(map->fd, new_fd); 4816 if (err) 4817 goto err_free_new_name; 4818 4819 free(map->name); 4820 4821 map->name = new_name; 4822 map->def.type = info.type; 4823 map->def.key_size = info.key_size; 4824 map->def.value_size = info.value_size; 4825 map->def.max_entries = info.max_entries; 4826 map->def.map_flags = info.map_flags; 4827 map->btf_key_type_id = info.btf_key_type_id; 4828 map->btf_value_type_id = info.btf_value_type_id; 4829 map->reused = true; 4830 map->map_extra = info.map_extra; 4831 4832 return 0; 4833 4834 err_free_new_name: 4835 free(new_name); 4836 return libbpf_err(err); 4837 } 4838 4839 __u32 bpf_map__max_entries(const struct bpf_map *map) 4840 { 4841 return map->def.max_entries; 4842 } 4843 4844 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4845 { 4846 if (!bpf_map_type__is_map_in_map(map->def.type)) 4847 return errno = EINVAL, NULL; 4848 4849 return map->inner_map; 4850 } 4851 4852 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4853 { 4854 if (map->obj->loaded) 4855 return libbpf_err(-EBUSY); 4856 4857 map->def.max_entries = max_entries; 4858 4859 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4860 if (map_is_ringbuf(map)) 4861 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4862 4863 return 0; 4864 } 4865 4866 static int bpf_object_prepare_token(struct bpf_object *obj) 4867 { 4868 const char *bpffs_path; 4869 int bpffs_fd = -1, token_fd, err; 4870 bool mandatory; 4871 enum libbpf_print_level level; 4872 4873 /* token is explicitly prevented */ 4874 if (obj->token_path && obj->token_path[0] == '\0') { 4875 pr_debug("object '%s': token is prevented, skipping...\n", obj->name); 4876 return 0; 4877 } 4878 4879 mandatory = obj->token_path != NULL; 4880 level = mandatory ? LIBBPF_WARN : LIBBPF_DEBUG; 4881 4882 bpffs_path = obj->token_path ?: BPF_FS_DEFAULT_PATH; 4883 bpffs_fd = open(bpffs_path, O_DIRECTORY, O_RDWR); 4884 if (bpffs_fd < 0) { 4885 err = -errno; 4886 __pr(level, "object '%s': failed (%d) to open BPF FS mount at '%s'%s\n", 4887 obj->name, err, bpffs_path, 4888 mandatory ? "" : ", skipping optional step..."); 4889 return mandatory ? err : 0; 4890 } 4891 4892 token_fd = bpf_token_create(bpffs_fd, 0); 4893 close(bpffs_fd); 4894 if (token_fd < 0) { 4895 if (!mandatory && token_fd == -ENOENT) { 4896 pr_debug("object '%s': BPF FS at '%s' doesn't have BPF token delegation set up, skipping...\n", 4897 obj->name, bpffs_path); 4898 return 0; 4899 } 4900 __pr(level, "object '%s': failed (%d) to create BPF token from '%s'%s\n", 4901 obj->name, token_fd, bpffs_path, 4902 mandatory ? "" : ", skipping optional step..."); 4903 return mandatory ? token_fd : 0; 4904 } 4905 4906 obj->feat_cache = calloc(1, sizeof(*obj->feat_cache)); 4907 if (!obj->feat_cache) { 4908 close(token_fd); 4909 return -ENOMEM; 4910 } 4911 4912 obj->token_fd = token_fd; 4913 obj->feat_cache->token_fd = token_fd; 4914 4915 return 0; 4916 } 4917 4918 static int 4919 bpf_object__probe_loading(struct bpf_object *obj) 4920 { 4921 char *cp, errmsg[STRERR_BUFSIZE]; 4922 struct bpf_insn insns[] = { 4923 BPF_MOV64_IMM(BPF_REG_0, 0), 4924 BPF_EXIT_INSN(), 4925 }; 4926 int ret, insn_cnt = ARRAY_SIZE(insns); 4927 LIBBPF_OPTS(bpf_prog_load_opts, opts, 4928 .token_fd = obj->token_fd, 4929 .prog_flags = obj->token_fd ? BPF_F_TOKEN_FD : 0, 4930 ); 4931 4932 if (obj->gen_loader) 4933 return 0; 4934 4935 ret = bump_rlimit_memlock(); 4936 if (ret) 4937 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4938 4939 /* make sure basic loading works */ 4940 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, &opts); 4941 if (ret < 0) 4942 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, &opts); 4943 if (ret < 0) { 4944 ret = errno; 4945 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4946 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4947 "program. Make sure your kernel supports BPF " 4948 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4949 "set to big enough value.\n", __func__, cp, ret); 4950 return -ret; 4951 } 4952 close(ret); 4953 4954 return 0; 4955 } 4956 4957 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4958 { 4959 if (obj->gen_loader) 4960 /* To generate loader program assume the latest kernel 4961 * to avoid doing extra prog_load, map_create syscalls. 4962 */ 4963 return true; 4964 4965 if (obj->token_fd) 4966 return feat_supported(obj->feat_cache, feat_id); 4967 4968 return feat_supported(NULL, feat_id); 4969 } 4970 4971 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4972 { 4973 struct bpf_map_info map_info; 4974 char msg[STRERR_BUFSIZE]; 4975 __u32 map_info_len = sizeof(map_info); 4976 int err; 4977 4978 memset(&map_info, 0, map_info_len); 4979 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len); 4980 if (err && errno == EINVAL) 4981 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4982 if (err) { 4983 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4984 libbpf_strerror_r(errno, msg, sizeof(msg))); 4985 return false; 4986 } 4987 4988 return (map_info.type == map->def.type && 4989 map_info.key_size == map->def.key_size && 4990 map_info.value_size == map->def.value_size && 4991 map_info.max_entries == map->def.max_entries && 4992 map_info.map_flags == map->def.map_flags && 4993 map_info.map_extra == map->map_extra); 4994 } 4995 4996 static int 4997 bpf_object__reuse_map(struct bpf_map *map) 4998 { 4999 char *cp, errmsg[STRERR_BUFSIZE]; 5000 int err, pin_fd; 5001 5002 pin_fd = bpf_obj_get(map->pin_path); 5003 if (pin_fd < 0) { 5004 err = -errno; 5005 if (err == -ENOENT) { 5006 pr_debug("found no pinned map to reuse at '%s'\n", 5007 map->pin_path); 5008 return 0; 5009 } 5010 5011 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 5012 pr_warn("couldn't retrieve pinned map '%s': %s\n", 5013 map->pin_path, cp); 5014 return err; 5015 } 5016 5017 if (!map_is_reuse_compat(map, pin_fd)) { 5018 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 5019 map->pin_path); 5020 close(pin_fd); 5021 return -EINVAL; 5022 } 5023 5024 err = bpf_map__reuse_fd(map, pin_fd); 5025 close(pin_fd); 5026 if (err) 5027 return err; 5028 5029 map->pinned = true; 5030 pr_debug("reused pinned map at '%s'\n", map->pin_path); 5031 5032 return 0; 5033 } 5034 5035 static int 5036 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 5037 { 5038 enum libbpf_map_type map_type = map->libbpf_type; 5039 char *cp, errmsg[STRERR_BUFSIZE]; 5040 int err, zero = 0; 5041 5042 if (obj->gen_loader) { 5043 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 5044 map->mmaped, map->def.value_size); 5045 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 5046 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 5047 return 0; 5048 } 5049 5050 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 5051 if (err) { 5052 err = -errno; 5053 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5054 pr_warn("Error setting initial map(%s) contents: %s\n", 5055 map->name, cp); 5056 return err; 5057 } 5058 5059 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 5060 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 5061 err = bpf_map_freeze(map->fd); 5062 if (err) { 5063 err = -errno; 5064 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5065 pr_warn("Error freezing map(%s) as read-only: %s\n", 5066 map->name, cp); 5067 return err; 5068 } 5069 } 5070 return 0; 5071 } 5072 5073 static void bpf_map__destroy(struct bpf_map *map); 5074 5075 static bool map_is_created(const struct bpf_map *map) 5076 { 5077 return map->obj->loaded || map->reused; 5078 } 5079 5080 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 5081 { 5082 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 5083 struct bpf_map_def *def = &map->def; 5084 const char *map_name = NULL; 5085 int err = 0, map_fd; 5086 5087 if (kernel_supports(obj, FEAT_PROG_NAME)) 5088 map_name = map->name; 5089 create_attr.map_ifindex = map->map_ifindex; 5090 create_attr.map_flags = def->map_flags; 5091 create_attr.numa_node = map->numa_node; 5092 create_attr.map_extra = map->map_extra; 5093 create_attr.token_fd = obj->token_fd; 5094 if (obj->token_fd) 5095 create_attr.map_flags |= BPF_F_TOKEN_FD; 5096 5097 if (bpf_map__is_struct_ops(map)) { 5098 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 5099 if (map->mod_btf_fd >= 0) { 5100 create_attr.value_type_btf_obj_fd = map->mod_btf_fd; 5101 create_attr.map_flags |= BPF_F_VTYPE_BTF_OBJ_FD; 5102 } 5103 } 5104 5105 if (obj->btf && btf__fd(obj->btf) >= 0) { 5106 create_attr.btf_fd = btf__fd(obj->btf); 5107 create_attr.btf_key_type_id = map->btf_key_type_id; 5108 create_attr.btf_value_type_id = map->btf_value_type_id; 5109 } 5110 5111 if (bpf_map_type__is_map_in_map(def->type)) { 5112 if (map->inner_map) { 5113 err = map_set_def_max_entries(map->inner_map); 5114 if (err) 5115 return err; 5116 err = bpf_object__create_map(obj, map->inner_map, true); 5117 if (err) { 5118 pr_warn("map '%s': failed to create inner map: %d\n", 5119 map->name, err); 5120 return err; 5121 } 5122 map->inner_map_fd = map->inner_map->fd; 5123 } 5124 if (map->inner_map_fd >= 0) 5125 create_attr.inner_map_fd = map->inner_map_fd; 5126 } 5127 5128 switch (def->type) { 5129 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5130 case BPF_MAP_TYPE_CGROUP_ARRAY: 5131 case BPF_MAP_TYPE_STACK_TRACE: 5132 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5133 case BPF_MAP_TYPE_HASH_OF_MAPS: 5134 case BPF_MAP_TYPE_DEVMAP: 5135 case BPF_MAP_TYPE_DEVMAP_HASH: 5136 case BPF_MAP_TYPE_CPUMAP: 5137 case BPF_MAP_TYPE_XSKMAP: 5138 case BPF_MAP_TYPE_SOCKMAP: 5139 case BPF_MAP_TYPE_SOCKHASH: 5140 case BPF_MAP_TYPE_QUEUE: 5141 case BPF_MAP_TYPE_STACK: 5142 case BPF_MAP_TYPE_ARENA: 5143 create_attr.btf_fd = 0; 5144 create_attr.btf_key_type_id = 0; 5145 create_attr.btf_value_type_id = 0; 5146 map->btf_key_type_id = 0; 5147 map->btf_value_type_id = 0; 5148 break; 5149 case BPF_MAP_TYPE_STRUCT_OPS: 5150 create_attr.btf_value_type_id = 0; 5151 break; 5152 default: 5153 break; 5154 } 5155 5156 if (obj->gen_loader) { 5157 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5158 def->key_size, def->value_size, def->max_entries, 5159 &create_attr, is_inner ? -1 : map - obj->maps); 5160 /* We keep pretenting we have valid FD to pass various fd >= 0 5161 * checks by just keeping original placeholder FDs in place. 5162 * See bpf_object__add_map() comment. 5163 * This placeholder fd will not be used with any syscall and 5164 * will be reset to -1 eventually. 5165 */ 5166 map_fd = map->fd; 5167 } else { 5168 map_fd = bpf_map_create(def->type, map_name, 5169 def->key_size, def->value_size, 5170 def->max_entries, &create_attr); 5171 } 5172 if (map_fd < 0 && (create_attr.btf_key_type_id || create_attr.btf_value_type_id)) { 5173 char *cp, errmsg[STRERR_BUFSIZE]; 5174 5175 err = -errno; 5176 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5177 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5178 map->name, cp, err); 5179 create_attr.btf_fd = 0; 5180 create_attr.btf_key_type_id = 0; 5181 create_attr.btf_value_type_id = 0; 5182 map->btf_key_type_id = 0; 5183 map->btf_value_type_id = 0; 5184 map_fd = bpf_map_create(def->type, map_name, 5185 def->key_size, def->value_size, 5186 def->max_entries, &create_attr); 5187 } 5188 5189 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5190 if (obj->gen_loader) 5191 map->inner_map->fd = -1; 5192 bpf_map__destroy(map->inner_map); 5193 zfree(&map->inner_map); 5194 } 5195 5196 if (map_fd < 0) 5197 return map_fd; 5198 5199 /* obj->gen_loader case, prevent reuse_fd() from closing map_fd */ 5200 if (map->fd == map_fd) 5201 return 0; 5202 5203 /* Keep placeholder FD value but now point it to the BPF map object. 5204 * This way everything that relied on this map's FD (e.g., relocated 5205 * ldimm64 instructions) will stay valid and won't need adjustments. 5206 * map->fd stays valid but now point to what map_fd points to. 5207 */ 5208 return reuse_fd(map->fd, map_fd); 5209 } 5210 5211 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5212 { 5213 const struct bpf_map *targ_map; 5214 unsigned int i; 5215 int fd, err = 0; 5216 5217 for (i = 0; i < map->init_slots_sz; i++) { 5218 if (!map->init_slots[i]) 5219 continue; 5220 5221 targ_map = map->init_slots[i]; 5222 fd = targ_map->fd; 5223 5224 if (obj->gen_loader) { 5225 bpf_gen__populate_outer_map(obj->gen_loader, 5226 map - obj->maps, i, 5227 targ_map - obj->maps); 5228 } else { 5229 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5230 } 5231 if (err) { 5232 err = -errno; 5233 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5234 map->name, i, targ_map->name, fd, err); 5235 return err; 5236 } 5237 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5238 map->name, i, targ_map->name, fd); 5239 } 5240 5241 zfree(&map->init_slots); 5242 map->init_slots_sz = 0; 5243 5244 return 0; 5245 } 5246 5247 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5248 { 5249 const struct bpf_program *targ_prog; 5250 unsigned int i; 5251 int fd, err; 5252 5253 if (obj->gen_loader) 5254 return -ENOTSUP; 5255 5256 for (i = 0; i < map->init_slots_sz; i++) { 5257 if (!map->init_slots[i]) 5258 continue; 5259 5260 targ_prog = map->init_slots[i]; 5261 fd = bpf_program__fd(targ_prog); 5262 5263 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5264 if (err) { 5265 err = -errno; 5266 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5267 map->name, i, targ_prog->name, fd, err); 5268 return err; 5269 } 5270 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5271 map->name, i, targ_prog->name, fd); 5272 } 5273 5274 zfree(&map->init_slots); 5275 map->init_slots_sz = 0; 5276 5277 return 0; 5278 } 5279 5280 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5281 { 5282 struct bpf_map *map; 5283 int i, err; 5284 5285 for (i = 0; i < obj->nr_maps; i++) { 5286 map = &obj->maps[i]; 5287 5288 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5289 continue; 5290 5291 err = init_prog_array_slots(obj, map); 5292 if (err < 0) 5293 return err; 5294 } 5295 return 0; 5296 } 5297 5298 static int map_set_def_max_entries(struct bpf_map *map) 5299 { 5300 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5301 int nr_cpus; 5302 5303 nr_cpus = libbpf_num_possible_cpus(); 5304 if (nr_cpus < 0) { 5305 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5306 map->name, nr_cpus); 5307 return nr_cpus; 5308 } 5309 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5310 map->def.max_entries = nr_cpus; 5311 } 5312 5313 return 0; 5314 } 5315 5316 static int 5317 bpf_object__create_maps(struct bpf_object *obj) 5318 { 5319 struct bpf_map *map; 5320 char *cp, errmsg[STRERR_BUFSIZE]; 5321 unsigned int i, j; 5322 int err; 5323 bool retried; 5324 5325 for (i = 0; i < obj->nr_maps; i++) { 5326 map = &obj->maps[i]; 5327 5328 /* To support old kernels, we skip creating global data maps 5329 * (.rodata, .data, .kconfig, etc); later on, during program 5330 * loading, if we detect that at least one of the to-be-loaded 5331 * programs is referencing any global data map, we'll error 5332 * out with program name and relocation index logged. 5333 * This approach allows to accommodate Clang emitting 5334 * unnecessary .rodata.str1.1 sections for string literals, 5335 * but also it allows to have CO-RE applications that use 5336 * global variables in some of BPF programs, but not others. 5337 * If those global variable-using programs are not loaded at 5338 * runtime due to bpf_program__set_autoload(prog, false), 5339 * bpf_object loading will succeed just fine even on old 5340 * kernels. 5341 */ 5342 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5343 map->autocreate = false; 5344 5345 if (!map->autocreate) { 5346 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5347 continue; 5348 } 5349 5350 err = map_set_def_max_entries(map); 5351 if (err) 5352 goto err_out; 5353 5354 retried = false; 5355 retry: 5356 if (map->pin_path) { 5357 err = bpf_object__reuse_map(map); 5358 if (err) { 5359 pr_warn("map '%s': error reusing pinned map\n", 5360 map->name); 5361 goto err_out; 5362 } 5363 if (retried && map->fd < 0) { 5364 pr_warn("map '%s': cannot find pinned map\n", 5365 map->name); 5366 err = -ENOENT; 5367 goto err_out; 5368 } 5369 } 5370 5371 if (map->reused) { 5372 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5373 map->name, map->fd); 5374 } else { 5375 err = bpf_object__create_map(obj, map, false); 5376 if (err) 5377 goto err_out; 5378 5379 pr_debug("map '%s': created successfully, fd=%d\n", 5380 map->name, map->fd); 5381 5382 if (bpf_map__is_internal(map)) { 5383 err = bpf_object__populate_internal_map(obj, map); 5384 if (err < 0) 5385 goto err_out; 5386 } 5387 if (map->def.type == BPF_MAP_TYPE_ARENA) { 5388 map->mmaped = mmap((void *)(long)map->map_extra, 5389 bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 5390 map->map_extra ? MAP_SHARED | MAP_FIXED : MAP_SHARED, 5391 map->fd, 0); 5392 if (map->mmaped == MAP_FAILED) { 5393 err = -errno; 5394 map->mmaped = NULL; 5395 pr_warn("map '%s': failed to mmap arena: %d\n", 5396 map->name, err); 5397 return err; 5398 } 5399 if (obj->arena_data) { 5400 memcpy(map->mmaped, obj->arena_data, obj->arena_data_sz); 5401 zfree(&obj->arena_data); 5402 } 5403 } 5404 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5405 err = init_map_in_map_slots(obj, map); 5406 if (err < 0) 5407 goto err_out; 5408 } 5409 } 5410 5411 if (map->pin_path && !map->pinned) { 5412 err = bpf_map__pin(map, NULL); 5413 if (err) { 5414 if (!retried && err == -EEXIST) { 5415 retried = true; 5416 goto retry; 5417 } 5418 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5419 map->name, map->pin_path, err); 5420 goto err_out; 5421 } 5422 } 5423 } 5424 5425 return 0; 5426 5427 err_out: 5428 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5429 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5430 pr_perm_msg(err); 5431 for (j = 0; j < i; j++) 5432 zclose(obj->maps[j].fd); 5433 return err; 5434 } 5435 5436 static bool bpf_core_is_flavor_sep(const char *s) 5437 { 5438 /* check X___Y name pattern, where X and Y are not underscores */ 5439 return s[0] != '_' && /* X */ 5440 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5441 s[4] != '_'; /* Y */ 5442 } 5443 5444 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5445 * before last triple underscore. Struct name part after last triple 5446 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5447 */ 5448 size_t bpf_core_essential_name_len(const char *name) 5449 { 5450 size_t n = strlen(name); 5451 int i; 5452 5453 for (i = n - 5; i >= 0; i--) { 5454 if (bpf_core_is_flavor_sep(name + i)) 5455 return i + 1; 5456 } 5457 return n; 5458 } 5459 5460 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5461 { 5462 if (!cands) 5463 return; 5464 5465 free(cands->cands); 5466 free(cands); 5467 } 5468 5469 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5470 size_t local_essent_len, 5471 const struct btf *targ_btf, 5472 const char *targ_btf_name, 5473 int targ_start_id, 5474 struct bpf_core_cand_list *cands) 5475 { 5476 struct bpf_core_cand *new_cands, *cand; 5477 const struct btf_type *t, *local_t; 5478 const char *targ_name, *local_name; 5479 size_t targ_essent_len; 5480 int n, i; 5481 5482 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5483 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5484 5485 n = btf__type_cnt(targ_btf); 5486 for (i = targ_start_id; i < n; i++) { 5487 t = btf__type_by_id(targ_btf, i); 5488 if (!btf_kind_core_compat(t, local_t)) 5489 continue; 5490 5491 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5492 if (str_is_empty(targ_name)) 5493 continue; 5494 5495 targ_essent_len = bpf_core_essential_name_len(targ_name); 5496 if (targ_essent_len != local_essent_len) 5497 continue; 5498 5499 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5500 continue; 5501 5502 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5503 local_cand->id, btf_kind_str(local_t), 5504 local_name, i, btf_kind_str(t), targ_name, 5505 targ_btf_name); 5506 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5507 sizeof(*cands->cands)); 5508 if (!new_cands) 5509 return -ENOMEM; 5510 5511 cand = &new_cands[cands->len]; 5512 cand->btf = targ_btf; 5513 cand->id = i; 5514 5515 cands->cands = new_cands; 5516 cands->len++; 5517 } 5518 return 0; 5519 } 5520 5521 static int load_module_btfs(struct bpf_object *obj) 5522 { 5523 struct bpf_btf_info info; 5524 struct module_btf *mod_btf; 5525 struct btf *btf; 5526 char name[64]; 5527 __u32 id = 0, len; 5528 int err, fd; 5529 5530 if (obj->btf_modules_loaded) 5531 return 0; 5532 5533 if (obj->gen_loader) 5534 return 0; 5535 5536 /* don't do this again, even if we find no module BTFs */ 5537 obj->btf_modules_loaded = true; 5538 5539 /* kernel too old to support module BTFs */ 5540 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5541 return 0; 5542 5543 while (true) { 5544 err = bpf_btf_get_next_id(id, &id); 5545 if (err && errno == ENOENT) 5546 return 0; 5547 if (err && errno == EPERM) { 5548 pr_debug("skipping module BTFs loading, missing privileges\n"); 5549 return 0; 5550 } 5551 if (err) { 5552 err = -errno; 5553 pr_warn("failed to iterate BTF objects: %d\n", err); 5554 return err; 5555 } 5556 5557 fd = bpf_btf_get_fd_by_id(id); 5558 if (fd < 0) { 5559 if (errno == ENOENT) 5560 continue; /* expected race: BTF was unloaded */ 5561 err = -errno; 5562 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5563 return err; 5564 } 5565 5566 len = sizeof(info); 5567 memset(&info, 0, sizeof(info)); 5568 info.name = ptr_to_u64(name); 5569 info.name_len = sizeof(name); 5570 5571 err = bpf_btf_get_info_by_fd(fd, &info, &len); 5572 if (err) { 5573 err = -errno; 5574 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5575 goto err_out; 5576 } 5577 5578 /* ignore non-module BTFs */ 5579 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5580 close(fd); 5581 continue; 5582 } 5583 5584 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5585 err = libbpf_get_error(btf); 5586 if (err) { 5587 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5588 name, id, err); 5589 goto err_out; 5590 } 5591 5592 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5593 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5594 if (err) 5595 goto err_out; 5596 5597 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5598 5599 mod_btf->btf = btf; 5600 mod_btf->id = id; 5601 mod_btf->fd = fd; 5602 mod_btf->name = strdup(name); 5603 if (!mod_btf->name) { 5604 err = -ENOMEM; 5605 goto err_out; 5606 } 5607 continue; 5608 5609 err_out: 5610 close(fd); 5611 return err; 5612 } 5613 5614 return 0; 5615 } 5616 5617 static struct bpf_core_cand_list * 5618 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5619 { 5620 struct bpf_core_cand local_cand = {}; 5621 struct bpf_core_cand_list *cands; 5622 const struct btf *main_btf; 5623 const struct btf_type *local_t; 5624 const char *local_name; 5625 size_t local_essent_len; 5626 int err, i; 5627 5628 local_cand.btf = local_btf; 5629 local_cand.id = local_type_id; 5630 local_t = btf__type_by_id(local_btf, local_type_id); 5631 if (!local_t) 5632 return ERR_PTR(-EINVAL); 5633 5634 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5635 if (str_is_empty(local_name)) 5636 return ERR_PTR(-EINVAL); 5637 local_essent_len = bpf_core_essential_name_len(local_name); 5638 5639 cands = calloc(1, sizeof(*cands)); 5640 if (!cands) 5641 return ERR_PTR(-ENOMEM); 5642 5643 /* Attempt to find target candidates in vmlinux BTF first */ 5644 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5645 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5646 if (err) 5647 goto err_out; 5648 5649 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5650 if (cands->len) 5651 return cands; 5652 5653 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5654 if (obj->btf_vmlinux_override) 5655 return cands; 5656 5657 /* now look through module BTFs, trying to still find candidates */ 5658 err = load_module_btfs(obj); 5659 if (err) 5660 goto err_out; 5661 5662 for (i = 0; i < obj->btf_module_cnt; i++) { 5663 err = bpf_core_add_cands(&local_cand, local_essent_len, 5664 obj->btf_modules[i].btf, 5665 obj->btf_modules[i].name, 5666 btf__type_cnt(obj->btf_vmlinux), 5667 cands); 5668 if (err) 5669 goto err_out; 5670 } 5671 5672 return cands; 5673 err_out: 5674 bpf_core_free_cands(cands); 5675 return ERR_PTR(err); 5676 } 5677 5678 /* Check local and target types for compatibility. This check is used for 5679 * type-based CO-RE relocations and follow slightly different rules than 5680 * field-based relocations. This function assumes that root types were already 5681 * checked for name match. Beyond that initial root-level name check, names 5682 * are completely ignored. Compatibility rules are as follows: 5683 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5684 * kind should match for local and target types (i.e., STRUCT is not 5685 * compatible with UNION); 5686 * - for ENUMs, the size is ignored; 5687 * - for INT, size and signedness are ignored; 5688 * - for ARRAY, dimensionality is ignored, element types are checked for 5689 * compatibility recursively; 5690 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5691 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5692 * - FUNC_PROTOs are compatible if they have compatible signature: same 5693 * number of input args and compatible return and argument types. 5694 * These rules are not set in stone and probably will be adjusted as we get 5695 * more experience with using BPF CO-RE relocations. 5696 */ 5697 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5698 const struct btf *targ_btf, __u32 targ_id) 5699 { 5700 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5701 } 5702 5703 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5704 const struct btf *targ_btf, __u32 targ_id) 5705 { 5706 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5707 } 5708 5709 static size_t bpf_core_hash_fn(const long key, void *ctx) 5710 { 5711 return key; 5712 } 5713 5714 static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx) 5715 { 5716 return k1 == k2; 5717 } 5718 5719 static int record_relo_core(struct bpf_program *prog, 5720 const struct bpf_core_relo *core_relo, int insn_idx) 5721 { 5722 struct reloc_desc *relos, *relo; 5723 5724 relos = libbpf_reallocarray(prog->reloc_desc, 5725 prog->nr_reloc + 1, sizeof(*relos)); 5726 if (!relos) 5727 return -ENOMEM; 5728 relo = &relos[prog->nr_reloc]; 5729 relo->type = RELO_CORE; 5730 relo->insn_idx = insn_idx; 5731 relo->core_relo = core_relo; 5732 prog->reloc_desc = relos; 5733 prog->nr_reloc++; 5734 return 0; 5735 } 5736 5737 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5738 { 5739 struct reloc_desc *relo; 5740 int i; 5741 5742 for (i = 0; i < prog->nr_reloc; i++) { 5743 relo = &prog->reloc_desc[i]; 5744 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5745 continue; 5746 5747 return relo->core_relo; 5748 } 5749 5750 return NULL; 5751 } 5752 5753 static int bpf_core_resolve_relo(struct bpf_program *prog, 5754 const struct bpf_core_relo *relo, 5755 int relo_idx, 5756 const struct btf *local_btf, 5757 struct hashmap *cand_cache, 5758 struct bpf_core_relo_res *targ_res) 5759 { 5760 struct bpf_core_spec specs_scratch[3] = {}; 5761 struct bpf_core_cand_list *cands = NULL; 5762 const char *prog_name = prog->name; 5763 const struct btf_type *local_type; 5764 const char *local_name; 5765 __u32 local_id = relo->type_id; 5766 int err; 5767 5768 local_type = btf__type_by_id(local_btf, local_id); 5769 if (!local_type) 5770 return -EINVAL; 5771 5772 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5773 if (!local_name) 5774 return -EINVAL; 5775 5776 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5777 !hashmap__find(cand_cache, local_id, &cands)) { 5778 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5779 if (IS_ERR(cands)) { 5780 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5781 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5782 local_name, PTR_ERR(cands)); 5783 return PTR_ERR(cands); 5784 } 5785 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL); 5786 if (err) { 5787 bpf_core_free_cands(cands); 5788 return err; 5789 } 5790 } 5791 5792 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5793 targ_res); 5794 } 5795 5796 static int 5797 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5798 { 5799 const struct btf_ext_info_sec *sec; 5800 struct bpf_core_relo_res targ_res; 5801 const struct bpf_core_relo *rec; 5802 const struct btf_ext_info *seg; 5803 struct hashmap_entry *entry; 5804 struct hashmap *cand_cache = NULL; 5805 struct bpf_program *prog; 5806 struct bpf_insn *insn; 5807 const char *sec_name; 5808 int i, err = 0, insn_idx, sec_idx, sec_num; 5809 5810 if (obj->btf_ext->core_relo_info.len == 0) 5811 return 0; 5812 5813 if (targ_btf_path) { 5814 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5815 err = libbpf_get_error(obj->btf_vmlinux_override); 5816 if (err) { 5817 pr_warn("failed to parse target BTF: %d\n", err); 5818 return err; 5819 } 5820 } 5821 5822 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5823 if (IS_ERR(cand_cache)) { 5824 err = PTR_ERR(cand_cache); 5825 goto out; 5826 } 5827 5828 seg = &obj->btf_ext->core_relo_info; 5829 sec_num = 0; 5830 for_each_btf_ext_sec(seg, sec) { 5831 sec_idx = seg->sec_idxs[sec_num]; 5832 sec_num++; 5833 5834 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5835 if (str_is_empty(sec_name)) { 5836 err = -EINVAL; 5837 goto out; 5838 } 5839 5840 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5841 5842 for_each_btf_ext_rec(seg, sec, i, rec) { 5843 if (rec->insn_off % BPF_INSN_SZ) 5844 return -EINVAL; 5845 insn_idx = rec->insn_off / BPF_INSN_SZ; 5846 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5847 if (!prog) { 5848 /* When __weak subprog is "overridden" by another instance 5849 * of the subprog from a different object file, linker still 5850 * appends all the .BTF.ext info that used to belong to that 5851 * eliminated subprogram. 5852 * This is similar to what x86-64 linker does for relocations. 5853 * So just ignore such relocations just like we ignore 5854 * subprog instructions when discovering subprograms. 5855 */ 5856 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5857 sec_name, i, insn_idx); 5858 continue; 5859 } 5860 /* no need to apply CO-RE relocation if the program is 5861 * not going to be loaded 5862 */ 5863 if (!prog->autoload) 5864 continue; 5865 5866 /* adjust insn_idx from section frame of reference to the local 5867 * program's frame of reference; (sub-)program code is not yet 5868 * relocated, so it's enough to just subtract in-section offset 5869 */ 5870 insn_idx = insn_idx - prog->sec_insn_off; 5871 if (insn_idx >= prog->insns_cnt) 5872 return -EINVAL; 5873 insn = &prog->insns[insn_idx]; 5874 5875 err = record_relo_core(prog, rec, insn_idx); 5876 if (err) { 5877 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5878 prog->name, i, err); 5879 goto out; 5880 } 5881 5882 if (prog->obj->gen_loader) 5883 continue; 5884 5885 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5886 if (err) { 5887 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5888 prog->name, i, err); 5889 goto out; 5890 } 5891 5892 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5893 if (err) { 5894 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5895 prog->name, i, insn_idx, err); 5896 goto out; 5897 } 5898 } 5899 } 5900 5901 out: 5902 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5903 btf__free(obj->btf_vmlinux_override); 5904 obj->btf_vmlinux_override = NULL; 5905 5906 if (!IS_ERR_OR_NULL(cand_cache)) { 5907 hashmap__for_each_entry(cand_cache, entry, i) { 5908 bpf_core_free_cands(entry->pvalue); 5909 } 5910 hashmap__free(cand_cache); 5911 } 5912 return err; 5913 } 5914 5915 /* base map load ldimm64 special constant, used also for log fixup logic */ 5916 #define POISON_LDIMM64_MAP_BASE 2001000000 5917 #define POISON_LDIMM64_MAP_PFX "200100" 5918 5919 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5920 int insn_idx, struct bpf_insn *insn, 5921 int map_idx, const struct bpf_map *map) 5922 { 5923 int i; 5924 5925 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5926 prog->name, relo_idx, insn_idx, map_idx, map->name); 5927 5928 /* we turn single ldimm64 into two identical invalid calls */ 5929 for (i = 0; i < 2; i++) { 5930 insn->code = BPF_JMP | BPF_CALL; 5931 insn->dst_reg = 0; 5932 insn->src_reg = 0; 5933 insn->off = 0; 5934 /* if this instruction is reachable (not a dead code), 5935 * verifier will complain with something like: 5936 * invalid func unknown#2001000123 5937 * where lower 123 is map index into obj->maps[] array 5938 */ 5939 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx; 5940 5941 insn++; 5942 } 5943 } 5944 5945 /* unresolved kfunc call special constant, used also for log fixup logic */ 5946 #define POISON_CALL_KFUNC_BASE 2002000000 5947 #define POISON_CALL_KFUNC_PFX "2002" 5948 5949 static void poison_kfunc_call(struct bpf_program *prog, int relo_idx, 5950 int insn_idx, struct bpf_insn *insn, 5951 int ext_idx, const struct extern_desc *ext) 5952 { 5953 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n", 5954 prog->name, relo_idx, insn_idx, ext->name); 5955 5956 /* we turn kfunc call into invalid helper call with identifiable constant */ 5957 insn->code = BPF_JMP | BPF_CALL; 5958 insn->dst_reg = 0; 5959 insn->src_reg = 0; 5960 insn->off = 0; 5961 /* if this instruction is reachable (not a dead code), 5962 * verifier will complain with something like: 5963 * invalid func unknown#2001000123 5964 * where lower 123 is extern index into obj->externs[] array 5965 */ 5966 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx; 5967 } 5968 5969 /* Relocate data references within program code: 5970 * - map references; 5971 * - global variable references; 5972 * - extern references. 5973 */ 5974 static int 5975 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5976 { 5977 int i; 5978 5979 for (i = 0; i < prog->nr_reloc; i++) { 5980 struct reloc_desc *relo = &prog->reloc_desc[i]; 5981 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5982 const struct bpf_map *map; 5983 struct extern_desc *ext; 5984 5985 switch (relo->type) { 5986 case RELO_LD64: 5987 map = &obj->maps[relo->map_idx]; 5988 if (obj->gen_loader) { 5989 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5990 insn[0].imm = relo->map_idx; 5991 } else if (map->autocreate) { 5992 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5993 insn[0].imm = map->fd; 5994 } else { 5995 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5996 relo->map_idx, map); 5997 } 5998 break; 5999 case RELO_DATA: 6000 map = &obj->maps[relo->map_idx]; 6001 insn[1].imm = insn[0].imm + relo->sym_off; 6002 if (obj->gen_loader) { 6003 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6004 insn[0].imm = relo->map_idx; 6005 } else if (map->autocreate) { 6006 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6007 insn[0].imm = map->fd; 6008 } else { 6009 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 6010 relo->map_idx, map); 6011 } 6012 break; 6013 case RELO_EXTERN_LD64: 6014 ext = &obj->externs[relo->ext_idx]; 6015 if (ext->type == EXT_KCFG) { 6016 if (obj->gen_loader) { 6017 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 6018 insn[0].imm = obj->kconfig_map_idx; 6019 } else { 6020 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 6021 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 6022 } 6023 insn[1].imm = ext->kcfg.data_off; 6024 } else /* EXT_KSYM */ { 6025 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 6026 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 6027 insn[0].imm = ext->ksym.kernel_btf_id; 6028 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 6029 } else { /* typeless ksyms or unresolved typed ksyms */ 6030 insn[0].imm = (__u32)ext->ksym.addr; 6031 insn[1].imm = ext->ksym.addr >> 32; 6032 } 6033 } 6034 break; 6035 case RELO_EXTERN_CALL: 6036 ext = &obj->externs[relo->ext_idx]; 6037 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 6038 if (ext->is_set) { 6039 insn[0].imm = ext->ksym.kernel_btf_id; 6040 insn[0].off = ext->ksym.btf_fd_idx; 6041 } else { /* unresolved weak kfunc call */ 6042 poison_kfunc_call(prog, i, relo->insn_idx, insn, 6043 relo->ext_idx, ext); 6044 } 6045 break; 6046 case RELO_SUBPROG_ADDR: 6047 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 6048 pr_warn("prog '%s': relo #%d: bad insn\n", 6049 prog->name, i); 6050 return -EINVAL; 6051 } 6052 /* handled already */ 6053 break; 6054 case RELO_CALL: 6055 /* handled already */ 6056 break; 6057 case RELO_CORE: 6058 /* will be handled by bpf_program_record_relos() */ 6059 break; 6060 default: 6061 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 6062 prog->name, i, relo->type); 6063 return -EINVAL; 6064 } 6065 } 6066 6067 return 0; 6068 } 6069 6070 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 6071 const struct bpf_program *prog, 6072 const struct btf_ext_info *ext_info, 6073 void **prog_info, __u32 *prog_rec_cnt, 6074 __u32 *prog_rec_sz) 6075 { 6076 void *copy_start = NULL, *copy_end = NULL; 6077 void *rec, *rec_end, *new_prog_info; 6078 const struct btf_ext_info_sec *sec; 6079 size_t old_sz, new_sz; 6080 int i, sec_num, sec_idx, off_adj; 6081 6082 sec_num = 0; 6083 for_each_btf_ext_sec(ext_info, sec) { 6084 sec_idx = ext_info->sec_idxs[sec_num]; 6085 sec_num++; 6086 if (prog->sec_idx != sec_idx) 6087 continue; 6088 6089 for_each_btf_ext_rec(ext_info, sec, i, rec) { 6090 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 6091 6092 if (insn_off < prog->sec_insn_off) 6093 continue; 6094 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 6095 break; 6096 6097 if (!copy_start) 6098 copy_start = rec; 6099 copy_end = rec + ext_info->rec_size; 6100 } 6101 6102 if (!copy_start) 6103 return -ENOENT; 6104 6105 /* append func/line info of a given (sub-)program to the main 6106 * program func/line info 6107 */ 6108 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 6109 new_sz = old_sz + (copy_end - copy_start); 6110 new_prog_info = realloc(*prog_info, new_sz); 6111 if (!new_prog_info) 6112 return -ENOMEM; 6113 *prog_info = new_prog_info; 6114 *prog_rec_cnt = new_sz / ext_info->rec_size; 6115 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 6116 6117 /* Kernel instruction offsets are in units of 8-byte 6118 * instructions, while .BTF.ext instruction offsets generated 6119 * by Clang are in units of bytes. So convert Clang offsets 6120 * into kernel offsets and adjust offset according to program 6121 * relocated position. 6122 */ 6123 off_adj = prog->sub_insn_off - prog->sec_insn_off; 6124 rec = new_prog_info + old_sz; 6125 rec_end = new_prog_info + new_sz; 6126 for (; rec < rec_end; rec += ext_info->rec_size) { 6127 __u32 *insn_off = rec; 6128 6129 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 6130 } 6131 *prog_rec_sz = ext_info->rec_size; 6132 return 0; 6133 } 6134 6135 return -ENOENT; 6136 } 6137 6138 static int 6139 reloc_prog_func_and_line_info(const struct bpf_object *obj, 6140 struct bpf_program *main_prog, 6141 const struct bpf_program *prog) 6142 { 6143 int err; 6144 6145 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 6146 * support func/line info 6147 */ 6148 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 6149 return 0; 6150 6151 /* only attempt func info relocation if main program's func_info 6152 * relocation was successful 6153 */ 6154 if (main_prog != prog && !main_prog->func_info) 6155 goto line_info; 6156 6157 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 6158 &main_prog->func_info, 6159 &main_prog->func_info_cnt, 6160 &main_prog->func_info_rec_size); 6161 if (err) { 6162 if (err != -ENOENT) { 6163 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 6164 prog->name, err); 6165 return err; 6166 } 6167 if (main_prog->func_info) { 6168 /* 6169 * Some info has already been found but has problem 6170 * in the last btf_ext reloc. Must have to error out. 6171 */ 6172 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6173 return err; 6174 } 6175 /* Have problem loading the very first info. Ignore the rest. */ 6176 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6177 prog->name); 6178 } 6179 6180 line_info: 6181 /* don't relocate line info if main program's relocation failed */ 6182 if (main_prog != prog && !main_prog->line_info) 6183 return 0; 6184 6185 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6186 &main_prog->line_info, 6187 &main_prog->line_info_cnt, 6188 &main_prog->line_info_rec_size); 6189 if (err) { 6190 if (err != -ENOENT) { 6191 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6192 prog->name, err); 6193 return err; 6194 } 6195 if (main_prog->line_info) { 6196 /* 6197 * Some info has already been found but has problem 6198 * in the last btf_ext reloc. Must have to error out. 6199 */ 6200 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6201 return err; 6202 } 6203 /* Have problem loading the very first info. Ignore the rest. */ 6204 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6205 prog->name); 6206 } 6207 return 0; 6208 } 6209 6210 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6211 { 6212 size_t insn_idx = *(const size_t *)key; 6213 const struct reloc_desc *relo = elem; 6214 6215 if (insn_idx == relo->insn_idx) 6216 return 0; 6217 return insn_idx < relo->insn_idx ? -1 : 1; 6218 } 6219 6220 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6221 { 6222 if (!prog->nr_reloc) 6223 return NULL; 6224 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6225 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6226 } 6227 6228 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6229 { 6230 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6231 struct reloc_desc *relos; 6232 int i; 6233 6234 if (main_prog == subprog) 6235 return 0; 6236 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6237 /* if new count is zero, reallocarray can return a valid NULL result; 6238 * in this case the previous pointer will be freed, so we *have to* 6239 * reassign old pointer to the new value (even if it's NULL) 6240 */ 6241 if (!relos && new_cnt) 6242 return -ENOMEM; 6243 if (subprog->nr_reloc) 6244 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6245 sizeof(*relos) * subprog->nr_reloc); 6246 6247 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6248 relos[i].insn_idx += subprog->sub_insn_off; 6249 /* After insn_idx adjustment the 'relos' array is still sorted 6250 * by insn_idx and doesn't break bsearch. 6251 */ 6252 main_prog->reloc_desc = relos; 6253 main_prog->nr_reloc = new_cnt; 6254 return 0; 6255 } 6256 6257 static int 6258 bpf_object__append_subprog_code(struct bpf_object *obj, struct bpf_program *main_prog, 6259 struct bpf_program *subprog) 6260 { 6261 struct bpf_insn *insns; 6262 size_t new_cnt; 6263 int err; 6264 6265 subprog->sub_insn_off = main_prog->insns_cnt; 6266 6267 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6268 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6269 if (!insns) { 6270 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6271 return -ENOMEM; 6272 } 6273 main_prog->insns = insns; 6274 main_prog->insns_cnt = new_cnt; 6275 6276 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6277 subprog->insns_cnt * sizeof(*insns)); 6278 6279 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6280 main_prog->name, subprog->insns_cnt, subprog->name); 6281 6282 /* The subprog insns are now appended. Append its relos too. */ 6283 err = append_subprog_relos(main_prog, subprog); 6284 if (err) 6285 return err; 6286 return 0; 6287 } 6288 6289 static int 6290 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6291 struct bpf_program *prog) 6292 { 6293 size_t sub_insn_idx, insn_idx; 6294 struct bpf_program *subprog; 6295 struct reloc_desc *relo; 6296 struct bpf_insn *insn; 6297 int err; 6298 6299 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6300 if (err) 6301 return err; 6302 6303 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6304 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6305 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6306 continue; 6307 6308 relo = find_prog_insn_relo(prog, insn_idx); 6309 if (relo && relo->type == RELO_EXTERN_CALL) 6310 /* kfunc relocations will be handled later 6311 * in bpf_object__relocate_data() 6312 */ 6313 continue; 6314 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6315 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6316 prog->name, insn_idx, relo->type); 6317 return -LIBBPF_ERRNO__RELOC; 6318 } 6319 if (relo) { 6320 /* sub-program instruction index is a combination of 6321 * an offset of a symbol pointed to by relocation and 6322 * call instruction's imm field; for global functions, 6323 * call always has imm = -1, but for static functions 6324 * relocation is against STT_SECTION and insn->imm 6325 * points to a start of a static function 6326 * 6327 * for subprog addr relocation, the relo->sym_off + insn->imm is 6328 * the byte offset in the corresponding section. 6329 */ 6330 if (relo->type == RELO_CALL) 6331 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6332 else 6333 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6334 } else if (insn_is_pseudo_func(insn)) { 6335 /* 6336 * RELO_SUBPROG_ADDR relo is always emitted even if both 6337 * functions are in the same section, so it shouldn't reach here. 6338 */ 6339 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6340 prog->name, insn_idx); 6341 return -LIBBPF_ERRNO__RELOC; 6342 } else { 6343 /* if subprogram call is to a static function within 6344 * the same ELF section, there won't be any relocation 6345 * emitted, but it also means there is no additional 6346 * offset necessary, insns->imm is relative to 6347 * instruction's original position within the section 6348 */ 6349 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6350 } 6351 6352 /* we enforce that sub-programs should be in .text section */ 6353 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6354 if (!subprog) { 6355 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6356 prog->name); 6357 return -LIBBPF_ERRNO__RELOC; 6358 } 6359 6360 /* if it's the first call instruction calling into this 6361 * subprogram (meaning this subprog hasn't been processed 6362 * yet) within the context of current main program: 6363 * - append it at the end of main program's instructions blog; 6364 * - process is recursively, while current program is put on hold; 6365 * - if that subprogram calls some other not yet processes 6366 * subprogram, same thing will happen recursively until 6367 * there are no more unprocesses subprograms left to append 6368 * and relocate. 6369 */ 6370 if (subprog->sub_insn_off == 0) { 6371 err = bpf_object__append_subprog_code(obj, main_prog, subprog); 6372 if (err) 6373 return err; 6374 err = bpf_object__reloc_code(obj, main_prog, subprog); 6375 if (err) 6376 return err; 6377 } 6378 6379 /* main_prog->insns memory could have been re-allocated, so 6380 * calculate pointer again 6381 */ 6382 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6383 /* calculate correct instruction position within current main 6384 * prog; each main prog can have a different set of 6385 * subprograms appended (potentially in different order as 6386 * well), so position of any subprog can be different for 6387 * different main programs 6388 */ 6389 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6390 6391 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6392 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6393 } 6394 6395 return 0; 6396 } 6397 6398 /* 6399 * Relocate sub-program calls. 6400 * 6401 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6402 * main prog) is processed separately. For each subprog (non-entry functions, 6403 * that can be called from either entry progs or other subprogs) gets their 6404 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6405 * hasn't been yet appended and relocated within current main prog. Once its 6406 * relocated, sub_insn_off will point at the position within current main prog 6407 * where given subprog was appended. This will further be used to relocate all 6408 * the call instructions jumping into this subprog. 6409 * 6410 * We start with main program and process all call instructions. If the call 6411 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6412 * is zero), subprog instructions are appended at the end of main program's 6413 * instruction array. Then main program is "put on hold" while we recursively 6414 * process newly appended subprogram. If that subprogram calls into another 6415 * subprogram that hasn't been appended, new subprogram is appended again to 6416 * the *main* prog's instructions (subprog's instructions are always left 6417 * untouched, as they need to be in unmodified state for subsequent main progs 6418 * and subprog instructions are always sent only as part of a main prog) and 6419 * the process continues recursively. Once all the subprogs called from a main 6420 * prog or any of its subprogs are appended (and relocated), all their 6421 * positions within finalized instructions array are known, so it's easy to 6422 * rewrite call instructions with correct relative offsets, corresponding to 6423 * desired target subprog. 6424 * 6425 * Its important to realize that some subprogs might not be called from some 6426 * main prog and any of its called/used subprogs. Those will keep their 6427 * subprog->sub_insn_off as zero at all times and won't be appended to current 6428 * main prog and won't be relocated within the context of current main prog. 6429 * They might still be used from other main progs later. 6430 * 6431 * Visually this process can be shown as below. Suppose we have two main 6432 * programs mainA and mainB and BPF object contains three subprogs: subA, 6433 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6434 * subC both call subB: 6435 * 6436 * +--------+ +-------+ 6437 * | v v | 6438 * +--+---+ +--+-+-+ +---+--+ 6439 * | subA | | subB | | subC | 6440 * +--+---+ +------+ +---+--+ 6441 * ^ ^ 6442 * | | 6443 * +---+-------+ +------+----+ 6444 * | mainA | | mainB | 6445 * +-----------+ +-----------+ 6446 * 6447 * We'll start relocating mainA, will find subA, append it and start 6448 * processing sub A recursively: 6449 * 6450 * +-----------+------+ 6451 * | mainA | subA | 6452 * +-----------+------+ 6453 * 6454 * At this point we notice that subB is used from subA, so we append it and 6455 * relocate (there are no further subcalls from subB): 6456 * 6457 * +-----------+------+------+ 6458 * | mainA | subA | subB | 6459 * +-----------+------+------+ 6460 * 6461 * At this point, we relocate subA calls, then go one level up and finish with 6462 * relocatin mainA calls. mainA is done. 6463 * 6464 * For mainB process is similar but results in different order. We start with 6465 * mainB and skip subA and subB, as mainB never calls them (at least 6466 * directly), but we see subC is needed, so we append and start processing it: 6467 * 6468 * +-----------+------+ 6469 * | mainB | subC | 6470 * +-----------+------+ 6471 * Now we see subC needs subB, so we go back to it, append and relocate it: 6472 * 6473 * +-----------+------+------+ 6474 * | mainB | subC | subB | 6475 * +-----------+------+------+ 6476 * 6477 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6478 */ 6479 static int 6480 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6481 { 6482 struct bpf_program *subprog; 6483 int i, err; 6484 6485 /* mark all subprogs as not relocated (yet) within the context of 6486 * current main program 6487 */ 6488 for (i = 0; i < obj->nr_programs; i++) { 6489 subprog = &obj->programs[i]; 6490 if (!prog_is_subprog(obj, subprog)) 6491 continue; 6492 6493 subprog->sub_insn_off = 0; 6494 } 6495 6496 err = bpf_object__reloc_code(obj, prog, prog); 6497 if (err) 6498 return err; 6499 6500 return 0; 6501 } 6502 6503 static void 6504 bpf_object__free_relocs(struct bpf_object *obj) 6505 { 6506 struct bpf_program *prog; 6507 int i; 6508 6509 /* free up relocation descriptors */ 6510 for (i = 0; i < obj->nr_programs; i++) { 6511 prog = &obj->programs[i]; 6512 zfree(&prog->reloc_desc); 6513 prog->nr_reloc = 0; 6514 } 6515 } 6516 6517 static int cmp_relocs(const void *_a, const void *_b) 6518 { 6519 const struct reloc_desc *a = _a; 6520 const struct reloc_desc *b = _b; 6521 6522 if (a->insn_idx != b->insn_idx) 6523 return a->insn_idx < b->insn_idx ? -1 : 1; 6524 6525 /* no two relocations should have the same insn_idx, but ... */ 6526 if (a->type != b->type) 6527 return a->type < b->type ? -1 : 1; 6528 6529 return 0; 6530 } 6531 6532 static void bpf_object__sort_relos(struct bpf_object *obj) 6533 { 6534 int i; 6535 6536 for (i = 0; i < obj->nr_programs; i++) { 6537 struct bpf_program *p = &obj->programs[i]; 6538 6539 if (!p->nr_reloc) 6540 continue; 6541 6542 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6543 } 6544 } 6545 6546 static int bpf_prog_assign_exc_cb(struct bpf_object *obj, struct bpf_program *prog) 6547 { 6548 const char *str = "exception_callback:"; 6549 size_t pfx_len = strlen(str); 6550 int i, j, n; 6551 6552 if (!obj->btf || !kernel_supports(obj, FEAT_BTF_DECL_TAG)) 6553 return 0; 6554 6555 n = btf__type_cnt(obj->btf); 6556 for (i = 1; i < n; i++) { 6557 const char *name; 6558 struct btf_type *t; 6559 6560 t = btf_type_by_id(obj->btf, i); 6561 if (!btf_is_decl_tag(t) || btf_decl_tag(t)->component_idx != -1) 6562 continue; 6563 6564 name = btf__str_by_offset(obj->btf, t->name_off); 6565 if (strncmp(name, str, pfx_len) != 0) 6566 continue; 6567 6568 t = btf_type_by_id(obj->btf, t->type); 6569 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) { 6570 pr_warn("prog '%s': exception_callback:<value> decl tag not applied to the main program\n", 6571 prog->name); 6572 return -EINVAL; 6573 } 6574 if (strcmp(prog->name, btf__str_by_offset(obj->btf, t->name_off)) != 0) 6575 continue; 6576 /* Multiple callbacks are specified for the same prog, 6577 * the verifier will eventually return an error for this 6578 * case, hence simply skip appending a subprog. 6579 */ 6580 if (prog->exception_cb_idx >= 0) { 6581 prog->exception_cb_idx = -1; 6582 break; 6583 } 6584 6585 name += pfx_len; 6586 if (str_is_empty(name)) { 6587 pr_warn("prog '%s': exception_callback:<value> decl tag contains empty value\n", 6588 prog->name); 6589 return -EINVAL; 6590 } 6591 6592 for (j = 0; j < obj->nr_programs; j++) { 6593 struct bpf_program *subprog = &obj->programs[j]; 6594 6595 if (!prog_is_subprog(obj, subprog)) 6596 continue; 6597 if (strcmp(name, subprog->name) != 0) 6598 continue; 6599 /* Enforce non-hidden, as from verifier point of 6600 * view it expects global functions, whereas the 6601 * mark_btf_static fixes up linkage as static. 6602 */ 6603 if (!subprog->sym_global || subprog->mark_btf_static) { 6604 pr_warn("prog '%s': exception callback %s must be a global non-hidden function\n", 6605 prog->name, subprog->name); 6606 return -EINVAL; 6607 } 6608 /* Let's see if we already saw a static exception callback with the same name */ 6609 if (prog->exception_cb_idx >= 0) { 6610 pr_warn("prog '%s': multiple subprogs with same name as exception callback '%s'\n", 6611 prog->name, subprog->name); 6612 return -EINVAL; 6613 } 6614 prog->exception_cb_idx = j; 6615 break; 6616 } 6617 6618 if (prog->exception_cb_idx >= 0) 6619 continue; 6620 6621 pr_warn("prog '%s': cannot find exception callback '%s'\n", prog->name, name); 6622 return -ENOENT; 6623 } 6624 6625 return 0; 6626 } 6627 6628 static struct { 6629 enum bpf_prog_type prog_type; 6630 const char *ctx_name; 6631 } global_ctx_map[] = { 6632 { BPF_PROG_TYPE_CGROUP_DEVICE, "bpf_cgroup_dev_ctx" }, 6633 { BPF_PROG_TYPE_CGROUP_SKB, "__sk_buff" }, 6634 { BPF_PROG_TYPE_CGROUP_SOCK, "bpf_sock" }, 6635 { BPF_PROG_TYPE_CGROUP_SOCK_ADDR, "bpf_sock_addr" }, 6636 { BPF_PROG_TYPE_CGROUP_SOCKOPT, "bpf_sockopt" }, 6637 { BPF_PROG_TYPE_CGROUP_SYSCTL, "bpf_sysctl" }, 6638 { BPF_PROG_TYPE_FLOW_DISSECTOR, "__sk_buff" }, 6639 { BPF_PROG_TYPE_KPROBE, "bpf_user_pt_regs_t" }, 6640 { BPF_PROG_TYPE_LWT_IN, "__sk_buff" }, 6641 { BPF_PROG_TYPE_LWT_OUT, "__sk_buff" }, 6642 { BPF_PROG_TYPE_LWT_SEG6LOCAL, "__sk_buff" }, 6643 { BPF_PROG_TYPE_LWT_XMIT, "__sk_buff" }, 6644 { BPF_PROG_TYPE_NETFILTER, "bpf_nf_ctx" }, 6645 { BPF_PROG_TYPE_PERF_EVENT, "bpf_perf_event_data" }, 6646 { BPF_PROG_TYPE_RAW_TRACEPOINT, "bpf_raw_tracepoint_args" }, 6647 { BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE, "bpf_raw_tracepoint_args" }, 6648 { BPF_PROG_TYPE_SCHED_ACT, "__sk_buff" }, 6649 { BPF_PROG_TYPE_SCHED_CLS, "__sk_buff" }, 6650 { BPF_PROG_TYPE_SK_LOOKUP, "bpf_sk_lookup" }, 6651 { BPF_PROG_TYPE_SK_MSG, "sk_msg_md" }, 6652 { BPF_PROG_TYPE_SK_REUSEPORT, "sk_reuseport_md" }, 6653 { BPF_PROG_TYPE_SK_SKB, "__sk_buff" }, 6654 { BPF_PROG_TYPE_SOCK_OPS, "bpf_sock_ops" }, 6655 { BPF_PROG_TYPE_SOCKET_FILTER, "__sk_buff" }, 6656 { BPF_PROG_TYPE_XDP, "xdp_md" }, 6657 /* all other program types don't have "named" context structs */ 6658 }; 6659 6660 /* forward declarations for arch-specific underlying types of bpf_user_pt_regs_t typedef, 6661 * for below __builtin_types_compatible_p() checks; 6662 * with this approach we don't need any extra arch-specific #ifdef guards 6663 */ 6664 struct pt_regs; 6665 struct user_pt_regs; 6666 struct user_regs_struct; 6667 6668 static bool need_func_arg_type_fixup(const struct btf *btf, const struct bpf_program *prog, 6669 const char *subprog_name, int arg_idx, 6670 int arg_type_id, const char *ctx_name) 6671 { 6672 const struct btf_type *t; 6673 const char *tname; 6674 6675 /* check if existing parameter already matches verifier expectations */ 6676 t = skip_mods_and_typedefs(btf, arg_type_id, NULL); 6677 if (!btf_is_ptr(t)) 6678 goto out_warn; 6679 6680 /* typedef bpf_user_pt_regs_t is a special PITA case, valid for kprobe 6681 * and perf_event programs, so check this case early on and forget 6682 * about it for subsequent checks 6683 */ 6684 while (btf_is_mod(t)) 6685 t = btf__type_by_id(btf, t->type); 6686 if (btf_is_typedef(t) && 6687 (prog->type == BPF_PROG_TYPE_KPROBE || prog->type == BPF_PROG_TYPE_PERF_EVENT)) { 6688 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6689 if (strcmp(tname, "bpf_user_pt_regs_t") == 0) 6690 return false; /* canonical type for kprobe/perf_event */ 6691 } 6692 6693 /* now we can ignore typedefs moving forward */ 6694 t = skip_mods_and_typedefs(btf, t->type, NULL); 6695 6696 /* if it's `void *`, definitely fix up BTF info */ 6697 if (btf_is_void(t)) 6698 return true; 6699 6700 /* if it's already proper canonical type, no need to fix up */ 6701 tname = btf__str_by_offset(btf, t->name_off) ?: "<anon>"; 6702 if (btf_is_struct(t) && strcmp(tname, ctx_name) == 0) 6703 return false; 6704 6705 /* special cases */ 6706 switch (prog->type) { 6707 case BPF_PROG_TYPE_KPROBE: 6708 /* `struct pt_regs *` is expected, but we need to fix up */ 6709 if (btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6710 return true; 6711 break; 6712 case BPF_PROG_TYPE_PERF_EVENT: 6713 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) && 6714 btf_is_struct(t) && strcmp(tname, "pt_regs") == 0) 6715 return true; 6716 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) && 6717 btf_is_struct(t) && strcmp(tname, "user_pt_regs") == 0) 6718 return true; 6719 if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) && 6720 btf_is_struct(t) && strcmp(tname, "user_regs_struct") == 0) 6721 return true; 6722 break; 6723 case BPF_PROG_TYPE_RAW_TRACEPOINT: 6724 case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE: 6725 /* allow u64* as ctx */ 6726 if (btf_is_int(t) && t->size == 8) 6727 return true; 6728 break; 6729 default: 6730 break; 6731 } 6732 6733 out_warn: 6734 pr_warn("prog '%s': subprog '%s' arg#%d is expected to be of `struct %s *` type\n", 6735 prog->name, subprog_name, arg_idx, ctx_name); 6736 return false; 6737 } 6738 6739 static int clone_func_btf_info(struct btf *btf, int orig_fn_id, struct bpf_program *prog) 6740 { 6741 int fn_id, fn_proto_id, ret_type_id, orig_proto_id; 6742 int i, err, arg_cnt, fn_name_off, linkage; 6743 struct btf_type *fn_t, *fn_proto_t, *t; 6744 struct btf_param *p; 6745 6746 /* caller already validated FUNC -> FUNC_PROTO validity */ 6747 fn_t = btf_type_by_id(btf, orig_fn_id); 6748 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6749 6750 /* Note that each btf__add_xxx() operation invalidates 6751 * all btf_type and string pointers, so we need to be 6752 * very careful when cloning BTF types. BTF type 6753 * pointers have to be always refetched. And to avoid 6754 * problems with invalidated string pointers, we 6755 * add empty strings initially, then just fix up 6756 * name_off offsets in place. Offsets are stable for 6757 * existing strings, so that works out. 6758 */ 6759 fn_name_off = fn_t->name_off; /* we are about to invalidate fn_t */ 6760 linkage = btf_func_linkage(fn_t); 6761 orig_proto_id = fn_t->type; /* original FUNC_PROTO ID */ 6762 ret_type_id = fn_proto_t->type; /* fn_proto_t will be invalidated */ 6763 arg_cnt = btf_vlen(fn_proto_t); 6764 6765 /* clone FUNC_PROTO and its params */ 6766 fn_proto_id = btf__add_func_proto(btf, ret_type_id); 6767 if (fn_proto_id < 0) 6768 return -EINVAL; 6769 6770 for (i = 0; i < arg_cnt; i++) { 6771 int name_off; 6772 6773 /* copy original parameter data */ 6774 t = btf_type_by_id(btf, orig_proto_id); 6775 p = &btf_params(t)[i]; 6776 name_off = p->name_off; 6777 6778 err = btf__add_func_param(btf, "", p->type); 6779 if (err) 6780 return err; 6781 6782 fn_proto_t = btf_type_by_id(btf, fn_proto_id); 6783 p = &btf_params(fn_proto_t)[i]; 6784 p->name_off = name_off; /* use remembered str offset */ 6785 } 6786 6787 /* clone FUNC now, btf__add_func() enforces non-empty name, so use 6788 * entry program's name as a placeholder, which we replace immediately 6789 * with original name_off 6790 */ 6791 fn_id = btf__add_func(btf, prog->name, linkage, fn_proto_id); 6792 if (fn_id < 0) 6793 return -EINVAL; 6794 6795 fn_t = btf_type_by_id(btf, fn_id); 6796 fn_t->name_off = fn_name_off; /* reuse original string */ 6797 6798 return fn_id; 6799 } 6800 6801 /* Check if main program or global subprog's function prototype has `arg:ctx` 6802 * argument tags, and, if necessary, substitute correct type to match what BPF 6803 * verifier would expect, taking into account specific program type. This 6804 * allows to support __arg_ctx tag transparently on old kernels that don't yet 6805 * have a native support for it in the verifier, making user's life much 6806 * easier. 6807 */ 6808 static int bpf_program_fixup_func_info(struct bpf_object *obj, struct bpf_program *prog) 6809 { 6810 const char *ctx_name = NULL, *ctx_tag = "arg:ctx", *fn_name; 6811 struct bpf_func_info_min *func_rec; 6812 struct btf_type *fn_t, *fn_proto_t; 6813 struct btf *btf = obj->btf; 6814 const struct btf_type *t; 6815 struct btf_param *p; 6816 int ptr_id = 0, struct_id, tag_id, orig_fn_id; 6817 int i, n, arg_idx, arg_cnt, err, rec_idx; 6818 int *orig_ids; 6819 6820 /* no .BTF.ext, no problem */ 6821 if (!obj->btf_ext || !prog->func_info) 6822 return 0; 6823 6824 /* don't do any fix ups if kernel natively supports __arg_ctx */ 6825 if (kernel_supports(obj, FEAT_ARG_CTX_TAG)) 6826 return 0; 6827 6828 /* some BPF program types just don't have named context structs, so 6829 * this fallback mechanism doesn't work for them 6830 */ 6831 for (i = 0; i < ARRAY_SIZE(global_ctx_map); i++) { 6832 if (global_ctx_map[i].prog_type != prog->type) 6833 continue; 6834 ctx_name = global_ctx_map[i].ctx_name; 6835 break; 6836 } 6837 if (!ctx_name) 6838 return 0; 6839 6840 /* remember original func BTF IDs to detect if we already cloned them */ 6841 orig_ids = calloc(prog->func_info_cnt, sizeof(*orig_ids)); 6842 if (!orig_ids) 6843 return -ENOMEM; 6844 for (i = 0; i < prog->func_info_cnt; i++) { 6845 func_rec = prog->func_info + prog->func_info_rec_size * i; 6846 orig_ids[i] = func_rec->type_id; 6847 } 6848 6849 /* go through each DECL_TAG with "arg:ctx" and see if it points to one 6850 * of our subprogs; if yes and subprog is global and needs adjustment, 6851 * clone and adjust FUNC -> FUNC_PROTO combo 6852 */ 6853 for (i = 1, n = btf__type_cnt(btf); i < n; i++) { 6854 /* only DECL_TAG with "arg:ctx" value are interesting */ 6855 t = btf__type_by_id(btf, i); 6856 if (!btf_is_decl_tag(t)) 6857 continue; 6858 if (strcmp(btf__str_by_offset(btf, t->name_off), ctx_tag) != 0) 6859 continue; 6860 6861 /* only global funcs need adjustment, if at all */ 6862 orig_fn_id = t->type; 6863 fn_t = btf_type_by_id(btf, orig_fn_id); 6864 if (!btf_is_func(fn_t) || btf_func_linkage(fn_t) != BTF_FUNC_GLOBAL) 6865 continue; 6866 6867 /* sanity check FUNC -> FUNC_PROTO chain, just in case */ 6868 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6869 if (!fn_proto_t || !btf_is_func_proto(fn_proto_t)) 6870 continue; 6871 6872 /* find corresponding func_info record */ 6873 func_rec = NULL; 6874 for (rec_idx = 0; rec_idx < prog->func_info_cnt; rec_idx++) { 6875 if (orig_ids[rec_idx] == t->type) { 6876 func_rec = prog->func_info + prog->func_info_rec_size * rec_idx; 6877 break; 6878 } 6879 } 6880 /* current main program doesn't call into this subprog */ 6881 if (!func_rec) 6882 continue; 6883 6884 /* some more sanity checking of DECL_TAG */ 6885 arg_cnt = btf_vlen(fn_proto_t); 6886 arg_idx = btf_decl_tag(t)->component_idx; 6887 if (arg_idx < 0 || arg_idx >= arg_cnt) 6888 continue; 6889 6890 /* check if we should fix up argument type */ 6891 p = &btf_params(fn_proto_t)[arg_idx]; 6892 fn_name = btf__str_by_offset(btf, fn_t->name_off) ?: "<anon>"; 6893 if (!need_func_arg_type_fixup(btf, prog, fn_name, arg_idx, p->type, ctx_name)) 6894 continue; 6895 6896 /* clone fn/fn_proto, unless we already did it for another arg */ 6897 if (func_rec->type_id == orig_fn_id) { 6898 int fn_id; 6899 6900 fn_id = clone_func_btf_info(btf, orig_fn_id, prog); 6901 if (fn_id < 0) { 6902 err = fn_id; 6903 goto err_out; 6904 } 6905 6906 /* point func_info record to a cloned FUNC type */ 6907 func_rec->type_id = fn_id; 6908 } 6909 6910 /* create PTR -> STRUCT type chain to mark PTR_TO_CTX argument; 6911 * we do it just once per main BPF program, as all global 6912 * funcs share the same program type, so need only PTR -> 6913 * STRUCT type chain 6914 */ 6915 if (ptr_id == 0) { 6916 struct_id = btf__add_struct(btf, ctx_name, 0); 6917 ptr_id = btf__add_ptr(btf, struct_id); 6918 if (ptr_id < 0 || struct_id < 0) { 6919 err = -EINVAL; 6920 goto err_out; 6921 } 6922 } 6923 6924 /* for completeness, clone DECL_TAG and point it to cloned param */ 6925 tag_id = btf__add_decl_tag(btf, ctx_tag, func_rec->type_id, arg_idx); 6926 if (tag_id < 0) { 6927 err = -EINVAL; 6928 goto err_out; 6929 } 6930 6931 /* all the BTF manipulations invalidated pointers, refetch them */ 6932 fn_t = btf_type_by_id(btf, func_rec->type_id); 6933 fn_proto_t = btf_type_by_id(btf, fn_t->type); 6934 6935 /* fix up type ID pointed to by param */ 6936 p = &btf_params(fn_proto_t)[arg_idx]; 6937 p->type = ptr_id; 6938 } 6939 6940 free(orig_ids); 6941 return 0; 6942 err_out: 6943 free(orig_ids); 6944 return err; 6945 } 6946 6947 static int bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6948 { 6949 struct bpf_program *prog; 6950 size_t i, j; 6951 int err; 6952 6953 if (obj->btf_ext) { 6954 err = bpf_object__relocate_core(obj, targ_btf_path); 6955 if (err) { 6956 pr_warn("failed to perform CO-RE relocations: %d\n", 6957 err); 6958 return err; 6959 } 6960 bpf_object__sort_relos(obj); 6961 } 6962 6963 /* Before relocating calls pre-process relocations and mark 6964 * few ld_imm64 instructions that points to subprogs. 6965 * Otherwise bpf_object__reloc_code() later would have to consider 6966 * all ld_imm64 insns as relocation candidates. That would 6967 * reduce relocation speed, since amount of find_prog_insn_relo() 6968 * would increase and most of them will fail to find a relo. 6969 */ 6970 for (i = 0; i < obj->nr_programs; i++) { 6971 prog = &obj->programs[i]; 6972 for (j = 0; j < prog->nr_reloc; j++) { 6973 struct reloc_desc *relo = &prog->reloc_desc[j]; 6974 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6975 6976 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6977 if (relo->type == RELO_SUBPROG_ADDR) 6978 insn[0].src_reg = BPF_PSEUDO_FUNC; 6979 } 6980 } 6981 6982 /* relocate subprogram calls and append used subprograms to main 6983 * programs; each copy of subprogram code needs to be relocated 6984 * differently for each main program, because its code location might 6985 * have changed. 6986 * Append subprog relos to main programs to allow data relos to be 6987 * processed after text is completely relocated. 6988 */ 6989 for (i = 0; i < obj->nr_programs; i++) { 6990 prog = &obj->programs[i]; 6991 /* sub-program's sub-calls are relocated within the context of 6992 * its main program only 6993 */ 6994 if (prog_is_subprog(obj, prog)) 6995 continue; 6996 if (!prog->autoload) 6997 continue; 6998 6999 err = bpf_object__relocate_calls(obj, prog); 7000 if (err) { 7001 pr_warn("prog '%s': failed to relocate calls: %d\n", 7002 prog->name, err); 7003 return err; 7004 } 7005 7006 err = bpf_prog_assign_exc_cb(obj, prog); 7007 if (err) 7008 return err; 7009 /* Now, also append exception callback if it has not been done already. */ 7010 if (prog->exception_cb_idx >= 0) { 7011 struct bpf_program *subprog = &obj->programs[prog->exception_cb_idx]; 7012 7013 /* Calling exception callback directly is disallowed, which the 7014 * verifier will reject later. In case it was processed already, 7015 * we can skip this step, otherwise for all other valid cases we 7016 * have to append exception callback now. 7017 */ 7018 if (subprog->sub_insn_off == 0) { 7019 err = bpf_object__append_subprog_code(obj, prog, subprog); 7020 if (err) 7021 return err; 7022 err = bpf_object__reloc_code(obj, prog, subprog); 7023 if (err) 7024 return err; 7025 } 7026 } 7027 } 7028 for (i = 0; i < obj->nr_programs; i++) { 7029 prog = &obj->programs[i]; 7030 if (prog_is_subprog(obj, prog)) 7031 continue; 7032 if (!prog->autoload) 7033 continue; 7034 7035 /* Process data relos for main programs */ 7036 err = bpf_object__relocate_data(obj, prog); 7037 if (err) { 7038 pr_warn("prog '%s': failed to relocate data references: %d\n", 7039 prog->name, err); 7040 return err; 7041 } 7042 7043 /* Fix up .BTF.ext information, if necessary */ 7044 err = bpf_program_fixup_func_info(obj, prog); 7045 if (err) { 7046 pr_warn("prog '%s': failed to perform .BTF.ext fix ups: %d\n", 7047 prog->name, err); 7048 return err; 7049 } 7050 } 7051 7052 return 0; 7053 } 7054 7055 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 7056 Elf64_Shdr *shdr, Elf_Data *data); 7057 7058 static int bpf_object__collect_map_relos(struct bpf_object *obj, 7059 Elf64_Shdr *shdr, Elf_Data *data) 7060 { 7061 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 7062 int i, j, nrels, new_sz; 7063 const struct btf_var_secinfo *vi = NULL; 7064 const struct btf_type *sec, *var, *def; 7065 struct bpf_map *map = NULL, *targ_map = NULL; 7066 struct bpf_program *targ_prog = NULL; 7067 bool is_prog_array, is_map_in_map; 7068 const struct btf_member *member; 7069 const char *name, *mname, *type; 7070 unsigned int moff; 7071 Elf64_Sym *sym; 7072 Elf64_Rel *rel; 7073 void *tmp; 7074 7075 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 7076 return -EINVAL; 7077 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 7078 if (!sec) 7079 return -EINVAL; 7080 7081 nrels = shdr->sh_size / shdr->sh_entsize; 7082 for (i = 0; i < nrels; i++) { 7083 rel = elf_rel_by_idx(data, i); 7084 if (!rel) { 7085 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 7086 return -LIBBPF_ERRNO__FORMAT; 7087 } 7088 7089 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 7090 if (!sym) { 7091 pr_warn(".maps relo #%d: symbol %zx not found\n", 7092 i, (size_t)ELF64_R_SYM(rel->r_info)); 7093 return -LIBBPF_ERRNO__FORMAT; 7094 } 7095 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 7096 7097 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 7098 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 7099 (size_t)rel->r_offset, sym->st_name, name); 7100 7101 for (j = 0; j < obj->nr_maps; j++) { 7102 map = &obj->maps[j]; 7103 if (map->sec_idx != obj->efile.btf_maps_shndx) 7104 continue; 7105 7106 vi = btf_var_secinfos(sec) + map->btf_var_idx; 7107 if (vi->offset <= rel->r_offset && 7108 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 7109 break; 7110 } 7111 if (j == obj->nr_maps) { 7112 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 7113 i, name, (size_t)rel->r_offset); 7114 return -EINVAL; 7115 } 7116 7117 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 7118 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 7119 type = is_map_in_map ? "map" : "prog"; 7120 if (is_map_in_map) { 7121 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 7122 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 7123 i, name); 7124 return -LIBBPF_ERRNO__RELOC; 7125 } 7126 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 7127 map->def.key_size != sizeof(int)) { 7128 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 7129 i, map->name, sizeof(int)); 7130 return -EINVAL; 7131 } 7132 targ_map = bpf_object__find_map_by_name(obj, name); 7133 if (!targ_map) { 7134 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 7135 i, name); 7136 return -ESRCH; 7137 } 7138 } else if (is_prog_array) { 7139 targ_prog = bpf_object__find_program_by_name(obj, name); 7140 if (!targ_prog) { 7141 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 7142 i, name); 7143 return -ESRCH; 7144 } 7145 if (targ_prog->sec_idx != sym->st_shndx || 7146 targ_prog->sec_insn_off * 8 != sym->st_value || 7147 prog_is_subprog(obj, targ_prog)) { 7148 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 7149 i, name); 7150 return -LIBBPF_ERRNO__RELOC; 7151 } 7152 } else { 7153 return -EINVAL; 7154 } 7155 7156 var = btf__type_by_id(obj->btf, vi->type); 7157 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 7158 if (btf_vlen(def) == 0) 7159 return -EINVAL; 7160 member = btf_members(def) + btf_vlen(def) - 1; 7161 mname = btf__name_by_offset(obj->btf, member->name_off); 7162 if (strcmp(mname, "values")) 7163 return -EINVAL; 7164 7165 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 7166 if (rel->r_offset - vi->offset < moff) 7167 return -EINVAL; 7168 7169 moff = rel->r_offset - vi->offset - moff; 7170 /* here we use BPF pointer size, which is always 64 bit, as we 7171 * are parsing ELF that was built for BPF target 7172 */ 7173 if (moff % bpf_ptr_sz) 7174 return -EINVAL; 7175 moff /= bpf_ptr_sz; 7176 if (moff >= map->init_slots_sz) { 7177 new_sz = moff + 1; 7178 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 7179 if (!tmp) 7180 return -ENOMEM; 7181 map->init_slots = tmp; 7182 memset(map->init_slots + map->init_slots_sz, 0, 7183 (new_sz - map->init_slots_sz) * host_ptr_sz); 7184 map->init_slots_sz = new_sz; 7185 } 7186 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 7187 7188 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 7189 i, map->name, moff, type, name); 7190 } 7191 7192 return 0; 7193 } 7194 7195 static int bpf_object__collect_relos(struct bpf_object *obj) 7196 { 7197 int i, err; 7198 7199 for (i = 0; i < obj->efile.sec_cnt; i++) { 7200 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 7201 Elf64_Shdr *shdr; 7202 Elf_Data *data; 7203 int idx; 7204 7205 if (sec_desc->sec_type != SEC_RELO) 7206 continue; 7207 7208 shdr = sec_desc->shdr; 7209 data = sec_desc->data; 7210 idx = shdr->sh_info; 7211 7212 if (shdr->sh_type != SHT_REL || idx < 0 || idx >= obj->efile.sec_cnt) { 7213 pr_warn("internal error at %d\n", __LINE__); 7214 return -LIBBPF_ERRNO__INTERNAL; 7215 } 7216 7217 if (obj->efile.secs[idx].sec_type == SEC_ST_OPS) 7218 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 7219 else if (idx == obj->efile.btf_maps_shndx) 7220 err = bpf_object__collect_map_relos(obj, shdr, data); 7221 else 7222 err = bpf_object__collect_prog_relos(obj, shdr, data); 7223 if (err) 7224 return err; 7225 } 7226 7227 bpf_object__sort_relos(obj); 7228 return 0; 7229 } 7230 7231 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 7232 { 7233 if (BPF_CLASS(insn->code) == BPF_JMP && 7234 BPF_OP(insn->code) == BPF_CALL && 7235 BPF_SRC(insn->code) == BPF_K && 7236 insn->src_reg == 0 && 7237 insn->dst_reg == 0) { 7238 *func_id = insn->imm; 7239 return true; 7240 } 7241 return false; 7242 } 7243 7244 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 7245 { 7246 struct bpf_insn *insn = prog->insns; 7247 enum bpf_func_id func_id; 7248 int i; 7249 7250 if (obj->gen_loader) 7251 return 0; 7252 7253 for (i = 0; i < prog->insns_cnt; i++, insn++) { 7254 if (!insn_is_helper_call(insn, &func_id)) 7255 continue; 7256 7257 /* on kernels that don't yet support 7258 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 7259 * to bpf_probe_read() which works well for old kernels 7260 */ 7261 switch (func_id) { 7262 case BPF_FUNC_probe_read_kernel: 7263 case BPF_FUNC_probe_read_user: 7264 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7265 insn->imm = BPF_FUNC_probe_read; 7266 break; 7267 case BPF_FUNC_probe_read_kernel_str: 7268 case BPF_FUNC_probe_read_user_str: 7269 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 7270 insn->imm = BPF_FUNC_probe_read_str; 7271 break; 7272 default: 7273 break; 7274 } 7275 } 7276 return 0; 7277 } 7278 7279 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 7280 int *btf_obj_fd, int *btf_type_id); 7281 7282 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 7283 static int libbpf_prepare_prog_load(struct bpf_program *prog, 7284 struct bpf_prog_load_opts *opts, long cookie) 7285 { 7286 enum sec_def_flags def = cookie; 7287 7288 /* old kernels might not support specifying expected_attach_type */ 7289 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 7290 opts->expected_attach_type = 0; 7291 7292 if (def & SEC_SLEEPABLE) 7293 opts->prog_flags |= BPF_F_SLEEPABLE; 7294 7295 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 7296 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 7297 7298 /* special check for usdt to use uprobe_multi link */ 7299 if ((def & SEC_USDT) && kernel_supports(prog->obj, FEAT_UPROBE_MULTI_LINK)) 7300 prog->expected_attach_type = BPF_TRACE_UPROBE_MULTI; 7301 7302 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 7303 int btf_obj_fd = 0, btf_type_id = 0, err; 7304 const char *attach_name; 7305 7306 attach_name = strchr(prog->sec_name, '/'); 7307 if (!attach_name) { 7308 /* if BPF program is annotated with just SEC("fentry") 7309 * (or similar) without declaratively specifying 7310 * target, then it is expected that target will be 7311 * specified with bpf_program__set_attach_target() at 7312 * runtime before BPF object load step. If not, then 7313 * there is nothing to load into the kernel as BPF 7314 * verifier won't be able to validate BPF program 7315 * correctness anyways. 7316 */ 7317 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 7318 prog->name); 7319 return -EINVAL; 7320 } 7321 attach_name++; /* skip over / */ 7322 7323 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 7324 if (err) 7325 return err; 7326 7327 /* cache resolved BTF FD and BTF type ID in the prog */ 7328 prog->attach_btf_obj_fd = btf_obj_fd; 7329 prog->attach_btf_id = btf_type_id; 7330 7331 /* but by now libbpf common logic is not utilizing 7332 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 7333 * this callback is called after opts were populated by 7334 * libbpf, so this callback has to update opts explicitly here 7335 */ 7336 opts->attach_btf_obj_fd = btf_obj_fd; 7337 opts->attach_btf_id = btf_type_id; 7338 } 7339 return 0; 7340 } 7341 7342 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 7343 7344 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 7345 struct bpf_insn *insns, int insns_cnt, 7346 const char *license, __u32 kern_version, int *prog_fd) 7347 { 7348 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 7349 const char *prog_name = NULL; 7350 char *cp, errmsg[STRERR_BUFSIZE]; 7351 size_t log_buf_size = 0; 7352 char *log_buf = NULL, *tmp; 7353 bool own_log_buf = true; 7354 __u32 log_level = prog->log_level; 7355 int ret, err; 7356 7357 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 7358 /* 7359 * The program type must be set. Most likely we couldn't find a proper 7360 * section definition at load time, and thus we didn't infer the type. 7361 */ 7362 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 7363 prog->name, prog->sec_name); 7364 return -EINVAL; 7365 } 7366 7367 if (!insns || !insns_cnt) 7368 return -EINVAL; 7369 7370 if (kernel_supports(obj, FEAT_PROG_NAME)) 7371 prog_name = prog->name; 7372 load_attr.attach_prog_fd = prog->attach_prog_fd; 7373 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 7374 load_attr.attach_btf_id = prog->attach_btf_id; 7375 load_attr.kern_version = kern_version; 7376 load_attr.prog_ifindex = prog->prog_ifindex; 7377 7378 /* specify func_info/line_info only if kernel supports them */ 7379 if (obj->btf && btf__fd(obj->btf) >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 7380 load_attr.prog_btf_fd = btf__fd(obj->btf); 7381 load_attr.func_info = prog->func_info; 7382 load_attr.func_info_rec_size = prog->func_info_rec_size; 7383 load_attr.func_info_cnt = prog->func_info_cnt; 7384 load_attr.line_info = prog->line_info; 7385 load_attr.line_info_rec_size = prog->line_info_rec_size; 7386 load_attr.line_info_cnt = prog->line_info_cnt; 7387 } 7388 load_attr.log_level = log_level; 7389 load_attr.prog_flags = prog->prog_flags; 7390 load_attr.fd_array = obj->fd_array; 7391 7392 load_attr.token_fd = obj->token_fd; 7393 if (obj->token_fd) 7394 load_attr.prog_flags |= BPF_F_TOKEN_FD; 7395 7396 /* adjust load_attr if sec_def provides custom preload callback */ 7397 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 7398 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 7399 if (err < 0) { 7400 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 7401 prog->name, err); 7402 return err; 7403 } 7404 insns = prog->insns; 7405 insns_cnt = prog->insns_cnt; 7406 } 7407 7408 /* allow prog_prepare_load_fn to change expected_attach_type */ 7409 load_attr.expected_attach_type = prog->expected_attach_type; 7410 7411 if (obj->gen_loader) { 7412 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 7413 license, insns, insns_cnt, &load_attr, 7414 prog - obj->programs); 7415 *prog_fd = -1; 7416 return 0; 7417 } 7418 7419 retry_load: 7420 /* if log_level is zero, we don't request logs initially even if 7421 * custom log_buf is specified; if the program load fails, then we'll 7422 * bump log_level to 1 and use either custom log_buf or we'll allocate 7423 * our own and retry the load to get details on what failed 7424 */ 7425 if (log_level) { 7426 if (prog->log_buf) { 7427 log_buf = prog->log_buf; 7428 log_buf_size = prog->log_size; 7429 own_log_buf = false; 7430 } else if (obj->log_buf) { 7431 log_buf = obj->log_buf; 7432 log_buf_size = obj->log_size; 7433 own_log_buf = false; 7434 } else { 7435 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 7436 tmp = realloc(log_buf, log_buf_size); 7437 if (!tmp) { 7438 ret = -ENOMEM; 7439 goto out; 7440 } 7441 log_buf = tmp; 7442 log_buf[0] = '\0'; 7443 own_log_buf = true; 7444 } 7445 } 7446 7447 load_attr.log_buf = log_buf; 7448 load_attr.log_size = log_buf_size; 7449 load_attr.log_level = log_level; 7450 7451 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 7452 if (ret >= 0) { 7453 if (log_level && own_log_buf) { 7454 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7455 prog->name, log_buf); 7456 } 7457 7458 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 7459 struct bpf_map *map; 7460 int i; 7461 7462 for (i = 0; i < obj->nr_maps; i++) { 7463 map = &prog->obj->maps[i]; 7464 if (map->libbpf_type != LIBBPF_MAP_RODATA) 7465 continue; 7466 7467 if (bpf_prog_bind_map(ret, map->fd, NULL)) { 7468 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7469 pr_warn("prog '%s': failed to bind map '%s': %s\n", 7470 prog->name, map->real_name, cp); 7471 /* Don't fail hard if can't bind rodata. */ 7472 } 7473 } 7474 } 7475 7476 *prog_fd = ret; 7477 ret = 0; 7478 goto out; 7479 } 7480 7481 if (log_level == 0) { 7482 log_level = 1; 7483 goto retry_load; 7484 } 7485 /* On ENOSPC, increase log buffer size and retry, unless custom 7486 * log_buf is specified. 7487 * Be careful to not overflow u32, though. Kernel's log buf size limit 7488 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 7489 * multiply by 2 unless we are sure we'll fit within 32 bits. 7490 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 7491 */ 7492 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 7493 goto retry_load; 7494 7495 ret = -errno; 7496 7497 /* post-process verifier log to improve error descriptions */ 7498 fixup_verifier_log(prog, log_buf, log_buf_size); 7499 7500 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7501 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 7502 pr_perm_msg(ret); 7503 7504 if (own_log_buf && log_buf && log_buf[0] != '\0') { 7505 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 7506 prog->name, log_buf); 7507 } 7508 7509 out: 7510 if (own_log_buf) 7511 free(log_buf); 7512 return ret; 7513 } 7514 7515 static char *find_prev_line(char *buf, char *cur) 7516 { 7517 char *p; 7518 7519 if (cur == buf) /* end of a log buf */ 7520 return NULL; 7521 7522 p = cur - 1; 7523 while (p - 1 >= buf && *(p - 1) != '\n') 7524 p--; 7525 7526 return p; 7527 } 7528 7529 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 7530 char *orig, size_t orig_sz, const char *patch) 7531 { 7532 /* size of the remaining log content to the right from the to-be-replaced part */ 7533 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 7534 size_t patch_sz = strlen(patch); 7535 7536 if (patch_sz != orig_sz) { 7537 /* If patch line(s) are longer than original piece of verifier log, 7538 * shift log contents by (patch_sz - orig_sz) bytes to the right 7539 * starting from after to-be-replaced part of the log. 7540 * 7541 * If patch line(s) are shorter than original piece of verifier log, 7542 * shift log contents by (orig_sz - patch_sz) bytes to the left 7543 * starting from after to-be-replaced part of the log 7544 * 7545 * We need to be careful about not overflowing available 7546 * buf_sz capacity. If that's the case, we'll truncate the end 7547 * of the original log, as necessary. 7548 */ 7549 if (patch_sz > orig_sz) { 7550 if (orig + patch_sz >= buf + buf_sz) { 7551 /* patch is big enough to cover remaining space completely */ 7552 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 7553 rem_sz = 0; 7554 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 7555 /* patch causes part of remaining log to be truncated */ 7556 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 7557 } 7558 } 7559 /* shift remaining log to the right by calculated amount */ 7560 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 7561 } 7562 7563 memcpy(orig, patch, patch_sz); 7564 } 7565 7566 static void fixup_log_failed_core_relo(struct bpf_program *prog, 7567 char *buf, size_t buf_sz, size_t log_sz, 7568 char *line1, char *line2, char *line3) 7569 { 7570 /* Expected log for failed and not properly guarded CO-RE relocation: 7571 * line1 -> 123: (85) call unknown#195896080 7572 * line2 -> invalid func unknown#195896080 7573 * line3 -> <anything else or end of buffer> 7574 * 7575 * "123" is the index of the instruction that was poisoned. We extract 7576 * instruction index to find corresponding CO-RE relocation and 7577 * replace this part of the log with more relevant information about 7578 * failed CO-RE relocation. 7579 */ 7580 const struct bpf_core_relo *relo; 7581 struct bpf_core_spec spec; 7582 char patch[512], spec_buf[256]; 7583 int insn_idx, err, spec_len; 7584 7585 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 7586 return; 7587 7588 relo = find_relo_core(prog, insn_idx); 7589 if (!relo) 7590 return; 7591 7592 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 7593 if (err) 7594 return; 7595 7596 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 7597 snprintf(patch, sizeof(patch), 7598 "%d: <invalid CO-RE relocation>\n" 7599 "failed to resolve CO-RE relocation %s%s\n", 7600 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 7601 7602 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7603 } 7604 7605 static void fixup_log_missing_map_load(struct bpf_program *prog, 7606 char *buf, size_t buf_sz, size_t log_sz, 7607 char *line1, char *line2, char *line3) 7608 { 7609 /* Expected log for failed and not properly guarded map reference: 7610 * line1 -> 123: (85) call unknown#2001000345 7611 * line2 -> invalid func unknown#2001000345 7612 * line3 -> <anything else or end of buffer> 7613 * 7614 * "123" is the index of the instruction that was poisoned. 7615 * "345" in "2001000345" is a map index in obj->maps to fetch map name. 7616 */ 7617 struct bpf_object *obj = prog->obj; 7618 const struct bpf_map *map; 7619 int insn_idx, map_idx; 7620 char patch[128]; 7621 7622 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 7623 return; 7624 7625 map_idx -= POISON_LDIMM64_MAP_BASE; 7626 if (map_idx < 0 || map_idx >= obj->nr_maps) 7627 return; 7628 map = &obj->maps[map_idx]; 7629 7630 snprintf(patch, sizeof(patch), 7631 "%d: <invalid BPF map reference>\n" 7632 "BPF map '%s' is referenced but wasn't created\n", 7633 insn_idx, map->name); 7634 7635 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7636 } 7637 7638 static void fixup_log_missing_kfunc_call(struct bpf_program *prog, 7639 char *buf, size_t buf_sz, size_t log_sz, 7640 char *line1, char *line2, char *line3) 7641 { 7642 /* Expected log for failed and not properly guarded kfunc call: 7643 * line1 -> 123: (85) call unknown#2002000345 7644 * line2 -> invalid func unknown#2002000345 7645 * line3 -> <anything else or end of buffer> 7646 * 7647 * "123" is the index of the instruction that was poisoned. 7648 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name. 7649 */ 7650 struct bpf_object *obj = prog->obj; 7651 const struct extern_desc *ext; 7652 int insn_idx, ext_idx; 7653 char patch[128]; 7654 7655 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2) 7656 return; 7657 7658 ext_idx -= POISON_CALL_KFUNC_BASE; 7659 if (ext_idx < 0 || ext_idx >= obj->nr_extern) 7660 return; 7661 ext = &obj->externs[ext_idx]; 7662 7663 snprintf(patch, sizeof(patch), 7664 "%d: <invalid kfunc call>\n" 7665 "kfunc '%s' is referenced but wasn't resolved\n", 7666 insn_idx, ext->name); 7667 7668 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7669 } 7670 7671 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7672 { 7673 /* look for familiar error patterns in last N lines of the log */ 7674 const size_t max_last_line_cnt = 10; 7675 char *prev_line, *cur_line, *next_line; 7676 size_t log_sz; 7677 int i; 7678 7679 if (!buf) 7680 return; 7681 7682 log_sz = strlen(buf) + 1; 7683 next_line = buf + log_sz - 1; 7684 7685 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7686 cur_line = find_prev_line(buf, next_line); 7687 if (!cur_line) 7688 return; 7689 7690 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7691 prev_line = find_prev_line(buf, cur_line); 7692 if (!prev_line) 7693 continue; 7694 7695 /* failed CO-RE relocation case */ 7696 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7697 prev_line, cur_line, next_line); 7698 return; 7699 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) { 7700 prev_line = find_prev_line(buf, cur_line); 7701 if (!prev_line) 7702 continue; 7703 7704 /* reference to uncreated BPF map */ 7705 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7706 prev_line, cur_line, next_line); 7707 return; 7708 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) { 7709 prev_line = find_prev_line(buf, cur_line); 7710 if (!prev_line) 7711 continue; 7712 7713 /* reference to unresolved kfunc */ 7714 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz, 7715 prev_line, cur_line, next_line); 7716 return; 7717 } 7718 } 7719 } 7720 7721 static int bpf_program_record_relos(struct bpf_program *prog) 7722 { 7723 struct bpf_object *obj = prog->obj; 7724 int i; 7725 7726 for (i = 0; i < prog->nr_reloc; i++) { 7727 struct reloc_desc *relo = &prog->reloc_desc[i]; 7728 struct extern_desc *ext = &obj->externs[relo->ext_idx]; 7729 int kind; 7730 7731 switch (relo->type) { 7732 case RELO_EXTERN_LD64: 7733 if (ext->type != EXT_KSYM) 7734 continue; 7735 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ? 7736 BTF_KIND_VAR : BTF_KIND_FUNC; 7737 bpf_gen__record_extern(obj->gen_loader, ext->name, 7738 ext->is_weak, !ext->ksym.type_id, 7739 true, kind, relo->insn_idx); 7740 break; 7741 case RELO_EXTERN_CALL: 7742 bpf_gen__record_extern(obj->gen_loader, ext->name, 7743 ext->is_weak, false, false, BTF_KIND_FUNC, 7744 relo->insn_idx); 7745 break; 7746 case RELO_CORE: { 7747 struct bpf_core_relo cr = { 7748 .insn_off = relo->insn_idx * 8, 7749 .type_id = relo->core_relo->type_id, 7750 .access_str_off = relo->core_relo->access_str_off, 7751 .kind = relo->core_relo->kind, 7752 }; 7753 7754 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7755 break; 7756 } 7757 default: 7758 continue; 7759 } 7760 } 7761 return 0; 7762 } 7763 7764 static int 7765 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7766 { 7767 struct bpf_program *prog; 7768 size_t i; 7769 int err; 7770 7771 for (i = 0; i < obj->nr_programs; i++) { 7772 prog = &obj->programs[i]; 7773 err = bpf_object__sanitize_prog(obj, prog); 7774 if (err) 7775 return err; 7776 } 7777 7778 for (i = 0; i < obj->nr_programs; i++) { 7779 prog = &obj->programs[i]; 7780 if (prog_is_subprog(obj, prog)) 7781 continue; 7782 if (!prog->autoload) { 7783 pr_debug("prog '%s': skipped loading\n", prog->name); 7784 continue; 7785 } 7786 prog->log_level |= log_level; 7787 7788 if (obj->gen_loader) 7789 bpf_program_record_relos(prog); 7790 7791 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7792 obj->license, obj->kern_version, &prog->fd); 7793 if (err) { 7794 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7795 return err; 7796 } 7797 } 7798 7799 bpf_object__free_relocs(obj); 7800 return 0; 7801 } 7802 7803 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7804 7805 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7806 { 7807 struct bpf_program *prog; 7808 int err; 7809 7810 bpf_object__for_each_program(prog, obj) { 7811 prog->sec_def = find_sec_def(prog->sec_name); 7812 if (!prog->sec_def) { 7813 /* couldn't guess, but user might manually specify */ 7814 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7815 prog->name, prog->sec_name); 7816 continue; 7817 } 7818 7819 prog->type = prog->sec_def->prog_type; 7820 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7821 7822 /* sec_def can have custom callback which should be called 7823 * after bpf_program is initialized to adjust its properties 7824 */ 7825 if (prog->sec_def->prog_setup_fn) { 7826 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7827 if (err < 0) { 7828 pr_warn("prog '%s': failed to initialize: %d\n", 7829 prog->name, err); 7830 return err; 7831 } 7832 } 7833 } 7834 7835 return 0; 7836 } 7837 7838 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7839 const struct bpf_object_open_opts *opts) 7840 { 7841 const char *obj_name, *kconfig, *btf_tmp_path, *token_path; 7842 struct bpf_object *obj; 7843 char tmp_name[64]; 7844 int err; 7845 char *log_buf; 7846 size_t log_size; 7847 __u32 log_level; 7848 7849 if (elf_version(EV_CURRENT) == EV_NONE) { 7850 pr_warn("failed to init libelf for %s\n", 7851 path ? : "(mem buf)"); 7852 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7853 } 7854 7855 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7856 return ERR_PTR(-EINVAL); 7857 7858 obj_name = OPTS_GET(opts, object_name, NULL); 7859 if (obj_buf) { 7860 if (!obj_name) { 7861 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7862 (unsigned long)obj_buf, 7863 (unsigned long)obj_buf_sz); 7864 obj_name = tmp_name; 7865 } 7866 path = obj_name; 7867 pr_debug("loading object '%s' from buffer\n", obj_name); 7868 } 7869 7870 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7871 log_size = OPTS_GET(opts, kernel_log_size, 0); 7872 log_level = OPTS_GET(opts, kernel_log_level, 0); 7873 if (log_size > UINT_MAX) 7874 return ERR_PTR(-EINVAL); 7875 if (log_size && !log_buf) 7876 return ERR_PTR(-EINVAL); 7877 7878 token_path = OPTS_GET(opts, bpf_token_path, NULL); 7879 /* if user didn't specify bpf_token_path explicitly, check if 7880 * LIBBPF_BPF_TOKEN_PATH envvar was set and treat it as bpf_token_path 7881 * option 7882 */ 7883 if (!token_path) 7884 token_path = getenv("LIBBPF_BPF_TOKEN_PATH"); 7885 if (token_path && strlen(token_path) >= PATH_MAX) 7886 return ERR_PTR(-ENAMETOOLONG); 7887 7888 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7889 if (IS_ERR(obj)) 7890 return obj; 7891 7892 obj->log_buf = log_buf; 7893 obj->log_size = log_size; 7894 obj->log_level = log_level; 7895 7896 if (token_path) { 7897 obj->token_path = strdup(token_path); 7898 if (!obj->token_path) { 7899 err = -ENOMEM; 7900 goto out; 7901 } 7902 } 7903 7904 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7905 if (btf_tmp_path) { 7906 if (strlen(btf_tmp_path) >= PATH_MAX) { 7907 err = -ENAMETOOLONG; 7908 goto out; 7909 } 7910 obj->btf_custom_path = strdup(btf_tmp_path); 7911 if (!obj->btf_custom_path) { 7912 err = -ENOMEM; 7913 goto out; 7914 } 7915 } 7916 7917 kconfig = OPTS_GET(opts, kconfig, NULL); 7918 if (kconfig) { 7919 obj->kconfig = strdup(kconfig); 7920 if (!obj->kconfig) { 7921 err = -ENOMEM; 7922 goto out; 7923 } 7924 } 7925 7926 err = bpf_object__elf_init(obj); 7927 err = err ? : bpf_object__check_endianness(obj); 7928 err = err ? : bpf_object__elf_collect(obj); 7929 err = err ? : bpf_object__collect_externs(obj); 7930 err = err ? : bpf_object_fixup_btf(obj); 7931 err = err ? : bpf_object__init_maps(obj, opts); 7932 err = err ? : bpf_object_init_progs(obj, opts); 7933 err = err ? : bpf_object__collect_relos(obj); 7934 if (err) 7935 goto out; 7936 7937 bpf_object__elf_finish(obj); 7938 7939 return obj; 7940 out: 7941 bpf_object__close(obj); 7942 return ERR_PTR(err); 7943 } 7944 7945 struct bpf_object * 7946 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7947 { 7948 if (!path) 7949 return libbpf_err_ptr(-EINVAL); 7950 7951 pr_debug("loading %s\n", path); 7952 7953 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7954 } 7955 7956 struct bpf_object *bpf_object__open(const char *path) 7957 { 7958 return bpf_object__open_file(path, NULL); 7959 } 7960 7961 struct bpf_object * 7962 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7963 const struct bpf_object_open_opts *opts) 7964 { 7965 if (!obj_buf || obj_buf_sz == 0) 7966 return libbpf_err_ptr(-EINVAL); 7967 7968 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7969 } 7970 7971 static int bpf_object_unload(struct bpf_object *obj) 7972 { 7973 size_t i; 7974 7975 if (!obj) 7976 return libbpf_err(-EINVAL); 7977 7978 for (i = 0; i < obj->nr_maps; i++) { 7979 zclose(obj->maps[i].fd); 7980 if (obj->maps[i].st_ops) 7981 zfree(&obj->maps[i].st_ops->kern_vdata); 7982 } 7983 7984 for (i = 0; i < obj->nr_programs; i++) 7985 bpf_program__unload(&obj->programs[i]); 7986 7987 return 0; 7988 } 7989 7990 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7991 { 7992 struct bpf_map *m; 7993 7994 bpf_object__for_each_map(m, obj) { 7995 if (!bpf_map__is_internal(m)) 7996 continue; 7997 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7998 m->def.map_flags &= ~BPF_F_MMAPABLE; 7999 } 8000 8001 return 0; 8002 } 8003 8004 typedef int (*kallsyms_cb_t)(unsigned long long sym_addr, char sym_type, 8005 const char *sym_name, void *ctx); 8006 8007 static int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 8008 { 8009 char sym_type, sym_name[500]; 8010 unsigned long long sym_addr; 8011 int ret, err = 0; 8012 FILE *f; 8013 8014 f = fopen("/proc/kallsyms", "re"); 8015 if (!f) { 8016 err = -errno; 8017 pr_warn("failed to open /proc/kallsyms: %d\n", err); 8018 return err; 8019 } 8020 8021 while (true) { 8022 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 8023 &sym_addr, &sym_type, sym_name); 8024 if (ret == EOF && feof(f)) 8025 break; 8026 if (ret != 3) { 8027 pr_warn("failed to read kallsyms entry: %d\n", ret); 8028 err = -EINVAL; 8029 break; 8030 } 8031 8032 err = cb(sym_addr, sym_type, sym_name, ctx); 8033 if (err) 8034 break; 8035 } 8036 8037 fclose(f); 8038 return err; 8039 } 8040 8041 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 8042 const char *sym_name, void *ctx) 8043 { 8044 struct bpf_object *obj = ctx; 8045 const struct btf_type *t; 8046 struct extern_desc *ext; 8047 char *res; 8048 8049 res = strstr(sym_name, ".llvm."); 8050 if (sym_type == 'd' && res) 8051 ext = find_extern_by_name_with_len(obj, sym_name, res - sym_name); 8052 else 8053 ext = find_extern_by_name(obj, sym_name); 8054 if (!ext || ext->type != EXT_KSYM) 8055 return 0; 8056 8057 t = btf__type_by_id(obj->btf, ext->btf_id); 8058 if (!btf_is_var(t)) 8059 return 0; 8060 8061 if (ext->is_set && ext->ksym.addr != sym_addr) { 8062 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 8063 sym_name, ext->ksym.addr, sym_addr); 8064 return -EINVAL; 8065 } 8066 if (!ext->is_set) { 8067 ext->is_set = true; 8068 ext->ksym.addr = sym_addr; 8069 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 8070 } 8071 return 0; 8072 } 8073 8074 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 8075 { 8076 return libbpf_kallsyms_parse(kallsyms_cb, obj); 8077 } 8078 8079 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 8080 __u16 kind, struct btf **res_btf, 8081 struct module_btf **res_mod_btf) 8082 { 8083 struct module_btf *mod_btf; 8084 struct btf *btf; 8085 int i, id, err; 8086 8087 btf = obj->btf_vmlinux; 8088 mod_btf = NULL; 8089 id = btf__find_by_name_kind(btf, ksym_name, kind); 8090 8091 if (id == -ENOENT) { 8092 err = load_module_btfs(obj); 8093 if (err) 8094 return err; 8095 8096 for (i = 0; i < obj->btf_module_cnt; i++) { 8097 /* we assume module_btf's BTF FD is always >0 */ 8098 mod_btf = &obj->btf_modules[i]; 8099 btf = mod_btf->btf; 8100 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 8101 if (id != -ENOENT) 8102 break; 8103 } 8104 } 8105 if (id <= 0) 8106 return -ESRCH; 8107 8108 *res_btf = btf; 8109 *res_mod_btf = mod_btf; 8110 return id; 8111 } 8112 8113 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 8114 struct extern_desc *ext) 8115 { 8116 const struct btf_type *targ_var, *targ_type; 8117 __u32 targ_type_id, local_type_id; 8118 struct module_btf *mod_btf = NULL; 8119 const char *targ_var_name; 8120 struct btf *btf = NULL; 8121 int id, err; 8122 8123 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 8124 if (id < 0) { 8125 if (id == -ESRCH && ext->is_weak) 8126 return 0; 8127 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 8128 ext->name); 8129 return id; 8130 } 8131 8132 /* find local type_id */ 8133 local_type_id = ext->ksym.type_id; 8134 8135 /* find target type_id */ 8136 targ_var = btf__type_by_id(btf, id); 8137 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 8138 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 8139 8140 err = bpf_core_types_are_compat(obj->btf, local_type_id, 8141 btf, targ_type_id); 8142 if (err <= 0) { 8143 const struct btf_type *local_type; 8144 const char *targ_name, *local_name; 8145 8146 local_type = btf__type_by_id(obj->btf, local_type_id); 8147 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 8148 targ_name = btf__name_by_offset(btf, targ_type->name_off); 8149 8150 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 8151 ext->name, local_type_id, 8152 btf_kind_str(local_type), local_name, targ_type_id, 8153 btf_kind_str(targ_type), targ_name); 8154 return -EINVAL; 8155 } 8156 8157 ext->is_set = true; 8158 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8159 ext->ksym.kernel_btf_id = id; 8160 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 8161 ext->name, id, btf_kind_str(targ_var), targ_var_name); 8162 8163 return 0; 8164 } 8165 8166 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 8167 struct extern_desc *ext) 8168 { 8169 int local_func_proto_id, kfunc_proto_id, kfunc_id; 8170 struct module_btf *mod_btf = NULL; 8171 const struct btf_type *kern_func; 8172 struct btf *kern_btf = NULL; 8173 int ret; 8174 8175 local_func_proto_id = ext->ksym.type_id; 8176 8177 kfunc_id = find_ksym_btf_id(obj, ext->essent_name ?: ext->name, BTF_KIND_FUNC, &kern_btf, 8178 &mod_btf); 8179 if (kfunc_id < 0) { 8180 if (kfunc_id == -ESRCH && ext->is_weak) 8181 return 0; 8182 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 8183 ext->name); 8184 return kfunc_id; 8185 } 8186 8187 kern_func = btf__type_by_id(kern_btf, kfunc_id); 8188 kfunc_proto_id = kern_func->type; 8189 8190 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 8191 kern_btf, kfunc_proto_id); 8192 if (ret <= 0) { 8193 if (ext->is_weak) 8194 return 0; 8195 8196 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n", 8197 ext->name, local_func_proto_id, 8198 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id); 8199 return -EINVAL; 8200 } 8201 8202 /* set index for module BTF fd in fd_array, if unset */ 8203 if (mod_btf && !mod_btf->fd_array_idx) { 8204 /* insn->off is s16 */ 8205 if (obj->fd_array_cnt == INT16_MAX) { 8206 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 8207 ext->name, mod_btf->fd_array_idx); 8208 return -E2BIG; 8209 } 8210 /* Cannot use index 0 for module BTF fd */ 8211 if (!obj->fd_array_cnt) 8212 obj->fd_array_cnt = 1; 8213 8214 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 8215 obj->fd_array_cnt + 1); 8216 if (ret) 8217 return ret; 8218 mod_btf->fd_array_idx = obj->fd_array_cnt; 8219 /* we assume module BTF FD is always >0 */ 8220 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 8221 } 8222 8223 ext->is_set = true; 8224 ext->ksym.kernel_btf_id = kfunc_id; 8225 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 8226 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data() 8227 * populates FD into ld_imm64 insn when it's used to point to kfunc. 8228 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call. 8229 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64. 8230 */ 8231 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 8232 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n", 8233 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id); 8234 8235 return 0; 8236 } 8237 8238 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 8239 { 8240 const struct btf_type *t; 8241 struct extern_desc *ext; 8242 int i, err; 8243 8244 for (i = 0; i < obj->nr_extern; i++) { 8245 ext = &obj->externs[i]; 8246 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 8247 continue; 8248 8249 if (obj->gen_loader) { 8250 ext->is_set = true; 8251 ext->ksym.kernel_btf_obj_fd = 0; 8252 ext->ksym.kernel_btf_id = 0; 8253 continue; 8254 } 8255 t = btf__type_by_id(obj->btf, ext->btf_id); 8256 if (btf_is_var(t)) 8257 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 8258 else 8259 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 8260 if (err) 8261 return err; 8262 } 8263 return 0; 8264 } 8265 8266 static int bpf_object__resolve_externs(struct bpf_object *obj, 8267 const char *extra_kconfig) 8268 { 8269 bool need_config = false, need_kallsyms = false; 8270 bool need_vmlinux_btf = false; 8271 struct extern_desc *ext; 8272 void *kcfg_data = NULL; 8273 int err, i; 8274 8275 if (obj->nr_extern == 0) 8276 return 0; 8277 8278 if (obj->kconfig_map_idx >= 0) 8279 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 8280 8281 for (i = 0; i < obj->nr_extern; i++) { 8282 ext = &obj->externs[i]; 8283 8284 if (ext->type == EXT_KSYM) { 8285 if (ext->ksym.type_id) 8286 need_vmlinux_btf = true; 8287 else 8288 need_kallsyms = true; 8289 continue; 8290 } else if (ext->type == EXT_KCFG) { 8291 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 8292 __u64 value = 0; 8293 8294 /* Kconfig externs need actual /proc/config.gz */ 8295 if (str_has_pfx(ext->name, "CONFIG_")) { 8296 need_config = true; 8297 continue; 8298 } 8299 8300 /* Virtual kcfg externs are customly handled by libbpf */ 8301 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 8302 value = get_kernel_version(); 8303 if (!value) { 8304 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 8305 return -EINVAL; 8306 } 8307 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 8308 value = kernel_supports(obj, FEAT_BPF_COOKIE); 8309 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 8310 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 8311 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 8312 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 8313 * __kconfig externs, where LINUX_ ones are virtual and filled out 8314 * customly by libbpf (their values don't come from Kconfig). 8315 * If LINUX_xxx variable is not recognized by libbpf, but is marked 8316 * __weak, it defaults to zero value, just like for CONFIG_xxx 8317 * externs. 8318 */ 8319 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 8320 return -EINVAL; 8321 } 8322 8323 err = set_kcfg_value_num(ext, ext_ptr, value); 8324 if (err) 8325 return err; 8326 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 8327 ext->name, (long long)value); 8328 } else { 8329 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 8330 return -EINVAL; 8331 } 8332 } 8333 if (need_config && extra_kconfig) { 8334 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 8335 if (err) 8336 return -EINVAL; 8337 need_config = false; 8338 for (i = 0; i < obj->nr_extern; i++) { 8339 ext = &obj->externs[i]; 8340 if (ext->type == EXT_KCFG && !ext->is_set) { 8341 need_config = true; 8342 break; 8343 } 8344 } 8345 } 8346 if (need_config) { 8347 err = bpf_object__read_kconfig_file(obj, kcfg_data); 8348 if (err) 8349 return -EINVAL; 8350 } 8351 if (need_kallsyms) { 8352 err = bpf_object__read_kallsyms_file(obj); 8353 if (err) 8354 return -EINVAL; 8355 } 8356 if (need_vmlinux_btf) { 8357 err = bpf_object__resolve_ksyms_btf_id(obj); 8358 if (err) 8359 return -EINVAL; 8360 } 8361 for (i = 0; i < obj->nr_extern; i++) { 8362 ext = &obj->externs[i]; 8363 8364 if (!ext->is_set && !ext->is_weak) { 8365 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 8366 return -ESRCH; 8367 } else if (!ext->is_set) { 8368 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 8369 ext->name); 8370 } 8371 } 8372 8373 return 0; 8374 } 8375 8376 static void bpf_map_prepare_vdata(const struct bpf_map *map) 8377 { 8378 struct bpf_struct_ops *st_ops; 8379 __u32 i; 8380 8381 st_ops = map->st_ops; 8382 for (i = 0; i < btf_vlen(st_ops->type); i++) { 8383 struct bpf_program *prog = st_ops->progs[i]; 8384 void *kern_data; 8385 int prog_fd; 8386 8387 if (!prog) 8388 continue; 8389 8390 prog_fd = bpf_program__fd(prog); 8391 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 8392 *(unsigned long *)kern_data = prog_fd; 8393 } 8394 } 8395 8396 static int bpf_object_prepare_struct_ops(struct bpf_object *obj) 8397 { 8398 struct bpf_map *map; 8399 int i; 8400 8401 for (i = 0; i < obj->nr_maps; i++) { 8402 map = &obj->maps[i]; 8403 8404 if (!bpf_map__is_struct_ops(map)) 8405 continue; 8406 8407 if (!map->autocreate) 8408 continue; 8409 8410 bpf_map_prepare_vdata(map); 8411 } 8412 8413 return 0; 8414 } 8415 8416 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 8417 { 8418 int err, i; 8419 8420 if (!obj) 8421 return libbpf_err(-EINVAL); 8422 8423 if (obj->loaded) { 8424 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 8425 return libbpf_err(-EINVAL); 8426 } 8427 8428 if (obj->gen_loader) 8429 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 8430 8431 err = bpf_object_prepare_token(obj); 8432 err = err ? : bpf_object__probe_loading(obj); 8433 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 8434 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 8435 err = err ? : bpf_object__sanitize_maps(obj); 8436 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 8437 err = err ? : bpf_object_adjust_struct_ops_autoload(obj); 8438 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 8439 err = err ? : bpf_object__sanitize_and_load_btf(obj); 8440 err = err ? : bpf_object__create_maps(obj); 8441 err = err ? : bpf_object__load_progs(obj, extra_log_level); 8442 err = err ? : bpf_object_init_prog_arrays(obj); 8443 err = err ? : bpf_object_prepare_struct_ops(obj); 8444 8445 if (obj->gen_loader) { 8446 /* reset FDs */ 8447 if (obj->btf) 8448 btf__set_fd(obj->btf, -1); 8449 if (!err) 8450 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 8451 } 8452 8453 /* clean up fd_array */ 8454 zfree(&obj->fd_array); 8455 8456 /* clean up module BTFs */ 8457 for (i = 0; i < obj->btf_module_cnt; i++) { 8458 close(obj->btf_modules[i].fd); 8459 btf__free(obj->btf_modules[i].btf); 8460 free(obj->btf_modules[i].name); 8461 } 8462 free(obj->btf_modules); 8463 8464 /* clean up vmlinux BTF */ 8465 btf__free(obj->btf_vmlinux); 8466 obj->btf_vmlinux = NULL; 8467 8468 obj->loaded = true; /* doesn't matter if successfully or not */ 8469 8470 if (err) 8471 goto out; 8472 8473 return 0; 8474 out: 8475 /* unpin any maps that were auto-pinned during load */ 8476 for (i = 0; i < obj->nr_maps; i++) 8477 if (obj->maps[i].pinned && !obj->maps[i].reused) 8478 bpf_map__unpin(&obj->maps[i], NULL); 8479 8480 bpf_object_unload(obj); 8481 pr_warn("failed to load object '%s'\n", obj->path); 8482 return libbpf_err(err); 8483 } 8484 8485 int bpf_object__load(struct bpf_object *obj) 8486 { 8487 return bpf_object_load(obj, 0, NULL); 8488 } 8489 8490 static int make_parent_dir(const char *path) 8491 { 8492 char *cp, errmsg[STRERR_BUFSIZE]; 8493 char *dname, *dir; 8494 int err = 0; 8495 8496 dname = strdup(path); 8497 if (dname == NULL) 8498 return -ENOMEM; 8499 8500 dir = dirname(dname); 8501 if (mkdir(dir, 0700) && errno != EEXIST) 8502 err = -errno; 8503 8504 free(dname); 8505 if (err) { 8506 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8507 pr_warn("failed to mkdir %s: %s\n", path, cp); 8508 } 8509 return err; 8510 } 8511 8512 static int check_path(const char *path) 8513 { 8514 char *cp, errmsg[STRERR_BUFSIZE]; 8515 struct statfs st_fs; 8516 char *dname, *dir; 8517 int err = 0; 8518 8519 if (path == NULL) 8520 return -EINVAL; 8521 8522 dname = strdup(path); 8523 if (dname == NULL) 8524 return -ENOMEM; 8525 8526 dir = dirname(dname); 8527 if (statfs(dir, &st_fs)) { 8528 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 8529 pr_warn("failed to statfs %s: %s\n", dir, cp); 8530 err = -errno; 8531 } 8532 free(dname); 8533 8534 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 8535 pr_warn("specified path %s is not on BPF FS\n", path); 8536 err = -EINVAL; 8537 } 8538 8539 return err; 8540 } 8541 8542 int bpf_program__pin(struct bpf_program *prog, const char *path) 8543 { 8544 char *cp, errmsg[STRERR_BUFSIZE]; 8545 int err; 8546 8547 if (prog->fd < 0) { 8548 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 8549 return libbpf_err(-EINVAL); 8550 } 8551 8552 err = make_parent_dir(path); 8553 if (err) 8554 return libbpf_err(err); 8555 8556 err = check_path(path); 8557 if (err) 8558 return libbpf_err(err); 8559 8560 if (bpf_obj_pin(prog->fd, path)) { 8561 err = -errno; 8562 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 8563 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 8564 return libbpf_err(err); 8565 } 8566 8567 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 8568 return 0; 8569 } 8570 8571 int bpf_program__unpin(struct bpf_program *prog, const char *path) 8572 { 8573 int err; 8574 8575 if (prog->fd < 0) { 8576 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 8577 return libbpf_err(-EINVAL); 8578 } 8579 8580 err = check_path(path); 8581 if (err) 8582 return libbpf_err(err); 8583 8584 err = unlink(path); 8585 if (err) 8586 return libbpf_err(-errno); 8587 8588 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 8589 return 0; 8590 } 8591 8592 int bpf_map__pin(struct bpf_map *map, const char *path) 8593 { 8594 char *cp, errmsg[STRERR_BUFSIZE]; 8595 int err; 8596 8597 if (map == NULL) { 8598 pr_warn("invalid map pointer\n"); 8599 return libbpf_err(-EINVAL); 8600 } 8601 8602 if (map->fd < 0) { 8603 pr_warn("map '%s': can't pin BPF map without FD (was it created?)\n", map->name); 8604 return libbpf_err(-EINVAL); 8605 } 8606 8607 if (map->pin_path) { 8608 if (path && strcmp(path, map->pin_path)) { 8609 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8610 bpf_map__name(map), map->pin_path, path); 8611 return libbpf_err(-EINVAL); 8612 } else if (map->pinned) { 8613 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 8614 bpf_map__name(map), map->pin_path); 8615 return 0; 8616 } 8617 } else { 8618 if (!path) { 8619 pr_warn("missing a path to pin map '%s' at\n", 8620 bpf_map__name(map)); 8621 return libbpf_err(-EINVAL); 8622 } else if (map->pinned) { 8623 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 8624 return libbpf_err(-EEXIST); 8625 } 8626 8627 map->pin_path = strdup(path); 8628 if (!map->pin_path) { 8629 err = -errno; 8630 goto out_err; 8631 } 8632 } 8633 8634 err = make_parent_dir(map->pin_path); 8635 if (err) 8636 return libbpf_err(err); 8637 8638 err = check_path(map->pin_path); 8639 if (err) 8640 return libbpf_err(err); 8641 8642 if (bpf_obj_pin(map->fd, map->pin_path)) { 8643 err = -errno; 8644 goto out_err; 8645 } 8646 8647 map->pinned = true; 8648 pr_debug("pinned map '%s'\n", map->pin_path); 8649 8650 return 0; 8651 8652 out_err: 8653 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 8654 pr_warn("failed to pin map: %s\n", cp); 8655 return libbpf_err(err); 8656 } 8657 8658 int bpf_map__unpin(struct bpf_map *map, const char *path) 8659 { 8660 int err; 8661 8662 if (map == NULL) { 8663 pr_warn("invalid map pointer\n"); 8664 return libbpf_err(-EINVAL); 8665 } 8666 8667 if (map->pin_path) { 8668 if (path && strcmp(path, map->pin_path)) { 8669 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 8670 bpf_map__name(map), map->pin_path, path); 8671 return libbpf_err(-EINVAL); 8672 } 8673 path = map->pin_path; 8674 } else if (!path) { 8675 pr_warn("no path to unpin map '%s' from\n", 8676 bpf_map__name(map)); 8677 return libbpf_err(-EINVAL); 8678 } 8679 8680 err = check_path(path); 8681 if (err) 8682 return libbpf_err(err); 8683 8684 err = unlink(path); 8685 if (err != 0) 8686 return libbpf_err(-errno); 8687 8688 map->pinned = false; 8689 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 8690 8691 return 0; 8692 } 8693 8694 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 8695 { 8696 char *new = NULL; 8697 8698 if (path) { 8699 new = strdup(path); 8700 if (!new) 8701 return libbpf_err(-errno); 8702 } 8703 8704 free(map->pin_path); 8705 map->pin_path = new; 8706 return 0; 8707 } 8708 8709 __alias(bpf_map__pin_path) 8710 const char *bpf_map__get_pin_path(const struct bpf_map *map); 8711 8712 const char *bpf_map__pin_path(const struct bpf_map *map) 8713 { 8714 return map->pin_path; 8715 } 8716 8717 bool bpf_map__is_pinned(const struct bpf_map *map) 8718 { 8719 return map->pinned; 8720 } 8721 8722 static void sanitize_pin_path(char *s) 8723 { 8724 /* bpffs disallows periods in path names */ 8725 while (*s) { 8726 if (*s == '.') 8727 *s = '_'; 8728 s++; 8729 } 8730 } 8731 8732 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 8733 { 8734 struct bpf_map *map; 8735 int err; 8736 8737 if (!obj) 8738 return libbpf_err(-ENOENT); 8739 8740 if (!obj->loaded) { 8741 pr_warn("object not yet loaded; load it first\n"); 8742 return libbpf_err(-ENOENT); 8743 } 8744 8745 bpf_object__for_each_map(map, obj) { 8746 char *pin_path = NULL; 8747 char buf[PATH_MAX]; 8748 8749 if (!map->autocreate) 8750 continue; 8751 8752 if (path) { 8753 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8754 if (err) 8755 goto err_unpin_maps; 8756 sanitize_pin_path(buf); 8757 pin_path = buf; 8758 } else if (!map->pin_path) { 8759 continue; 8760 } 8761 8762 err = bpf_map__pin(map, pin_path); 8763 if (err) 8764 goto err_unpin_maps; 8765 } 8766 8767 return 0; 8768 8769 err_unpin_maps: 8770 while ((map = bpf_object__prev_map(obj, map))) { 8771 if (!map->pin_path) 8772 continue; 8773 8774 bpf_map__unpin(map, NULL); 8775 } 8776 8777 return libbpf_err(err); 8778 } 8779 8780 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8781 { 8782 struct bpf_map *map; 8783 int err; 8784 8785 if (!obj) 8786 return libbpf_err(-ENOENT); 8787 8788 bpf_object__for_each_map(map, obj) { 8789 char *pin_path = NULL; 8790 char buf[PATH_MAX]; 8791 8792 if (path) { 8793 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8794 if (err) 8795 return libbpf_err(err); 8796 sanitize_pin_path(buf); 8797 pin_path = buf; 8798 } else if (!map->pin_path) { 8799 continue; 8800 } 8801 8802 err = bpf_map__unpin(map, pin_path); 8803 if (err) 8804 return libbpf_err(err); 8805 } 8806 8807 return 0; 8808 } 8809 8810 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8811 { 8812 struct bpf_program *prog; 8813 char buf[PATH_MAX]; 8814 int err; 8815 8816 if (!obj) 8817 return libbpf_err(-ENOENT); 8818 8819 if (!obj->loaded) { 8820 pr_warn("object not yet loaded; load it first\n"); 8821 return libbpf_err(-ENOENT); 8822 } 8823 8824 bpf_object__for_each_program(prog, obj) { 8825 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8826 if (err) 8827 goto err_unpin_programs; 8828 8829 err = bpf_program__pin(prog, buf); 8830 if (err) 8831 goto err_unpin_programs; 8832 } 8833 8834 return 0; 8835 8836 err_unpin_programs: 8837 while ((prog = bpf_object__prev_program(obj, prog))) { 8838 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8839 continue; 8840 8841 bpf_program__unpin(prog, buf); 8842 } 8843 8844 return libbpf_err(err); 8845 } 8846 8847 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8848 { 8849 struct bpf_program *prog; 8850 int err; 8851 8852 if (!obj) 8853 return libbpf_err(-ENOENT); 8854 8855 bpf_object__for_each_program(prog, obj) { 8856 char buf[PATH_MAX]; 8857 8858 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8859 if (err) 8860 return libbpf_err(err); 8861 8862 err = bpf_program__unpin(prog, buf); 8863 if (err) 8864 return libbpf_err(err); 8865 } 8866 8867 return 0; 8868 } 8869 8870 int bpf_object__pin(struct bpf_object *obj, const char *path) 8871 { 8872 int err; 8873 8874 err = bpf_object__pin_maps(obj, path); 8875 if (err) 8876 return libbpf_err(err); 8877 8878 err = bpf_object__pin_programs(obj, path); 8879 if (err) { 8880 bpf_object__unpin_maps(obj, path); 8881 return libbpf_err(err); 8882 } 8883 8884 return 0; 8885 } 8886 8887 int bpf_object__unpin(struct bpf_object *obj, const char *path) 8888 { 8889 int err; 8890 8891 err = bpf_object__unpin_programs(obj, path); 8892 if (err) 8893 return libbpf_err(err); 8894 8895 err = bpf_object__unpin_maps(obj, path); 8896 if (err) 8897 return libbpf_err(err); 8898 8899 return 0; 8900 } 8901 8902 static void bpf_map__destroy(struct bpf_map *map) 8903 { 8904 if (map->inner_map) { 8905 bpf_map__destroy(map->inner_map); 8906 zfree(&map->inner_map); 8907 } 8908 8909 zfree(&map->init_slots); 8910 map->init_slots_sz = 0; 8911 8912 if (map->mmaped && map->mmaped != map->obj->arena_data) 8913 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8914 map->mmaped = NULL; 8915 8916 if (map->st_ops) { 8917 zfree(&map->st_ops->data); 8918 zfree(&map->st_ops->progs); 8919 zfree(&map->st_ops->kern_func_off); 8920 zfree(&map->st_ops); 8921 } 8922 8923 zfree(&map->name); 8924 zfree(&map->real_name); 8925 zfree(&map->pin_path); 8926 8927 if (map->fd >= 0) 8928 zclose(map->fd); 8929 } 8930 8931 void bpf_object__close(struct bpf_object *obj) 8932 { 8933 size_t i; 8934 8935 if (IS_ERR_OR_NULL(obj)) 8936 return; 8937 8938 usdt_manager_free(obj->usdt_man); 8939 obj->usdt_man = NULL; 8940 8941 bpf_gen__free(obj->gen_loader); 8942 bpf_object__elf_finish(obj); 8943 bpf_object_unload(obj); 8944 btf__free(obj->btf); 8945 btf__free(obj->btf_vmlinux); 8946 btf_ext__free(obj->btf_ext); 8947 8948 for (i = 0; i < obj->nr_maps; i++) 8949 bpf_map__destroy(&obj->maps[i]); 8950 8951 zfree(&obj->btf_custom_path); 8952 zfree(&obj->kconfig); 8953 8954 for (i = 0; i < obj->nr_extern; i++) 8955 zfree(&obj->externs[i].essent_name); 8956 8957 zfree(&obj->externs); 8958 obj->nr_extern = 0; 8959 8960 zfree(&obj->maps); 8961 obj->nr_maps = 0; 8962 8963 if (obj->programs && obj->nr_programs) { 8964 for (i = 0; i < obj->nr_programs; i++) 8965 bpf_program__exit(&obj->programs[i]); 8966 } 8967 zfree(&obj->programs); 8968 8969 zfree(&obj->feat_cache); 8970 zfree(&obj->token_path); 8971 if (obj->token_fd > 0) 8972 close(obj->token_fd); 8973 8974 zfree(&obj->arena_data); 8975 8976 free(obj); 8977 } 8978 8979 const char *bpf_object__name(const struct bpf_object *obj) 8980 { 8981 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8982 } 8983 8984 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8985 { 8986 return obj ? obj->kern_version : 0; 8987 } 8988 8989 struct btf *bpf_object__btf(const struct bpf_object *obj) 8990 { 8991 return obj ? obj->btf : NULL; 8992 } 8993 8994 int bpf_object__btf_fd(const struct bpf_object *obj) 8995 { 8996 return obj->btf ? btf__fd(obj->btf) : -1; 8997 } 8998 8999 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 9000 { 9001 if (obj->loaded) 9002 return libbpf_err(-EINVAL); 9003 9004 obj->kern_version = kern_version; 9005 9006 return 0; 9007 } 9008 9009 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 9010 { 9011 struct bpf_gen *gen; 9012 9013 if (!opts) 9014 return -EFAULT; 9015 if (!OPTS_VALID(opts, gen_loader_opts)) 9016 return -EINVAL; 9017 gen = calloc(sizeof(*gen), 1); 9018 if (!gen) 9019 return -ENOMEM; 9020 gen->opts = opts; 9021 obj->gen_loader = gen; 9022 return 0; 9023 } 9024 9025 static struct bpf_program * 9026 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 9027 bool forward) 9028 { 9029 size_t nr_programs = obj->nr_programs; 9030 ssize_t idx; 9031 9032 if (!nr_programs) 9033 return NULL; 9034 9035 if (!p) 9036 /* Iter from the beginning */ 9037 return forward ? &obj->programs[0] : 9038 &obj->programs[nr_programs - 1]; 9039 9040 if (p->obj != obj) { 9041 pr_warn("error: program handler doesn't match object\n"); 9042 return errno = EINVAL, NULL; 9043 } 9044 9045 idx = (p - obj->programs) + (forward ? 1 : -1); 9046 if (idx >= obj->nr_programs || idx < 0) 9047 return NULL; 9048 return &obj->programs[idx]; 9049 } 9050 9051 struct bpf_program * 9052 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 9053 { 9054 struct bpf_program *prog = prev; 9055 9056 do { 9057 prog = __bpf_program__iter(prog, obj, true); 9058 } while (prog && prog_is_subprog(obj, prog)); 9059 9060 return prog; 9061 } 9062 9063 struct bpf_program * 9064 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 9065 { 9066 struct bpf_program *prog = next; 9067 9068 do { 9069 prog = __bpf_program__iter(prog, obj, false); 9070 } while (prog && prog_is_subprog(obj, prog)); 9071 9072 return prog; 9073 } 9074 9075 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 9076 { 9077 prog->prog_ifindex = ifindex; 9078 } 9079 9080 const char *bpf_program__name(const struct bpf_program *prog) 9081 { 9082 return prog->name; 9083 } 9084 9085 const char *bpf_program__section_name(const struct bpf_program *prog) 9086 { 9087 return prog->sec_name; 9088 } 9089 9090 bool bpf_program__autoload(const struct bpf_program *prog) 9091 { 9092 return prog->autoload; 9093 } 9094 9095 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 9096 { 9097 if (prog->obj->loaded) 9098 return libbpf_err(-EINVAL); 9099 9100 prog->autoload = autoload; 9101 return 0; 9102 } 9103 9104 bool bpf_program__autoattach(const struct bpf_program *prog) 9105 { 9106 return prog->autoattach; 9107 } 9108 9109 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 9110 { 9111 prog->autoattach = autoattach; 9112 } 9113 9114 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 9115 { 9116 return prog->insns; 9117 } 9118 9119 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 9120 { 9121 return prog->insns_cnt; 9122 } 9123 9124 int bpf_program__set_insns(struct bpf_program *prog, 9125 struct bpf_insn *new_insns, size_t new_insn_cnt) 9126 { 9127 struct bpf_insn *insns; 9128 9129 if (prog->obj->loaded) 9130 return -EBUSY; 9131 9132 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 9133 /* NULL is a valid return from reallocarray if the new count is zero */ 9134 if (!insns && new_insn_cnt) { 9135 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 9136 return -ENOMEM; 9137 } 9138 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 9139 9140 prog->insns = insns; 9141 prog->insns_cnt = new_insn_cnt; 9142 return 0; 9143 } 9144 9145 int bpf_program__fd(const struct bpf_program *prog) 9146 { 9147 if (!prog) 9148 return libbpf_err(-EINVAL); 9149 9150 if (prog->fd < 0) 9151 return libbpf_err(-ENOENT); 9152 9153 return prog->fd; 9154 } 9155 9156 __alias(bpf_program__type) 9157 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 9158 9159 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 9160 { 9161 return prog->type; 9162 } 9163 9164 static size_t custom_sec_def_cnt; 9165 static struct bpf_sec_def *custom_sec_defs; 9166 static struct bpf_sec_def custom_fallback_def; 9167 static bool has_custom_fallback_def; 9168 static int last_custom_sec_def_handler_id; 9169 9170 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 9171 { 9172 if (prog->obj->loaded) 9173 return libbpf_err(-EBUSY); 9174 9175 /* if type is not changed, do nothing */ 9176 if (prog->type == type) 9177 return 0; 9178 9179 prog->type = type; 9180 9181 /* If a program type was changed, we need to reset associated SEC() 9182 * handler, as it will be invalid now. The only exception is a generic 9183 * fallback handler, which by definition is program type-agnostic and 9184 * is a catch-all custom handler, optionally set by the application, 9185 * so should be able to handle any type of BPF program. 9186 */ 9187 if (prog->sec_def != &custom_fallback_def) 9188 prog->sec_def = NULL; 9189 return 0; 9190 } 9191 9192 __alias(bpf_program__expected_attach_type) 9193 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 9194 9195 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 9196 { 9197 return prog->expected_attach_type; 9198 } 9199 9200 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 9201 enum bpf_attach_type type) 9202 { 9203 if (prog->obj->loaded) 9204 return libbpf_err(-EBUSY); 9205 9206 prog->expected_attach_type = type; 9207 return 0; 9208 } 9209 9210 __u32 bpf_program__flags(const struct bpf_program *prog) 9211 { 9212 return prog->prog_flags; 9213 } 9214 9215 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 9216 { 9217 if (prog->obj->loaded) 9218 return libbpf_err(-EBUSY); 9219 9220 prog->prog_flags = flags; 9221 return 0; 9222 } 9223 9224 __u32 bpf_program__log_level(const struct bpf_program *prog) 9225 { 9226 return prog->log_level; 9227 } 9228 9229 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 9230 { 9231 if (prog->obj->loaded) 9232 return libbpf_err(-EBUSY); 9233 9234 prog->log_level = log_level; 9235 return 0; 9236 } 9237 9238 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 9239 { 9240 *log_size = prog->log_size; 9241 return prog->log_buf; 9242 } 9243 9244 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 9245 { 9246 if (log_size && !log_buf) 9247 return -EINVAL; 9248 if (prog->log_size > UINT_MAX) 9249 return -EINVAL; 9250 if (prog->obj->loaded) 9251 return -EBUSY; 9252 9253 prog->log_buf = log_buf; 9254 prog->log_size = log_size; 9255 return 0; 9256 } 9257 9258 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 9259 .sec = (char *)sec_pfx, \ 9260 .prog_type = BPF_PROG_TYPE_##ptype, \ 9261 .expected_attach_type = atype, \ 9262 .cookie = (long)(flags), \ 9263 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 9264 __VA_ARGS__ \ 9265 } 9266 9267 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9268 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9269 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9270 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9271 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9272 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9273 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9274 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9275 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9276 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9277 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 9278 9279 static const struct bpf_sec_def section_defs[] = { 9280 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 9281 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 9282 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 9283 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9284 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9285 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9286 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 9287 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 9288 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 9289 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9290 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 9291 SEC_DEF("uprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9292 SEC_DEF("uretprobe.multi+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_NONE, attach_uprobe_multi), 9293 SEC_DEF("uprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9294 SEC_DEF("uretprobe.multi.s+", KPROBE, BPF_TRACE_UPROBE_MULTI, SEC_SLEEPABLE, attach_uprobe_multi), 9295 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9296 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 9297 SEC_DEF("usdt+", KPROBE, 0, SEC_USDT, attach_usdt), 9298 SEC_DEF("usdt.s+", KPROBE, 0, SEC_USDT | SEC_SLEEPABLE, attach_usdt), 9299 SEC_DEF("tc/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), /* alias for tcx */ 9300 SEC_DEF("tc/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), /* alias for tcx */ 9301 SEC_DEF("tcx/ingress", SCHED_CLS, BPF_TCX_INGRESS, SEC_NONE), 9302 SEC_DEF("tcx/egress", SCHED_CLS, BPF_TCX_EGRESS, SEC_NONE), 9303 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9304 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9305 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), /* deprecated / legacy, use tcx */ 9306 SEC_DEF("netkit/primary", SCHED_CLS, BPF_NETKIT_PRIMARY, SEC_NONE), 9307 SEC_DEF("netkit/peer", SCHED_CLS, BPF_NETKIT_PEER, SEC_NONE), 9308 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9309 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 9310 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9311 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 9312 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9313 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 9314 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 9315 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 9316 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 9317 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 9318 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9319 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9320 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 9321 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 9322 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 9323 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 9324 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 9325 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 9326 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 9327 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 9328 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 9329 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 9330 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 9331 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 9332 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 9333 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 9334 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 9335 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 9336 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 9337 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 9338 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 9339 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 9340 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 9341 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 9342 SEC_DEF("sk_skb/verdict", SK_SKB, BPF_SK_SKB_VERDICT, SEC_ATTACHABLE_OPT), 9343 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 9344 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 9345 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 9346 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 9347 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 9348 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 9349 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 9350 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 9351 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 9352 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 9353 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 9354 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 9355 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 9356 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 9357 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 9358 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 9359 SEC_DEF("cgroup/connect_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_CONNECT, SEC_ATTACHABLE), 9360 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 9361 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 9362 SEC_DEF("cgroup/sendmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_SENDMSG, SEC_ATTACHABLE), 9363 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 9364 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 9365 SEC_DEF("cgroup/recvmsg_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_RECVMSG, SEC_ATTACHABLE), 9366 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 9367 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 9368 SEC_DEF("cgroup/getpeername_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETPEERNAME, SEC_ATTACHABLE), 9369 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 9370 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 9371 SEC_DEF("cgroup/getsockname_unix", CGROUP_SOCK_ADDR, BPF_CGROUP_UNIX_GETSOCKNAME, SEC_ATTACHABLE), 9372 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 9373 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 9374 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 9375 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 9376 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 9377 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE), 9378 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 9379 SEC_DEF("netfilter", NETFILTER, BPF_NETFILTER, SEC_NONE), 9380 }; 9381 9382 int libbpf_register_prog_handler(const char *sec, 9383 enum bpf_prog_type prog_type, 9384 enum bpf_attach_type exp_attach_type, 9385 const struct libbpf_prog_handler_opts *opts) 9386 { 9387 struct bpf_sec_def *sec_def; 9388 9389 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 9390 return libbpf_err(-EINVAL); 9391 9392 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 9393 return libbpf_err(-E2BIG); 9394 9395 if (sec) { 9396 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 9397 sizeof(*sec_def)); 9398 if (!sec_def) 9399 return libbpf_err(-ENOMEM); 9400 9401 custom_sec_defs = sec_def; 9402 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 9403 } else { 9404 if (has_custom_fallback_def) 9405 return libbpf_err(-EBUSY); 9406 9407 sec_def = &custom_fallback_def; 9408 } 9409 9410 sec_def->sec = sec ? strdup(sec) : NULL; 9411 if (sec && !sec_def->sec) 9412 return libbpf_err(-ENOMEM); 9413 9414 sec_def->prog_type = prog_type; 9415 sec_def->expected_attach_type = exp_attach_type; 9416 sec_def->cookie = OPTS_GET(opts, cookie, 0); 9417 9418 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 9419 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 9420 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 9421 9422 sec_def->handler_id = ++last_custom_sec_def_handler_id; 9423 9424 if (sec) 9425 custom_sec_def_cnt++; 9426 else 9427 has_custom_fallback_def = true; 9428 9429 return sec_def->handler_id; 9430 } 9431 9432 int libbpf_unregister_prog_handler(int handler_id) 9433 { 9434 struct bpf_sec_def *sec_defs; 9435 int i; 9436 9437 if (handler_id <= 0) 9438 return libbpf_err(-EINVAL); 9439 9440 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 9441 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 9442 has_custom_fallback_def = false; 9443 return 0; 9444 } 9445 9446 for (i = 0; i < custom_sec_def_cnt; i++) { 9447 if (custom_sec_defs[i].handler_id == handler_id) 9448 break; 9449 } 9450 9451 if (i == custom_sec_def_cnt) 9452 return libbpf_err(-ENOENT); 9453 9454 free(custom_sec_defs[i].sec); 9455 for (i = i + 1; i < custom_sec_def_cnt; i++) 9456 custom_sec_defs[i - 1] = custom_sec_defs[i]; 9457 custom_sec_def_cnt--; 9458 9459 /* try to shrink the array, but it's ok if we couldn't */ 9460 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 9461 /* if new count is zero, reallocarray can return a valid NULL result; 9462 * in this case the previous pointer will be freed, so we *have to* 9463 * reassign old pointer to the new value (even if it's NULL) 9464 */ 9465 if (sec_defs || custom_sec_def_cnt == 0) 9466 custom_sec_defs = sec_defs; 9467 9468 return 0; 9469 } 9470 9471 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 9472 { 9473 size_t len = strlen(sec_def->sec); 9474 9475 /* "type/" always has to have proper SEC("type/extras") form */ 9476 if (sec_def->sec[len - 1] == '/') { 9477 if (str_has_pfx(sec_name, sec_def->sec)) 9478 return true; 9479 return false; 9480 } 9481 9482 /* "type+" means it can be either exact SEC("type") or 9483 * well-formed SEC("type/extras") with proper '/' separator 9484 */ 9485 if (sec_def->sec[len - 1] == '+') { 9486 len--; 9487 /* not even a prefix */ 9488 if (strncmp(sec_name, sec_def->sec, len) != 0) 9489 return false; 9490 /* exact match or has '/' separator */ 9491 if (sec_name[len] == '\0' || sec_name[len] == '/') 9492 return true; 9493 return false; 9494 } 9495 9496 return strcmp(sec_name, sec_def->sec) == 0; 9497 } 9498 9499 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 9500 { 9501 const struct bpf_sec_def *sec_def; 9502 int i, n; 9503 9504 n = custom_sec_def_cnt; 9505 for (i = 0; i < n; i++) { 9506 sec_def = &custom_sec_defs[i]; 9507 if (sec_def_matches(sec_def, sec_name)) 9508 return sec_def; 9509 } 9510 9511 n = ARRAY_SIZE(section_defs); 9512 for (i = 0; i < n; i++) { 9513 sec_def = §ion_defs[i]; 9514 if (sec_def_matches(sec_def, sec_name)) 9515 return sec_def; 9516 } 9517 9518 if (has_custom_fallback_def) 9519 return &custom_fallback_def; 9520 9521 return NULL; 9522 } 9523 9524 #define MAX_TYPE_NAME_SIZE 32 9525 9526 static char *libbpf_get_type_names(bool attach_type) 9527 { 9528 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 9529 char *buf; 9530 9531 buf = malloc(len); 9532 if (!buf) 9533 return NULL; 9534 9535 buf[0] = '\0'; 9536 /* Forge string buf with all available names */ 9537 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 9538 const struct bpf_sec_def *sec_def = §ion_defs[i]; 9539 9540 if (attach_type) { 9541 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9542 continue; 9543 9544 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9545 continue; 9546 } 9547 9548 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 9549 free(buf); 9550 return NULL; 9551 } 9552 strcat(buf, " "); 9553 strcat(buf, section_defs[i].sec); 9554 } 9555 9556 return buf; 9557 } 9558 9559 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 9560 enum bpf_attach_type *expected_attach_type) 9561 { 9562 const struct bpf_sec_def *sec_def; 9563 char *type_names; 9564 9565 if (!name) 9566 return libbpf_err(-EINVAL); 9567 9568 sec_def = find_sec_def(name); 9569 if (sec_def) { 9570 *prog_type = sec_def->prog_type; 9571 *expected_attach_type = sec_def->expected_attach_type; 9572 return 0; 9573 } 9574 9575 pr_debug("failed to guess program type from ELF section '%s'\n", name); 9576 type_names = libbpf_get_type_names(false); 9577 if (type_names != NULL) { 9578 pr_debug("supported section(type) names are:%s\n", type_names); 9579 free(type_names); 9580 } 9581 9582 return libbpf_err(-ESRCH); 9583 } 9584 9585 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 9586 { 9587 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 9588 return NULL; 9589 9590 return attach_type_name[t]; 9591 } 9592 9593 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 9594 { 9595 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 9596 return NULL; 9597 9598 return link_type_name[t]; 9599 } 9600 9601 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 9602 { 9603 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 9604 return NULL; 9605 9606 return map_type_name[t]; 9607 } 9608 9609 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 9610 { 9611 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 9612 return NULL; 9613 9614 return prog_type_name[t]; 9615 } 9616 9617 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 9618 int sec_idx, 9619 size_t offset) 9620 { 9621 struct bpf_map *map; 9622 size_t i; 9623 9624 for (i = 0; i < obj->nr_maps; i++) { 9625 map = &obj->maps[i]; 9626 if (!bpf_map__is_struct_ops(map)) 9627 continue; 9628 if (map->sec_idx == sec_idx && 9629 map->sec_offset <= offset && 9630 offset - map->sec_offset < map->def.value_size) 9631 return map; 9632 } 9633 9634 return NULL; 9635 } 9636 9637 /* Collect the reloc from ELF, populate the st_ops->progs[], and update 9638 * st_ops->data for shadow type. 9639 */ 9640 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 9641 Elf64_Shdr *shdr, Elf_Data *data) 9642 { 9643 const struct btf_member *member; 9644 struct bpf_struct_ops *st_ops; 9645 struct bpf_program *prog; 9646 unsigned int shdr_idx; 9647 const struct btf *btf; 9648 struct bpf_map *map; 9649 unsigned int moff, insn_idx; 9650 const char *name; 9651 __u32 member_idx; 9652 Elf64_Sym *sym; 9653 Elf64_Rel *rel; 9654 int i, nrels; 9655 9656 btf = obj->btf; 9657 nrels = shdr->sh_size / shdr->sh_entsize; 9658 for (i = 0; i < nrels; i++) { 9659 rel = elf_rel_by_idx(data, i); 9660 if (!rel) { 9661 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 9662 return -LIBBPF_ERRNO__FORMAT; 9663 } 9664 9665 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 9666 if (!sym) { 9667 pr_warn("struct_ops reloc: symbol %zx not found\n", 9668 (size_t)ELF64_R_SYM(rel->r_info)); 9669 return -LIBBPF_ERRNO__FORMAT; 9670 } 9671 9672 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 9673 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset); 9674 if (!map) { 9675 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 9676 (size_t)rel->r_offset); 9677 return -EINVAL; 9678 } 9679 9680 moff = rel->r_offset - map->sec_offset; 9681 shdr_idx = sym->st_shndx; 9682 st_ops = map->st_ops; 9683 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 9684 map->name, 9685 (long long)(rel->r_info >> 32), 9686 (long long)sym->st_value, 9687 shdr_idx, (size_t)rel->r_offset, 9688 map->sec_offset, sym->st_name, name); 9689 9690 if (shdr_idx >= SHN_LORESERVE) { 9691 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 9692 map->name, (size_t)rel->r_offset, shdr_idx); 9693 return -LIBBPF_ERRNO__RELOC; 9694 } 9695 if (sym->st_value % BPF_INSN_SZ) { 9696 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 9697 map->name, (unsigned long long)sym->st_value); 9698 return -LIBBPF_ERRNO__FORMAT; 9699 } 9700 insn_idx = sym->st_value / BPF_INSN_SZ; 9701 9702 member = find_member_by_offset(st_ops->type, moff * 8); 9703 if (!member) { 9704 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 9705 map->name, moff); 9706 return -EINVAL; 9707 } 9708 member_idx = member - btf_members(st_ops->type); 9709 name = btf__name_by_offset(btf, member->name_off); 9710 9711 if (!resolve_func_ptr(btf, member->type, NULL)) { 9712 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 9713 map->name, name); 9714 return -EINVAL; 9715 } 9716 9717 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 9718 if (!prog) { 9719 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 9720 map->name, shdr_idx, name); 9721 return -EINVAL; 9722 } 9723 9724 /* prevent the use of BPF prog with invalid type */ 9725 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 9726 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 9727 map->name, prog->name); 9728 return -EINVAL; 9729 } 9730 9731 st_ops->progs[member_idx] = prog; 9732 9733 /* st_ops->data will be exposed to users, being returned by 9734 * bpf_map__initial_value() as a pointer to the shadow 9735 * type. All function pointers in the original struct type 9736 * should be converted to a pointer to struct bpf_program 9737 * in the shadow type. 9738 */ 9739 *((struct bpf_program **)(st_ops->data + moff)) = prog; 9740 } 9741 9742 return 0; 9743 } 9744 9745 #define BTF_TRACE_PREFIX "btf_trace_" 9746 #define BTF_LSM_PREFIX "bpf_lsm_" 9747 #define BTF_ITER_PREFIX "bpf_iter_" 9748 #define BTF_MAX_NAME_SIZE 128 9749 9750 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 9751 const char **prefix, int *kind) 9752 { 9753 switch (attach_type) { 9754 case BPF_TRACE_RAW_TP: 9755 *prefix = BTF_TRACE_PREFIX; 9756 *kind = BTF_KIND_TYPEDEF; 9757 break; 9758 case BPF_LSM_MAC: 9759 case BPF_LSM_CGROUP: 9760 *prefix = BTF_LSM_PREFIX; 9761 *kind = BTF_KIND_FUNC; 9762 break; 9763 case BPF_TRACE_ITER: 9764 *prefix = BTF_ITER_PREFIX; 9765 *kind = BTF_KIND_FUNC; 9766 break; 9767 default: 9768 *prefix = ""; 9769 *kind = BTF_KIND_FUNC; 9770 } 9771 } 9772 9773 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 9774 const char *name, __u32 kind) 9775 { 9776 char btf_type_name[BTF_MAX_NAME_SIZE]; 9777 int ret; 9778 9779 ret = snprintf(btf_type_name, sizeof(btf_type_name), 9780 "%s%s", prefix, name); 9781 /* snprintf returns the number of characters written excluding the 9782 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 9783 * indicates truncation. 9784 */ 9785 if (ret < 0 || ret >= sizeof(btf_type_name)) 9786 return -ENAMETOOLONG; 9787 return btf__find_by_name_kind(btf, btf_type_name, kind); 9788 } 9789 9790 static inline int find_attach_btf_id(struct btf *btf, const char *name, 9791 enum bpf_attach_type attach_type) 9792 { 9793 const char *prefix; 9794 int kind; 9795 9796 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 9797 return find_btf_by_prefix_kind(btf, prefix, name, kind); 9798 } 9799 9800 int libbpf_find_vmlinux_btf_id(const char *name, 9801 enum bpf_attach_type attach_type) 9802 { 9803 struct btf *btf; 9804 int err; 9805 9806 btf = btf__load_vmlinux_btf(); 9807 err = libbpf_get_error(btf); 9808 if (err) { 9809 pr_warn("vmlinux BTF is not found\n"); 9810 return libbpf_err(err); 9811 } 9812 9813 err = find_attach_btf_id(btf, name, attach_type); 9814 if (err <= 0) 9815 pr_warn("%s is not found in vmlinux BTF\n", name); 9816 9817 btf__free(btf); 9818 return libbpf_err(err); 9819 } 9820 9821 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9822 { 9823 struct bpf_prog_info info; 9824 __u32 info_len = sizeof(info); 9825 struct btf *btf; 9826 int err; 9827 9828 memset(&info, 0, info_len); 9829 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len); 9830 if (err) { 9831 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n", 9832 attach_prog_fd, err); 9833 return err; 9834 } 9835 9836 err = -EINVAL; 9837 if (!info.btf_id) { 9838 pr_warn("The target program doesn't have BTF\n"); 9839 goto out; 9840 } 9841 btf = btf__load_from_kernel_by_id(info.btf_id); 9842 err = libbpf_get_error(btf); 9843 if (err) { 9844 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9845 goto out; 9846 } 9847 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9848 btf__free(btf); 9849 if (err <= 0) { 9850 pr_warn("%s is not found in prog's BTF\n", name); 9851 goto out; 9852 } 9853 out: 9854 return err; 9855 } 9856 9857 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9858 enum bpf_attach_type attach_type, 9859 int *btf_obj_fd, int *btf_type_id) 9860 { 9861 int ret, i; 9862 9863 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9864 if (ret > 0) { 9865 *btf_obj_fd = 0; /* vmlinux BTF */ 9866 *btf_type_id = ret; 9867 return 0; 9868 } 9869 if (ret != -ENOENT) 9870 return ret; 9871 9872 ret = load_module_btfs(obj); 9873 if (ret) 9874 return ret; 9875 9876 for (i = 0; i < obj->btf_module_cnt; i++) { 9877 const struct module_btf *mod = &obj->btf_modules[i]; 9878 9879 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9880 if (ret > 0) { 9881 *btf_obj_fd = mod->fd; 9882 *btf_type_id = ret; 9883 return 0; 9884 } 9885 if (ret == -ENOENT) 9886 continue; 9887 9888 return ret; 9889 } 9890 9891 return -ESRCH; 9892 } 9893 9894 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9895 int *btf_obj_fd, int *btf_type_id) 9896 { 9897 enum bpf_attach_type attach_type = prog->expected_attach_type; 9898 __u32 attach_prog_fd = prog->attach_prog_fd; 9899 int err = 0; 9900 9901 /* BPF program's BTF ID */ 9902 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9903 if (!attach_prog_fd) { 9904 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9905 return -EINVAL; 9906 } 9907 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9908 if (err < 0) { 9909 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9910 prog->name, attach_prog_fd, attach_name, err); 9911 return err; 9912 } 9913 *btf_obj_fd = 0; 9914 *btf_type_id = err; 9915 return 0; 9916 } 9917 9918 /* kernel/module BTF ID */ 9919 if (prog->obj->gen_loader) { 9920 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9921 *btf_obj_fd = 0; 9922 *btf_type_id = 1; 9923 } else { 9924 err = find_kernel_btf_id(prog->obj, attach_name, 9925 attach_type, btf_obj_fd, 9926 btf_type_id); 9927 } 9928 if (err) { 9929 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9930 prog->name, attach_name, err); 9931 return err; 9932 } 9933 return 0; 9934 } 9935 9936 int libbpf_attach_type_by_name(const char *name, 9937 enum bpf_attach_type *attach_type) 9938 { 9939 char *type_names; 9940 const struct bpf_sec_def *sec_def; 9941 9942 if (!name) 9943 return libbpf_err(-EINVAL); 9944 9945 sec_def = find_sec_def(name); 9946 if (!sec_def) { 9947 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9948 type_names = libbpf_get_type_names(true); 9949 if (type_names != NULL) { 9950 pr_debug("attachable section(type) names are:%s\n", type_names); 9951 free(type_names); 9952 } 9953 9954 return libbpf_err(-EINVAL); 9955 } 9956 9957 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9958 return libbpf_err(-EINVAL); 9959 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9960 return libbpf_err(-EINVAL); 9961 9962 *attach_type = sec_def->expected_attach_type; 9963 return 0; 9964 } 9965 9966 int bpf_map__fd(const struct bpf_map *map) 9967 { 9968 if (!map) 9969 return libbpf_err(-EINVAL); 9970 if (!map_is_created(map)) 9971 return -1; 9972 return map->fd; 9973 } 9974 9975 static bool map_uses_real_name(const struct bpf_map *map) 9976 { 9977 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9978 * their user-visible name differs from kernel-visible name. Users see 9979 * such map's corresponding ELF section name as a map name. 9980 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9981 * maps to know which name has to be returned to the user. 9982 */ 9983 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9984 return true; 9985 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9986 return true; 9987 return false; 9988 } 9989 9990 const char *bpf_map__name(const struct bpf_map *map) 9991 { 9992 if (!map) 9993 return NULL; 9994 9995 if (map_uses_real_name(map)) 9996 return map->real_name; 9997 9998 return map->name; 9999 } 10000 10001 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 10002 { 10003 return map->def.type; 10004 } 10005 10006 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 10007 { 10008 if (map_is_created(map)) 10009 return libbpf_err(-EBUSY); 10010 map->def.type = type; 10011 return 0; 10012 } 10013 10014 __u32 bpf_map__map_flags(const struct bpf_map *map) 10015 { 10016 return map->def.map_flags; 10017 } 10018 10019 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 10020 { 10021 if (map_is_created(map)) 10022 return libbpf_err(-EBUSY); 10023 map->def.map_flags = flags; 10024 return 0; 10025 } 10026 10027 __u64 bpf_map__map_extra(const struct bpf_map *map) 10028 { 10029 return map->map_extra; 10030 } 10031 10032 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 10033 { 10034 if (map_is_created(map)) 10035 return libbpf_err(-EBUSY); 10036 map->map_extra = map_extra; 10037 return 0; 10038 } 10039 10040 __u32 bpf_map__numa_node(const struct bpf_map *map) 10041 { 10042 return map->numa_node; 10043 } 10044 10045 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 10046 { 10047 if (map_is_created(map)) 10048 return libbpf_err(-EBUSY); 10049 map->numa_node = numa_node; 10050 return 0; 10051 } 10052 10053 __u32 bpf_map__key_size(const struct bpf_map *map) 10054 { 10055 return map->def.key_size; 10056 } 10057 10058 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 10059 { 10060 if (map_is_created(map)) 10061 return libbpf_err(-EBUSY); 10062 map->def.key_size = size; 10063 return 0; 10064 } 10065 10066 __u32 bpf_map__value_size(const struct bpf_map *map) 10067 { 10068 return map->def.value_size; 10069 } 10070 10071 static int map_btf_datasec_resize(struct bpf_map *map, __u32 size) 10072 { 10073 struct btf *btf; 10074 struct btf_type *datasec_type, *var_type; 10075 struct btf_var_secinfo *var; 10076 const struct btf_type *array_type; 10077 const struct btf_array *array; 10078 int vlen, element_sz, new_array_id; 10079 __u32 nr_elements; 10080 10081 /* check btf existence */ 10082 btf = bpf_object__btf(map->obj); 10083 if (!btf) 10084 return -ENOENT; 10085 10086 /* verify map is datasec */ 10087 datasec_type = btf_type_by_id(btf, bpf_map__btf_value_type_id(map)); 10088 if (!btf_is_datasec(datasec_type)) { 10089 pr_warn("map '%s': cannot be resized, map value type is not a datasec\n", 10090 bpf_map__name(map)); 10091 return -EINVAL; 10092 } 10093 10094 /* verify datasec has at least one var */ 10095 vlen = btf_vlen(datasec_type); 10096 if (vlen == 0) { 10097 pr_warn("map '%s': cannot be resized, map value datasec is empty\n", 10098 bpf_map__name(map)); 10099 return -EINVAL; 10100 } 10101 10102 /* verify last var in the datasec is an array */ 10103 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10104 var_type = btf_type_by_id(btf, var->type); 10105 array_type = skip_mods_and_typedefs(btf, var_type->type, NULL); 10106 if (!btf_is_array(array_type)) { 10107 pr_warn("map '%s': cannot be resized, last var must be an array\n", 10108 bpf_map__name(map)); 10109 return -EINVAL; 10110 } 10111 10112 /* verify request size aligns with array */ 10113 array = btf_array(array_type); 10114 element_sz = btf__resolve_size(btf, array->type); 10115 if (element_sz <= 0 || (size - var->offset) % element_sz != 0) { 10116 pr_warn("map '%s': cannot be resized, element size (%d) doesn't align with new total size (%u)\n", 10117 bpf_map__name(map), element_sz, size); 10118 return -EINVAL; 10119 } 10120 10121 /* create a new array based on the existing array, but with new length */ 10122 nr_elements = (size - var->offset) / element_sz; 10123 new_array_id = btf__add_array(btf, array->index_type, array->type, nr_elements); 10124 if (new_array_id < 0) 10125 return new_array_id; 10126 10127 /* adding a new btf type invalidates existing pointers to btf objects, 10128 * so refresh pointers before proceeding 10129 */ 10130 datasec_type = btf_type_by_id(btf, map->btf_value_type_id); 10131 var = &btf_var_secinfos(datasec_type)[vlen - 1]; 10132 var_type = btf_type_by_id(btf, var->type); 10133 10134 /* finally update btf info */ 10135 datasec_type->size = size; 10136 var->size = size - var->offset; 10137 var_type->type = new_array_id; 10138 10139 return 0; 10140 } 10141 10142 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 10143 { 10144 if (map->obj->loaded || map->reused) 10145 return libbpf_err(-EBUSY); 10146 10147 if (map->mmaped) { 10148 size_t mmap_old_sz, mmap_new_sz; 10149 int err; 10150 10151 if (map->def.type != BPF_MAP_TYPE_ARRAY) 10152 return -EOPNOTSUPP; 10153 10154 mmap_old_sz = bpf_map_mmap_sz(map); 10155 mmap_new_sz = array_map_mmap_sz(size, map->def.max_entries); 10156 err = bpf_map_mmap_resize(map, mmap_old_sz, mmap_new_sz); 10157 if (err) { 10158 pr_warn("map '%s': failed to resize memory-mapped region: %d\n", 10159 bpf_map__name(map), err); 10160 return err; 10161 } 10162 err = map_btf_datasec_resize(map, size); 10163 if (err && err != -ENOENT) { 10164 pr_warn("map '%s': failed to adjust resized BTF, clearing BTF key/value info: %d\n", 10165 bpf_map__name(map), err); 10166 map->btf_value_type_id = 0; 10167 map->btf_key_type_id = 0; 10168 } 10169 } 10170 10171 map->def.value_size = size; 10172 return 0; 10173 } 10174 10175 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 10176 { 10177 return map ? map->btf_key_type_id : 0; 10178 } 10179 10180 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 10181 { 10182 return map ? map->btf_value_type_id : 0; 10183 } 10184 10185 int bpf_map__set_initial_value(struct bpf_map *map, 10186 const void *data, size_t size) 10187 { 10188 size_t actual_sz; 10189 10190 if (map->obj->loaded || map->reused) 10191 return libbpf_err(-EBUSY); 10192 10193 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG) 10194 return libbpf_err(-EINVAL); 10195 10196 if (map->def.type == BPF_MAP_TYPE_ARENA) 10197 actual_sz = map->obj->arena_data_sz; 10198 else 10199 actual_sz = map->def.value_size; 10200 if (size != actual_sz) 10201 return libbpf_err(-EINVAL); 10202 10203 memcpy(map->mmaped, data, size); 10204 return 0; 10205 } 10206 10207 void *bpf_map__initial_value(const struct bpf_map *map, size_t *psize) 10208 { 10209 if (bpf_map__is_struct_ops(map)) { 10210 if (psize) 10211 *psize = map->def.value_size; 10212 return map->st_ops->data; 10213 } 10214 10215 if (!map->mmaped) 10216 return NULL; 10217 10218 if (map->def.type == BPF_MAP_TYPE_ARENA) 10219 *psize = map->obj->arena_data_sz; 10220 else 10221 *psize = map->def.value_size; 10222 10223 return map->mmaped; 10224 } 10225 10226 bool bpf_map__is_internal(const struct bpf_map *map) 10227 { 10228 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 10229 } 10230 10231 __u32 bpf_map__ifindex(const struct bpf_map *map) 10232 { 10233 return map->map_ifindex; 10234 } 10235 10236 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 10237 { 10238 if (map_is_created(map)) 10239 return libbpf_err(-EBUSY); 10240 map->map_ifindex = ifindex; 10241 return 0; 10242 } 10243 10244 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 10245 { 10246 if (!bpf_map_type__is_map_in_map(map->def.type)) { 10247 pr_warn("error: unsupported map type\n"); 10248 return libbpf_err(-EINVAL); 10249 } 10250 if (map->inner_map_fd != -1) { 10251 pr_warn("error: inner_map_fd already specified\n"); 10252 return libbpf_err(-EINVAL); 10253 } 10254 if (map->inner_map) { 10255 bpf_map__destroy(map->inner_map); 10256 zfree(&map->inner_map); 10257 } 10258 map->inner_map_fd = fd; 10259 return 0; 10260 } 10261 10262 static struct bpf_map * 10263 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 10264 { 10265 ssize_t idx; 10266 struct bpf_map *s, *e; 10267 10268 if (!obj || !obj->maps) 10269 return errno = EINVAL, NULL; 10270 10271 s = obj->maps; 10272 e = obj->maps + obj->nr_maps; 10273 10274 if ((m < s) || (m >= e)) { 10275 pr_warn("error in %s: map handler doesn't belong to object\n", 10276 __func__); 10277 return errno = EINVAL, NULL; 10278 } 10279 10280 idx = (m - obj->maps) + i; 10281 if (idx >= obj->nr_maps || idx < 0) 10282 return NULL; 10283 return &obj->maps[idx]; 10284 } 10285 10286 struct bpf_map * 10287 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 10288 { 10289 if (prev == NULL) 10290 return obj->maps; 10291 10292 return __bpf_map__iter(prev, obj, 1); 10293 } 10294 10295 struct bpf_map * 10296 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 10297 { 10298 if (next == NULL) { 10299 if (!obj->nr_maps) 10300 return NULL; 10301 return obj->maps + obj->nr_maps - 1; 10302 } 10303 10304 return __bpf_map__iter(next, obj, -1); 10305 } 10306 10307 struct bpf_map * 10308 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 10309 { 10310 struct bpf_map *pos; 10311 10312 bpf_object__for_each_map(pos, obj) { 10313 /* if it's a special internal map name (which always starts 10314 * with dot) then check if that special name matches the 10315 * real map name (ELF section name) 10316 */ 10317 if (name[0] == '.') { 10318 if (pos->real_name && strcmp(pos->real_name, name) == 0) 10319 return pos; 10320 continue; 10321 } 10322 /* otherwise map name has to be an exact match */ 10323 if (map_uses_real_name(pos)) { 10324 if (strcmp(pos->real_name, name) == 0) 10325 return pos; 10326 continue; 10327 } 10328 if (strcmp(pos->name, name) == 0) 10329 return pos; 10330 } 10331 return errno = ENOENT, NULL; 10332 } 10333 10334 int 10335 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 10336 { 10337 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 10338 } 10339 10340 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 10341 size_t value_sz, bool check_value_sz) 10342 { 10343 if (!map_is_created(map)) /* map is not yet created */ 10344 return -ENOENT; 10345 10346 if (map->def.key_size != key_sz) { 10347 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 10348 map->name, key_sz, map->def.key_size); 10349 return -EINVAL; 10350 } 10351 10352 if (map->fd < 0) { 10353 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 10354 return -EINVAL; 10355 } 10356 10357 if (!check_value_sz) 10358 return 0; 10359 10360 switch (map->def.type) { 10361 case BPF_MAP_TYPE_PERCPU_ARRAY: 10362 case BPF_MAP_TYPE_PERCPU_HASH: 10363 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 10364 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 10365 int num_cpu = libbpf_num_possible_cpus(); 10366 size_t elem_sz = roundup(map->def.value_size, 8); 10367 10368 if (value_sz != num_cpu * elem_sz) { 10369 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 10370 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 10371 return -EINVAL; 10372 } 10373 break; 10374 } 10375 default: 10376 if (map->def.value_size != value_sz) { 10377 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 10378 map->name, value_sz, map->def.value_size); 10379 return -EINVAL; 10380 } 10381 break; 10382 } 10383 return 0; 10384 } 10385 10386 int bpf_map__lookup_elem(const struct bpf_map *map, 10387 const void *key, size_t key_sz, 10388 void *value, size_t value_sz, __u64 flags) 10389 { 10390 int err; 10391 10392 err = validate_map_op(map, key_sz, value_sz, true); 10393 if (err) 10394 return libbpf_err(err); 10395 10396 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 10397 } 10398 10399 int bpf_map__update_elem(const struct bpf_map *map, 10400 const void *key, size_t key_sz, 10401 const void *value, size_t value_sz, __u64 flags) 10402 { 10403 int err; 10404 10405 err = validate_map_op(map, key_sz, value_sz, true); 10406 if (err) 10407 return libbpf_err(err); 10408 10409 return bpf_map_update_elem(map->fd, key, value, flags); 10410 } 10411 10412 int bpf_map__delete_elem(const struct bpf_map *map, 10413 const void *key, size_t key_sz, __u64 flags) 10414 { 10415 int err; 10416 10417 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10418 if (err) 10419 return libbpf_err(err); 10420 10421 return bpf_map_delete_elem_flags(map->fd, key, flags); 10422 } 10423 10424 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 10425 const void *key, size_t key_sz, 10426 void *value, size_t value_sz, __u64 flags) 10427 { 10428 int err; 10429 10430 err = validate_map_op(map, key_sz, value_sz, true); 10431 if (err) 10432 return libbpf_err(err); 10433 10434 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 10435 } 10436 10437 int bpf_map__get_next_key(const struct bpf_map *map, 10438 const void *cur_key, void *next_key, size_t key_sz) 10439 { 10440 int err; 10441 10442 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 10443 if (err) 10444 return libbpf_err(err); 10445 10446 return bpf_map_get_next_key(map->fd, cur_key, next_key); 10447 } 10448 10449 long libbpf_get_error(const void *ptr) 10450 { 10451 if (!IS_ERR_OR_NULL(ptr)) 10452 return 0; 10453 10454 if (IS_ERR(ptr)) 10455 errno = -PTR_ERR(ptr); 10456 10457 /* If ptr == NULL, then errno should be already set by the failing 10458 * API, because libbpf never returns NULL on success and it now always 10459 * sets errno on error. So no extra errno handling for ptr == NULL 10460 * case. 10461 */ 10462 return -errno; 10463 } 10464 10465 /* Replace link's underlying BPF program with the new one */ 10466 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 10467 { 10468 int ret; 10469 int prog_fd = bpf_program__fd(prog); 10470 10471 if (prog_fd < 0) { 10472 pr_warn("prog '%s': can't use BPF program without FD (was it loaded?)\n", 10473 prog->name); 10474 return libbpf_err(-EINVAL); 10475 } 10476 10477 ret = bpf_link_update(bpf_link__fd(link), prog_fd, NULL); 10478 return libbpf_err_errno(ret); 10479 } 10480 10481 /* Release "ownership" of underlying BPF resource (typically, BPF program 10482 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 10483 * link, when destructed through bpf_link__destroy() call won't attempt to 10484 * detach/unregisted that BPF resource. This is useful in situations where, 10485 * say, attached BPF program has to outlive userspace program that attached it 10486 * in the system. Depending on type of BPF program, though, there might be 10487 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 10488 * exit of userspace program doesn't trigger automatic detachment and clean up 10489 * inside the kernel. 10490 */ 10491 void bpf_link__disconnect(struct bpf_link *link) 10492 { 10493 link->disconnected = true; 10494 } 10495 10496 int bpf_link__destroy(struct bpf_link *link) 10497 { 10498 int err = 0; 10499 10500 if (IS_ERR_OR_NULL(link)) 10501 return 0; 10502 10503 if (!link->disconnected && link->detach) 10504 err = link->detach(link); 10505 if (link->pin_path) 10506 free(link->pin_path); 10507 if (link->dealloc) 10508 link->dealloc(link); 10509 else 10510 free(link); 10511 10512 return libbpf_err(err); 10513 } 10514 10515 int bpf_link__fd(const struct bpf_link *link) 10516 { 10517 return link->fd; 10518 } 10519 10520 const char *bpf_link__pin_path(const struct bpf_link *link) 10521 { 10522 return link->pin_path; 10523 } 10524 10525 static int bpf_link__detach_fd(struct bpf_link *link) 10526 { 10527 return libbpf_err_errno(close(link->fd)); 10528 } 10529 10530 struct bpf_link *bpf_link__open(const char *path) 10531 { 10532 struct bpf_link *link; 10533 int fd; 10534 10535 fd = bpf_obj_get(path); 10536 if (fd < 0) { 10537 fd = -errno; 10538 pr_warn("failed to open link at %s: %d\n", path, fd); 10539 return libbpf_err_ptr(fd); 10540 } 10541 10542 link = calloc(1, sizeof(*link)); 10543 if (!link) { 10544 close(fd); 10545 return libbpf_err_ptr(-ENOMEM); 10546 } 10547 link->detach = &bpf_link__detach_fd; 10548 link->fd = fd; 10549 10550 link->pin_path = strdup(path); 10551 if (!link->pin_path) { 10552 bpf_link__destroy(link); 10553 return libbpf_err_ptr(-ENOMEM); 10554 } 10555 10556 return link; 10557 } 10558 10559 int bpf_link__detach(struct bpf_link *link) 10560 { 10561 return bpf_link_detach(link->fd) ? -errno : 0; 10562 } 10563 10564 int bpf_link__pin(struct bpf_link *link, const char *path) 10565 { 10566 int err; 10567 10568 if (link->pin_path) 10569 return libbpf_err(-EBUSY); 10570 err = make_parent_dir(path); 10571 if (err) 10572 return libbpf_err(err); 10573 err = check_path(path); 10574 if (err) 10575 return libbpf_err(err); 10576 10577 link->pin_path = strdup(path); 10578 if (!link->pin_path) 10579 return libbpf_err(-ENOMEM); 10580 10581 if (bpf_obj_pin(link->fd, link->pin_path)) { 10582 err = -errno; 10583 zfree(&link->pin_path); 10584 return libbpf_err(err); 10585 } 10586 10587 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 10588 return 0; 10589 } 10590 10591 int bpf_link__unpin(struct bpf_link *link) 10592 { 10593 int err; 10594 10595 if (!link->pin_path) 10596 return libbpf_err(-EINVAL); 10597 10598 err = unlink(link->pin_path); 10599 if (err != 0) 10600 return -errno; 10601 10602 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 10603 zfree(&link->pin_path); 10604 return 0; 10605 } 10606 10607 struct bpf_link_perf { 10608 struct bpf_link link; 10609 int perf_event_fd; 10610 /* legacy kprobe support: keep track of probe identifier and type */ 10611 char *legacy_probe_name; 10612 bool legacy_is_kprobe; 10613 bool legacy_is_retprobe; 10614 }; 10615 10616 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 10617 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 10618 10619 static int bpf_link_perf_detach(struct bpf_link *link) 10620 { 10621 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10622 int err = 0; 10623 10624 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 10625 err = -errno; 10626 10627 if (perf_link->perf_event_fd != link->fd) 10628 close(perf_link->perf_event_fd); 10629 close(link->fd); 10630 10631 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 10632 if (perf_link->legacy_probe_name) { 10633 if (perf_link->legacy_is_kprobe) { 10634 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 10635 perf_link->legacy_is_retprobe); 10636 } else { 10637 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 10638 perf_link->legacy_is_retprobe); 10639 } 10640 } 10641 10642 return err; 10643 } 10644 10645 static void bpf_link_perf_dealloc(struct bpf_link *link) 10646 { 10647 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10648 10649 free(perf_link->legacy_probe_name); 10650 free(perf_link); 10651 } 10652 10653 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 10654 const struct bpf_perf_event_opts *opts) 10655 { 10656 char errmsg[STRERR_BUFSIZE]; 10657 struct bpf_link_perf *link; 10658 int prog_fd, link_fd = -1, err; 10659 bool force_ioctl_attach; 10660 10661 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 10662 return libbpf_err_ptr(-EINVAL); 10663 10664 if (pfd < 0) { 10665 pr_warn("prog '%s': invalid perf event FD %d\n", 10666 prog->name, pfd); 10667 return libbpf_err_ptr(-EINVAL); 10668 } 10669 prog_fd = bpf_program__fd(prog); 10670 if (prog_fd < 0) { 10671 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 10672 prog->name); 10673 return libbpf_err_ptr(-EINVAL); 10674 } 10675 10676 link = calloc(1, sizeof(*link)); 10677 if (!link) 10678 return libbpf_err_ptr(-ENOMEM); 10679 link->link.detach = &bpf_link_perf_detach; 10680 link->link.dealloc = &bpf_link_perf_dealloc; 10681 link->perf_event_fd = pfd; 10682 10683 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false); 10684 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) { 10685 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 10686 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 10687 10688 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 10689 if (link_fd < 0) { 10690 err = -errno; 10691 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 10692 prog->name, pfd, 10693 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10694 goto err_out; 10695 } 10696 link->link.fd = link_fd; 10697 } else { 10698 if (OPTS_GET(opts, bpf_cookie, 0)) { 10699 pr_warn("prog '%s': user context value is not supported\n", prog->name); 10700 err = -EOPNOTSUPP; 10701 goto err_out; 10702 } 10703 10704 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 10705 err = -errno; 10706 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 10707 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10708 if (err == -EPROTO) 10709 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 10710 prog->name, pfd); 10711 goto err_out; 10712 } 10713 link->link.fd = pfd; 10714 } 10715 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 10716 err = -errno; 10717 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 10718 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10719 goto err_out; 10720 } 10721 10722 return &link->link; 10723 err_out: 10724 if (link_fd >= 0) 10725 close(link_fd); 10726 free(link); 10727 return libbpf_err_ptr(err); 10728 } 10729 10730 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 10731 { 10732 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 10733 } 10734 10735 /* 10736 * this function is expected to parse integer in the range of [0, 2^31-1] from 10737 * given file using scanf format string fmt. If actual parsed value is 10738 * negative, the result might be indistinguishable from error 10739 */ 10740 static int parse_uint_from_file(const char *file, const char *fmt) 10741 { 10742 char buf[STRERR_BUFSIZE]; 10743 int err, ret; 10744 FILE *f; 10745 10746 f = fopen(file, "re"); 10747 if (!f) { 10748 err = -errno; 10749 pr_debug("failed to open '%s': %s\n", file, 10750 libbpf_strerror_r(err, buf, sizeof(buf))); 10751 return err; 10752 } 10753 err = fscanf(f, fmt, &ret); 10754 if (err != 1) { 10755 err = err == EOF ? -EIO : -errno; 10756 pr_debug("failed to parse '%s': %s\n", file, 10757 libbpf_strerror_r(err, buf, sizeof(buf))); 10758 fclose(f); 10759 return err; 10760 } 10761 fclose(f); 10762 return ret; 10763 } 10764 10765 static int determine_kprobe_perf_type(void) 10766 { 10767 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 10768 10769 return parse_uint_from_file(file, "%d\n"); 10770 } 10771 10772 static int determine_uprobe_perf_type(void) 10773 { 10774 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 10775 10776 return parse_uint_from_file(file, "%d\n"); 10777 } 10778 10779 static int determine_kprobe_retprobe_bit(void) 10780 { 10781 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 10782 10783 return parse_uint_from_file(file, "config:%d\n"); 10784 } 10785 10786 static int determine_uprobe_retprobe_bit(void) 10787 { 10788 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 10789 10790 return parse_uint_from_file(file, "config:%d\n"); 10791 } 10792 10793 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 10794 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 10795 10796 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 10797 uint64_t offset, int pid, size_t ref_ctr_off) 10798 { 10799 const size_t attr_sz = sizeof(struct perf_event_attr); 10800 struct perf_event_attr attr; 10801 char errmsg[STRERR_BUFSIZE]; 10802 int type, pfd; 10803 10804 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 10805 return -EINVAL; 10806 10807 memset(&attr, 0, attr_sz); 10808 10809 type = uprobe ? determine_uprobe_perf_type() 10810 : determine_kprobe_perf_type(); 10811 if (type < 0) { 10812 pr_warn("failed to determine %s perf type: %s\n", 10813 uprobe ? "uprobe" : "kprobe", 10814 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 10815 return type; 10816 } 10817 if (retprobe) { 10818 int bit = uprobe ? determine_uprobe_retprobe_bit() 10819 : determine_kprobe_retprobe_bit(); 10820 10821 if (bit < 0) { 10822 pr_warn("failed to determine %s retprobe bit: %s\n", 10823 uprobe ? "uprobe" : "kprobe", 10824 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 10825 return bit; 10826 } 10827 attr.config |= 1 << bit; 10828 } 10829 attr.size = attr_sz; 10830 attr.type = type; 10831 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 10832 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 10833 attr.config2 = offset; /* kprobe_addr or probe_offset */ 10834 10835 /* pid filter is meaningful only for uprobes */ 10836 pfd = syscall(__NR_perf_event_open, &attr, 10837 pid < 0 ? -1 : pid /* pid */, 10838 pid == -1 ? 0 : -1 /* cpu */, 10839 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10840 return pfd >= 0 ? pfd : -errno; 10841 } 10842 10843 static int append_to_file(const char *file, const char *fmt, ...) 10844 { 10845 int fd, n, err = 0; 10846 va_list ap; 10847 char buf[1024]; 10848 10849 va_start(ap, fmt); 10850 n = vsnprintf(buf, sizeof(buf), fmt, ap); 10851 va_end(ap); 10852 10853 if (n < 0 || n >= sizeof(buf)) 10854 return -EINVAL; 10855 10856 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 10857 if (fd < 0) 10858 return -errno; 10859 10860 if (write(fd, buf, n) < 0) 10861 err = -errno; 10862 10863 close(fd); 10864 return err; 10865 } 10866 10867 #define DEBUGFS "/sys/kernel/debug/tracing" 10868 #define TRACEFS "/sys/kernel/tracing" 10869 10870 static bool use_debugfs(void) 10871 { 10872 static int has_debugfs = -1; 10873 10874 if (has_debugfs < 0) 10875 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 10876 10877 return has_debugfs == 1; 10878 } 10879 10880 static const char *tracefs_path(void) 10881 { 10882 return use_debugfs() ? DEBUGFS : TRACEFS; 10883 } 10884 10885 static const char *tracefs_kprobe_events(void) 10886 { 10887 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 10888 } 10889 10890 static const char *tracefs_uprobe_events(void) 10891 { 10892 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 10893 } 10894 10895 static const char *tracefs_available_filter_functions(void) 10896 { 10897 return use_debugfs() ? DEBUGFS"/available_filter_functions" 10898 : TRACEFS"/available_filter_functions"; 10899 } 10900 10901 static const char *tracefs_available_filter_functions_addrs(void) 10902 { 10903 return use_debugfs() ? DEBUGFS"/available_filter_functions_addrs" 10904 : TRACEFS"/available_filter_functions_addrs"; 10905 } 10906 10907 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 10908 const char *kfunc_name, size_t offset) 10909 { 10910 static int index = 0; 10911 int i; 10912 10913 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 10914 __sync_fetch_and_add(&index, 1)); 10915 10916 /* sanitize binary_path in the probe name */ 10917 for (i = 0; buf[i]; i++) { 10918 if (!isalnum(buf[i])) 10919 buf[i] = '_'; 10920 } 10921 } 10922 10923 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 10924 const char *kfunc_name, size_t offset) 10925 { 10926 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 10927 retprobe ? 'r' : 'p', 10928 retprobe ? "kretprobes" : "kprobes", 10929 probe_name, kfunc_name, offset); 10930 } 10931 10932 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 10933 { 10934 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 10935 retprobe ? "kretprobes" : "kprobes", probe_name); 10936 } 10937 10938 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10939 { 10940 char file[256]; 10941 10942 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10943 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 10944 10945 return parse_uint_from_file(file, "%d\n"); 10946 } 10947 10948 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 10949 const char *kfunc_name, size_t offset, int pid) 10950 { 10951 const size_t attr_sz = sizeof(struct perf_event_attr); 10952 struct perf_event_attr attr; 10953 char errmsg[STRERR_BUFSIZE]; 10954 int type, pfd, err; 10955 10956 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 10957 if (err < 0) { 10958 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 10959 kfunc_name, offset, 10960 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10961 return err; 10962 } 10963 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 10964 if (type < 0) { 10965 err = type; 10966 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 10967 kfunc_name, offset, 10968 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10969 goto err_clean_legacy; 10970 } 10971 10972 memset(&attr, 0, attr_sz); 10973 attr.size = attr_sz; 10974 attr.config = type; 10975 attr.type = PERF_TYPE_TRACEPOINT; 10976 10977 pfd = syscall(__NR_perf_event_open, &attr, 10978 pid < 0 ? -1 : pid, /* pid */ 10979 pid == -1 ? 0 : -1, /* cpu */ 10980 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10981 if (pfd < 0) { 10982 err = -errno; 10983 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10984 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10985 goto err_clean_legacy; 10986 } 10987 return pfd; 10988 10989 err_clean_legacy: 10990 /* Clear the newly added legacy kprobe_event */ 10991 remove_kprobe_event_legacy(probe_name, retprobe); 10992 return err; 10993 } 10994 10995 static const char *arch_specific_syscall_pfx(void) 10996 { 10997 #if defined(__x86_64__) 10998 return "x64"; 10999 #elif defined(__i386__) 11000 return "ia32"; 11001 #elif defined(__s390x__) 11002 return "s390x"; 11003 #elif defined(__s390__) 11004 return "s390"; 11005 #elif defined(__arm__) 11006 return "arm"; 11007 #elif defined(__aarch64__) 11008 return "arm64"; 11009 #elif defined(__mips__) 11010 return "mips"; 11011 #elif defined(__riscv) 11012 return "riscv"; 11013 #elif defined(__powerpc__) 11014 return "powerpc"; 11015 #elif defined(__powerpc64__) 11016 return "powerpc64"; 11017 #else 11018 return NULL; 11019 #endif 11020 } 11021 11022 int probe_kern_syscall_wrapper(int token_fd) 11023 { 11024 char syscall_name[64]; 11025 const char *ksys_pfx; 11026 11027 ksys_pfx = arch_specific_syscall_pfx(); 11028 if (!ksys_pfx) 11029 return 0; 11030 11031 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 11032 11033 if (determine_kprobe_perf_type() >= 0) { 11034 int pfd; 11035 11036 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 11037 if (pfd >= 0) 11038 close(pfd); 11039 11040 return pfd >= 0 ? 1 : 0; 11041 } else { /* legacy mode */ 11042 char probe_name[128]; 11043 11044 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 11045 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 11046 return 0; 11047 11048 (void)remove_kprobe_event_legacy(probe_name, false); 11049 return 1; 11050 } 11051 } 11052 11053 struct bpf_link * 11054 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 11055 const char *func_name, 11056 const struct bpf_kprobe_opts *opts) 11057 { 11058 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11059 enum probe_attach_mode attach_mode; 11060 char errmsg[STRERR_BUFSIZE]; 11061 char *legacy_probe = NULL; 11062 struct bpf_link *link; 11063 size_t offset; 11064 bool retprobe, legacy; 11065 int pfd, err; 11066 11067 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 11068 return libbpf_err_ptr(-EINVAL); 11069 11070 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11071 retprobe = OPTS_GET(opts, retprobe, false); 11072 offset = OPTS_GET(opts, offset, 0); 11073 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11074 11075 legacy = determine_kprobe_perf_type() < 0; 11076 switch (attach_mode) { 11077 case PROBE_ATTACH_MODE_LEGACY: 11078 legacy = true; 11079 pe_opts.force_ioctl_attach = true; 11080 break; 11081 case PROBE_ATTACH_MODE_PERF: 11082 if (legacy) 11083 return libbpf_err_ptr(-ENOTSUP); 11084 pe_opts.force_ioctl_attach = true; 11085 break; 11086 case PROBE_ATTACH_MODE_LINK: 11087 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11088 return libbpf_err_ptr(-ENOTSUP); 11089 break; 11090 case PROBE_ATTACH_MODE_DEFAULT: 11091 break; 11092 default: 11093 return libbpf_err_ptr(-EINVAL); 11094 } 11095 11096 if (!legacy) { 11097 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 11098 func_name, offset, 11099 -1 /* pid */, 0 /* ref_ctr_off */); 11100 } else { 11101 char probe_name[256]; 11102 11103 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 11104 func_name, offset); 11105 11106 legacy_probe = strdup(probe_name); 11107 if (!legacy_probe) 11108 return libbpf_err_ptr(-ENOMEM); 11109 11110 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 11111 offset, -1 /* pid */); 11112 } 11113 if (pfd < 0) { 11114 err = -errno; 11115 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 11116 prog->name, retprobe ? "kretprobe" : "kprobe", 11117 func_name, offset, 11118 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11119 goto err_out; 11120 } 11121 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11122 err = libbpf_get_error(link); 11123 if (err) { 11124 close(pfd); 11125 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 11126 prog->name, retprobe ? "kretprobe" : "kprobe", 11127 func_name, offset, 11128 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11129 goto err_clean_legacy; 11130 } 11131 if (legacy) { 11132 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 11133 11134 perf_link->legacy_probe_name = legacy_probe; 11135 perf_link->legacy_is_kprobe = true; 11136 perf_link->legacy_is_retprobe = retprobe; 11137 } 11138 11139 return link; 11140 11141 err_clean_legacy: 11142 if (legacy) 11143 remove_kprobe_event_legacy(legacy_probe, retprobe); 11144 err_out: 11145 free(legacy_probe); 11146 return libbpf_err_ptr(err); 11147 } 11148 11149 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 11150 bool retprobe, 11151 const char *func_name) 11152 { 11153 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 11154 .retprobe = retprobe, 11155 ); 11156 11157 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 11158 } 11159 11160 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 11161 const char *syscall_name, 11162 const struct bpf_ksyscall_opts *opts) 11163 { 11164 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 11165 char func_name[128]; 11166 11167 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 11168 return libbpf_err_ptr(-EINVAL); 11169 11170 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 11171 /* arch_specific_syscall_pfx() should never return NULL here 11172 * because it is guarded by kernel_supports(). However, since 11173 * compiler does not know that we have an explicit conditional 11174 * as well. 11175 */ 11176 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 11177 arch_specific_syscall_pfx() ? : "", syscall_name); 11178 } else { 11179 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 11180 } 11181 11182 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 11183 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11184 11185 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 11186 } 11187 11188 /* Adapted from perf/util/string.c */ 11189 bool glob_match(const char *str, const char *pat) 11190 { 11191 while (*str && *pat && *pat != '*') { 11192 if (*pat == '?') { /* Matches any single character */ 11193 str++; 11194 pat++; 11195 continue; 11196 } 11197 if (*str != *pat) 11198 return false; 11199 str++; 11200 pat++; 11201 } 11202 /* Check wild card */ 11203 if (*pat == '*') { 11204 while (*pat == '*') 11205 pat++; 11206 if (!*pat) /* Tail wild card matches all */ 11207 return true; 11208 while (*str) 11209 if (glob_match(str++, pat)) 11210 return true; 11211 } 11212 return !*str && !*pat; 11213 } 11214 11215 struct kprobe_multi_resolve { 11216 const char *pattern; 11217 unsigned long *addrs; 11218 size_t cap; 11219 size_t cnt; 11220 }; 11221 11222 struct avail_kallsyms_data { 11223 char **syms; 11224 size_t cnt; 11225 struct kprobe_multi_resolve *res; 11226 }; 11227 11228 static int avail_func_cmp(const void *a, const void *b) 11229 { 11230 return strcmp(*(const char **)a, *(const char **)b); 11231 } 11232 11233 static int avail_kallsyms_cb(unsigned long long sym_addr, char sym_type, 11234 const char *sym_name, void *ctx) 11235 { 11236 struct avail_kallsyms_data *data = ctx; 11237 struct kprobe_multi_resolve *res = data->res; 11238 int err; 11239 11240 if (!bsearch(&sym_name, data->syms, data->cnt, sizeof(*data->syms), avail_func_cmp)) 11241 return 0; 11242 11243 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, sizeof(*res->addrs), res->cnt + 1); 11244 if (err) 11245 return err; 11246 11247 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11248 return 0; 11249 } 11250 11251 static int libbpf_available_kallsyms_parse(struct kprobe_multi_resolve *res) 11252 { 11253 const char *available_functions_file = tracefs_available_filter_functions(); 11254 struct avail_kallsyms_data data; 11255 char sym_name[500]; 11256 FILE *f; 11257 int err = 0, ret, i; 11258 char **syms = NULL; 11259 size_t cap = 0, cnt = 0; 11260 11261 f = fopen(available_functions_file, "re"); 11262 if (!f) { 11263 err = -errno; 11264 pr_warn("failed to open %s: %d\n", available_functions_file, err); 11265 return err; 11266 } 11267 11268 while (true) { 11269 char *name; 11270 11271 ret = fscanf(f, "%499s%*[^\n]\n", sym_name); 11272 if (ret == EOF && feof(f)) 11273 break; 11274 11275 if (ret != 1) { 11276 pr_warn("failed to parse available_filter_functions entry: %d\n", ret); 11277 err = -EINVAL; 11278 goto cleanup; 11279 } 11280 11281 if (!glob_match(sym_name, res->pattern)) 11282 continue; 11283 11284 err = libbpf_ensure_mem((void **)&syms, &cap, sizeof(*syms), cnt + 1); 11285 if (err) 11286 goto cleanup; 11287 11288 name = strdup(sym_name); 11289 if (!name) { 11290 err = -errno; 11291 goto cleanup; 11292 } 11293 11294 syms[cnt++] = name; 11295 } 11296 11297 /* no entries found, bail out */ 11298 if (cnt == 0) { 11299 err = -ENOENT; 11300 goto cleanup; 11301 } 11302 11303 /* sort available functions */ 11304 qsort(syms, cnt, sizeof(*syms), avail_func_cmp); 11305 11306 data.syms = syms; 11307 data.res = res; 11308 data.cnt = cnt; 11309 libbpf_kallsyms_parse(avail_kallsyms_cb, &data); 11310 11311 if (res->cnt == 0) 11312 err = -ENOENT; 11313 11314 cleanup: 11315 for (i = 0; i < cnt; i++) 11316 free((char *)syms[i]); 11317 free(syms); 11318 11319 fclose(f); 11320 return err; 11321 } 11322 11323 static bool has_available_filter_functions_addrs(void) 11324 { 11325 return access(tracefs_available_filter_functions_addrs(), R_OK) != -1; 11326 } 11327 11328 static int libbpf_available_kprobes_parse(struct kprobe_multi_resolve *res) 11329 { 11330 const char *available_path = tracefs_available_filter_functions_addrs(); 11331 char sym_name[500]; 11332 FILE *f; 11333 int ret, err = 0; 11334 unsigned long long sym_addr; 11335 11336 f = fopen(available_path, "re"); 11337 if (!f) { 11338 err = -errno; 11339 pr_warn("failed to open %s: %d\n", available_path, err); 11340 return err; 11341 } 11342 11343 while (true) { 11344 ret = fscanf(f, "%llx %499s%*[^\n]\n", &sym_addr, sym_name); 11345 if (ret == EOF && feof(f)) 11346 break; 11347 11348 if (ret != 2) { 11349 pr_warn("failed to parse available_filter_functions_addrs entry: %d\n", 11350 ret); 11351 err = -EINVAL; 11352 goto cleanup; 11353 } 11354 11355 if (!glob_match(sym_name, res->pattern)) 11356 continue; 11357 11358 err = libbpf_ensure_mem((void **)&res->addrs, &res->cap, 11359 sizeof(*res->addrs), res->cnt + 1); 11360 if (err) 11361 goto cleanup; 11362 11363 res->addrs[res->cnt++] = (unsigned long)sym_addr; 11364 } 11365 11366 if (res->cnt == 0) 11367 err = -ENOENT; 11368 11369 cleanup: 11370 fclose(f); 11371 return err; 11372 } 11373 11374 struct bpf_link * 11375 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 11376 const char *pattern, 11377 const struct bpf_kprobe_multi_opts *opts) 11378 { 11379 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11380 struct kprobe_multi_resolve res = { 11381 .pattern = pattern, 11382 }; 11383 struct bpf_link *link = NULL; 11384 char errmsg[STRERR_BUFSIZE]; 11385 const unsigned long *addrs; 11386 int err, link_fd, prog_fd; 11387 const __u64 *cookies; 11388 const char **syms; 11389 bool retprobe; 11390 size_t cnt; 11391 11392 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 11393 return libbpf_err_ptr(-EINVAL); 11394 11395 prog_fd = bpf_program__fd(prog); 11396 if (prog_fd < 0) { 11397 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11398 prog->name); 11399 return libbpf_err_ptr(-EINVAL); 11400 } 11401 11402 syms = OPTS_GET(opts, syms, false); 11403 addrs = OPTS_GET(opts, addrs, false); 11404 cnt = OPTS_GET(opts, cnt, false); 11405 cookies = OPTS_GET(opts, cookies, false); 11406 11407 if (!pattern && !addrs && !syms) 11408 return libbpf_err_ptr(-EINVAL); 11409 if (pattern && (addrs || syms || cookies || cnt)) 11410 return libbpf_err_ptr(-EINVAL); 11411 if (!pattern && !cnt) 11412 return libbpf_err_ptr(-EINVAL); 11413 if (addrs && syms) 11414 return libbpf_err_ptr(-EINVAL); 11415 11416 if (pattern) { 11417 if (has_available_filter_functions_addrs()) 11418 err = libbpf_available_kprobes_parse(&res); 11419 else 11420 err = libbpf_available_kallsyms_parse(&res); 11421 if (err) 11422 goto error; 11423 addrs = res.addrs; 11424 cnt = res.cnt; 11425 } 11426 11427 retprobe = OPTS_GET(opts, retprobe, false); 11428 11429 lopts.kprobe_multi.syms = syms; 11430 lopts.kprobe_multi.addrs = addrs; 11431 lopts.kprobe_multi.cookies = cookies; 11432 lopts.kprobe_multi.cnt = cnt; 11433 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 11434 11435 link = calloc(1, sizeof(*link)); 11436 if (!link) { 11437 err = -ENOMEM; 11438 goto error; 11439 } 11440 link->detach = &bpf_link__detach_fd; 11441 11442 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 11443 if (link_fd < 0) { 11444 err = -errno; 11445 pr_warn("prog '%s': failed to attach: %s\n", 11446 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11447 goto error; 11448 } 11449 link->fd = link_fd; 11450 free(res.addrs); 11451 return link; 11452 11453 error: 11454 free(link); 11455 free(res.addrs); 11456 return libbpf_err_ptr(err); 11457 } 11458 11459 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11460 { 11461 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 11462 unsigned long offset = 0; 11463 const char *func_name; 11464 char *func; 11465 int n; 11466 11467 *link = NULL; 11468 11469 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 11470 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 11471 return 0; 11472 11473 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 11474 if (opts.retprobe) 11475 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 11476 else 11477 func_name = prog->sec_name + sizeof("kprobe/") - 1; 11478 11479 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 11480 if (n < 1) { 11481 pr_warn("kprobe name is invalid: %s\n", func_name); 11482 return -EINVAL; 11483 } 11484 if (opts.retprobe && offset != 0) { 11485 free(func); 11486 pr_warn("kretprobes do not support offset specification\n"); 11487 return -EINVAL; 11488 } 11489 11490 opts.offset = offset; 11491 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 11492 free(func); 11493 return libbpf_get_error(*link); 11494 } 11495 11496 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11497 { 11498 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 11499 const char *syscall_name; 11500 11501 *link = NULL; 11502 11503 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 11504 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 11505 return 0; 11506 11507 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 11508 if (opts.retprobe) 11509 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 11510 else 11511 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 11512 11513 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 11514 return *link ? 0 : -errno; 11515 } 11516 11517 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11518 { 11519 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 11520 const char *spec; 11521 char *pattern; 11522 int n; 11523 11524 *link = NULL; 11525 11526 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 11527 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 11528 strcmp(prog->sec_name, "kretprobe.multi") == 0) 11529 return 0; 11530 11531 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 11532 if (opts.retprobe) 11533 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 11534 else 11535 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 11536 11537 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 11538 if (n < 1) { 11539 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 11540 return -EINVAL; 11541 } 11542 11543 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 11544 free(pattern); 11545 return libbpf_get_error(*link); 11546 } 11547 11548 static int attach_uprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11549 { 11550 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 11551 LIBBPF_OPTS(bpf_uprobe_multi_opts, opts); 11552 int n, ret = -EINVAL; 11553 11554 *link = NULL; 11555 11556 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 11557 &probe_type, &binary_path, &func_name); 11558 switch (n) { 11559 case 1: 11560 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 11561 ret = 0; 11562 break; 11563 case 3: 11564 opts.retprobe = strcmp(probe_type, "uretprobe.multi") == 0; 11565 *link = bpf_program__attach_uprobe_multi(prog, -1, binary_path, func_name, &opts); 11566 ret = libbpf_get_error(*link); 11567 break; 11568 default: 11569 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 11570 prog->sec_name); 11571 break; 11572 } 11573 free(probe_type); 11574 free(binary_path); 11575 free(func_name); 11576 return ret; 11577 } 11578 11579 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 11580 const char *binary_path, uint64_t offset) 11581 { 11582 int i; 11583 11584 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 11585 11586 /* sanitize binary_path in the probe name */ 11587 for (i = 0; buf[i]; i++) { 11588 if (!isalnum(buf[i])) 11589 buf[i] = '_'; 11590 } 11591 } 11592 11593 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 11594 const char *binary_path, size_t offset) 11595 { 11596 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 11597 retprobe ? 'r' : 'p', 11598 retprobe ? "uretprobes" : "uprobes", 11599 probe_name, binary_path, offset); 11600 } 11601 11602 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 11603 { 11604 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 11605 retprobe ? "uretprobes" : "uprobes", probe_name); 11606 } 11607 11608 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 11609 { 11610 char file[512]; 11611 11612 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 11613 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 11614 11615 return parse_uint_from_file(file, "%d\n"); 11616 } 11617 11618 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 11619 const char *binary_path, size_t offset, int pid) 11620 { 11621 const size_t attr_sz = sizeof(struct perf_event_attr); 11622 struct perf_event_attr attr; 11623 int type, pfd, err; 11624 11625 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 11626 if (err < 0) { 11627 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 11628 binary_path, (size_t)offset, err); 11629 return err; 11630 } 11631 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 11632 if (type < 0) { 11633 err = type; 11634 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 11635 binary_path, offset, err); 11636 goto err_clean_legacy; 11637 } 11638 11639 memset(&attr, 0, attr_sz); 11640 attr.size = attr_sz; 11641 attr.config = type; 11642 attr.type = PERF_TYPE_TRACEPOINT; 11643 11644 pfd = syscall(__NR_perf_event_open, &attr, 11645 pid < 0 ? -1 : pid, /* pid */ 11646 pid == -1 ? 0 : -1, /* cpu */ 11647 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11648 if (pfd < 0) { 11649 err = -errno; 11650 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 11651 goto err_clean_legacy; 11652 } 11653 return pfd; 11654 11655 err_clean_legacy: 11656 /* Clear the newly added legacy uprobe_event */ 11657 remove_uprobe_event_legacy(probe_name, retprobe); 11658 return err; 11659 } 11660 11661 /* Find offset of function name in archive specified by path. Currently 11662 * supported are .zip files that do not compress their contents, as used on 11663 * Android in the form of APKs, for example. "file_name" is the name of the ELF 11664 * file inside the archive. "func_name" matches symbol name or name@@LIB for 11665 * library functions. 11666 * 11667 * An overview of the APK format specifically provided here: 11668 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents 11669 */ 11670 static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name, 11671 const char *func_name) 11672 { 11673 struct zip_archive *archive; 11674 struct zip_entry entry; 11675 long ret; 11676 Elf *elf; 11677 11678 archive = zip_archive_open(archive_path); 11679 if (IS_ERR(archive)) { 11680 ret = PTR_ERR(archive); 11681 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret); 11682 return ret; 11683 } 11684 11685 ret = zip_archive_find_entry(archive, file_name, &entry); 11686 if (ret) { 11687 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name, 11688 archive_path, ret); 11689 goto out; 11690 } 11691 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path, 11692 (unsigned long)entry.data_offset); 11693 11694 if (entry.compression) { 11695 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name, 11696 archive_path); 11697 ret = -LIBBPF_ERRNO__FORMAT; 11698 goto out; 11699 } 11700 11701 elf = elf_memory((void *)entry.data, entry.data_length); 11702 if (!elf) { 11703 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path, 11704 elf_errmsg(-1)); 11705 ret = -LIBBPF_ERRNO__LIBELF; 11706 goto out; 11707 } 11708 11709 ret = elf_find_func_offset(elf, file_name, func_name); 11710 if (ret > 0) { 11711 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n", 11712 func_name, file_name, archive_path, entry.data_offset, ret, 11713 ret + entry.data_offset); 11714 ret += entry.data_offset; 11715 } 11716 elf_end(elf); 11717 11718 out: 11719 zip_archive_close(archive); 11720 return ret; 11721 } 11722 11723 static const char *arch_specific_lib_paths(void) 11724 { 11725 /* 11726 * Based on https://packages.debian.org/sid/libc6. 11727 * 11728 * Assume that the traced program is built for the same architecture 11729 * as libbpf, which should cover the vast majority of cases. 11730 */ 11731 #if defined(__x86_64__) 11732 return "/lib/x86_64-linux-gnu"; 11733 #elif defined(__i386__) 11734 return "/lib/i386-linux-gnu"; 11735 #elif defined(__s390x__) 11736 return "/lib/s390x-linux-gnu"; 11737 #elif defined(__s390__) 11738 return "/lib/s390-linux-gnu"; 11739 #elif defined(__arm__) && defined(__SOFTFP__) 11740 return "/lib/arm-linux-gnueabi"; 11741 #elif defined(__arm__) && !defined(__SOFTFP__) 11742 return "/lib/arm-linux-gnueabihf"; 11743 #elif defined(__aarch64__) 11744 return "/lib/aarch64-linux-gnu"; 11745 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 11746 return "/lib/mips64el-linux-gnuabi64"; 11747 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 11748 return "/lib/mipsel-linux-gnu"; 11749 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 11750 return "/lib/powerpc64le-linux-gnu"; 11751 #elif defined(__sparc__) && defined(__arch64__) 11752 return "/lib/sparc64-linux-gnu"; 11753 #elif defined(__riscv) && __riscv_xlen == 64 11754 return "/lib/riscv64-linux-gnu"; 11755 #else 11756 return NULL; 11757 #endif 11758 } 11759 11760 /* Get full path to program/shared library. */ 11761 static int resolve_full_path(const char *file, char *result, size_t result_sz) 11762 { 11763 const char *search_paths[3] = {}; 11764 int i, perm; 11765 11766 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 11767 search_paths[0] = getenv("LD_LIBRARY_PATH"); 11768 search_paths[1] = "/usr/lib64:/usr/lib"; 11769 search_paths[2] = arch_specific_lib_paths(); 11770 perm = R_OK; 11771 } else { 11772 search_paths[0] = getenv("PATH"); 11773 search_paths[1] = "/usr/bin:/usr/sbin"; 11774 perm = R_OK | X_OK; 11775 } 11776 11777 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 11778 const char *s; 11779 11780 if (!search_paths[i]) 11781 continue; 11782 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 11783 char *next_path; 11784 int seg_len; 11785 11786 if (s[0] == ':') 11787 s++; 11788 next_path = strchr(s, ':'); 11789 seg_len = next_path ? next_path - s : strlen(s); 11790 if (!seg_len) 11791 continue; 11792 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 11793 /* ensure it has required permissions */ 11794 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 11795 continue; 11796 pr_debug("resolved '%s' to '%s'\n", file, result); 11797 return 0; 11798 } 11799 } 11800 return -ENOENT; 11801 } 11802 11803 struct bpf_link * 11804 bpf_program__attach_uprobe_multi(const struct bpf_program *prog, 11805 pid_t pid, 11806 const char *path, 11807 const char *func_pattern, 11808 const struct bpf_uprobe_multi_opts *opts) 11809 { 11810 const unsigned long *ref_ctr_offsets = NULL, *offsets = NULL; 11811 LIBBPF_OPTS(bpf_link_create_opts, lopts); 11812 unsigned long *resolved_offsets = NULL; 11813 int err = 0, link_fd, prog_fd; 11814 struct bpf_link *link = NULL; 11815 char errmsg[STRERR_BUFSIZE]; 11816 char full_path[PATH_MAX]; 11817 const __u64 *cookies; 11818 const char **syms; 11819 size_t cnt; 11820 11821 if (!OPTS_VALID(opts, bpf_uprobe_multi_opts)) 11822 return libbpf_err_ptr(-EINVAL); 11823 11824 prog_fd = bpf_program__fd(prog); 11825 if (prog_fd < 0) { 11826 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 11827 prog->name); 11828 return libbpf_err_ptr(-EINVAL); 11829 } 11830 11831 syms = OPTS_GET(opts, syms, NULL); 11832 offsets = OPTS_GET(opts, offsets, NULL); 11833 ref_ctr_offsets = OPTS_GET(opts, ref_ctr_offsets, NULL); 11834 cookies = OPTS_GET(opts, cookies, NULL); 11835 cnt = OPTS_GET(opts, cnt, 0); 11836 11837 /* 11838 * User can specify 2 mutually exclusive set of inputs: 11839 * 11840 * 1) use only path/func_pattern/pid arguments 11841 * 11842 * 2) use path/pid with allowed combinations of: 11843 * syms/offsets/ref_ctr_offsets/cookies/cnt 11844 * 11845 * - syms and offsets are mutually exclusive 11846 * - ref_ctr_offsets and cookies are optional 11847 * 11848 * Any other usage results in error. 11849 */ 11850 11851 if (!path) 11852 return libbpf_err_ptr(-EINVAL); 11853 if (!func_pattern && cnt == 0) 11854 return libbpf_err_ptr(-EINVAL); 11855 11856 if (func_pattern) { 11857 if (syms || offsets || ref_ctr_offsets || cookies || cnt) 11858 return libbpf_err_ptr(-EINVAL); 11859 } else { 11860 if (!!syms == !!offsets) 11861 return libbpf_err_ptr(-EINVAL); 11862 } 11863 11864 if (func_pattern) { 11865 if (!strchr(path, '/')) { 11866 err = resolve_full_path(path, full_path, sizeof(full_path)); 11867 if (err) { 11868 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11869 prog->name, path, err); 11870 return libbpf_err_ptr(err); 11871 } 11872 path = full_path; 11873 } 11874 11875 err = elf_resolve_pattern_offsets(path, func_pattern, 11876 &resolved_offsets, &cnt); 11877 if (err < 0) 11878 return libbpf_err_ptr(err); 11879 offsets = resolved_offsets; 11880 } else if (syms) { 11881 err = elf_resolve_syms_offsets(path, cnt, syms, &resolved_offsets, STT_FUNC); 11882 if (err < 0) 11883 return libbpf_err_ptr(err); 11884 offsets = resolved_offsets; 11885 } 11886 11887 lopts.uprobe_multi.path = path; 11888 lopts.uprobe_multi.offsets = offsets; 11889 lopts.uprobe_multi.ref_ctr_offsets = ref_ctr_offsets; 11890 lopts.uprobe_multi.cookies = cookies; 11891 lopts.uprobe_multi.cnt = cnt; 11892 lopts.uprobe_multi.flags = OPTS_GET(opts, retprobe, false) ? BPF_F_UPROBE_MULTI_RETURN : 0; 11893 11894 if (pid == 0) 11895 pid = getpid(); 11896 if (pid > 0) 11897 lopts.uprobe_multi.pid = pid; 11898 11899 link = calloc(1, sizeof(*link)); 11900 if (!link) { 11901 err = -ENOMEM; 11902 goto error; 11903 } 11904 link->detach = &bpf_link__detach_fd; 11905 11906 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_UPROBE_MULTI, &lopts); 11907 if (link_fd < 0) { 11908 err = -errno; 11909 pr_warn("prog '%s': failed to attach multi-uprobe: %s\n", 11910 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11911 goto error; 11912 } 11913 link->fd = link_fd; 11914 free(resolved_offsets); 11915 return link; 11916 11917 error: 11918 free(resolved_offsets); 11919 free(link); 11920 return libbpf_err_ptr(err); 11921 } 11922 11923 LIBBPF_API struct bpf_link * 11924 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 11925 const char *binary_path, size_t func_offset, 11926 const struct bpf_uprobe_opts *opts) 11927 { 11928 const char *archive_path = NULL, *archive_sep = NULL; 11929 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 11930 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11931 enum probe_attach_mode attach_mode; 11932 char full_path[PATH_MAX]; 11933 struct bpf_link *link; 11934 size_t ref_ctr_off; 11935 int pfd, err; 11936 bool retprobe, legacy; 11937 const char *func_name; 11938 11939 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 11940 return libbpf_err_ptr(-EINVAL); 11941 11942 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT); 11943 retprobe = OPTS_GET(opts, retprobe, false); 11944 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 11945 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11946 11947 if (!binary_path) 11948 return libbpf_err_ptr(-EINVAL); 11949 11950 /* Check if "binary_path" refers to an archive. */ 11951 archive_sep = strstr(binary_path, "!/"); 11952 if (archive_sep) { 11953 full_path[0] = '\0'; 11954 libbpf_strlcpy(full_path, binary_path, 11955 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1))); 11956 archive_path = full_path; 11957 binary_path = archive_sep + 2; 11958 } else if (!strchr(binary_path, '/')) { 11959 err = resolve_full_path(binary_path, full_path, sizeof(full_path)); 11960 if (err) { 11961 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 11962 prog->name, binary_path, err); 11963 return libbpf_err_ptr(err); 11964 } 11965 binary_path = full_path; 11966 } 11967 func_name = OPTS_GET(opts, func_name, NULL); 11968 if (func_name) { 11969 long sym_off; 11970 11971 if (archive_path) { 11972 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path, 11973 func_name); 11974 binary_path = archive_path; 11975 } else { 11976 sym_off = elf_find_func_offset_from_file(binary_path, func_name); 11977 } 11978 if (sym_off < 0) 11979 return libbpf_err_ptr(sym_off); 11980 func_offset += sym_off; 11981 } 11982 11983 legacy = determine_uprobe_perf_type() < 0; 11984 switch (attach_mode) { 11985 case PROBE_ATTACH_MODE_LEGACY: 11986 legacy = true; 11987 pe_opts.force_ioctl_attach = true; 11988 break; 11989 case PROBE_ATTACH_MODE_PERF: 11990 if (legacy) 11991 return libbpf_err_ptr(-ENOTSUP); 11992 pe_opts.force_ioctl_attach = true; 11993 break; 11994 case PROBE_ATTACH_MODE_LINK: 11995 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK)) 11996 return libbpf_err_ptr(-ENOTSUP); 11997 break; 11998 case PROBE_ATTACH_MODE_DEFAULT: 11999 break; 12000 default: 12001 return libbpf_err_ptr(-EINVAL); 12002 } 12003 12004 if (!legacy) { 12005 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 12006 func_offset, pid, ref_ctr_off); 12007 } else { 12008 char probe_name[PATH_MAX + 64]; 12009 12010 if (ref_ctr_off) 12011 return libbpf_err_ptr(-EINVAL); 12012 12013 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 12014 binary_path, func_offset); 12015 12016 legacy_probe = strdup(probe_name); 12017 if (!legacy_probe) 12018 return libbpf_err_ptr(-ENOMEM); 12019 12020 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 12021 binary_path, func_offset, pid); 12022 } 12023 if (pfd < 0) { 12024 err = -errno; 12025 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 12026 prog->name, retprobe ? "uretprobe" : "uprobe", 12027 binary_path, func_offset, 12028 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12029 goto err_out; 12030 } 12031 12032 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12033 err = libbpf_get_error(link); 12034 if (err) { 12035 close(pfd); 12036 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 12037 prog->name, retprobe ? "uretprobe" : "uprobe", 12038 binary_path, func_offset, 12039 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12040 goto err_clean_legacy; 12041 } 12042 if (legacy) { 12043 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 12044 12045 perf_link->legacy_probe_name = legacy_probe; 12046 perf_link->legacy_is_kprobe = false; 12047 perf_link->legacy_is_retprobe = retprobe; 12048 } 12049 return link; 12050 12051 err_clean_legacy: 12052 if (legacy) 12053 remove_uprobe_event_legacy(legacy_probe, retprobe); 12054 err_out: 12055 free(legacy_probe); 12056 return libbpf_err_ptr(err); 12057 } 12058 12059 /* Format of u[ret]probe section definition supporting auto-attach: 12060 * u[ret]probe/binary:function[+offset] 12061 * 12062 * binary can be an absolute/relative path or a filename; the latter is resolved to a 12063 * full binary path via bpf_program__attach_uprobe_opts. 12064 * 12065 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 12066 * specified (and auto-attach is not possible) or the above format is specified for 12067 * auto-attach. 12068 */ 12069 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12070 { 12071 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 12072 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL, *func_off; 12073 int n, c, ret = -EINVAL; 12074 long offset = 0; 12075 12076 *link = NULL; 12077 12078 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[^\n]", 12079 &probe_type, &binary_path, &func_name); 12080 switch (n) { 12081 case 1: 12082 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 12083 ret = 0; 12084 break; 12085 case 2: 12086 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 12087 prog->name, prog->sec_name); 12088 break; 12089 case 3: 12090 /* check if user specifies `+offset`, if yes, this should be 12091 * the last part of the string, make sure sscanf read to EOL 12092 */ 12093 func_off = strrchr(func_name, '+'); 12094 if (func_off) { 12095 n = sscanf(func_off, "+%li%n", &offset, &c); 12096 if (n == 1 && *(func_off + c) == '\0') 12097 func_off[0] = '\0'; 12098 else 12099 offset = 0; 12100 } 12101 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 12102 strcmp(probe_type, "uretprobe.s") == 0; 12103 if (opts.retprobe && offset != 0) { 12104 pr_warn("prog '%s': uretprobes do not support offset specification\n", 12105 prog->name); 12106 break; 12107 } 12108 opts.func_name = func_name; 12109 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 12110 ret = libbpf_get_error(*link); 12111 break; 12112 default: 12113 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 12114 prog->sec_name); 12115 break; 12116 } 12117 free(probe_type); 12118 free(binary_path); 12119 free(func_name); 12120 12121 return ret; 12122 } 12123 12124 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 12125 bool retprobe, pid_t pid, 12126 const char *binary_path, 12127 size_t func_offset) 12128 { 12129 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 12130 12131 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 12132 } 12133 12134 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 12135 pid_t pid, const char *binary_path, 12136 const char *usdt_provider, const char *usdt_name, 12137 const struct bpf_usdt_opts *opts) 12138 { 12139 char resolved_path[512]; 12140 struct bpf_object *obj = prog->obj; 12141 struct bpf_link *link; 12142 __u64 usdt_cookie; 12143 int err; 12144 12145 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 12146 return libbpf_err_ptr(-EINVAL); 12147 12148 if (bpf_program__fd(prog) < 0) { 12149 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12150 prog->name); 12151 return libbpf_err_ptr(-EINVAL); 12152 } 12153 12154 if (!binary_path) 12155 return libbpf_err_ptr(-EINVAL); 12156 12157 if (!strchr(binary_path, '/')) { 12158 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 12159 if (err) { 12160 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 12161 prog->name, binary_path, err); 12162 return libbpf_err_ptr(err); 12163 } 12164 binary_path = resolved_path; 12165 } 12166 12167 /* USDT manager is instantiated lazily on first USDT attach. It will 12168 * be destroyed together with BPF object in bpf_object__close(). 12169 */ 12170 if (IS_ERR(obj->usdt_man)) 12171 return libbpf_ptr(obj->usdt_man); 12172 if (!obj->usdt_man) { 12173 obj->usdt_man = usdt_manager_new(obj); 12174 if (IS_ERR(obj->usdt_man)) 12175 return libbpf_ptr(obj->usdt_man); 12176 } 12177 12178 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 12179 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 12180 usdt_provider, usdt_name, usdt_cookie); 12181 err = libbpf_get_error(link); 12182 if (err) 12183 return libbpf_err_ptr(err); 12184 return link; 12185 } 12186 12187 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12188 { 12189 char *path = NULL, *provider = NULL, *name = NULL; 12190 const char *sec_name; 12191 int n, err; 12192 12193 sec_name = bpf_program__section_name(prog); 12194 if (strcmp(sec_name, "usdt") == 0) { 12195 /* no auto-attach for just SEC("usdt") */ 12196 *link = NULL; 12197 return 0; 12198 } 12199 12200 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 12201 if (n != 3) { 12202 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 12203 sec_name); 12204 err = -EINVAL; 12205 } else { 12206 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 12207 provider, name, NULL); 12208 err = libbpf_get_error(*link); 12209 } 12210 free(path); 12211 free(provider); 12212 free(name); 12213 return err; 12214 } 12215 12216 static int determine_tracepoint_id(const char *tp_category, 12217 const char *tp_name) 12218 { 12219 char file[PATH_MAX]; 12220 int ret; 12221 12222 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 12223 tracefs_path(), tp_category, tp_name); 12224 if (ret < 0) 12225 return -errno; 12226 if (ret >= sizeof(file)) { 12227 pr_debug("tracepoint %s/%s path is too long\n", 12228 tp_category, tp_name); 12229 return -E2BIG; 12230 } 12231 return parse_uint_from_file(file, "%d\n"); 12232 } 12233 12234 static int perf_event_open_tracepoint(const char *tp_category, 12235 const char *tp_name) 12236 { 12237 const size_t attr_sz = sizeof(struct perf_event_attr); 12238 struct perf_event_attr attr; 12239 char errmsg[STRERR_BUFSIZE]; 12240 int tp_id, pfd, err; 12241 12242 tp_id = determine_tracepoint_id(tp_category, tp_name); 12243 if (tp_id < 0) { 12244 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 12245 tp_category, tp_name, 12246 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 12247 return tp_id; 12248 } 12249 12250 memset(&attr, 0, attr_sz); 12251 attr.type = PERF_TYPE_TRACEPOINT; 12252 attr.size = attr_sz; 12253 attr.config = tp_id; 12254 12255 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 12256 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 12257 if (pfd < 0) { 12258 err = -errno; 12259 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 12260 tp_category, tp_name, 12261 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12262 return err; 12263 } 12264 return pfd; 12265 } 12266 12267 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 12268 const char *tp_category, 12269 const char *tp_name, 12270 const struct bpf_tracepoint_opts *opts) 12271 { 12272 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 12273 char errmsg[STRERR_BUFSIZE]; 12274 struct bpf_link *link; 12275 int pfd, err; 12276 12277 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 12278 return libbpf_err_ptr(-EINVAL); 12279 12280 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 12281 12282 pfd = perf_event_open_tracepoint(tp_category, tp_name); 12283 if (pfd < 0) { 12284 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 12285 prog->name, tp_category, tp_name, 12286 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12287 return libbpf_err_ptr(pfd); 12288 } 12289 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 12290 err = libbpf_get_error(link); 12291 if (err) { 12292 close(pfd); 12293 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 12294 prog->name, tp_category, tp_name, 12295 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 12296 return libbpf_err_ptr(err); 12297 } 12298 return link; 12299 } 12300 12301 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 12302 const char *tp_category, 12303 const char *tp_name) 12304 { 12305 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 12306 } 12307 12308 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12309 { 12310 char *sec_name, *tp_cat, *tp_name; 12311 12312 *link = NULL; 12313 12314 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 12315 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 12316 return 0; 12317 12318 sec_name = strdup(prog->sec_name); 12319 if (!sec_name) 12320 return -ENOMEM; 12321 12322 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 12323 if (str_has_pfx(prog->sec_name, "tp/")) 12324 tp_cat = sec_name + sizeof("tp/") - 1; 12325 else 12326 tp_cat = sec_name + sizeof("tracepoint/") - 1; 12327 tp_name = strchr(tp_cat, '/'); 12328 if (!tp_name) { 12329 free(sec_name); 12330 return -EINVAL; 12331 } 12332 *tp_name = '\0'; 12333 tp_name++; 12334 12335 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 12336 free(sec_name); 12337 return libbpf_get_error(*link); 12338 } 12339 12340 struct bpf_link * 12341 bpf_program__attach_raw_tracepoint_opts(const struct bpf_program *prog, 12342 const char *tp_name, 12343 struct bpf_raw_tracepoint_opts *opts) 12344 { 12345 LIBBPF_OPTS(bpf_raw_tp_opts, raw_opts); 12346 char errmsg[STRERR_BUFSIZE]; 12347 struct bpf_link *link; 12348 int prog_fd, pfd; 12349 12350 if (!OPTS_VALID(opts, bpf_raw_tracepoint_opts)) 12351 return libbpf_err_ptr(-EINVAL); 12352 12353 prog_fd = bpf_program__fd(prog); 12354 if (prog_fd < 0) { 12355 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12356 return libbpf_err_ptr(-EINVAL); 12357 } 12358 12359 link = calloc(1, sizeof(*link)); 12360 if (!link) 12361 return libbpf_err_ptr(-ENOMEM); 12362 link->detach = &bpf_link__detach_fd; 12363 12364 raw_opts.tp_name = tp_name; 12365 raw_opts.cookie = OPTS_GET(opts, cookie, 0); 12366 pfd = bpf_raw_tracepoint_open_opts(prog_fd, &raw_opts); 12367 if (pfd < 0) { 12368 pfd = -errno; 12369 free(link); 12370 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 12371 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12372 return libbpf_err_ptr(pfd); 12373 } 12374 link->fd = pfd; 12375 return link; 12376 } 12377 12378 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 12379 const char *tp_name) 12380 { 12381 return bpf_program__attach_raw_tracepoint_opts(prog, tp_name, NULL); 12382 } 12383 12384 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12385 { 12386 static const char *const prefixes[] = { 12387 "raw_tp", 12388 "raw_tracepoint", 12389 "raw_tp.w", 12390 "raw_tracepoint.w", 12391 }; 12392 size_t i; 12393 const char *tp_name = NULL; 12394 12395 *link = NULL; 12396 12397 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 12398 size_t pfx_len; 12399 12400 if (!str_has_pfx(prog->sec_name, prefixes[i])) 12401 continue; 12402 12403 pfx_len = strlen(prefixes[i]); 12404 /* no auto-attach case of, e.g., SEC("raw_tp") */ 12405 if (prog->sec_name[pfx_len] == '\0') 12406 return 0; 12407 12408 if (prog->sec_name[pfx_len] != '/') 12409 continue; 12410 12411 tp_name = prog->sec_name + pfx_len + 1; 12412 break; 12413 } 12414 12415 if (!tp_name) { 12416 pr_warn("prog '%s': invalid section name '%s'\n", 12417 prog->name, prog->sec_name); 12418 return -EINVAL; 12419 } 12420 12421 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 12422 return libbpf_get_error(*link); 12423 } 12424 12425 /* Common logic for all BPF program types that attach to a btf_id */ 12426 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 12427 const struct bpf_trace_opts *opts) 12428 { 12429 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 12430 char errmsg[STRERR_BUFSIZE]; 12431 struct bpf_link *link; 12432 int prog_fd, pfd; 12433 12434 if (!OPTS_VALID(opts, bpf_trace_opts)) 12435 return libbpf_err_ptr(-EINVAL); 12436 12437 prog_fd = bpf_program__fd(prog); 12438 if (prog_fd < 0) { 12439 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12440 return libbpf_err_ptr(-EINVAL); 12441 } 12442 12443 link = calloc(1, sizeof(*link)); 12444 if (!link) 12445 return libbpf_err_ptr(-ENOMEM); 12446 link->detach = &bpf_link__detach_fd; 12447 12448 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 12449 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 12450 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 12451 if (pfd < 0) { 12452 pfd = -errno; 12453 free(link); 12454 pr_warn("prog '%s': failed to attach: %s\n", 12455 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 12456 return libbpf_err_ptr(pfd); 12457 } 12458 link->fd = pfd; 12459 return link; 12460 } 12461 12462 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 12463 { 12464 return bpf_program__attach_btf_id(prog, NULL); 12465 } 12466 12467 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 12468 const struct bpf_trace_opts *opts) 12469 { 12470 return bpf_program__attach_btf_id(prog, opts); 12471 } 12472 12473 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 12474 { 12475 return bpf_program__attach_btf_id(prog, NULL); 12476 } 12477 12478 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12479 { 12480 *link = bpf_program__attach_trace(prog); 12481 return libbpf_get_error(*link); 12482 } 12483 12484 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12485 { 12486 *link = bpf_program__attach_lsm(prog); 12487 return libbpf_get_error(*link); 12488 } 12489 12490 static struct bpf_link * 12491 bpf_program_attach_fd(const struct bpf_program *prog, 12492 int target_fd, const char *target_name, 12493 const struct bpf_link_create_opts *opts) 12494 { 12495 enum bpf_attach_type attach_type; 12496 char errmsg[STRERR_BUFSIZE]; 12497 struct bpf_link *link; 12498 int prog_fd, link_fd; 12499 12500 prog_fd = bpf_program__fd(prog); 12501 if (prog_fd < 0) { 12502 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12503 return libbpf_err_ptr(-EINVAL); 12504 } 12505 12506 link = calloc(1, sizeof(*link)); 12507 if (!link) 12508 return libbpf_err_ptr(-ENOMEM); 12509 link->detach = &bpf_link__detach_fd; 12510 12511 attach_type = bpf_program__expected_attach_type(prog); 12512 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, opts); 12513 if (link_fd < 0) { 12514 link_fd = -errno; 12515 free(link); 12516 pr_warn("prog '%s': failed to attach to %s: %s\n", 12517 prog->name, target_name, 12518 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12519 return libbpf_err_ptr(link_fd); 12520 } 12521 link->fd = link_fd; 12522 return link; 12523 } 12524 12525 struct bpf_link * 12526 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 12527 { 12528 return bpf_program_attach_fd(prog, cgroup_fd, "cgroup", NULL); 12529 } 12530 12531 struct bpf_link * 12532 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 12533 { 12534 return bpf_program_attach_fd(prog, netns_fd, "netns", NULL); 12535 } 12536 12537 struct bpf_link * 12538 bpf_program__attach_sockmap(const struct bpf_program *prog, int map_fd) 12539 { 12540 return bpf_program_attach_fd(prog, map_fd, "sockmap", NULL); 12541 } 12542 12543 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 12544 { 12545 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12546 return bpf_program_attach_fd(prog, ifindex, "xdp", NULL); 12547 } 12548 12549 struct bpf_link * 12550 bpf_program__attach_tcx(const struct bpf_program *prog, int ifindex, 12551 const struct bpf_tcx_opts *opts) 12552 { 12553 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12554 __u32 relative_id; 12555 int relative_fd; 12556 12557 if (!OPTS_VALID(opts, bpf_tcx_opts)) 12558 return libbpf_err_ptr(-EINVAL); 12559 12560 relative_id = OPTS_GET(opts, relative_id, 0); 12561 relative_fd = OPTS_GET(opts, relative_fd, 0); 12562 12563 /* validate we don't have unexpected combinations of non-zero fields */ 12564 if (!ifindex) { 12565 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12566 prog->name); 12567 return libbpf_err_ptr(-EINVAL); 12568 } 12569 if (relative_fd && relative_id) { 12570 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12571 prog->name); 12572 return libbpf_err_ptr(-EINVAL); 12573 } 12574 12575 link_create_opts.tcx.expected_revision = OPTS_GET(opts, expected_revision, 0); 12576 link_create_opts.tcx.relative_fd = relative_fd; 12577 link_create_opts.tcx.relative_id = relative_id; 12578 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12579 12580 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 12581 return bpf_program_attach_fd(prog, ifindex, "tcx", &link_create_opts); 12582 } 12583 12584 struct bpf_link * 12585 bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex, 12586 const struct bpf_netkit_opts *opts) 12587 { 12588 LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12589 __u32 relative_id; 12590 int relative_fd; 12591 12592 if (!OPTS_VALID(opts, bpf_netkit_opts)) 12593 return libbpf_err_ptr(-EINVAL); 12594 12595 relative_id = OPTS_GET(opts, relative_id, 0); 12596 relative_fd = OPTS_GET(opts, relative_fd, 0); 12597 12598 /* validate we don't have unexpected combinations of non-zero fields */ 12599 if (!ifindex) { 12600 pr_warn("prog '%s': target netdevice ifindex cannot be zero\n", 12601 prog->name); 12602 return libbpf_err_ptr(-EINVAL); 12603 } 12604 if (relative_fd && relative_id) { 12605 pr_warn("prog '%s': relative_fd and relative_id cannot be set at the same time\n", 12606 prog->name); 12607 return libbpf_err_ptr(-EINVAL); 12608 } 12609 12610 link_create_opts.netkit.expected_revision = OPTS_GET(opts, expected_revision, 0); 12611 link_create_opts.netkit.relative_fd = relative_fd; 12612 link_create_opts.netkit.relative_id = relative_id; 12613 link_create_opts.flags = OPTS_GET(opts, flags, 0); 12614 12615 return bpf_program_attach_fd(prog, ifindex, "netkit", &link_create_opts); 12616 } 12617 12618 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 12619 int target_fd, 12620 const char *attach_func_name) 12621 { 12622 int btf_id; 12623 12624 if (!!target_fd != !!attach_func_name) { 12625 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 12626 prog->name); 12627 return libbpf_err_ptr(-EINVAL); 12628 } 12629 12630 if (prog->type != BPF_PROG_TYPE_EXT) { 12631 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 12632 prog->name); 12633 return libbpf_err_ptr(-EINVAL); 12634 } 12635 12636 if (target_fd) { 12637 LIBBPF_OPTS(bpf_link_create_opts, target_opts); 12638 12639 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 12640 if (btf_id < 0) 12641 return libbpf_err_ptr(btf_id); 12642 12643 target_opts.target_btf_id = btf_id; 12644 12645 return bpf_program_attach_fd(prog, target_fd, "freplace", 12646 &target_opts); 12647 } else { 12648 /* no target, so use raw_tracepoint_open for compatibility 12649 * with old kernels 12650 */ 12651 return bpf_program__attach_trace(prog); 12652 } 12653 } 12654 12655 struct bpf_link * 12656 bpf_program__attach_iter(const struct bpf_program *prog, 12657 const struct bpf_iter_attach_opts *opts) 12658 { 12659 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 12660 char errmsg[STRERR_BUFSIZE]; 12661 struct bpf_link *link; 12662 int prog_fd, link_fd; 12663 __u32 target_fd = 0; 12664 12665 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 12666 return libbpf_err_ptr(-EINVAL); 12667 12668 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 12669 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 12670 12671 prog_fd = bpf_program__fd(prog); 12672 if (prog_fd < 0) { 12673 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12674 return libbpf_err_ptr(-EINVAL); 12675 } 12676 12677 link = calloc(1, sizeof(*link)); 12678 if (!link) 12679 return libbpf_err_ptr(-ENOMEM); 12680 link->detach = &bpf_link__detach_fd; 12681 12682 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 12683 &link_create_opts); 12684 if (link_fd < 0) { 12685 link_fd = -errno; 12686 free(link); 12687 pr_warn("prog '%s': failed to attach to iterator: %s\n", 12688 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12689 return libbpf_err_ptr(link_fd); 12690 } 12691 link->fd = link_fd; 12692 return link; 12693 } 12694 12695 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 12696 { 12697 *link = bpf_program__attach_iter(prog, NULL); 12698 return libbpf_get_error(*link); 12699 } 12700 12701 struct bpf_link *bpf_program__attach_netfilter(const struct bpf_program *prog, 12702 const struct bpf_netfilter_opts *opts) 12703 { 12704 LIBBPF_OPTS(bpf_link_create_opts, lopts); 12705 struct bpf_link *link; 12706 int prog_fd, link_fd; 12707 12708 if (!OPTS_VALID(opts, bpf_netfilter_opts)) 12709 return libbpf_err_ptr(-EINVAL); 12710 12711 prog_fd = bpf_program__fd(prog); 12712 if (prog_fd < 0) { 12713 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 12714 return libbpf_err_ptr(-EINVAL); 12715 } 12716 12717 link = calloc(1, sizeof(*link)); 12718 if (!link) 12719 return libbpf_err_ptr(-ENOMEM); 12720 12721 link->detach = &bpf_link__detach_fd; 12722 12723 lopts.netfilter.pf = OPTS_GET(opts, pf, 0); 12724 lopts.netfilter.hooknum = OPTS_GET(opts, hooknum, 0); 12725 lopts.netfilter.priority = OPTS_GET(opts, priority, 0); 12726 lopts.netfilter.flags = OPTS_GET(opts, flags, 0); 12727 12728 link_fd = bpf_link_create(prog_fd, 0, BPF_NETFILTER, &lopts); 12729 if (link_fd < 0) { 12730 char errmsg[STRERR_BUFSIZE]; 12731 12732 link_fd = -errno; 12733 free(link); 12734 pr_warn("prog '%s': failed to attach to netfilter: %s\n", 12735 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 12736 return libbpf_err_ptr(link_fd); 12737 } 12738 link->fd = link_fd; 12739 12740 return link; 12741 } 12742 12743 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 12744 { 12745 struct bpf_link *link = NULL; 12746 int err; 12747 12748 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12749 return libbpf_err_ptr(-EOPNOTSUPP); 12750 12751 if (bpf_program__fd(prog) < 0) { 12752 pr_warn("prog '%s': can't attach BPF program without FD (was it loaded?)\n", 12753 prog->name); 12754 return libbpf_err_ptr(-EINVAL); 12755 } 12756 12757 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 12758 if (err) 12759 return libbpf_err_ptr(err); 12760 12761 /* When calling bpf_program__attach() explicitly, auto-attach support 12762 * is expected to work, so NULL returned link is considered an error. 12763 * This is different for skeleton's attach, see comment in 12764 * bpf_object__attach_skeleton(). 12765 */ 12766 if (!link) 12767 return libbpf_err_ptr(-EOPNOTSUPP); 12768 12769 return link; 12770 } 12771 12772 struct bpf_link_struct_ops { 12773 struct bpf_link link; 12774 int map_fd; 12775 }; 12776 12777 static int bpf_link__detach_struct_ops(struct bpf_link *link) 12778 { 12779 struct bpf_link_struct_ops *st_link; 12780 __u32 zero = 0; 12781 12782 st_link = container_of(link, struct bpf_link_struct_ops, link); 12783 12784 if (st_link->map_fd < 0) 12785 /* w/o a real link */ 12786 return bpf_map_delete_elem(link->fd, &zero); 12787 12788 return close(link->fd); 12789 } 12790 12791 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 12792 { 12793 struct bpf_link_struct_ops *link; 12794 __u32 zero = 0; 12795 int err, fd; 12796 12797 if (!bpf_map__is_struct_ops(map)) 12798 return libbpf_err_ptr(-EINVAL); 12799 12800 if (map->fd < 0) { 12801 pr_warn("map '%s': can't attach BPF map without FD (was it created?)\n", map->name); 12802 return libbpf_err_ptr(-EINVAL); 12803 } 12804 12805 link = calloc(1, sizeof(*link)); 12806 if (!link) 12807 return libbpf_err_ptr(-EINVAL); 12808 12809 /* kern_vdata should be prepared during the loading phase. */ 12810 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12811 /* It can be EBUSY if the map has been used to create or 12812 * update a link before. We don't allow updating the value of 12813 * a struct_ops once it is set. That ensures that the value 12814 * never changed. So, it is safe to skip EBUSY. 12815 */ 12816 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) { 12817 free(link); 12818 return libbpf_err_ptr(err); 12819 } 12820 12821 link->link.detach = bpf_link__detach_struct_ops; 12822 12823 if (!(map->def.map_flags & BPF_F_LINK)) { 12824 /* w/o a real link */ 12825 link->link.fd = map->fd; 12826 link->map_fd = -1; 12827 return &link->link; 12828 } 12829 12830 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL); 12831 if (fd < 0) { 12832 free(link); 12833 return libbpf_err_ptr(fd); 12834 } 12835 12836 link->link.fd = fd; 12837 link->map_fd = map->fd; 12838 12839 return &link->link; 12840 } 12841 12842 /* 12843 * Swap the back struct_ops of a link with a new struct_ops map. 12844 */ 12845 int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map) 12846 { 12847 struct bpf_link_struct_ops *st_ops_link; 12848 __u32 zero = 0; 12849 int err; 12850 12851 if (!bpf_map__is_struct_ops(map)) 12852 return -EINVAL; 12853 12854 if (map->fd < 0) { 12855 pr_warn("map '%s': can't use BPF map without FD (was it created?)\n", map->name); 12856 return -EINVAL; 12857 } 12858 12859 st_ops_link = container_of(link, struct bpf_link_struct_ops, link); 12860 /* Ensure the type of a link is correct */ 12861 if (st_ops_link->map_fd < 0) 12862 return -EINVAL; 12863 12864 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0); 12865 /* It can be EBUSY if the map has been used to create or 12866 * update a link before. We don't allow updating the value of 12867 * a struct_ops once it is set. That ensures that the value 12868 * never changed. So, it is safe to skip EBUSY. 12869 */ 12870 if (err && err != -EBUSY) 12871 return err; 12872 12873 err = bpf_link_update(link->fd, map->fd, NULL); 12874 if (err < 0) 12875 return err; 12876 12877 st_ops_link->map_fd = map->fd; 12878 12879 return 0; 12880 } 12881 12882 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 12883 void *private_data); 12884 12885 static enum bpf_perf_event_ret 12886 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 12887 void **copy_mem, size_t *copy_size, 12888 bpf_perf_event_print_t fn, void *private_data) 12889 { 12890 struct perf_event_mmap_page *header = mmap_mem; 12891 __u64 data_head = ring_buffer_read_head(header); 12892 __u64 data_tail = header->data_tail; 12893 void *base = ((__u8 *)header) + page_size; 12894 int ret = LIBBPF_PERF_EVENT_CONT; 12895 struct perf_event_header *ehdr; 12896 size_t ehdr_size; 12897 12898 while (data_head != data_tail) { 12899 ehdr = base + (data_tail & (mmap_size - 1)); 12900 ehdr_size = ehdr->size; 12901 12902 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 12903 void *copy_start = ehdr; 12904 size_t len_first = base + mmap_size - copy_start; 12905 size_t len_secnd = ehdr_size - len_first; 12906 12907 if (*copy_size < ehdr_size) { 12908 free(*copy_mem); 12909 *copy_mem = malloc(ehdr_size); 12910 if (!*copy_mem) { 12911 *copy_size = 0; 12912 ret = LIBBPF_PERF_EVENT_ERROR; 12913 break; 12914 } 12915 *copy_size = ehdr_size; 12916 } 12917 12918 memcpy(*copy_mem, copy_start, len_first); 12919 memcpy(*copy_mem + len_first, base, len_secnd); 12920 ehdr = *copy_mem; 12921 } 12922 12923 ret = fn(ehdr, private_data); 12924 data_tail += ehdr_size; 12925 if (ret != LIBBPF_PERF_EVENT_CONT) 12926 break; 12927 } 12928 12929 ring_buffer_write_tail(header, data_tail); 12930 return libbpf_err(ret); 12931 } 12932 12933 struct perf_buffer; 12934 12935 struct perf_buffer_params { 12936 struct perf_event_attr *attr; 12937 /* if event_cb is specified, it takes precendence */ 12938 perf_buffer_event_fn event_cb; 12939 /* sample_cb and lost_cb are higher-level common-case callbacks */ 12940 perf_buffer_sample_fn sample_cb; 12941 perf_buffer_lost_fn lost_cb; 12942 void *ctx; 12943 int cpu_cnt; 12944 int *cpus; 12945 int *map_keys; 12946 }; 12947 12948 struct perf_cpu_buf { 12949 struct perf_buffer *pb; 12950 void *base; /* mmap()'ed memory */ 12951 void *buf; /* for reconstructing segmented data */ 12952 size_t buf_size; 12953 int fd; 12954 int cpu; 12955 int map_key; 12956 }; 12957 12958 struct perf_buffer { 12959 perf_buffer_event_fn event_cb; 12960 perf_buffer_sample_fn sample_cb; 12961 perf_buffer_lost_fn lost_cb; 12962 void *ctx; /* passed into callbacks */ 12963 12964 size_t page_size; 12965 size_t mmap_size; 12966 struct perf_cpu_buf **cpu_bufs; 12967 struct epoll_event *events; 12968 int cpu_cnt; /* number of allocated CPU buffers */ 12969 int epoll_fd; /* perf event FD */ 12970 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 12971 }; 12972 12973 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 12974 struct perf_cpu_buf *cpu_buf) 12975 { 12976 if (!cpu_buf) 12977 return; 12978 if (cpu_buf->base && 12979 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 12980 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 12981 if (cpu_buf->fd >= 0) { 12982 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 12983 close(cpu_buf->fd); 12984 } 12985 free(cpu_buf->buf); 12986 free(cpu_buf); 12987 } 12988 12989 void perf_buffer__free(struct perf_buffer *pb) 12990 { 12991 int i; 12992 12993 if (IS_ERR_OR_NULL(pb)) 12994 return; 12995 if (pb->cpu_bufs) { 12996 for (i = 0; i < pb->cpu_cnt; i++) { 12997 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 12998 12999 if (!cpu_buf) 13000 continue; 13001 13002 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 13003 perf_buffer__free_cpu_buf(pb, cpu_buf); 13004 } 13005 free(pb->cpu_bufs); 13006 } 13007 if (pb->epoll_fd >= 0) 13008 close(pb->epoll_fd); 13009 free(pb->events); 13010 free(pb); 13011 } 13012 13013 static struct perf_cpu_buf * 13014 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 13015 int cpu, int map_key) 13016 { 13017 struct perf_cpu_buf *cpu_buf; 13018 char msg[STRERR_BUFSIZE]; 13019 int err; 13020 13021 cpu_buf = calloc(1, sizeof(*cpu_buf)); 13022 if (!cpu_buf) 13023 return ERR_PTR(-ENOMEM); 13024 13025 cpu_buf->pb = pb; 13026 cpu_buf->cpu = cpu; 13027 cpu_buf->map_key = map_key; 13028 13029 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 13030 -1, PERF_FLAG_FD_CLOEXEC); 13031 if (cpu_buf->fd < 0) { 13032 err = -errno; 13033 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 13034 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13035 goto error; 13036 } 13037 13038 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 13039 PROT_READ | PROT_WRITE, MAP_SHARED, 13040 cpu_buf->fd, 0); 13041 if (cpu_buf->base == MAP_FAILED) { 13042 cpu_buf->base = NULL; 13043 err = -errno; 13044 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 13045 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13046 goto error; 13047 } 13048 13049 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 13050 err = -errno; 13051 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 13052 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 13053 goto error; 13054 } 13055 13056 return cpu_buf; 13057 13058 error: 13059 perf_buffer__free_cpu_buf(pb, cpu_buf); 13060 return (struct perf_cpu_buf *)ERR_PTR(err); 13061 } 13062 13063 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13064 struct perf_buffer_params *p); 13065 13066 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 13067 perf_buffer_sample_fn sample_cb, 13068 perf_buffer_lost_fn lost_cb, 13069 void *ctx, 13070 const struct perf_buffer_opts *opts) 13071 { 13072 const size_t attr_sz = sizeof(struct perf_event_attr); 13073 struct perf_buffer_params p = {}; 13074 struct perf_event_attr attr; 13075 __u32 sample_period; 13076 13077 if (!OPTS_VALID(opts, perf_buffer_opts)) 13078 return libbpf_err_ptr(-EINVAL); 13079 13080 sample_period = OPTS_GET(opts, sample_period, 1); 13081 if (!sample_period) 13082 sample_period = 1; 13083 13084 memset(&attr, 0, attr_sz); 13085 attr.size = attr_sz; 13086 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 13087 attr.type = PERF_TYPE_SOFTWARE; 13088 attr.sample_type = PERF_SAMPLE_RAW; 13089 attr.sample_period = sample_period; 13090 attr.wakeup_events = sample_period; 13091 13092 p.attr = &attr; 13093 p.sample_cb = sample_cb; 13094 p.lost_cb = lost_cb; 13095 p.ctx = ctx; 13096 13097 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13098 } 13099 13100 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 13101 struct perf_event_attr *attr, 13102 perf_buffer_event_fn event_cb, void *ctx, 13103 const struct perf_buffer_raw_opts *opts) 13104 { 13105 struct perf_buffer_params p = {}; 13106 13107 if (!attr) 13108 return libbpf_err_ptr(-EINVAL); 13109 13110 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 13111 return libbpf_err_ptr(-EINVAL); 13112 13113 p.attr = attr; 13114 p.event_cb = event_cb; 13115 p.ctx = ctx; 13116 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 13117 p.cpus = OPTS_GET(opts, cpus, NULL); 13118 p.map_keys = OPTS_GET(opts, map_keys, NULL); 13119 13120 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 13121 } 13122 13123 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 13124 struct perf_buffer_params *p) 13125 { 13126 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 13127 struct bpf_map_info map; 13128 char msg[STRERR_BUFSIZE]; 13129 struct perf_buffer *pb; 13130 bool *online = NULL; 13131 __u32 map_info_len; 13132 int err, i, j, n; 13133 13134 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 13135 pr_warn("page count should be power of two, but is %zu\n", 13136 page_cnt); 13137 return ERR_PTR(-EINVAL); 13138 } 13139 13140 /* best-effort sanity checks */ 13141 memset(&map, 0, sizeof(map)); 13142 map_info_len = sizeof(map); 13143 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len); 13144 if (err) { 13145 err = -errno; 13146 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 13147 * -EBADFD, -EFAULT, or -E2BIG on real error 13148 */ 13149 if (err != -EINVAL) { 13150 pr_warn("failed to get map info for map FD %d: %s\n", 13151 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 13152 return ERR_PTR(err); 13153 } 13154 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 13155 map_fd); 13156 } else { 13157 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 13158 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 13159 map.name); 13160 return ERR_PTR(-EINVAL); 13161 } 13162 } 13163 13164 pb = calloc(1, sizeof(*pb)); 13165 if (!pb) 13166 return ERR_PTR(-ENOMEM); 13167 13168 pb->event_cb = p->event_cb; 13169 pb->sample_cb = p->sample_cb; 13170 pb->lost_cb = p->lost_cb; 13171 pb->ctx = p->ctx; 13172 13173 pb->page_size = getpagesize(); 13174 pb->mmap_size = pb->page_size * page_cnt; 13175 pb->map_fd = map_fd; 13176 13177 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 13178 if (pb->epoll_fd < 0) { 13179 err = -errno; 13180 pr_warn("failed to create epoll instance: %s\n", 13181 libbpf_strerror_r(err, msg, sizeof(msg))); 13182 goto error; 13183 } 13184 13185 if (p->cpu_cnt > 0) { 13186 pb->cpu_cnt = p->cpu_cnt; 13187 } else { 13188 pb->cpu_cnt = libbpf_num_possible_cpus(); 13189 if (pb->cpu_cnt < 0) { 13190 err = pb->cpu_cnt; 13191 goto error; 13192 } 13193 if (map.max_entries && map.max_entries < pb->cpu_cnt) 13194 pb->cpu_cnt = map.max_entries; 13195 } 13196 13197 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 13198 if (!pb->events) { 13199 err = -ENOMEM; 13200 pr_warn("failed to allocate events: out of memory\n"); 13201 goto error; 13202 } 13203 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 13204 if (!pb->cpu_bufs) { 13205 err = -ENOMEM; 13206 pr_warn("failed to allocate buffers: out of memory\n"); 13207 goto error; 13208 } 13209 13210 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 13211 if (err) { 13212 pr_warn("failed to get online CPU mask: %d\n", err); 13213 goto error; 13214 } 13215 13216 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 13217 struct perf_cpu_buf *cpu_buf; 13218 int cpu, map_key; 13219 13220 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 13221 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 13222 13223 /* in case user didn't explicitly requested particular CPUs to 13224 * be attached to, skip offline/not present CPUs 13225 */ 13226 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 13227 continue; 13228 13229 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 13230 if (IS_ERR(cpu_buf)) { 13231 err = PTR_ERR(cpu_buf); 13232 goto error; 13233 } 13234 13235 pb->cpu_bufs[j] = cpu_buf; 13236 13237 err = bpf_map_update_elem(pb->map_fd, &map_key, 13238 &cpu_buf->fd, 0); 13239 if (err) { 13240 err = -errno; 13241 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 13242 cpu, map_key, cpu_buf->fd, 13243 libbpf_strerror_r(err, msg, sizeof(msg))); 13244 goto error; 13245 } 13246 13247 pb->events[j].events = EPOLLIN; 13248 pb->events[j].data.ptr = cpu_buf; 13249 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 13250 &pb->events[j]) < 0) { 13251 err = -errno; 13252 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 13253 cpu, cpu_buf->fd, 13254 libbpf_strerror_r(err, msg, sizeof(msg))); 13255 goto error; 13256 } 13257 j++; 13258 } 13259 pb->cpu_cnt = j; 13260 free(online); 13261 13262 return pb; 13263 13264 error: 13265 free(online); 13266 if (pb) 13267 perf_buffer__free(pb); 13268 return ERR_PTR(err); 13269 } 13270 13271 struct perf_sample_raw { 13272 struct perf_event_header header; 13273 uint32_t size; 13274 char data[]; 13275 }; 13276 13277 struct perf_sample_lost { 13278 struct perf_event_header header; 13279 uint64_t id; 13280 uint64_t lost; 13281 uint64_t sample_id; 13282 }; 13283 13284 static enum bpf_perf_event_ret 13285 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 13286 { 13287 struct perf_cpu_buf *cpu_buf = ctx; 13288 struct perf_buffer *pb = cpu_buf->pb; 13289 void *data = e; 13290 13291 /* user wants full control over parsing perf event */ 13292 if (pb->event_cb) 13293 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 13294 13295 switch (e->type) { 13296 case PERF_RECORD_SAMPLE: { 13297 struct perf_sample_raw *s = data; 13298 13299 if (pb->sample_cb) 13300 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 13301 break; 13302 } 13303 case PERF_RECORD_LOST: { 13304 struct perf_sample_lost *s = data; 13305 13306 if (pb->lost_cb) 13307 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 13308 break; 13309 } 13310 default: 13311 pr_warn("unknown perf sample type %d\n", e->type); 13312 return LIBBPF_PERF_EVENT_ERROR; 13313 } 13314 return LIBBPF_PERF_EVENT_CONT; 13315 } 13316 13317 static int perf_buffer__process_records(struct perf_buffer *pb, 13318 struct perf_cpu_buf *cpu_buf) 13319 { 13320 enum bpf_perf_event_ret ret; 13321 13322 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 13323 pb->page_size, &cpu_buf->buf, 13324 &cpu_buf->buf_size, 13325 perf_buffer__process_record, cpu_buf); 13326 if (ret != LIBBPF_PERF_EVENT_CONT) 13327 return ret; 13328 return 0; 13329 } 13330 13331 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 13332 { 13333 return pb->epoll_fd; 13334 } 13335 13336 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 13337 { 13338 int i, cnt, err; 13339 13340 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 13341 if (cnt < 0) 13342 return -errno; 13343 13344 for (i = 0; i < cnt; i++) { 13345 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 13346 13347 err = perf_buffer__process_records(pb, cpu_buf); 13348 if (err) { 13349 pr_warn("error while processing records: %d\n", err); 13350 return libbpf_err(err); 13351 } 13352 } 13353 return cnt; 13354 } 13355 13356 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 13357 * manager. 13358 */ 13359 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 13360 { 13361 return pb->cpu_cnt; 13362 } 13363 13364 /* 13365 * Return perf_event FD of a ring buffer in *buf_idx* slot of 13366 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 13367 * select()/poll()/epoll() Linux syscalls. 13368 */ 13369 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 13370 { 13371 struct perf_cpu_buf *cpu_buf; 13372 13373 if (buf_idx >= pb->cpu_cnt) 13374 return libbpf_err(-EINVAL); 13375 13376 cpu_buf = pb->cpu_bufs[buf_idx]; 13377 if (!cpu_buf) 13378 return libbpf_err(-ENOENT); 13379 13380 return cpu_buf->fd; 13381 } 13382 13383 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 13384 { 13385 struct perf_cpu_buf *cpu_buf; 13386 13387 if (buf_idx >= pb->cpu_cnt) 13388 return libbpf_err(-EINVAL); 13389 13390 cpu_buf = pb->cpu_bufs[buf_idx]; 13391 if (!cpu_buf) 13392 return libbpf_err(-ENOENT); 13393 13394 *buf = cpu_buf->base; 13395 *buf_size = pb->mmap_size; 13396 return 0; 13397 } 13398 13399 /* 13400 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 13401 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 13402 * consume, do nothing and return success. 13403 * Returns: 13404 * - 0 on success; 13405 * - <0 on failure. 13406 */ 13407 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 13408 { 13409 struct perf_cpu_buf *cpu_buf; 13410 13411 if (buf_idx >= pb->cpu_cnt) 13412 return libbpf_err(-EINVAL); 13413 13414 cpu_buf = pb->cpu_bufs[buf_idx]; 13415 if (!cpu_buf) 13416 return libbpf_err(-ENOENT); 13417 13418 return perf_buffer__process_records(pb, cpu_buf); 13419 } 13420 13421 int perf_buffer__consume(struct perf_buffer *pb) 13422 { 13423 int i, err; 13424 13425 for (i = 0; i < pb->cpu_cnt; i++) { 13426 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 13427 13428 if (!cpu_buf) 13429 continue; 13430 13431 err = perf_buffer__process_records(pb, cpu_buf); 13432 if (err) { 13433 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 13434 return libbpf_err(err); 13435 } 13436 } 13437 return 0; 13438 } 13439 13440 int bpf_program__set_attach_target(struct bpf_program *prog, 13441 int attach_prog_fd, 13442 const char *attach_func_name) 13443 { 13444 int btf_obj_fd = 0, btf_id = 0, err; 13445 13446 if (!prog || attach_prog_fd < 0) 13447 return libbpf_err(-EINVAL); 13448 13449 if (prog->obj->loaded) 13450 return libbpf_err(-EINVAL); 13451 13452 if (attach_prog_fd && !attach_func_name) { 13453 /* remember attach_prog_fd and let bpf_program__load() find 13454 * BTF ID during the program load 13455 */ 13456 prog->attach_prog_fd = attach_prog_fd; 13457 return 0; 13458 } 13459 13460 if (attach_prog_fd) { 13461 btf_id = libbpf_find_prog_btf_id(attach_func_name, 13462 attach_prog_fd); 13463 if (btf_id < 0) 13464 return libbpf_err(btf_id); 13465 } else { 13466 if (!attach_func_name) 13467 return libbpf_err(-EINVAL); 13468 13469 /* load btf_vmlinux, if not yet */ 13470 err = bpf_object__load_vmlinux_btf(prog->obj, true); 13471 if (err) 13472 return libbpf_err(err); 13473 err = find_kernel_btf_id(prog->obj, attach_func_name, 13474 prog->expected_attach_type, 13475 &btf_obj_fd, &btf_id); 13476 if (err) 13477 return libbpf_err(err); 13478 } 13479 13480 prog->attach_btf_id = btf_id; 13481 prog->attach_btf_obj_fd = btf_obj_fd; 13482 prog->attach_prog_fd = attach_prog_fd; 13483 return 0; 13484 } 13485 13486 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 13487 { 13488 int err = 0, n, len, start, end = -1; 13489 bool *tmp; 13490 13491 *mask = NULL; 13492 *mask_sz = 0; 13493 13494 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 13495 while (*s) { 13496 if (*s == ',' || *s == '\n') { 13497 s++; 13498 continue; 13499 } 13500 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 13501 if (n <= 0 || n > 2) { 13502 pr_warn("Failed to get CPU range %s: %d\n", s, n); 13503 err = -EINVAL; 13504 goto cleanup; 13505 } else if (n == 1) { 13506 end = start; 13507 } 13508 if (start < 0 || start > end) { 13509 pr_warn("Invalid CPU range [%d,%d] in %s\n", 13510 start, end, s); 13511 err = -EINVAL; 13512 goto cleanup; 13513 } 13514 tmp = realloc(*mask, end + 1); 13515 if (!tmp) { 13516 err = -ENOMEM; 13517 goto cleanup; 13518 } 13519 *mask = tmp; 13520 memset(tmp + *mask_sz, 0, start - *mask_sz); 13521 memset(tmp + start, 1, end - start + 1); 13522 *mask_sz = end + 1; 13523 s += len; 13524 } 13525 if (!*mask_sz) { 13526 pr_warn("Empty CPU range\n"); 13527 return -EINVAL; 13528 } 13529 return 0; 13530 cleanup: 13531 free(*mask); 13532 *mask = NULL; 13533 return err; 13534 } 13535 13536 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 13537 { 13538 int fd, err = 0, len; 13539 char buf[128]; 13540 13541 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 13542 if (fd < 0) { 13543 err = -errno; 13544 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 13545 return err; 13546 } 13547 len = read(fd, buf, sizeof(buf)); 13548 close(fd); 13549 if (len <= 0) { 13550 err = len ? -errno : -EINVAL; 13551 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 13552 return err; 13553 } 13554 if (len >= sizeof(buf)) { 13555 pr_warn("CPU mask is too big in file %s\n", fcpu); 13556 return -E2BIG; 13557 } 13558 buf[len] = '\0'; 13559 13560 return parse_cpu_mask_str(buf, mask, mask_sz); 13561 } 13562 13563 int libbpf_num_possible_cpus(void) 13564 { 13565 static const char *fcpu = "/sys/devices/system/cpu/possible"; 13566 static int cpus; 13567 int err, n, i, tmp_cpus; 13568 bool *mask; 13569 13570 tmp_cpus = READ_ONCE(cpus); 13571 if (tmp_cpus > 0) 13572 return tmp_cpus; 13573 13574 err = parse_cpu_mask_file(fcpu, &mask, &n); 13575 if (err) 13576 return libbpf_err(err); 13577 13578 tmp_cpus = 0; 13579 for (i = 0; i < n; i++) { 13580 if (mask[i]) 13581 tmp_cpus++; 13582 } 13583 free(mask); 13584 13585 WRITE_ONCE(cpus, tmp_cpus); 13586 return tmp_cpus; 13587 } 13588 13589 static int populate_skeleton_maps(const struct bpf_object *obj, 13590 struct bpf_map_skeleton *maps, 13591 size_t map_cnt) 13592 { 13593 int i; 13594 13595 for (i = 0; i < map_cnt; i++) { 13596 struct bpf_map **map = maps[i].map; 13597 const char *name = maps[i].name; 13598 void **mmaped = maps[i].mmaped; 13599 13600 *map = bpf_object__find_map_by_name(obj, name); 13601 if (!*map) { 13602 pr_warn("failed to find skeleton map '%s'\n", name); 13603 return -ESRCH; 13604 } 13605 13606 /* externs shouldn't be pre-setup from user code */ 13607 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 13608 *mmaped = (*map)->mmaped; 13609 } 13610 return 0; 13611 } 13612 13613 static int populate_skeleton_progs(const struct bpf_object *obj, 13614 struct bpf_prog_skeleton *progs, 13615 size_t prog_cnt) 13616 { 13617 int i; 13618 13619 for (i = 0; i < prog_cnt; i++) { 13620 struct bpf_program **prog = progs[i].prog; 13621 const char *name = progs[i].name; 13622 13623 *prog = bpf_object__find_program_by_name(obj, name); 13624 if (!*prog) { 13625 pr_warn("failed to find skeleton program '%s'\n", name); 13626 return -ESRCH; 13627 } 13628 } 13629 return 0; 13630 } 13631 13632 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 13633 const struct bpf_object_open_opts *opts) 13634 { 13635 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 13636 .object_name = s->name, 13637 ); 13638 struct bpf_object *obj; 13639 int err; 13640 13641 /* Attempt to preserve opts->object_name, unless overriden by user 13642 * explicitly. Overwriting object name for skeletons is discouraged, 13643 * as it breaks global data maps, because they contain object name 13644 * prefix as their own map name prefix. When skeleton is generated, 13645 * bpftool is making an assumption that this name will stay the same. 13646 */ 13647 if (opts) { 13648 memcpy(&skel_opts, opts, sizeof(*opts)); 13649 if (!opts->object_name) 13650 skel_opts.object_name = s->name; 13651 } 13652 13653 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 13654 err = libbpf_get_error(obj); 13655 if (err) { 13656 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 13657 s->name, err); 13658 return libbpf_err(err); 13659 } 13660 13661 *s->obj = obj; 13662 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 13663 if (err) { 13664 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 13665 return libbpf_err(err); 13666 } 13667 13668 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 13669 if (err) { 13670 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 13671 return libbpf_err(err); 13672 } 13673 13674 return 0; 13675 } 13676 13677 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 13678 { 13679 int err, len, var_idx, i; 13680 const char *var_name; 13681 const struct bpf_map *map; 13682 struct btf *btf; 13683 __u32 map_type_id; 13684 const struct btf_type *map_type, *var_type; 13685 const struct bpf_var_skeleton *var_skel; 13686 struct btf_var_secinfo *var; 13687 13688 if (!s->obj) 13689 return libbpf_err(-EINVAL); 13690 13691 btf = bpf_object__btf(s->obj); 13692 if (!btf) { 13693 pr_warn("subskeletons require BTF at runtime (object %s)\n", 13694 bpf_object__name(s->obj)); 13695 return libbpf_err(-errno); 13696 } 13697 13698 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 13699 if (err) { 13700 pr_warn("failed to populate subskeleton maps: %d\n", err); 13701 return libbpf_err(err); 13702 } 13703 13704 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 13705 if (err) { 13706 pr_warn("failed to populate subskeleton maps: %d\n", err); 13707 return libbpf_err(err); 13708 } 13709 13710 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 13711 var_skel = &s->vars[var_idx]; 13712 map = *var_skel->map; 13713 map_type_id = bpf_map__btf_value_type_id(map); 13714 map_type = btf__type_by_id(btf, map_type_id); 13715 13716 if (!btf_is_datasec(map_type)) { 13717 pr_warn("type for map '%1$s' is not a datasec: %2$s", 13718 bpf_map__name(map), 13719 __btf_kind_str(btf_kind(map_type))); 13720 return libbpf_err(-EINVAL); 13721 } 13722 13723 len = btf_vlen(map_type); 13724 var = btf_var_secinfos(map_type); 13725 for (i = 0; i < len; i++, var++) { 13726 var_type = btf__type_by_id(btf, var->type); 13727 var_name = btf__name_by_offset(btf, var_type->name_off); 13728 if (strcmp(var_name, var_skel->name) == 0) { 13729 *var_skel->addr = map->mmaped + var->offset; 13730 break; 13731 } 13732 } 13733 } 13734 return 0; 13735 } 13736 13737 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 13738 { 13739 if (!s) 13740 return; 13741 free(s->maps); 13742 free(s->progs); 13743 free(s->vars); 13744 free(s); 13745 } 13746 13747 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 13748 { 13749 int i, err; 13750 13751 err = bpf_object__load(*s->obj); 13752 if (err) { 13753 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 13754 return libbpf_err(err); 13755 } 13756 13757 for (i = 0; i < s->map_cnt; i++) { 13758 struct bpf_map *map = *s->maps[i].map; 13759 size_t mmap_sz = bpf_map_mmap_sz(map); 13760 int prot, map_fd = map->fd; 13761 void **mmaped = s->maps[i].mmaped; 13762 13763 if (!mmaped) 13764 continue; 13765 13766 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 13767 *mmaped = NULL; 13768 continue; 13769 } 13770 13771 if (map->def.type == BPF_MAP_TYPE_ARENA) { 13772 *mmaped = map->mmaped; 13773 continue; 13774 } 13775 13776 if (map->def.map_flags & BPF_F_RDONLY_PROG) 13777 prot = PROT_READ; 13778 else 13779 prot = PROT_READ | PROT_WRITE; 13780 13781 /* Remap anonymous mmap()-ed "map initialization image" as 13782 * a BPF map-backed mmap()-ed memory, but preserving the same 13783 * memory address. This will cause kernel to change process' 13784 * page table to point to a different piece of kernel memory, 13785 * but from userspace point of view memory address (and its 13786 * contents, being identical at this point) will stay the 13787 * same. This mapping will be released by bpf_object__close() 13788 * as per normal clean up procedure, so we don't need to worry 13789 * about it from skeleton's clean up perspective. 13790 */ 13791 *mmaped = mmap(map->mmaped, mmap_sz, prot, MAP_SHARED | MAP_FIXED, map_fd, 0); 13792 if (*mmaped == MAP_FAILED) { 13793 err = -errno; 13794 *mmaped = NULL; 13795 pr_warn("failed to re-mmap() map '%s': %d\n", 13796 bpf_map__name(map), err); 13797 return libbpf_err(err); 13798 } 13799 } 13800 13801 return 0; 13802 } 13803 13804 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 13805 { 13806 int i, err; 13807 13808 for (i = 0; i < s->prog_cnt; i++) { 13809 struct bpf_program *prog = *s->progs[i].prog; 13810 struct bpf_link **link = s->progs[i].link; 13811 13812 if (!prog->autoload || !prog->autoattach) 13813 continue; 13814 13815 /* auto-attaching not supported for this program */ 13816 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 13817 continue; 13818 13819 /* if user already set the link manually, don't attempt auto-attach */ 13820 if (*link) 13821 continue; 13822 13823 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 13824 if (err) { 13825 pr_warn("prog '%s': failed to auto-attach: %d\n", 13826 bpf_program__name(prog), err); 13827 return libbpf_err(err); 13828 } 13829 13830 /* It's possible that for some SEC() definitions auto-attach 13831 * is supported in some cases (e.g., if definition completely 13832 * specifies target information), but is not in other cases. 13833 * SEC("uprobe") is one such case. If user specified target 13834 * binary and function name, such BPF program can be 13835 * auto-attached. But if not, it shouldn't trigger skeleton's 13836 * attach to fail. It should just be skipped. 13837 * attach_fn signals such case with returning 0 (no error) and 13838 * setting link to NULL. 13839 */ 13840 } 13841 13842 return 0; 13843 } 13844 13845 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 13846 { 13847 int i; 13848 13849 for (i = 0; i < s->prog_cnt; i++) { 13850 struct bpf_link **link = s->progs[i].link; 13851 13852 bpf_link__destroy(*link); 13853 *link = NULL; 13854 } 13855 } 13856 13857 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 13858 { 13859 if (!s) 13860 return; 13861 13862 if (s->progs) 13863 bpf_object__detach_skeleton(s); 13864 if (s->obj) 13865 bpf_object__close(*s->obj); 13866 free(s->maps); 13867 free(s->progs); 13868 free(s); 13869 } 13870