1 // SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) 2 3 /* 4 * Common eBPF ELF object loading operations. 5 * 6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org> 7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com> 8 * Copyright (C) 2015 Huawei Inc. 9 * Copyright (C) 2017 Nicira, Inc. 10 * Copyright (C) 2019 Isovalent, Inc. 11 */ 12 13 #ifndef _GNU_SOURCE 14 #define _GNU_SOURCE 15 #endif 16 #include <stdlib.h> 17 #include <stdio.h> 18 #include <stdarg.h> 19 #include <libgen.h> 20 #include <inttypes.h> 21 #include <limits.h> 22 #include <string.h> 23 #include <unistd.h> 24 #include <endian.h> 25 #include <fcntl.h> 26 #include <errno.h> 27 #include <ctype.h> 28 #include <asm/unistd.h> 29 #include <linux/err.h> 30 #include <linux/kernel.h> 31 #include <linux/bpf.h> 32 #include <linux/btf.h> 33 #include <linux/filter.h> 34 #include <linux/limits.h> 35 #include <linux/perf_event.h> 36 #include <linux/ring_buffer.h> 37 #include <linux/version.h> 38 #include <sys/epoll.h> 39 #include <sys/ioctl.h> 40 #include <sys/mman.h> 41 #include <sys/stat.h> 42 #include <sys/types.h> 43 #include <sys/vfs.h> 44 #include <sys/utsname.h> 45 #include <sys/resource.h> 46 #include <libelf.h> 47 #include <gelf.h> 48 #include <zlib.h> 49 50 #include "libbpf.h" 51 #include "bpf.h" 52 #include "btf.h" 53 #include "str_error.h" 54 #include "libbpf_internal.h" 55 #include "hashmap.h" 56 #include "bpf_gen_internal.h" 57 58 #ifndef BPF_FS_MAGIC 59 #define BPF_FS_MAGIC 0xcafe4a11 60 #endif 61 62 #define BPF_INSN_SZ (sizeof(struct bpf_insn)) 63 64 /* vsprintf() in __base_pr() uses nonliteral format string. It may break 65 * compilation if user enables corresponding warning. Disable it explicitly. 66 */ 67 #pragma GCC diagnostic ignored "-Wformat-nonliteral" 68 69 #define __printf(a, b) __attribute__((format(printf, a, b))) 70 71 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj); 72 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog); 73 74 static const char * const attach_type_name[] = { 75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress", 76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress", 77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create", 78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release", 79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops", 80 [BPF_CGROUP_DEVICE] = "cgroup_device", 81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind", 82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind", 83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect", 84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect", 85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind", 86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind", 87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername", 88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername", 89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname", 90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname", 91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg", 92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg", 93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl", 94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg", 95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg", 96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt", 97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt", 98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser", 99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict", 100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict", 101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict", 102 [BPF_LIRC_MODE2] = "lirc_mode2", 103 [BPF_FLOW_DISSECTOR] = "flow_dissector", 104 [BPF_TRACE_RAW_TP] = "trace_raw_tp", 105 [BPF_TRACE_FENTRY] = "trace_fentry", 106 [BPF_TRACE_FEXIT] = "trace_fexit", 107 [BPF_MODIFY_RETURN] = "modify_return", 108 [BPF_LSM_MAC] = "lsm_mac", 109 [BPF_LSM_CGROUP] = "lsm_cgroup", 110 [BPF_SK_LOOKUP] = "sk_lookup", 111 [BPF_TRACE_ITER] = "trace_iter", 112 [BPF_XDP_DEVMAP] = "xdp_devmap", 113 [BPF_XDP_CPUMAP] = "xdp_cpumap", 114 [BPF_XDP] = "xdp", 115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select", 116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate", 117 [BPF_PERF_EVENT] = "perf_event", 118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi", 119 }; 120 121 static const char * const link_type_name[] = { 122 [BPF_LINK_TYPE_UNSPEC] = "unspec", 123 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 124 [BPF_LINK_TYPE_TRACING] = "tracing", 125 [BPF_LINK_TYPE_CGROUP] = "cgroup", 126 [BPF_LINK_TYPE_ITER] = "iter", 127 [BPF_LINK_TYPE_NETNS] = "netns", 128 [BPF_LINK_TYPE_XDP] = "xdp", 129 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event", 130 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi", 131 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops", 132 }; 133 134 static const char * const map_type_name[] = { 135 [BPF_MAP_TYPE_UNSPEC] = "unspec", 136 [BPF_MAP_TYPE_HASH] = "hash", 137 [BPF_MAP_TYPE_ARRAY] = "array", 138 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array", 139 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array", 140 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash", 141 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array", 142 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace", 143 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array", 144 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash", 145 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash", 146 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie", 147 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps", 148 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps", 149 [BPF_MAP_TYPE_DEVMAP] = "devmap", 150 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash", 151 [BPF_MAP_TYPE_SOCKMAP] = "sockmap", 152 [BPF_MAP_TYPE_CPUMAP] = "cpumap", 153 [BPF_MAP_TYPE_XSKMAP] = "xskmap", 154 [BPF_MAP_TYPE_SOCKHASH] = "sockhash", 155 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage", 156 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray", 157 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage", 158 [BPF_MAP_TYPE_QUEUE] = "queue", 159 [BPF_MAP_TYPE_STACK] = "stack", 160 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage", 161 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops", 162 [BPF_MAP_TYPE_RINGBUF] = "ringbuf", 163 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage", 164 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage", 165 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter", 166 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf", 167 }; 168 169 static const char * const prog_type_name[] = { 170 [BPF_PROG_TYPE_UNSPEC] = "unspec", 171 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter", 172 [BPF_PROG_TYPE_KPROBE] = "kprobe", 173 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls", 174 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act", 175 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint", 176 [BPF_PROG_TYPE_XDP] = "xdp", 177 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event", 178 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb", 179 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock", 180 [BPF_PROG_TYPE_LWT_IN] = "lwt_in", 181 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out", 182 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit", 183 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops", 184 [BPF_PROG_TYPE_SK_SKB] = "sk_skb", 185 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device", 186 [BPF_PROG_TYPE_SK_MSG] = "sk_msg", 187 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint", 188 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr", 189 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local", 190 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2", 191 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport", 192 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector", 193 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl", 194 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable", 195 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt", 196 [BPF_PROG_TYPE_TRACING] = "tracing", 197 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops", 198 [BPF_PROG_TYPE_EXT] = "ext", 199 [BPF_PROG_TYPE_LSM] = "lsm", 200 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup", 201 [BPF_PROG_TYPE_SYSCALL] = "syscall", 202 }; 203 204 static int __base_pr(enum libbpf_print_level level, const char *format, 205 va_list args) 206 { 207 if (level == LIBBPF_DEBUG) 208 return 0; 209 210 return vfprintf(stderr, format, args); 211 } 212 213 static libbpf_print_fn_t __libbpf_pr = __base_pr; 214 215 libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn) 216 { 217 libbpf_print_fn_t old_print_fn = __libbpf_pr; 218 219 __libbpf_pr = fn; 220 return old_print_fn; 221 } 222 223 __printf(2, 3) 224 void libbpf_print(enum libbpf_print_level level, const char *format, ...) 225 { 226 va_list args; 227 int old_errno; 228 229 if (!__libbpf_pr) 230 return; 231 232 old_errno = errno; 233 234 va_start(args, format); 235 __libbpf_pr(level, format, args); 236 va_end(args); 237 238 errno = old_errno; 239 } 240 241 static void pr_perm_msg(int err) 242 { 243 struct rlimit limit; 244 char buf[100]; 245 246 if (err != -EPERM || geteuid() != 0) 247 return; 248 249 err = getrlimit(RLIMIT_MEMLOCK, &limit); 250 if (err) 251 return; 252 253 if (limit.rlim_cur == RLIM_INFINITY) 254 return; 255 256 if (limit.rlim_cur < 1024) 257 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur); 258 else if (limit.rlim_cur < 1024*1024) 259 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024); 260 else 261 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024)); 262 263 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n", 264 buf); 265 } 266 267 #define STRERR_BUFSIZE 128 268 269 /* Copied from tools/perf/util/util.h */ 270 #ifndef zfree 271 # define zfree(ptr) ({ free(*ptr); *ptr = NULL; }) 272 #endif 273 274 #ifndef zclose 275 # define zclose(fd) ({ \ 276 int ___err = 0; \ 277 if ((fd) >= 0) \ 278 ___err = close((fd)); \ 279 fd = -1; \ 280 ___err; }) 281 #endif 282 283 static inline __u64 ptr_to_u64(const void *ptr) 284 { 285 return (__u64) (unsigned long) ptr; 286 } 287 288 int libbpf_set_strict_mode(enum libbpf_strict_mode mode) 289 { 290 /* as of v1.0 libbpf_set_strict_mode() is a no-op */ 291 return 0; 292 } 293 294 __u32 libbpf_major_version(void) 295 { 296 return LIBBPF_MAJOR_VERSION; 297 } 298 299 __u32 libbpf_minor_version(void) 300 { 301 return LIBBPF_MINOR_VERSION; 302 } 303 304 const char *libbpf_version_string(void) 305 { 306 #define __S(X) #X 307 #define _S(X) __S(X) 308 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION); 309 #undef _S 310 #undef __S 311 } 312 313 enum reloc_type { 314 RELO_LD64, 315 RELO_CALL, 316 RELO_DATA, 317 RELO_EXTERN_VAR, 318 RELO_EXTERN_FUNC, 319 RELO_SUBPROG_ADDR, 320 RELO_CORE, 321 }; 322 323 struct reloc_desc { 324 enum reloc_type type; 325 int insn_idx; 326 union { 327 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */ 328 struct { 329 int map_idx; 330 int sym_off; 331 }; 332 }; 333 }; 334 335 /* stored as sec_def->cookie for all libbpf-supported SEC()s */ 336 enum sec_def_flags { 337 SEC_NONE = 0, 338 /* expected_attach_type is optional, if kernel doesn't support that */ 339 SEC_EXP_ATTACH_OPT = 1, 340 /* legacy, only used by libbpf_get_type_names() and 341 * libbpf_attach_type_by_name(), not used by libbpf itself at all. 342 * This used to be associated with cgroup (and few other) BPF programs 343 * that were attachable through BPF_PROG_ATTACH command. Pretty 344 * meaningless nowadays, though. 345 */ 346 SEC_ATTACHABLE = 2, 347 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT, 348 /* attachment target is specified through BTF ID in either kernel or 349 * other BPF program's BTF object */ 350 SEC_ATTACH_BTF = 4, 351 /* BPF program type allows sleeping/blocking in kernel */ 352 SEC_SLEEPABLE = 8, 353 /* BPF program support non-linear XDP buffer */ 354 SEC_XDP_FRAGS = 16, 355 }; 356 357 struct bpf_sec_def { 358 char *sec; 359 enum bpf_prog_type prog_type; 360 enum bpf_attach_type expected_attach_type; 361 long cookie; 362 int handler_id; 363 364 libbpf_prog_setup_fn_t prog_setup_fn; 365 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn; 366 libbpf_prog_attach_fn_t prog_attach_fn; 367 }; 368 369 /* 370 * bpf_prog should be a better name but it has been used in 371 * linux/filter.h. 372 */ 373 struct bpf_program { 374 char *name; 375 char *sec_name; 376 size_t sec_idx; 377 const struct bpf_sec_def *sec_def; 378 /* this program's instruction offset (in number of instructions) 379 * within its containing ELF section 380 */ 381 size_t sec_insn_off; 382 /* number of original instructions in ELF section belonging to this 383 * program, not taking into account subprogram instructions possible 384 * appended later during relocation 385 */ 386 size_t sec_insn_cnt; 387 /* Offset (in number of instructions) of the start of instruction 388 * belonging to this BPF program within its containing main BPF 389 * program. For the entry-point (main) BPF program, this is always 390 * zero. For a sub-program, this gets reset before each of main BPF 391 * programs are processed and relocated and is used to determined 392 * whether sub-program was already appended to the main program, and 393 * if yes, at which instruction offset. 394 */ 395 size_t sub_insn_off; 396 397 /* instructions that belong to BPF program; insns[0] is located at 398 * sec_insn_off instruction within its ELF section in ELF file, so 399 * when mapping ELF file instruction index to the local instruction, 400 * one needs to subtract sec_insn_off; and vice versa. 401 */ 402 struct bpf_insn *insns; 403 /* actual number of instruction in this BPF program's image; for 404 * entry-point BPF programs this includes the size of main program 405 * itself plus all the used sub-programs, appended at the end 406 */ 407 size_t insns_cnt; 408 409 struct reloc_desc *reloc_desc; 410 int nr_reloc; 411 412 /* BPF verifier log settings */ 413 char *log_buf; 414 size_t log_size; 415 __u32 log_level; 416 417 struct bpf_object *obj; 418 419 int fd; 420 bool autoload; 421 bool autoattach; 422 bool mark_btf_static; 423 enum bpf_prog_type type; 424 enum bpf_attach_type expected_attach_type; 425 426 int prog_ifindex; 427 __u32 attach_btf_obj_fd; 428 __u32 attach_btf_id; 429 __u32 attach_prog_fd; 430 431 void *func_info; 432 __u32 func_info_rec_size; 433 __u32 func_info_cnt; 434 435 void *line_info; 436 __u32 line_info_rec_size; 437 __u32 line_info_cnt; 438 __u32 prog_flags; 439 }; 440 441 struct bpf_struct_ops { 442 const char *tname; 443 const struct btf_type *type; 444 struct bpf_program **progs; 445 __u32 *kern_func_off; 446 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */ 447 void *data; 448 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in 449 * btf_vmlinux's format. 450 * struct bpf_struct_ops_tcp_congestion_ops { 451 * [... some other kernel fields ...] 452 * struct tcp_congestion_ops data; 453 * } 454 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops) 455 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata" 456 * from "data". 457 */ 458 void *kern_vdata; 459 __u32 type_id; 460 }; 461 462 #define DATA_SEC ".data" 463 #define BSS_SEC ".bss" 464 #define RODATA_SEC ".rodata" 465 #define KCONFIG_SEC ".kconfig" 466 #define KSYMS_SEC ".ksyms" 467 #define STRUCT_OPS_SEC ".struct_ops" 468 469 enum libbpf_map_type { 470 LIBBPF_MAP_UNSPEC, 471 LIBBPF_MAP_DATA, 472 LIBBPF_MAP_BSS, 473 LIBBPF_MAP_RODATA, 474 LIBBPF_MAP_KCONFIG, 475 }; 476 477 struct bpf_map_def { 478 unsigned int type; 479 unsigned int key_size; 480 unsigned int value_size; 481 unsigned int max_entries; 482 unsigned int map_flags; 483 }; 484 485 struct bpf_map { 486 struct bpf_object *obj; 487 char *name; 488 /* real_name is defined for special internal maps (.rodata*, 489 * .data*, .bss, .kconfig) and preserves their original ELF section 490 * name. This is important to be be able to find corresponding BTF 491 * DATASEC information. 492 */ 493 char *real_name; 494 int fd; 495 int sec_idx; 496 size_t sec_offset; 497 int map_ifindex; 498 int inner_map_fd; 499 struct bpf_map_def def; 500 __u32 numa_node; 501 __u32 btf_var_idx; 502 __u32 btf_key_type_id; 503 __u32 btf_value_type_id; 504 __u32 btf_vmlinux_value_type_id; 505 enum libbpf_map_type libbpf_type; 506 void *mmaped; 507 struct bpf_struct_ops *st_ops; 508 struct bpf_map *inner_map; 509 void **init_slots; 510 int init_slots_sz; 511 char *pin_path; 512 bool pinned; 513 bool reused; 514 bool autocreate; 515 __u64 map_extra; 516 }; 517 518 enum extern_type { 519 EXT_UNKNOWN, 520 EXT_KCFG, 521 EXT_KSYM, 522 }; 523 524 enum kcfg_type { 525 KCFG_UNKNOWN, 526 KCFG_CHAR, 527 KCFG_BOOL, 528 KCFG_INT, 529 KCFG_TRISTATE, 530 KCFG_CHAR_ARR, 531 }; 532 533 struct extern_desc { 534 enum extern_type type; 535 int sym_idx; 536 int btf_id; 537 int sec_btf_id; 538 const char *name; 539 bool is_set; 540 bool is_weak; 541 union { 542 struct { 543 enum kcfg_type type; 544 int sz; 545 int align; 546 int data_off; 547 bool is_signed; 548 } kcfg; 549 struct { 550 unsigned long long addr; 551 552 /* target btf_id of the corresponding kernel var. */ 553 int kernel_btf_obj_fd; 554 int kernel_btf_id; 555 556 /* local btf_id of the ksym extern's type. */ 557 __u32 type_id; 558 /* BTF fd index to be patched in for insn->off, this is 559 * 0 for vmlinux BTF, index in obj->fd_array for module 560 * BTF 561 */ 562 __s16 btf_fd_idx; 563 } ksym; 564 }; 565 }; 566 567 struct module_btf { 568 struct btf *btf; 569 char *name; 570 __u32 id; 571 int fd; 572 int fd_array_idx; 573 }; 574 575 enum sec_type { 576 SEC_UNUSED = 0, 577 SEC_RELO, 578 SEC_BSS, 579 SEC_DATA, 580 SEC_RODATA, 581 }; 582 583 struct elf_sec_desc { 584 enum sec_type sec_type; 585 Elf64_Shdr *shdr; 586 Elf_Data *data; 587 }; 588 589 struct elf_state { 590 int fd; 591 const void *obj_buf; 592 size_t obj_buf_sz; 593 Elf *elf; 594 Elf64_Ehdr *ehdr; 595 Elf_Data *symbols; 596 Elf_Data *st_ops_data; 597 size_t shstrndx; /* section index for section name strings */ 598 size_t strtabidx; 599 struct elf_sec_desc *secs; 600 size_t sec_cnt; 601 int btf_maps_shndx; 602 __u32 btf_maps_sec_btf_id; 603 int text_shndx; 604 int symbols_shndx; 605 int st_ops_shndx; 606 }; 607 608 struct usdt_manager; 609 610 struct bpf_object { 611 char name[BPF_OBJ_NAME_LEN]; 612 char license[64]; 613 __u32 kern_version; 614 615 struct bpf_program *programs; 616 size_t nr_programs; 617 struct bpf_map *maps; 618 size_t nr_maps; 619 size_t maps_cap; 620 621 char *kconfig; 622 struct extern_desc *externs; 623 int nr_extern; 624 int kconfig_map_idx; 625 626 bool loaded; 627 bool has_subcalls; 628 bool has_rodata; 629 630 struct bpf_gen *gen_loader; 631 632 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */ 633 struct elf_state efile; 634 635 struct btf *btf; 636 struct btf_ext *btf_ext; 637 638 /* Parse and load BTF vmlinux if any of the programs in the object need 639 * it at load time. 640 */ 641 struct btf *btf_vmlinux; 642 /* Path to the custom BTF to be used for BPF CO-RE relocations as an 643 * override for vmlinux BTF. 644 */ 645 char *btf_custom_path; 646 /* vmlinux BTF override for CO-RE relocations */ 647 struct btf *btf_vmlinux_override; 648 /* Lazily initialized kernel module BTFs */ 649 struct module_btf *btf_modules; 650 bool btf_modules_loaded; 651 size_t btf_module_cnt; 652 size_t btf_module_cap; 653 654 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */ 655 char *log_buf; 656 size_t log_size; 657 __u32 log_level; 658 659 int *fd_array; 660 size_t fd_array_cap; 661 size_t fd_array_cnt; 662 663 struct usdt_manager *usdt_man; 664 665 char path[]; 666 }; 667 668 static const char *elf_sym_str(const struct bpf_object *obj, size_t off); 669 static const char *elf_sec_str(const struct bpf_object *obj, size_t off); 670 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx); 671 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name); 672 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn); 673 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn); 674 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn); 675 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx); 676 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx); 677 678 void bpf_program__unload(struct bpf_program *prog) 679 { 680 if (!prog) 681 return; 682 683 zclose(prog->fd); 684 685 zfree(&prog->func_info); 686 zfree(&prog->line_info); 687 } 688 689 static void bpf_program__exit(struct bpf_program *prog) 690 { 691 if (!prog) 692 return; 693 694 bpf_program__unload(prog); 695 zfree(&prog->name); 696 zfree(&prog->sec_name); 697 zfree(&prog->insns); 698 zfree(&prog->reloc_desc); 699 700 prog->nr_reloc = 0; 701 prog->insns_cnt = 0; 702 prog->sec_idx = -1; 703 } 704 705 static bool insn_is_subprog_call(const struct bpf_insn *insn) 706 { 707 return BPF_CLASS(insn->code) == BPF_JMP && 708 BPF_OP(insn->code) == BPF_CALL && 709 BPF_SRC(insn->code) == BPF_K && 710 insn->src_reg == BPF_PSEUDO_CALL && 711 insn->dst_reg == 0 && 712 insn->off == 0; 713 } 714 715 static bool is_call_insn(const struct bpf_insn *insn) 716 { 717 return insn->code == (BPF_JMP | BPF_CALL); 718 } 719 720 static bool insn_is_pseudo_func(struct bpf_insn *insn) 721 { 722 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC; 723 } 724 725 static int 726 bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog, 727 const char *name, size_t sec_idx, const char *sec_name, 728 size_t sec_off, void *insn_data, size_t insn_data_sz) 729 { 730 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) { 731 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n", 732 sec_name, name, sec_off, insn_data_sz); 733 return -EINVAL; 734 } 735 736 memset(prog, 0, sizeof(*prog)); 737 prog->obj = obj; 738 739 prog->sec_idx = sec_idx; 740 prog->sec_insn_off = sec_off / BPF_INSN_SZ; 741 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ; 742 /* insns_cnt can later be increased by appending used subprograms */ 743 prog->insns_cnt = prog->sec_insn_cnt; 744 745 prog->type = BPF_PROG_TYPE_UNSPEC; 746 prog->fd = -1; 747 748 /* libbpf's convention for SEC("?abc...") is that it's just like 749 * SEC("abc...") but the corresponding bpf_program starts out with 750 * autoload set to false. 751 */ 752 if (sec_name[0] == '?') { 753 prog->autoload = false; 754 /* from now on forget there was ? in section name */ 755 sec_name++; 756 } else { 757 prog->autoload = true; 758 } 759 760 prog->autoattach = true; 761 762 /* inherit object's log_level */ 763 prog->log_level = obj->log_level; 764 765 prog->sec_name = strdup(sec_name); 766 if (!prog->sec_name) 767 goto errout; 768 769 prog->name = strdup(name); 770 if (!prog->name) 771 goto errout; 772 773 prog->insns = malloc(insn_data_sz); 774 if (!prog->insns) 775 goto errout; 776 memcpy(prog->insns, insn_data, insn_data_sz); 777 778 return 0; 779 errout: 780 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name); 781 bpf_program__exit(prog); 782 return -ENOMEM; 783 } 784 785 static int 786 bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data, 787 const char *sec_name, int sec_idx) 788 { 789 Elf_Data *symbols = obj->efile.symbols; 790 struct bpf_program *prog, *progs; 791 void *data = sec_data->d_buf; 792 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms; 793 int nr_progs, err, i; 794 const char *name; 795 Elf64_Sym *sym; 796 797 progs = obj->programs; 798 nr_progs = obj->nr_programs; 799 nr_syms = symbols->d_size / sizeof(Elf64_Sym); 800 sec_off = 0; 801 802 for (i = 0; i < nr_syms; i++) { 803 sym = elf_sym_by_idx(obj, i); 804 805 if (sym->st_shndx != sec_idx) 806 continue; 807 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC) 808 continue; 809 810 prog_sz = sym->st_size; 811 sec_off = sym->st_value; 812 813 name = elf_sym_str(obj, sym->st_name); 814 if (!name) { 815 pr_warn("sec '%s': failed to get symbol name for offset %zu\n", 816 sec_name, sec_off); 817 return -LIBBPF_ERRNO__FORMAT; 818 } 819 820 if (sec_off + prog_sz > sec_sz) { 821 pr_warn("sec '%s': program at offset %zu crosses section boundary\n", 822 sec_name, sec_off); 823 return -LIBBPF_ERRNO__FORMAT; 824 } 825 826 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) { 827 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name); 828 return -ENOTSUP; 829 } 830 831 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n", 832 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz); 833 834 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs)); 835 if (!progs) { 836 /* 837 * In this case the original obj->programs 838 * is still valid, so don't need special treat for 839 * bpf_close_object(). 840 */ 841 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n", 842 sec_name, name); 843 return -ENOMEM; 844 } 845 obj->programs = progs; 846 847 prog = &progs[nr_progs]; 848 849 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name, 850 sec_off, data + sec_off, prog_sz); 851 if (err) 852 return err; 853 854 /* if function is a global/weak symbol, but has restricted 855 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC 856 * as static to enable more permissive BPF verification mode 857 * with more outside context available to BPF verifier 858 */ 859 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL 860 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN 861 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)) 862 prog->mark_btf_static = true; 863 864 nr_progs++; 865 obj->nr_programs = nr_progs; 866 } 867 868 return 0; 869 } 870 871 __u32 get_kernel_version(void) 872 { 873 /* On Ubuntu LINUX_VERSION_CODE doesn't correspond to info.release, 874 * but Ubuntu provides /proc/version_signature file, as described at 875 * https://ubuntu.com/kernel, with an example contents below, which we 876 * can use to get a proper LINUX_VERSION_CODE. 877 * 878 * Ubuntu 5.4.0-12.15-generic 5.4.8 879 * 880 * In the above, 5.4.8 is what kernel is actually expecting, while 881 * uname() call will return 5.4.0 in info.release. 882 */ 883 const char *ubuntu_kver_file = "/proc/version_signature"; 884 __u32 major, minor, patch; 885 struct utsname info; 886 887 if (faccessat(AT_FDCWD, ubuntu_kver_file, R_OK, AT_EACCESS) == 0) { 888 FILE *f; 889 890 f = fopen(ubuntu_kver_file, "r"); 891 if (f) { 892 if (fscanf(f, "%*s %*s %d.%d.%d\n", &major, &minor, &patch) == 3) { 893 fclose(f); 894 return KERNEL_VERSION(major, minor, patch); 895 } 896 fclose(f); 897 } 898 /* something went wrong, fall back to uname() approach */ 899 } 900 901 uname(&info); 902 if (sscanf(info.release, "%u.%u.%u", &major, &minor, &patch) != 3) 903 return 0; 904 return KERNEL_VERSION(major, minor, patch); 905 } 906 907 static const struct btf_member * 908 find_member_by_offset(const struct btf_type *t, __u32 bit_offset) 909 { 910 struct btf_member *m; 911 int i; 912 913 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 914 if (btf_member_bit_offset(t, i) == bit_offset) 915 return m; 916 } 917 918 return NULL; 919 } 920 921 static const struct btf_member * 922 find_member_by_name(const struct btf *btf, const struct btf_type *t, 923 const char *name) 924 { 925 struct btf_member *m; 926 int i; 927 928 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) { 929 if (!strcmp(btf__name_by_offset(btf, m->name_off), name)) 930 return m; 931 } 932 933 return NULL; 934 } 935 936 #define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_" 937 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 938 const char *name, __u32 kind); 939 940 static int 941 find_struct_ops_kern_types(const struct btf *btf, const char *tname, 942 const struct btf_type **type, __u32 *type_id, 943 const struct btf_type **vtype, __u32 *vtype_id, 944 const struct btf_member **data_member) 945 { 946 const struct btf_type *kern_type, *kern_vtype; 947 const struct btf_member *kern_data_member; 948 __s32 kern_vtype_id, kern_type_id; 949 __u32 i; 950 951 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT); 952 if (kern_type_id < 0) { 953 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n", 954 tname); 955 return kern_type_id; 956 } 957 kern_type = btf__type_by_id(btf, kern_type_id); 958 959 /* Find the corresponding "map_value" type that will be used 960 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example, 961 * find "struct bpf_struct_ops_tcp_congestion_ops" from the 962 * btf_vmlinux. 963 */ 964 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX, 965 tname, BTF_KIND_STRUCT); 966 if (kern_vtype_id < 0) { 967 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n", 968 STRUCT_OPS_VALUE_PREFIX, tname); 969 return kern_vtype_id; 970 } 971 kern_vtype = btf__type_by_id(btf, kern_vtype_id); 972 973 /* Find "struct tcp_congestion_ops" from 974 * struct bpf_struct_ops_tcp_congestion_ops { 975 * [ ... ] 976 * struct tcp_congestion_ops data; 977 * } 978 */ 979 kern_data_member = btf_members(kern_vtype); 980 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) { 981 if (kern_data_member->type == kern_type_id) 982 break; 983 } 984 if (i == btf_vlen(kern_vtype)) { 985 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n", 986 tname, STRUCT_OPS_VALUE_PREFIX, tname); 987 return -EINVAL; 988 } 989 990 *type = kern_type; 991 *type_id = kern_type_id; 992 *vtype = kern_vtype; 993 *vtype_id = kern_vtype_id; 994 *data_member = kern_data_member; 995 996 return 0; 997 } 998 999 static bool bpf_map__is_struct_ops(const struct bpf_map *map) 1000 { 1001 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS; 1002 } 1003 1004 /* Init the map's fields that depend on kern_btf */ 1005 static int bpf_map__init_kern_struct_ops(struct bpf_map *map, 1006 const struct btf *btf, 1007 const struct btf *kern_btf) 1008 { 1009 const struct btf_member *member, *kern_member, *kern_data_member; 1010 const struct btf_type *type, *kern_type, *kern_vtype; 1011 __u32 i, kern_type_id, kern_vtype_id, kern_data_off; 1012 struct bpf_struct_ops *st_ops; 1013 void *data, *kern_data; 1014 const char *tname; 1015 int err; 1016 1017 st_ops = map->st_ops; 1018 type = st_ops->type; 1019 tname = st_ops->tname; 1020 err = find_struct_ops_kern_types(kern_btf, tname, 1021 &kern_type, &kern_type_id, 1022 &kern_vtype, &kern_vtype_id, 1023 &kern_data_member); 1024 if (err) 1025 return err; 1026 1027 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n", 1028 map->name, st_ops->type_id, kern_type_id, kern_vtype_id); 1029 1030 map->def.value_size = kern_vtype->size; 1031 map->btf_vmlinux_value_type_id = kern_vtype_id; 1032 1033 st_ops->kern_vdata = calloc(1, kern_vtype->size); 1034 if (!st_ops->kern_vdata) 1035 return -ENOMEM; 1036 1037 data = st_ops->data; 1038 kern_data_off = kern_data_member->offset / 8; 1039 kern_data = st_ops->kern_vdata + kern_data_off; 1040 1041 member = btf_members(type); 1042 for (i = 0; i < btf_vlen(type); i++, member++) { 1043 const struct btf_type *mtype, *kern_mtype; 1044 __u32 mtype_id, kern_mtype_id; 1045 void *mdata, *kern_mdata; 1046 __s64 msize, kern_msize; 1047 __u32 moff, kern_moff; 1048 __u32 kern_member_idx; 1049 const char *mname; 1050 1051 mname = btf__name_by_offset(btf, member->name_off); 1052 kern_member = find_member_by_name(kern_btf, kern_type, mname); 1053 if (!kern_member) { 1054 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n", 1055 map->name, mname); 1056 return -ENOTSUP; 1057 } 1058 1059 kern_member_idx = kern_member - btf_members(kern_type); 1060 if (btf_member_bitfield_size(type, i) || 1061 btf_member_bitfield_size(kern_type, kern_member_idx)) { 1062 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n", 1063 map->name, mname); 1064 return -ENOTSUP; 1065 } 1066 1067 moff = member->offset / 8; 1068 kern_moff = kern_member->offset / 8; 1069 1070 mdata = data + moff; 1071 kern_mdata = kern_data + kern_moff; 1072 1073 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id); 1074 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type, 1075 &kern_mtype_id); 1076 if (BTF_INFO_KIND(mtype->info) != 1077 BTF_INFO_KIND(kern_mtype->info)) { 1078 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n", 1079 map->name, mname, BTF_INFO_KIND(mtype->info), 1080 BTF_INFO_KIND(kern_mtype->info)); 1081 return -ENOTSUP; 1082 } 1083 1084 if (btf_is_ptr(mtype)) { 1085 struct bpf_program *prog; 1086 1087 prog = st_ops->progs[i]; 1088 if (!prog) 1089 continue; 1090 1091 kern_mtype = skip_mods_and_typedefs(kern_btf, 1092 kern_mtype->type, 1093 &kern_mtype_id); 1094 1095 /* mtype->type must be a func_proto which was 1096 * guaranteed in bpf_object__collect_st_ops_relos(), 1097 * so only check kern_mtype for func_proto here. 1098 */ 1099 if (!btf_is_func_proto(kern_mtype)) { 1100 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n", 1101 map->name, mname); 1102 return -ENOTSUP; 1103 } 1104 1105 prog->attach_btf_id = kern_type_id; 1106 prog->expected_attach_type = kern_member_idx; 1107 1108 st_ops->kern_func_off[i] = kern_data_off + kern_moff; 1109 1110 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n", 1111 map->name, mname, prog->name, moff, 1112 kern_moff); 1113 1114 continue; 1115 } 1116 1117 msize = btf__resolve_size(btf, mtype_id); 1118 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id); 1119 if (msize < 0 || kern_msize < 0 || msize != kern_msize) { 1120 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n", 1121 map->name, mname, (ssize_t)msize, 1122 (ssize_t)kern_msize); 1123 return -ENOTSUP; 1124 } 1125 1126 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n", 1127 map->name, mname, (unsigned int)msize, 1128 moff, kern_moff); 1129 memcpy(kern_mdata, mdata, msize); 1130 } 1131 1132 return 0; 1133 } 1134 1135 static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj) 1136 { 1137 struct bpf_map *map; 1138 size_t i; 1139 int err; 1140 1141 for (i = 0; i < obj->nr_maps; i++) { 1142 map = &obj->maps[i]; 1143 1144 if (!bpf_map__is_struct_ops(map)) 1145 continue; 1146 1147 err = bpf_map__init_kern_struct_ops(map, obj->btf, 1148 obj->btf_vmlinux); 1149 if (err) 1150 return err; 1151 } 1152 1153 return 0; 1154 } 1155 1156 static int bpf_object__init_struct_ops_maps(struct bpf_object *obj) 1157 { 1158 const struct btf_type *type, *datasec; 1159 const struct btf_var_secinfo *vsi; 1160 struct bpf_struct_ops *st_ops; 1161 const char *tname, *var_name; 1162 __s32 type_id, datasec_id; 1163 const struct btf *btf; 1164 struct bpf_map *map; 1165 __u32 i; 1166 1167 if (obj->efile.st_ops_shndx == -1) 1168 return 0; 1169 1170 btf = obj->btf; 1171 datasec_id = btf__find_by_name_kind(btf, STRUCT_OPS_SEC, 1172 BTF_KIND_DATASEC); 1173 if (datasec_id < 0) { 1174 pr_warn("struct_ops init: DATASEC %s not found\n", 1175 STRUCT_OPS_SEC); 1176 return -EINVAL; 1177 } 1178 1179 datasec = btf__type_by_id(btf, datasec_id); 1180 vsi = btf_var_secinfos(datasec); 1181 for (i = 0; i < btf_vlen(datasec); i++, vsi++) { 1182 type = btf__type_by_id(obj->btf, vsi->type); 1183 var_name = btf__name_by_offset(obj->btf, type->name_off); 1184 1185 type_id = btf__resolve_type(obj->btf, vsi->type); 1186 if (type_id < 0) { 1187 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n", 1188 vsi->type, STRUCT_OPS_SEC); 1189 return -EINVAL; 1190 } 1191 1192 type = btf__type_by_id(obj->btf, type_id); 1193 tname = btf__name_by_offset(obj->btf, type->name_off); 1194 if (!tname[0]) { 1195 pr_warn("struct_ops init: anonymous type is not supported\n"); 1196 return -ENOTSUP; 1197 } 1198 if (!btf_is_struct(type)) { 1199 pr_warn("struct_ops init: %s is not a struct\n", tname); 1200 return -EINVAL; 1201 } 1202 1203 map = bpf_object__add_map(obj); 1204 if (IS_ERR(map)) 1205 return PTR_ERR(map); 1206 1207 map->sec_idx = obj->efile.st_ops_shndx; 1208 map->sec_offset = vsi->offset; 1209 map->name = strdup(var_name); 1210 if (!map->name) 1211 return -ENOMEM; 1212 1213 map->def.type = BPF_MAP_TYPE_STRUCT_OPS; 1214 map->def.key_size = sizeof(int); 1215 map->def.value_size = type->size; 1216 map->def.max_entries = 1; 1217 1218 map->st_ops = calloc(1, sizeof(*map->st_ops)); 1219 if (!map->st_ops) 1220 return -ENOMEM; 1221 st_ops = map->st_ops; 1222 st_ops->data = malloc(type->size); 1223 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs)); 1224 st_ops->kern_func_off = malloc(btf_vlen(type) * 1225 sizeof(*st_ops->kern_func_off)); 1226 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off) 1227 return -ENOMEM; 1228 1229 if (vsi->offset + type->size > obj->efile.st_ops_data->d_size) { 1230 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n", 1231 var_name, STRUCT_OPS_SEC); 1232 return -EINVAL; 1233 } 1234 1235 memcpy(st_ops->data, 1236 obj->efile.st_ops_data->d_buf + vsi->offset, 1237 type->size); 1238 st_ops->tname = tname; 1239 st_ops->type = type; 1240 st_ops->type_id = type_id; 1241 1242 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n", 1243 tname, type_id, var_name, vsi->offset); 1244 } 1245 1246 return 0; 1247 } 1248 1249 static struct bpf_object *bpf_object__new(const char *path, 1250 const void *obj_buf, 1251 size_t obj_buf_sz, 1252 const char *obj_name) 1253 { 1254 struct bpf_object *obj; 1255 char *end; 1256 1257 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1); 1258 if (!obj) { 1259 pr_warn("alloc memory failed for %s\n", path); 1260 return ERR_PTR(-ENOMEM); 1261 } 1262 1263 strcpy(obj->path, path); 1264 if (obj_name) { 1265 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name)); 1266 } else { 1267 /* Using basename() GNU version which doesn't modify arg. */ 1268 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name)); 1269 end = strchr(obj->name, '.'); 1270 if (end) 1271 *end = 0; 1272 } 1273 1274 obj->efile.fd = -1; 1275 /* 1276 * Caller of this function should also call 1277 * bpf_object__elf_finish() after data collection to return 1278 * obj_buf to user. If not, we should duplicate the buffer to 1279 * avoid user freeing them before elf finish. 1280 */ 1281 obj->efile.obj_buf = obj_buf; 1282 obj->efile.obj_buf_sz = obj_buf_sz; 1283 obj->efile.btf_maps_shndx = -1; 1284 obj->efile.st_ops_shndx = -1; 1285 obj->kconfig_map_idx = -1; 1286 1287 obj->kern_version = get_kernel_version(); 1288 obj->loaded = false; 1289 1290 return obj; 1291 } 1292 1293 static void bpf_object__elf_finish(struct bpf_object *obj) 1294 { 1295 if (!obj->efile.elf) 1296 return; 1297 1298 elf_end(obj->efile.elf); 1299 obj->efile.elf = NULL; 1300 obj->efile.symbols = NULL; 1301 obj->efile.st_ops_data = NULL; 1302 1303 zfree(&obj->efile.secs); 1304 obj->efile.sec_cnt = 0; 1305 zclose(obj->efile.fd); 1306 obj->efile.obj_buf = NULL; 1307 obj->efile.obj_buf_sz = 0; 1308 } 1309 1310 static int bpf_object__elf_init(struct bpf_object *obj) 1311 { 1312 Elf64_Ehdr *ehdr; 1313 int err = 0; 1314 Elf *elf; 1315 1316 if (obj->efile.elf) { 1317 pr_warn("elf: init internal error\n"); 1318 return -LIBBPF_ERRNO__LIBELF; 1319 } 1320 1321 if (obj->efile.obj_buf_sz > 0) { 1322 /* obj_buf should have been validated by bpf_object__open_mem(). */ 1323 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz); 1324 } else { 1325 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC); 1326 if (obj->efile.fd < 0) { 1327 char errmsg[STRERR_BUFSIZE], *cp; 1328 1329 err = -errno; 1330 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 1331 pr_warn("elf: failed to open %s: %s\n", obj->path, cp); 1332 return err; 1333 } 1334 1335 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL); 1336 } 1337 1338 if (!elf) { 1339 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1)); 1340 err = -LIBBPF_ERRNO__LIBELF; 1341 goto errout; 1342 } 1343 1344 obj->efile.elf = elf; 1345 1346 if (elf_kind(elf) != ELF_K_ELF) { 1347 err = -LIBBPF_ERRNO__FORMAT; 1348 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path); 1349 goto errout; 1350 } 1351 1352 if (gelf_getclass(elf) != ELFCLASS64) { 1353 err = -LIBBPF_ERRNO__FORMAT; 1354 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path); 1355 goto errout; 1356 } 1357 1358 obj->efile.ehdr = ehdr = elf64_getehdr(elf); 1359 if (!obj->efile.ehdr) { 1360 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1)); 1361 err = -LIBBPF_ERRNO__FORMAT; 1362 goto errout; 1363 } 1364 1365 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) { 1366 pr_warn("elf: failed to get section names section index for %s: %s\n", 1367 obj->path, elf_errmsg(-1)); 1368 err = -LIBBPF_ERRNO__FORMAT; 1369 goto errout; 1370 } 1371 1372 /* Elf is corrupted/truncated, avoid calling elf_strptr. */ 1373 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) { 1374 pr_warn("elf: failed to get section names strings from %s: %s\n", 1375 obj->path, elf_errmsg(-1)); 1376 err = -LIBBPF_ERRNO__FORMAT; 1377 goto errout; 1378 } 1379 1380 /* Old LLVM set e_machine to EM_NONE */ 1381 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) { 1382 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path); 1383 err = -LIBBPF_ERRNO__FORMAT; 1384 goto errout; 1385 } 1386 1387 return 0; 1388 errout: 1389 bpf_object__elf_finish(obj); 1390 return err; 1391 } 1392 1393 static int bpf_object__check_endianness(struct bpf_object *obj) 1394 { 1395 #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 1396 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB) 1397 return 0; 1398 #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ 1399 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB) 1400 return 0; 1401 #else 1402 # error "Unrecognized __BYTE_ORDER__" 1403 #endif 1404 pr_warn("elf: endianness mismatch in %s.\n", obj->path); 1405 return -LIBBPF_ERRNO__ENDIAN; 1406 } 1407 1408 static int 1409 bpf_object__init_license(struct bpf_object *obj, void *data, size_t size) 1410 { 1411 if (!data) { 1412 pr_warn("invalid license section in %s\n", obj->path); 1413 return -LIBBPF_ERRNO__FORMAT; 1414 } 1415 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't 1416 * go over allowed ELF data section buffer 1417 */ 1418 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license))); 1419 pr_debug("license of %s is %s\n", obj->path, obj->license); 1420 return 0; 1421 } 1422 1423 static int 1424 bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size) 1425 { 1426 __u32 kver; 1427 1428 if (!data || size != sizeof(kver)) { 1429 pr_warn("invalid kver section in %s\n", obj->path); 1430 return -LIBBPF_ERRNO__FORMAT; 1431 } 1432 memcpy(&kver, data, sizeof(kver)); 1433 obj->kern_version = kver; 1434 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version); 1435 return 0; 1436 } 1437 1438 static bool bpf_map_type__is_map_in_map(enum bpf_map_type type) 1439 { 1440 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS || 1441 type == BPF_MAP_TYPE_HASH_OF_MAPS) 1442 return true; 1443 return false; 1444 } 1445 1446 static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size) 1447 { 1448 Elf_Data *data; 1449 Elf_Scn *scn; 1450 1451 if (!name) 1452 return -EINVAL; 1453 1454 scn = elf_sec_by_name(obj, name); 1455 data = elf_sec_data(obj, scn); 1456 if (data) { 1457 *size = data->d_size; 1458 return 0; /* found it */ 1459 } 1460 1461 return -ENOENT; 1462 } 1463 1464 static int find_elf_var_offset(const struct bpf_object *obj, const char *name, __u32 *off) 1465 { 1466 Elf_Data *symbols = obj->efile.symbols; 1467 const char *sname; 1468 size_t si; 1469 1470 if (!name || !off) 1471 return -EINVAL; 1472 1473 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) { 1474 Elf64_Sym *sym = elf_sym_by_idx(obj, si); 1475 1476 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT) 1477 continue; 1478 1479 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL && 1480 ELF64_ST_BIND(sym->st_info) != STB_WEAK) 1481 continue; 1482 1483 sname = elf_sym_str(obj, sym->st_name); 1484 if (!sname) { 1485 pr_warn("failed to get sym name string for var %s\n", name); 1486 return -EIO; 1487 } 1488 if (strcmp(name, sname) == 0) { 1489 *off = sym->st_value; 1490 return 0; 1491 } 1492 } 1493 1494 return -ENOENT; 1495 } 1496 1497 static struct bpf_map *bpf_object__add_map(struct bpf_object *obj) 1498 { 1499 struct bpf_map *map; 1500 int err; 1501 1502 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap, 1503 sizeof(*obj->maps), obj->nr_maps + 1); 1504 if (err) 1505 return ERR_PTR(err); 1506 1507 map = &obj->maps[obj->nr_maps++]; 1508 map->obj = obj; 1509 map->fd = -1; 1510 map->inner_map_fd = -1; 1511 map->autocreate = true; 1512 1513 return map; 1514 } 1515 1516 static size_t bpf_map_mmap_sz(const struct bpf_map *map) 1517 { 1518 long page_sz = sysconf(_SC_PAGE_SIZE); 1519 size_t map_sz; 1520 1521 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries; 1522 map_sz = roundup(map_sz, page_sz); 1523 return map_sz; 1524 } 1525 1526 static char *internal_map_name(struct bpf_object *obj, const char *real_name) 1527 { 1528 char map_name[BPF_OBJ_NAME_LEN], *p; 1529 int pfx_len, sfx_len = max((size_t)7, strlen(real_name)); 1530 1531 /* This is one of the more confusing parts of libbpf for various 1532 * reasons, some of which are historical. The original idea for naming 1533 * internal names was to include as much of BPF object name prefix as 1534 * possible, so that it can be distinguished from similar internal 1535 * maps of a different BPF object. 1536 * As an example, let's say we have bpf_object named 'my_object_name' 1537 * and internal map corresponding to '.rodata' ELF section. The final 1538 * map name advertised to user and to the kernel will be 1539 * 'my_objec.rodata', taking first 8 characters of object name and 1540 * entire 7 characters of '.rodata'. 1541 * Somewhat confusingly, if internal map ELF section name is shorter 1542 * than 7 characters, e.g., '.bss', we still reserve 7 characters 1543 * for the suffix, even though we only have 4 actual characters, and 1544 * resulting map will be called 'my_objec.bss', not even using all 15 1545 * characters allowed by the kernel. Oh well, at least the truncated 1546 * object name is somewhat consistent in this case. But if the map 1547 * name is '.kconfig', we'll still have entirety of '.kconfig' added 1548 * (8 chars) and thus will be left with only first 7 characters of the 1549 * object name ('my_obje'). Happy guessing, user, that the final map 1550 * name will be "my_obje.kconfig". 1551 * Now, with libbpf starting to support arbitrarily named .rodata.* 1552 * and .data.* data sections, it's possible that ELF section name is 1553 * longer than allowed 15 chars, so we now need to be careful to take 1554 * only up to 15 first characters of ELF name, taking no BPF object 1555 * name characters at all. So '.rodata.abracadabra' will result in 1556 * '.rodata.abracad' kernel and user-visible name. 1557 * We need to keep this convoluted logic intact for .data, .bss and 1558 * .rodata maps, but for new custom .data.custom and .rodata.custom 1559 * maps we use their ELF names as is, not prepending bpf_object name 1560 * in front. We still need to truncate them to 15 characters for the 1561 * kernel. Full name can be recovered for such maps by using DATASEC 1562 * BTF type associated with such map's value type, though. 1563 */ 1564 if (sfx_len >= BPF_OBJ_NAME_LEN) 1565 sfx_len = BPF_OBJ_NAME_LEN - 1; 1566 1567 /* if there are two or more dots in map name, it's a custom dot map */ 1568 if (strchr(real_name + 1, '.') != NULL) 1569 pfx_len = 0; 1570 else 1571 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name)); 1572 1573 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name, 1574 sfx_len, real_name); 1575 1576 /* sanitise map name to characters allowed by kernel */ 1577 for (p = map_name; *p && p < map_name + sizeof(map_name); p++) 1578 if (!isalnum(*p) && *p != '_' && *p != '.') 1579 *p = '_'; 1580 1581 return strdup(map_name); 1582 } 1583 1584 static int 1585 bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map); 1586 1587 static int 1588 bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type, 1589 const char *real_name, int sec_idx, void *data, size_t data_sz) 1590 { 1591 struct bpf_map_def *def; 1592 struct bpf_map *map; 1593 int err; 1594 1595 map = bpf_object__add_map(obj); 1596 if (IS_ERR(map)) 1597 return PTR_ERR(map); 1598 1599 map->libbpf_type = type; 1600 map->sec_idx = sec_idx; 1601 map->sec_offset = 0; 1602 map->real_name = strdup(real_name); 1603 map->name = internal_map_name(obj, real_name); 1604 if (!map->real_name || !map->name) { 1605 zfree(&map->real_name); 1606 zfree(&map->name); 1607 return -ENOMEM; 1608 } 1609 1610 def = &map->def; 1611 def->type = BPF_MAP_TYPE_ARRAY; 1612 def->key_size = sizeof(int); 1613 def->value_size = data_sz; 1614 def->max_entries = 1; 1615 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG 1616 ? BPF_F_RDONLY_PROG : 0; 1617 def->map_flags |= BPF_F_MMAPABLE; 1618 1619 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n", 1620 map->name, map->sec_idx, map->sec_offset, def->map_flags); 1621 1622 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE, 1623 MAP_SHARED | MAP_ANONYMOUS, -1, 0); 1624 if (map->mmaped == MAP_FAILED) { 1625 err = -errno; 1626 map->mmaped = NULL; 1627 pr_warn("failed to alloc map '%s' content buffer: %d\n", 1628 map->name, err); 1629 zfree(&map->real_name); 1630 zfree(&map->name); 1631 return err; 1632 } 1633 1634 /* failures are fine because of maps like .rodata.str1.1 */ 1635 (void) bpf_map_find_btf_info(obj, map); 1636 1637 if (data) 1638 memcpy(map->mmaped, data, data_sz); 1639 1640 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name); 1641 return 0; 1642 } 1643 1644 static int bpf_object__init_global_data_maps(struct bpf_object *obj) 1645 { 1646 struct elf_sec_desc *sec_desc; 1647 const char *sec_name; 1648 int err = 0, sec_idx; 1649 1650 /* 1651 * Populate obj->maps with libbpf internal maps. 1652 */ 1653 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) { 1654 sec_desc = &obj->efile.secs[sec_idx]; 1655 1656 /* Skip recognized sections with size 0. */ 1657 if (!sec_desc->data || sec_desc->data->d_size == 0) 1658 continue; 1659 1660 switch (sec_desc->sec_type) { 1661 case SEC_DATA: 1662 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1663 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA, 1664 sec_name, sec_idx, 1665 sec_desc->data->d_buf, 1666 sec_desc->data->d_size); 1667 break; 1668 case SEC_RODATA: 1669 obj->has_rodata = true; 1670 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1671 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA, 1672 sec_name, sec_idx, 1673 sec_desc->data->d_buf, 1674 sec_desc->data->d_size); 1675 break; 1676 case SEC_BSS: 1677 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx)); 1678 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS, 1679 sec_name, sec_idx, 1680 NULL, 1681 sec_desc->data->d_size); 1682 break; 1683 default: 1684 /* skip */ 1685 break; 1686 } 1687 if (err) 1688 return err; 1689 } 1690 return 0; 1691 } 1692 1693 1694 static struct extern_desc *find_extern_by_name(const struct bpf_object *obj, 1695 const void *name) 1696 { 1697 int i; 1698 1699 for (i = 0; i < obj->nr_extern; i++) { 1700 if (strcmp(obj->externs[i].name, name) == 0) 1701 return &obj->externs[i]; 1702 } 1703 return NULL; 1704 } 1705 1706 static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val, 1707 char value) 1708 { 1709 switch (ext->kcfg.type) { 1710 case KCFG_BOOL: 1711 if (value == 'm') { 1712 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n", 1713 ext->name, value); 1714 return -EINVAL; 1715 } 1716 *(bool *)ext_val = value == 'y' ? true : false; 1717 break; 1718 case KCFG_TRISTATE: 1719 if (value == 'y') 1720 *(enum libbpf_tristate *)ext_val = TRI_YES; 1721 else if (value == 'm') 1722 *(enum libbpf_tristate *)ext_val = TRI_MODULE; 1723 else /* value == 'n' */ 1724 *(enum libbpf_tristate *)ext_val = TRI_NO; 1725 break; 1726 case KCFG_CHAR: 1727 *(char *)ext_val = value; 1728 break; 1729 case KCFG_UNKNOWN: 1730 case KCFG_INT: 1731 case KCFG_CHAR_ARR: 1732 default: 1733 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n", 1734 ext->name, value); 1735 return -EINVAL; 1736 } 1737 ext->is_set = true; 1738 return 0; 1739 } 1740 1741 static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val, 1742 const char *value) 1743 { 1744 size_t len; 1745 1746 if (ext->kcfg.type != KCFG_CHAR_ARR) { 1747 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n", 1748 ext->name, value); 1749 return -EINVAL; 1750 } 1751 1752 len = strlen(value); 1753 if (value[len - 1] != '"') { 1754 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n", 1755 ext->name, value); 1756 return -EINVAL; 1757 } 1758 1759 /* strip quotes */ 1760 len -= 2; 1761 if (len >= ext->kcfg.sz) { 1762 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n", 1763 ext->name, value, len, ext->kcfg.sz - 1); 1764 len = ext->kcfg.sz - 1; 1765 } 1766 memcpy(ext_val, value + 1, len); 1767 ext_val[len] = '\0'; 1768 ext->is_set = true; 1769 return 0; 1770 } 1771 1772 static int parse_u64(const char *value, __u64 *res) 1773 { 1774 char *value_end; 1775 int err; 1776 1777 errno = 0; 1778 *res = strtoull(value, &value_end, 0); 1779 if (errno) { 1780 err = -errno; 1781 pr_warn("failed to parse '%s' as integer: %d\n", value, err); 1782 return err; 1783 } 1784 if (*value_end) { 1785 pr_warn("failed to parse '%s' as integer completely\n", value); 1786 return -EINVAL; 1787 } 1788 return 0; 1789 } 1790 1791 static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v) 1792 { 1793 int bit_sz = ext->kcfg.sz * 8; 1794 1795 if (ext->kcfg.sz == 8) 1796 return true; 1797 1798 /* Validate that value stored in u64 fits in integer of `ext->sz` 1799 * bytes size without any loss of information. If the target integer 1800 * is signed, we rely on the following limits of integer type of 1801 * Y bits and subsequent transformation: 1802 * 1803 * -2^(Y-1) <= X <= 2^(Y-1) - 1 1804 * 0 <= X + 2^(Y-1) <= 2^Y - 1 1805 * 0 <= X + 2^(Y-1) < 2^Y 1806 * 1807 * For unsigned target integer, check that all the (64 - Y) bits are 1808 * zero. 1809 */ 1810 if (ext->kcfg.is_signed) 1811 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz); 1812 else 1813 return (v >> bit_sz) == 0; 1814 } 1815 1816 static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val, 1817 __u64 value) 1818 { 1819 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR && 1820 ext->kcfg.type != KCFG_BOOL) { 1821 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n", 1822 ext->name, (unsigned long long)value); 1823 return -EINVAL; 1824 } 1825 if (ext->kcfg.type == KCFG_BOOL && value > 1) { 1826 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n", 1827 ext->name, (unsigned long long)value); 1828 return -EINVAL; 1829 1830 } 1831 if (!is_kcfg_value_in_range(ext, value)) { 1832 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n", 1833 ext->name, (unsigned long long)value, ext->kcfg.sz); 1834 return -ERANGE; 1835 } 1836 switch (ext->kcfg.sz) { 1837 case 1: *(__u8 *)ext_val = value; break; 1838 case 2: *(__u16 *)ext_val = value; break; 1839 case 4: *(__u32 *)ext_val = value; break; 1840 case 8: *(__u64 *)ext_val = value; break; 1841 default: 1842 return -EINVAL; 1843 } 1844 ext->is_set = true; 1845 return 0; 1846 } 1847 1848 static int bpf_object__process_kconfig_line(struct bpf_object *obj, 1849 char *buf, void *data) 1850 { 1851 struct extern_desc *ext; 1852 char *sep, *value; 1853 int len, err = 0; 1854 void *ext_val; 1855 __u64 num; 1856 1857 if (!str_has_pfx(buf, "CONFIG_")) 1858 return 0; 1859 1860 sep = strchr(buf, '='); 1861 if (!sep) { 1862 pr_warn("failed to parse '%s': no separator\n", buf); 1863 return -EINVAL; 1864 } 1865 1866 /* Trim ending '\n' */ 1867 len = strlen(buf); 1868 if (buf[len - 1] == '\n') 1869 buf[len - 1] = '\0'; 1870 /* Split on '=' and ensure that a value is present. */ 1871 *sep = '\0'; 1872 if (!sep[1]) { 1873 *sep = '='; 1874 pr_warn("failed to parse '%s': no value\n", buf); 1875 return -EINVAL; 1876 } 1877 1878 ext = find_extern_by_name(obj, buf); 1879 if (!ext || ext->is_set) 1880 return 0; 1881 1882 ext_val = data + ext->kcfg.data_off; 1883 value = sep + 1; 1884 1885 switch (*value) { 1886 case 'y': case 'n': case 'm': 1887 err = set_kcfg_value_tri(ext, ext_val, *value); 1888 break; 1889 case '"': 1890 err = set_kcfg_value_str(ext, ext_val, value); 1891 break; 1892 default: 1893 /* assume integer */ 1894 err = parse_u64(value, &num); 1895 if (err) { 1896 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value); 1897 return err; 1898 } 1899 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) { 1900 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value); 1901 return -EINVAL; 1902 } 1903 err = set_kcfg_value_num(ext, ext_val, num); 1904 break; 1905 } 1906 if (err) 1907 return err; 1908 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value); 1909 return 0; 1910 } 1911 1912 static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data) 1913 { 1914 char buf[PATH_MAX]; 1915 struct utsname uts; 1916 int len, err = 0; 1917 gzFile file; 1918 1919 uname(&uts); 1920 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release); 1921 if (len < 0) 1922 return -EINVAL; 1923 else if (len >= PATH_MAX) 1924 return -ENAMETOOLONG; 1925 1926 /* gzopen also accepts uncompressed files. */ 1927 file = gzopen(buf, "r"); 1928 if (!file) 1929 file = gzopen("/proc/config.gz", "r"); 1930 1931 if (!file) { 1932 pr_warn("failed to open system Kconfig\n"); 1933 return -ENOENT; 1934 } 1935 1936 while (gzgets(file, buf, sizeof(buf))) { 1937 err = bpf_object__process_kconfig_line(obj, buf, data); 1938 if (err) { 1939 pr_warn("error parsing system Kconfig line '%s': %d\n", 1940 buf, err); 1941 goto out; 1942 } 1943 } 1944 1945 out: 1946 gzclose(file); 1947 return err; 1948 } 1949 1950 static int bpf_object__read_kconfig_mem(struct bpf_object *obj, 1951 const char *config, void *data) 1952 { 1953 char buf[PATH_MAX]; 1954 int err = 0; 1955 FILE *file; 1956 1957 file = fmemopen((void *)config, strlen(config), "r"); 1958 if (!file) { 1959 err = -errno; 1960 pr_warn("failed to open in-memory Kconfig: %d\n", err); 1961 return err; 1962 } 1963 1964 while (fgets(buf, sizeof(buf), file)) { 1965 err = bpf_object__process_kconfig_line(obj, buf, data); 1966 if (err) { 1967 pr_warn("error parsing in-memory Kconfig line '%s': %d\n", 1968 buf, err); 1969 break; 1970 } 1971 } 1972 1973 fclose(file); 1974 return err; 1975 } 1976 1977 static int bpf_object__init_kconfig_map(struct bpf_object *obj) 1978 { 1979 struct extern_desc *last_ext = NULL, *ext; 1980 size_t map_sz; 1981 int i, err; 1982 1983 for (i = 0; i < obj->nr_extern; i++) { 1984 ext = &obj->externs[i]; 1985 if (ext->type == EXT_KCFG) 1986 last_ext = ext; 1987 } 1988 1989 if (!last_ext) 1990 return 0; 1991 1992 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz; 1993 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG, 1994 ".kconfig", obj->efile.symbols_shndx, 1995 NULL, map_sz); 1996 if (err) 1997 return err; 1998 1999 obj->kconfig_map_idx = obj->nr_maps - 1; 2000 2001 return 0; 2002 } 2003 2004 const struct btf_type * 2005 skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id) 2006 { 2007 const struct btf_type *t = btf__type_by_id(btf, id); 2008 2009 if (res_id) 2010 *res_id = id; 2011 2012 while (btf_is_mod(t) || btf_is_typedef(t)) { 2013 if (res_id) 2014 *res_id = t->type; 2015 t = btf__type_by_id(btf, t->type); 2016 } 2017 2018 return t; 2019 } 2020 2021 static const struct btf_type * 2022 resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id) 2023 { 2024 const struct btf_type *t; 2025 2026 t = skip_mods_and_typedefs(btf, id, NULL); 2027 if (!btf_is_ptr(t)) 2028 return NULL; 2029 2030 t = skip_mods_and_typedefs(btf, t->type, res_id); 2031 2032 return btf_is_func_proto(t) ? t : NULL; 2033 } 2034 2035 static const char *__btf_kind_str(__u16 kind) 2036 { 2037 switch (kind) { 2038 case BTF_KIND_UNKN: return "void"; 2039 case BTF_KIND_INT: return "int"; 2040 case BTF_KIND_PTR: return "ptr"; 2041 case BTF_KIND_ARRAY: return "array"; 2042 case BTF_KIND_STRUCT: return "struct"; 2043 case BTF_KIND_UNION: return "union"; 2044 case BTF_KIND_ENUM: return "enum"; 2045 case BTF_KIND_FWD: return "fwd"; 2046 case BTF_KIND_TYPEDEF: return "typedef"; 2047 case BTF_KIND_VOLATILE: return "volatile"; 2048 case BTF_KIND_CONST: return "const"; 2049 case BTF_KIND_RESTRICT: return "restrict"; 2050 case BTF_KIND_FUNC: return "func"; 2051 case BTF_KIND_FUNC_PROTO: return "func_proto"; 2052 case BTF_KIND_VAR: return "var"; 2053 case BTF_KIND_DATASEC: return "datasec"; 2054 case BTF_KIND_FLOAT: return "float"; 2055 case BTF_KIND_DECL_TAG: return "decl_tag"; 2056 case BTF_KIND_TYPE_TAG: return "type_tag"; 2057 case BTF_KIND_ENUM64: return "enum64"; 2058 default: return "unknown"; 2059 } 2060 } 2061 2062 const char *btf_kind_str(const struct btf_type *t) 2063 { 2064 return __btf_kind_str(btf_kind(t)); 2065 } 2066 2067 /* 2068 * Fetch integer attribute of BTF map definition. Such attributes are 2069 * represented using a pointer to an array, in which dimensionality of array 2070 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY]; 2071 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF 2072 * type definition, while using only sizeof(void *) space in ELF data section. 2073 */ 2074 static bool get_map_field_int(const char *map_name, const struct btf *btf, 2075 const struct btf_member *m, __u32 *res) 2076 { 2077 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL); 2078 const char *name = btf__name_by_offset(btf, m->name_off); 2079 const struct btf_array *arr_info; 2080 const struct btf_type *arr_t; 2081 2082 if (!btf_is_ptr(t)) { 2083 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n", 2084 map_name, name, btf_kind_str(t)); 2085 return false; 2086 } 2087 2088 arr_t = btf__type_by_id(btf, t->type); 2089 if (!arr_t) { 2090 pr_warn("map '%s': attr '%s': type [%u] not found.\n", 2091 map_name, name, t->type); 2092 return false; 2093 } 2094 if (!btf_is_array(arr_t)) { 2095 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n", 2096 map_name, name, btf_kind_str(arr_t)); 2097 return false; 2098 } 2099 arr_info = btf_array(arr_t); 2100 *res = arr_info->nelems; 2101 return true; 2102 } 2103 2104 static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name) 2105 { 2106 int len; 2107 2108 len = snprintf(buf, buf_sz, "%s/%s", path, name); 2109 if (len < 0) 2110 return -EINVAL; 2111 if (len >= buf_sz) 2112 return -ENAMETOOLONG; 2113 2114 return 0; 2115 } 2116 2117 static int build_map_pin_path(struct bpf_map *map, const char *path) 2118 { 2119 char buf[PATH_MAX]; 2120 int err; 2121 2122 if (!path) 2123 path = "/sys/fs/bpf"; 2124 2125 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 2126 if (err) 2127 return err; 2128 2129 return bpf_map__set_pin_path(map, buf); 2130 } 2131 2132 /* should match definition in bpf_helpers.h */ 2133 enum libbpf_pin_type { 2134 LIBBPF_PIN_NONE, 2135 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */ 2136 LIBBPF_PIN_BY_NAME, 2137 }; 2138 2139 int parse_btf_map_def(const char *map_name, struct btf *btf, 2140 const struct btf_type *def_t, bool strict, 2141 struct btf_map_def *map_def, struct btf_map_def *inner_def) 2142 { 2143 const struct btf_type *t; 2144 const struct btf_member *m; 2145 bool is_inner = inner_def == NULL; 2146 int vlen, i; 2147 2148 vlen = btf_vlen(def_t); 2149 m = btf_members(def_t); 2150 for (i = 0; i < vlen; i++, m++) { 2151 const char *name = btf__name_by_offset(btf, m->name_off); 2152 2153 if (!name) { 2154 pr_warn("map '%s': invalid field #%d.\n", map_name, i); 2155 return -EINVAL; 2156 } 2157 if (strcmp(name, "type") == 0) { 2158 if (!get_map_field_int(map_name, btf, m, &map_def->map_type)) 2159 return -EINVAL; 2160 map_def->parts |= MAP_DEF_MAP_TYPE; 2161 } else if (strcmp(name, "max_entries") == 0) { 2162 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries)) 2163 return -EINVAL; 2164 map_def->parts |= MAP_DEF_MAX_ENTRIES; 2165 } else if (strcmp(name, "map_flags") == 0) { 2166 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags)) 2167 return -EINVAL; 2168 map_def->parts |= MAP_DEF_MAP_FLAGS; 2169 } else if (strcmp(name, "numa_node") == 0) { 2170 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node)) 2171 return -EINVAL; 2172 map_def->parts |= MAP_DEF_NUMA_NODE; 2173 } else if (strcmp(name, "key_size") == 0) { 2174 __u32 sz; 2175 2176 if (!get_map_field_int(map_name, btf, m, &sz)) 2177 return -EINVAL; 2178 if (map_def->key_size && map_def->key_size != sz) { 2179 pr_warn("map '%s': conflicting key size %u != %u.\n", 2180 map_name, map_def->key_size, sz); 2181 return -EINVAL; 2182 } 2183 map_def->key_size = sz; 2184 map_def->parts |= MAP_DEF_KEY_SIZE; 2185 } else if (strcmp(name, "key") == 0) { 2186 __s64 sz; 2187 2188 t = btf__type_by_id(btf, m->type); 2189 if (!t) { 2190 pr_warn("map '%s': key type [%d] not found.\n", 2191 map_name, m->type); 2192 return -EINVAL; 2193 } 2194 if (!btf_is_ptr(t)) { 2195 pr_warn("map '%s': key spec is not PTR: %s.\n", 2196 map_name, btf_kind_str(t)); 2197 return -EINVAL; 2198 } 2199 sz = btf__resolve_size(btf, t->type); 2200 if (sz < 0) { 2201 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n", 2202 map_name, t->type, (ssize_t)sz); 2203 return sz; 2204 } 2205 if (map_def->key_size && map_def->key_size != sz) { 2206 pr_warn("map '%s': conflicting key size %u != %zd.\n", 2207 map_name, map_def->key_size, (ssize_t)sz); 2208 return -EINVAL; 2209 } 2210 map_def->key_size = sz; 2211 map_def->key_type_id = t->type; 2212 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE; 2213 } else if (strcmp(name, "value_size") == 0) { 2214 __u32 sz; 2215 2216 if (!get_map_field_int(map_name, btf, m, &sz)) 2217 return -EINVAL; 2218 if (map_def->value_size && map_def->value_size != sz) { 2219 pr_warn("map '%s': conflicting value size %u != %u.\n", 2220 map_name, map_def->value_size, sz); 2221 return -EINVAL; 2222 } 2223 map_def->value_size = sz; 2224 map_def->parts |= MAP_DEF_VALUE_SIZE; 2225 } else if (strcmp(name, "value") == 0) { 2226 __s64 sz; 2227 2228 t = btf__type_by_id(btf, m->type); 2229 if (!t) { 2230 pr_warn("map '%s': value type [%d] not found.\n", 2231 map_name, m->type); 2232 return -EINVAL; 2233 } 2234 if (!btf_is_ptr(t)) { 2235 pr_warn("map '%s': value spec is not PTR: %s.\n", 2236 map_name, btf_kind_str(t)); 2237 return -EINVAL; 2238 } 2239 sz = btf__resolve_size(btf, t->type); 2240 if (sz < 0) { 2241 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n", 2242 map_name, t->type, (ssize_t)sz); 2243 return sz; 2244 } 2245 if (map_def->value_size && map_def->value_size != sz) { 2246 pr_warn("map '%s': conflicting value size %u != %zd.\n", 2247 map_name, map_def->value_size, (ssize_t)sz); 2248 return -EINVAL; 2249 } 2250 map_def->value_size = sz; 2251 map_def->value_type_id = t->type; 2252 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE; 2253 } 2254 else if (strcmp(name, "values") == 0) { 2255 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type); 2256 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY; 2257 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value"; 2258 char inner_map_name[128]; 2259 int err; 2260 2261 if (is_inner) { 2262 pr_warn("map '%s': multi-level inner maps not supported.\n", 2263 map_name); 2264 return -ENOTSUP; 2265 } 2266 if (i != vlen - 1) { 2267 pr_warn("map '%s': '%s' member should be last.\n", 2268 map_name, name); 2269 return -EINVAL; 2270 } 2271 if (!is_map_in_map && !is_prog_array) { 2272 pr_warn("map '%s': should be map-in-map or prog-array.\n", 2273 map_name); 2274 return -ENOTSUP; 2275 } 2276 if (map_def->value_size && map_def->value_size != 4) { 2277 pr_warn("map '%s': conflicting value size %u != 4.\n", 2278 map_name, map_def->value_size); 2279 return -EINVAL; 2280 } 2281 map_def->value_size = 4; 2282 t = btf__type_by_id(btf, m->type); 2283 if (!t) { 2284 pr_warn("map '%s': %s type [%d] not found.\n", 2285 map_name, desc, m->type); 2286 return -EINVAL; 2287 } 2288 if (!btf_is_array(t) || btf_array(t)->nelems) { 2289 pr_warn("map '%s': %s spec is not a zero-sized array.\n", 2290 map_name, desc); 2291 return -EINVAL; 2292 } 2293 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL); 2294 if (!btf_is_ptr(t)) { 2295 pr_warn("map '%s': %s def is of unexpected kind %s.\n", 2296 map_name, desc, btf_kind_str(t)); 2297 return -EINVAL; 2298 } 2299 t = skip_mods_and_typedefs(btf, t->type, NULL); 2300 if (is_prog_array) { 2301 if (!btf_is_func_proto(t)) { 2302 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n", 2303 map_name, btf_kind_str(t)); 2304 return -EINVAL; 2305 } 2306 continue; 2307 } 2308 if (!btf_is_struct(t)) { 2309 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n", 2310 map_name, btf_kind_str(t)); 2311 return -EINVAL; 2312 } 2313 2314 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name); 2315 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL); 2316 if (err) 2317 return err; 2318 2319 map_def->parts |= MAP_DEF_INNER_MAP; 2320 } else if (strcmp(name, "pinning") == 0) { 2321 __u32 val; 2322 2323 if (is_inner) { 2324 pr_warn("map '%s': inner def can't be pinned.\n", map_name); 2325 return -EINVAL; 2326 } 2327 if (!get_map_field_int(map_name, btf, m, &val)) 2328 return -EINVAL; 2329 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) { 2330 pr_warn("map '%s': invalid pinning value %u.\n", 2331 map_name, val); 2332 return -EINVAL; 2333 } 2334 map_def->pinning = val; 2335 map_def->parts |= MAP_DEF_PINNING; 2336 } else if (strcmp(name, "map_extra") == 0) { 2337 __u32 map_extra; 2338 2339 if (!get_map_field_int(map_name, btf, m, &map_extra)) 2340 return -EINVAL; 2341 map_def->map_extra = map_extra; 2342 map_def->parts |= MAP_DEF_MAP_EXTRA; 2343 } else { 2344 if (strict) { 2345 pr_warn("map '%s': unknown field '%s'.\n", map_name, name); 2346 return -ENOTSUP; 2347 } 2348 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name); 2349 } 2350 } 2351 2352 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) { 2353 pr_warn("map '%s': map type isn't specified.\n", map_name); 2354 return -EINVAL; 2355 } 2356 2357 return 0; 2358 } 2359 2360 static size_t adjust_ringbuf_sz(size_t sz) 2361 { 2362 __u32 page_sz = sysconf(_SC_PAGE_SIZE); 2363 __u32 mul; 2364 2365 /* if user forgot to set any size, make sure they see error */ 2366 if (sz == 0) 2367 return 0; 2368 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be 2369 * a power-of-2 multiple of kernel's page size. If user diligently 2370 * satisified these conditions, pass the size through. 2371 */ 2372 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz)) 2373 return sz; 2374 2375 /* Otherwise find closest (page_sz * power_of_2) product bigger than 2376 * user-set size to satisfy both user size request and kernel 2377 * requirements and substitute correct max_entries for map creation. 2378 */ 2379 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) { 2380 if (mul * page_sz > sz) 2381 return mul * page_sz; 2382 } 2383 2384 /* if it's impossible to satisfy the conditions (i.e., user size is 2385 * very close to UINT_MAX but is not a power-of-2 multiple of 2386 * page_size) then just return original size and let kernel reject it 2387 */ 2388 return sz; 2389 } 2390 2391 static bool map_is_ringbuf(const struct bpf_map *map) 2392 { 2393 return map->def.type == BPF_MAP_TYPE_RINGBUF || 2394 map->def.type == BPF_MAP_TYPE_USER_RINGBUF; 2395 } 2396 2397 static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def) 2398 { 2399 map->def.type = def->map_type; 2400 map->def.key_size = def->key_size; 2401 map->def.value_size = def->value_size; 2402 map->def.max_entries = def->max_entries; 2403 map->def.map_flags = def->map_flags; 2404 map->map_extra = def->map_extra; 2405 2406 map->numa_node = def->numa_node; 2407 map->btf_key_type_id = def->key_type_id; 2408 map->btf_value_type_id = def->value_type_id; 2409 2410 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 2411 if (map_is_ringbuf(map)) 2412 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 2413 2414 if (def->parts & MAP_DEF_MAP_TYPE) 2415 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type); 2416 2417 if (def->parts & MAP_DEF_KEY_TYPE) 2418 pr_debug("map '%s': found key [%u], sz = %u.\n", 2419 map->name, def->key_type_id, def->key_size); 2420 else if (def->parts & MAP_DEF_KEY_SIZE) 2421 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size); 2422 2423 if (def->parts & MAP_DEF_VALUE_TYPE) 2424 pr_debug("map '%s': found value [%u], sz = %u.\n", 2425 map->name, def->value_type_id, def->value_size); 2426 else if (def->parts & MAP_DEF_VALUE_SIZE) 2427 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size); 2428 2429 if (def->parts & MAP_DEF_MAX_ENTRIES) 2430 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries); 2431 if (def->parts & MAP_DEF_MAP_FLAGS) 2432 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags); 2433 if (def->parts & MAP_DEF_MAP_EXTRA) 2434 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name, 2435 (unsigned long long)def->map_extra); 2436 if (def->parts & MAP_DEF_PINNING) 2437 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning); 2438 if (def->parts & MAP_DEF_NUMA_NODE) 2439 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node); 2440 2441 if (def->parts & MAP_DEF_INNER_MAP) 2442 pr_debug("map '%s': found inner map definition.\n", map->name); 2443 } 2444 2445 static const char *btf_var_linkage_str(__u32 linkage) 2446 { 2447 switch (linkage) { 2448 case BTF_VAR_STATIC: return "static"; 2449 case BTF_VAR_GLOBAL_ALLOCATED: return "global"; 2450 case BTF_VAR_GLOBAL_EXTERN: return "extern"; 2451 default: return "unknown"; 2452 } 2453 } 2454 2455 static int bpf_object__init_user_btf_map(struct bpf_object *obj, 2456 const struct btf_type *sec, 2457 int var_idx, int sec_idx, 2458 const Elf_Data *data, bool strict, 2459 const char *pin_root_path) 2460 { 2461 struct btf_map_def map_def = {}, inner_def = {}; 2462 const struct btf_type *var, *def; 2463 const struct btf_var_secinfo *vi; 2464 const struct btf_var *var_extra; 2465 const char *map_name; 2466 struct bpf_map *map; 2467 int err; 2468 2469 vi = btf_var_secinfos(sec) + var_idx; 2470 var = btf__type_by_id(obj->btf, vi->type); 2471 var_extra = btf_var(var); 2472 map_name = btf__name_by_offset(obj->btf, var->name_off); 2473 2474 if (map_name == NULL || map_name[0] == '\0') { 2475 pr_warn("map #%d: empty name.\n", var_idx); 2476 return -EINVAL; 2477 } 2478 if ((__u64)vi->offset + vi->size > data->d_size) { 2479 pr_warn("map '%s' BTF data is corrupted.\n", map_name); 2480 return -EINVAL; 2481 } 2482 if (!btf_is_var(var)) { 2483 pr_warn("map '%s': unexpected var kind %s.\n", 2484 map_name, btf_kind_str(var)); 2485 return -EINVAL; 2486 } 2487 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) { 2488 pr_warn("map '%s': unsupported map linkage %s.\n", 2489 map_name, btf_var_linkage_str(var_extra->linkage)); 2490 return -EOPNOTSUPP; 2491 } 2492 2493 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 2494 if (!btf_is_struct(def)) { 2495 pr_warn("map '%s': unexpected def kind %s.\n", 2496 map_name, btf_kind_str(var)); 2497 return -EINVAL; 2498 } 2499 if (def->size > vi->size) { 2500 pr_warn("map '%s': invalid def size.\n", map_name); 2501 return -EINVAL; 2502 } 2503 2504 map = bpf_object__add_map(obj); 2505 if (IS_ERR(map)) 2506 return PTR_ERR(map); 2507 map->name = strdup(map_name); 2508 if (!map->name) { 2509 pr_warn("map '%s': failed to alloc map name.\n", map_name); 2510 return -ENOMEM; 2511 } 2512 map->libbpf_type = LIBBPF_MAP_UNSPEC; 2513 map->def.type = BPF_MAP_TYPE_UNSPEC; 2514 map->sec_idx = sec_idx; 2515 map->sec_offset = vi->offset; 2516 map->btf_var_idx = var_idx; 2517 pr_debug("map '%s': at sec_idx %d, offset %zu.\n", 2518 map_name, map->sec_idx, map->sec_offset); 2519 2520 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def); 2521 if (err) 2522 return err; 2523 2524 fill_map_from_def(map, &map_def); 2525 2526 if (map_def.pinning == LIBBPF_PIN_BY_NAME) { 2527 err = build_map_pin_path(map, pin_root_path); 2528 if (err) { 2529 pr_warn("map '%s': couldn't build pin path.\n", map->name); 2530 return err; 2531 } 2532 } 2533 2534 if (map_def.parts & MAP_DEF_INNER_MAP) { 2535 map->inner_map = calloc(1, sizeof(*map->inner_map)); 2536 if (!map->inner_map) 2537 return -ENOMEM; 2538 map->inner_map->fd = -1; 2539 map->inner_map->sec_idx = sec_idx; 2540 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1); 2541 if (!map->inner_map->name) 2542 return -ENOMEM; 2543 sprintf(map->inner_map->name, "%s.inner", map_name); 2544 2545 fill_map_from_def(map->inner_map, &inner_def); 2546 } 2547 2548 err = bpf_map_find_btf_info(obj, map); 2549 if (err) 2550 return err; 2551 2552 return 0; 2553 } 2554 2555 static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict, 2556 const char *pin_root_path) 2557 { 2558 const struct btf_type *sec = NULL; 2559 int nr_types, i, vlen, err; 2560 const struct btf_type *t; 2561 const char *name; 2562 Elf_Data *data; 2563 Elf_Scn *scn; 2564 2565 if (obj->efile.btf_maps_shndx < 0) 2566 return 0; 2567 2568 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx); 2569 data = elf_sec_data(obj, scn); 2570 if (!scn || !data) { 2571 pr_warn("elf: failed to get %s map definitions for %s\n", 2572 MAPS_ELF_SEC, obj->path); 2573 return -EINVAL; 2574 } 2575 2576 nr_types = btf__type_cnt(obj->btf); 2577 for (i = 1; i < nr_types; i++) { 2578 t = btf__type_by_id(obj->btf, i); 2579 if (!btf_is_datasec(t)) 2580 continue; 2581 name = btf__name_by_offset(obj->btf, t->name_off); 2582 if (strcmp(name, MAPS_ELF_SEC) == 0) { 2583 sec = t; 2584 obj->efile.btf_maps_sec_btf_id = i; 2585 break; 2586 } 2587 } 2588 2589 if (!sec) { 2590 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC); 2591 return -ENOENT; 2592 } 2593 2594 vlen = btf_vlen(sec); 2595 for (i = 0; i < vlen; i++) { 2596 err = bpf_object__init_user_btf_map(obj, sec, i, 2597 obj->efile.btf_maps_shndx, 2598 data, strict, 2599 pin_root_path); 2600 if (err) 2601 return err; 2602 } 2603 2604 return 0; 2605 } 2606 2607 static int bpf_object__init_maps(struct bpf_object *obj, 2608 const struct bpf_object_open_opts *opts) 2609 { 2610 const char *pin_root_path; 2611 bool strict; 2612 int err = 0; 2613 2614 strict = !OPTS_GET(opts, relaxed_maps, false); 2615 pin_root_path = OPTS_GET(opts, pin_root_path, NULL); 2616 2617 err = err ?: bpf_object__init_user_btf_maps(obj, strict, pin_root_path); 2618 err = err ?: bpf_object__init_global_data_maps(obj); 2619 err = err ?: bpf_object__init_kconfig_map(obj); 2620 err = err ?: bpf_object__init_struct_ops_maps(obj); 2621 2622 return err; 2623 } 2624 2625 static bool section_have_execinstr(struct bpf_object *obj, int idx) 2626 { 2627 Elf64_Shdr *sh; 2628 2629 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx)); 2630 if (!sh) 2631 return false; 2632 2633 return sh->sh_flags & SHF_EXECINSTR; 2634 } 2635 2636 static bool btf_needs_sanitization(struct bpf_object *obj) 2637 { 2638 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2639 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2640 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2641 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2642 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2643 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2644 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2645 2646 return !has_func || !has_datasec || !has_func_global || !has_float || 2647 !has_decl_tag || !has_type_tag || !has_enum64; 2648 } 2649 2650 static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf) 2651 { 2652 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC); 2653 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC); 2654 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT); 2655 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC); 2656 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG); 2657 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG); 2658 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64); 2659 int enum64_placeholder_id = 0; 2660 struct btf_type *t; 2661 int i, j, vlen; 2662 2663 for (i = 1; i < btf__type_cnt(btf); i++) { 2664 t = (struct btf_type *)btf__type_by_id(btf, i); 2665 2666 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) { 2667 /* replace VAR/DECL_TAG with INT */ 2668 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0); 2669 /* 2670 * using size = 1 is the safest choice, 4 will be too 2671 * big and cause kernel BTF validation failure if 2672 * original variable took less than 4 bytes 2673 */ 2674 t->size = 1; 2675 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8); 2676 } else if (!has_datasec && btf_is_datasec(t)) { 2677 /* replace DATASEC with STRUCT */ 2678 const struct btf_var_secinfo *v = btf_var_secinfos(t); 2679 struct btf_member *m = btf_members(t); 2680 struct btf_type *vt; 2681 char *name; 2682 2683 name = (char *)btf__name_by_offset(btf, t->name_off); 2684 while (*name) { 2685 if (*name == '.') 2686 *name = '_'; 2687 name++; 2688 } 2689 2690 vlen = btf_vlen(t); 2691 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen); 2692 for (j = 0; j < vlen; j++, v++, m++) { 2693 /* order of field assignments is important */ 2694 m->offset = v->offset * 8; 2695 m->type = v->type; 2696 /* preserve variable name as member name */ 2697 vt = (void *)btf__type_by_id(btf, v->type); 2698 m->name_off = vt->name_off; 2699 } 2700 } else if (!has_func && btf_is_func_proto(t)) { 2701 /* replace FUNC_PROTO with ENUM */ 2702 vlen = btf_vlen(t); 2703 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen); 2704 t->size = sizeof(__u32); /* kernel enforced */ 2705 } else if (!has_func && btf_is_func(t)) { 2706 /* replace FUNC with TYPEDEF */ 2707 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0); 2708 } else if (!has_func_global && btf_is_func(t)) { 2709 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */ 2710 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0); 2711 } else if (!has_float && btf_is_float(t)) { 2712 /* replace FLOAT with an equally-sized empty STRUCT; 2713 * since C compilers do not accept e.g. "float" as a 2714 * valid struct name, make it anonymous 2715 */ 2716 t->name_off = 0; 2717 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0); 2718 } else if (!has_type_tag && btf_is_type_tag(t)) { 2719 /* replace TYPE_TAG with a CONST */ 2720 t->name_off = 0; 2721 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0); 2722 } else if (!has_enum64 && btf_is_enum(t)) { 2723 /* clear the kflag */ 2724 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false); 2725 } else if (!has_enum64 && btf_is_enum64(t)) { 2726 /* replace ENUM64 with a union */ 2727 struct btf_member *m; 2728 2729 if (enum64_placeholder_id == 0) { 2730 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0); 2731 if (enum64_placeholder_id < 0) 2732 return enum64_placeholder_id; 2733 2734 t = (struct btf_type *)btf__type_by_id(btf, i); 2735 } 2736 2737 m = btf_members(t); 2738 vlen = btf_vlen(t); 2739 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen); 2740 for (j = 0; j < vlen; j++, m++) { 2741 m->type = enum64_placeholder_id; 2742 m->offset = 0; 2743 } 2744 } 2745 } 2746 2747 return 0; 2748 } 2749 2750 static bool libbpf_needs_btf(const struct bpf_object *obj) 2751 { 2752 return obj->efile.btf_maps_shndx >= 0 || 2753 obj->efile.st_ops_shndx >= 0 || 2754 obj->nr_extern > 0; 2755 } 2756 2757 static bool kernel_needs_btf(const struct bpf_object *obj) 2758 { 2759 return obj->efile.st_ops_shndx >= 0; 2760 } 2761 2762 static int bpf_object__init_btf(struct bpf_object *obj, 2763 Elf_Data *btf_data, 2764 Elf_Data *btf_ext_data) 2765 { 2766 int err = -ENOENT; 2767 2768 if (btf_data) { 2769 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size); 2770 err = libbpf_get_error(obj->btf); 2771 if (err) { 2772 obj->btf = NULL; 2773 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err); 2774 goto out; 2775 } 2776 /* enforce 8-byte pointers for BPF-targeted BTFs */ 2777 btf__set_pointer_size(obj->btf, 8); 2778 } 2779 if (btf_ext_data) { 2780 struct btf_ext_info *ext_segs[3]; 2781 int seg_num, sec_num; 2782 2783 if (!obj->btf) { 2784 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n", 2785 BTF_EXT_ELF_SEC, BTF_ELF_SEC); 2786 goto out; 2787 } 2788 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size); 2789 err = libbpf_get_error(obj->btf_ext); 2790 if (err) { 2791 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n", 2792 BTF_EXT_ELF_SEC, err); 2793 obj->btf_ext = NULL; 2794 goto out; 2795 } 2796 2797 /* setup .BTF.ext to ELF section mapping */ 2798 ext_segs[0] = &obj->btf_ext->func_info; 2799 ext_segs[1] = &obj->btf_ext->line_info; 2800 ext_segs[2] = &obj->btf_ext->core_relo_info; 2801 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) { 2802 struct btf_ext_info *seg = ext_segs[seg_num]; 2803 const struct btf_ext_info_sec *sec; 2804 const char *sec_name; 2805 Elf_Scn *scn; 2806 2807 if (seg->sec_cnt == 0) 2808 continue; 2809 2810 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs)); 2811 if (!seg->sec_idxs) { 2812 err = -ENOMEM; 2813 goto out; 2814 } 2815 2816 sec_num = 0; 2817 for_each_btf_ext_sec(seg, sec) { 2818 /* preventively increment index to avoid doing 2819 * this before every continue below 2820 */ 2821 sec_num++; 2822 2823 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 2824 if (str_is_empty(sec_name)) 2825 continue; 2826 scn = elf_sec_by_name(obj, sec_name); 2827 if (!scn) 2828 continue; 2829 2830 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn); 2831 } 2832 } 2833 } 2834 out: 2835 if (err && libbpf_needs_btf(obj)) { 2836 pr_warn("BTF is required, but is missing or corrupted.\n"); 2837 return err; 2838 } 2839 return 0; 2840 } 2841 2842 static int compare_vsi_off(const void *_a, const void *_b) 2843 { 2844 const struct btf_var_secinfo *a = _a; 2845 const struct btf_var_secinfo *b = _b; 2846 2847 return a->offset - b->offset; 2848 } 2849 2850 static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf, 2851 struct btf_type *t) 2852 { 2853 __u32 size = 0, off = 0, i, vars = btf_vlen(t); 2854 const char *name = btf__name_by_offset(btf, t->name_off); 2855 const struct btf_type *t_var; 2856 struct btf_var_secinfo *vsi; 2857 const struct btf_var *var; 2858 int ret; 2859 2860 if (!name) { 2861 pr_debug("No name found in string section for DATASEC kind.\n"); 2862 return -ENOENT; 2863 } 2864 2865 /* .extern datasec size and var offsets were set correctly during 2866 * extern collection step, so just skip straight to sorting variables 2867 */ 2868 if (t->size) 2869 goto sort_vars; 2870 2871 ret = find_elf_sec_sz(obj, name, &size); 2872 if (ret || !size) { 2873 pr_debug("Invalid size for section %s: %u bytes\n", name, size); 2874 return -ENOENT; 2875 } 2876 2877 t->size = size; 2878 2879 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) { 2880 t_var = btf__type_by_id(btf, vsi->type); 2881 if (!t_var || !btf_is_var(t_var)) { 2882 pr_debug("Non-VAR type seen in section %s\n", name); 2883 return -EINVAL; 2884 } 2885 2886 var = btf_var(t_var); 2887 if (var->linkage == BTF_VAR_STATIC) 2888 continue; 2889 2890 name = btf__name_by_offset(btf, t_var->name_off); 2891 if (!name) { 2892 pr_debug("No name found in string section for VAR kind\n"); 2893 return -ENOENT; 2894 } 2895 2896 ret = find_elf_var_offset(obj, name, &off); 2897 if (ret) { 2898 pr_debug("No offset found in symbol table for VAR %s\n", 2899 name); 2900 return -ENOENT; 2901 } 2902 2903 vsi->offset = off; 2904 } 2905 2906 sort_vars: 2907 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off); 2908 return 0; 2909 } 2910 2911 static int btf_finalize_data(struct bpf_object *obj, struct btf *btf) 2912 { 2913 int err = 0; 2914 __u32 i, n = btf__type_cnt(btf); 2915 2916 for (i = 1; i < n; i++) { 2917 struct btf_type *t = btf_type_by_id(btf, i); 2918 2919 /* Loader needs to fix up some of the things compiler 2920 * couldn't get its hands on while emitting BTF. This 2921 * is section size and global variable offset. We use 2922 * the info from the ELF itself for this purpose. 2923 */ 2924 if (btf_is_datasec(t)) { 2925 err = btf_fixup_datasec(obj, btf, t); 2926 if (err) 2927 break; 2928 } 2929 } 2930 2931 return libbpf_err(err); 2932 } 2933 2934 static int bpf_object__finalize_btf(struct bpf_object *obj) 2935 { 2936 int err; 2937 2938 if (!obj->btf) 2939 return 0; 2940 2941 err = btf_finalize_data(obj, obj->btf); 2942 if (err) { 2943 pr_warn("Error finalizing %s: %d.\n", BTF_ELF_SEC, err); 2944 return err; 2945 } 2946 2947 return 0; 2948 } 2949 2950 static bool prog_needs_vmlinux_btf(struct bpf_program *prog) 2951 { 2952 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS || 2953 prog->type == BPF_PROG_TYPE_LSM) 2954 return true; 2955 2956 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs 2957 * also need vmlinux BTF 2958 */ 2959 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd) 2960 return true; 2961 2962 return false; 2963 } 2964 2965 static bool obj_needs_vmlinux_btf(const struct bpf_object *obj) 2966 { 2967 struct bpf_program *prog; 2968 int i; 2969 2970 /* CO-RE relocations need kernel BTF, only when btf_custom_path 2971 * is not specified 2972 */ 2973 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path) 2974 return true; 2975 2976 /* Support for typed ksyms needs kernel BTF */ 2977 for (i = 0; i < obj->nr_extern; i++) { 2978 const struct extern_desc *ext; 2979 2980 ext = &obj->externs[i]; 2981 if (ext->type == EXT_KSYM && ext->ksym.type_id) 2982 return true; 2983 } 2984 2985 bpf_object__for_each_program(prog, obj) { 2986 if (!prog->autoload) 2987 continue; 2988 if (prog_needs_vmlinux_btf(prog)) 2989 return true; 2990 } 2991 2992 return false; 2993 } 2994 2995 static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force) 2996 { 2997 int err; 2998 2999 /* btf_vmlinux could be loaded earlier */ 3000 if (obj->btf_vmlinux || obj->gen_loader) 3001 return 0; 3002 3003 if (!force && !obj_needs_vmlinux_btf(obj)) 3004 return 0; 3005 3006 obj->btf_vmlinux = btf__load_vmlinux_btf(); 3007 err = libbpf_get_error(obj->btf_vmlinux); 3008 if (err) { 3009 pr_warn("Error loading vmlinux BTF: %d\n", err); 3010 obj->btf_vmlinux = NULL; 3011 return err; 3012 } 3013 return 0; 3014 } 3015 3016 static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj) 3017 { 3018 struct btf *kern_btf = obj->btf; 3019 bool btf_mandatory, sanitize; 3020 int i, err = 0; 3021 3022 if (!obj->btf) 3023 return 0; 3024 3025 if (!kernel_supports(obj, FEAT_BTF)) { 3026 if (kernel_needs_btf(obj)) { 3027 err = -EOPNOTSUPP; 3028 goto report; 3029 } 3030 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n"); 3031 return 0; 3032 } 3033 3034 /* Even though some subprogs are global/weak, user might prefer more 3035 * permissive BPF verification process that BPF verifier performs for 3036 * static functions, taking into account more context from the caller 3037 * functions. In such case, they need to mark such subprogs with 3038 * __attribute__((visibility("hidden"))) and libbpf will adjust 3039 * corresponding FUNC BTF type to be marked as static and trigger more 3040 * involved BPF verification process. 3041 */ 3042 for (i = 0; i < obj->nr_programs; i++) { 3043 struct bpf_program *prog = &obj->programs[i]; 3044 struct btf_type *t; 3045 const char *name; 3046 int j, n; 3047 3048 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog)) 3049 continue; 3050 3051 n = btf__type_cnt(obj->btf); 3052 for (j = 1; j < n; j++) { 3053 t = btf_type_by_id(obj->btf, j); 3054 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL) 3055 continue; 3056 3057 name = btf__str_by_offset(obj->btf, t->name_off); 3058 if (strcmp(name, prog->name) != 0) 3059 continue; 3060 3061 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0); 3062 break; 3063 } 3064 } 3065 3066 sanitize = btf_needs_sanitization(obj); 3067 if (sanitize) { 3068 const void *raw_data; 3069 __u32 sz; 3070 3071 /* clone BTF to sanitize a copy and leave the original intact */ 3072 raw_data = btf__raw_data(obj->btf, &sz); 3073 kern_btf = btf__new(raw_data, sz); 3074 err = libbpf_get_error(kern_btf); 3075 if (err) 3076 return err; 3077 3078 /* enforce 8-byte pointers for BPF-targeted BTFs */ 3079 btf__set_pointer_size(obj->btf, 8); 3080 err = bpf_object__sanitize_btf(obj, kern_btf); 3081 if (err) 3082 return err; 3083 } 3084 3085 if (obj->gen_loader) { 3086 __u32 raw_size = 0; 3087 const void *raw_data = btf__raw_data(kern_btf, &raw_size); 3088 3089 if (!raw_data) 3090 return -ENOMEM; 3091 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size); 3092 /* Pretend to have valid FD to pass various fd >= 0 checks. 3093 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 3094 */ 3095 btf__set_fd(kern_btf, 0); 3096 } else { 3097 /* currently BPF_BTF_LOAD only supports log_level 1 */ 3098 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size, 3099 obj->log_level ? 1 : 0); 3100 } 3101 if (sanitize) { 3102 if (!err) { 3103 /* move fd to libbpf's BTF */ 3104 btf__set_fd(obj->btf, btf__fd(kern_btf)); 3105 btf__set_fd(kern_btf, -1); 3106 } 3107 btf__free(kern_btf); 3108 } 3109 report: 3110 if (err) { 3111 btf_mandatory = kernel_needs_btf(obj); 3112 pr_warn("Error loading .BTF into kernel: %d. %s\n", err, 3113 btf_mandatory ? "BTF is mandatory, can't proceed." 3114 : "BTF is optional, ignoring."); 3115 if (!btf_mandatory) 3116 err = 0; 3117 } 3118 return err; 3119 } 3120 3121 static const char *elf_sym_str(const struct bpf_object *obj, size_t off) 3122 { 3123 const char *name; 3124 3125 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off); 3126 if (!name) { 3127 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3128 off, obj->path, elf_errmsg(-1)); 3129 return NULL; 3130 } 3131 3132 return name; 3133 } 3134 3135 static const char *elf_sec_str(const struct bpf_object *obj, size_t off) 3136 { 3137 const char *name; 3138 3139 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off); 3140 if (!name) { 3141 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n", 3142 off, obj->path, elf_errmsg(-1)); 3143 return NULL; 3144 } 3145 3146 return name; 3147 } 3148 3149 static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx) 3150 { 3151 Elf_Scn *scn; 3152 3153 scn = elf_getscn(obj->efile.elf, idx); 3154 if (!scn) { 3155 pr_warn("elf: failed to get section(%zu) from %s: %s\n", 3156 idx, obj->path, elf_errmsg(-1)); 3157 return NULL; 3158 } 3159 return scn; 3160 } 3161 3162 static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name) 3163 { 3164 Elf_Scn *scn = NULL; 3165 Elf *elf = obj->efile.elf; 3166 const char *sec_name; 3167 3168 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3169 sec_name = elf_sec_name(obj, scn); 3170 if (!sec_name) 3171 return NULL; 3172 3173 if (strcmp(sec_name, name) != 0) 3174 continue; 3175 3176 return scn; 3177 } 3178 return NULL; 3179 } 3180 3181 static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn) 3182 { 3183 Elf64_Shdr *shdr; 3184 3185 if (!scn) 3186 return NULL; 3187 3188 shdr = elf64_getshdr(scn); 3189 if (!shdr) { 3190 pr_warn("elf: failed to get section(%zu) header from %s: %s\n", 3191 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3192 return NULL; 3193 } 3194 3195 return shdr; 3196 } 3197 3198 static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn) 3199 { 3200 const char *name; 3201 Elf64_Shdr *sh; 3202 3203 if (!scn) 3204 return NULL; 3205 3206 sh = elf_sec_hdr(obj, scn); 3207 if (!sh) 3208 return NULL; 3209 3210 name = elf_sec_str(obj, sh->sh_name); 3211 if (!name) { 3212 pr_warn("elf: failed to get section(%zu) name from %s: %s\n", 3213 elf_ndxscn(scn), obj->path, elf_errmsg(-1)); 3214 return NULL; 3215 } 3216 3217 return name; 3218 } 3219 3220 static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn) 3221 { 3222 Elf_Data *data; 3223 3224 if (!scn) 3225 return NULL; 3226 3227 data = elf_getdata(scn, 0); 3228 if (!data) { 3229 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n", 3230 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>", 3231 obj->path, elf_errmsg(-1)); 3232 return NULL; 3233 } 3234 3235 return data; 3236 } 3237 3238 static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx) 3239 { 3240 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym)) 3241 return NULL; 3242 3243 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx; 3244 } 3245 3246 static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx) 3247 { 3248 if (idx >= data->d_size / sizeof(Elf64_Rel)) 3249 return NULL; 3250 3251 return (Elf64_Rel *)data->d_buf + idx; 3252 } 3253 3254 static bool is_sec_name_dwarf(const char *name) 3255 { 3256 /* approximation, but the actual list is too long */ 3257 return str_has_pfx(name, ".debug_"); 3258 } 3259 3260 static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name) 3261 { 3262 /* no special handling of .strtab */ 3263 if (hdr->sh_type == SHT_STRTAB) 3264 return true; 3265 3266 /* ignore .llvm_addrsig section as well */ 3267 if (hdr->sh_type == SHT_LLVM_ADDRSIG) 3268 return true; 3269 3270 /* no subprograms will lead to an empty .text section, ignore it */ 3271 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 && 3272 strcmp(name, ".text") == 0) 3273 return true; 3274 3275 /* DWARF sections */ 3276 if (is_sec_name_dwarf(name)) 3277 return true; 3278 3279 if (str_has_pfx(name, ".rel")) { 3280 name += sizeof(".rel") - 1; 3281 /* DWARF section relocations */ 3282 if (is_sec_name_dwarf(name)) 3283 return true; 3284 3285 /* .BTF and .BTF.ext don't need relocations */ 3286 if (strcmp(name, BTF_ELF_SEC) == 0 || 3287 strcmp(name, BTF_EXT_ELF_SEC) == 0) 3288 return true; 3289 } 3290 3291 return false; 3292 } 3293 3294 static int cmp_progs(const void *_a, const void *_b) 3295 { 3296 const struct bpf_program *a = _a; 3297 const struct bpf_program *b = _b; 3298 3299 if (a->sec_idx != b->sec_idx) 3300 return a->sec_idx < b->sec_idx ? -1 : 1; 3301 3302 /* sec_insn_off can't be the same within the section */ 3303 return a->sec_insn_off < b->sec_insn_off ? -1 : 1; 3304 } 3305 3306 static int bpf_object__elf_collect(struct bpf_object *obj) 3307 { 3308 struct elf_sec_desc *sec_desc; 3309 Elf *elf = obj->efile.elf; 3310 Elf_Data *btf_ext_data = NULL; 3311 Elf_Data *btf_data = NULL; 3312 int idx = 0, err = 0; 3313 const char *name; 3314 Elf_Data *data; 3315 Elf_Scn *scn; 3316 Elf64_Shdr *sh; 3317 3318 /* ELF section indices are 0-based, but sec #0 is special "invalid" 3319 * section. Since section count retrieved by elf_getshdrnum() does 3320 * include sec #0, it is already the necessary size of an array to keep 3321 * all the sections. 3322 */ 3323 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) { 3324 pr_warn("elf: failed to get the number of sections for %s: %s\n", 3325 obj->path, elf_errmsg(-1)); 3326 return -LIBBPF_ERRNO__FORMAT; 3327 } 3328 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs)); 3329 if (!obj->efile.secs) 3330 return -ENOMEM; 3331 3332 /* a bunch of ELF parsing functionality depends on processing symbols, 3333 * so do the first pass and find the symbol table 3334 */ 3335 scn = NULL; 3336 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3337 sh = elf_sec_hdr(obj, scn); 3338 if (!sh) 3339 return -LIBBPF_ERRNO__FORMAT; 3340 3341 if (sh->sh_type == SHT_SYMTAB) { 3342 if (obj->efile.symbols) { 3343 pr_warn("elf: multiple symbol tables in %s\n", obj->path); 3344 return -LIBBPF_ERRNO__FORMAT; 3345 } 3346 3347 data = elf_sec_data(obj, scn); 3348 if (!data) 3349 return -LIBBPF_ERRNO__FORMAT; 3350 3351 idx = elf_ndxscn(scn); 3352 3353 obj->efile.symbols = data; 3354 obj->efile.symbols_shndx = idx; 3355 obj->efile.strtabidx = sh->sh_link; 3356 } 3357 } 3358 3359 if (!obj->efile.symbols) { 3360 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n", 3361 obj->path); 3362 return -ENOENT; 3363 } 3364 3365 scn = NULL; 3366 while ((scn = elf_nextscn(elf, scn)) != NULL) { 3367 idx = elf_ndxscn(scn); 3368 sec_desc = &obj->efile.secs[idx]; 3369 3370 sh = elf_sec_hdr(obj, scn); 3371 if (!sh) 3372 return -LIBBPF_ERRNO__FORMAT; 3373 3374 name = elf_sec_str(obj, sh->sh_name); 3375 if (!name) 3376 return -LIBBPF_ERRNO__FORMAT; 3377 3378 if (ignore_elf_section(sh, name)) 3379 continue; 3380 3381 data = elf_sec_data(obj, scn); 3382 if (!data) 3383 return -LIBBPF_ERRNO__FORMAT; 3384 3385 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n", 3386 idx, name, (unsigned long)data->d_size, 3387 (int)sh->sh_link, (unsigned long)sh->sh_flags, 3388 (int)sh->sh_type); 3389 3390 if (strcmp(name, "license") == 0) { 3391 err = bpf_object__init_license(obj, data->d_buf, data->d_size); 3392 if (err) 3393 return err; 3394 } else if (strcmp(name, "version") == 0) { 3395 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size); 3396 if (err) 3397 return err; 3398 } else if (strcmp(name, "maps") == 0) { 3399 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n"); 3400 return -ENOTSUP; 3401 } else if (strcmp(name, MAPS_ELF_SEC) == 0) { 3402 obj->efile.btf_maps_shndx = idx; 3403 } else if (strcmp(name, BTF_ELF_SEC) == 0) { 3404 if (sh->sh_type != SHT_PROGBITS) 3405 return -LIBBPF_ERRNO__FORMAT; 3406 btf_data = data; 3407 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) { 3408 if (sh->sh_type != SHT_PROGBITS) 3409 return -LIBBPF_ERRNO__FORMAT; 3410 btf_ext_data = data; 3411 } else if (sh->sh_type == SHT_SYMTAB) { 3412 /* already processed during the first pass above */ 3413 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) { 3414 if (sh->sh_flags & SHF_EXECINSTR) { 3415 if (strcmp(name, ".text") == 0) 3416 obj->efile.text_shndx = idx; 3417 err = bpf_object__add_programs(obj, data, name, idx); 3418 if (err) 3419 return err; 3420 } else if (strcmp(name, DATA_SEC) == 0 || 3421 str_has_pfx(name, DATA_SEC ".")) { 3422 sec_desc->sec_type = SEC_DATA; 3423 sec_desc->shdr = sh; 3424 sec_desc->data = data; 3425 } else if (strcmp(name, RODATA_SEC) == 0 || 3426 str_has_pfx(name, RODATA_SEC ".")) { 3427 sec_desc->sec_type = SEC_RODATA; 3428 sec_desc->shdr = sh; 3429 sec_desc->data = data; 3430 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) { 3431 obj->efile.st_ops_data = data; 3432 obj->efile.st_ops_shndx = idx; 3433 } else { 3434 pr_info("elf: skipping unrecognized data section(%d) %s\n", 3435 idx, name); 3436 } 3437 } else if (sh->sh_type == SHT_REL) { 3438 int targ_sec_idx = sh->sh_info; /* points to other section */ 3439 3440 if (sh->sh_entsize != sizeof(Elf64_Rel) || 3441 targ_sec_idx >= obj->efile.sec_cnt) 3442 return -LIBBPF_ERRNO__FORMAT; 3443 3444 /* Only do relo for section with exec instructions */ 3445 if (!section_have_execinstr(obj, targ_sec_idx) && 3446 strcmp(name, ".rel" STRUCT_OPS_SEC) && 3447 strcmp(name, ".rel" MAPS_ELF_SEC)) { 3448 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n", 3449 idx, name, targ_sec_idx, 3450 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>"); 3451 continue; 3452 } 3453 3454 sec_desc->sec_type = SEC_RELO; 3455 sec_desc->shdr = sh; 3456 sec_desc->data = data; 3457 } else if (sh->sh_type == SHT_NOBITS && strcmp(name, BSS_SEC) == 0) { 3458 sec_desc->sec_type = SEC_BSS; 3459 sec_desc->shdr = sh; 3460 sec_desc->data = data; 3461 } else { 3462 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name, 3463 (size_t)sh->sh_size); 3464 } 3465 } 3466 3467 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) { 3468 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path); 3469 return -LIBBPF_ERRNO__FORMAT; 3470 } 3471 3472 /* sort BPF programs by section name and in-section instruction offset 3473 * for faster search */ 3474 if (obj->nr_programs) 3475 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs); 3476 3477 return bpf_object__init_btf(obj, btf_data, btf_ext_data); 3478 } 3479 3480 static bool sym_is_extern(const Elf64_Sym *sym) 3481 { 3482 int bind = ELF64_ST_BIND(sym->st_info); 3483 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */ 3484 return sym->st_shndx == SHN_UNDEF && 3485 (bind == STB_GLOBAL || bind == STB_WEAK) && 3486 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE; 3487 } 3488 3489 static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx) 3490 { 3491 int bind = ELF64_ST_BIND(sym->st_info); 3492 int type = ELF64_ST_TYPE(sym->st_info); 3493 3494 /* in .text section */ 3495 if (sym->st_shndx != text_shndx) 3496 return false; 3497 3498 /* local function */ 3499 if (bind == STB_LOCAL && type == STT_SECTION) 3500 return true; 3501 3502 /* global function */ 3503 return bind == STB_GLOBAL && type == STT_FUNC; 3504 } 3505 3506 static int find_extern_btf_id(const struct btf *btf, const char *ext_name) 3507 { 3508 const struct btf_type *t; 3509 const char *tname; 3510 int i, n; 3511 3512 if (!btf) 3513 return -ESRCH; 3514 3515 n = btf__type_cnt(btf); 3516 for (i = 1; i < n; i++) { 3517 t = btf__type_by_id(btf, i); 3518 3519 if (!btf_is_var(t) && !btf_is_func(t)) 3520 continue; 3521 3522 tname = btf__name_by_offset(btf, t->name_off); 3523 if (strcmp(tname, ext_name)) 3524 continue; 3525 3526 if (btf_is_var(t) && 3527 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN) 3528 return -EINVAL; 3529 3530 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN) 3531 return -EINVAL; 3532 3533 return i; 3534 } 3535 3536 return -ENOENT; 3537 } 3538 3539 static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) { 3540 const struct btf_var_secinfo *vs; 3541 const struct btf_type *t; 3542 int i, j, n; 3543 3544 if (!btf) 3545 return -ESRCH; 3546 3547 n = btf__type_cnt(btf); 3548 for (i = 1; i < n; i++) { 3549 t = btf__type_by_id(btf, i); 3550 3551 if (!btf_is_datasec(t)) 3552 continue; 3553 3554 vs = btf_var_secinfos(t); 3555 for (j = 0; j < btf_vlen(t); j++, vs++) { 3556 if (vs->type == ext_btf_id) 3557 return i; 3558 } 3559 } 3560 3561 return -ENOENT; 3562 } 3563 3564 static enum kcfg_type find_kcfg_type(const struct btf *btf, int id, 3565 bool *is_signed) 3566 { 3567 const struct btf_type *t; 3568 const char *name; 3569 3570 t = skip_mods_and_typedefs(btf, id, NULL); 3571 name = btf__name_by_offset(btf, t->name_off); 3572 3573 if (is_signed) 3574 *is_signed = false; 3575 switch (btf_kind(t)) { 3576 case BTF_KIND_INT: { 3577 int enc = btf_int_encoding(t); 3578 3579 if (enc & BTF_INT_BOOL) 3580 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN; 3581 if (is_signed) 3582 *is_signed = enc & BTF_INT_SIGNED; 3583 if (t->size == 1) 3584 return KCFG_CHAR; 3585 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1))) 3586 return KCFG_UNKNOWN; 3587 return KCFG_INT; 3588 } 3589 case BTF_KIND_ENUM: 3590 if (t->size != 4) 3591 return KCFG_UNKNOWN; 3592 if (strcmp(name, "libbpf_tristate")) 3593 return KCFG_UNKNOWN; 3594 return KCFG_TRISTATE; 3595 case BTF_KIND_ENUM64: 3596 if (strcmp(name, "libbpf_tristate")) 3597 return KCFG_UNKNOWN; 3598 return KCFG_TRISTATE; 3599 case BTF_KIND_ARRAY: 3600 if (btf_array(t)->nelems == 0) 3601 return KCFG_UNKNOWN; 3602 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR) 3603 return KCFG_UNKNOWN; 3604 return KCFG_CHAR_ARR; 3605 default: 3606 return KCFG_UNKNOWN; 3607 } 3608 } 3609 3610 static int cmp_externs(const void *_a, const void *_b) 3611 { 3612 const struct extern_desc *a = _a; 3613 const struct extern_desc *b = _b; 3614 3615 if (a->type != b->type) 3616 return a->type < b->type ? -1 : 1; 3617 3618 if (a->type == EXT_KCFG) { 3619 /* descending order by alignment requirements */ 3620 if (a->kcfg.align != b->kcfg.align) 3621 return a->kcfg.align > b->kcfg.align ? -1 : 1; 3622 /* ascending order by size, within same alignment class */ 3623 if (a->kcfg.sz != b->kcfg.sz) 3624 return a->kcfg.sz < b->kcfg.sz ? -1 : 1; 3625 } 3626 3627 /* resolve ties by name */ 3628 return strcmp(a->name, b->name); 3629 } 3630 3631 static int find_int_btf_id(const struct btf *btf) 3632 { 3633 const struct btf_type *t; 3634 int i, n; 3635 3636 n = btf__type_cnt(btf); 3637 for (i = 1; i < n; i++) { 3638 t = btf__type_by_id(btf, i); 3639 3640 if (btf_is_int(t) && btf_int_bits(t) == 32) 3641 return i; 3642 } 3643 3644 return 0; 3645 } 3646 3647 static int add_dummy_ksym_var(struct btf *btf) 3648 { 3649 int i, int_btf_id, sec_btf_id, dummy_var_btf_id; 3650 const struct btf_var_secinfo *vs; 3651 const struct btf_type *sec; 3652 3653 if (!btf) 3654 return 0; 3655 3656 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC, 3657 BTF_KIND_DATASEC); 3658 if (sec_btf_id < 0) 3659 return 0; 3660 3661 sec = btf__type_by_id(btf, sec_btf_id); 3662 vs = btf_var_secinfos(sec); 3663 for (i = 0; i < btf_vlen(sec); i++, vs++) { 3664 const struct btf_type *vt; 3665 3666 vt = btf__type_by_id(btf, vs->type); 3667 if (btf_is_func(vt)) 3668 break; 3669 } 3670 3671 /* No func in ksyms sec. No need to add dummy var. */ 3672 if (i == btf_vlen(sec)) 3673 return 0; 3674 3675 int_btf_id = find_int_btf_id(btf); 3676 dummy_var_btf_id = btf__add_var(btf, 3677 "dummy_ksym", 3678 BTF_VAR_GLOBAL_ALLOCATED, 3679 int_btf_id); 3680 if (dummy_var_btf_id < 0) 3681 pr_warn("cannot create a dummy_ksym var\n"); 3682 3683 return dummy_var_btf_id; 3684 } 3685 3686 static int bpf_object__collect_externs(struct bpf_object *obj) 3687 { 3688 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL; 3689 const struct btf_type *t; 3690 struct extern_desc *ext; 3691 int i, n, off, dummy_var_btf_id; 3692 const char *ext_name, *sec_name; 3693 Elf_Scn *scn; 3694 Elf64_Shdr *sh; 3695 3696 if (!obj->efile.symbols) 3697 return 0; 3698 3699 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx); 3700 sh = elf_sec_hdr(obj, scn); 3701 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym)) 3702 return -LIBBPF_ERRNO__FORMAT; 3703 3704 dummy_var_btf_id = add_dummy_ksym_var(obj->btf); 3705 if (dummy_var_btf_id < 0) 3706 return dummy_var_btf_id; 3707 3708 n = sh->sh_size / sh->sh_entsize; 3709 pr_debug("looking for externs among %d symbols...\n", n); 3710 3711 for (i = 0; i < n; i++) { 3712 Elf64_Sym *sym = elf_sym_by_idx(obj, i); 3713 3714 if (!sym) 3715 return -LIBBPF_ERRNO__FORMAT; 3716 if (!sym_is_extern(sym)) 3717 continue; 3718 ext_name = elf_sym_str(obj, sym->st_name); 3719 if (!ext_name || !ext_name[0]) 3720 continue; 3721 3722 ext = obj->externs; 3723 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext)); 3724 if (!ext) 3725 return -ENOMEM; 3726 obj->externs = ext; 3727 ext = &ext[obj->nr_extern]; 3728 memset(ext, 0, sizeof(*ext)); 3729 obj->nr_extern++; 3730 3731 ext->btf_id = find_extern_btf_id(obj->btf, ext_name); 3732 if (ext->btf_id <= 0) { 3733 pr_warn("failed to find BTF for extern '%s': %d\n", 3734 ext_name, ext->btf_id); 3735 return ext->btf_id; 3736 } 3737 t = btf__type_by_id(obj->btf, ext->btf_id); 3738 ext->name = btf__name_by_offset(obj->btf, t->name_off); 3739 ext->sym_idx = i; 3740 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK; 3741 3742 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id); 3743 if (ext->sec_btf_id <= 0) { 3744 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n", 3745 ext_name, ext->btf_id, ext->sec_btf_id); 3746 return ext->sec_btf_id; 3747 } 3748 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id); 3749 sec_name = btf__name_by_offset(obj->btf, sec->name_off); 3750 3751 if (strcmp(sec_name, KCONFIG_SEC) == 0) { 3752 if (btf_is_func(t)) { 3753 pr_warn("extern function %s is unsupported under %s section\n", 3754 ext->name, KCONFIG_SEC); 3755 return -ENOTSUP; 3756 } 3757 kcfg_sec = sec; 3758 ext->type = EXT_KCFG; 3759 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type); 3760 if (ext->kcfg.sz <= 0) { 3761 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n", 3762 ext_name, ext->kcfg.sz); 3763 return ext->kcfg.sz; 3764 } 3765 ext->kcfg.align = btf__align_of(obj->btf, t->type); 3766 if (ext->kcfg.align <= 0) { 3767 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n", 3768 ext_name, ext->kcfg.align); 3769 return -EINVAL; 3770 } 3771 ext->kcfg.type = find_kcfg_type(obj->btf, t->type, 3772 &ext->kcfg.is_signed); 3773 if (ext->kcfg.type == KCFG_UNKNOWN) { 3774 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name); 3775 return -ENOTSUP; 3776 } 3777 } else if (strcmp(sec_name, KSYMS_SEC) == 0) { 3778 ksym_sec = sec; 3779 ext->type = EXT_KSYM; 3780 skip_mods_and_typedefs(obj->btf, t->type, 3781 &ext->ksym.type_id); 3782 } else { 3783 pr_warn("unrecognized extern section '%s'\n", sec_name); 3784 return -ENOTSUP; 3785 } 3786 } 3787 pr_debug("collected %d externs total\n", obj->nr_extern); 3788 3789 if (!obj->nr_extern) 3790 return 0; 3791 3792 /* sort externs by type, for kcfg ones also by (align, size, name) */ 3793 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs); 3794 3795 /* for .ksyms section, we need to turn all externs into allocated 3796 * variables in BTF to pass kernel verification; we do this by 3797 * pretending that each extern is a 8-byte variable 3798 */ 3799 if (ksym_sec) { 3800 /* find existing 4-byte integer type in BTF to use for fake 3801 * extern variables in DATASEC 3802 */ 3803 int int_btf_id = find_int_btf_id(obj->btf); 3804 /* For extern function, a dummy_var added earlier 3805 * will be used to replace the vs->type and 3806 * its name string will be used to refill 3807 * the missing param's name. 3808 */ 3809 const struct btf_type *dummy_var; 3810 3811 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id); 3812 for (i = 0; i < obj->nr_extern; i++) { 3813 ext = &obj->externs[i]; 3814 if (ext->type != EXT_KSYM) 3815 continue; 3816 pr_debug("extern (ksym) #%d: symbol %d, name %s\n", 3817 i, ext->sym_idx, ext->name); 3818 } 3819 3820 sec = ksym_sec; 3821 n = btf_vlen(sec); 3822 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) { 3823 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3824 struct btf_type *vt; 3825 3826 vt = (void *)btf__type_by_id(obj->btf, vs->type); 3827 ext_name = btf__name_by_offset(obj->btf, vt->name_off); 3828 ext = find_extern_by_name(obj, ext_name); 3829 if (!ext) { 3830 pr_warn("failed to find extern definition for BTF %s '%s'\n", 3831 btf_kind_str(vt), ext_name); 3832 return -ESRCH; 3833 } 3834 if (btf_is_func(vt)) { 3835 const struct btf_type *func_proto; 3836 struct btf_param *param; 3837 int j; 3838 3839 func_proto = btf__type_by_id(obj->btf, 3840 vt->type); 3841 param = btf_params(func_proto); 3842 /* Reuse the dummy_var string if the 3843 * func proto does not have param name. 3844 */ 3845 for (j = 0; j < btf_vlen(func_proto); j++) 3846 if (param[j].type && !param[j].name_off) 3847 param[j].name_off = 3848 dummy_var->name_off; 3849 vs->type = dummy_var_btf_id; 3850 vt->info &= ~0xffff; 3851 vt->info |= BTF_FUNC_GLOBAL; 3852 } else { 3853 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3854 vt->type = int_btf_id; 3855 } 3856 vs->offset = off; 3857 vs->size = sizeof(int); 3858 } 3859 sec->size = off; 3860 } 3861 3862 if (kcfg_sec) { 3863 sec = kcfg_sec; 3864 /* for kcfg externs calculate their offsets within a .kconfig map */ 3865 off = 0; 3866 for (i = 0; i < obj->nr_extern; i++) { 3867 ext = &obj->externs[i]; 3868 if (ext->type != EXT_KCFG) 3869 continue; 3870 3871 ext->kcfg.data_off = roundup(off, ext->kcfg.align); 3872 off = ext->kcfg.data_off + ext->kcfg.sz; 3873 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n", 3874 i, ext->sym_idx, ext->kcfg.data_off, ext->name); 3875 } 3876 sec->size = off; 3877 n = btf_vlen(sec); 3878 for (i = 0; i < n; i++) { 3879 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i; 3880 3881 t = btf__type_by_id(obj->btf, vs->type); 3882 ext_name = btf__name_by_offset(obj->btf, t->name_off); 3883 ext = find_extern_by_name(obj, ext_name); 3884 if (!ext) { 3885 pr_warn("failed to find extern definition for BTF var '%s'\n", 3886 ext_name); 3887 return -ESRCH; 3888 } 3889 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED; 3890 vs->offset = ext->kcfg.data_off; 3891 } 3892 } 3893 return 0; 3894 } 3895 3896 static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog) 3897 { 3898 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1; 3899 } 3900 3901 struct bpf_program * 3902 bpf_object__find_program_by_name(const struct bpf_object *obj, 3903 const char *name) 3904 { 3905 struct bpf_program *prog; 3906 3907 bpf_object__for_each_program(prog, obj) { 3908 if (prog_is_subprog(obj, prog)) 3909 continue; 3910 if (!strcmp(prog->name, name)) 3911 return prog; 3912 } 3913 return errno = ENOENT, NULL; 3914 } 3915 3916 static bool bpf_object__shndx_is_data(const struct bpf_object *obj, 3917 int shndx) 3918 { 3919 switch (obj->efile.secs[shndx].sec_type) { 3920 case SEC_BSS: 3921 case SEC_DATA: 3922 case SEC_RODATA: 3923 return true; 3924 default: 3925 return false; 3926 } 3927 } 3928 3929 static bool bpf_object__shndx_is_maps(const struct bpf_object *obj, 3930 int shndx) 3931 { 3932 return shndx == obj->efile.btf_maps_shndx; 3933 } 3934 3935 static enum libbpf_map_type 3936 bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx) 3937 { 3938 if (shndx == obj->efile.symbols_shndx) 3939 return LIBBPF_MAP_KCONFIG; 3940 3941 switch (obj->efile.secs[shndx].sec_type) { 3942 case SEC_BSS: 3943 return LIBBPF_MAP_BSS; 3944 case SEC_DATA: 3945 return LIBBPF_MAP_DATA; 3946 case SEC_RODATA: 3947 return LIBBPF_MAP_RODATA; 3948 default: 3949 return LIBBPF_MAP_UNSPEC; 3950 } 3951 } 3952 3953 static int bpf_program__record_reloc(struct bpf_program *prog, 3954 struct reloc_desc *reloc_desc, 3955 __u32 insn_idx, const char *sym_name, 3956 const Elf64_Sym *sym, const Elf64_Rel *rel) 3957 { 3958 struct bpf_insn *insn = &prog->insns[insn_idx]; 3959 size_t map_idx, nr_maps = prog->obj->nr_maps; 3960 struct bpf_object *obj = prog->obj; 3961 __u32 shdr_idx = sym->st_shndx; 3962 enum libbpf_map_type type; 3963 const char *sym_sec_name; 3964 struct bpf_map *map; 3965 3966 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) { 3967 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n", 3968 prog->name, sym_name, insn_idx, insn->code); 3969 return -LIBBPF_ERRNO__RELOC; 3970 } 3971 3972 if (sym_is_extern(sym)) { 3973 int sym_idx = ELF64_R_SYM(rel->r_info); 3974 int i, n = obj->nr_extern; 3975 struct extern_desc *ext; 3976 3977 for (i = 0; i < n; i++) { 3978 ext = &obj->externs[i]; 3979 if (ext->sym_idx == sym_idx) 3980 break; 3981 } 3982 if (i >= n) { 3983 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n", 3984 prog->name, sym_name, sym_idx); 3985 return -LIBBPF_ERRNO__RELOC; 3986 } 3987 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n", 3988 prog->name, i, ext->name, ext->sym_idx, insn_idx); 3989 if (insn->code == (BPF_JMP | BPF_CALL)) 3990 reloc_desc->type = RELO_EXTERN_FUNC; 3991 else 3992 reloc_desc->type = RELO_EXTERN_VAR; 3993 reloc_desc->insn_idx = insn_idx; 3994 reloc_desc->sym_off = i; /* sym_off stores extern index */ 3995 return 0; 3996 } 3997 3998 /* sub-program call relocation */ 3999 if (is_call_insn(insn)) { 4000 if (insn->src_reg != BPF_PSEUDO_CALL) { 4001 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name); 4002 return -LIBBPF_ERRNO__RELOC; 4003 } 4004 /* text_shndx can be 0, if no default "main" program exists */ 4005 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) { 4006 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4007 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n", 4008 prog->name, sym_name, sym_sec_name); 4009 return -LIBBPF_ERRNO__RELOC; 4010 } 4011 if (sym->st_value % BPF_INSN_SZ) { 4012 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n", 4013 prog->name, sym_name, (size_t)sym->st_value); 4014 return -LIBBPF_ERRNO__RELOC; 4015 } 4016 reloc_desc->type = RELO_CALL; 4017 reloc_desc->insn_idx = insn_idx; 4018 reloc_desc->sym_off = sym->st_value; 4019 return 0; 4020 } 4021 4022 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) { 4023 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n", 4024 prog->name, sym_name, shdr_idx); 4025 return -LIBBPF_ERRNO__RELOC; 4026 } 4027 4028 /* loading subprog addresses */ 4029 if (sym_is_subprog(sym, obj->efile.text_shndx)) { 4030 /* global_func: sym->st_value = offset in the section, insn->imm = 0. 4031 * local_func: sym->st_value = 0, insn->imm = offset in the section. 4032 */ 4033 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) { 4034 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n", 4035 prog->name, sym_name, (size_t)sym->st_value, insn->imm); 4036 return -LIBBPF_ERRNO__RELOC; 4037 } 4038 4039 reloc_desc->type = RELO_SUBPROG_ADDR; 4040 reloc_desc->insn_idx = insn_idx; 4041 reloc_desc->sym_off = sym->st_value; 4042 return 0; 4043 } 4044 4045 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx); 4046 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx)); 4047 4048 /* generic map reference relocation */ 4049 if (type == LIBBPF_MAP_UNSPEC) { 4050 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) { 4051 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n", 4052 prog->name, sym_name, sym_sec_name); 4053 return -LIBBPF_ERRNO__RELOC; 4054 } 4055 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4056 map = &obj->maps[map_idx]; 4057 if (map->libbpf_type != type || 4058 map->sec_idx != sym->st_shndx || 4059 map->sec_offset != sym->st_value) 4060 continue; 4061 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n", 4062 prog->name, map_idx, map->name, map->sec_idx, 4063 map->sec_offset, insn_idx); 4064 break; 4065 } 4066 if (map_idx >= nr_maps) { 4067 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n", 4068 prog->name, sym_sec_name, (size_t)sym->st_value); 4069 return -LIBBPF_ERRNO__RELOC; 4070 } 4071 reloc_desc->type = RELO_LD64; 4072 reloc_desc->insn_idx = insn_idx; 4073 reloc_desc->map_idx = map_idx; 4074 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */ 4075 return 0; 4076 } 4077 4078 /* global data map relocation */ 4079 if (!bpf_object__shndx_is_data(obj, shdr_idx)) { 4080 pr_warn("prog '%s': bad data relo against section '%s'\n", 4081 prog->name, sym_sec_name); 4082 return -LIBBPF_ERRNO__RELOC; 4083 } 4084 for (map_idx = 0; map_idx < nr_maps; map_idx++) { 4085 map = &obj->maps[map_idx]; 4086 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx) 4087 continue; 4088 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n", 4089 prog->name, map_idx, map->name, map->sec_idx, 4090 map->sec_offset, insn_idx); 4091 break; 4092 } 4093 if (map_idx >= nr_maps) { 4094 pr_warn("prog '%s': data relo failed to find map for section '%s'\n", 4095 prog->name, sym_sec_name); 4096 return -LIBBPF_ERRNO__RELOC; 4097 } 4098 4099 reloc_desc->type = RELO_DATA; 4100 reloc_desc->insn_idx = insn_idx; 4101 reloc_desc->map_idx = map_idx; 4102 reloc_desc->sym_off = sym->st_value; 4103 return 0; 4104 } 4105 4106 static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx) 4107 { 4108 return insn_idx >= prog->sec_insn_off && 4109 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt; 4110 } 4111 4112 static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj, 4113 size_t sec_idx, size_t insn_idx) 4114 { 4115 int l = 0, r = obj->nr_programs - 1, m; 4116 struct bpf_program *prog; 4117 4118 if (!obj->nr_programs) 4119 return NULL; 4120 4121 while (l < r) { 4122 m = l + (r - l + 1) / 2; 4123 prog = &obj->programs[m]; 4124 4125 if (prog->sec_idx < sec_idx || 4126 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx)) 4127 l = m; 4128 else 4129 r = m - 1; 4130 } 4131 /* matching program could be at index l, but it still might be the 4132 * wrong one, so we need to double check conditions for the last time 4133 */ 4134 prog = &obj->programs[l]; 4135 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx)) 4136 return prog; 4137 return NULL; 4138 } 4139 4140 static int 4141 bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data) 4142 { 4143 const char *relo_sec_name, *sec_name; 4144 size_t sec_idx = shdr->sh_info, sym_idx; 4145 struct bpf_program *prog; 4146 struct reloc_desc *relos; 4147 int err, i, nrels; 4148 const char *sym_name; 4149 __u32 insn_idx; 4150 Elf_Scn *scn; 4151 Elf_Data *scn_data; 4152 Elf64_Sym *sym; 4153 Elf64_Rel *rel; 4154 4155 if (sec_idx >= obj->efile.sec_cnt) 4156 return -EINVAL; 4157 4158 scn = elf_sec_by_idx(obj, sec_idx); 4159 scn_data = elf_sec_data(obj, scn); 4160 4161 relo_sec_name = elf_sec_str(obj, shdr->sh_name); 4162 sec_name = elf_sec_name(obj, scn); 4163 if (!relo_sec_name || !sec_name) 4164 return -EINVAL; 4165 4166 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n", 4167 relo_sec_name, sec_idx, sec_name); 4168 nrels = shdr->sh_size / shdr->sh_entsize; 4169 4170 for (i = 0; i < nrels; i++) { 4171 rel = elf_rel_by_idx(data, i); 4172 if (!rel) { 4173 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i); 4174 return -LIBBPF_ERRNO__FORMAT; 4175 } 4176 4177 sym_idx = ELF64_R_SYM(rel->r_info); 4178 sym = elf_sym_by_idx(obj, sym_idx); 4179 if (!sym) { 4180 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n", 4181 relo_sec_name, sym_idx, i); 4182 return -LIBBPF_ERRNO__FORMAT; 4183 } 4184 4185 if (sym->st_shndx >= obj->efile.sec_cnt) { 4186 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n", 4187 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i); 4188 return -LIBBPF_ERRNO__FORMAT; 4189 } 4190 4191 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) { 4192 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n", 4193 relo_sec_name, (size_t)rel->r_offset, i); 4194 return -LIBBPF_ERRNO__FORMAT; 4195 } 4196 4197 insn_idx = rel->r_offset / BPF_INSN_SZ; 4198 /* relocations against static functions are recorded as 4199 * relocations against the section that contains a function; 4200 * in such case, symbol will be STT_SECTION and sym.st_name 4201 * will point to empty string (0), so fetch section name 4202 * instead 4203 */ 4204 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0) 4205 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx)); 4206 else 4207 sym_name = elf_sym_str(obj, sym->st_name); 4208 sym_name = sym_name ?: "<?"; 4209 4210 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n", 4211 relo_sec_name, i, insn_idx, sym_name); 4212 4213 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 4214 if (!prog) { 4215 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n", 4216 relo_sec_name, i, sec_name, insn_idx); 4217 continue; 4218 } 4219 4220 relos = libbpf_reallocarray(prog->reloc_desc, 4221 prog->nr_reloc + 1, sizeof(*relos)); 4222 if (!relos) 4223 return -ENOMEM; 4224 prog->reloc_desc = relos; 4225 4226 /* adjust insn_idx to local BPF program frame of reference */ 4227 insn_idx -= prog->sec_insn_off; 4228 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc], 4229 insn_idx, sym_name, sym, rel); 4230 if (err) 4231 return err; 4232 4233 prog->nr_reloc++; 4234 } 4235 return 0; 4236 } 4237 4238 static int bpf_map_find_btf_info(struct bpf_object *obj, struct bpf_map *map) 4239 { 4240 int id; 4241 4242 if (!obj->btf) 4243 return -ENOENT; 4244 4245 /* if it's BTF-defined map, we don't need to search for type IDs. 4246 * For struct_ops map, it does not need btf_key_type_id and 4247 * btf_value_type_id. 4248 */ 4249 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map)) 4250 return 0; 4251 4252 /* 4253 * LLVM annotates global data differently in BTF, that is, 4254 * only as '.data', '.bss' or '.rodata'. 4255 */ 4256 if (!bpf_map__is_internal(map)) 4257 return -ENOENT; 4258 4259 id = btf__find_by_name(obj->btf, map->real_name); 4260 if (id < 0) 4261 return id; 4262 4263 map->btf_key_type_id = 0; 4264 map->btf_value_type_id = id; 4265 return 0; 4266 } 4267 4268 static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info) 4269 { 4270 char file[PATH_MAX], buff[4096]; 4271 FILE *fp; 4272 __u32 val; 4273 int err; 4274 4275 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd); 4276 memset(info, 0, sizeof(*info)); 4277 4278 fp = fopen(file, "r"); 4279 if (!fp) { 4280 err = -errno; 4281 pr_warn("failed to open %s: %d. No procfs support?\n", file, 4282 err); 4283 return err; 4284 } 4285 4286 while (fgets(buff, sizeof(buff), fp)) { 4287 if (sscanf(buff, "map_type:\t%u", &val) == 1) 4288 info->type = val; 4289 else if (sscanf(buff, "key_size:\t%u", &val) == 1) 4290 info->key_size = val; 4291 else if (sscanf(buff, "value_size:\t%u", &val) == 1) 4292 info->value_size = val; 4293 else if (sscanf(buff, "max_entries:\t%u", &val) == 1) 4294 info->max_entries = val; 4295 else if (sscanf(buff, "map_flags:\t%i", &val) == 1) 4296 info->map_flags = val; 4297 } 4298 4299 fclose(fp); 4300 4301 return 0; 4302 } 4303 4304 bool bpf_map__autocreate(const struct bpf_map *map) 4305 { 4306 return map->autocreate; 4307 } 4308 4309 int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate) 4310 { 4311 if (map->obj->loaded) 4312 return libbpf_err(-EBUSY); 4313 4314 map->autocreate = autocreate; 4315 return 0; 4316 } 4317 4318 int bpf_map__reuse_fd(struct bpf_map *map, int fd) 4319 { 4320 struct bpf_map_info info; 4321 __u32 len = sizeof(info), name_len; 4322 int new_fd, err; 4323 char *new_name; 4324 4325 memset(&info, 0, len); 4326 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4327 if (err && errno == EINVAL) 4328 err = bpf_get_map_info_from_fdinfo(fd, &info); 4329 if (err) 4330 return libbpf_err(err); 4331 4332 name_len = strlen(info.name); 4333 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0) 4334 new_name = strdup(map->name); 4335 else 4336 new_name = strdup(info.name); 4337 4338 if (!new_name) 4339 return libbpf_err(-errno); 4340 4341 new_fd = open("/", O_RDONLY | O_CLOEXEC); 4342 if (new_fd < 0) { 4343 err = -errno; 4344 goto err_free_new_name; 4345 } 4346 4347 new_fd = dup3(fd, new_fd, O_CLOEXEC); 4348 if (new_fd < 0) { 4349 err = -errno; 4350 goto err_close_new_fd; 4351 } 4352 4353 err = zclose(map->fd); 4354 if (err) { 4355 err = -errno; 4356 goto err_close_new_fd; 4357 } 4358 free(map->name); 4359 4360 map->fd = new_fd; 4361 map->name = new_name; 4362 map->def.type = info.type; 4363 map->def.key_size = info.key_size; 4364 map->def.value_size = info.value_size; 4365 map->def.max_entries = info.max_entries; 4366 map->def.map_flags = info.map_flags; 4367 map->btf_key_type_id = info.btf_key_type_id; 4368 map->btf_value_type_id = info.btf_value_type_id; 4369 map->reused = true; 4370 map->map_extra = info.map_extra; 4371 4372 return 0; 4373 4374 err_close_new_fd: 4375 close(new_fd); 4376 err_free_new_name: 4377 free(new_name); 4378 return libbpf_err(err); 4379 } 4380 4381 __u32 bpf_map__max_entries(const struct bpf_map *map) 4382 { 4383 return map->def.max_entries; 4384 } 4385 4386 struct bpf_map *bpf_map__inner_map(struct bpf_map *map) 4387 { 4388 if (!bpf_map_type__is_map_in_map(map->def.type)) 4389 return errno = EINVAL, NULL; 4390 4391 return map->inner_map; 4392 } 4393 4394 int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries) 4395 { 4396 if (map->obj->loaded) 4397 return libbpf_err(-EBUSY); 4398 4399 map->def.max_entries = max_entries; 4400 4401 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */ 4402 if (map_is_ringbuf(map)) 4403 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries); 4404 4405 return 0; 4406 } 4407 4408 static int 4409 bpf_object__probe_loading(struct bpf_object *obj) 4410 { 4411 char *cp, errmsg[STRERR_BUFSIZE]; 4412 struct bpf_insn insns[] = { 4413 BPF_MOV64_IMM(BPF_REG_0, 0), 4414 BPF_EXIT_INSN(), 4415 }; 4416 int ret, insn_cnt = ARRAY_SIZE(insns); 4417 4418 if (obj->gen_loader) 4419 return 0; 4420 4421 ret = bump_rlimit_memlock(); 4422 if (ret) 4423 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret); 4424 4425 /* make sure basic loading works */ 4426 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4427 if (ret < 0) 4428 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4429 if (ret < 0) { 4430 ret = errno; 4431 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4432 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF " 4433 "program. Make sure your kernel supports BPF " 4434 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is " 4435 "set to big enough value.\n", __func__, cp, ret); 4436 return -ret; 4437 } 4438 close(ret); 4439 4440 return 0; 4441 } 4442 4443 static int probe_fd(int fd) 4444 { 4445 if (fd >= 0) 4446 close(fd); 4447 return fd >= 0; 4448 } 4449 4450 static int probe_kern_prog_name(void) 4451 { 4452 const size_t attr_sz = offsetofend(union bpf_attr, prog_name); 4453 struct bpf_insn insns[] = { 4454 BPF_MOV64_IMM(BPF_REG_0, 0), 4455 BPF_EXIT_INSN(), 4456 }; 4457 union bpf_attr attr; 4458 int ret; 4459 4460 memset(&attr, 0, attr_sz); 4461 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER; 4462 attr.license = ptr_to_u64("GPL"); 4463 attr.insns = ptr_to_u64(insns); 4464 attr.insn_cnt = (__u32)ARRAY_SIZE(insns); 4465 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name)); 4466 4467 /* make sure loading with name works */ 4468 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS); 4469 return probe_fd(ret); 4470 } 4471 4472 static int probe_kern_global_data(void) 4473 { 4474 char *cp, errmsg[STRERR_BUFSIZE]; 4475 struct bpf_insn insns[] = { 4476 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16), 4477 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42), 4478 BPF_MOV64_IMM(BPF_REG_0, 0), 4479 BPF_EXIT_INSN(), 4480 }; 4481 int ret, map, insn_cnt = ARRAY_SIZE(insns); 4482 4483 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL); 4484 if (map < 0) { 4485 ret = -errno; 4486 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4487 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4488 __func__, cp, -ret); 4489 return ret; 4490 } 4491 4492 insns[0].imm = map; 4493 4494 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4495 close(map); 4496 return probe_fd(ret); 4497 } 4498 4499 static int probe_kern_btf(void) 4500 { 4501 static const char strs[] = "\0int"; 4502 __u32 types[] = { 4503 /* int */ 4504 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4505 }; 4506 4507 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4508 strs, sizeof(strs))); 4509 } 4510 4511 static int probe_kern_btf_func(void) 4512 { 4513 static const char strs[] = "\0int\0x\0a"; 4514 /* void x(int a) {} */ 4515 __u32 types[] = { 4516 /* int */ 4517 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4518 /* FUNC_PROTO */ /* [2] */ 4519 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4520 BTF_PARAM_ENC(7, 1), 4521 /* FUNC x */ /* [3] */ 4522 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2), 4523 }; 4524 4525 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4526 strs, sizeof(strs))); 4527 } 4528 4529 static int probe_kern_btf_func_global(void) 4530 { 4531 static const char strs[] = "\0int\0x\0a"; 4532 /* static void x(int a) {} */ 4533 __u32 types[] = { 4534 /* int */ 4535 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4536 /* FUNC_PROTO */ /* [2] */ 4537 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0), 4538 BTF_PARAM_ENC(7, 1), 4539 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */ 4540 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2), 4541 }; 4542 4543 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4544 strs, sizeof(strs))); 4545 } 4546 4547 static int probe_kern_btf_datasec(void) 4548 { 4549 static const char strs[] = "\0x\0.data"; 4550 /* static int a; */ 4551 __u32 types[] = { 4552 /* int */ 4553 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4554 /* VAR x */ /* [2] */ 4555 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4556 BTF_VAR_STATIC, 4557 /* DATASEC val */ /* [3] */ 4558 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4), 4559 BTF_VAR_SECINFO_ENC(2, 0, 4), 4560 }; 4561 4562 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4563 strs, sizeof(strs))); 4564 } 4565 4566 static int probe_kern_btf_float(void) 4567 { 4568 static const char strs[] = "\0float"; 4569 __u32 types[] = { 4570 /* float */ 4571 BTF_TYPE_FLOAT_ENC(1, 4), 4572 }; 4573 4574 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4575 strs, sizeof(strs))); 4576 } 4577 4578 static int probe_kern_btf_decl_tag(void) 4579 { 4580 static const char strs[] = "\0tag"; 4581 __u32 types[] = { 4582 /* int */ 4583 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4584 /* VAR x */ /* [2] */ 4585 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1), 4586 BTF_VAR_STATIC, 4587 /* attr */ 4588 BTF_TYPE_DECL_TAG_ENC(1, 2, -1), 4589 }; 4590 4591 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4592 strs, sizeof(strs))); 4593 } 4594 4595 static int probe_kern_btf_type_tag(void) 4596 { 4597 static const char strs[] = "\0tag"; 4598 __u32 types[] = { 4599 /* int */ 4600 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */ 4601 /* attr */ 4602 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */ 4603 /* ptr */ 4604 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */ 4605 }; 4606 4607 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4608 strs, sizeof(strs))); 4609 } 4610 4611 static int probe_kern_array_mmap(void) 4612 { 4613 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE); 4614 int fd; 4615 4616 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts); 4617 return probe_fd(fd); 4618 } 4619 4620 static int probe_kern_exp_attach_type(void) 4621 { 4622 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE); 4623 struct bpf_insn insns[] = { 4624 BPF_MOV64_IMM(BPF_REG_0, 0), 4625 BPF_EXIT_INSN(), 4626 }; 4627 int fd, insn_cnt = ARRAY_SIZE(insns); 4628 4629 /* use any valid combination of program type and (optional) 4630 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS) 4631 * to see if kernel supports expected_attach_type field for 4632 * BPF_PROG_LOAD command 4633 */ 4634 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts); 4635 return probe_fd(fd); 4636 } 4637 4638 static int probe_kern_probe_read_kernel(void) 4639 { 4640 struct bpf_insn insns[] = { 4641 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */ 4642 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */ 4643 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */ 4644 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */ 4645 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel), 4646 BPF_EXIT_INSN(), 4647 }; 4648 int fd, insn_cnt = ARRAY_SIZE(insns); 4649 4650 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL); 4651 return probe_fd(fd); 4652 } 4653 4654 static int probe_prog_bind_map(void) 4655 { 4656 char *cp, errmsg[STRERR_BUFSIZE]; 4657 struct bpf_insn insns[] = { 4658 BPF_MOV64_IMM(BPF_REG_0, 0), 4659 BPF_EXIT_INSN(), 4660 }; 4661 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns); 4662 4663 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL); 4664 if (map < 0) { 4665 ret = -errno; 4666 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg)); 4667 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n", 4668 __func__, cp, -ret); 4669 return ret; 4670 } 4671 4672 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL); 4673 if (prog < 0) { 4674 close(map); 4675 return 0; 4676 } 4677 4678 ret = bpf_prog_bind_map(prog, map, NULL); 4679 4680 close(map); 4681 close(prog); 4682 4683 return ret >= 0; 4684 } 4685 4686 static int probe_module_btf(void) 4687 { 4688 static const char strs[] = "\0int"; 4689 __u32 types[] = { 4690 /* int */ 4691 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), 4692 }; 4693 struct bpf_btf_info info; 4694 __u32 len = sizeof(info); 4695 char name[16]; 4696 int fd, err; 4697 4698 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs)); 4699 if (fd < 0) 4700 return 0; /* BTF not supported at all */ 4701 4702 memset(&info, 0, sizeof(info)); 4703 info.name = ptr_to_u64(name); 4704 info.name_len = sizeof(name); 4705 4706 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer; 4707 * kernel's module BTF support coincides with support for 4708 * name/name_len fields in struct bpf_btf_info. 4709 */ 4710 err = bpf_obj_get_info_by_fd(fd, &info, &len); 4711 close(fd); 4712 return !err; 4713 } 4714 4715 static int probe_perf_link(void) 4716 { 4717 struct bpf_insn insns[] = { 4718 BPF_MOV64_IMM(BPF_REG_0, 0), 4719 BPF_EXIT_INSN(), 4720 }; 4721 int prog_fd, link_fd, err; 4722 4723 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", 4724 insns, ARRAY_SIZE(insns), NULL); 4725 if (prog_fd < 0) 4726 return -errno; 4727 4728 /* use invalid perf_event FD to get EBADF, if link is supported; 4729 * otherwise EINVAL should be returned 4730 */ 4731 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL); 4732 err = -errno; /* close() can clobber errno */ 4733 4734 if (link_fd >= 0) 4735 close(link_fd); 4736 close(prog_fd); 4737 4738 return link_fd < 0 && err == -EBADF; 4739 } 4740 4741 static int probe_kern_bpf_cookie(void) 4742 { 4743 struct bpf_insn insns[] = { 4744 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie), 4745 BPF_EXIT_INSN(), 4746 }; 4747 int ret, insn_cnt = ARRAY_SIZE(insns); 4748 4749 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL); 4750 return probe_fd(ret); 4751 } 4752 4753 static int probe_kern_btf_enum64(void) 4754 { 4755 static const char strs[] = "\0enum64"; 4756 __u32 types[] = { 4757 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8), 4758 }; 4759 4760 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types), 4761 strs, sizeof(strs))); 4762 } 4763 4764 static int probe_kern_syscall_wrapper(void); 4765 4766 enum kern_feature_result { 4767 FEAT_UNKNOWN = 0, 4768 FEAT_SUPPORTED = 1, 4769 FEAT_MISSING = 2, 4770 }; 4771 4772 typedef int (*feature_probe_fn)(void); 4773 4774 static struct kern_feature_desc { 4775 const char *desc; 4776 feature_probe_fn probe; 4777 enum kern_feature_result res; 4778 } feature_probes[__FEAT_CNT] = { 4779 [FEAT_PROG_NAME] = { 4780 "BPF program name", probe_kern_prog_name, 4781 }, 4782 [FEAT_GLOBAL_DATA] = { 4783 "global variables", probe_kern_global_data, 4784 }, 4785 [FEAT_BTF] = { 4786 "minimal BTF", probe_kern_btf, 4787 }, 4788 [FEAT_BTF_FUNC] = { 4789 "BTF functions", probe_kern_btf_func, 4790 }, 4791 [FEAT_BTF_GLOBAL_FUNC] = { 4792 "BTF global function", probe_kern_btf_func_global, 4793 }, 4794 [FEAT_BTF_DATASEC] = { 4795 "BTF data section and variable", probe_kern_btf_datasec, 4796 }, 4797 [FEAT_ARRAY_MMAP] = { 4798 "ARRAY map mmap()", probe_kern_array_mmap, 4799 }, 4800 [FEAT_EXP_ATTACH_TYPE] = { 4801 "BPF_PROG_LOAD expected_attach_type attribute", 4802 probe_kern_exp_attach_type, 4803 }, 4804 [FEAT_PROBE_READ_KERN] = { 4805 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel, 4806 }, 4807 [FEAT_PROG_BIND_MAP] = { 4808 "BPF_PROG_BIND_MAP support", probe_prog_bind_map, 4809 }, 4810 [FEAT_MODULE_BTF] = { 4811 "module BTF support", probe_module_btf, 4812 }, 4813 [FEAT_BTF_FLOAT] = { 4814 "BTF_KIND_FLOAT support", probe_kern_btf_float, 4815 }, 4816 [FEAT_PERF_LINK] = { 4817 "BPF perf link support", probe_perf_link, 4818 }, 4819 [FEAT_BTF_DECL_TAG] = { 4820 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag, 4821 }, 4822 [FEAT_BTF_TYPE_TAG] = { 4823 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag, 4824 }, 4825 [FEAT_MEMCG_ACCOUNT] = { 4826 "memcg-based memory accounting", probe_memcg_account, 4827 }, 4828 [FEAT_BPF_COOKIE] = { 4829 "BPF cookie support", probe_kern_bpf_cookie, 4830 }, 4831 [FEAT_BTF_ENUM64] = { 4832 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64, 4833 }, 4834 [FEAT_SYSCALL_WRAPPER] = { 4835 "Kernel using syscall wrapper", probe_kern_syscall_wrapper, 4836 }, 4837 }; 4838 4839 bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id) 4840 { 4841 struct kern_feature_desc *feat = &feature_probes[feat_id]; 4842 int ret; 4843 4844 if (obj && obj->gen_loader) 4845 /* To generate loader program assume the latest kernel 4846 * to avoid doing extra prog_load, map_create syscalls. 4847 */ 4848 return true; 4849 4850 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) { 4851 ret = feat->probe(); 4852 if (ret > 0) { 4853 WRITE_ONCE(feat->res, FEAT_SUPPORTED); 4854 } else if (ret == 0) { 4855 WRITE_ONCE(feat->res, FEAT_MISSING); 4856 } else { 4857 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret); 4858 WRITE_ONCE(feat->res, FEAT_MISSING); 4859 } 4860 } 4861 4862 return READ_ONCE(feat->res) == FEAT_SUPPORTED; 4863 } 4864 4865 static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd) 4866 { 4867 struct bpf_map_info map_info; 4868 char msg[STRERR_BUFSIZE]; 4869 __u32 map_info_len = sizeof(map_info); 4870 int err; 4871 4872 memset(&map_info, 0, map_info_len); 4873 err = bpf_obj_get_info_by_fd(map_fd, &map_info, &map_info_len); 4874 if (err && errno == EINVAL) 4875 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info); 4876 if (err) { 4877 pr_warn("failed to get map info for map FD %d: %s\n", map_fd, 4878 libbpf_strerror_r(errno, msg, sizeof(msg))); 4879 return false; 4880 } 4881 4882 return (map_info.type == map->def.type && 4883 map_info.key_size == map->def.key_size && 4884 map_info.value_size == map->def.value_size && 4885 map_info.max_entries == map->def.max_entries && 4886 map_info.map_flags == map->def.map_flags && 4887 map_info.map_extra == map->map_extra); 4888 } 4889 4890 static int 4891 bpf_object__reuse_map(struct bpf_map *map) 4892 { 4893 char *cp, errmsg[STRERR_BUFSIZE]; 4894 int err, pin_fd; 4895 4896 pin_fd = bpf_obj_get(map->pin_path); 4897 if (pin_fd < 0) { 4898 err = -errno; 4899 if (err == -ENOENT) { 4900 pr_debug("found no pinned map to reuse at '%s'\n", 4901 map->pin_path); 4902 return 0; 4903 } 4904 4905 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 4906 pr_warn("couldn't retrieve pinned map '%s': %s\n", 4907 map->pin_path, cp); 4908 return err; 4909 } 4910 4911 if (!map_is_reuse_compat(map, pin_fd)) { 4912 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n", 4913 map->pin_path); 4914 close(pin_fd); 4915 return -EINVAL; 4916 } 4917 4918 err = bpf_map__reuse_fd(map, pin_fd); 4919 close(pin_fd); 4920 if (err) { 4921 return err; 4922 } 4923 map->pinned = true; 4924 pr_debug("reused pinned map at '%s'\n", map->pin_path); 4925 4926 return 0; 4927 } 4928 4929 static int 4930 bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map) 4931 { 4932 enum libbpf_map_type map_type = map->libbpf_type; 4933 char *cp, errmsg[STRERR_BUFSIZE]; 4934 int err, zero = 0; 4935 4936 if (obj->gen_loader) { 4937 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps, 4938 map->mmaped, map->def.value_size); 4939 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) 4940 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps); 4941 return 0; 4942 } 4943 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0); 4944 if (err) { 4945 err = -errno; 4946 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4947 pr_warn("Error setting initial map(%s) contents: %s\n", 4948 map->name, cp); 4949 return err; 4950 } 4951 4952 /* Freeze .rodata and .kconfig map as read-only from syscall side. */ 4953 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) { 4954 err = bpf_map_freeze(map->fd); 4955 if (err) { 4956 err = -errno; 4957 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 4958 pr_warn("Error freezing map(%s) as read-only: %s\n", 4959 map->name, cp); 4960 return err; 4961 } 4962 } 4963 return 0; 4964 } 4965 4966 static void bpf_map__destroy(struct bpf_map *map); 4967 4968 static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner) 4969 { 4970 LIBBPF_OPTS(bpf_map_create_opts, create_attr); 4971 struct bpf_map_def *def = &map->def; 4972 const char *map_name = NULL; 4973 int err = 0; 4974 4975 if (kernel_supports(obj, FEAT_PROG_NAME)) 4976 map_name = map->name; 4977 create_attr.map_ifindex = map->map_ifindex; 4978 create_attr.map_flags = def->map_flags; 4979 create_attr.numa_node = map->numa_node; 4980 create_attr.map_extra = map->map_extra; 4981 4982 if (bpf_map__is_struct_ops(map)) 4983 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id; 4984 4985 if (obj->btf && btf__fd(obj->btf) >= 0) { 4986 create_attr.btf_fd = btf__fd(obj->btf); 4987 create_attr.btf_key_type_id = map->btf_key_type_id; 4988 create_attr.btf_value_type_id = map->btf_value_type_id; 4989 } 4990 4991 if (bpf_map_type__is_map_in_map(def->type)) { 4992 if (map->inner_map) { 4993 err = bpf_object__create_map(obj, map->inner_map, true); 4994 if (err) { 4995 pr_warn("map '%s': failed to create inner map: %d\n", 4996 map->name, err); 4997 return err; 4998 } 4999 map->inner_map_fd = bpf_map__fd(map->inner_map); 5000 } 5001 if (map->inner_map_fd >= 0) 5002 create_attr.inner_map_fd = map->inner_map_fd; 5003 } 5004 5005 switch (def->type) { 5006 case BPF_MAP_TYPE_PERF_EVENT_ARRAY: 5007 case BPF_MAP_TYPE_CGROUP_ARRAY: 5008 case BPF_MAP_TYPE_STACK_TRACE: 5009 case BPF_MAP_TYPE_ARRAY_OF_MAPS: 5010 case BPF_MAP_TYPE_HASH_OF_MAPS: 5011 case BPF_MAP_TYPE_DEVMAP: 5012 case BPF_MAP_TYPE_DEVMAP_HASH: 5013 case BPF_MAP_TYPE_CPUMAP: 5014 case BPF_MAP_TYPE_XSKMAP: 5015 case BPF_MAP_TYPE_SOCKMAP: 5016 case BPF_MAP_TYPE_SOCKHASH: 5017 case BPF_MAP_TYPE_QUEUE: 5018 case BPF_MAP_TYPE_STACK: 5019 create_attr.btf_fd = 0; 5020 create_attr.btf_key_type_id = 0; 5021 create_attr.btf_value_type_id = 0; 5022 map->btf_key_type_id = 0; 5023 map->btf_value_type_id = 0; 5024 default: 5025 break; 5026 } 5027 5028 if (obj->gen_loader) { 5029 bpf_gen__map_create(obj->gen_loader, def->type, map_name, 5030 def->key_size, def->value_size, def->max_entries, 5031 &create_attr, is_inner ? -1 : map - obj->maps); 5032 /* Pretend to have valid FD to pass various fd >= 0 checks. 5033 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually. 5034 */ 5035 map->fd = 0; 5036 } else { 5037 map->fd = bpf_map_create(def->type, map_name, 5038 def->key_size, def->value_size, 5039 def->max_entries, &create_attr); 5040 } 5041 if (map->fd < 0 && (create_attr.btf_key_type_id || 5042 create_attr.btf_value_type_id)) { 5043 char *cp, errmsg[STRERR_BUFSIZE]; 5044 5045 err = -errno; 5046 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5047 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n", 5048 map->name, cp, err); 5049 create_attr.btf_fd = 0; 5050 create_attr.btf_key_type_id = 0; 5051 create_attr.btf_value_type_id = 0; 5052 map->btf_key_type_id = 0; 5053 map->btf_value_type_id = 0; 5054 map->fd = bpf_map_create(def->type, map_name, 5055 def->key_size, def->value_size, 5056 def->max_entries, &create_attr); 5057 } 5058 5059 err = map->fd < 0 ? -errno : 0; 5060 5061 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) { 5062 if (obj->gen_loader) 5063 map->inner_map->fd = -1; 5064 bpf_map__destroy(map->inner_map); 5065 zfree(&map->inner_map); 5066 } 5067 5068 return err; 5069 } 5070 5071 static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map) 5072 { 5073 const struct bpf_map *targ_map; 5074 unsigned int i; 5075 int fd, err = 0; 5076 5077 for (i = 0; i < map->init_slots_sz; i++) { 5078 if (!map->init_slots[i]) 5079 continue; 5080 5081 targ_map = map->init_slots[i]; 5082 fd = bpf_map__fd(targ_map); 5083 5084 if (obj->gen_loader) { 5085 bpf_gen__populate_outer_map(obj->gen_loader, 5086 map - obj->maps, i, 5087 targ_map - obj->maps); 5088 } else { 5089 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5090 } 5091 if (err) { 5092 err = -errno; 5093 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n", 5094 map->name, i, targ_map->name, fd, err); 5095 return err; 5096 } 5097 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n", 5098 map->name, i, targ_map->name, fd); 5099 } 5100 5101 zfree(&map->init_slots); 5102 map->init_slots_sz = 0; 5103 5104 return 0; 5105 } 5106 5107 static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map) 5108 { 5109 const struct bpf_program *targ_prog; 5110 unsigned int i; 5111 int fd, err; 5112 5113 if (obj->gen_loader) 5114 return -ENOTSUP; 5115 5116 for (i = 0; i < map->init_slots_sz; i++) { 5117 if (!map->init_slots[i]) 5118 continue; 5119 5120 targ_prog = map->init_slots[i]; 5121 fd = bpf_program__fd(targ_prog); 5122 5123 err = bpf_map_update_elem(map->fd, &i, &fd, 0); 5124 if (err) { 5125 err = -errno; 5126 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n", 5127 map->name, i, targ_prog->name, fd, err); 5128 return err; 5129 } 5130 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n", 5131 map->name, i, targ_prog->name, fd); 5132 } 5133 5134 zfree(&map->init_slots); 5135 map->init_slots_sz = 0; 5136 5137 return 0; 5138 } 5139 5140 static int bpf_object_init_prog_arrays(struct bpf_object *obj) 5141 { 5142 struct bpf_map *map; 5143 int i, err; 5144 5145 for (i = 0; i < obj->nr_maps; i++) { 5146 map = &obj->maps[i]; 5147 5148 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY) 5149 continue; 5150 5151 err = init_prog_array_slots(obj, map); 5152 if (err < 0) { 5153 zclose(map->fd); 5154 return err; 5155 } 5156 } 5157 return 0; 5158 } 5159 5160 static int map_set_def_max_entries(struct bpf_map *map) 5161 { 5162 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) { 5163 int nr_cpus; 5164 5165 nr_cpus = libbpf_num_possible_cpus(); 5166 if (nr_cpus < 0) { 5167 pr_warn("map '%s': failed to determine number of system CPUs: %d\n", 5168 map->name, nr_cpus); 5169 return nr_cpus; 5170 } 5171 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus); 5172 map->def.max_entries = nr_cpus; 5173 } 5174 5175 return 0; 5176 } 5177 5178 static int 5179 bpf_object__create_maps(struct bpf_object *obj) 5180 { 5181 struct bpf_map *map; 5182 char *cp, errmsg[STRERR_BUFSIZE]; 5183 unsigned int i, j; 5184 int err; 5185 bool retried; 5186 5187 for (i = 0; i < obj->nr_maps; i++) { 5188 map = &obj->maps[i]; 5189 5190 /* To support old kernels, we skip creating global data maps 5191 * (.rodata, .data, .kconfig, etc); later on, during program 5192 * loading, if we detect that at least one of the to-be-loaded 5193 * programs is referencing any global data map, we'll error 5194 * out with program name and relocation index logged. 5195 * This approach allows to accommodate Clang emitting 5196 * unnecessary .rodata.str1.1 sections for string literals, 5197 * but also it allows to have CO-RE applications that use 5198 * global variables in some of BPF programs, but not others. 5199 * If those global variable-using programs are not loaded at 5200 * runtime due to bpf_program__set_autoload(prog, false), 5201 * bpf_object loading will succeed just fine even on old 5202 * kernels. 5203 */ 5204 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA)) 5205 map->autocreate = false; 5206 5207 if (!map->autocreate) { 5208 pr_debug("map '%s': skipped auto-creating...\n", map->name); 5209 continue; 5210 } 5211 5212 err = map_set_def_max_entries(map); 5213 if (err) 5214 goto err_out; 5215 5216 retried = false; 5217 retry: 5218 if (map->pin_path) { 5219 err = bpf_object__reuse_map(map); 5220 if (err) { 5221 pr_warn("map '%s': error reusing pinned map\n", 5222 map->name); 5223 goto err_out; 5224 } 5225 if (retried && map->fd < 0) { 5226 pr_warn("map '%s': cannot find pinned map\n", 5227 map->name); 5228 err = -ENOENT; 5229 goto err_out; 5230 } 5231 } 5232 5233 if (map->fd >= 0) { 5234 pr_debug("map '%s': skipping creation (preset fd=%d)\n", 5235 map->name, map->fd); 5236 } else { 5237 err = bpf_object__create_map(obj, map, false); 5238 if (err) 5239 goto err_out; 5240 5241 pr_debug("map '%s': created successfully, fd=%d\n", 5242 map->name, map->fd); 5243 5244 if (bpf_map__is_internal(map)) { 5245 err = bpf_object__populate_internal_map(obj, map); 5246 if (err < 0) { 5247 zclose(map->fd); 5248 goto err_out; 5249 } 5250 } 5251 5252 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) { 5253 err = init_map_in_map_slots(obj, map); 5254 if (err < 0) { 5255 zclose(map->fd); 5256 goto err_out; 5257 } 5258 } 5259 } 5260 5261 if (map->pin_path && !map->pinned) { 5262 err = bpf_map__pin(map, NULL); 5263 if (err) { 5264 zclose(map->fd); 5265 if (!retried && err == -EEXIST) { 5266 retried = true; 5267 goto retry; 5268 } 5269 pr_warn("map '%s': failed to auto-pin at '%s': %d\n", 5270 map->name, map->pin_path, err); 5271 goto err_out; 5272 } 5273 } 5274 } 5275 5276 return 0; 5277 5278 err_out: 5279 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 5280 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err); 5281 pr_perm_msg(err); 5282 for (j = 0; j < i; j++) 5283 zclose(obj->maps[j].fd); 5284 return err; 5285 } 5286 5287 static bool bpf_core_is_flavor_sep(const char *s) 5288 { 5289 /* check X___Y name pattern, where X and Y are not underscores */ 5290 return s[0] != '_' && /* X */ 5291 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */ 5292 s[4] != '_'; /* Y */ 5293 } 5294 5295 /* Given 'some_struct_name___with_flavor' return the length of a name prefix 5296 * before last triple underscore. Struct name part after last triple 5297 * underscore is ignored by BPF CO-RE relocation during relocation matching. 5298 */ 5299 size_t bpf_core_essential_name_len(const char *name) 5300 { 5301 size_t n = strlen(name); 5302 int i; 5303 5304 for (i = n - 5; i >= 0; i--) { 5305 if (bpf_core_is_flavor_sep(name + i)) 5306 return i + 1; 5307 } 5308 return n; 5309 } 5310 5311 void bpf_core_free_cands(struct bpf_core_cand_list *cands) 5312 { 5313 if (!cands) 5314 return; 5315 5316 free(cands->cands); 5317 free(cands); 5318 } 5319 5320 int bpf_core_add_cands(struct bpf_core_cand *local_cand, 5321 size_t local_essent_len, 5322 const struct btf *targ_btf, 5323 const char *targ_btf_name, 5324 int targ_start_id, 5325 struct bpf_core_cand_list *cands) 5326 { 5327 struct bpf_core_cand *new_cands, *cand; 5328 const struct btf_type *t, *local_t; 5329 const char *targ_name, *local_name; 5330 size_t targ_essent_len; 5331 int n, i; 5332 5333 local_t = btf__type_by_id(local_cand->btf, local_cand->id); 5334 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off); 5335 5336 n = btf__type_cnt(targ_btf); 5337 for (i = targ_start_id; i < n; i++) { 5338 t = btf__type_by_id(targ_btf, i); 5339 if (!btf_kind_core_compat(t, local_t)) 5340 continue; 5341 5342 targ_name = btf__name_by_offset(targ_btf, t->name_off); 5343 if (str_is_empty(targ_name)) 5344 continue; 5345 5346 targ_essent_len = bpf_core_essential_name_len(targ_name); 5347 if (targ_essent_len != local_essent_len) 5348 continue; 5349 5350 if (strncmp(local_name, targ_name, local_essent_len) != 0) 5351 continue; 5352 5353 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n", 5354 local_cand->id, btf_kind_str(local_t), 5355 local_name, i, btf_kind_str(t), targ_name, 5356 targ_btf_name); 5357 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1, 5358 sizeof(*cands->cands)); 5359 if (!new_cands) 5360 return -ENOMEM; 5361 5362 cand = &new_cands[cands->len]; 5363 cand->btf = targ_btf; 5364 cand->id = i; 5365 5366 cands->cands = new_cands; 5367 cands->len++; 5368 } 5369 return 0; 5370 } 5371 5372 static int load_module_btfs(struct bpf_object *obj) 5373 { 5374 struct bpf_btf_info info; 5375 struct module_btf *mod_btf; 5376 struct btf *btf; 5377 char name[64]; 5378 __u32 id = 0, len; 5379 int err, fd; 5380 5381 if (obj->btf_modules_loaded) 5382 return 0; 5383 5384 if (obj->gen_loader) 5385 return 0; 5386 5387 /* don't do this again, even if we find no module BTFs */ 5388 obj->btf_modules_loaded = true; 5389 5390 /* kernel too old to support module BTFs */ 5391 if (!kernel_supports(obj, FEAT_MODULE_BTF)) 5392 return 0; 5393 5394 while (true) { 5395 err = bpf_btf_get_next_id(id, &id); 5396 if (err && errno == ENOENT) 5397 return 0; 5398 if (err) { 5399 err = -errno; 5400 pr_warn("failed to iterate BTF objects: %d\n", err); 5401 return err; 5402 } 5403 5404 fd = bpf_btf_get_fd_by_id(id); 5405 if (fd < 0) { 5406 if (errno == ENOENT) 5407 continue; /* expected race: BTF was unloaded */ 5408 err = -errno; 5409 pr_warn("failed to get BTF object #%d FD: %d\n", id, err); 5410 return err; 5411 } 5412 5413 len = sizeof(info); 5414 memset(&info, 0, sizeof(info)); 5415 info.name = ptr_to_u64(name); 5416 info.name_len = sizeof(name); 5417 5418 err = bpf_obj_get_info_by_fd(fd, &info, &len); 5419 if (err) { 5420 err = -errno; 5421 pr_warn("failed to get BTF object #%d info: %d\n", id, err); 5422 goto err_out; 5423 } 5424 5425 /* ignore non-module BTFs */ 5426 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) { 5427 close(fd); 5428 continue; 5429 } 5430 5431 btf = btf_get_from_fd(fd, obj->btf_vmlinux); 5432 err = libbpf_get_error(btf); 5433 if (err) { 5434 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n", 5435 name, id, err); 5436 goto err_out; 5437 } 5438 5439 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap, 5440 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1); 5441 if (err) 5442 goto err_out; 5443 5444 mod_btf = &obj->btf_modules[obj->btf_module_cnt++]; 5445 5446 mod_btf->btf = btf; 5447 mod_btf->id = id; 5448 mod_btf->fd = fd; 5449 mod_btf->name = strdup(name); 5450 if (!mod_btf->name) { 5451 err = -ENOMEM; 5452 goto err_out; 5453 } 5454 continue; 5455 5456 err_out: 5457 close(fd); 5458 return err; 5459 } 5460 5461 return 0; 5462 } 5463 5464 static struct bpf_core_cand_list * 5465 bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id) 5466 { 5467 struct bpf_core_cand local_cand = {}; 5468 struct bpf_core_cand_list *cands; 5469 const struct btf *main_btf; 5470 const struct btf_type *local_t; 5471 const char *local_name; 5472 size_t local_essent_len; 5473 int err, i; 5474 5475 local_cand.btf = local_btf; 5476 local_cand.id = local_type_id; 5477 local_t = btf__type_by_id(local_btf, local_type_id); 5478 if (!local_t) 5479 return ERR_PTR(-EINVAL); 5480 5481 local_name = btf__name_by_offset(local_btf, local_t->name_off); 5482 if (str_is_empty(local_name)) 5483 return ERR_PTR(-EINVAL); 5484 local_essent_len = bpf_core_essential_name_len(local_name); 5485 5486 cands = calloc(1, sizeof(*cands)); 5487 if (!cands) 5488 return ERR_PTR(-ENOMEM); 5489 5490 /* Attempt to find target candidates in vmlinux BTF first */ 5491 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux; 5492 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands); 5493 if (err) 5494 goto err_out; 5495 5496 /* if vmlinux BTF has any candidate, don't got for module BTFs */ 5497 if (cands->len) 5498 return cands; 5499 5500 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */ 5501 if (obj->btf_vmlinux_override) 5502 return cands; 5503 5504 /* now look through module BTFs, trying to still find candidates */ 5505 err = load_module_btfs(obj); 5506 if (err) 5507 goto err_out; 5508 5509 for (i = 0; i < obj->btf_module_cnt; i++) { 5510 err = bpf_core_add_cands(&local_cand, local_essent_len, 5511 obj->btf_modules[i].btf, 5512 obj->btf_modules[i].name, 5513 btf__type_cnt(obj->btf_vmlinux), 5514 cands); 5515 if (err) 5516 goto err_out; 5517 } 5518 5519 return cands; 5520 err_out: 5521 bpf_core_free_cands(cands); 5522 return ERR_PTR(err); 5523 } 5524 5525 /* Check local and target types for compatibility. This check is used for 5526 * type-based CO-RE relocations and follow slightly different rules than 5527 * field-based relocations. This function assumes that root types were already 5528 * checked for name match. Beyond that initial root-level name check, names 5529 * are completely ignored. Compatibility rules are as follows: 5530 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but 5531 * kind should match for local and target types (i.e., STRUCT is not 5532 * compatible with UNION); 5533 * - for ENUMs, the size is ignored; 5534 * - for INT, size and signedness are ignored; 5535 * - for ARRAY, dimensionality is ignored, element types are checked for 5536 * compatibility recursively; 5537 * - CONST/VOLATILE/RESTRICT modifiers are ignored; 5538 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible; 5539 * - FUNC_PROTOs are compatible if they have compatible signature: same 5540 * number of input args and compatible return and argument types. 5541 * These rules are not set in stone and probably will be adjusted as we get 5542 * more experience with using BPF CO-RE relocations. 5543 */ 5544 int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id, 5545 const struct btf *targ_btf, __u32 targ_id) 5546 { 5547 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32); 5548 } 5549 5550 int bpf_core_types_match(const struct btf *local_btf, __u32 local_id, 5551 const struct btf *targ_btf, __u32 targ_id) 5552 { 5553 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32); 5554 } 5555 5556 static size_t bpf_core_hash_fn(const void *key, void *ctx) 5557 { 5558 return (size_t)key; 5559 } 5560 5561 static bool bpf_core_equal_fn(const void *k1, const void *k2, void *ctx) 5562 { 5563 return k1 == k2; 5564 } 5565 5566 static void *u32_as_hash_key(__u32 x) 5567 { 5568 return (void *)(uintptr_t)x; 5569 } 5570 5571 static int record_relo_core(struct bpf_program *prog, 5572 const struct bpf_core_relo *core_relo, int insn_idx) 5573 { 5574 struct reloc_desc *relos, *relo; 5575 5576 relos = libbpf_reallocarray(prog->reloc_desc, 5577 prog->nr_reloc + 1, sizeof(*relos)); 5578 if (!relos) 5579 return -ENOMEM; 5580 relo = &relos[prog->nr_reloc]; 5581 relo->type = RELO_CORE; 5582 relo->insn_idx = insn_idx; 5583 relo->core_relo = core_relo; 5584 prog->reloc_desc = relos; 5585 prog->nr_reloc++; 5586 return 0; 5587 } 5588 5589 static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx) 5590 { 5591 struct reloc_desc *relo; 5592 int i; 5593 5594 for (i = 0; i < prog->nr_reloc; i++) { 5595 relo = &prog->reloc_desc[i]; 5596 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx) 5597 continue; 5598 5599 return relo->core_relo; 5600 } 5601 5602 return NULL; 5603 } 5604 5605 static int bpf_core_resolve_relo(struct bpf_program *prog, 5606 const struct bpf_core_relo *relo, 5607 int relo_idx, 5608 const struct btf *local_btf, 5609 struct hashmap *cand_cache, 5610 struct bpf_core_relo_res *targ_res) 5611 { 5612 struct bpf_core_spec specs_scratch[3] = {}; 5613 const void *type_key = u32_as_hash_key(relo->type_id); 5614 struct bpf_core_cand_list *cands = NULL; 5615 const char *prog_name = prog->name; 5616 const struct btf_type *local_type; 5617 const char *local_name; 5618 __u32 local_id = relo->type_id; 5619 int err; 5620 5621 local_type = btf__type_by_id(local_btf, local_id); 5622 if (!local_type) 5623 return -EINVAL; 5624 5625 local_name = btf__name_by_offset(local_btf, local_type->name_off); 5626 if (!local_name) 5627 return -EINVAL; 5628 5629 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL && 5630 !hashmap__find(cand_cache, type_key, (void **)&cands)) { 5631 cands = bpf_core_find_cands(prog->obj, local_btf, local_id); 5632 if (IS_ERR(cands)) { 5633 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n", 5634 prog_name, relo_idx, local_id, btf_kind_str(local_type), 5635 local_name, PTR_ERR(cands)); 5636 return PTR_ERR(cands); 5637 } 5638 err = hashmap__set(cand_cache, type_key, cands, NULL, NULL); 5639 if (err) { 5640 bpf_core_free_cands(cands); 5641 return err; 5642 } 5643 } 5644 5645 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch, 5646 targ_res); 5647 } 5648 5649 static int 5650 bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path) 5651 { 5652 const struct btf_ext_info_sec *sec; 5653 struct bpf_core_relo_res targ_res; 5654 const struct bpf_core_relo *rec; 5655 const struct btf_ext_info *seg; 5656 struct hashmap_entry *entry; 5657 struct hashmap *cand_cache = NULL; 5658 struct bpf_program *prog; 5659 struct bpf_insn *insn; 5660 const char *sec_name; 5661 int i, err = 0, insn_idx, sec_idx, sec_num; 5662 5663 if (obj->btf_ext->core_relo_info.len == 0) 5664 return 0; 5665 5666 if (targ_btf_path) { 5667 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL); 5668 err = libbpf_get_error(obj->btf_vmlinux_override); 5669 if (err) { 5670 pr_warn("failed to parse target BTF: %d\n", err); 5671 return err; 5672 } 5673 } 5674 5675 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL); 5676 if (IS_ERR(cand_cache)) { 5677 err = PTR_ERR(cand_cache); 5678 goto out; 5679 } 5680 5681 seg = &obj->btf_ext->core_relo_info; 5682 sec_num = 0; 5683 for_each_btf_ext_sec(seg, sec) { 5684 sec_idx = seg->sec_idxs[sec_num]; 5685 sec_num++; 5686 5687 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off); 5688 if (str_is_empty(sec_name)) { 5689 err = -EINVAL; 5690 goto out; 5691 } 5692 5693 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info); 5694 5695 for_each_btf_ext_rec(seg, sec, i, rec) { 5696 if (rec->insn_off % BPF_INSN_SZ) 5697 return -EINVAL; 5698 insn_idx = rec->insn_off / BPF_INSN_SZ; 5699 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx); 5700 if (!prog) { 5701 /* When __weak subprog is "overridden" by another instance 5702 * of the subprog from a different object file, linker still 5703 * appends all the .BTF.ext info that used to belong to that 5704 * eliminated subprogram. 5705 * This is similar to what x86-64 linker does for relocations. 5706 * So just ignore such relocations just like we ignore 5707 * subprog instructions when discovering subprograms. 5708 */ 5709 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n", 5710 sec_name, i, insn_idx); 5711 continue; 5712 } 5713 /* no need to apply CO-RE relocation if the program is 5714 * not going to be loaded 5715 */ 5716 if (!prog->autoload) 5717 continue; 5718 5719 /* adjust insn_idx from section frame of reference to the local 5720 * program's frame of reference; (sub-)program code is not yet 5721 * relocated, so it's enough to just subtract in-section offset 5722 */ 5723 insn_idx = insn_idx - prog->sec_insn_off; 5724 if (insn_idx >= prog->insns_cnt) 5725 return -EINVAL; 5726 insn = &prog->insns[insn_idx]; 5727 5728 err = record_relo_core(prog, rec, insn_idx); 5729 if (err) { 5730 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n", 5731 prog->name, i, err); 5732 goto out; 5733 } 5734 5735 if (prog->obj->gen_loader) 5736 continue; 5737 5738 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res); 5739 if (err) { 5740 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n", 5741 prog->name, i, err); 5742 goto out; 5743 } 5744 5745 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res); 5746 if (err) { 5747 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n", 5748 prog->name, i, insn_idx, err); 5749 goto out; 5750 } 5751 } 5752 } 5753 5754 out: 5755 /* obj->btf_vmlinux and module BTFs are freed after object load */ 5756 btf__free(obj->btf_vmlinux_override); 5757 obj->btf_vmlinux_override = NULL; 5758 5759 if (!IS_ERR_OR_NULL(cand_cache)) { 5760 hashmap__for_each_entry(cand_cache, entry, i) { 5761 bpf_core_free_cands(entry->value); 5762 } 5763 hashmap__free(cand_cache); 5764 } 5765 return err; 5766 } 5767 5768 /* base map load ldimm64 special constant, used also for log fixup logic */ 5769 #define MAP_LDIMM64_POISON_BASE 2001000000 5770 #define MAP_LDIMM64_POISON_PFX "200100" 5771 5772 static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx, 5773 int insn_idx, struct bpf_insn *insn, 5774 int map_idx, const struct bpf_map *map) 5775 { 5776 int i; 5777 5778 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n", 5779 prog->name, relo_idx, insn_idx, map_idx, map->name); 5780 5781 /* we turn single ldimm64 into two identical invalid calls */ 5782 for (i = 0; i < 2; i++) { 5783 insn->code = BPF_JMP | BPF_CALL; 5784 insn->dst_reg = 0; 5785 insn->src_reg = 0; 5786 insn->off = 0; 5787 /* if this instruction is reachable (not a dead code), 5788 * verifier will complain with something like: 5789 * invalid func unknown#2001000123 5790 * where lower 123 is map index into obj->maps[] array 5791 */ 5792 insn->imm = MAP_LDIMM64_POISON_BASE + map_idx; 5793 5794 insn++; 5795 } 5796 } 5797 5798 /* Relocate data references within program code: 5799 * - map references; 5800 * - global variable references; 5801 * - extern references. 5802 */ 5803 static int 5804 bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog) 5805 { 5806 int i; 5807 5808 for (i = 0; i < prog->nr_reloc; i++) { 5809 struct reloc_desc *relo = &prog->reloc_desc[i]; 5810 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 5811 const struct bpf_map *map; 5812 struct extern_desc *ext; 5813 5814 switch (relo->type) { 5815 case RELO_LD64: 5816 map = &obj->maps[relo->map_idx]; 5817 if (obj->gen_loader) { 5818 insn[0].src_reg = BPF_PSEUDO_MAP_IDX; 5819 insn[0].imm = relo->map_idx; 5820 } else if (map->autocreate) { 5821 insn[0].src_reg = BPF_PSEUDO_MAP_FD; 5822 insn[0].imm = map->fd; 5823 } else { 5824 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5825 relo->map_idx, map); 5826 } 5827 break; 5828 case RELO_DATA: 5829 map = &obj->maps[relo->map_idx]; 5830 insn[1].imm = insn[0].imm + relo->sym_off; 5831 if (obj->gen_loader) { 5832 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5833 insn[0].imm = relo->map_idx; 5834 } else if (map->autocreate) { 5835 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5836 insn[0].imm = map->fd; 5837 } else { 5838 poison_map_ldimm64(prog, i, relo->insn_idx, insn, 5839 relo->map_idx, map); 5840 } 5841 break; 5842 case RELO_EXTERN_VAR: 5843 ext = &obj->externs[relo->sym_off]; 5844 if (ext->type == EXT_KCFG) { 5845 if (obj->gen_loader) { 5846 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE; 5847 insn[0].imm = obj->kconfig_map_idx; 5848 } else { 5849 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE; 5850 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd; 5851 } 5852 insn[1].imm = ext->kcfg.data_off; 5853 } else /* EXT_KSYM */ { 5854 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */ 5855 insn[0].src_reg = BPF_PSEUDO_BTF_ID; 5856 insn[0].imm = ext->ksym.kernel_btf_id; 5857 insn[1].imm = ext->ksym.kernel_btf_obj_fd; 5858 } else { /* typeless ksyms or unresolved typed ksyms */ 5859 insn[0].imm = (__u32)ext->ksym.addr; 5860 insn[1].imm = ext->ksym.addr >> 32; 5861 } 5862 } 5863 break; 5864 case RELO_EXTERN_FUNC: 5865 ext = &obj->externs[relo->sym_off]; 5866 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL; 5867 if (ext->is_set) { 5868 insn[0].imm = ext->ksym.kernel_btf_id; 5869 insn[0].off = ext->ksym.btf_fd_idx; 5870 } else { /* unresolved weak kfunc */ 5871 insn[0].imm = 0; 5872 insn[0].off = 0; 5873 } 5874 break; 5875 case RELO_SUBPROG_ADDR: 5876 if (insn[0].src_reg != BPF_PSEUDO_FUNC) { 5877 pr_warn("prog '%s': relo #%d: bad insn\n", 5878 prog->name, i); 5879 return -EINVAL; 5880 } 5881 /* handled already */ 5882 break; 5883 case RELO_CALL: 5884 /* handled already */ 5885 break; 5886 case RELO_CORE: 5887 /* will be handled by bpf_program_record_relos() */ 5888 break; 5889 default: 5890 pr_warn("prog '%s': relo #%d: bad relo type %d\n", 5891 prog->name, i, relo->type); 5892 return -EINVAL; 5893 } 5894 } 5895 5896 return 0; 5897 } 5898 5899 static int adjust_prog_btf_ext_info(const struct bpf_object *obj, 5900 const struct bpf_program *prog, 5901 const struct btf_ext_info *ext_info, 5902 void **prog_info, __u32 *prog_rec_cnt, 5903 __u32 *prog_rec_sz) 5904 { 5905 void *copy_start = NULL, *copy_end = NULL; 5906 void *rec, *rec_end, *new_prog_info; 5907 const struct btf_ext_info_sec *sec; 5908 size_t old_sz, new_sz; 5909 int i, sec_num, sec_idx, off_adj; 5910 5911 sec_num = 0; 5912 for_each_btf_ext_sec(ext_info, sec) { 5913 sec_idx = ext_info->sec_idxs[sec_num]; 5914 sec_num++; 5915 if (prog->sec_idx != sec_idx) 5916 continue; 5917 5918 for_each_btf_ext_rec(ext_info, sec, i, rec) { 5919 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ; 5920 5921 if (insn_off < prog->sec_insn_off) 5922 continue; 5923 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt) 5924 break; 5925 5926 if (!copy_start) 5927 copy_start = rec; 5928 copy_end = rec + ext_info->rec_size; 5929 } 5930 5931 if (!copy_start) 5932 return -ENOENT; 5933 5934 /* append func/line info of a given (sub-)program to the main 5935 * program func/line info 5936 */ 5937 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size; 5938 new_sz = old_sz + (copy_end - copy_start); 5939 new_prog_info = realloc(*prog_info, new_sz); 5940 if (!new_prog_info) 5941 return -ENOMEM; 5942 *prog_info = new_prog_info; 5943 *prog_rec_cnt = new_sz / ext_info->rec_size; 5944 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start); 5945 5946 /* Kernel instruction offsets are in units of 8-byte 5947 * instructions, while .BTF.ext instruction offsets generated 5948 * by Clang are in units of bytes. So convert Clang offsets 5949 * into kernel offsets and adjust offset according to program 5950 * relocated position. 5951 */ 5952 off_adj = prog->sub_insn_off - prog->sec_insn_off; 5953 rec = new_prog_info + old_sz; 5954 rec_end = new_prog_info + new_sz; 5955 for (; rec < rec_end; rec += ext_info->rec_size) { 5956 __u32 *insn_off = rec; 5957 5958 *insn_off = *insn_off / BPF_INSN_SZ + off_adj; 5959 } 5960 *prog_rec_sz = ext_info->rec_size; 5961 return 0; 5962 } 5963 5964 return -ENOENT; 5965 } 5966 5967 static int 5968 reloc_prog_func_and_line_info(const struct bpf_object *obj, 5969 struct bpf_program *main_prog, 5970 const struct bpf_program *prog) 5971 { 5972 int err; 5973 5974 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't 5975 * supprot func/line info 5976 */ 5977 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC)) 5978 return 0; 5979 5980 /* only attempt func info relocation if main program's func_info 5981 * relocation was successful 5982 */ 5983 if (main_prog != prog && !main_prog->func_info) 5984 goto line_info; 5985 5986 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info, 5987 &main_prog->func_info, 5988 &main_prog->func_info_cnt, 5989 &main_prog->func_info_rec_size); 5990 if (err) { 5991 if (err != -ENOENT) { 5992 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n", 5993 prog->name, err); 5994 return err; 5995 } 5996 if (main_prog->func_info) { 5997 /* 5998 * Some info has already been found but has problem 5999 * in the last btf_ext reloc. Must have to error out. 6000 */ 6001 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name); 6002 return err; 6003 } 6004 /* Have problem loading the very first info. Ignore the rest. */ 6005 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n", 6006 prog->name); 6007 } 6008 6009 line_info: 6010 /* don't relocate line info if main program's relocation failed */ 6011 if (main_prog != prog && !main_prog->line_info) 6012 return 0; 6013 6014 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info, 6015 &main_prog->line_info, 6016 &main_prog->line_info_cnt, 6017 &main_prog->line_info_rec_size); 6018 if (err) { 6019 if (err != -ENOENT) { 6020 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n", 6021 prog->name, err); 6022 return err; 6023 } 6024 if (main_prog->line_info) { 6025 /* 6026 * Some info has already been found but has problem 6027 * in the last btf_ext reloc. Must have to error out. 6028 */ 6029 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name); 6030 return err; 6031 } 6032 /* Have problem loading the very first info. Ignore the rest. */ 6033 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n", 6034 prog->name); 6035 } 6036 return 0; 6037 } 6038 6039 static int cmp_relo_by_insn_idx(const void *key, const void *elem) 6040 { 6041 size_t insn_idx = *(const size_t *)key; 6042 const struct reloc_desc *relo = elem; 6043 6044 if (insn_idx == relo->insn_idx) 6045 return 0; 6046 return insn_idx < relo->insn_idx ? -1 : 1; 6047 } 6048 6049 static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx) 6050 { 6051 if (!prog->nr_reloc) 6052 return NULL; 6053 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc, 6054 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx); 6055 } 6056 6057 static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog) 6058 { 6059 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc; 6060 struct reloc_desc *relos; 6061 int i; 6062 6063 if (main_prog == subprog) 6064 return 0; 6065 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos)); 6066 if (!relos) 6067 return -ENOMEM; 6068 if (subprog->nr_reloc) 6069 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc, 6070 sizeof(*relos) * subprog->nr_reloc); 6071 6072 for (i = main_prog->nr_reloc; i < new_cnt; i++) 6073 relos[i].insn_idx += subprog->sub_insn_off; 6074 /* After insn_idx adjustment the 'relos' array is still sorted 6075 * by insn_idx and doesn't break bsearch. 6076 */ 6077 main_prog->reloc_desc = relos; 6078 main_prog->nr_reloc = new_cnt; 6079 return 0; 6080 } 6081 6082 static int 6083 bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog, 6084 struct bpf_program *prog) 6085 { 6086 size_t sub_insn_idx, insn_idx, new_cnt; 6087 struct bpf_program *subprog; 6088 struct bpf_insn *insns, *insn; 6089 struct reloc_desc *relo; 6090 int err; 6091 6092 err = reloc_prog_func_and_line_info(obj, main_prog, prog); 6093 if (err) 6094 return err; 6095 6096 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) { 6097 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6098 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn)) 6099 continue; 6100 6101 relo = find_prog_insn_relo(prog, insn_idx); 6102 if (relo && relo->type == RELO_EXTERN_FUNC) 6103 /* kfunc relocations will be handled later 6104 * in bpf_object__relocate_data() 6105 */ 6106 continue; 6107 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) { 6108 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n", 6109 prog->name, insn_idx, relo->type); 6110 return -LIBBPF_ERRNO__RELOC; 6111 } 6112 if (relo) { 6113 /* sub-program instruction index is a combination of 6114 * an offset of a symbol pointed to by relocation and 6115 * call instruction's imm field; for global functions, 6116 * call always has imm = -1, but for static functions 6117 * relocation is against STT_SECTION and insn->imm 6118 * points to a start of a static function 6119 * 6120 * for subprog addr relocation, the relo->sym_off + insn->imm is 6121 * the byte offset in the corresponding section. 6122 */ 6123 if (relo->type == RELO_CALL) 6124 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1; 6125 else 6126 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ; 6127 } else if (insn_is_pseudo_func(insn)) { 6128 /* 6129 * RELO_SUBPROG_ADDR relo is always emitted even if both 6130 * functions are in the same section, so it shouldn't reach here. 6131 */ 6132 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n", 6133 prog->name, insn_idx); 6134 return -LIBBPF_ERRNO__RELOC; 6135 } else { 6136 /* if subprogram call is to a static function within 6137 * the same ELF section, there won't be any relocation 6138 * emitted, but it also means there is no additional 6139 * offset necessary, insns->imm is relative to 6140 * instruction's original position within the section 6141 */ 6142 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1; 6143 } 6144 6145 /* we enforce that sub-programs should be in .text section */ 6146 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx); 6147 if (!subprog) { 6148 pr_warn("prog '%s': no .text section found yet sub-program call exists\n", 6149 prog->name); 6150 return -LIBBPF_ERRNO__RELOC; 6151 } 6152 6153 /* if it's the first call instruction calling into this 6154 * subprogram (meaning this subprog hasn't been processed 6155 * yet) within the context of current main program: 6156 * - append it at the end of main program's instructions blog; 6157 * - process is recursively, while current program is put on hold; 6158 * - if that subprogram calls some other not yet processes 6159 * subprogram, same thing will happen recursively until 6160 * there are no more unprocesses subprograms left to append 6161 * and relocate. 6162 */ 6163 if (subprog->sub_insn_off == 0) { 6164 subprog->sub_insn_off = main_prog->insns_cnt; 6165 6166 new_cnt = main_prog->insns_cnt + subprog->insns_cnt; 6167 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns)); 6168 if (!insns) { 6169 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name); 6170 return -ENOMEM; 6171 } 6172 main_prog->insns = insns; 6173 main_prog->insns_cnt = new_cnt; 6174 6175 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns, 6176 subprog->insns_cnt * sizeof(*insns)); 6177 6178 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n", 6179 main_prog->name, subprog->insns_cnt, subprog->name); 6180 6181 /* The subprog insns are now appended. Append its relos too. */ 6182 err = append_subprog_relos(main_prog, subprog); 6183 if (err) 6184 return err; 6185 err = bpf_object__reloc_code(obj, main_prog, subprog); 6186 if (err) 6187 return err; 6188 } 6189 6190 /* main_prog->insns memory could have been re-allocated, so 6191 * calculate pointer again 6192 */ 6193 insn = &main_prog->insns[prog->sub_insn_off + insn_idx]; 6194 /* calculate correct instruction position within current main 6195 * prog; each main prog can have a different set of 6196 * subprograms appended (potentially in different order as 6197 * well), so position of any subprog can be different for 6198 * different main programs */ 6199 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1; 6200 6201 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n", 6202 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off); 6203 } 6204 6205 return 0; 6206 } 6207 6208 /* 6209 * Relocate sub-program calls. 6210 * 6211 * Algorithm operates as follows. Each entry-point BPF program (referred to as 6212 * main prog) is processed separately. For each subprog (non-entry functions, 6213 * that can be called from either entry progs or other subprogs) gets their 6214 * sub_insn_off reset to zero. This serves as indicator that this subprogram 6215 * hasn't been yet appended and relocated within current main prog. Once its 6216 * relocated, sub_insn_off will point at the position within current main prog 6217 * where given subprog was appended. This will further be used to relocate all 6218 * the call instructions jumping into this subprog. 6219 * 6220 * We start with main program and process all call instructions. If the call 6221 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off 6222 * is zero), subprog instructions are appended at the end of main program's 6223 * instruction array. Then main program is "put on hold" while we recursively 6224 * process newly appended subprogram. If that subprogram calls into another 6225 * subprogram that hasn't been appended, new subprogram is appended again to 6226 * the *main* prog's instructions (subprog's instructions are always left 6227 * untouched, as they need to be in unmodified state for subsequent main progs 6228 * and subprog instructions are always sent only as part of a main prog) and 6229 * the process continues recursively. Once all the subprogs called from a main 6230 * prog or any of its subprogs are appended (and relocated), all their 6231 * positions within finalized instructions array are known, so it's easy to 6232 * rewrite call instructions with correct relative offsets, corresponding to 6233 * desired target subprog. 6234 * 6235 * Its important to realize that some subprogs might not be called from some 6236 * main prog and any of its called/used subprogs. Those will keep their 6237 * subprog->sub_insn_off as zero at all times and won't be appended to current 6238 * main prog and won't be relocated within the context of current main prog. 6239 * They might still be used from other main progs later. 6240 * 6241 * Visually this process can be shown as below. Suppose we have two main 6242 * programs mainA and mainB and BPF object contains three subprogs: subA, 6243 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and 6244 * subC both call subB: 6245 * 6246 * +--------+ +-------+ 6247 * | v v | 6248 * +--+---+ +--+-+-+ +---+--+ 6249 * | subA | | subB | | subC | 6250 * +--+---+ +------+ +---+--+ 6251 * ^ ^ 6252 * | | 6253 * +---+-------+ +------+----+ 6254 * | mainA | | mainB | 6255 * +-----------+ +-----------+ 6256 * 6257 * We'll start relocating mainA, will find subA, append it and start 6258 * processing sub A recursively: 6259 * 6260 * +-----------+------+ 6261 * | mainA | subA | 6262 * +-----------+------+ 6263 * 6264 * At this point we notice that subB is used from subA, so we append it and 6265 * relocate (there are no further subcalls from subB): 6266 * 6267 * +-----------+------+------+ 6268 * | mainA | subA | subB | 6269 * +-----------+------+------+ 6270 * 6271 * At this point, we relocate subA calls, then go one level up and finish with 6272 * relocatin mainA calls. mainA is done. 6273 * 6274 * For mainB process is similar but results in different order. We start with 6275 * mainB and skip subA and subB, as mainB never calls them (at least 6276 * directly), but we see subC is needed, so we append and start processing it: 6277 * 6278 * +-----------+------+ 6279 * | mainB | subC | 6280 * +-----------+------+ 6281 * Now we see subC needs subB, so we go back to it, append and relocate it: 6282 * 6283 * +-----------+------+------+ 6284 * | mainB | subC | subB | 6285 * +-----------+------+------+ 6286 * 6287 * At this point we unwind recursion, relocate calls in subC, then in mainB. 6288 */ 6289 static int 6290 bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog) 6291 { 6292 struct bpf_program *subprog; 6293 int i, err; 6294 6295 /* mark all subprogs as not relocated (yet) within the context of 6296 * current main program 6297 */ 6298 for (i = 0; i < obj->nr_programs; i++) { 6299 subprog = &obj->programs[i]; 6300 if (!prog_is_subprog(obj, subprog)) 6301 continue; 6302 6303 subprog->sub_insn_off = 0; 6304 } 6305 6306 err = bpf_object__reloc_code(obj, prog, prog); 6307 if (err) 6308 return err; 6309 6310 return 0; 6311 } 6312 6313 static void 6314 bpf_object__free_relocs(struct bpf_object *obj) 6315 { 6316 struct bpf_program *prog; 6317 int i; 6318 6319 /* free up relocation descriptors */ 6320 for (i = 0; i < obj->nr_programs; i++) { 6321 prog = &obj->programs[i]; 6322 zfree(&prog->reloc_desc); 6323 prog->nr_reloc = 0; 6324 } 6325 } 6326 6327 static int cmp_relocs(const void *_a, const void *_b) 6328 { 6329 const struct reloc_desc *a = _a; 6330 const struct reloc_desc *b = _b; 6331 6332 if (a->insn_idx != b->insn_idx) 6333 return a->insn_idx < b->insn_idx ? -1 : 1; 6334 6335 /* no two relocations should have the same insn_idx, but ... */ 6336 if (a->type != b->type) 6337 return a->type < b->type ? -1 : 1; 6338 6339 return 0; 6340 } 6341 6342 static void bpf_object__sort_relos(struct bpf_object *obj) 6343 { 6344 int i; 6345 6346 for (i = 0; i < obj->nr_programs; i++) { 6347 struct bpf_program *p = &obj->programs[i]; 6348 6349 if (!p->nr_reloc) 6350 continue; 6351 6352 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs); 6353 } 6354 } 6355 6356 static int 6357 bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path) 6358 { 6359 struct bpf_program *prog; 6360 size_t i, j; 6361 int err; 6362 6363 if (obj->btf_ext) { 6364 err = bpf_object__relocate_core(obj, targ_btf_path); 6365 if (err) { 6366 pr_warn("failed to perform CO-RE relocations: %d\n", 6367 err); 6368 return err; 6369 } 6370 bpf_object__sort_relos(obj); 6371 } 6372 6373 /* Before relocating calls pre-process relocations and mark 6374 * few ld_imm64 instructions that points to subprogs. 6375 * Otherwise bpf_object__reloc_code() later would have to consider 6376 * all ld_imm64 insns as relocation candidates. That would 6377 * reduce relocation speed, since amount of find_prog_insn_relo() 6378 * would increase and most of them will fail to find a relo. 6379 */ 6380 for (i = 0; i < obj->nr_programs; i++) { 6381 prog = &obj->programs[i]; 6382 for (j = 0; j < prog->nr_reloc; j++) { 6383 struct reloc_desc *relo = &prog->reloc_desc[j]; 6384 struct bpf_insn *insn = &prog->insns[relo->insn_idx]; 6385 6386 /* mark the insn, so it's recognized by insn_is_pseudo_func() */ 6387 if (relo->type == RELO_SUBPROG_ADDR) 6388 insn[0].src_reg = BPF_PSEUDO_FUNC; 6389 } 6390 } 6391 6392 /* relocate subprogram calls and append used subprograms to main 6393 * programs; each copy of subprogram code needs to be relocated 6394 * differently for each main program, because its code location might 6395 * have changed. 6396 * Append subprog relos to main programs to allow data relos to be 6397 * processed after text is completely relocated. 6398 */ 6399 for (i = 0; i < obj->nr_programs; i++) { 6400 prog = &obj->programs[i]; 6401 /* sub-program's sub-calls are relocated within the context of 6402 * its main program only 6403 */ 6404 if (prog_is_subprog(obj, prog)) 6405 continue; 6406 if (!prog->autoload) 6407 continue; 6408 6409 err = bpf_object__relocate_calls(obj, prog); 6410 if (err) { 6411 pr_warn("prog '%s': failed to relocate calls: %d\n", 6412 prog->name, err); 6413 return err; 6414 } 6415 } 6416 /* Process data relos for main programs */ 6417 for (i = 0; i < obj->nr_programs; i++) { 6418 prog = &obj->programs[i]; 6419 if (prog_is_subprog(obj, prog)) 6420 continue; 6421 if (!prog->autoload) 6422 continue; 6423 err = bpf_object__relocate_data(obj, prog); 6424 if (err) { 6425 pr_warn("prog '%s': failed to relocate data references: %d\n", 6426 prog->name, err); 6427 return err; 6428 } 6429 } 6430 6431 return 0; 6432 } 6433 6434 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 6435 Elf64_Shdr *shdr, Elf_Data *data); 6436 6437 static int bpf_object__collect_map_relos(struct bpf_object *obj, 6438 Elf64_Shdr *shdr, Elf_Data *data) 6439 { 6440 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *); 6441 int i, j, nrels, new_sz; 6442 const struct btf_var_secinfo *vi = NULL; 6443 const struct btf_type *sec, *var, *def; 6444 struct bpf_map *map = NULL, *targ_map = NULL; 6445 struct bpf_program *targ_prog = NULL; 6446 bool is_prog_array, is_map_in_map; 6447 const struct btf_member *member; 6448 const char *name, *mname, *type; 6449 unsigned int moff; 6450 Elf64_Sym *sym; 6451 Elf64_Rel *rel; 6452 void *tmp; 6453 6454 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf) 6455 return -EINVAL; 6456 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id); 6457 if (!sec) 6458 return -EINVAL; 6459 6460 nrels = shdr->sh_size / shdr->sh_entsize; 6461 for (i = 0; i < nrels; i++) { 6462 rel = elf_rel_by_idx(data, i); 6463 if (!rel) { 6464 pr_warn(".maps relo #%d: failed to get ELF relo\n", i); 6465 return -LIBBPF_ERRNO__FORMAT; 6466 } 6467 6468 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 6469 if (!sym) { 6470 pr_warn(".maps relo #%d: symbol %zx not found\n", 6471 i, (size_t)ELF64_R_SYM(rel->r_info)); 6472 return -LIBBPF_ERRNO__FORMAT; 6473 } 6474 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 6475 6476 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n", 6477 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value, 6478 (size_t)rel->r_offset, sym->st_name, name); 6479 6480 for (j = 0; j < obj->nr_maps; j++) { 6481 map = &obj->maps[j]; 6482 if (map->sec_idx != obj->efile.btf_maps_shndx) 6483 continue; 6484 6485 vi = btf_var_secinfos(sec) + map->btf_var_idx; 6486 if (vi->offset <= rel->r_offset && 6487 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size) 6488 break; 6489 } 6490 if (j == obj->nr_maps) { 6491 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n", 6492 i, name, (size_t)rel->r_offset); 6493 return -EINVAL; 6494 } 6495 6496 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type); 6497 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY; 6498 type = is_map_in_map ? "map" : "prog"; 6499 if (is_map_in_map) { 6500 if (sym->st_shndx != obj->efile.btf_maps_shndx) { 6501 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n", 6502 i, name); 6503 return -LIBBPF_ERRNO__RELOC; 6504 } 6505 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS && 6506 map->def.key_size != sizeof(int)) { 6507 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n", 6508 i, map->name, sizeof(int)); 6509 return -EINVAL; 6510 } 6511 targ_map = bpf_object__find_map_by_name(obj, name); 6512 if (!targ_map) { 6513 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n", 6514 i, name); 6515 return -ESRCH; 6516 } 6517 } else if (is_prog_array) { 6518 targ_prog = bpf_object__find_program_by_name(obj, name); 6519 if (!targ_prog) { 6520 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n", 6521 i, name); 6522 return -ESRCH; 6523 } 6524 if (targ_prog->sec_idx != sym->st_shndx || 6525 targ_prog->sec_insn_off * 8 != sym->st_value || 6526 prog_is_subprog(obj, targ_prog)) { 6527 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n", 6528 i, name); 6529 return -LIBBPF_ERRNO__RELOC; 6530 } 6531 } else { 6532 return -EINVAL; 6533 } 6534 6535 var = btf__type_by_id(obj->btf, vi->type); 6536 def = skip_mods_and_typedefs(obj->btf, var->type, NULL); 6537 if (btf_vlen(def) == 0) 6538 return -EINVAL; 6539 member = btf_members(def) + btf_vlen(def) - 1; 6540 mname = btf__name_by_offset(obj->btf, member->name_off); 6541 if (strcmp(mname, "values")) 6542 return -EINVAL; 6543 6544 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8; 6545 if (rel->r_offset - vi->offset < moff) 6546 return -EINVAL; 6547 6548 moff = rel->r_offset - vi->offset - moff; 6549 /* here we use BPF pointer size, which is always 64 bit, as we 6550 * are parsing ELF that was built for BPF target 6551 */ 6552 if (moff % bpf_ptr_sz) 6553 return -EINVAL; 6554 moff /= bpf_ptr_sz; 6555 if (moff >= map->init_slots_sz) { 6556 new_sz = moff + 1; 6557 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz); 6558 if (!tmp) 6559 return -ENOMEM; 6560 map->init_slots = tmp; 6561 memset(map->init_slots + map->init_slots_sz, 0, 6562 (new_sz - map->init_slots_sz) * host_ptr_sz); 6563 map->init_slots_sz = new_sz; 6564 } 6565 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog; 6566 6567 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n", 6568 i, map->name, moff, type, name); 6569 } 6570 6571 return 0; 6572 } 6573 6574 static int bpf_object__collect_relos(struct bpf_object *obj) 6575 { 6576 int i, err; 6577 6578 for (i = 0; i < obj->efile.sec_cnt; i++) { 6579 struct elf_sec_desc *sec_desc = &obj->efile.secs[i]; 6580 Elf64_Shdr *shdr; 6581 Elf_Data *data; 6582 int idx; 6583 6584 if (sec_desc->sec_type != SEC_RELO) 6585 continue; 6586 6587 shdr = sec_desc->shdr; 6588 data = sec_desc->data; 6589 idx = shdr->sh_info; 6590 6591 if (shdr->sh_type != SHT_REL) { 6592 pr_warn("internal error at %d\n", __LINE__); 6593 return -LIBBPF_ERRNO__INTERNAL; 6594 } 6595 6596 if (idx == obj->efile.st_ops_shndx) 6597 err = bpf_object__collect_st_ops_relos(obj, shdr, data); 6598 else if (idx == obj->efile.btf_maps_shndx) 6599 err = bpf_object__collect_map_relos(obj, shdr, data); 6600 else 6601 err = bpf_object__collect_prog_relos(obj, shdr, data); 6602 if (err) 6603 return err; 6604 } 6605 6606 bpf_object__sort_relos(obj); 6607 return 0; 6608 } 6609 6610 static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id) 6611 { 6612 if (BPF_CLASS(insn->code) == BPF_JMP && 6613 BPF_OP(insn->code) == BPF_CALL && 6614 BPF_SRC(insn->code) == BPF_K && 6615 insn->src_reg == 0 && 6616 insn->dst_reg == 0) { 6617 *func_id = insn->imm; 6618 return true; 6619 } 6620 return false; 6621 } 6622 6623 static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog) 6624 { 6625 struct bpf_insn *insn = prog->insns; 6626 enum bpf_func_id func_id; 6627 int i; 6628 6629 if (obj->gen_loader) 6630 return 0; 6631 6632 for (i = 0; i < prog->insns_cnt; i++, insn++) { 6633 if (!insn_is_helper_call(insn, &func_id)) 6634 continue; 6635 6636 /* on kernels that don't yet support 6637 * bpf_probe_read_{kernel,user}[_str] helpers, fall back 6638 * to bpf_probe_read() which works well for old kernels 6639 */ 6640 switch (func_id) { 6641 case BPF_FUNC_probe_read_kernel: 6642 case BPF_FUNC_probe_read_user: 6643 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6644 insn->imm = BPF_FUNC_probe_read; 6645 break; 6646 case BPF_FUNC_probe_read_kernel_str: 6647 case BPF_FUNC_probe_read_user_str: 6648 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN)) 6649 insn->imm = BPF_FUNC_probe_read_str; 6650 break; 6651 default: 6652 break; 6653 } 6654 } 6655 return 0; 6656 } 6657 6658 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 6659 int *btf_obj_fd, int *btf_type_id); 6660 6661 /* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */ 6662 static int libbpf_prepare_prog_load(struct bpf_program *prog, 6663 struct bpf_prog_load_opts *opts, long cookie) 6664 { 6665 enum sec_def_flags def = cookie; 6666 6667 /* old kernels might not support specifying expected_attach_type */ 6668 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE)) 6669 opts->expected_attach_type = 0; 6670 6671 if (def & SEC_SLEEPABLE) 6672 opts->prog_flags |= BPF_F_SLEEPABLE; 6673 6674 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS)) 6675 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS; 6676 6677 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) { 6678 int btf_obj_fd = 0, btf_type_id = 0, err; 6679 const char *attach_name; 6680 6681 attach_name = strchr(prog->sec_name, '/'); 6682 if (!attach_name) { 6683 /* if BPF program is annotated with just SEC("fentry") 6684 * (or similar) without declaratively specifying 6685 * target, then it is expected that target will be 6686 * specified with bpf_program__set_attach_target() at 6687 * runtime before BPF object load step. If not, then 6688 * there is nothing to load into the kernel as BPF 6689 * verifier won't be able to validate BPF program 6690 * correctness anyways. 6691 */ 6692 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n", 6693 prog->name); 6694 return -EINVAL; 6695 } 6696 attach_name++; /* skip over / */ 6697 6698 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id); 6699 if (err) 6700 return err; 6701 6702 /* cache resolved BTF FD and BTF type ID in the prog */ 6703 prog->attach_btf_obj_fd = btf_obj_fd; 6704 prog->attach_btf_id = btf_type_id; 6705 6706 /* but by now libbpf common logic is not utilizing 6707 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because 6708 * this callback is called after opts were populated by 6709 * libbpf, so this callback has to update opts explicitly here 6710 */ 6711 opts->attach_btf_obj_fd = btf_obj_fd; 6712 opts->attach_btf_id = btf_type_id; 6713 } 6714 return 0; 6715 } 6716 6717 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz); 6718 6719 static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog, 6720 struct bpf_insn *insns, int insns_cnt, 6721 const char *license, __u32 kern_version, int *prog_fd) 6722 { 6723 LIBBPF_OPTS(bpf_prog_load_opts, load_attr); 6724 const char *prog_name = NULL; 6725 char *cp, errmsg[STRERR_BUFSIZE]; 6726 size_t log_buf_size = 0; 6727 char *log_buf = NULL, *tmp; 6728 int btf_fd, ret, err; 6729 bool own_log_buf = true; 6730 __u32 log_level = prog->log_level; 6731 6732 if (prog->type == BPF_PROG_TYPE_UNSPEC) { 6733 /* 6734 * The program type must be set. Most likely we couldn't find a proper 6735 * section definition at load time, and thus we didn't infer the type. 6736 */ 6737 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n", 6738 prog->name, prog->sec_name); 6739 return -EINVAL; 6740 } 6741 6742 if (!insns || !insns_cnt) 6743 return -EINVAL; 6744 6745 load_attr.expected_attach_type = prog->expected_attach_type; 6746 if (kernel_supports(obj, FEAT_PROG_NAME)) 6747 prog_name = prog->name; 6748 load_attr.attach_prog_fd = prog->attach_prog_fd; 6749 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd; 6750 load_attr.attach_btf_id = prog->attach_btf_id; 6751 load_attr.kern_version = kern_version; 6752 load_attr.prog_ifindex = prog->prog_ifindex; 6753 6754 /* specify func_info/line_info only if kernel supports them */ 6755 btf_fd = bpf_object__btf_fd(obj); 6756 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) { 6757 load_attr.prog_btf_fd = btf_fd; 6758 load_attr.func_info = prog->func_info; 6759 load_attr.func_info_rec_size = prog->func_info_rec_size; 6760 load_attr.func_info_cnt = prog->func_info_cnt; 6761 load_attr.line_info = prog->line_info; 6762 load_attr.line_info_rec_size = prog->line_info_rec_size; 6763 load_attr.line_info_cnt = prog->line_info_cnt; 6764 } 6765 load_attr.log_level = log_level; 6766 load_attr.prog_flags = prog->prog_flags; 6767 load_attr.fd_array = obj->fd_array; 6768 6769 /* adjust load_attr if sec_def provides custom preload callback */ 6770 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) { 6771 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie); 6772 if (err < 0) { 6773 pr_warn("prog '%s': failed to prepare load attributes: %d\n", 6774 prog->name, err); 6775 return err; 6776 } 6777 insns = prog->insns; 6778 insns_cnt = prog->insns_cnt; 6779 } 6780 6781 if (obj->gen_loader) { 6782 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name, 6783 license, insns, insns_cnt, &load_attr, 6784 prog - obj->programs); 6785 *prog_fd = -1; 6786 return 0; 6787 } 6788 6789 retry_load: 6790 /* if log_level is zero, we don't request logs initially even if 6791 * custom log_buf is specified; if the program load fails, then we'll 6792 * bump log_level to 1 and use either custom log_buf or we'll allocate 6793 * our own and retry the load to get details on what failed 6794 */ 6795 if (log_level) { 6796 if (prog->log_buf) { 6797 log_buf = prog->log_buf; 6798 log_buf_size = prog->log_size; 6799 own_log_buf = false; 6800 } else if (obj->log_buf) { 6801 log_buf = obj->log_buf; 6802 log_buf_size = obj->log_size; 6803 own_log_buf = false; 6804 } else { 6805 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2); 6806 tmp = realloc(log_buf, log_buf_size); 6807 if (!tmp) { 6808 ret = -ENOMEM; 6809 goto out; 6810 } 6811 log_buf = tmp; 6812 log_buf[0] = '\0'; 6813 own_log_buf = true; 6814 } 6815 } 6816 6817 load_attr.log_buf = log_buf; 6818 load_attr.log_size = log_buf_size; 6819 load_attr.log_level = log_level; 6820 6821 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr); 6822 if (ret >= 0) { 6823 if (log_level && own_log_buf) { 6824 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6825 prog->name, log_buf); 6826 } 6827 6828 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) { 6829 struct bpf_map *map; 6830 int i; 6831 6832 for (i = 0; i < obj->nr_maps; i++) { 6833 map = &prog->obj->maps[i]; 6834 if (map->libbpf_type != LIBBPF_MAP_RODATA) 6835 continue; 6836 6837 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) { 6838 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6839 pr_warn("prog '%s': failed to bind map '%s': %s\n", 6840 prog->name, map->real_name, cp); 6841 /* Don't fail hard if can't bind rodata. */ 6842 } 6843 } 6844 } 6845 6846 *prog_fd = ret; 6847 ret = 0; 6848 goto out; 6849 } 6850 6851 if (log_level == 0) { 6852 log_level = 1; 6853 goto retry_load; 6854 } 6855 /* On ENOSPC, increase log buffer size and retry, unless custom 6856 * log_buf is specified. 6857 * Be careful to not overflow u32, though. Kernel's log buf size limit 6858 * isn't part of UAPI so it can always be bumped to full 4GB. So don't 6859 * multiply by 2 unless we are sure we'll fit within 32 bits. 6860 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2). 6861 */ 6862 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2) 6863 goto retry_load; 6864 6865 ret = -errno; 6866 6867 /* post-process verifier log to improve error descriptions */ 6868 fixup_verifier_log(prog, log_buf, log_buf_size); 6869 6870 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 6871 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp); 6872 pr_perm_msg(ret); 6873 6874 if (own_log_buf && log_buf && log_buf[0] != '\0') { 6875 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n", 6876 prog->name, log_buf); 6877 } 6878 6879 out: 6880 if (own_log_buf) 6881 free(log_buf); 6882 return ret; 6883 } 6884 6885 static char *find_prev_line(char *buf, char *cur) 6886 { 6887 char *p; 6888 6889 if (cur == buf) /* end of a log buf */ 6890 return NULL; 6891 6892 p = cur - 1; 6893 while (p - 1 >= buf && *(p - 1) != '\n') 6894 p--; 6895 6896 return p; 6897 } 6898 6899 static void patch_log(char *buf, size_t buf_sz, size_t log_sz, 6900 char *orig, size_t orig_sz, const char *patch) 6901 { 6902 /* size of the remaining log content to the right from the to-be-replaced part */ 6903 size_t rem_sz = (buf + log_sz) - (orig + orig_sz); 6904 size_t patch_sz = strlen(patch); 6905 6906 if (patch_sz != orig_sz) { 6907 /* If patch line(s) are longer than original piece of verifier log, 6908 * shift log contents by (patch_sz - orig_sz) bytes to the right 6909 * starting from after to-be-replaced part of the log. 6910 * 6911 * If patch line(s) are shorter than original piece of verifier log, 6912 * shift log contents by (orig_sz - patch_sz) bytes to the left 6913 * starting from after to-be-replaced part of the log 6914 * 6915 * We need to be careful about not overflowing available 6916 * buf_sz capacity. If that's the case, we'll truncate the end 6917 * of the original log, as necessary. 6918 */ 6919 if (patch_sz > orig_sz) { 6920 if (orig + patch_sz >= buf + buf_sz) { 6921 /* patch is big enough to cover remaining space completely */ 6922 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1; 6923 rem_sz = 0; 6924 } else if (patch_sz - orig_sz > buf_sz - log_sz) { 6925 /* patch causes part of remaining log to be truncated */ 6926 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz); 6927 } 6928 } 6929 /* shift remaining log to the right by calculated amount */ 6930 memmove(orig + patch_sz, orig + orig_sz, rem_sz); 6931 } 6932 6933 memcpy(orig, patch, patch_sz); 6934 } 6935 6936 static void fixup_log_failed_core_relo(struct bpf_program *prog, 6937 char *buf, size_t buf_sz, size_t log_sz, 6938 char *line1, char *line2, char *line3) 6939 { 6940 /* Expected log for failed and not properly guarded CO-RE relocation: 6941 * line1 -> 123: (85) call unknown#195896080 6942 * line2 -> invalid func unknown#195896080 6943 * line3 -> <anything else or end of buffer> 6944 * 6945 * "123" is the index of the instruction that was poisoned. We extract 6946 * instruction index to find corresponding CO-RE relocation and 6947 * replace this part of the log with more relevant information about 6948 * failed CO-RE relocation. 6949 */ 6950 const struct bpf_core_relo *relo; 6951 struct bpf_core_spec spec; 6952 char patch[512], spec_buf[256]; 6953 int insn_idx, err, spec_len; 6954 6955 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1) 6956 return; 6957 6958 relo = find_relo_core(prog, insn_idx); 6959 if (!relo) 6960 return; 6961 6962 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec); 6963 if (err) 6964 return; 6965 6966 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec); 6967 snprintf(patch, sizeof(patch), 6968 "%d: <invalid CO-RE relocation>\n" 6969 "failed to resolve CO-RE relocation %s%s\n", 6970 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : ""); 6971 6972 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 6973 } 6974 6975 static void fixup_log_missing_map_load(struct bpf_program *prog, 6976 char *buf, size_t buf_sz, size_t log_sz, 6977 char *line1, char *line2, char *line3) 6978 { 6979 /* Expected log for failed and not properly guarded CO-RE relocation: 6980 * line1 -> 123: (85) call unknown#2001000345 6981 * line2 -> invalid func unknown#2001000345 6982 * line3 -> <anything else or end of buffer> 6983 * 6984 * "123" is the index of the instruction that was poisoned. 6985 * "345" in "2001000345" are map index in obj->maps to fetch map name. 6986 */ 6987 struct bpf_object *obj = prog->obj; 6988 const struct bpf_map *map; 6989 int insn_idx, map_idx; 6990 char patch[128]; 6991 6992 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2) 6993 return; 6994 6995 map_idx -= MAP_LDIMM64_POISON_BASE; 6996 if (map_idx < 0 || map_idx >= obj->nr_maps) 6997 return; 6998 map = &obj->maps[map_idx]; 6999 7000 snprintf(patch, sizeof(patch), 7001 "%d: <invalid BPF map reference>\n" 7002 "BPF map '%s' is referenced but wasn't created\n", 7003 insn_idx, map->name); 7004 7005 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch); 7006 } 7007 7008 static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz) 7009 { 7010 /* look for familiar error patterns in last N lines of the log */ 7011 const size_t max_last_line_cnt = 10; 7012 char *prev_line, *cur_line, *next_line; 7013 size_t log_sz; 7014 int i; 7015 7016 if (!buf) 7017 return; 7018 7019 log_sz = strlen(buf) + 1; 7020 next_line = buf + log_sz - 1; 7021 7022 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) { 7023 cur_line = find_prev_line(buf, next_line); 7024 if (!cur_line) 7025 return; 7026 7027 /* failed CO-RE relocation case */ 7028 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) { 7029 prev_line = find_prev_line(buf, cur_line); 7030 if (!prev_line) 7031 continue; 7032 7033 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz, 7034 prev_line, cur_line, next_line); 7035 return; 7036 } else if (str_has_pfx(cur_line, "invalid func unknown#"MAP_LDIMM64_POISON_PFX)) { 7037 prev_line = find_prev_line(buf, cur_line); 7038 if (!prev_line) 7039 continue; 7040 7041 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz, 7042 prev_line, cur_line, next_line); 7043 return; 7044 } 7045 } 7046 } 7047 7048 static int bpf_program_record_relos(struct bpf_program *prog) 7049 { 7050 struct bpf_object *obj = prog->obj; 7051 int i; 7052 7053 for (i = 0; i < prog->nr_reloc; i++) { 7054 struct reloc_desc *relo = &prog->reloc_desc[i]; 7055 struct extern_desc *ext = &obj->externs[relo->sym_off]; 7056 7057 switch (relo->type) { 7058 case RELO_EXTERN_VAR: 7059 if (ext->type != EXT_KSYM) 7060 continue; 7061 bpf_gen__record_extern(obj->gen_loader, ext->name, 7062 ext->is_weak, !ext->ksym.type_id, 7063 BTF_KIND_VAR, relo->insn_idx); 7064 break; 7065 case RELO_EXTERN_FUNC: 7066 bpf_gen__record_extern(obj->gen_loader, ext->name, 7067 ext->is_weak, false, BTF_KIND_FUNC, 7068 relo->insn_idx); 7069 break; 7070 case RELO_CORE: { 7071 struct bpf_core_relo cr = { 7072 .insn_off = relo->insn_idx * 8, 7073 .type_id = relo->core_relo->type_id, 7074 .access_str_off = relo->core_relo->access_str_off, 7075 .kind = relo->core_relo->kind, 7076 }; 7077 7078 bpf_gen__record_relo_core(obj->gen_loader, &cr); 7079 break; 7080 } 7081 default: 7082 continue; 7083 } 7084 } 7085 return 0; 7086 } 7087 7088 static int 7089 bpf_object__load_progs(struct bpf_object *obj, int log_level) 7090 { 7091 struct bpf_program *prog; 7092 size_t i; 7093 int err; 7094 7095 for (i = 0; i < obj->nr_programs; i++) { 7096 prog = &obj->programs[i]; 7097 err = bpf_object__sanitize_prog(obj, prog); 7098 if (err) 7099 return err; 7100 } 7101 7102 for (i = 0; i < obj->nr_programs; i++) { 7103 prog = &obj->programs[i]; 7104 if (prog_is_subprog(obj, prog)) 7105 continue; 7106 if (!prog->autoload) { 7107 pr_debug("prog '%s': skipped loading\n", prog->name); 7108 continue; 7109 } 7110 prog->log_level |= log_level; 7111 7112 if (obj->gen_loader) 7113 bpf_program_record_relos(prog); 7114 7115 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt, 7116 obj->license, obj->kern_version, &prog->fd); 7117 if (err) { 7118 pr_warn("prog '%s': failed to load: %d\n", prog->name, err); 7119 return err; 7120 } 7121 } 7122 7123 bpf_object__free_relocs(obj); 7124 return 0; 7125 } 7126 7127 static const struct bpf_sec_def *find_sec_def(const char *sec_name); 7128 7129 static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts) 7130 { 7131 struct bpf_program *prog; 7132 int err; 7133 7134 bpf_object__for_each_program(prog, obj) { 7135 prog->sec_def = find_sec_def(prog->sec_name); 7136 if (!prog->sec_def) { 7137 /* couldn't guess, but user might manually specify */ 7138 pr_debug("prog '%s': unrecognized ELF section name '%s'\n", 7139 prog->name, prog->sec_name); 7140 continue; 7141 } 7142 7143 prog->type = prog->sec_def->prog_type; 7144 prog->expected_attach_type = prog->sec_def->expected_attach_type; 7145 7146 /* sec_def can have custom callback which should be called 7147 * after bpf_program is initialized to adjust its properties 7148 */ 7149 if (prog->sec_def->prog_setup_fn) { 7150 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie); 7151 if (err < 0) { 7152 pr_warn("prog '%s': failed to initialize: %d\n", 7153 prog->name, err); 7154 return err; 7155 } 7156 } 7157 } 7158 7159 return 0; 7160 } 7161 7162 static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz, 7163 const struct bpf_object_open_opts *opts) 7164 { 7165 const char *obj_name, *kconfig, *btf_tmp_path; 7166 struct bpf_object *obj; 7167 char tmp_name[64]; 7168 int err; 7169 char *log_buf; 7170 size_t log_size; 7171 __u32 log_level; 7172 7173 if (elf_version(EV_CURRENT) == EV_NONE) { 7174 pr_warn("failed to init libelf for %s\n", 7175 path ? : "(mem buf)"); 7176 return ERR_PTR(-LIBBPF_ERRNO__LIBELF); 7177 } 7178 7179 if (!OPTS_VALID(opts, bpf_object_open_opts)) 7180 return ERR_PTR(-EINVAL); 7181 7182 obj_name = OPTS_GET(opts, object_name, NULL); 7183 if (obj_buf) { 7184 if (!obj_name) { 7185 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx", 7186 (unsigned long)obj_buf, 7187 (unsigned long)obj_buf_sz); 7188 obj_name = tmp_name; 7189 } 7190 path = obj_name; 7191 pr_debug("loading object '%s' from buffer\n", obj_name); 7192 } 7193 7194 log_buf = OPTS_GET(opts, kernel_log_buf, NULL); 7195 log_size = OPTS_GET(opts, kernel_log_size, 0); 7196 log_level = OPTS_GET(opts, kernel_log_level, 0); 7197 if (log_size > UINT_MAX) 7198 return ERR_PTR(-EINVAL); 7199 if (log_size && !log_buf) 7200 return ERR_PTR(-EINVAL); 7201 7202 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name); 7203 if (IS_ERR(obj)) 7204 return obj; 7205 7206 obj->log_buf = log_buf; 7207 obj->log_size = log_size; 7208 obj->log_level = log_level; 7209 7210 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL); 7211 if (btf_tmp_path) { 7212 if (strlen(btf_tmp_path) >= PATH_MAX) { 7213 err = -ENAMETOOLONG; 7214 goto out; 7215 } 7216 obj->btf_custom_path = strdup(btf_tmp_path); 7217 if (!obj->btf_custom_path) { 7218 err = -ENOMEM; 7219 goto out; 7220 } 7221 } 7222 7223 kconfig = OPTS_GET(opts, kconfig, NULL); 7224 if (kconfig) { 7225 obj->kconfig = strdup(kconfig); 7226 if (!obj->kconfig) { 7227 err = -ENOMEM; 7228 goto out; 7229 } 7230 } 7231 7232 err = bpf_object__elf_init(obj); 7233 err = err ? : bpf_object__check_endianness(obj); 7234 err = err ? : bpf_object__elf_collect(obj); 7235 err = err ? : bpf_object__collect_externs(obj); 7236 err = err ? : bpf_object__finalize_btf(obj); 7237 err = err ? : bpf_object__init_maps(obj, opts); 7238 err = err ? : bpf_object_init_progs(obj, opts); 7239 err = err ? : bpf_object__collect_relos(obj); 7240 if (err) 7241 goto out; 7242 7243 bpf_object__elf_finish(obj); 7244 7245 return obj; 7246 out: 7247 bpf_object__close(obj); 7248 return ERR_PTR(err); 7249 } 7250 7251 struct bpf_object * 7252 bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts) 7253 { 7254 if (!path) 7255 return libbpf_err_ptr(-EINVAL); 7256 7257 pr_debug("loading %s\n", path); 7258 7259 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts)); 7260 } 7261 7262 struct bpf_object *bpf_object__open(const char *path) 7263 { 7264 return bpf_object__open_file(path, NULL); 7265 } 7266 7267 struct bpf_object * 7268 bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz, 7269 const struct bpf_object_open_opts *opts) 7270 { 7271 if (!obj_buf || obj_buf_sz == 0) 7272 return libbpf_err_ptr(-EINVAL); 7273 7274 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts)); 7275 } 7276 7277 static int bpf_object_unload(struct bpf_object *obj) 7278 { 7279 size_t i; 7280 7281 if (!obj) 7282 return libbpf_err(-EINVAL); 7283 7284 for (i = 0; i < obj->nr_maps; i++) { 7285 zclose(obj->maps[i].fd); 7286 if (obj->maps[i].st_ops) 7287 zfree(&obj->maps[i].st_ops->kern_vdata); 7288 } 7289 7290 for (i = 0; i < obj->nr_programs; i++) 7291 bpf_program__unload(&obj->programs[i]); 7292 7293 return 0; 7294 } 7295 7296 static int bpf_object__sanitize_maps(struct bpf_object *obj) 7297 { 7298 struct bpf_map *m; 7299 7300 bpf_object__for_each_map(m, obj) { 7301 if (!bpf_map__is_internal(m)) 7302 continue; 7303 if (!kernel_supports(obj, FEAT_ARRAY_MMAP)) 7304 m->def.map_flags ^= BPF_F_MMAPABLE; 7305 } 7306 7307 return 0; 7308 } 7309 7310 int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx) 7311 { 7312 char sym_type, sym_name[500]; 7313 unsigned long long sym_addr; 7314 int ret, err = 0; 7315 FILE *f; 7316 7317 f = fopen("/proc/kallsyms", "r"); 7318 if (!f) { 7319 err = -errno; 7320 pr_warn("failed to open /proc/kallsyms: %d\n", err); 7321 return err; 7322 } 7323 7324 while (true) { 7325 ret = fscanf(f, "%llx %c %499s%*[^\n]\n", 7326 &sym_addr, &sym_type, sym_name); 7327 if (ret == EOF && feof(f)) 7328 break; 7329 if (ret != 3) { 7330 pr_warn("failed to read kallsyms entry: %d\n", ret); 7331 err = -EINVAL; 7332 break; 7333 } 7334 7335 err = cb(sym_addr, sym_type, sym_name, ctx); 7336 if (err) 7337 break; 7338 } 7339 7340 fclose(f); 7341 return err; 7342 } 7343 7344 static int kallsyms_cb(unsigned long long sym_addr, char sym_type, 7345 const char *sym_name, void *ctx) 7346 { 7347 struct bpf_object *obj = ctx; 7348 const struct btf_type *t; 7349 struct extern_desc *ext; 7350 7351 ext = find_extern_by_name(obj, sym_name); 7352 if (!ext || ext->type != EXT_KSYM) 7353 return 0; 7354 7355 t = btf__type_by_id(obj->btf, ext->btf_id); 7356 if (!btf_is_var(t)) 7357 return 0; 7358 7359 if (ext->is_set && ext->ksym.addr != sym_addr) { 7360 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n", 7361 sym_name, ext->ksym.addr, sym_addr); 7362 return -EINVAL; 7363 } 7364 if (!ext->is_set) { 7365 ext->is_set = true; 7366 ext->ksym.addr = sym_addr; 7367 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr); 7368 } 7369 return 0; 7370 } 7371 7372 static int bpf_object__read_kallsyms_file(struct bpf_object *obj) 7373 { 7374 return libbpf_kallsyms_parse(kallsyms_cb, obj); 7375 } 7376 7377 static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name, 7378 __u16 kind, struct btf **res_btf, 7379 struct module_btf **res_mod_btf) 7380 { 7381 struct module_btf *mod_btf; 7382 struct btf *btf; 7383 int i, id, err; 7384 7385 btf = obj->btf_vmlinux; 7386 mod_btf = NULL; 7387 id = btf__find_by_name_kind(btf, ksym_name, kind); 7388 7389 if (id == -ENOENT) { 7390 err = load_module_btfs(obj); 7391 if (err) 7392 return err; 7393 7394 for (i = 0; i < obj->btf_module_cnt; i++) { 7395 /* we assume module_btf's BTF FD is always >0 */ 7396 mod_btf = &obj->btf_modules[i]; 7397 btf = mod_btf->btf; 7398 id = btf__find_by_name_kind_own(btf, ksym_name, kind); 7399 if (id != -ENOENT) 7400 break; 7401 } 7402 } 7403 if (id <= 0) 7404 return -ESRCH; 7405 7406 *res_btf = btf; 7407 *res_mod_btf = mod_btf; 7408 return id; 7409 } 7410 7411 static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj, 7412 struct extern_desc *ext) 7413 { 7414 const struct btf_type *targ_var, *targ_type; 7415 __u32 targ_type_id, local_type_id; 7416 struct module_btf *mod_btf = NULL; 7417 const char *targ_var_name; 7418 struct btf *btf = NULL; 7419 int id, err; 7420 7421 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf); 7422 if (id < 0) { 7423 if (id == -ESRCH && ext->is_weak) 7424 return 0; 7425 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n", 7426 ext->name); 7427 return id; 7428 } 7429 7430 /* find local type_id */ 7431 local_type_id = ext->ksym.type_id; 7432 7433 /* find target type_id */ 7434 targ_var = btf__type_by_id(btf, id); 7435 targ_var_name = btf__name_by_offset(btf, targ_var->name_off); 7436 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id); 7437 7438 err = bpf_core_types_are_compat(obj->btf, local_type_id, 7439 btf, targ_type_id); 7440 if (err <= 0) { 7441 const struct btf_type *local_type; 7442 const char *targ_name, *local_name; 7443 7444 local_type = btf__type_by_id(obj->btf, local_type_id); 7445 local_name = btf__name_by_offset(obj->btf, local_type->name_off); 7446 targ_name = btf__name_by_offset(btf, targ_type->name_off); 7447 7448 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n", 7449 ext->name, local_type_id, 7450 btf_kind_str(local_type), local_name, targ_type_id, 7451 btf_kind_str(targ_type), targ_name); 7452 return -EINVAL; 7453 } 7454 7455 ext->is_set = true; 7456 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0; 7457 ext->ksym.kernel_btf_id = id; 7458 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n", 7459 ext->name, id, btf_kind_str(targ_var), targ_var_name); 7460 7461 return 0; 7462 } 7463 7464 static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj, 7465 struct extern_desc *ext) 7466 { 7467 int local_func_proto_id, kfunc_proto_id, kfunc_id; 7468 struct module_btf *mod_btf = NULL; 7469 const struct btf_type *kern_func; 7470 struct btf *kern_btf = NULL; 7471 int ret; 7472 7473 local_func_proto_id = ext->ksym.type_id; 7474 7475 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf); 7476 if (kfunc_id < 0) { 7477 if (kfunc_id == -ESRCH && ext->is_weak) 7478 return 0; 7479 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n", 7480 ext->name); 7481 return kfunc_id; 7482 } 7483 7484 kern_func = btf__type_by_id(kern_btf, kfunc_id); 7485 kfunc_proto_id = kern_func->type; 7486 7487 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id, 7488 kern_btf, kfunc_proto_id); 7489 if (ret <= 0) { 7490 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with kernel [%d]\n", 7491 ext->name, local_func_proto_id, kfunc_proto_id); 7492 return -EINVAL; 7493 } 7494 7495 /* set index for module BTF fd in fd_array, if unset */ 7496 if (mod_btf && !mod_btf->fd_array_idx) { 7497 /* insn->off is s16 */ 7498 if (obj->fd_array_cnt == INT16_MAX) { 7499 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n", 7500 ext->name, mod_btf->fd_array_idx); 7501 return -E2BIG; 7502 } 7503 /* Cannot use index 0 for module BTF fd */ 7504 if (!obj->fd_array_cnt) 7505 obj->fd_array_cnt = 1; 7506 7507 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int), 7508 obj->fd_array_cnt + 1); 7509 if (ret) 7510 return ret; 7511 mod_btf->fd_array_idx = obj->fd_array_cnt; 7512 /* we assume module BTF FD is always >0 */ 7513 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd; 7514 } 7515 7516 ext->is_set = true; 7517 ext->ksym.kernel_btf_id = kfunc_id; 7518 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0; 7519 pr_debug("extern (func ksym) '%s': resolved to kernel [%d]\n", 7520 ext->name, kfunc_id); 7521 7522 return 0; 7523 } 7524 7525 static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj) 7526 { 7527 const struct btf_type *t; 7528 struct extern_desc *ext; 7529 int i, err; 7530 7531 for (i = 0; i < obj->nr_extern; i++) { 7532 ext = &obj->externs[i]; 7533 if (ext->type != EXT_KSYM || !ext->ksym.type_id) 7534 continue; 7535 7536 if (obj->gen_loader) { 7537 ext->is_set = true; 7538 ext->ksym.kernel_btf_obj_fd = 0; 7539 ext->ksym.kernel_btf_id = 0; 7540 continue; 7541 } 7542 t = btf__type_by_id(obj->btf, ext->btf_id); 7543 if (btf_is_var(t)) 7544 err = bpf_object__resolve_ksym_var_btf_id(obj, ext); 7545 else 7546 err = bpf_object__resolve_ksym_func_btf_id(obj, ext); 7547 if (err) 7548 return err; 7549 } 7550 return 0; 7551 } 7552 7553 static int bpf_object__resolve_externs(struct bpf_object *obj, 7554 const char *extra_kconfig) 7555 { 7556 bool need_config = false, need_kallsyms = false; 7557 bool need_vmlinux_btf = false; 7558 struct extern_desc *ext; 7559 void *kcfg_data = NULL; 7560 int err, i; 7561 7562 if (obj->nr_extern == 0) 7563 return 0; 7564 7565 if (obj->kconfig_map_idx >= 0) 7566 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped; 7567 7568 for (i = 0; i < obj->nr_extern; i++) { 7569 ext = &obj->externs[i]; 7570 7571 if (ext->type == EXT_KSYM) { 7572 if (ext->ksym.type_id) 7573 need_vmlinux_btf = true; 7574 else 7575 need_kallsyms = true; 7576 continue; 7577 } else if (ext->type == EXT_KCFG) { 7578 void *ext_ptr = kcfg_data + ext->kcfg.data_off; 7579 __u64 value = 0; 7580 7581 /* Kconfig externs need actual /proc/config.gz */ 7582 if (str_has_pfx(ext->name, "CONFIG_")) { 7583 need_config = true; 7584 continue; 7585 } 7586 7587 /* Virtual kcfg externs are customly handled by libbpf */ 7588 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) { 7589 value = get_kernel_version(); 7590 if (!value) { 7591 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name); 7592 return -EINVAL; 7593 } 7594 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) { 7595 value = kernel_supports(obj, FEAT_BPF_COOKIE); 7596 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) { 7597 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER); 7598 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) { 7599 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed 7600 * __kconfig externs, where LINUX_ ones are virtual and filled out 7601 * customly by libbpf (their values don't come from Kconfig). 7602 * If LINUX_xxx variable is not recognized by libbpf, but is marked 7603 * __weak, it defaults to zero value, just like for CONFIG_xxx 7604 * externs. 7605 */ 7606 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name); 7607 return -EINVAL; 7608 } 7609 7610 err = set_kcfg_value_num(ext, ext_ptr, value); 7611 if (err) 7612 return err; 7613 pr_debug("extern (kcfg) '%s': set to 0x%llx\n", 7614 ext->name, (long long)value); 7615 } else { 7616 pr_warn("extern '%s': unrecognized extern kind\n", ext->name); 7617 return -EINVAL; 7618 } 7619 } 7620 if (need_config && extra_kconfig) { 7621 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data); 7622 if (err) 7623 return -EINVAL; 7624 need_config = false; 7625 for (i = 0; i < obj->nr_extern; i++) { 7626 ext = &obj->externs[i]; 7627 if (ext->type == EXT_KCFG && !ext->is_set) { 7628 need_config = true; 7629 break; 7630 } 7631 } 7632 } 7633 if (need_config) { 7634 err = bpf_object__read_kconfig_file(obj, kcfg_data); 7635 if (err) 7636 return -EINVAL; 7637 } 7638 if (need_kallsyms) { 7639 err = bpf_object__read_kallsyms_file(obj); 7640 if (err) 7641 return -EINVAL; 7642 } 7643 if (need_vmlinux_btf) { 7644 err = bpf_object__resolve_ksyms_btf_id(obj); 7645 if (err) 7646 return -EINVAL; 7647 } 7648 for (i = 0; i < obj->nr_extern; i++) { 7649 ext = &obj->externs[i]; 7650 7651 if (!ext->is_set && !ext->is_weak) { 7652 pr_warn("extern '%s' (strong): not resolved\n", ext->name); 7653 return -ESRCH; 7654 } else if (!ext->is_set) { 7655 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n", 7656 ext->name); 7657 } 7658 } 7659 7660 return 0; 7661 } 7662 7663 static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path) 7664 { 7665 int err, i; 7666 7667 if (!obj) 7668 return libbpf_err(-EINVAL); 7669 7670 if (obj->loaded) { 7671 pr_warn("object '%s': load can't be attempted twice\n", obj->name); 7672 return libbpf_err(-EINVAL); 7673 } 7674 7675 if (obj->gen_loader) 7676 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps); 7677 7678 err = bpf_object__probe_loading(obj); 7679 err = err ? : bpf_object__load_vmlinux_btf(obj, false); 7680 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig); 7681 err = err ? : bpf_object__sanitize_and_load_btf(obj); 7682 err = err ? : bpf_object__sanitize_maps(obj); 7683 err = err ? : bpf_object__init_kern_struct_ops_maps(obj); 7684 err = err ? : bpf_object__create_maps(obj); 7685 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path); 7686 err = err ? : bpf_object__load_progs(obj, extra_log_level); 7687 err = err ? : bpf_object_init_prog_arrays(obj); 7688 7689 if (obj->gen_loader) { 7690 /* reset FDs */ 7691 if (obj->btf) 7692 btf__set_fd(obj->btf, -1); 7693 for (i = 0; i < obj->nr_maps; i++) 7694 obj->maps[i].fd = -1; 7695 if (!err) 7696 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps); 7697 } 7698 7699 /* clean up fd_array */ 7700 zfree(&obj->fd_array); 7701 7702 /* clean up module BTFs */ 7703 for (i = 0; i < obj->btf_module_cnt; i++) { 7704 close(obj->btf_modules[i].fd); 7705 btf__free(obj->btf_modules[i].btf); 7706 free(obj->btf_modules[i].name); 7707 } 7708 free(obj->btf_modules); 7709 7710 /* clean up vmlinux BTF */ 7711 btf__free(obj->btf_vmlinux); 7712 obj->btf_vmlinux = NULL; 7713 7714 obj->loaded = true; /* doesn't matter if successfully or not */ 7715 7716 if (err) 7717 goto out; 7718 7719 return 0; 7720 out: 7721 /* unpin any maps that were auto-pinned during load */ 7722 for (i = 0; i < obj->nr_maps; i++) 7723 if (obj->maps[i].pinned && !obj->maps[i].reused) 7724 bpf_map__unpin(&obj->maps[i], NULL); 7725 7726 bpf_object_unload(obj); 7727 pr_warn("failed to load object '%s'\n", obj->path); 7728 return libbpf_err(err); 7729 } 7730 7731 int bpf_object__load(struct bpf_object *obj) 7732 { 7733 return bpf_object_load(obj, 0, NULL); 7734 } 7735 7736 static int make_parent_dir(const char *path) 7737 { 7738 char *cp, errmsg[STRERR_BUFSIZE]; 7739 char *dname, *dir; 7740 int err = 0; 7741 7742 dname = strdup(path); 7743 if (dname == NULL) 7744 return -ENOMEM; 7745 7746 dir = dirname(dname); 7747 if (mkdir(dir, 0700) && errno != EEXIST) 7748 err = -errno; 7749 7750 free(dname); 7751 if (err) { 7752 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7753 pr_warn("failed to mkdir %s: %s\n", path, cp); 7754 } 7755 return err; 7756 } 7757 7758 static int check_path(const char *path) 7759 { 7760 char *cp, errmsg[STRERR_BUFSIZE]; 7761 struct statfs st_fs; 7762 char *dname, *dir; 7763 int err = 0; 7764 7765 if (path == NULL) 7766 return -EINVAL; 7767 7768 dname = strdup(path); 7769 if (dname == NULL) 7770 return -ENOMEM; 7771 7772 dir = dirname(dname); 7773 if (statfs(dir, &st_fs)) { 7774 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg)); 7775 pr_warn("failed to statfs %s: %s\n", dir, cp); 7776 err = -errno; 7777 } 7778 free(dname); 7779 7780 if (!err && st_fs.f_type != BPF_FS_MAGIC) { 7781 pr_warn("specified path %s is not on BPF FS\n", path); 7782 err = -EINVAL; 7783 } 7784 7785 return err; 7786 } 7787 7788 int bpf_program__pin(struct bpf_program *prog, const char *path) 7789 { 7790 char *cp, errmsg[STRERR_BUFSIZE]; 7791 int err; 7792 7793 if (prog->fd < 0) { 7794 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name); 7795 return libbpf_err(-EINVAL); 7796 } 7797 7798 err = make_parent_dir(path); 7799 if (err) 7800 return libbpf_err(err); 7801 7802 err = check_path(path); 7803 if (err) 7804 return libbpf_err(err); 7805 7806 if (bpf_obj_pin(prog->fd, path)) { 7807 err = -errno; 7808 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg)); 7809 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp); 7810 return libbpf_err(err); 7811 } 7812 7813 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path); 7814 return 0; 7815 } 7816 7817 int bpf_program__unpin(struct bpf_program *prog, const char *path) 7818 { 7819 int err; 7820 7821 if (prog->fd < 0) { 7822 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name); 7823 return libbpf_err(-EINVAL); 7824 } 7825 7826 err = check_path(path); 7827 if (err) 7828 return libbpf_err(err); 7829 7830 err = unlink(path); 7831 if (err) 7832 return libbpf_err(-errno); 7833 7834 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path); 7835 return 0; 7836 } 7837 7838 int bpf_map__pin(struct bpf_map *map, const char *path) 7839 { 7840 char *cp, errmsg[STRERR_BUFSIZE]; 7841 int err; 7842 7843 if (map == NULL) { 7844 pr_warn("invalid map pointer\n"); 7845 return libbpf_err(-EINVAL); 7846 } 7847 7848 if (map->pin_path) { 7849 if (path && strcmp(path, map->pin_path)) { 7850 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7851 bpf_map__name(map), map->pin_path, path); 7852 return libbpf_err(-EINVAL); 7853 } else if (map->pinned) { 7854 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n", 7855 bpf_map__name(map), map->pin_path); 7856 return 0; 7857 } 7858 } else { 7859 if (!path) { 7860 pr_warn("missing a path to pin map '%s' at\n", 7861 bpf_map__name(map)); 7862 return libbpf_err(-EINVAL); 7863 } else if (map->pinned) { 7864 pr_warn("map '%s' already pinned\n", bpf_map__name(map)); 7865 return libbpf_err(-EEXIST); 7866 } 7867 7868 map->pin_path = strdup(path); 7869 if (!map->pin_path) { 7870 err = -errno; 7871 goto out_err; 7872 } 7873 } 7874 7875 err = make_parent_dir(map->pin_path); 7876 if (err) 7877 return libbpf_err(err); 7878 7879 err = check_path(map->pin_path); 7880 if (err) 7881 return libbpf_err(err); 7882 7883 if (bpf_obj_pin(map->fd, map->pin_path)) { 7884 err = -errno; 7885 goto out_err; 7886 } 7887 7888 map->pinned = true; 7889 pr_debug("pinned map '%s'\n", map->pin_path); 7890 7891 return 0; 7892 7893 out_err: 7894 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg)); 7895 pr_warn("failed to pin map: %s\n", cp); 7896 return libbpf_err(err); 7897 } 7898 7899 int bpf_map__unpin(struct bpf_map *map, const char *path) 7900 { 7901 int err; 7902 7903 if (map == NULL) { 7904 pr_warn("invalid map pointer\n"); 7905 return libbpf_err(-EINVAL); 7906 } 7907 7908 if (map->pin_path) { 7909 if (path && strcmp(path, map->pin_path)) { 7910 pr_warn("map '%s' already has pin path '%s' different from '%s'\n", 7911 bpf_map__name(map), map->pin_path, path); 7912 return libbpf_err(-EINVAL); 7913 } 7914 path = map->pin_path; 7915 } else if (!path) { 7916 pr_warn("no path to unpin map '%s' from\n", 7917 bpf_map__name(map)); 7918 return libbpf_err(-EINVAL); 7919 } 7920 7921 err = check_path(path); 7922 if (err) 7923 return libbpf_err(err); 7924 7925 err = unlink(path); 7926 if (err != 0) 7927 return libbpf_err(-errno); 7928 7929 map->pinned = false; 7930 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path); 7931 7932 return 0; 7933 } 7934 7935 int bpf_map__set_pin_path(struct bpf_map *map, const char *path) 7936 { 7937 char *new = NULL; 7938 7939 if (path) { 7940 new = strdup(path); 7941 if (!new) 7942 return libbpf_err(-errno); 7943 } 7944 7945 free(map->pin_path); 7946 map->pin_path = new; 7947 return 0; 7948 } 7949 7950 __alias(bpf_map__pin_path) 7951 const char *bpf_map__get_pin_path(const struct bpf_map *map); 7952 7953 const char *bpf_map__pin_path(const struct bpf_map *map) 7954 { 7955 return map->pin_path; 7956 } 7957 7958 bool bpf_map__is_pinned(const struct bpf_map *map) 7959 { 7960 return map->pinned; 7961 } 7962 7963 static void sanitize_pin_path(char *s) 7964 { 7965 /* bpffs disallows periods in path names */ 7966 while (*s) { 7967 if (*s == '.') 7968 *s = '_'; 7969 s++; 7970 } 7971 } 7972 7973 int bpf_object__pin_maps(struct bpf_object *obj, const char *path) 7974 { 7975 struct bpf_map *map; 7976 int err; 7977 7978 if (!obj) 7979 return libbpf_err(-ENOENT); 7980 7981 if (!obj->loaded) { 7982 pr_warn("object not yet loaded; load it first\n"); 7983 return libbpf_err(-ENOENT); 7984 } 7985 7986 bpf_object__for_each_map(map, obj) { 7987 char *pin_path = NULL; 7988 char buf[PATH_MAX]; 7989 7990 if (!map->autocreate) 7991 continue; 7992 7993 if (path) { 7994 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 7995 if (err) 7996 goto err_unpin_maps; 7997 sanitize_pin_path(buf); 7998 pin_path = buf; 7999 } else if (!map->pin_path) { 8000 continue; 8001 } 8002 8003 err = bpf_map__pin(map, pin_path); 8004 if (err) 8005 goto err_unpin_maps; 8006 } 8007 8008 return 0; 8009 8010 err_unpin_maps: 8011 while ((map = bpf_object__prev_map(obj, map))) { 8012 if (!map->pin_path) 8013 continue; 8014 8015 bpf_map__unpin(map, NULL); 8016 } 8017 8018 return libbpf_err(err); 8019 } 8020 8021 int bpf_object__unpin_maps(struct bpf_object *obj, const char *path) 8022 { 8023 struct bpf_map *map; 8024 int err; 8025 8026 if (!obj) 8027 return libbpf_err(-ENOENT); 8028 8029 bpf_object__for_each_map(map, obj) { 8030 char *pin_path = NULL; 8031 char buf[PATH_MAX]; 8032 8033 if (path) { 8034 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map)); 8035 if (err) 8036 return libbpf_err(err); 8037 sanitize_pin_path(buf); 8038 pin_path = buf; 8039 } else if (!map->pin_path) { 8040 continue; 8041 } 8042 8043 err = bpf_map__unpin(map, pin_path); 8044 if (err) 8045 return libbpf_err(err); 8046 } 8047 8048 return 0; 8049 } 8050 8051 int bpf_object__pin_programs(struct bpf_object *obj, const char *path) 8052 { 8053 struct bpf_program *prog; 8054 char buf[PATH_MAX]; 8055 int err; 8056 8057 if (!obj) 8058 return libbpf_err(-ENOENT); 8059 8060 if (!obj->loaded) { 8061 pr_warn("object not yet loaded; load it first\n"); 8062 return libbpf_err(-ENOENT); 8063 } 8064 8065 bpf_object__for_each_program(prog, obj) { 8066 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8067 if (err) 8068 goto err_unpin_programs; 8069 8070 err = bpf_program__pin(prog, buf); 8071 if (err) 8072 goto err_unpin_programs; 8073 } 8074 8075 return 0; 8076 8077 err_unpin_programs: 8078 while ((prog = bpf_object__prev_program(obj, prog))) { 8079 if (pathname_concat(buf, sizeof(buf), path, prog->name)) 8080 continue; 8081 8082 bpf_program__unpin(prog, buf); 8083 } 8084 8085 return libbpf_err(err); 8086 } 8087 8088 int bpf_object__unpin_programs(struct bpf_object *obj, const char *path) 8089 { 8090 struct bpf_program *prog; 8091 int err; 8092 8093 if (!obj) 8094 return libbpf_err(-ENOENT); 8095 8096 bpf_object__for_each_program(prog, obj) { 8097 char buf[PATH_MAX]; 8098 8099 err = pathname_concat(buf, sizeof(buf), path, prog->name); 8100 if (err) 8101 return libbpf_err(err); 8102 8103 err = bpf_program__unpin(prog, buf); 8104 if (err) 8105 return libbpf_err(err); 8106 } 8107 8108 return 0; 8109 } 8110 8111 int bpf_object__pin(struct bpf_object *obj, const char *path) 8112 { 8113 int err; 8114 8115 err = bpf_object__pin_maps(obj, path); 8116 if (err) 8117 return libbpf_err(err); 8118 8119 err = bpf_object__pin_programs(obj, path); 8120 if (err) { 8121 bpf_object__unpin_maps(obj, path); 8122 return libbpf_err(err); 8123 } 8124 8125 return 0; 8126 } 8127 8128 static void bpf_map__destroy(struct bpf_map *map) 8129 { 8130 if (map->inner_map) { 8131 bpf_map__destroy(map->inner_map); 8132 zfree(&map->inner_map); 8133 } 8134 8135 zfree(&map->init_slots); 8136 map->init_slots_sz = 0; 8137 8138 if (map->mmaped) { 8139 munmap(map->mmaped, bpf_map_mmap_sz(map)); 8140 map->mmaped = NULL; 8141 } 8142 8143 if (map->st_ops) { 8144 zfree(&map->st_ops->data); 8145 zfree(&map->st_ops->progs); 8146 zfree(&map->st_ops->kern_func_off); 8147 zfree(&map->st_ops); 8148 } 8149 8150 zfree(&map->name); 8151 zfree(&map->real_name); 8152 zfree(&map->pin_path); 8153 8154 if (map->fd >= 0) 8155 zclose(map->fd); 8156 } 8157 8158 void bpf_object__close(struct bpf_object *obj) 8159 { 8160 size_t i; 8161 8162 if (IS_ERR_OR_NULL(obj)) 8163 return; 8164 8165 usdt_manager_free(obj->usdt_man); 8166 obj->usdt_man = NULL; 8167 8168 bpf_gen__free(obj->gen_loader); 8169 bpf_object__elf_finish(obj); 8170 bpf_object_unload(obj); 8171 btf__free(obj->btf); 8172 btf_ext__free(obj->btf_ext); 8173 8174 for (i = 0; i < obj->nr_maps; i++) 8175 bpf_map__destroy(&obj->maps[i]); 8176 8177 zfree(&obj->btf_custom_path); 8178 zfree(&obj->kconfig); 8179 zfree(&obj->externs); 8180 obj->nr_extern = 0; 8181 8182 zfree(&obj->maps); 8183 obj->nr_maps = 0; 8184 8185 if (obj->programs && obj->nr_programs) { 8186 for (i = 0; i < obj->nr_programs; i++) 8187 bpf_program__exit(&obj->programs[i]); 8188 } 8189 zfree(&obj->programs); 8190 8191 free(obj); 8192 } 8193 8194 const char *bpf_object__name(const struct bpf_object *obj) 8195 { 8196 return obj ? obj->name : libbpf_err_ptr(-EINVAL); 8197 } 8198 8199 unsigned int bpf_object__kversion(const struct bpf_object *obj) 8200 { 8201 return obj ? obj->kern_version : 0; 8202 } 8203 8204 struct btf *bpf_object__btf(const struct bpf_object *obj) 8205 { 8206 return obj ? obj->btf : NULL; 8207 } 8208 8209 int bpf_object__btf_fd(const struct bpf_object *obj) 8210 { 8211 return obj->btf ? btf__fd(obj->btf) : -1; 8212 } 8213 8214 int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version) 8215 { 8216 if (obj->loaded) 8217 return libbpf_err(-EINVAL); 8218 8219 obj->kern_version = kern_version; 8220 8221 return 0; 8222 } 8223 8224 int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts) 8225 { 8226 struct bpf_gen *gen; 8227 8228 if (!opts) 8229 return -EFAULT; 8230 if (!OPTS_VALID(opts, gen_loader_opts)) 8231 return -EINVAL; 8232 gen = calloc(sizeof(*gen), 1); 8233 if (!gen) 8234 return -ENOMEM; 8235 gen->opts = opts; 8236 obj->gen_loader = gen; 8237 return 0; 8238 } 8239 8240 static struct bpf_program * 8241 __bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj, 8242 bool forward) 8243 { 8244 size_t nr_programs = obj->nr_programs; 8245 ssize_t idx; 8246 8247 if (!nr_programs) 8248 return NULL; 8249 8250 if (!p) 8251 /* Iter from the beginning */ 8252 return forward ? &obj->programs[0] : 8253 &obj->programs[nr_programs - 1]; 8254 8255 if (p->obj != obj) { 8256 pr_warn("error: program handler doesn't match object\n"); 8257 return errno = EINVAL, NULL; 8258 } 8259 8260 idx = (p - obj->programs) + (forward ? 1 : -1); 8261 if (idx >= obj->nr_programs || idx < 0) 8262 return NULL; 8263 return &obj->programs[idx]; 8264 } 8265 8266 struct bpf_program * 8267 bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev) 8268 { 8269 struct bpf_program *prog = prev; 8270 8271 do { 8272 prog = __bpf_program__iter(prog, obj, true); 8273 } while (prog && prog_is_subprog(obj, prog)); 8274 8275 return prog; 8276 } 8277 8278 struct bpf_program * 8279 bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next) 8280 { 8281 struct bpf_program *prog = next; 8282 8283 do { 8284 prog = __bpf_program__iter(prog, obj, false); 8285 } while (prog && prog_is_subprog(obj, prog)); 8286 8287 return prog; 8288 } 8289 8290 void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex) 8291 { 8292 prog->prog_ifindex = ifindex; 8293 } 8294 8295 const char *bpf_program__name(const struct bpf_program *prog) 8296 { 8297 return prog->name; 8298 } 8299 8300 const char *bpf_program__section_name(const struct bpf_program *prog) 8301 { 8302 return prog->sec_name; 8303 } 8304 8305 bool bpf_program__autoload(const struct bpf_program *prog) 8306 { 8307 return prog->autoload; 8308 } 8309 8310 int bpf_program__set_autoload(struct bpf_program *prog, bool autoload) 8311 { 8312 if (prog->obj->loaded) 8313 return libbpf_err(-EINVAL); 8314 8315 prog->autoload = autoload; 8316 return 0; 8317 } 8318 8319 bool bpf_program__autoattach(const struct bpf_program *prog) 8320 { 8321 return prog->autoattach; 8322 } 8323 8324 void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach) 8325 { 8326 prog->autoattach = autoattach; 8327 } 8328 8329 const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog) 8330 { 8331 return prog->insns; 8332 } 8333 8334 size_t bpf_program__insn_cnt(const struct bpf_program *prog) 8335 { 8336 return prog->insns_cnt; 8337 } 8338 8339 int bpf_program__set_insns(struct bpf_program *prog, 8340 struct bpf_insn *new_insns, size_t new_insn_cnt) 8341 { 8342 struct bpf_insn *insns; 8343 8344 if (prog->obj->loaded) 8345 return -EBUSY; 8346 8347 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns)); 8348 if (!insns) { 8349 pr_warn("prog '%s': failed to realloc prog code\n", prog->name); 8350 return -ENOMEM; 8351 } 8352 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns)); 8353 8354 prog->insns = insns; 8355 prog->insns_cnt = new_insn_cnt; 8356 return 0; 8357 } 8358 8359 int bpf_program__fd(const struct bpf_program *prog) 8360 { 8361 if (!prog) 8362 return libbpf_err(-EINVAL); 8363 8364 if (prog->fd < 0) 8365 return libbpf_err(-ENOENT); 8366 8367 return prog->fd; 8368 } 8369 8370 __alias(bpf_program__type) 8371 enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog); 8372 8373 enum bpf_prog_type bpf_program__type(const struct bpf_program *prog) 8374 { 8375 return prog->type; 8376 } 8377 8378 int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type) 8379 { 8380 if (prog->obj->loaded) 8381 return libbpf_err(-EBUSY); 8382 8383 prog->type = type; 8384 return 0; 8385 } 8386 8387 __alias(bpf_program__expected_attach_type) 8388 enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog); 8389 8390 enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog) 8391 { 8392 return prog->expected_attach_type; 8393 } 8394 8395 int bpf_program__set_expected_attach_type(struct bpf_program *prog, 8396 enum bpf_attach_type type) 8397 { 8398 if (prog->obj->loaded) 8399 return libbpf_err(-EBUSY); 8400 8401 prog->expected_attach_type = type; 8402 return 0; 8403 } 8404 8405 __u32 bpf_program__flags(const struct bpf_program *prog) 8406 { 8407 return prog->prog_flags; 8408 } 8409 8410 int bpf_program__set_flags(struct bpf_program *prog, __u32 flags) 8411 { 8412 if (prog->obj->loaded) 8413 return libbpf_err(-EBUSY); 8414 8415 prog->prog_flags = flags; 8416 return 0; 8417 } 8418 8419 __u32 bpf_program__log_level(const struct bpf_program *prog) 8420 { 8421 return prog->log_level; 8422 } 8423 8424 int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level) 8425 { 8426 if (prog->obj->loaded) 8427 return libbpf_err(-EBUSY); 8428 8429 prog->log_level = log_level; 8430 return 0; 8431 } 8432 8433 const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size) 8434 { 8435 *log_size = prog->log_size; 8436 return prog->log_buf; 8437 } 8438 8439 int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size) 8440 { 8441 if (log_size && !log_buf) 8442 return -EINVAL; 8443 if (prog->log_size > UINT_MAX) 8444 return -EINVAL; 8445 if (prog->obj->loaded) 8446 return -EBUSY; 8447 8448 prog->log_buf = log_buf; 8449 prog->log_size = log_size; 8450 return 0; 8451 } 8452 8453 #define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \ 8454 .sec = (char *)sec_pfx, \ 8455 .prog_type = BPF_PROG_TYPE_##ptype, \ 8456 .expected_attach_type = atype, \ 8457 .cookie = (long)(flags), \ 8458 .prog_prepare_load_fn = libbpf_prepare_prog_load, \ 8459 __VA_ARGS__ \ 8460 } 8461 8462 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8463 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8464 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8465 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8466 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8467 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8468 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8469 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8470 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8471 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link); 8472 8473 static const struct bpf_sec_def section_defs[] = { 8474 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE), 8475 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE), 8476 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE), 8477 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8478 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8479 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8480 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe), 8481 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe), 8482 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe), 8483 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8484 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi), 8485 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8486 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall), 8487 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt), 8488 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE), 8489 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE), 8490 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE), 8491 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8492 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp), 8493 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8494 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp), 8495 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8496 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp), 8497 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace), 8498 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace), 8499 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace), 8500 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace), 8501 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8502 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8503 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace), 8504 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace), 8505 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm), 8506 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm), 8507 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF), 8508 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter), 8509 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter), 8510 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE), 8511 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS), 8512 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE), 8513 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS), 8514 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE), 8515 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS), 8516 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT), 8517 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE), 8518 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE), 8519 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE), 8520 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE), 8521 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE), 8522 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT), 8523 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT), 8524 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT), 8525 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE), 8526 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT), 8527 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT), 8528 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT), 8529 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT), 8530 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT), 8531 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE), 8532 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE), 8533 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE), 8534 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT), 8535 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE), 8536 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE), 8537 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE), 8538 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE), 8539 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE), 8540 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE), 8541 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE), 8542 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE), 8543 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE), 8544 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE), 8545 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE), 8546 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE), 8547 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE), 8548 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE), 8549 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE), 8550 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE), 8551 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE), 8552 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT), 8553 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE), 8554 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE), 8555 }; 8556 8557 static size_t custom_sec_def_cnt; 8558 static struct bpf_sec_def *custom_sec_defs; 8559 static struct bpf_sec_def custom_fallback_def; 8560 static bool has_custom_fallback_def; 8561 8562 static int last_custom_sec_def_handler_id; 8563 8564 int libbpf_register_prog_handler(const char *sec, 8565 enum bpf_prog_type prog_type, 8566 enum bpf_attach_type exp_attach_type, 8567 const struct libbpf_prog_handler_opts *opts) 8568 { 8569 struct bpf_sec_def *sec_def; 8570 8571 if (!OPTS_VALID(opts, libbpf_prog_handler_opts)) 8572 return libbpf_err(-EINVAL); 8573 8574 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */ 8575 return libbpf_err(-E2BIG); 8576 8577 if (sec) { 8578 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1, 8579 sizeof(*sec_def)); 8580 if (!sec_def) 8581 return libbpf_err(-ENOMEM); 8582 8583 custom_sec_defs = sec_def; 8584 sec_def = &custom_sec_defs[custom_sec_def_cnt]; 8585 } else { 8586 if (has_custom_fallback_def) 8587 return libbpf_err(-EBUSY); 8588 8589 sec_def = &custom_fallback_def; 8590 } 8591 8592 sec_def->sec = sec ? strdup(sec) : NULL; 8593 if (sec && !sec_def->sec) 8594 return libbpf_err(-ENOMEM); 8595 8596 sec_def->prog_type = prog_type; 8597 sec_def->expected_attach_type = exp_attach_type; 8598 sec_def->cookie = OPTS_GET(opts, cookie, 0); 8599 8600 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL); 8601 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL); 8602 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL); 8603 8604 sec_def->handler_id = ++last_custom_sec_def_handler_id; 8605 8606 if (sec) 8607 custom_sec_def_cnt++; 8608 else 8609 has_custom_fallback_def = true; 8610 8611 return sec_def->handler_id; 8612 } 8613 8614 int libbpf_unregister_prog_handler(int handler_id) 8615 { 8616 struct bpf_sec_def *sec_defs; 8617 int i; 8618 8619 if (handler_id <= 0) 8620 return libbpf_err(-EINVAL); 8621 8622 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) { 8623 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def)); 8624 has_custom_fallback_def = false; 8625 return 0; 8626 } 8627 8628 for (i = 0; i < custom_sec_def_cnt; i++) { 8629 if (custom_sec_defs[i].handler_id == handler_id) 8630 break; 8631 } 8632 8633 if (i == custom_sec_def_cnt) 8634 return libbpf_err(-ENOENT); 8635 8636 free(custom_sec_defs[i].sec); 8637 for (i = i + 1; i < custom_sec_def_cnt; i++) 8638 custom_sec_defs[i - 1] = custom_sec_defs[i]; 8639 custom_sec_def_cnt--; 8640 8641 /* try to shrink the array, but it's ok if we couldn't */ 8642 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs)); 8643 if (sec_defs) 8644 custom_sec_defs = sec_defs; 8645 8646 return 0; 8647 } 8648 8649 static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name) 8650 { 8651 size_t len = strlen(sec_def->sec); 8652 8653 /* "type/" always has to have proper SEC("type/extras") form */ 8654 if (sec_def->sec[len - 1] == '/') { 8655 if (str_has_pfx(sec_name, sec_def->sec)) 8656 return true; 8657 return false; 8658 } 8659 8660 /* "type+" means it can be either exact SEC("type") or 8661 * well-formed SEC("type/extras") with proper '/' separator 8662 */ 8663 if (sec_def->sec[len - 1] == '+') { 8664 len--; 8665 /* not even a prefix */ 8666 if (strncmp(sec_name, sec_def->sec, len) != 0) 8667 return false; 8668 /* exact match or has '/' separator */ 8669 if (sec_name[len] == '\0' || sec_name[len] == '/') 8670 return true; 8671 return false; 8672 } 8673 8674 return strcmp(sec_name, sec_def->sec) == 0; 8675 } 8676 8677 static const struct bpf_sec_def *find_sec_def(const char *sec_name) 8678 { 8679 const struct bpf_sec_def *sec_def; 8680 int i, n; 8681 8682 n = custom_sec_def_cnt; 8683 for (i = 0; i < n; i++) { 8684 sec_def = &custom_sec_defs[i]; 8685 if (sec_def_matches(sec_def, sec_name)) 8686 return sec_def; 8687 } 8688 8689 n = ARRAY_SIZE(section_defs); 8690 for (i = 0; i < n; i++) { 8691 sec_def = §ion_defs[i]; 8692 if (sec_def_matches(sec_def, sec_name)) 8693 return sec_def; 8694 } 8695 8696 if (has_custom_fallback_def) 8697 return &custom_fallback_def; 8698 8699 return NULL; 8700 } 8701 8702 #define MAX_TYPE_NAME_SIZE 32 8703 8704 static char *libbpf_get_type_names(bool attach_type) 8705 { 8706 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE; 8707 char *buf; 8708 8709 buf = malloc(len); 8710 if (!buf) 8711 return NULL; 8712 8713 buf[0] = '\0'; 8714 /* Forge string buf with all available names */ 8715 for (i = 0; i < ARRAY_SIZE(section_defs); i++) { 8716 const struct bpf_sec_def *sec_def = §ion_defs[i]; 8717 8718 if (attach_type) { 8719 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 8720 continue; 8721 8722 if (!(sec_def->cookie & SEC_ATTACHABLE)) 8723 continue; 8724 } 8725 8726 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) { 8727 free(buf); 8728 return NULL; 8729 } 8730 strcat(buf, " "); 8731 strcat(buf, section_defs[i].sec); 8732 } 8733 8734 return buf; 8735 } 8736 8737 int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type, 8738 enum bpf_attach_type *expected_attach_type) 8739 { 8740 const struct bpf_sec_def *sec_def; 8741 char *type_names; 8742 8743 if (!name) 8744 return libbpf_err(-EINVAL); 8745 8746 sec_def = find_sec_def(name); 8747 if (sec_def) { 8748 *prog_type = sec_def->prog_type; 8749 *expected_attach_type = sec_def->expected_attach_type; 8750 return 0; 8751 } 8752 8753 pr_debug("failed to guess program type from ELF section '%s'\n", name); 8754 type_names = libbpf_get_type_names(false); 8755 if (type_names != NULL) { 8756 pr_debug("supported section(type) names are:%s\n", type_names); 8757 free(type_names); 8758 } 8759 8760 return libbpf_err(-ESRCH); 8761 } 8762 8763 const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t) 8764 { 8765 if (t < 0 || t >= ARRAY_SIZE(attach_type_name)) 8766 return NULL; 8767 8768 return attach_type_name[t]; 8769 } 8770 8771 const char *libbpf_bpf_link_type_str(enum bpf_link_type t) 8772 { 8773 if (t < 0 || t >= ARRAY_SIZE(link_type_name)) 8774 return NULL; 8775 8776 return link_type_name[t]; 8777 } 8778 8779 const char *libbpf_bpf_map_type_str(enum bpf_map_type t) 8780 { 8781 if (t < 0 || t >= ARRAY_SIZE(map_type_name)) 8782 return NULL; 8783 8784 return map_type_name[t]; 8785 } 8786 8787 const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t) 8788 { 8789 if (t < 0 || t >= ARRAY_SIZE(prog_type_name)) 8790 return NULL; 8791 8792 return prog_type_name[t]; 8793 } 8794 8795 static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj, 8796 size_t offset) 8797 { 8798 struct bpf_map *map; 8799 size_t i; 8800 8801 for (i = 0; i < obj->nr_maps; i++) { 8802 map = &obj->maps[i]; 8803 if (!bpf_map__is_struct_ops(map)) 8804 continue; 8805 if (map->sec_offset <= offset && 8806 offset - map->sec_offset < map->def.value_size) 8807 return map; 8808 } 8809 8810 return NULL; 8811 } 8812 8813 /* Collect the reloc from ELF and populate the st_ops->progs[] */ 8814 static int bpf_object__collect_st_ops_relos(struct bpf_object *obj, 8815 Elf64_Shdr *shdr, Elf_Data *data) 8816 { 8817 const struct btf_member *member; 8818 struct bpf_struct_ops *st_ops; 8819 struct bpf_program *prog; 8820 unsigned int shdr_idx; 8821 const struct btf *btf; 8822 struct bpf_map *map; 8823 unsigned int moff, insn_idx; 8824 const char *name; 8825 __u32 member_idx; 8826 Elf64_Sym *sym; 8827 Elf64_Rel *rel; 8828 int i, nrels; 8829 8830 btf = obj->btf; 8831 nrels = shdr->sh_size / shdr->sh_entsize; 8832 for (i = 0; i < nrels; i++) { 8833 rel = elf_rel_by_idx(data, i); 8834 if (!rel) { 8835 pr_warn("struct_ops reloc: failed to get %d reloc\n", i); 8836 return -LIBBPF_ERRNO__FORMAT; 8837 } 8838 8839 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info)); 8840 if (!sym) { 8841 pr_warn("struct_ops reloc: symbol %zx not found\n", 8842 (size_t)ELF64_R_SYM(rel->r_info)); 8843 return -LIBBPF_ERRNO__FORMAT; 8844 } 8845 8846 name = elf_sym_str(obj, sym->st_name) ?: "<?>"; 8847 map = find_struct_ops_map_by_offset(obj, rel->r_offset); 8848 if (!map) { 8849 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n", 8850 (size_t)rel->r_offset); 8851 return -EINVAL; 8852 } 8853 8854 moff = rel->r_offset - map->sec_offset; 8855 shdr_idx = sym->st_shndx; 8856 st_ops = map->st_ops; 8857 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n", 8858 map->name, 8859 (long long)(rel->r_info >> 32), 8860 (long long)sym->st_value, 8861 shdr_idx, (size_t)rel->r_offset, 8862 map->sec_offset, sym->st_name, name); 8863 8864 if (shdr_idx >= SHN_LORESERVE) { 8865 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n", 8866 map->name, (size_t)rel->r_offset, shdr_idx); 8867 return -LIBBPF_ERRNO__RELOC; 8868 } 8869 if (sym->st_value % BPF_INSN_SZ) { 8870 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n", 8871 map->name, (unsigned long long)sym->st_value); 8872 return -LIBBPF_ERRNO__FORMAT; 8873 } 8874 insn_idx = sym->st_value / BPF_INSN_SZ; 8875 8876 member = find_member_by_offset(st_ops->type, moff * 8); 8877 if (!member) { 8878 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n", 8879 map->name, moff); 8880 return -EINVAL; 8881 } 8882 member_idx = member - btf_members(st_ops->type); 8883 name = btf__name_by_offset(btf, member->name_off); 8884 8885 if (!resolve_func_ptr(btf, member->type, NULL)) { 8886 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n", 8887 map->name, name); 8888 return -EINVAL; 8889 } 8890 8891 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx); 8892 if (!prog) { 8893 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n", 8894 map->name, shdr_idx, name); 8895 return -EINVAL; 8896 } 8897 8898 /* prevent the use of BPF prog with invalid type */ 8899 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) { 8900 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n", 8901 map->name, prog->name); 8902 return -EINVAL; 8903 } 8904 8905 /* if we haven't yet processed this BPF program, record proper 8906 * attach_btf_id and member_idx 8907 */ 8908 if (!prog->attach_btf_id) { 8909 prog->attach_btf_id = st_ops->type_id; 8910 prog->expected_attach_type = member_idx; 8911 } 8912 8913 /* struct_ops BPF prog can be re-used between multiple 8914 * .struct_ops as long as it's the same struct_ops struct 8915 * definition and the same function pointer field 8916 */ 8917 if (prog->attach_btf_id != st_ops->type_id || 8918 prog->expected_attach_type != member_idx) { 8919 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n", 8920 map->name, prog->name, prog->sec_name, prog->type, 8921 prog->attach_btf_id, prog->expected_attach_type, name); 8922 return -EINVAL; 8923 } 8924 8925 st_ops->progs[member_idx] = prog; 8926 } 8927 8928 return 0; 8929 } 8930 8931 #define BTF_TRACE_PREFIX "btf_trace_" 8932 #define BTF_LSM_PREFIX "bpf_lsm_" 8933 #define BTF_ITER_PREFIX "bpf_iter_" 8934 #define BTF_MAX_NAME_SIZE 128 8935 8936 void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type, 8937 const char **prefix, int *kind) 8938 { 8939 switch (attach_type) { 8940 case BPF_TRACE_RAW_TP: 8941 *prefix = BTF_TRACE_PREFIX; 8942 *kind = BTF_KIND_TYPEDEF; 8943 break; 8944 case BPF_LSM_MAC: 8945 case BPF_LSM_CGROUP: 8946 *prefix = BTF_LSM_PREFIX; 8947 *kind = BTF_KIND_FUNC; 8948 break; 8949 case BPF_TRACE_ITER: 8950 *prefix = BTF_ITER_PREFIX; 8951 *kind = BTF_KIND_FUNC; 8952 break; 8953 default: 8954 *prefix = ""; 8955 *kind = BTF_KIND_FUNC; 8956 } 8957 } 8958 8959 static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix, 8960 const char *name, __u32 kind) 8961 { 8962 char btf_type_name[BTF_MAX_NAME_SIZE]; 8963 int ret; 8964 8965 ret = snprintf(btf_type_name, sizeof(btf_type_name), 8966 "%s%s", prefix, name); 8967 /* snprintf returns the number of characters written excluding the 8968 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it 8969 * indicates truncation. 8970 */ 8971 if (ret < 0 || ret >= sizeof(btf_type_name)) 8972 return -ENAMETOOLONG; 8973 return btf__find_by_name_kind(btf, btf_type_name, kind); 8974 } 8975 8976 static inline int find_attach_btf_id(struct btf *btf, const char *name, 8977 enum bpf_attach_type attach_type) 8978 { 8979 const char *prefix; 8980 int kind; 8981 8982 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind); 8983 return find_btf_by_prefix_kind(btf, prefix, name, kind); 8984 } 8985 8986 int libbpf_find_vmlinux_btf_id(const char *name, 8987 enum bpf_attach_type attach_type) 8988 { 8989 struct btf *btf; 8990 int err; 8991 8992 btf = btf__load_vmlinux_btf(); 8993 err = libbpf_get_error(btf); 8994 if (err) { 8995 pr_warn("vmlinux BTF is not found\n"); 8996 return libbpf_err(err); 8997 } 8998 8999 err = find_attach_btf_id(btf, name, attach_type); 9000 if (err <= 0) 9001 pr_warn("%s is not found in vmlinux BTF\n", name); 9002 9003 btf__free(btf); 9004 return libbpf_err(err); 9005 } 9006 9007 static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd) 9008 { 9009 struct bpf_prog_info info; 9010 __u32 info_len = sizeof(info); 9011 struct btf *btf; 9012 int err; 9013 9014 memset(&info, 0, info_len); 9015 err = bpf_obj_get_info_by_fd(attach_prog_fd, &info, &info_len); 9016 if (err) { 9017 pr_warn("failed bpf_obj_get_info_by_fd for FD %d: %d\n", 9018 attach_prog_fd, err); 9019 return err; 9020 } 9021 9022 err = -EINVAL; 9023 if (!info.btf_id) { 9024 pr_warn("The target program doesn't have BTF\n"); 9025 goto out; 9026 } 9027 btf = btf__load_from_kernel_by_id(info.btf_id); 9028 err = libbpf_get_error(btf); 9029 if (err) { 9030 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err); 9031 goto out; 9032 } 9033 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC); 9034 btf__free(btf); 9035 if (err <= 0) { 9036 pr_warn("%s is not found in prog's BTF\n", name); 9037 goto out; 9038 } 9039 out: 9040 return err; 9041 } 9042 9043 static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name, 9044 enum bpf_attach_type attach_type, 9045 int *btf_obj_fd, int *btf_type_id) 9046 { 9047 int ret, i; 9048 9049 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type); 9050 if (ret > 0) { 9051 *btf_obj_fd = 0; /* vmlinux BTF */ 9052 *btf_type_id = ret; 9053 return 0; 9054 } 9055 if (ret != -ENOENT) 9056 return ret; 9057 9058 ret = load_module_btfs(obj); 9059 if (ret) 9060 return ret; 9061 9062 for (i = 0; i < obj->btf_module_cnt; i++) { 9063 const struct module_btf *mod = &obj->btf_modules[i]; 9064 9065 ret = find_attach_btf_id(mod->btf, attach_name, attach_type); 9066 if (ret > 0) { 9067 *btf_obj_fd = mod->fd; 9068 *btf_type_id = ret; 9069 return 0; 9070 } 9071 if (ret == -ENOENT) 9072 continue; 9073 9074 return ret; 9075 } 9076 9077 return -ESRCH; 9078 } 9079 9080 static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name, 9081 int *btf_obj_fd, int *btf_type_id) 9082 { 9083 enum bpf_attach_type attach_type = prog->expected_attach_type; 9084 __u32 attach_prog_fd = prog->attach_prog_fd; 9085 int err = 0; 9086 9087 /* BPF program's BTF ID */ 9088 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) { 9089 if (!attach_prog_fd) { 9090 pr_warn("prog '%s': attach program FD is not set\n", prog->name); 9091 return -EINVAL; 9092 } 9093 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd); 9094 if (err < 0) { 9095 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n", 9096 prog->name, attach_prog_fd, attach_name, err); 9097 return err; 9098 } 9099 *btf_obj_fd = 0; 9100 *btf_type_id = err; 9101 return 0; 9102 } 9103 9104 /* kernel/module BTF ID */ 9105 if (prog->obj->gen_loader) { 9106 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type); 9107 *btf_obj_fd = 0; 9108 *btf_type_id = 1; 9109 } else { 9110 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id); 9111 } 9112 if (err) { 9113 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n", 9114 prog->name, attach_name, err); 9115 return err; 9116 } 9117 return 0; 9118 } 9119 9120 int libbpf_attach_type_by_name(const char *name, 9121 enum bpf_attach_type *attach_type) 9122 { 9123 char *type_names; 9124 const struct bpf_sec_def *sec_def; 9125 9126 if (!name) 9127 return libbpf_err(-EINVAL); 9128 9129 sec_def = find_sec_def(name); 9130 if (!sec_def) { 9131 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name); 9132 type_names = libbpf_get_type_names(true); 9133 if (type_names != NULL) { 9134 pr_debug("attachable section(type) names are:%s\n", type_names); 9135 free(type_names); 9136 } 9137 9138 return libbpf_err(-EINVAL); 9139 } 9140 9141 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load) 9142 return libbpf_err(-EINVAL); 9143 if (!(sec_def->cookie & SEC_ATTACHABLE)) 9144 return libbpf_err(-EINVAL); 9145 9146 *attach_type = sec_def->expected_attach_type; 9147 return 0; 9148 } 9149 9150 int bpf_map__fd(const struct bpf_map *map) 9151 { 9152 return map ? map->fd : libbpf_err(-EINVAL); 9153 } 9154 9155 static bool map_uses_real_name(const struct bpf_map *map) 9156 { 9157 /* Since libbpf started to support custom .data.* and .rodata.* maps, 9158 * their user-visible name differs from kernel-visible name. Users see 9159 * such map's corresponding ELF section name as a map name. 9160 * This check distinguishes .data/.rodata from .data.* and .rodata.* 9161 * maps to know which name has to be returned to the user. 9162 */ 9163 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0) 9164 return true; 9165 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0) 9166 return true; 9167 return false; 9168 } 9169 9170 const char *bpf_map__name(const struct bpf_map *map) 9171 { 9172 if (!map) 9173 return NULL; 9174 9175 if (map_uses_real_name(map)) 9176 return map->real_name; 9177 9178 return map->name; 9179 } 9180 9181 enum bpf_map_type bpf_map__type(const struct bpf_map *map) 9182 { 9183 return map->def.type; 9184 } 9185 9186 int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type) 9187 { 9188 if (map->fd >= 0) 9189 return libbpf_err(-EBUSY); 9190 map->def.type = type; 9191 return 0; 9192 } 9193 9194 __u32 bpf_map__map_flags(const struct bpf_map *map) 9195 { 9196 return map->def.map_flags; 9197 } 9198 9199 int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags) 9200 { 9201 if (map->fd >= 0) 9202 return libbpf_err(-EBUSY); 9203 map->def.map_flags = flags; 9204 return 0; 9205 } 9206 9207 __u64 bpf_map__map_extra(const struct bpf_map *map) 9208 { 9209 return map->map_extra; 9210 } 9211 9212 int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra) 9213 { 9214 if (map->fd >= 0) 9215 return libbpf_err(-EBUSY); 9216 map->map_extra = map_extra; 9217 return 0; 9218 } 9219 9220 __u32 bpf_map__numa_node(const struct bpf_map *map) 9221 { 9222 return map->numa_node; 9223 } 9224 9225 int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node) 9226 { 9227 if (map->fd >= 0) 9228 return libbpf_err(-EBUSY); 9229 map->numa_node = numa_node; 9230 return 0; 9231 } 9232 9233 __u32 bpf_map__key_size(const struct bpf_map *map) 9234 { 9235 return map->def.key_size; 9236 } 9237 9238 int bpf_map__set_key_size(struct bpf_map *map, __u32 size) 9239 { 9240 if (map->fd >= 0) 9241 return libbpf_err(-EBUSY); 9242 map->def.key_size = size; 9243 return 0; 9244 } 9245 9246 __u32 bpf_map__value_size(const struct bpf_map *map) 9247 { 9248 return map->def.value_size; 9249 } 9250 9251 int bpf_map__set_value_size(struct bpf_map *map, __u32 size) 9252 { 9253 if (map->fd >= 0) 9254 return libbpf_err(-EBUSY); 9255 map->def.value_size = size; 9256 return 0; 9257 } 9258 9259 __u32 bpf_map__btf_key_type_id(const struct bpf_map *map) 9260 { 9261 return map ? map->btf_key_type_id : 0; 9262 } 9263 9264 __u32 bpf_map__btf_value_type_id(const struct bpf_map *map) 9265 { 9266 return map ? map->btf_value_type_id : 0; 9267 } 9268 9269 int bpf_map__set_initial_value(struct bpf_map *map, 9270 const void *data, size_t size) 9271 { 9272 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG || 9273 size != map->def.value_size || map->fd >= 0) 9274 return libbpf_err(-EINVAL); 9275 9276 memcpy(map->mmaped, data, size); 9277 return 0; 9278 } 9279 9280 const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize) 9281 { 9282 if (!map->mmaped) 9283 return NULL; 9284 *psize = map->def.value_size; 9285 return map->mmaped; 9286 } 9287 9288 bool bpf_map__is_internal(const struct bpf_map *map) 9289 { 9290 return map->libbpf_type != LIBBPF_MAP_UNSPEC; 9291 } 9292 9293 __u32 bpf_map__ifindex(const struct bpf_map *map) 9294 { 9295 return map->map_ifindex; 9296 } 9297 9298 int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex) 9299 { 9300 if (map->fd >= 0) 9301 return libbpf_err(-EBUSY); 9302 map->map_ifindex = ifindex; 9303 return 0; 9304 } 9305 9306 int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd) 9307 { 9308 if (!bpf_map_type__is_map_in_map(map->def.type)) { 9309 pr_warn("error: unsupported map type\n"); 9310 return libbpf_err(-EINVAL); 9311 } 9312 if (map->inner_map_fd != -1) { 9313 pr_warn("error: inner_map_fd already specified\n"); 9314 return libbpf_err(-EINVAL); 9315 } 9316 if (map->inner_map) { 9317 bpf_map__destroy(map->inner_map); 9318 zfree(&map->inner_map); 9319 } 9320 map->inner_map_fd = fd; 9321 return 0; 9322 } 9323 9324 static struct bpf_map * 9325 __bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i) 9326 { 9327 ssize_t idx; 9328 struct bpf_map *s, *e; 9329 9330 if (!obj || !obj->maps) 9331 return errno = EINVAL, NULL; 9332 9333 s = obj->maps; 9334 e = obj->maps + obj->nr_maps; 9335 9336 if ((m < s) || (m >= e)) { 9337 pr_warn("error in %s: map handler doesn't belong to object\n", 9338 __func__); 9339 return errno = EINVAL, NULL; 9340 } 9341 9342 idx = (m - obj->maps) + i; 9343 if (idx >= obj->nr_maps || idx < 0) 9344 return NULL; 9345 return &obj->maps[idx]; 9346 } 9347 9348 struct bpf_map * 9349 bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev) 9350 { 9351 if (prev == NULL) 9352 return obj->maps; 9353 9354 return __bpf_map__iter(prev, obj, 1); 9355 } 9356 9357 struct bpf_map * 9358 bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next) 9359 { 9360 if (next == NULL) { 9361 if (!obj->nr_maps) 9362 return NULL; 9363 return obj->maps + obj->nr_maps - 1; 9364 } 9365 9366 return __bpf_map__iter(next, obj, -1); 9367 } 9368 9369 struct bpf_map * 9370 bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name) 9371 { 9372 struct bpf_map *pos; 9373 9374 bpf_object__for_each_map(pos, obj) { 9375 /* if it's a special internal map name (which always starts 9376 * with dot) then check if that special name matches the 9377 * real map name (ELF section name) 9378 */ 9379 if (name[0] == '.') { 9380 if (pos->real_name && strcmp(pos->real_name, name) == 0) 9381 return pos; 9382 continue; 9383 } 9384 /* otherwise map name has to be an exact match */ 9385 if (map_uses_real_name(pos)) { 9386 if (strcmp(pos->real_name, name) == 0) 9387 return pos; 9388 continue; 9389 } 9390 if (strcmp(pos->name, name) == 0) 9391 return pos; 9392 } 9393 return errno = ENOENT, NULL; 9394 } 9395 9396 int 9397 bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name) 9398 { 9399 return bpf_map__fd(bpf_object__find_map_by_name(obj, name)); 9400 } 9401 9402 static int validate_map_op(const struct bpf_map *map, size_t key_sz, 9403 size_t value_sz, bool check_value_sz) 9404 { 9405 if (map->fd <= 0) 9406 return -ENOENT; 9407 9408 if (map->def.key_size != key_sz) { 9409 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n", 9410 map->name, key_sz, map->def.key_size); 9411 return -EINVAL; 9412 } 9413 9414 if (!check_value_sz) 9415 return 0; 9416 9417 switch (map->def.type) { 9418 case BPF_MAP_TYPE_PERCPU_ARRAY: 9419 case BPF_MAP_TYPE_PERCPU_HASH: 9420 case BPF_MAP_TYPE_LRU_PERCPU_HASH: 9421 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: { 9422 int num_cpu = libbpf_num_possible_cpus(); 9423 size_t elem_sz = roundup(map->def.value_size, 8); 9424 9425 if (value_sz != num_cpu * elem_sz) { 9426 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n", 9427 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz); 9428 return -EINVAL; 9429 } 9430 break; 9431 } 9432 default: 9433 if (map->def.value_size != value_sz) { 9434 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n", 9435 map->name, value_sz, map->def.value_size); 9436 return -EINVAL; 9437 } 9438 break; 9439 } 9440 return 0; 9441 } 9442 9443 int bpf_map__lookup_elem(const struct bpf_map *map, 9444 const void *key, size_t key_sz, 9445 void *value, size_t value_sz, __u64 flags) 9446 { 9447 int err; 9448 9449 err = validate_map_op(map, key_sz, value_sz, true); 9450 if (err) 9451 return libbpf_err(err); 9452 9453 return bpf_map_lookup_elem_flags(map->fd, key, value, flags); 9454 } 9455 9456 int bpf_map__update_elem(const struct bpf_map *map, 9457 const void *key, size_t key_sz, 9458 const void *value, size_t value_sz, __u64 flags) 9459 { 9460 int err; 9461 9462 err = validate_map_op(map, key_sz, value_sz, true); 9463 if (err) 9464 return libbpf_err(err); 9465 9466 return bpf_map_update_elem(map->fd, key, value, flags); 9467 } 9468 9469 int bpf_map__delete_elem(const struct bpf_map *map, 9470 const void *key, size_t key_sz, __u64 flags) 9471 { 9472 int err; 9473 9474 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9475 if (err) 9476 return libbpf_err(err); 9477 9478 return bpf_map_delete_elem_flags(map->fd, key, flags); 9479 } 9480 9481 int bpf_map__lookup_and_delete_elem(const struct bpf_map *map, 9482 const void *key, size_t key_sz, 9483 void *value, size_t value_sz, __u64 flags) 9484 { 9485 int err; 9486 9487 err = validate_map_op(map, key_sz, value_sz, true); 9488 if (err) 9489 return libbpf_err(err); 9490 9491 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags); 9492 } 9493 9494 int bpf_map__get_next_key(const struct bpf_map *map, 9495 const void *cur_key, void *next_key, size_t key_sz) 9496 { 9497 int err; 9498 9499 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */); 9500 if (err) 9501 return libbpf_err(err); 9502 9503 return bpf_map_get_next_key(map->fd, cur_key, next_key); 9504 } 9505 9506 long libbpf_get_error(const void *ptr) 9507 { 9508 if (!IS_ERR_OR_NULL(ptr)) 9509 return 0; 9510 9511 if (IS_ERR(ptr)) 9512 errno = -PTR_ERR(ptr); 9513 9514 /* If ptr == NULL, then errno should be already set by the failing 9515 * API, because libbpf never returns NULL on success and it now always 9516 * sets errno on error. So no extra errno handling for ptr == NULL 9517 * case. 9518 */ 9519 return -errno; 9520 } 9521 9522 /* Replace link's underlying BPF program with the new one */ 9523 int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog) 9524 { 9525 int ret; 9526 9527 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL); 9528 return libbpf_err_errno(ret); 9529 } 9530 9531 /* Release "ownership" of underlying BPF resource (typically, BPF program 9532 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected 9533 * link, when destructed through bpf_link__destroy() call won't attempt to 9534 * detach/unregisted that BPF resource. This is useful in situations where, 9535 * say, attached BPF program has to outlive userspace program that attached it 9536 * in the system. Depending on type of BPF program, though, there might be 9537 * additional steps (like pinning BPF program in BPF FS) necessary to ensure 9538 * exit of userspace program doesn't trigger automatic detachment and clean up 9539 * inside the kernel. 9540 */ 9541 void bpf_link__disconnect(struct bpf_link *link) 9542 { 9543 link->disconnected = true; 9544 } 9545 9546 int bpf_link__destroy(struct bpf_link *link) 9547 { 9548 int err = 0; 9549 9550 if (IS_ERR_OR_NULL(link)) 9551 return 0; 9552 9553 if (!link->disconnected && link->detach) 9554 err = link->detach(link); 9555 if (link->pin_path) 9556 free(link->pin_path); 9557 if (link->dealloc) 9558 link->dealloc(link); 9559 else 9560 free(link); 9561 9562 return libbpf_err(err); 9563 } 9564 9565 int bpf_link__fd(const struct bpf_link *link) 9566 { 9567 return link->fd; 9568 } 9569 9570 const char *bpf_link__pin_path(const struct bpf_link *link) 9571 { 9572 return link->pin_path; 9573 } 9574 9575 static int bpf_link__detach_fd(struct bpf_link *link) 9576 { 9577 return libbpf_err_errno(close(link->fd)); 9578 } 9579 9580 struct bpf_link *bpf_link__open(const char *path) 9581 { 9582 struct bpf_link *link; 9583 int fd; 9584 9585 fd = bpf_obj_get(path); 9586 if (fd < 0) { 9587 fd = -errno; 9588 pr_warn("failed to open link at %s: %d\n", path, fd); 9589 return libbpf_err_ptr(fd); 9590 } 9591 9592 link = calloc(1, sizeof(*link)); 9593 if (!link) { 9594 close(fd); 9595 return libbpf_err_ptr(-ENOMEM); 9596 } 9597 link->detach = &bpf_link__detach_fd; 9598 link->fd = fd; 9599 9600 link->pin_path = strdup(path); 9601 if (!link->pin_path) { 9602 bpf_link__destroy(link); 9603 return libbpf_err_ptr(-ENOMEM); 9604 } 9605 9606 return link; 9607 } 9608 9609 int bpf_link__detach(struct bpf_link *link) 9610 { 9611 return bpf_link_detach(link->fd) ? -errno : 0; 9612 } 9613 9614 int bpf_link__pin(struct bpf_link *link, const char *path) 9615 { 9616 int err; 9617 9618 if (link->pin_path) 9619 return libbpf_err(-EBUSY); 9620 err = make_parent_dir(path); 9621 if (err) 9622 return libbpf_err(err); 9623 err = check_path(path); 9624 if (err) 9625 return libbpf_err(err); 9626 9627 link->pin_path = strdup(path); 9628 if (!link->pin_path) 9629 return libbpf_err(-ENOMEM); 9630 9631 if (bpf_obj_pin(link->fd, link->pin_path)) { 9632 err = -errno; 9633 zfree(&link->pin_path); 9634 return libbpf_err(err); 9635 } 9636 9637 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path); 9638 return 0; 9639 } 9640 9641 int bpf_link__unpin(struct bpf_link *link) 9642 { 9643 int err; 9644 9645 if (!link->pin_path) 9646 return libbpf_err(-EINVAL); 9647 9648 err = unlink(link->pin_path); 9649 if (err != 0) 9650 return -errno; 9651 9652 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path); 9653 zfree(&link->pin_path); 9654 return 0; 9655 } 9656 9657 struct bpf_link_perf { 9658 struct bpf_link link; 9659 int perf_event_fd; 9660 /* legacy kprobe support: keep track of probe identifier and type */ 9661 char *legacy_probe_name; 9662 bool legacy_is_kprobe; 9663 bool legacy_is_retprobe; 9664 }; 9665 9666 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe); 9667 static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe); 9668 9669 static int bpf_link_perf_detach(struct bpf_link *link) 9670 { 9671 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9672 int err = 0; 9673 9674 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0) 9675 err = -errno; 9676 9677 if (perf_link->perf_event_fd != link->fd) 9678 close(perf_link->perf_event_fd); 9679 close(link->fd); 9680 9681 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */ 9682 if (perf_link->legacy_probe_name) { 9683 if (perf_link->legacy_is_kprobe) { 9684 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name, 9685 perf_link->legacy_is_retprobe); 9686 } else { 9687 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name, 9688 perf_link->legacy_is_retprobe); 9689 } 9690 } 9691 9692 return err; 9693 } 9694 9695 static void bpf_link_perf_dealloc(struct bpf_link *link) 9696 { 9697 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 9698 9699 free(perf_link->legacy_probe_name); 9700 free(perf_link); 9701 } 9702 9703 struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd, 9704 const struct bpf_perf_event_opts *opts) 9705 { 9706 char errmsg[STRERR_BUFSIZE]; 9707 struct bpf_link_perf *link; 9708 int prog_fd, link_fd = -1, err; 9709 9710 if (!OPTS_VALID(opts, bpf_perf_event_opts)) 9711 return libbpf_err_ptr(-EINVAL); 9712 9713 if (pfd < 0) { 9714 pr_warn("prog '%s': invalid perf event FD %d\n", 9715 prog->name, pfd); 9716 return libbpf_err_ptr(-EINVAL); 9717 } 9718 prog_fd = bpf_program__fd(prog); 9719 if (prog_fd < 0) { 9720 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 9721 prog->name); 9722 return libbpf_err_ptr(-EINVAL); 9723 } 9724 9725 link = calloc(1, sizeof(*link)); 9726 if (!link) 9727 return libbpf_err_ptr(-ENOMEM); 9728 link->link.detach = &bpf_link_perf_detach; 9729 link->link.dealloc = &bpf_link_perf_dealloc; 9730 link->perf_event_fd = pfd; 9731 9732 if (kernel_supports(prog->obj, FEAT_PERF_LINK)) { 9733 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts, 9734 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0)); 9735 9736 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts); 9737 if (link_fd < 0) { 9738 err = -errno; 9739 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n", 9740 prog->name, pfd, 9741 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9742 goto err_out; 9743 } 9744 link->link.fd = link_fd; 9745 } else { 9746 if (OPTS_GET(opts, bpf_cookie, 0)) { 9747 pr_warn("prog '%s': user context value is not supported\n", prog->name); 9748 err = -EOPNOTSUPP; 9749 goto err_out; 9750 } 9751 9752 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) { 9753 err = -errno; 9754 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n", 9755 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9756 if (err == -EPROTO) 9757 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n", 9758 prog->name, pfd); 9759 goto err_out; 9760 } 9761 link->link.fd = pfd; 9762 } 9763 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 9764 err = -errno; 9765 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n", 9766 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9767 goto err_out; 9768 } 9769 9770 return &link->link; 9771 err_out: 9772 if (link_fd >= 0) 9773 close(link_fd); 9774 free(link); 9775 return libbpf_err_ptr(err); 9776 } 9777 9778 struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd) 9779 { 9780 return bpf_program__attach_perf_event_opts(prog, pfd, NULL); 9781 } 9782 9783 /* 9784 * this function is expected to parse integer in the range of [0, 2^31-1] from 9785 * given file using scanf format string fmt. If actual parsed value is 9786 * negative, the result might be indistinguishable from error 9787 */ 9788 static int parse_uint_from_file(const char *file, const char *fmt) 9789 { 9790 char buf[STRERR_BUFSIZE]; 9791 int err, ret; 9792 FILE *f; 9793 9794 f = fopen(file, "r"); 9795 if (!f) { 9796 err = -errno; 9797 pr_debug("failed to open '%s': %s\n", file, 9798 libbpf_strerror_r(err, buf, sizeof(buf))); 9799 return err; 9800 } 9801 err = fscanf(f, fmt, &ret); 9802 if (err != 1) { 9803 err = err == EOF ? -EIO : -errno; 9804 pr_debug("failed to parse '%s': %s\n", file, 9805 libbpf_strerror_r(err, buf, sizeof(buf))); 9806 fclose(f); 9807 return err; 9808 } 9809 fclose(f); 9810 return ret; 9811 } 9812 9813 static int determine_kprobe_perf_type(void) 9814 { 9815 const char *file = "/sys/bus/event_source/devices/kprobe/type"; 9816 9817 return parse_uint_from_file(file, "%d\n"); 9818 } 9819 9820 static int determine_uprobe_perf_type(void) 9821 { 9822 const char *file = "/sys/bus/event_source/devices/uprobe/type"; 9823 9824 return parse_uint_from_file(file, "%d\n"); 9825 } 9826 9827 static int determine_kprobe_retprobe_bit(void) 9828 { 9829 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe"; 9830 9831 return parse_uint_from_file(file, "config:%d\n"); 9832 } 9833 9834 static int determine_uprobe_retprobe_bit(void) 9835 { 9836 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe"; 9837 9838 return parse_uint_from_file(file, "config:%d\n"); 9839 } 9840 9841 #define PERF_UPROBE_REF_CTR_OFFSET_BITS 32 9842 #define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32 9843 9844 static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name, 9845 uint64_t offset, int pid, size_t ref_ctr_off) 9846 { 9847 const size_t attr_sz = sizeof(struct perf_event_attr); 9848 struct perf_event_attr attr; 9849 char errmsg[STRERR_BUFSIZE]; 9850 int type, pfd; 9851 9852 if (ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS)) 9853 return -EINVAL; 9854 9855 memset(&attr, 0, attr_sz); 9856 9857 type = uprobe ? determine_uprobe_perf_type() 9858 : determine_kprobe_perf_type(); 9859 if (type < 0) { 9860 pr_warn("failed to determine %s perf type: %s\n", 9861 uprobe ? "uprobe" : "kprobe", 9862 libbpf_strerror_r(type, errmsg, sizeof(errmsg))); 9863 return type; 9864 } 9865 if (retprobe) { 9866 int bit = uprobe ? determine_uprobe_retprobe_bit() 9867 : determine_kprobe_retprobe_bit(); 9868 9869 if (bit < 0) { 9870 pr_warn("failed to determine %s retprobe bit: %s\n", 9871 uprobe ? "uprobe" : "kprobe", 9872 libbpf_strerror_r(bit, errmsg, sizeof(errmsg))); 9873 return bit; 9874 } 9875 attr.config |= 1 << bit; 9876 } 9877 attr.size = attr_sz; 9878 attr.type = type; 9879 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT; 9880 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */ 9881 attr.config2 = offset; /* kprobe_addr or probe_offset */ 9882 9883 /* pid filter is meaningful only for uprobes */ 9884 pfd = syscall(__NR_perf_event_open, &attr, 9885 pid < 0 ? -1 : pid /* pid */, 9886 pid == -1 ? 0 : -1 /* cpu */, 9887 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 9888 return pfd >= 0 ? pfd : -errno; 9889 } 9890 9891 static int append_to_file(const char *file, const char *fmt, ...) 9892 { 9893 int fd, n, err = 0; 9894 va_list ap; 9895 9896 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0); 9897 if (fd < 0) 9898 return -errno; 9899 9900 va_start(ap, fmt); 9901 n = vdprintf(fd, fmt, ap); 9902 va_end(ap); 9903 9904 if (n < 0) 9905 err = -errno; 9906 9907 close(fd); 9908 return err; 9909 } 9910 9911 #define DEBUGFS "/sys/kernel/debug/tracing" 9912 #define TRACEFS "/sys/kernel/tracing" 9913 9914 static bool use_debugfs(void) 9915 { 9916 static int has_debugfs = -1; 9917 9918 if (has_debugfs < 0) 9919 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0; 9920 9921 return has_debugfs == 1; 9922 } 9923 9924 static const char *tracefs_path(void) 9925 { 9926 return use_debugfs() ? DEBUGFS : TRACEFS; 9927 } 9928 9929 static const char *tracefs_kprobe_events(void) 9930 { 9931 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events"; 9932 } 9933 9934 static const char *tracefs_uprobe_events(void) 9935 { 9936 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events"; 9937 } 9938 9939 static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz, 9940 const char *kfunc_name, size_t offset) 9941 { 9942 static int index = 0; 9943 9944 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset, 9945 __sync_fetch_and_add(&index, 1)); 9946 } 9947 9948 static int add_kprobe_event_legacy(const char *probe_name, bool retprobe, 9949 const char *kfunc_name, size_t offset) 9950 { 9951 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx", 9952 retprobe ? 'r' : 'p', 9953 retprobe ? "kretprobes" : "kprobes", 9954 probe_name, kfunc_name, offset); 9955 } 9956 9957 static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe) 9958 { 9959 return append_to_file(tracefs_kprobe_events(), "-:%s/%s", 9960 retprobe ? "kretprobes" : "kprobes", probe_name); 9961 } 9962 9963 static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe) 9964 { 9965 char file[256]; 9966 9967 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 9968 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name); 9969 9970 return parse_uint_from_file(file, "%d\n"); 9971 } 9972 9973 static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe, 9974 const char *kfunc_name, size_t offset, int pid) 9975 { 9976 const size_t attr_sz = sizeof(struct perf_event_attr); 9977 struct perf_event_attr attr; 9978 char errmsg[STRERR_BUFSIZE]; 9979 int type, pfd, err; 9980 9981 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset); 9982 if (err < 0) { 9983 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n", 9984 kfunc_name, offset, 9985 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9986 return err; 9987 } 9988 type = determine_kprobe_perf_type_legacy(probe_name, retprobe); 9989 if (type < 0) { 9990 err = type; 9991 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n", 9992 kfunc_name, offset, 9993 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 9994 goto err_clean_legacy; 9995 } 9996 9997 memset(&attr, 0, attr_sz); 9998 attr.size = attr_sz; 9999 attr.config = type; 10000 attr.type = PERF_TYPE_TRACEPOINT; 10001 10002 pfd = syscall(__NR_perf_event_open, &attr, 10003 pid < 0 ? -1 : pid, /* pid */ 10004 pid == -1 ? 0 : -1, /* cpu */ 10005 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10006 if (pfd < 0) { 10007 err = -errno; 10008 pr_warn("legacy kprobe perf_event_open() failed: %s\n", 10009 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10010 goto err_clean_legacy; 10011 } 10012 return pfd; 10013 10014 err_clean_legacy: 10015 /* Clear the newly added legacy kprobe_event */ 10016 remove_kprobe_event_legacy(probe_name, retprobe); 10017 return err; 10018 } 10019 10020 static const char *arch_specific_syscall_pfx(void) 10021 { 10022 #if defined(__x86_64__) 10023 return "x64"; 10024 #elif defined(__i386__) 10025 return "ia32"; 10026 #elif defined(__s390x__) 10027 return "s390x"; 10028 #elif defined(__s390__) 10029 return "s390"; 10030 #elif defined(__arm__) 10031 return "arm"; 10032 #elif defined(__aarch64__) 10033 return "arm64"; 10034 #elif defined(__mips__) 10035 return "mips"; 10036 #elif defined(__riscv) 10037 return "riscv"; 10038 #elif defined(__powerpc__) 10039 return "powerpc"; 10040 #elif defined(__powerpc64__) 10041 return "powerpc64"; 10042 #else 10043 return NULL; 10044 #endif 10045 } 10046 10047 static int probe_kern_syscall_wrapper(void) 10048 { 10049 char syscall_name[64]; 10050 const char *ksys_pfx; 10051 10052 ksys_pfx = arch_specific_syscall_pfx(); 10053 if (!ksys_pfx) 10054 return 0; 10055 10056 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx); 10057 10058 if (determine_kprobe_perf_type() >= 0) { 10059 int pfd; 10060 10061 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0); 10062 if (pfd >= 0) 10063 close(pfd); 10064 10065 return pfd >= 0 ? 1 : 0; 10066 } else { /* legacy mode */ 10067 char probe_name[128]; 10068 10069 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0); 10070 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0) 10071 return 0; 10072 10073 (void)remove_kprobe_event_legacy(probe_name, false); 10074 return 1; 10075 } 10076 } 10077 10078 struct bpf_link * 10079 bpf_program__attach_kprobe_opts(const struct bpf_program *prog, 10080 const char *func_name, 10081 const struct bpf_kprobe_opts *opts) 10082 { 10083 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10084 char errmsg[STRERR_BUFSIZE]; 10085 char *legacy_probe = NULL; 10086 struct bpf_link *link; 10087 size_t offset; 10088 bool retprobe, legacy; 10089 int pfd, err; 10090 10091 if (!OPTS_VALID(opts, bpf_kprobe_opts)) 10092 return libbpf_err_ptr(-EINVAL); 10093 10094 retprobe = OPTS_GET(opts, retprobe, false); 10095 offset = OPTS_GET(opts, offset, 0); 10096 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10097 10098 legacy = determine_kprobe_perf_type() < 0; 10099 if (!legacy) { 10100 pfd = perf_event_open_probe(false /* uprobe */, retprobe, 10101 func_name, offset, 10102 -1 /* pid */, 0 /* ref_ctr_off */); 10103 } else { 10104 char probe_name[256]; 10105 10106 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), 10107 func_name, offset); 10108 10109 legacy_probe = strdup(probe_name); 10110 if (!legacy_probe) 10111 return libbpf_err_ptr(-ENOMEM); 10112 10113 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name, 10114 offset, -1 /* pid */); 10115 } 10116 if (pfd < 0) { 10117 err = -errno; 10118 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n", 10119 prog->name, retprobe ? "kretprobe" : "kprobe", 10120 func_name, offset, 10121 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10122 goto err_out; 10123 } 10124 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10125 err = libbpf_get_error(link); 10126 if (err) { 10127 close(pfd); 10128 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n", 10129 prog->name, retprobe ? "kretprobe" : "kprobe", 10130 func_name, offset, 10131 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10132 goto err_clean_legacy; 10133 } 10134 if (legacy) { 10135 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10136 10137 perf_link->legacy_probe_name = legacy_probe; 10138 perf_link->legacy_is_kprobe = true; 10139 perf_link->legacy_is_retprobe = retprobe; 10140 } 10141 10142 return link; 10143 10144 err_clean_legacy: 10145 if (legacy) 10146 remove_kprobe_event_legacy(legacy_probe, retprobe); 10147 err_out: 10148 free(legacy_probe); 10149 return libbpf_err_ptr(err); 10150 } 10151 10152 struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog, 10153 bool retprobe, 10154 const char *func_name) 10155 { 10156 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts, 10157 .retprobe = retprobe, 10158 ); 10159 10160 return bpf_program__attach_kprobe_opts(prog, func_name, &opts); 10161 } 10162 10163 struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog, 10164 const char *syscall_name, 10165 const struct bpf_ksyscall_opts *opts) 10166 { 10167 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts); 10168 char func_name[128]; 10169 10170 if (!OPTS_VALID(opts, bpf_ksyscall_opts)) 10171 return libbpf_err_ptr(-EINVAL); 10172 10173 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) { 10174 /* arch_specific_syscall_pfx() should never return NULL here 10175 * because it is guarded by kernel_supports(). However, since 10176 * compiler does not know that we have an explicit conditional 10177 * as well. 10178 */ 10179 snprintf(func_name, sizeof(func_name), "__%s_sys_%s", 10180 arch_specific_syscall_pfx() ? : "", syscall_name); 10181 } else { 10182 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name); 10183 } 10184 10185 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false); 10186 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10187 10188 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts); 10189 } 10190 10191 /* Adapted from perf/util/string.c */ 10192 static bool glob_match(const char *str, const char *pat) 10193 { 10194 while (*str && *pat && *pat != '*') { 10195 if (*pat == '?') { /* Matches any single character */ 10196 str++; 10197 pat++; 10198 continue; 10199 } 10200 if (*str != *pat) 10201 return false; 10202 str++; 10203 pat++; 10204 } 10205 /* Check wild card */ 10206 if (*pat == '*') { 10207 while (*pat == '*') 10208 pat++; 10209 if (!*pat) /* Tail wild card matches all */ 10210 return true; 10211 while (*str) 10212 if (glob_match(str++, pat)) 10213 return true; 10214 } 10215 return !*str && !*pat; 10216 } 10217 10218 struct kprobe_multi_resolve { 10219 const char *pattern; 10220 unsigned long *addrs; 10221 size_t cap; 10222 size_t cnt; 10223 }; 10224 10225 static int 10226 resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type, 10227 const char *sym_name, void *ctx) 10228 { 10229 struct kprobe_multi_resolve *res = ctx; 10230 int err; 10231 10232 if (!glob_match(sym_name, res->pattern)) 10233 return 0; 10234 10235 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long), 10236 res->cnt + 1); 10237 if (err) 10238 return err; 10239 10240 res->addrs[res->cnt++] = (unsigned long) sym_addr; 10241 return 0; 10242 } 10243 10244 struct bpf_link * 10245 bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog, 10246 const char *pattern, 10247 const struct bpf_kprobe_multi_opts *opts) 10248 { 10249 LIBBPF_OPTS(bpf_link_create_opts, lopts); 10250 struct kprobe_multi_resolve res = { 10251 .pattern = pattern, 10252 }; 10253 struct bpf_link *link = NULL; 10254 char errmsg[STRERR_BUFSIZE]; 10255 const unsigned long *addrs; 10256 int err, link_fd, prog_fd; 10257 const __u64 *cookies; 10258 const char **syms; 10259 bool retprobe; 10260 size_t cnt; 10261 10262 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts)) 10263 return libbpf_err_ptr(-EINVAL); 10264 10265 syms = OPTS_GET(opts, syms, false); 10266 addrs = OPTS_GET(opts, addrs, false); 10267 cnt = OPTS_GET(opts, cnt, false); 10268 cookies = OPTS_GET(opts, cookies, false); 10269 10270 if (!pattern && !addrs && !syms) 10271 return libbpf_err_ptr(-EINVAL); 10272 if (pattern && (addrs || syms || cookies || cnt)) 10273 return libbpf_err_ptr(-EINVAL); 10274 if (!pattern && !cnt) 10275 return libbpf_err_ptr(-EINVAL); 10276 if (addrs && syms) 10277 return libbpf_err_ptr(-EINVAL); 10278 10279 if (pattern) { 10280 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res); 10281 if (err) 10282 goto error; 10283 if (!res.cnt) { 10284 err = -ENOENT; 10285 goto error; 10286 } 10287 addrs = res.addrs; 10288 cnt = res.cnt; 10289 } 10290 10291 retprobe = OPTS_GET(opts, retprobe, false); 10292 10293 lopts.kprobe_multi.syms = syms; 10294 lopts.kprobe_multi.addrs = addrs; 10295 lopts.kprobe_multi.cookies = cookies; 10296 lopts.kprobe_multi.cnt = cnt; 10297 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0; 10298 10299 link = calloc(1, sizeof(*link)); 10300 if (!link) { 10301 err = -ENOMEM; 10302 goto error; 10303 } 10304 link->detach = &bpf_link__detach_fd; 10305 10306 prog_fd = bpf_program__fd(prog); 10307 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts); 10308 if (link_fd < 0) { 10309 err = -errno; 10310 pr_warn("prog '%s': failed to attach: %s\n", 10311 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10312 goto error; 10313 } 10314 link->fd = link_fd; 10315 free(res.addrs); 10316 return link; 10317 10318 error: 10319 free(link); 10320 free(res.addrs); 10321 return libbpf_err_ptr(err); 10322 } 10323 10324 static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10325 { 10326 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts); 10327 unsigned long offset = 0; 10328 const char *func_name; 10329 char *func; 10330 int n; 10331 10332 *link = NULL; 10333 10334 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */ 10335 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0) 10336 return 0; 10337 10338 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/"); 10339 if (opts.retprobe) 10340 func_name = prog->sec_name + sizeof("kretprobe/") - 1; 10341 else 10342 func_name = prog->sec_name + sizeof("kprobe/") - 1; 10343 10344 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset); 10345 if (n < 1) { 10346 pr_warn("kprobe name is invalid: %s\n", func_name); 10347 return -EINVAL; 10348 } 10349 if (opts.retprobe && offset != 0) { 10350 free(func); 10351 pr_warn("kretprobes do not support offset specification\n"); 10352 return -EINVAL; 10353 } 10354 10355 opts.offset = offset; 10356 *link = bpf_program__attach_kprobe_opts(prog, func, &opts); 10357 free(func); 10358 return libbpf_get_error(*link); 10359 } 10360 10361 static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10362 { 10363 LIBBPF_OPTS(bpf_ksyscall_opts, opts); 10364 const char *syscall_name; 10365 10366 *link = NULL; 10367 10368 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */ 10369 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0) 10370 return 0; 10371 10372 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/"); 10373 if (opts.retprobe) 10374 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1; 10375 else 10376 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1; 10377 10378 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts); 10379 return *link ? 0 : -errno; 10380 } 10381 10382 static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10383 { 10384 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts); 10385 const char *spec; 10386 char *pattern; 10387 int n; 10388 10389 *link = NULL; 10390 10391 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */ 10392 if (strcmp(prog->sec_name, "kprobe.multi") == 0 || 10393 strcmp(prog->sec_name, "kretprobe.multi") == 0) 10394 return 0; 10395 10396 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/"); 10397 if (opts.retprobe) 10398 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1; 10399 else 10400 spec = prog->sec_name + sizeof("kprobe.multi/") - 1; 10401 10402 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern); 10403 if (n < 1) { 10404 pr_warn("kprobe multi pattern is invalid: %s\n", pattern); 10405 return -EINVAL; 10406 } 10407 10408 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts); 10409 free(pattern); 10410 return libbpf_get_error(*link); 10411 } 10412 10413 static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz, 10414 const char *binary_path, uint64_t offset) 10415 { 10416 int i; 10417 10418 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset); 10419 10420 /* sanitize binary_path in the probe name */ 10421 for (i = 0; buf[i]; i++) { 10422 if (!isalnum(buf[i])) 10423 buf[i] = '_'; 10424 } 10425 } 10426 10427 static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe, 10428 const char *binary_path, size_t offset) 10429 { 10430 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx", 10431 retprobe ? 'r' : 'p', 10432 retprobe ? "uretprobes" : "uprobes", 10433 probe_name, binary_path, offset); 10434 } 10435 10436 static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe) 10437 { 10438 return append_to_file(tracefs_uprobe_events(), "-:%s/%s", 10439 retprobe ? "uretprobes" : "uprobes", probe_name); 10440 } 10441 10442 static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe) 10443 { 10444 char file[512]; 10445 10446 snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10447 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name); 10448 10449 return parse_uint_from_file(file, "%d\n"); 10450 } 10451 10452 static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe, 10453 const char *binary_path, size_t offset, int pid) 10454 { 10455 const size_t attr_sz = sizeof(struct perf_event_attr); 10456 struct perf_event_attr attr; 10457 int type, pfd, err; 10458 10459 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset); 10460 if (err < 0) { 10461 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n", 10462 binary_path, (size_t)offset, err); 10463 return err; 10464 } 10465 type = determine_uprobe_perf_type_legacy(probe_name, retprobe); 10466 if (type < 0) { 10467 err = type; 10468 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n", 10469 binary_path, offset, err); 10470 goto err_clean_legacy; 10471 } 10472 10473 memset(&attr, 0, attr_sz); 10474 attr.size = attr_sz; 10475 attr.config = type; 10476 attr.type = PERF_TYPE_TRACEPOINT; 10477 10478 pfd = syscall(__NR_perf_event_open, &attr, 10479 pid < 0 ? -1 : pid, /* pid */ 10480 pid == -1 ? 0 : -1, /* cpu */ 10481 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 10482 if (pfd < 0) { 10483 err = -errno; 10484 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err); 10485 goto err_clean_legacy; 10486 } 10487 return pfd; 10488 10489 err_clean_legacy: 10490 /* Clear the newly added legacy uprobe_event */ 10491 remove_uprobe_event_legacy(probe_name, retprobe); 10492 return err; 10493 } 10494 10495 /* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */ 10496 static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn) 10497 { 10498 while ((scn = elf_nextscn(elf, scn)) != NULL) { 10499 GElf_Shdr sh; 10500 10501 if (!gelf_getshdr(scn, &sh)) 10502 continue; 10503 if (sh.sh_type == sh_type) 10504 return scn; 10505 } 10506 return NULL; 10507 } 10508 10509 /* Find offset of function name in object specified by path. "name" matches 10510 * symbol name or name@@LIB for library functions. 10511 */ 10512 static long elf_find_func_offset(const char *binary_path, const char *name) 10513 { 10514 int fd, i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB }; 10515 bool is_shared_lib, is_name_qualified; 10516 char errmsg[STRERR_BUFSIZE]; 10517 long ret = -ENOENT; 10518 size_t name_len; 10519 GElf_Ehdr ehdr; 10520 Elf *elf; 10521 10522 fd = open(binary_path, O_RDONLY | O_CLOEXEC); 10523 if (fd < 0) { 10524 ret = -errno; 10525 pr_warn("failed to open %s: %s\n", binary_path, 10526 libbpf_strerror_r(ret, errmsg, sizeof(errmsg))); 10527 return ret; 10528 } 10529 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL); 10530 if (!elf) { 10531 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1)); 10532 close(fd); 10533 return -LIBBPF_ERRNO__FORMAT; 10534 } 10535 if (!gelf_getehdr(elf, &ehdr)) { 10536 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1)); 10537 ret = -LIBBPF_ERRNO__FORMAT; 10538 goto out; 10539 } 10540 /* for shared lib case, we do not need to calculate relative offset */ 10541 is_shared_lib = ehdr.e_type == ET_DYN; 10542 10543 name_len = strlen(name); 10544 /* Does name specify "@@LIB"? */ 10545 is_name_qualified = strstr(name, "@@") != NULL; 10546 10547 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if 10548 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically 10549 * linked binary may not have SHT_DYMSYM, so absence of a section should not be 10550 * reported as a warning/error. 10551 */ 10552 for (i = 0; i < ARRAY_SIZE(sh_types); i++) { 10553 size_t nr_syms, strtabidx, idx; 10554 Elf_Data *symbols = NULL; 10555 Elf_Scn *scn = NULL; 10556 int last_bind = -1; 10557 const char *sname; 10558 GElf_Shdr sh; 10559 10560 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL); 10561 if (!scn) { 10562 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n", 10563 binary_path); 10564 continue; 10565 } 10566 if (!gelf_getshdr(scn, &sh)) 10567 continue; 10568 strtabidx = sh.sh_link; 10569 symbols = elf_getdata(scn, 0); 10570 if (!symbols) { 10571 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n", 10572 binary_path, elf_errmsg(-1)); 10573 ret = -LIBBPF_ERRNO__FORMAT; 10574 goto out; 10575 } 10576 nr_syms = symbols->d_size / sh.sh_entsize; 10577 10578 for (idx = 0; idx < nr_syms; idx++) { 10579 int curr_bind; 10580 GElf_Sym sym; 10581 Elf_Scn *sym_scn; 10582 GElf_Shdr sym_sh; 10583 10584 if (!gelf_getsym(symbols, idx, &sym)) 10585 continue; 10586 10587 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC) 10588 continue; 10589 10590 sname = elf_strptr(elf, strtabidx, sym.st_name); 10591 if (!sname) 10592 continue; 10593 10594 curr_bind = GELF_ST_BIND(sym.st_info); 10595 10596 /* User can specify func, func@@LIB or func@@LIB_VERSION. */ 10597 if (strncmp(sname, name, name_len) != 0) 10598 continue; 10599 /* ...but we don't want a search for "foo" to match 'foo2" also, so any 10600 * additional characters in sname should be of the form "@@LIB". 10601 */ 10602 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@') 10603 continue; 10604 10605 if (ret >= 0) { 10606 /* handle multiple matches */ 10607 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) { 10608 /* Only accept one non-weak bind. */ 10609 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n", 10610 sname, name, binary_path); 10611 ret = -LIBBPF_ERRNO__FORMAT; 10612 goto out; 10613 } else if (curr_bind == STB_WEAK) { 10614 /* already have a non-weak bind, and 10615 * this is a weak bind, so ignore. 10616 */ 10617 continue; 10618 } 10619 } 10620 10621 /* Transform symbol's virtual address (absolute for 10622 * binaries and relative for shared libs) into file 10623 * offset, which is what kernel is expecting for 10624 * uprobe/uretprobe attachment. 10625 * See Documentation/trace/uprobetracer.rst for more 10626 * details. 10627 * This is done by looking up symbol's containing 10628 * section's header and using it's virtual address 10629 * (sh_addr) and corresponding file offset (sh_offset) 10630 * to transform sym.st_value (virtual address) into 10631 * desired final file offset. 10632 */ 10633 sym_scn = elf_getscn(elf, sym.st_shndx); 10634 if (!sym_scn) 10635 continue; 10636 if (!gelf_getshdr(sym_scn, &sym_sh)) 10637 continue; 10638 10639 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset; 10640 last_bind = curr_bind; 10641 } 10642 if (ret > 0) 10643 break; 10644 } 10645 10646 if (ret > 0) { 10647 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path, 10648 ret); 10649 } else { 10650 if (ret == 0) { 10651 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path, 10652 is_shared_lib ? "should not be 0 in a shared library" : 10653 "try using shared library path instead"); 10654 ret = -ENOENT; 10655 } else { 10656 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path); 10657 } 10658 } 10659 out: 10660 elf_end(elf); 10661 close(fd); 10662 return ret; 10663 } 10664 10665 static const char *arch_specific_lib_paths(void) 10666 { 10667 /* 10668 * Based on https://packages.debian.org/sid/libc6. 10669 * 10670 * Assume that the traced program is built for the same architecture 10671 * as libbpf, which should cover the vast majority of cases. 10672 */ 10673 #if defined(__x86_64__) 10674 return "/lib/x86_64-linux-gnu"; 10675 #elif defined(__i386__) 10676 return "/lib/i386-linux-gnu"; 10677 #elif defined(__s390x__) 10678 return "/lib/s390x-linux-gnu"; 10679 #elif defined(__s390__) 10680 return "/lib/s390-linux-gnu"; 10681 #elif defined(__arm__) && defined(__SOFTFP__) 10682 return "/lib/arm-linux-gnueabi"; 10683 #elif defined(__arm__) && !defined(__SOFTFP__) 10684 return "/lib/arm-linux-gnueabihf"; 10685 #elif defined(__aarch64__) 10686 return "/lib/aarch64-linux-gnu"; 10687 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64 10688 return "/lib/mips64el-linux-gnuabi64"; 10689 #elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32 10690 return "/lib/mipsel-linux-gnu"; 10691 #elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ 10692 return "/lib/powerpc64le-linux-gnu"; 10693 #elif defined(__sparc__) && defined(__arch64__) 10694 return "/lib/sparc64-linux-gnu"; 10695 #elif defined(__riscv) && __riscv_xlen == 64 10696 return "/lib/riscv64-linux-gnu"; 10697 #else 10698 return NULL; 10699 #endif 10700 } 10701 10702 /* Get full path to program/shared library. */ 10703 static int resolve_full_path(const char *file, char *result, size_t result_sz) 10704 { 10705 const char *search_paths[3] = {}; 10706 int i, perm; 10707 10708 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) { 10709 search_paths[0] = getenv("LD_LIBRARY_PATH"); 10710 search_paths[1] = "/usr/lib64:/usr/lib"; 10711 search_paths[2] = arch_specific_lib_paths(); 10712 perm = R_OK; 10713 } else { 10714 search_paths[0] = getenv("PATH"); 10715 search_paths[1] = "/usr/bin:/usr/sbin"; 10716 perm = R_OK | X_OK; 10717 } 10718 10719 for (i = 0; i < ARRAY_SIZE(search_paths); i++) { 10720 const char *s; 10721 10722 if (!search_paths[i]) 10723 continue; 10724 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) { 10725 char *next_path; 10726 int seg_len; 10727 10728 if (s[0] == ':') 10729 s++; 10730 next_path = strchr(s, ':'); 10731 seg_len = next_path ? next_path - s : strlen(s); 10732 if (!seg_len) 10733 continue; 10734 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file); 10735 /* ensure it has required permissions */ 10736 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0) 10737 continue; 10738 pr_debug("resolved '%s' to '%s'\n", file, result); 10739 return 0; 10740 } 10741 } 10742 return -ENOENT; 10743 } 10744 10745 LIBBPF_API struct bpf_link * 10746 bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid, 10747 const char *binary_path, size_t func_offset, 10748 const struct bpf_uprobe_opts *opts) 10749 { 10750 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 10751 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL; 10752 char full_binary_path[PATH_MAX]; 10753 struct bpf_link *link; 10754 size_t ref_ctr_off; 10755 int pfd, err; 10756 bool retprobe, legacy; 10757 const char *func_name; 10758 10759 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10760 return libbpf_err_ptr(-EINVAL); 10761 10762 retprobe = OPTS_GET(opts, retprobe, false); 10763 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0); 10764 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 10765 10766 if (!binary_path) 10767 return libbpf_err_ptr(-EINVAL); 10768 10769 if (!strchr(binary_path, '/')) { 10770 err = resolve_full_path(binary_path, full_binary_path, 10771 sizeof(full_binary_path)); 10772 if (err) { 10773 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10774 prog->name, binary_path, err); 10775 return libbpf_err_ptr(err); 10776 } 10777 binary_path = full_binary_path; 10778 } 10779 func_name = OPTS_GET(opts, func_name, NULL); 10780 if (func_name) { 10781 long sym_off; 10782 10783 sym_off = elf_find_func_offset(binary_path, func_name); 10784 if (sym_off < 0) 10785 return libbpf_err_ptr(sym_off); 10786 func_offset += sym_off; 10787 } 10788 10789 legacy = determine_uprobe_perf_type() < 0; 10790 if (!legacy) { 10791 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path, 10792 func_offset, pid, ref_ctr_off); 10793 } else { 10794 char probe_name[PATH_MAX + 64]; 10795 10796 if (ref_ctr_off) 10797 return libbpf_err_ptr(-EINVAL); 10798 10799 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name), 10800 binary_path, func_offset); 10801 10802 legacy_probe = strdup(probe_name); 10803 if (!legacy_probe) 10804 return libbpf_err_ptr(-ENOMEM); 10805 10806 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe, 10807 binary_path, func_offset, pid); 10808 } 10809 if (pfd < 0) { 10810 err = -errno; 10811 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n", 10812 prog->name, retprobe ? "uretprobe" : "uprobe", 10813 binary_path, func_offset, 10814 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10815 goto err_out; 10816 } 10817 10818 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 10819 err = libbpf_get_error(link); 10820 if (err) { 10821 close(pfd); 10822 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n", 10823 prog->name, retprobe ? "uretprobe" : "uprobe", 10824 binary_path, func_offset, 10825 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 10826 goto err_clean_legacy; 10827 } 10828 if (legacy) { 10829 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link); 10830 10831 perf_link->legacy_probe_name = legacy_probe; 10832 perf_link->legacy_is_kprobe = false; 10833 perf_link->legacy_is_retprobe = retprobe; 10834 } 10835 return link; 10836 10837 err_clean_legacy: 10838 if (legacy) 10839 remove_uprobe_event_legacy(legacy_probe, retprobe); 10840 err_out: 10841 free(legacy_probe); 10842 return libbpf_err_ptr(err); 10843 } 10844 10845 /* Format of u[ret]probe section definition supporting auto-attach: 10846 * u[ret]probe/binary:function[+offset] 10847 * 10848 * binary can be an absolute/relative path or a filename; the latter is resolved to a 10849 * full binary path via bpf_program__attach_uprobe_opts. 10850 * 10851 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be 10852 * specified (and auto-attach is not possible) or the above format is specified for 10853 * auto-attach. 10854 */ 10855 static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10856 { 10857 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts); 10858 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL; 10859 int n, ret = -EINVAL; 10860 long offset = 0; 10861 10862 *link = NULL; 10863 10864 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li", 10865 &probe_type, &binary_path, &func_name, &offset); 10866 switch (n) { 10867 case 1: 10868 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */ 10869 ret = 0; 10870 break; 10871 case 2: 10872 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n", 10873 prog->name, prog->sec_name); 10874 break; 10875 case 3: 10876 case 4: 10877 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 || 10878 strcmp(probe_type, "uretprobe.s") == 0; 10879 if (opts.retprobe && offset != 0) { 10880 pr_warn("prog '%s': uretprobes do not support offset specification\n", 10881 prog->name); 10882 break; 10883 } 10884 opts.func_name = func_name; 10885 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts); 10886 ret = libbpf_get_error(*link); 10887 break; 10888 default: 10889 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name, 10890 prog->sec_name); 10891 break; 10892 } 10893 free(probe_type); 10894 free(binary_path); 10895 free(func_name); 10896 10897 return ret; 10898 } 10899 10900 struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog, 10901 bool retprobe, pid_t pid, 10902 const char *binary_path, 10903 size_t func_offset) 10904 { 10905 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe); 10906 10907 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts); 10908 } 10909 10910 struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog, 10911 pid_t pid, const char *binary_path, 10912 const char *usdt_provider, const char *usdt_name, 10913 const struct bpf_usdt_opts *opts) 10914 { 10915 char resolved_path[512]; 10916 struct bpf_object *obj = prog->obj; 10917 struct bpf_link *link; 10918 __u64 usdt_cookie; 10919 int err; 10920 10921 if (!OPTS_VALID(opts, bpf_uprobe_opts)) 10922 return libbpf_err_ptr(-EINVAL); 10923 10924 if (bpf_program__fd(prog) < 0) { 10925 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n", 10926 prog->name); 10927 return libbpf_err_ptr(-EINVAL); 10928 } 10929 10930 if (!binary_path) 10931 return libbpf_err_ptr(-EINVAL); 10932 10933 if (!strchr(binary_path, '/')) { 10934 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path)); 10935 if (err) { 10936 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n", 10937 prog->name, binary_path, err); 10938 return libbpf_err_ptr(err); 10939 } 10940 binary_path = resolved_path; 10941 } 10942 10943 /* USDT manager is instantiated lazily on first USDT attach. It will 10944 * be destroyed together with BPF object in bpf_object__close(). 10945 */ 10946 if (IS_ERR(obj->usdt_man)) 10947 return libbpf_ptr(obj->usdt_man); 10948 if (!obj->usdt_man) { 10949 obj->usdt_man = usdt_manager_new(obj); 10950 if (IS_ERR(obj->usdt_man)) 10951 return libbpf_ptr(obj->usdt_man); 10952 } 10953 10954 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0); 10955 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path, 10956 usdt_provider, usdt_name, usdt_cookie); 10957 err = libbpf_get_error(link); 10958 if (err) 10959 return libbpf_err_ptr(err); 10960 return link; 10961 } 10962 10963 static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link) 10964 { 10965 char *path = NULL, *provider = NULL, *name = NULL; 10966 const char *sec_name; 10967 int n, err; 10968 10969 sec_name = bpf_program__section_name(prog); 10970 if (strcmp(sec_name, "usdt") == 0) { 10971 /* no auto-attach for just SEC("usdt") */ 10972 *link = NULL; 10973 return 0; 10974 } 10975 10976 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name); 10977 if (n != 3) { 10978 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n", 10979 sec_name); 10980 err = -EINVAL; 10981 } else { 10982 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path, 10983 provider, name, NULL); 10984 err = libbpf_get_error(*link); 10985 } 10986 free(path); 10987 free(provider); 10988 free(name); 10989 return err; 10990 } 10991 10992 static int determine_tracepoint_id(const char *tp_category, 10993 const char *tp_name) 10994 { 10995 char file[PATH_MAX]; 10996 int ret; 10997 10998 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id", 10999 tracefs_path(), tp_category, tp_name); 11000 if (ret < 0) 11001 return -errno; 11002 if (ret >= sizeof(file)) { 11003 pr_debug("tracepoint %s/%s path is too long\n", 11004 tp_category, tp_name); 11005 return -E2BIG; 11006 } 11007 return parse_uint_from_file(file, "%d\n"); 11008 } 11009 11010 static int perf_event_open_tracepoint(const char *tp_category, 11011 const char *tp_name) 11012 { 11013 const size_t attr_sz = sizeof(struct perf_event_attr); 11014 struct perf_event_attr attr; 11015 char errmsg[STRERR_BUFSIZE]; 11016 int tp_id, pfd, err; 11017 11018 tp_id = determine_tracepoint_id(tp_category, tp_name); 11019 if (tp_id < 0) { 11020 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n", 11021 tp_category, tp_name, 11022 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg))); 11023 return tp_id; 11024 } 11025 11026 memset(&attr, 0, attr_sz); 11027 attr.type = PERF_TYPE_TRACEPOINT; 11028 attr.size = attr_sz; 11029 attr.config = tp_id; 11030 11031 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */, 11032 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC); 11033 if (pfd < 0) { 11034 err = -errno; 11035 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n", 11036 tp_category, tp_name, 11037 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11038 return err; 11039 } 11040 return pfd; 11041 } 11042 11043 struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog, 11044 const char *tp_category, 11045 const char *tp_name, 11046 const struct bpf_tracepoint_opts *opts) 11047 { 11048 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts); 11049 char errmsg[STRERR_BUFSIZE]; 11050 struct bpf_link *link; 11051 int pfd, err; 11052 11053 if (!OPTS_VALID(opts, bpf_tracepoint_opts)) 11054 return libbpf_err_ptr(-EINVAL); 11055 11056 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0); 11057 11058 pfd = perf_event_open_tracepoint(tp_category, tp_name); 11059 if (pfd < 0) { 11060 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n", 11061 prog->name, tp_category, tp_name, 11062 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11063 return libbpf_err_ptr(pfd); 11064 } 11065 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts); 11066 err = libbpf_get_error(link); 11067 if (err) { 11068 close(pfd); 11069 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n", 11070 prog->name, tp_category, tp_name, 11071 libbpf_strerror_r(err, errmsg, sizeof(errmsg))); 11072 return libbpf_err_ptr(err); 11073 } 11074 return link; 11075 } 11076 11077 struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog, 11078 const char *tp_category, 11079 const char *tp_name) 11080 { 11081 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL); 11082 } 11083 11084 static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11085 { 11086 char *sec_name, *tp_cat, *tp_name; 11087 11088 *link = NULL; 11089 11090 /* no auto-attach for SEC("tp") or SEC("tracepoint") */ 11091 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0) 11092 return 0; 11093 11094 sec_name = strdup(prog->sec_name); 11095 if (!sec_name) 11096 return -ENOMEM; 11097 11098 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */ 11099 if (str_has_pfx(prog->sec_name, "tp/")) 11100 tp_cat = sec_name + sizeof("tp/") - 1; 11101 else 11102 tp_cat = sec_name + sizeof("tracepoint/") - 1; 11103 tp_name = strchr(tp_cat, '/'); 11104 if (!tp_name) { 11105 free(sec_name); 11106 return -EINVAL; 11107 } 11108 *tp_name = '\0'; 11109 tp_name++; 11110 11111 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name); 11112 free(sec_name); 11113 return libbpf_get_error(*link); 11114 } 11115 11116 struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog, 11117 const char *tp_name) 11118 { 11119 char errmsg[STRERR_BUFSIZE]; 11120 struct bpf_link *link; 11121 int prog_fd, pfd; 11122 11123 prog_fd = bpf_program__fd(prog); 11124 if (prog_fd < 0) { 11125 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11126 return libbpf_err_ptr(-EINVAL); 11127 } 11128 11129 link = calloc(1, sizeof(*link)); 11130 if (!link) 11131 return libbpf_err_ptr(-ENOMEM); 11132 link->detach = &bpf_link__detach_fd; 11133 11134 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd); 11135 if (pfd < 0) { 11136 pfd = -errno; 11137 free(link); 11138 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n", 11139 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11140 return libbpf_err_ptr(pfd); 11141 } 11142 link->fd = pfd; 11143 return link; 11144 } 11145 11146 static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11147 { 11148 static const char *const prefixes[] = { 11149 "raw_tp", 11150 "raw_tracepoint", 11151 "raw_tp.w", 11152 "raw_tracepoint.w", 11153 }; 11154 size_t i; 11155 const char *tp_name = NULL; 11156 11157 *link = NULL; 11158 11159 for (i = 0; i < ARRAY_SIZE(prefixes); i++) { 11160 size_t pfx_len; 11161 11162 if (!str_has_pfx(prog->sec_name, prefixes[i])) 11163 continue; 11164 11165 pfx_len = strlen(prefixes[i]); 11166 /* no auto-attach case of, e.g., SEC("raw_tp") */ 11167 if (prog->sec_name[pfx_len] == '\0') 11168 return 0; 11169 11170 if (prog->sec_name[pfx_len] != '/') 11171 continue; 11172 11173 tp_name = prog->sec_name + pfx_len + 1; 11174 break; 11175 } 11176 11177 if (!tp_name) { 11178 pr_warn("prog '%s': invalid section name '%s'\n", 11179 prog->name, prog->sec_name); 11180 return -EINVAL; 11181 } 11182 11183 *link = bpf_program__attach_raw_tracepoint(prog, tp_name); 11184 return libbpf_get_error(link); 11185 } 11186 11187 /* Common logic for all BPF program types that attach to a btf_id */ 11188 static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog, 11189 const struct bpf_trace_opts *opts) 11190 { 11191 LIBBPF_OPTS(bpf_link_create_opts, link_opts); 11192 char errmsg[STRERR_BUFSIZE]; 11193 struct bpf_link *link; 11194 int prog_fd, pfd; 11195 11196 if (!OPTS_VALID(opts, bpf_trace_opts)) 11197 return libbpf_err_ptr(-EINVAL); 11198 11199 prog_fd = bpf_program__fd(prog); 11200 if (prog_fd < 0) { 11201 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11202 return libbpf_err_ptr(-EINVAL); 11203 } 11204 11205 link = calloc(1, sizeof(*link)); 11206 if (!link) 11207 return libbpf_err_ptr(-ENOMEM); 11208 link->detach = &bpf_link__detach_fd; 11209 11210 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */ 11211 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0); 11212 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts); 11213 if (pfd < 0) { 11214 pfd = -errno; 11215 free(link); 11216 pr_warn("prog '%s': failed to attach: %s\n", 11217 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg))); 11218 return libbpf_err_ptr(pfd); 11219 } 11220 link->fd = pfd; 11221 return link; 11222 } 11223 11224 struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog) 11225 { 11226 return bpf_program__attach_btf_id(prog, NULL); 11227 } 11228 11229 struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog, 11230 const struct bpf_trace_opts *opts) 11231 { 11232 return bpf_program__attach_btf_id(prog, opts); 11233 } 11234 11235 struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog) 11236 { 11237 return bpf_program__attach_btf_id(prog, NULL); 11238 } 11239 11240 static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11241 { 11242 *link = bpf_program__attach_trace(prog); 11243 return libbpf_get_error(*link); 11244 } 11245 11246 static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11247 { 11248 *link = bpf_program__attach_lsm(prog); 11249 return libbpf_get_error(*link); 11250 } 11251 11252 static struct bpf_link * 11253 bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id, 11254 const char *target_name) 11255 { 11256 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts, 11257 .target_btf_id = btf_id); 11258 enum bpf_attach_type attach_type; 11259 char errmsg[STRERR_BUFSIZE]; 11260 struct bpf_link *link; 11261 int prog_fd, link_fd; 11262 11263 prog_fd = bpf_program__fd(prog); 11264 if (prog_fd < 0) { 11265 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11266 return libbpf_err_ptr(-EINVAL); 11267 } 11268 11269 link = calloc(1, sizeof(*link)); 11270 if (!link) 11271 return libbpf_err_ptr(-ENOMEM); 11272 link->detach = &bpf_link__detach_fd; 11273 11274 attach_type = bpf_program__expected_attach_type(prog); 11275 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts); 11276 if (link_fd < 0) { 11277 link_fd = -errno; 11278 free(link); 11279 pr_warn("prog '%s': failed to attach to %s: %s\n", 11280 prog->name, target_name, 11281 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11282 return libbpf_err_ptr(link_fd); 11283 } 11284 link->fd = link_fd; 11285 return link; 11286 } 11287 11288 struct bpf_link * 11289 bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd) 11290 { 11291 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup"); 11292 } 11293 11294 struct bpf_link * 11295 bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd) 11296 { 11297 return bpf_program__attach_fd(prog, netns_fd, 0, "netns"); 11298 } 11299 11300 struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex) 11301 { 11302 /* target_fd/target_ifindex use the same field in LINK_CREATE */ 11303 return bpf_program__attach_fd(prog, ifindex, 0, "xdp"); 11304 } 11305 11306 struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog, 11307 int target_fd, 11308 const char *attach_func_name) 11309 { 11310 int btf_id; 11311 11312 if (!!target_fd != !!attach_func_name) { 11313 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n", 11314 prog->name); 11315 return libbpf_err_ptr(-EINVAL); 11316 } 11317 11318 if (prog->type != BPF_PROG_TYPE_EXT) { 11319 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace", 11320 prog->name); 11321 return libbpf_err_ptr(-EINVAL); 11322 } 11323 11324 if (target_fd) { 11325 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd); 11326 if (btf_id < 0) 11327 return libbpf_err_ptr(btf_id); 11328 11329 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace"); 11330 } else { 11331 /* no target, so use raw_tracepoint_open for compatibility 11332 * with old kernels 11333 */ 11334 return bpf_program__attach_trace(prog); 11335 } 11336 } 11337 11338 struct bpf_link * 11339 bpf_program__attach_iter(const struct bpf_program *prog, 11340 const struct bpf_iter_attach_opts *opts) 11341 { 11342 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts); 11343 char errmsg[STRERR_BUFSIZE]; 11344 struct bpf_link *link; 11345 int prog_fd, link_fd; 11346 __u32 target_fd = 0; 11347 11348 if (!OPTS_VALID(opts, bpf_iter_attach_opts)) 11349 return libbpf_err_ptr(-EINVAL); 11350 11351 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0); 11352 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0); 11353 11354 prog_fd = bpf_program__fd(prog); 11355 if (prog_fd < 0) { 11356 pr_warn("prog '%s': can't attach before loaded\n", prog->name); 11357 return libbpf_err_ptr(-EINVAL); 11358 } 11359 11360 link = calloc(1, sizeof(*link)); 11361 if (!link) 11362 return libbpf_err_ptr(-ENOMEM); 11363 link->detach = &bpf_link__detach_fd; 11364 11365 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER, 11366 &link_create_opts); 11367 if (link_fd < 0) { 11368 link_fd = -errno; 11369 free(link); 11370 pr_warn("prog '%s': failed to attach to iterator: %s\n", 11371 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg))); 11372 return libbpf_err_ptr(link_fd); 11373 } 11374 link->fd = link_fd; 11375 return link; 11376 } 11377 11378 static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link) 11379 { 11380 *link = bpf_program__attach_iter(prog, NULL); 11381 return libbpf_get_error(*link); 11382 } 11383 11384 struct bpf_link *bpf_program__attach(const struct bpf_program *prog) 11385 { 11386 struct bpf_link *link = NULL; 11387 int err; 11388 11389 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 11390 return libbpf_err_ptr(-EOPNOTSUPP); 11391 11392 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link); 11393 if (err) 11394 return libbpf_err_ptr(err); 11395 11396 /* When calling bpf_program__attach() explicitly, auto-attach support 11397 * is expected to work, so NULL returned link is considered an error. 11398 * This is different for skeleton's attach, see comment in 11399 * bpf_object__attach_skeleton(). 11400 */ 11401 if (!link) 11402 return libbpf_err_ptr(-EOPNOTSUPP); 11403 11404 return link; 11405 } 11406 11407 static int bpf_link__detach_struct_ops(struct bpf_link *link) 11408 { 11409 __u32 zero = 0; 11410 11411 if (bpf_map_delete_elem(link->fd, &zero)) 11412 return -errno; 11413 11414 return 0; 11415 } 11416 11417 struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map) 11418 { 11419 struct bpf_struct_ops *st_ops; 11420 struct bpf_link *link; 11421 __u32 i, zero = 0; 11422 int err; 11423 11424 if (!bpf_map__is_struct_ops(map) || map->fd == -1) 11425 return libbpf_err_ptr(-EINVAL); 11426 11427 link = calloc(1, sizeof(*link)); 11428 if (!link) 11429 return libbpf_err_ptr(-EINVAL); 11430 11431 st_ops = map->st_ops; 11432 for (i = 0; i < btf_vlen(st_ops->type); i++) { 11433 struct bpf_program *prog = st_ops->progs[i]; 11434 void *kern_data; 11435 int prog_fd; 11436 11437 if (!prog) 11438 continue; 11439 11440 prog_fd = bpf_program__fd(prog); 11441 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i]; 11442 *(unsigned long *)kern_data = prog_fd; 11443 } 11444 11445 err = bpf_map_update_elem(map->fd, &zero, st_ops->kern_vdata, 0); 11446 if (err) { 11447 err = -errno; 11448 free(link); 11449 return libbpf_err_ptr(err); 11450 } 11451 11452 link->detach = bpf_link__detach_struct_ops; 11453 link->fd = map->fd; 11454 11455 return link; 11456 } 11457 11458 typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr, 11459 void *private_data); 11460 11461 static enum bpf_perf_event_ret 11462 perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size, 11463 void **copy_mem, size_t *copy_size, 11464 bpf_perf_event_print_t fn, void *private_data) 11465 { 11466 struct perf_event_mmap_page *header = mmap_mem; 11467 __u64 data_head = ring_buffer_read_head(header); 11468 __u64 data_tail = header->data_tail; 11469 void *base = ((__u8 *)header) + page_size; 11470 int ret = LIBBPF_PERF_EVENT_CONT; 11471 struct perf_event_header *ehdr; 11472 size_t ehdr_size; 11473 11474 while (data_head != data_tail) { 11475 ehdr = base + (data_tail & (mmap_size - 1)); 11476 ehdr_size = ehdr->size; 11477 11478 if (((void *)ehdr) + ehdr_size > base + mmap_size) { 11479 void *copy_start = ehdr; 11480 size_t len_first = base + mmap_size - copy_start; 11481 size_t len_secnd = ehdr_size - len_first; 11482 11483 if (*copy_size < ehdr_size) { 11484 free(*copy_mem); 11485 *copy_mem = malloc(ehdr_size); 11486 if (!*copy_mem) { 11487 *copy_size = 0; 11488 ret = LIBBPF_PERF_EVENT_ERROR; 11489 break; 11490 } 11491 *copy_size = ehdr_size; 11492 } 11493 11494 memcpy(*copy_mem, copy_start, len_first); 11495 memcpy(*copy_mem + len_first, base, len_secnd); 11496 ehdr = *copy_mem; 11497 } 11498 11499 ret = fn(ehdr, private_data); 11500 data_tail += ehdr_size; 11501 if (ret != LIBBPF_PERF_EVENT_CONT) 11502 break; 11503 } 11504 11505 ring_buffer_write_tail(header, data_tail); 11506 return libbpf_err(ret); 11507 } 11508 11509 struct perf_buffer; 11510 11511 struct perf_buffer_params { 11512 struct perf_event_attr *attr; 11513 /* if event_cb is specified, it takes precendence */ 11514 perf_buffer_event_fn event_cb; 11515 /* sample_cb and lost_cb are higher-level common-case callbacks */ 11516 perf_buffer_sample_fn sample_cb; 11517 perf_buffer_lost_fn lost_cb; 11518 void *ctx; 11519 int cpu_cnt; 11520 int *cpus; 11521 int *map_keys; 11522 }; 11523 11524 struct perf_cpu_buf { 11525 struct perf_buffer *pb; 11526 void *base; /* mmap()'ed memory */ 11527 void *buf; /* for reconstructing segmented data */ 11528 size_t buf_size; 11529 int fd; 11530 int cpu; 11531 int map_key; 11532 }; 11533 11534 struct perf_buffer { 11535 perf_buffer_event_fn event_cb; 11536 perf_buffer_sample_fn sample_cb; 11537 perf_buffer_lost_fn lost_cb; 11538 void *ctx; /* passed into callbacks */ 11539 11540 size_t page_size; 11541 size_t mmap_size; 11542 struct perf_cpu_buf **cpu_bufs; 11543 struct epoll_event *events; 11544 int cpu_cnt; /* number of allocated CPU buffers */ 11545 int epoll_fd; /* perf event FD */ 11546 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */ 11547 }; 11548 11549 static void perf_buffer__free_cpu_buf(struct perf_buffer *pb, 11550 struct perf_cpu_buf *cpu_buf) 11551 { 11552 if (!cpu_buf) 11553 return; 11554 if (cpu_buf->base && 11555 munmap(cpu_buf->base, pb->mmap_size + pb->page_size)) 11556 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu); 11557 if (cpu_buf->fd >= 0) { 11558 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0); 11559 close(cpu_buf->fd); 11560 } 11561 free(cpu_buf->buf); 11562 free(cpu_buf); 11563 } 11564 11565 void perf_buffer__free(struct perf_buffer *pb) 11566 { 11567 int i; 11568 11569 if (IS_ERR_OR_NULL(pb)) 11570 return; 11571 if (pb->cpu_bufs) { 11572 for (i = 0; i < pb->cpu_cnt; i++) { 11573 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11574 11575 if (!cpu_buf) 11576 continue; 11577 11578 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key); 11579 perf_buffer__free_cpu_buf(pb, cpu_buf); 11580 } 11581 free(pb->cpu_bufs); 11582 } 11583 if (pb->epoll_fd >= 0) 11584 close(pb->epoll_fd); 11585 free(pb->events); 11586 free(pb); 11587 } 11588 11589 static struct perf_cpu_buf * 11590 perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr, 11591 int cpu, int map_key) 11592 { 11593 struct perf_cpu_buf *cpu_buf; 11594 char msg[STRERR_BUFSIZE]; 11595 int err; 11596 11597 cpu_buf = calloc(1, sizeof(*cpu_buf)); 11598 if (!cpu_buf) 11599 return ERR_PTR(-ENOMEM); 11600 11601 cpu_buf->pb = pb; 11602 cpu_buf->cpu = cpu; 11603 cpu_buf->map_key = map_key; 11604 11605 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu, 11606 -1, PERF_FLAG_FD_CLOEXEC); 11607 if (cpu_buf->fd < 0) { 11608 err = -errno; 11609 pr_warn("failed to open perf buffer event on cpu #%d: %s\n", 11610 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11611 goto error; 11612 } 11613 11614 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size, 11615 PROT_READ | PROT_WRITE, MAP_SHARED, 11616 cpu_buf->fd, 0); 11617 if (cpu_buf->base == MAP_FAILED) { 11618 cpu_buf->base = NULL; 11619 err = -errno; 11620 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n", 11621 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11622 goto error; 11623 } 11624 11625 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) { 11626 err = -errno; 11627 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n", 11628 cpu, libbpf_strerror_r(err, msg, sizeof(msg))); 11629 goto error; 11630 } 11631 11632 return cpu_buf; 11633 11634 error: 11635 perf_buffer__free_cpu_buf(pb, cpu_buf); 11636 return (struct perf_cpu_buf *)ERR_PTR(err); 11637 } 11638 11639 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11640 struct perf_buffer_params *p); 11641 11642 struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt, 11643 perf_buffer_sample_fn sample_cb, 11644 perf_buffer_lost_fn lost_cb, 11645 void *ctx, 11646 const struct perf_buffer_opts *opts) 11647 { 11648 const size_t attr_sz = sizeof(struct perf_event_attr); 11649 struct perf_buffer_params p = {}; 11650 struct perf_event_attr attr; 11651 11652 if (!OPTS_VALID(opts, perf_buffer_opts)) 11653 return libbpf_err_ptr(-EINVAL); 11654 11655 memset(&attr, 0, attr_sz); 11656 attr.size = attr_sz; 11657 attr.config = PERF_COUNT_SW_BPF_OUTPUT; 11658 attr.type = PERF_TYPE_SOFTWARE; 11659 attr.sample_type = PERF_SAMPLE_RAW; 11660 attr.sample_period = 1; 11661 attr.wakeup_events = 1; 11662 11663 p.attr = &attr; 11664 p.sample_cb = sample_cb; 11665 p.lost_cb = lost_cb; 11666 p.ctx = ctx; 11667 11668 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11669 } 11670 11671 struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt, 11672 struct perf_event_attr *attr, 11673 perf_buffer_event_fn event_cb, void *ctx, 11674 const struct perf_buffer_raw_opts *opts) 11675 { 11676 struct perf_buffer_params p = {}; 11677 11678 if (!attr) 11679 return libbpf_err_ptr(-EINVAL); 11680 11681 if (!OPTS_VALID(opts, perf_buffer_raw_opts)) 11682 return libbpf_err_ptr(-EINVAL); 11683 11684 p.attr = attr; 11685 p.event_cb = event_cb; 11686 p.ctx = ctx; 11687 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0); 11688 p.cpus = OPTS_GET(opts, cpus, NULL); 11689 p.map_keys = OPTS_GET(opts, map_keys, NULL); 11690 11691 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p)); 11692 } 11693 11694 static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt, 11695 struct perf_buffer_params *p) 11696 { 11697 const char *online_cpus_file = "/sys/devices/system/cpu/online"; 11698 struct bpf_map_info map; 11699 char msg[STRERR_BUFSIZE]; 11700 struct perf_buffer *pb; 11701 bool *online = NULL; 11702 __u32 map_info_len; 11703 int err, i, j, n; 11704 11705 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) { 11706 pr_warn("page count should be power of two, but is %zu\n", 11707 page_cnt); 11708 return ERR_PTR(-EINVAL); 11709 } 11710 11711 /* best-effort sanity checks */ 11712 memset(&map, 0, sizeof(map)); 11713 map_info_len = sizeof(map); 11714 err = bpf_obj_get_info_by_fd(map_fd, &map, &map_info_len); 11715 if (err) { 11716 err = -errno; 11717 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return 11718 * -EBADFD, -EFAULT, or -E2BIG on real error 11719 */ 11720 if (err != -EINVAL) { 11721 pr_warn("failed to get map info for map FD %d: %s\n", 11722 map_fd, libbpf_strerror_r(err, msg, sizeof(msg))); 11723 return ERR_PTR(err); 11724 } 11725 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n", 11726 map_fd); 11727 } else { 11728 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) { 11729 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n", 11730 map.name); 11731 return ERR_PTR(-EINVAL); 11732 } 11733 } 11734 11735 pb = calloc(1, sizeof(*pb)); 11736 if (!pb) 11737 return ERR_PTR(-ENOMEM); 11738 11739 pb->event_cb = p->event_cb; 11740 pb->sample_cb = p->sample_cb; 11741 pb->lost_cb = p->lost_cb; 11742 pb->ctx = p->ctx; 11743 11744 pb->page_size = getpagesize(); 11745 pb->mmap_size = pb->page_size * page_cnt; 11746 pb->map_fd = map_fd; 11747 11748 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC); 11749 if (pb->epoll_fd < 0) { 11750 err = -errno; 11751 pr_warn("failed to create epoll instance: %s\n", 11752 libbpf_strerror_r(err, msg, sizeof(msg))); 11753 goto error; 11754 } 11755 11756 if (p->cpu_cnt > 0) { 11757 pb->cpu_cnt = p->cpu_cnt; 11758 } else { 11759 pb->cpu_cnt = libbpf_num_possible_cpus(); 11760 if (pb->cpu_cnt < 0) { 11761 err = pb->cpu_cnt; 11762 goto error; 11763 } 11764 if (map.max_entries && map.max_entries < pb->cpu_cnt) 11765 pb->cpu_cnt = map.max_entries; 11766 } 11767 11768 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events)); 11769 if (!pb->events) { 11770 err = -ENOMEM; 11771 pr_warn("failed to allocate events: out of memory\n"); 11772 goto error; 11773 } 11774 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs)); 11775 if (!pb->cpu_bufs) { 11776 err = -ENOMEM; 11777 pr_warn("failed to allocate buffers: out of memory\n"); 11778 goto error; 11779 } 11780 11781 err = parse_cpu_mask_file(online_cpus_file, &online, &n); 11782 if (err) { 11783 pr_warn("failed to get online CPU mask: %d\n", err); 11784 goto error; 11785 } 11786 11787 for (i = 0, j = 0; i < pb->cpu_cnt; i++) { 11788 struct perf_cpu_buf *cpu_buf; 11789 int cpu, map_key; 11790 11791 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i; 11792 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i; 11793 11794 /* in case user didn't explicitly requested particular CPUs to 11795 * be attached to, skip offline/not present CPUs 11796 */ 11797 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu])) 11798 continue; 11799 11800 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key); 11801 if (IS_ERR(cpu_buf)) { 11802 err = PTR_ERR(cpu_buf); 11803 goto error; 11804 } 11805 11806 pb->cpu_bufs[j] = cpu_buf; 11807 11808 err = bpf_map_update_elem(pb->map_fd, &map_key, 11809 &cpu_buf->fd, 0); 11810 if (err) { 11811 err = -errno; 11812 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n", 11813 cpu, map_key, cpu_buf->fd, 11814 libbpf_strerror_r(err, msg, sizeof(msg))); 11815 goto error; 11816 } 11817 11818 pb->events[j].events = EPOLLIN; 11819 pb->events[j].data.ptr = cpu_buf; 11820 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd, 11821 &pb->events[j]) < 0) { 11822 err = -errno; 11823 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n", 11824 cpu, cpu_buf->fd, 11825 libbpf_strerror_r(err, msg, sizeof(msg))); 11826 goto error; 11827 } 11828 j++; 11829 } 11830 pb->cpu_cnt = j; 11831 free(online); 11832 11833 return pb; 11834 11835 error: 11836 free(online); 11837 if (pb) 11838 perf_buffer__free(pb); 11839 return ERR_PTR(err); 11840 } 11841 11842 struct perf_sample_raw { 11843 struct perf_event_header header; 11844 uint32_t size; 11845 char data[]; 11846 }; 11847 11848 struct perf_sample_lost { 11849 struct perf_event_header header; 11850 uint64_t id; 11851 uint64_t lost; 11852 uint64_t sample_id; 11853 }; 11854 11855 static enum bpf_perf_event_ret 11856 perf_buffer__process_record(struct perf_event_header *e, void *ctx) 11857 { 11858 struct perf_cpu_buf *cpu_buf = ctx; 11859 struct perf_buffer *pb = cpu_buf->pb; 11860 void *data = e; 11861 11862 /* user wants full control over parsing perf event */ 11863 if (pb->event_cb) 11864 return pb->event_cb(pb->ctx, cpu_buf->cpu, e); 11865 11866 switch (e->type) { 11867 case PERF_RECORD_SAMPLE: { 11868 struct perf_sample_raw *s = data; 11869 11870 if (pb->sample_cb) 11871 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size); 11872 break; 11873 } 11874 case PERF_RECORD_LOST: { 11875 struct perf_sample_lost *s = data; 11876 11877 if (pb->lost_cb) 11878 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost); 11879 break; 11880 } 11881 default: 11882 pr_warn("unknown perf sample type %d\n", e->type); 11883 return LIBBPF_PERF_EVENT_ERROR; 11884 } 11885 return LIBBPF_PERF_EVENT_CONT; 11886 } 11887 11888 static int perf_buffer__process_records(struct perf_buffer *pb, 11889 struct perf_cpu_buf *cpu_buf) 11890 { 11891 enum bpf_perf_event_ret ret; 11892 11893 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size, 11894 pb->page_size, &cpu_buf->buf, 11895 &cpu_buf->buf_size, 11896 perf_buffer__process_record, cpu_buf); 11897 if (ret != LIBBPF_PERF_EVENT_CONT) 11898 return ret; 11899 return 0; 11900 } 11901 11902 int perf_buffer__epoll_fd(const struct perf_buffer *pb) 11903 { 11904 return pb->epoll_fd; 11905 } 11906 11907 int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms) 11908 { 11909 int i, cnt, err; 11910 11911 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms); 11912 if (cnt < 0) 11913 return -errno; 11914 11915 for (i = 0; i < cnt; i++) { 11916 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr; 11917 11918 err = perf_buffer__process_records(pb, cpu_buf); 11919 if (err) { 11920 pr_warn("error while processing records: %d\n", err); 11921 return libbpf_err(err); 11922 } 11923 } 11924 return cnt; 11925 } 11926 11927 /* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer 11928 * manager. 11929 */ 11930 size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb) 11931 { 11932 return pb->cpu_cnt; 11933 } 11934 11935 /* 11936 * Return perf_event FD of a ring buffer in *buf_idx* slot of 11937 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using 11938 * select()/poll()/epoll() Linux syscalls. 11939 */ 11940 int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx) 11941 { 11942 struct perf_cpu_buf *cpu_buf; 11943 11944 if (buf_idx >= pb->cpu_cnt) 11945 return libbpf_err(-EINVAL); 11946 11947 cpu_buf = pb->cpu_bufs[buf_idx]; 11948 if (!cpu_buf) 11949 return libbpf_err(-ENOENT); 11950 11951 return cpu_buf->fd; 11952 } 11953 11954 int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size) 11955 { 11956 struct perf_cpu_buf *cpu_buf; 11957 11958 if (buf_idx >= pb->cpu_cnt) 11959 return libbpf_err(-EINVAL); 11960 11961 cpu_buf = pb->cpu_bufs[buf_idx]; 11962 if (!cpu_buf) 11963 return libbpf_err(-ENOENT); 11964 11965 *buf = cpu_buf->base; 11966 *buf_size = pb->mmap_size; 11967 return 0; 11968 } 11969 11970 /* 11971 * Consume data from perf ring buffer corresponding to slot *buf_idx* in 11972 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to 11973 * consume, do nothing and return success. 11974 * Returns: 11975 * - 0 on success; 11976 * - <0 on failure. 11977 */ 11978 int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx) 11979 { 11980 struct perf_cpu_buf *cpu_buf; 11981 11982 if (buf_idx >= pb->cpu_cnt) 11983 return libbpf_err(-EINVAL); 11984 11985 cpu_buf = pb->cpu_bufs[buf_idx]; 11986 if (!cpu_buf) 11987 return libbpf_err(-ENOENT); 11988 11989 return perf_buffer__process_records(pb, cpu_buf); 11990 } 11991 11992 int perf_buffer__consume(struct perf_buffer *pb) 11993 { 11994 int i, err; 11995 11996 for (i = 0; i < pb->cpu_cnt; i++) { 11997 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i]; 11998 11999 if (!cpu_buf) 12000 continue; 12001 12002 err = perf_buffer__process_records(pb, cpu_buf); 12003 if (err) { 12004 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err); 12005 return libbpf_err(err); 12006 } 12007 } 12008 return 0; 12009 } 12010 12011 int bpf_program__set_attach_target(struct bpf_program *prog, 12012 int attach_prog_fd, 12013 const char *attach_func_name) 12014 { 12015 int btf_obj_fd = 0, btf_id = 0, err; 12016 12017 if (!prog || attach_prog_fd < 0) 12018 return libbpf_err(-EINVAL); 12019 12020 if (prog->obj->loaded) 12021 return libbpf_err(-EINVAL); 12022 12023 if (attach_prog_fd && !attach_func_name) { 12024 /* remember attach_prog_fd and let bpf_program__load() find 12025 * BTF ID during the program load 12026 */ 12027 prog->attach_prog_fd = attach_prog_fd; 12028 return 0; 12029 } 12030 12031 if (attach_prog_fd) { 12032 btf_id = libbpf_find_prog_btf_id(attach_func_name, 12033 attach_prog_fd); 12034 if (btf_id < 0) 12035 return libbpf_err(btf_id); 12036 } else { 12037 if (!attach_func_name) 12038 return libbpf_err(-EINVAL); 12039 12040 /* load btf_vmlinux, if not yet */ 12041 err = bpf_object__load_vmlinux_btf(prog->obj, true); 12042 if (err) 12043 return libbpf_err(err); 12044 err = find_kernel_btf_id(prog->obj, attach_func_name, 12045 prog->expected_attach_type, 12046 &btf_obj_fd, &btf_id); 12047 if (err) 12048 return libbpf_err(err); 12049 } 12050 12051 prog->attach_btf_id = btf_id; 12052 prog->attach_btf_obj_fd = btf_obj_fd; 12053 prog->attach_prog_fd = attach_prog_fd; 12054 return 0; 12055 } 12056 12057 int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz) 12058 { 12059 int err = 0, n, len, start, end = -1; 12060 bool *tmp; 12061 12062 *mask = NULL; 12063 *mask_sz = 0; 12064 12065 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */ 12066 while (*s) { 12067 if (*s == ',' || *s == '\n') { 12068 s++; 12069 continue; 12070 } 12071 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len); 12072 if (n <= 0 || n > 2) { 12073 pr_warn("Failed to get CPU range %s: %d\n", s, n); 12074 err = -EINVAL; 12075 goto cleanup; 12076 } else if (n == 1) { 12077 end = start; 12078 } 12079 if (start < 0 || start > end) { 12080 pr_warn("Invalid CPU range [%d,%d] in %s\n", 12081 start, end, s); 12082 err = -EINVAL; 12083 goto cleanup; 12084 } 12085 tmp = realloc(*mask, end + 1); 12086 if (!tmp) { 12087 err = -ENOMEM; 12088 goto cleanup; 12089 } 12090 *mask = tmp; 12091 memset(tmp + *mask_sz, 0, start - *mask_sz); 12092 memset(tmp + start, 1, end - start + 1); 12093 *mask_sz = end + 1; 12094 s += len; 12095 } 12096 if (!*mask_sz) { 12097 pr_warn("Empty CPU range\n"); 12098 return -EINVAL; 12099 } 12100 return 0; 12101 cleanup: 12102 free(*mask); 12103 *mask = NULL; 12104 return err; 12105 } 12106 12107 int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz) 12108 { 12109 int fd, err = 0, len; 12110 char buf[128]; 12111 12112 fd = open(fcpu, O_RDONLY | O_CLOEXEC); 12113 if (fd < 0) { 12114 err = -errno; 12115 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err); 12116 return err; 12117 } 12118 len = read(fd, buf, sizeof(buf)); 12119 close(fd); 12120 if (len <= 0) { 12121 err = len ? -errno : -EINVAL; 12122 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err); 12123 return err; 12124 } 12125 if (len >= sizeof(buf)) { 12126 pr_warn("CPU mask is too big in file %s\n", fcpu); 12127 return -E2BIG; 12128 } 12129 buf[len] = '\0'; 12130 12131 return parse_cpu_mask_str(buf, mask, mask_sz); 12132 } 12133 12134 int libbpf_num_possible_cpus(void) 12135 { 12136 static const char *fcpu = "/sys/devices/system/cpu/possible"; 12137 static int cpus; 12138 int err, n, i, tmp_cpus; 12139 bool *mask; 12140 12141 tmp_cpus = READ_ONCE(cpus); 12142 if (tmp_cpus > 0) 12143 return tmp_cpus; 12144 12145 err = parse_cpu_mask_file(fcpu, &mask, &n); 12146 if (err) 12147 return libbpf_err(err); 12148 12149 tmp_cpus = 0; 12150 for (i = 0; i < n; i++) { 12151 if (mask[i]) 12152 tmp_cpus++; 12153 } 12154 free(mask); 12155 12156 WRITE_ONCE(cpus, tmp_cpus); 12157 return tmp_cpus; 12158 } 12159 12160 static int populate_skeleton_maps(const struct bpf_object *obj, 12161 struct bpf_map_skeleton *maps, 12162 size_t map_cnt) 12163 { 12164 int i; 12165 12166 for (i = 0; i < map_cnt; i++) { 12167 struct bpf_map **map = maps[i].map; 12168 const char *name = maps[i].name; 12169 void **mmaped = maps[i].mmaped; 12170 12171 *map = bpf_object__find_map_by_name(obj, name); 12172 if (!*map) { 12173 pr_warn("failed to find skeleton map '%s'\n", name); 12174 return -ESRCH; 12175 } 12176 12177 /* externs shouldn't be pre-setup from user code */ 12178 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG) 12179 *mmaped = (*map)->mmaped; 12180 } 12181 return 0; 12182 } 12183 12184 static int populate_skeleton_progs(const struct bpf_object *obj, 12185 struct bpf_prog_skeleton *progs, 12186 size_t prog_cnt) 12187 { 12188 int i; 12189 12190 for (i = 0; i < prog_cnt; i++) { 12191 struct bpf_program **prog = progs[i].prog; 12192 const char *name = progs[i].name; 12193 12194 *prog = bpf_object__find_program_by_name(obj, name); 12195 if (!*prog) { 12196 pr_warn("failed to find skeleton program '%s'\n", name); 12197 return -ESRCH; 12198 } 12199 } 12200 return 0; 12201 } 12202 12203 int bpf_object__open_skeleton(struct bpf_object_skeleton *s, 12204 const struct bpf_object_open_opts *opts) 12205 { 12206 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts, 12207 .object_name = s->name, 12208 ); 12209 struct bpf_object *obj; 12210 int err; 12211 12212 /* Attempt to preserve opts->object_name, unless overriden by user 12213 * explicitly. Overwriting object name for skeletons is discouraged, 12214 * as it breaks global data maps, because they contain object name 12215 * prefix as their own map name prefix. When skeleton is generated, 12216 * bpftool is making an assumption that this name will stay the same. 12217 */ 12218 if (opts) { 12219 memcpy(&skel_opts, opts, sizeof(*opts)); 12220 if (!opts->object_name) 12221 skel_opts.object_name = s->name; 12222 } 12223 12224 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts); 12225 err = libbpf_get_error(obj); 12226 if (err) { 12227 pr_warn("failed to initialize skeleton BPF object '%s': %d\n", 12228 s->name, err); 12229 return libbpf_err(err); 12230 } 12231 12232 *s->obj = obj; 12233 err = populate_skeleton_maps(obj, s->maps, s->map_cnt); 12234 if (err) { 12235 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err); 12236 return libbpf_err(err); 12237 } 12238 12239 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt); 12240 if (err) { 12241 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err); 12242 return libbpf_err(err); 12243 } 12244 12245 return 0; 12246 } 12247 12248 int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s) 12249 { 12250 int err, len, var_idx, i; 12251 const char *var_name; 12252 const struct bpf_map *map; 12253 struct btf *btf; 12254 __u32 map_type_id; 12255 const struct btf_type *map_type, *var_type; 12256 const struct bpf_var_skeleton *var_skel; 12257 struct btf_var_secinfo *var; 12258 12259 if (!s->obj) 12260 return libbpf_err(-EINVAL); 12261 12262 btf = bpf_object__btf(s->obj); 12263 if (!btf) { 12264 pr_warn("subskeletons require BTF at runtime (object %s)\n", 12265 bpf_object__name(s->obj)); 12266 return libbpf_err(-errno); 12267 } 12268 12269 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt); 12270 if (err) { 12271 pr_warn("failed to populate subskeleton maps: %d\n", err); 12272 return libbpf_err(err); 12273 } 12274 12275 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt); 12276 if (err) { 12277 pr_warn("failed to populate subskeleton maps: %d\n", err); 12278 return libbpf_err(err); 12279 } 12280 12281 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) { 12282 var_skel = &s->vars[var_idx]; 12283 map = *var_skel->map; 12284 map_type_id = bpf_map__btf_value_type_id(map); 12285 map_type = btf__type_by_id(btf, map_type_id); 12286 12287 if (!btf_is_datasec(map_type)) { 12288 pr_warn("type for map '%1$s' is not a datasec: %2$s", 12289 bpf_map__name(map), 12290 __btf_kind_str(btf_kind(map_type))); 12291 return libbpf_err(-EINVAL); 12292 } 12293 12294 len = btf_vlen(map_type); 12295 var = btf_var_secinfos(map_type); 12296 for (i = 0; i < len; i++, var++) { 12297 var_type = btf__type_by_id(btf, var->type); 12298 var_name = btf__name_by_offset(btf, var_type->name_off); 12299 if (strcmp(var_name, var_skel->name) == 0) { 12300 *var_skel->addr = map->mmaped + var->offset; 12301 break; 12302 } 12303 } 12304 } 12305 return 0; 12306 } 12307 12308 void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s) 12309 { 12310 if (!s) 12311 return; 12312 free(s->maps); 12313 free(s->progs); 12314 free(s->vars); 12315 free(s); 12316 } 12317 12318 int bpf_object__load_skeleton(struct bpf_object_skeleton *s) 12319 { 12320 int i, err; 12321 12322 err = bpf_object__load(*s->obj); 12323 if (err) { 12324 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err); 12325 return libbpf_err(err); 12326 } 12327 12328 for (i = 0; i < s->map_cnt; i++) { 12329 struct bpf_map *map = *s->maps[i].map; 12330 size_t mmap_sz = bpf_map_mmap_sz(map); 12331 int prot, map_fd = bpf_map__fd(map); 12332 void **mmaped = s->maps[i].mmaped; 12333 12334 if (!mmaped) 12335 continue; 12336 12337 if (!(map->def.map_flags & BPF_F_MMAPABLE)) { 12338 *mmaped = NULL; 12339 continue; 12340 } 12341 12342 if (map->def.map_flags & BPF_F_RDONLY_PROG) 12343 prot = PROT_READ; 12344 else 12345 prot = PROT_READ | PROT_WRITE; 12346 12347 /* Remap anonymous mmap()-ed "map initialization image" as 12348 * a BPF map-backed mmap()-ed memory, but preserving the same 12349 * memory address. This will cause kernel to change process' 12350 * page table to point to a different piece of kernel memory, 12351 * but from userspace point of view memory address (and its 12352 * contents, being identical at this point) will stay the 12353 * same. This mapping will be released by bpf_object__close() 12354 * as per normal clean up procedure, so we don't need to worry 12355 * about it from skeleton's clean up perspective. 12356 */ 12357 *mmaped = mmap(map->mmaped, mmap_sz, prot, 12358 MAP_SHARED | MAP_FIXED, map_fd, 0); 12359 if (*mmaped == MAP_FAILED) { 12360 err = -errno; 12361 *mmaped = NULL; 12362 pr_warn("failed to re-mmap() map '%s': %d\n", 12363 bpf_map__name(map), err); 12364 return libbpf_err(err); 12365 } 12366 } 12367 12368 return 0; 12369 } 12370 12371 int bpf_object__attach_skeleton(struct bpf_object_skeleton *s) 12372 { 12373 int i, err; 12374 12375 for (i = 0; i < s->prog_cnt; i++) { 12376 struct bpf_program *prog = *s->progs[i].prog; 12377 struct bpf_link **link = s->progs[i].link; 12378 12379 if (!prog->autoload || !prog->autoattach) 12380 continue; 12381 12382 /* auto-attaching not supported for this program */ 12383 if (!prog->sec_def || !prog->sec_def->prog_attach_fn) 12384 continue; 12385 12386 /* if user already set the link manually, don't attempt auto-attach */ 12387 if (*link) 12388 continue; 12389 12390 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link); 12391 if (err) { 12392 pr_warn("prog '%s': failed to auto-attach: %d\n", 12393 bpf_program__name(prog), err); 12394 return libbpf_err(err); 12395 } 12396 12397 /* It's possible that for some SEC() definitions auto-attach 12398 * is supported in some cases (e.g., if definition completely 12399 * specifies target information), but is not in other cases. 12400 * SEC("uprobe") is one such case. If user specified target 12401 * binary and function name, such BPF program can be 12402 * auto-attached. But if not, it shouldn't trigger skeleton's 12403 * attach to fail. It should just be skipped. 12404 * attach_fn signals such case with returning 0 (no error) and 12405 * setting link to NULL. 12406 */ 12407 } 12408 12409 return 0; 12410 } 12411 12412 void bpf_object__detach_skeleton(struct bpf_object_skeleton *s) 12413 { 12414 int i; 12415 12416 for (i = 0; i < s->prog_cnt; i++) { 12417 struct bpf_link **link = s->progs[i].link; 12418 12419 bpf_link__destroy(*link); 12420 *link = NULL; 12421 } 12422 } 12423 12424 void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s) 12425 { 12426 if (!s) 12427 return; 12428 12429 if (s->progs) 12430 bpf_object__detach_skeleton(s); 12431 if (s->obj) 12432 bpf_object__close(*s->obj); 12433 free(s->maps); 12434 free(s->progs); 12435 free(s); 12436 } 12437